FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Ramalho, G Pena, MT AF Ramalho, G. Pena, M. T. TI Electromagnetic form factors of the Delta in an S-wave approach SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID PION-PROTON BREMSSTRAHLUNG; BARYON MAGNETIC-MOMENTS; QCD SUM-RULES; QUARK-SOLITON MODEL; LATTICE QCD; DECUPLET; SCATTERING; NUCLEON; DELTA++(1232); TRANSITION AB Without any further adjusting of parameters, a relativistic constituent quark model, successful in the description of the data for the nucleon elastic form factors and of the dominant contribution for the nucleon to Delta electromagnetic transition, is used here to predict the dominant electromagnetic form factors of the Delta baryon. The model is based on a simple Delta wavefunction corresponding to a quark-diquark system in an S-state. The results for E0 and M1 are consistent both with experimental results and lattice calculations. The remaining form factors E2 and M3 vanish, given the symmetric structure taken for Delta. C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor & Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates; US DOE [DE-AC05-06OR23177]; portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006] FX The authors are grateful to Franz Gross for his proposal to initiate the study of the baryons within the covariant spectator formalism, to Constantia Alexandrou for providing us the lattice data of [39, 49], to Alfred Stadler for advice during the writing of the text and to Marc Vanderhaeghen for having called our attention to an error present in a previous version. GR would like to thank to Ross Young for helpful discussions. This work was partially support by Jefferson Science Associates, LLC under US DOE contract no DE-AC05-06OR23177. GR was supported by the portuguese Fundacao para a Ciencia e Tecnologia (FCT) under the grant SFRH/BPD/26886/2006. NR 66 TC 20 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD AUG PY 2009 VL 36 IS 8 AR 085004 DI 10.1088/0954-3899/36/8/085004 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 470BE UT WOS:000267945900005 ER PT J AU Vary, JP Popescu, S Stoica, S Navratil, P AF Vary, J. P. Popescu, S. Stoica, S. Navratil, P. TI A no-core shell model for Ca-48, Sc-48 and Ti-48 SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID MONTE-CARLO CALCULATIONS; DOUBLE-BETA DECAY; LIGHT-NUCLEI; OPERATOR APPROACH AB We report the first no-core shell model results for Ca-48, Sc-48 and Ti-48 with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited (h) over bar Omega range around 45/A(1/3) - 25/A(2/3) = 10.5 MeV and a limited model space up to 1 (h) over bar Omega. No single- particle energies are used. We find that the charge dependence of the bulk binding energy of eight A = 48 nuclei is reasonably described with an effective Hamiltonian derived from the CD - Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to (1) basis space limitations and/or the absence of effective many-body interactions and (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (beta beta) decay process. C1 [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vary, J. P.; Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Popescu, S.; Stoica, S.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 76900, Romania. [Stoica, S.] Horia Hulubei Fdn, Magurele 077125, Romania. RP Vary, JP (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU USDOE [DE-FG-02 87ER40371]; Division of Nuclear Physics; NSF [INT0070789] FX We thank Vesselin Gueorguiev, Christian Forssen and Mihai Horoi for useful discussions. This work was partly performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract no. W7405- Eng- 48. This work was also supported in part by USDOE grant DE-FG-02 87ER40371, Division of Nuclear Physics. This work was also supported in part by NSF grant INT0070789. NR 61 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD AUG PY 2009 VL 36 IS 8 AR 085103 DI 10.1088/0954-3899/36/8/085103 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 470BE UT WOS:000267945900013 ER PT J AU Babic, B Gulicovski, J Gajic-Krstajic, L Elezovic, N Radmilovic, VR Krstajic, NV Vracar, LM AF Babic, B. Gulicovski, J. Gajic-Krstajic, Lj. Elezovic, N. Radmilovic, V. R. Krstajic, N. V. Vracar, Lj. M. TI Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution SO JOURNAL OF POWER SOURCES LA English DT Article DE Titanium sub-oxide; Hydrogen oxidation reaction; Kinetic equation; Mechanism ID MEMBRANE FUEL-CELLS; PT-RU; EVOLUTION; ELECTRODE; CO; CARBON; H-2; ELECTROOXIDATION; SPECTROSCOPY; MIXTURES AB The kinetics and mechanism of the hydrogen oxidation reaction were studied in 0.5 mol dm(-3) HClO(4) solution on an electrode based on titanium oxide with Magneli phase structure-supported platinum electrocatalyst applied on rotation Au disk electrode. Pt catalyst was prepared by impregnation method from 2-propanol solution of Pt(NH(3))(2)(NO(2))(2) and sub-stoichiometric titanium oxide powder. Sub-stiochiometric titanium oxide Support was characterized by X-ray diffraction and BET techniques. The synthesized catalyst was analyzed by TEM technique. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the hydrogen oxidation current-potential behavior on RDE over the entire potential region. The polarization RIDE curves were fitted with derived polarization equations according to proposed model. The fitting shows that the HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway in the lower potential region, while the Heyrovsky-Volmer (HV) pathway is operative in the higher potential region. It is pointed out that Tafel equation that has been frequently used for the kinetics analysis in the HOR, can not reproduce the polarization curves measured with high mass-transport rates. Polarization measurements on RDE revealed that the Pt catalyst deposited on titanium suboxide support showed equal specific activity for the HOR compared to conventional carbon-supported Pt fuel cell catalyst. (C) 2008 Elsevier B.V. All rights reserved. C1 [Krstajic, N. V.; Vracar, Lj. M.] Univ Belgrade, Fac Technol & Met, Belgrade, Serbia. [Babic, B.; Gulicovski, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Gajic-Krstajic, Lj.] Inst Tech Sci SASA, Belgrade, Serbia. [Elezovic, N.] Ctr Multidisciplinary Res, Belgrade, Serbia. [Radmilovic, V. R.] LBLN Univ Calif, Natl Ctr Electron Microscopy, Berkeley, CA USA. RP Krstajic, NV (reprint author), Univ Belgrade, Fac Technol & Met, Belgrade, Serbia. EM nedeljko@tmf.bg.ac.yu RI Gajic-Krstajic, Ljiljana/F-9983-2010 OI Gajic-Krstajic, Ljiljana/0000-0001-8996-7477 FU Ministry of Science and Technological Development, Republic of Serbia [142038]; US Department of Energy [DE-AC02-05CH11231] FX This work is financially supported by the Ministry of Science and Technological Development, Republic of Serbia, under contact no. 142038. V. Radmilovit acknowledges support by the US Department of Energy under contract #DE-AC02-05CH11231. NR 30 TC 11 Z9 11 U1 0 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 1 PY 2009 VL 193 IS 1 BP 99 EP 106 DI 10.1016/j.jpowsour.2008.11.142 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 465DG UT WOS:000267561400014 ER PT J AU Dadfarnia, M Somerday, BP Sofronis, P Robertson, IM Stalheim, D AF Dadfarnia, Mohsen Somerday, Brian P. Sofronis, Petros Robertson, Ian M. Stalheim, Douglas TI Interaction of Hydrogen Transport and Material Elastoplasticity in Pipeline Steels SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition CY NOV 05-10, 2006 CL Chicago, IL SP ASME DE hydrogen embrittlement; diffusion; plasticity; low- or medium-strength steels; pipeline ID BLUNTING CRACK-TIP; NICKEL-BASE ALLOYS; VOID GROWTH; FRACTURE; MICROMECHANICS; EMBRITTLEMENT; PLASTICITY; DECOHESION; STRESS; METALS AB The technology of large scale hydrogen transmission from central production facilities to refueling stations and stationary power sites is at present undeveloped. Among the problems that confront the implementation of this technology is the deleterious effect of hydrogen on structural material properties, in particular, at gas pressures of the order of 15 MPa, which are the suggested magnitudes by economic studies for efficient transport. In order to understand the hydrogen embrittlement conditions of the pipeline materials, we simulate hydrogen diffusion through the surfaces of an axial crack on the internal wall of a vessel coupled with material deformation under plane strain small scale yielding conditions. The calculation of the hydrogen accumulation ahead of the crack tip accounts for stress-driven transient diffusion of hydrogen and trapping at microstructural defects whose density evolves dynamically with deformation. The results are analyzed to correlate for a given material system the time after which hydrogen transport takes place under steady state conditions with the level of load in terms of the applied stress intensity factor at the crack tip and the size of the domain used for the simulation of the diffusion. [DOI: 10.1115/1.3027497] C1 [Dadfarnia, Mohsen; Sofronis, Petros] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Somerday, Brian P.] Sandia Natl Labs, Livermore, CA 94551 USA. [Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Stalheim, Douglas] DGS Met Solut Inc, Vancouver, WA 98684 USA. RP Sofronis, P (reprint author), Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. EM sofronis@uiuc.edu OI Dadfarnia, Mohsen/0000-0002-5218-971X NR 32 TC 8 Z9 8 U1 4 U2 14 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 041404 DI 10.1115/1.3027497 PG 13 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200012 ER PT J AU Lam, PS Sindelar, RL Duncan, AJ Adams, TM AF Lam, P. S. Sindelar, R. L. Duncan, A. J. Adams, T. M. TI Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB A compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure has been assembled from literature sources. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction in area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are from literature sources under a variety of test methods and conditions. The collection of literature data is by no means complete, but the diversity of data and dependency of results on test method are sufficient to warrant a design and implementation of a standardized test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e. g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens). [DOI: 10.1115/1.3141435] C1 [Lam, P. S.; Sindelar, R. L.; Duncan, A. J.; Adams, T. M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Lam, PS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 25 TC 8 Z9 8 U1 1 U2 8 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 041408 DI 10.1115/1.3141435 PG 14 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200016 ER PT J AU Lam, PS AF Lam, Poh-Sang TI Untitled SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Editorial Material C1 Savannah River Natl Lab, Aiken, SC USA. RP Lam, PS (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 040301 PG 2 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200001 ER PT J AU Ren, WJ Swindeman, R AF Ren, Weiju Swindeman, Robert TI A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Review ID CREEP; EMBRITTLEMENT; STEELS; MICROSTRUCTURE; INCONEL-617; BEHAVIOR; HELIUM AB Alloys 617 and 230 are currently identified as two leading candidate metallic materials in the down selection for applications at temperatures above 760 degrees C in the Gen IV nuclear reactor systems. Qualifying the materials requires significant information related to codification, mechanical behavior modeling, metallurgical stability, environmental resistance, and many other aspects. In the present paper, material requirements for the Gen IV nuclear reactor systems are discussed; available information regarding the two alloys for the intended applications are reviewed and analyzed; and further R&D activities are suggested. In the United States the major requirement for qualifying the materials is to satisfy the ASME Subsection NH, with adequate considerations for NRC, ASME NQA-1, and Section XI. In comparison, Alloy 617 is more studied with larger existing databases in air and helium, while Alloy 230 may have highly desired potentials but needs more exploration. To provide a sound technical basis for the material selection decision, more data should be generated to characterize behaviors of both alloys in creep, loading rate sensitivity, fatigue, creep-fatigue, crack resistance, toughness, product form dependency, and metallurgical stability. [DOI: 10.1115/1.3121522] C1 [Ren, Weiju] Oak Ridge Natl Lab, Met Sci & Technol Div, Oak Ridge, TN 37831 USA. [Swindeman, Robert] Cromtech, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Met Sci & Technol Div, MS-6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov; rswindeman@comcast.net FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This work is sponsored by the U. S. Department of Energy, Office of Nuclear Energy Science and Technology under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. NR 68 TC 16 Z9 16 U1 1 U2 22 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 044002 DI 10.1115/1.3121522 PG 15 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200020 ER PT J AU Heibeck, TH Ding, SJ Opresko, LK Zhao, R Schepmoes, AA Yang, F Tolmachev, AV Monroe, ME Camp, DG Smith, RD Wiley, HS Qian, WJ AF Heibeck, Tyler H. Ding, Shi-Jian Opresko, Lee K. Zhao, Rui Schepmoes, Athena A. Yang, Feng Tolmachev, Aleksey V. Monroe, Matthew E. Camp, David G., II Smith, Richard D. Wiley, H. Steven Qian, Wei-Jun TI An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE LC-MS/MS; phosphotyrosine; phosphoproteomics; HMEC; phosphorylation; immunoprecipitation ID TANDEM MASS-SPECTROMETRY; GROWTH-FACTOR RECEPTOR; FOCAL ADHESION KINASE; PROTEIN-PHOSPHORYLATION; SIGNAL-TRANSDUCTION; DOCKING PROTEIN; CANCER-CELLS; PATHWAY; NETWORKS; INTEGRIN AB Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here, we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying antiphosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that a majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems. C1 [Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM weijun.qian@pnl.gov RI Qian, Weijun/C-6167-2011; Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Wiley, Steven/0000-0003-0232-6867 FU Pacific Northwest National Laboratory Biomolecular Systems Initiative LDRD program; NIH [R01 DK074795, RR018522]; Environmental Molecular Science Laboratory; U.S. Department of Energy (DOE) [DE-AC05-76RLO-1830] FX This work was supported in part by the Pacific Northwest National Laboratory Biomolecular Systems Initiative LDRD program, NIH R01 DK074795, the NIH National Center for Research Resources RR018522, and the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the DOE under Contract No. DE-AC05-76RLO-1830. NR 60 TC 38 Z9 85 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD AUG PY 2009 VL 8 IS 8 BP 3852 EP 3861 DI 10.1021/pr900044c PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 479LV UT WOS:000268661800008 PM 19534553 ER PT J AU Zangar, RC Daly, DS White, AM Servoss, SL Tan, RM Collett, JR AF Zangar, R. C. Daly, D. S. White, A. M. Servoss, S. L. Tan, R. M. Collett, J. R. TI ProMAT Calibrator: A Tool for Reducing Experimental Bias in Antibody Microarrays SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE bioinformatics; antibody array; calibration; ProMAT; microarray; GFP ID PROTEIN; ELISA; VALIDATION AB Our research group has been developing enzyme-linked immunosorbent assays (ELISA) microarray technology for the rapid and quantitative evaluation of biomarker panels. Studies using antibody microarrays are susceptible to systematic bias from the various steps in the experimental process, and these biases can mask biologically significant differences. For this reason, we have developed a calibration system that can identify and reduce systematic bias due to processing factors. Specifically, we developed a sandwich ELISA for green fluorescent protein (GFP) that is included on each chip. The GFP antigen is spiked into each biological sample or standard mixture and the resulting signal is used for calibration between chips. We developed ProMAT Calibrator, an open-source bioinformatics tool, for the rapid visualization and interpretation of the calibrator data and, if desired, data normalization. We demonstrate that data normalization using this system markedly reduces bias from processing factors. Equally useful, this calibrator system can help reveal the source of the bias, thereby facilitating the elimination of the underlying problem. ProMAT Calibrator can be downloaded at http://www.pnl.gov/statistics/ProMAT. C1 [Zangar, R. C.; Daly, D. S.; White, A. M.; Servoss, S. L.; Tan, R. M.; Collett, J. R.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zangar, RC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM richard.zangar@pnl.gov FU National Cancer institute [U01 CA117378]; National Institute of Biomedical Imaging and Bioengineering [R01 EB006177] FX This work was supported by the National Cancer institute by grant U01 CA117378 and the National Institute of Biomedical Imaging and Bioengineering by grant R01 EB006177. NR 10 TC 13 Z9 13 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD AUG PY 2009 VL 8 IS 8 BP 3937 EP 3943 DI 10.1021/pr900247n PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 479LV UT WOS:000268661800016 PM 19618941 ER PT J AU Bell, NS Tallant, DR AF Bell, Nelson S. Tallant, D. R. TI Ripening and growth of zinc oxide nanorods from nanoparticles in 1,4 butanediol solvent SO JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY LA English DT Article DE Zinc oxide; Ripening; Glycol; Nanoparticle; Nanorod ID SOL-GEL PROCESS; ZNO NANOPARTICLES; SEMICONDUCTOR CLUSTERS; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURED ZNO; POLYOL MEDIUM; METAL-OXIDES; NANOCRYSTALS; PARTICLES; KINETICS AB Zinc oxide nanorod formation in 1,4-butanediol was studied as a function of time and temperature using TEM and UV-Vis absorption spectra. Nanorod morphologies are formed by annealing of dilute nanodots, initially formed by sol-gel reaction in 1,4-butanediol. The nanorod morphology is unusual in the termination of the c-axis facets, with one end perpendicular to the a facets (flat) and the other faceted into a six-sided point. Ripening of nanodots proceeds via the Lifshitz-Slyozov-Wagner model of diffusion limited coarsening, and annealing at elevated temperature leads a transition to nanorod morphologies. Nanoparticle dissolution and shape development affect the axial ratio of the growing nanorods. Evidence of oriented attachment was not observed in the ripening study. The use of 1,4-butanediol allows for higher temperature reaction than in alcohols, without the use of pressure vessels. C1 [Bell, Nelson S.; Tallant, D. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bell, NS (reprint author), Sandia Natl Labs, POB 5800-1411, Albuquerque, NM 87185 USA. EM nsbell@sandia.gov FU United States Department of Energy National Nuclear Security Administration [DE-AX04-934AL85000]; Sandia National Laboratories LDRD program FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy National Nuclear Security Administration under contract DE-AX04-934AL85000. Funding for this work was provided by Sandia National Laboratories LDRD program. Thanks go to Tom Headley and Ping Lu for TEM images, and to Jeff Schroeder for measurement of particle dimensions. NR 48 TC 11 Z9 11 U1 4 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0928-0707 J9 J SOL-GEL SCI TECHN JI J. Sol-Gel Sci. Technol. PD AUG PY 2009 VL 51 IS 2 BP 158 EP 168 DI 10.1007/s10971-009-1967-5 PG 11 WC Materials Science, Ceramics SC Materials Science GA 462PE UT WOS:000267367300005 ER PT J AU Evans, MJ Lee, MH Holland, GP Daemen, LL Sankey, OF Haussermann, U AF Evans, Michael J. Lee, Myeong H. Holland, Gregory P. Daemen, Luke L. Sankey, Otto F. Haeussermann, Ulrich TI Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Metal hydrides; INS spectroscopy; Zintl phases ID INELASTIC NEUTRON-SCATTERING; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; POLYANIONIC HYDRIDES; CRYSTAL-STRUCTURE; RAMAN-SCATTERING; METALS; HYDROGEN; SPECTRA; SRALSIH AB Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH (AeGaTtH) have been investigated by means of inelastic neutron scattering (INS) and first principles calculations. The compounds contain separated Ga-H units being part of a two dimensional polyanionic layer, [TtGaH](2)-(Tt = Si, Ge, Sn). The INS spectra show internal Ga-H bending and stretching modes at frequencies around 900 and 1200cm(-1), respectively. While the stretching mode is virtually invariant with respect to the variable chemical environment of the Ga-H unit, the bending mode frequency varies and is highest for BaGaSiH and lowest for BaGaSnH. The stretching mode is a direct measure of the Ga-H bond strength, whereas the bending mode reflects indirectly the strength of alkaline earth metal-hydrogen interaction. Accordingly, the terminal Ga-H bond in solid state AeGaTtH is distinct, but-compared to molecular gallium hydrides-very weak. (C) 2009 Elsevier Inc. All rights reserved. C1 [Evans, Michael J.; Holland, Gregory P.; Haeussermann, Ulrich] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Lee, Myeong H.; Sankey, Otto F.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Daemen, Luke L.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Haussermann, U (reprint author), Arizona State Univ, Dept Chem & Biochem, POB 871604, Tempe, AZ 85287 USA. EM Ulrich.Haussermann@asu.edu RI Lee, Myeong/F-7932-2010; Lujan Center, LANL/G-4896-2012 FU National Science Foundation [DMR-0638826]; Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396, DE-FG02-05ER46235] FX This work has been supported by National Science Foundation Grant DMR-0638826 and has made use of the Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396. Additionally, the ASU Magnetic Resonance Research Center and partial support from DOE through Grant DE-FG02-05ER46235 are acknowledged. NR 35 TC 9 Z9 9 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2009 VL 182 IS 8 BP 2068 EP 2073 DI 10.1016/j.jssc.2009.05.023 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 484SA UT WOS:000269066400012 ER PT J AU Salvador, JR Yang, J Shi, X Wang, H Wereszczak, AA AF Salvador, James R. Yang, J. Shi, X. Wang, H. Wereszczak, A. A. TI Transport and mechanical property evaluation of (AgSbTe)(1-x)(GeTe)(x) (x=0.80, 0.82, 0.85, 0.87, 0.90) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Thermoelectrics; Powder processing; Transport measurements; Mechanical properties; Chalcogenides ID THERMOELECTRIC-MATERIALS; FIGURE; MERIT; AGPBMSBTE2+M; CONVERSION; GETE AB (AgSbTe2)(1-x)(GeTe)(x) (known collectively by the acronym of their constituent elements as TAGS-x, where x designates the mole fraction of GeTe) materials, despite being described over 40 years ago, have only recently been studied in greater detail from a fundamental standpoint. We have prepared a series of samples with composition (AgSbTe2)(1-x)(GeTe)(x) (x = 0.80, 0.82. 0.85, 0.87 and 0.90). Cast ingots of the above compositions were ground and consolidated by spark plasma sintering (SPS). Sintering conditions, specifically high applied pressures of 65 MPa and slow heating rates, were identified as important variables that lead to samples with low porosity and good mechanical strength. The resulting ingots were cut for high temperature electrical, thermal transport and mechanical property evaluation. TAGS-85 was found to have the highest ZT of all samples investigated (ZT = 1.36 at 700 K) as a result of its very low value of thermal conductivity. Hall effect measurements performed from 5 to 300 K found these materials to have complex multi-band transport characteristics. (C) 2009 Elsevier Inc. All rights reserved. C1 [Salvador, James R.; Yang, J.] GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. [Shi, X.] Optimal Inc, Plymouth Township, MI 48170 USA. [Wang, H.; Wereszczak, A. A.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Salvador, JR (reprint author), GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. EM james.salvador@gm.cm RI Yang, Jihui/A-3109-2009; shi, xun/B-4499-2009; Wang, Hsin/A-1942-2013; Wereszczak, Andrew/I-7310-2016 OI shi, xun/0000-0002-3806-0303; Wang, Hsin/0000-0003-2426-9867; Wereszczak, Andrew/0000-0002-8344-092X FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies [DE-FC26-04NT42278]; Department of Energy [DEAC05000OR22725] FX J.R.S., X.S. and J.Y. would like to thank Drs. J.F. Herbst and M.W. Verbrugge for their continued support and encouragement. The work is supported by GM and by DOE under corporate agreement DE-FC26-04NT42278, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory managed by the UT-Battelle LLC, for the Department of Energy under contract DEAC05000OR22725. NR 30 TC 38 Z9 39 U1 5 U2 51 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2009 VL 182 IS 8 BP 2088 EP 2095 DI 10.1016/j.jssc.2009.05.024 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 484SA UT WOS:000269066400015 ER PT J AU McGuire, MA Singh, DJ Sefat, AS Sales, BC Mandrus, D AF McGuire, Michael A. Singh, David J. Sefat, Athena S. Sales, Brian C. Mandrus, David TI Suppression of spin density wave by isoelectronic substitution in PrFe1-xRuxAsO SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Iron arsenide; Oxypnictide; Spin density wave; Superconductivity; PrFeAsO; FeAs; 1111 ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CRYSTAL-STRUCTURE; STRUCTURAL DATA; PHASE-DIAGRAM; EARTH; METAL AB We have studied the effects of the isoelectronic substitution of Ru for Fe in polycrystalline samples of the spin density wave (SDW) material PrFeAsO. Crystal structures from powder X-ray diffraction at room temperature and transport properties from 2 to 300K are reported. The SDW is completely suppressed upon Ru substitution. The distortion of the tetrahedral coordination environment of the transition metal site increases as the Ru concentration increases, which may be related to the absence of superconductivity above 2 K. Band structure calculations show that the larger size of Ru 4d orbitals is primarily responsible for the suppression of magnetism as Ru is substituted into the Fe layer. The experimental results indicate that long-ranged magnetic order of Pr moments is suppressed at Ru concentrations as low as 10%. (C) 2009 Elsevier Inc. All rights reserved. C1 [McGuire, Michael A.; Singh, David J.; Sefat, Athena S.; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McGuire, MA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM McGuireMA@ornl.gov RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU U.S. DOE [DE-AC05-00OR22725] FX Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. Part of this research performed by Eugene P. Wigner Fellows at ORNL, managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC05-00OR22725. NR 36 TC 33 Z9 33 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2009 VL 182 IS 8 BP 2326 EP 2331 DI 10.1016/j.jssc.2009.06.011 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 484SA UT WOS:000269066400049 ER PT J AU Ramey, VH Wang, HW Nogales, E AF Ramey, Vincent H. Wang, Hong-Wei Nogales, Eva TI Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Single particle reconstruction; Helical structures; Dam1 complex; Heterogeneity ID KINETOCHORE-MICROTUBULE INTERFACE; YEAST DASH COMPLEX; ELECTRON-MICROSCOPY; RING COMPLEX; F-ACTIN; FLAGELLAR FILAMENT; IMAGES; RESOLUTION; CRYOMICROSCOPY; MICROGRAPHS AB We describe modifications of the single particle helical reconstruction approach devised for the analysis of a sample that could not be processed with existing methods due to its variable and short range helical order. The added steps of reference-free two-dimensional image classification and alignment, and automated microtubule removal from images, have particular application to proteins or protein complexes that assemble around microtubules. The method was successfully applied to the Dam1 complex, an essential component of the yeast kinetochore that couples replicated chromosomes to spindle microtubules during mitosis. Because of its novel mode of binding, which does not involve a footprint on the microtubule lattice, new steps to deal with the disorder and heterogeneity of the Dam1 complex assembly were required to gain structural information about this complex both routinely and efficiently. (C) 2009 Elsevier Inc. All rights reserved. C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wang, Hong-Wei] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Wang, Hong-Wei; Nogales, Eva] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Ramey, Vincent H.] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, 708C Stanley Hall,QB3, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU US National Institutes of Health; National Institute of General Medical Sciences of the US National Institutes of Health; Biomedicine chair from the BBVA Foundation FX We thank Patricia Grob for her useful discussions of helical symmetry, Niko Grigorieff for extremely valuable suggestions and experience, Edward Egelman for generously supplying his programs, and Andres Leschziner for a wealth of useful image processing scripts. We are thankful to Georjana Barnes, David Drubin and Stefan Westermann for our ongoing collaboration on the Dam1 complex studies. This work was supported by training grants from the US National Institutes of Health, as well as by a grant from the National Institute of General Medical Sciences of the US National Institutes of Health and by a Biomedicine chair from the BBVA Foundation to E.N. E.N is a Howard Hughes Medical Institute Investigator. NR 42 TC 10 Z9 11 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD AUG PY 2009 VL 167 IS 2 BP 97 EP 105 DI 10.1016/j.jsb.2009.05.002 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 473HG UT WOS:000268196300001 PM 19447181 ER PT J AU Pereira, JH Kim, SH AF Pereira, Jose Henrique Kim, Sung-Hou TI Structure of human Brn-5 transcription factor in complex with CRH gene promoter SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Transcription factors; Brn-5 protein; POU family; Protein-DNA complex; Crystal structure ID OCT-1 POU DOMAIN; DNA-BINDING SPECIFICITY; CRYSTAL-STRUCTURE; RECOGNITION; FLEXIBILITY; PROTEINS; DIFFRACTION; VERSATILITY; SUBDOMAINS; MUTATIONS AB The Brn-5 protein, highly expressed in human brain, belongs to the POU family; a class of transcription factors involved in a wide variety of biological processes ranging from programming of embryonic stem cells to cellular housekeeping. This functional diversity is conferred by two DNA-binding subdomains that can assume several configurations due to a bipartite arrangement of POU-specific (POUS) and POU-homeo (POU(H)) subdomains separated by a linker region. The crystal structure of human Brn-5 transcription factor in complex with corticotrophin-releasing hormone (CRH) gene promoter reveals an unexpected recognition mode of the protein to its cognate DNA. Moreover, the structure also shows the role of the linker in allowing diverse configurations that can be assumed by the two subdomains. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu FU U.S. National Institutes of Health [GM62412]; National Research Council of Brazil (CNPq) [200969/2005-6]; Korea Science and Engineering Foundation [M1064102000106N410200110]; Korean Research Foundation [KRF-2008-220-C00040]; Korean Ministry of Education, Science, and Technology [R31-2008-000-10086-0, SC-3300] FX We are grateful to Dr. Ursula Schulze-Gahmen for purification information, Sharleen Zhou for N-terminal sequencing of Brn-5, and Drs. Kyeong Kyu Kim and Rosalind Kim for their advice, and to the staff at the Advanced Light Source of Lawrence Berkeley National Laboratory. This work was supported by grants from the U.S. National Institutes of Health (GM62412), the National Research Council of Brazil (CNPq) (200969/2005-6), the Korea Science and Engineering Foundation (M1064102000106N410200110), a Korean Research Foundation (KRF-2008-220-C00040), and the Korean Ministry of Education, Science, and Technology (R31-2008-000-10086-0 and SC-3300 from Stem Cell Research Center). NR 31 TC 3 Z9 3 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD AUG PY 2009 VL 167 IS 2 BP 159 EP 165 DI 10.1016/j.jsb.2009.05.003 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 473HG UT WOS:000268196300008 PM 19450691 ER PT J AU Alkhatib, MH Hayes, DG Urban, VS AF Alkhatib, Mayson H. Hayes, Douglas G. Urban, Volker S. TI Characterization of Microemulsion Systems Formed by a Mixed 1,3-Dioxolane Ethoxylate/Octyl Glucoside Surfactant System SO JOURNAL OF SURFACTANTS AND DETERGENTS LA English DT Article DE Microemulsions; Acid-cleavable surfactant; Glucoside surfactant; Mixed surfactant systems; Nonionic surfactant mixture; Phase diagrams; Small-angle neutron scattering ID ALKYL POLYGLUCOSIDE MICROEMULSIONS; ANGLE NEUTRON-SCATTERING; OCTYL MONOGLUCOSIDE; PHASE-BEHAVIOR; NONIONIC SURFACTANTS; MICROSTRUCTURE; SOLUBILIZATION; GERANIOL; OIL AB The phase behavior of microemulsion systems containing water (or 1.0 wt% NaCl(aq)), isooctane, and the binary surfactant system consisting of n-octyl-beta-D-glucopyranoside, C(8)beta G(1), and the acid-cleavable alkyl ethoxylate, 4-CH(3)O (CH(2)CH(2)O)(7.2), 2-(CH(2))(12)CH(3), 2-(CH(2))CH(3), 1,3-dioxolane, or "cyclic ketal" ("CK-2,13"), was determined. Large temperature-insensitive one, two, and three-phase microemulsion-phase regions were obtained when equal masses of the two surfactants were employed, suggesting that C(8)beta G(1) reduces the temperature sensitivity of CK-2,13's ethoxylate group. Addition of C(8)beta G(1) to CK-2,13 greatly improves the latter's low efficiency, evidenced by the formation of a three-phase microemulsion system for surfactant concentrations at low fractions of total surfactants for systems with equal mass ratios of water to oil and CK-2,13 to C(8)beta G(1). Analysis of the phase diagrams also suggests that CK-2,13 and C(8)beta G(1) impart hydrophobic and hydrophilic character, respectively, to the surfactant mixture, and that addition of salt further increases the hydrophilicity of C(8)beta G(1), presumably because of the salting-in of the latter. Analysis of small-angle neutron scattering data revealed that the mixed surfactant system formed spherical oil-in-water microemulsions, and that increasing the CK-2,13 fraction among the surfactants reduced the critical microemulsion concentration but slightly increased the nanodroplet size. C1 [Hayes, Douglas G.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Alkhatib, Mayson H.] Univ Alabama, Biotechnol Sci & Engn Program, Huntsville, AL 35899 USA. [Hayes, Douglas G.] Univ Alabama, Dept Chem & Mat Engn, Huntsville, AL 35899 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hayes, DG (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA. EM dhayes1@utk.edu RI Alkhatib, Mayson/I-1325-2012; Urban, Volker/N-5361-2015 OI Alkhatib, Mayson/0000-0002-3729-5303; Urban, Volker/0000-0002-7962-3408 FU National Science Foundation [BES-0437507]; Office of Biological and Environmental Research; US Department of Energy [DE-AC05-00OR22725] FX This work was supported by National Science Foundation grant BES-0437507. The research work performed at Oak Ridge National Laboratory's Center for Structural Molecular Biology ( CSMB) was supported by the Office of Biological and Environmental Research, using facilities supported by the US Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. NR 31 TC 5 Z9 5 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1097-3958 J9 J SURFACTANTS DETERG JI J. Surfactants Deterg. PD AUG PY 2009 VL 12 IS 3 BP 277 EP 283 DI 10.1007/s11743-009-1122-x PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 457KG UT WOS:000266926300012 ER PT J AU Balke, N Bdikin, I Kalinin, SV Kholkin, AL AF Balke, Nina Bdikin, Igor Kalinin, Sergei V. Kholkin, Andrei L. TI Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Review ID SCANNING FORCE MICROSCOPY; LEAD-ZIRCONATE-TITANATE; NONLINEAR DIELECTRIC MICROSCOPY; PBZRXTI1-XO3 THIN-FILMS; PROBE MICROSCOPY; SINGLE-CRYSTALS; PHASE-TRANSITION; BATIO3 CERAMICS; RELAXOR FERROELECTRICS; POLARIZATION FATIGUE AB Piezoresponse force microscopy (PFM) has emerged as a powerful and versatile tool for probing nanoscale phenomena in ferroelectric materials on the nanometer and micrometer scales. In this review, we summarize the fundamentals and recent advances in PFM, and describe the nanoscale electromechanical properties of several important ferroelectric ceramic materials widely used in memory and microelectromechanical systems applications. Probing static and dynamic polarization behavior of individual grains in PZT films and ceramics is discussed. Switching spectroscopy PFM is introduced as a useful tool for studying defects and interfaces in ceramic materials. The results on local switching and domain pinning behavior, as well as nanoscale fatigue and imprint mapping are presented. Probing domain structures and polarization dynamics in polycrystalline relaxors (PMN-PT, PLZT, doped BaTiO3) are briefly outlined. Finally, applications of PFM to dimensionally confined ferroelectrics are demonstrated. The potential of PFM for studying local electromechanical phenomena in polycrystalline ferroelectrics where defects and other inhomogeneities are essential for the interpretation of their macroscopic properties is illustrated. C1 [Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. [Balke, Nina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Bdikin, Igor] Univ Aveiro, Dept Mech Engn, P-3810193 Aveiro, Portugal. [Bdikin, Igor] Univ Aveiro, TEMA, P-3810193 Aveiro, Portugal. RP Kholkin, AL (reprint author), Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. EM kholkin@ua.pt RI Kholkin, Andrei/G-5834-2010; Kalinin, Sergei/I-9096-2012; Bdikin, Igor/J-4898-2013; Research Unit, TEMA/H-9264-2012; Division, Nanotechnology/O-2342-2013; Balke, Nina/Q-2505-2015 OI Kholkin, Andrei/0000-0003-3432-7610; Kalinin, Sergei/0000-0001-5354-6152; Bdikin, Igor/0000-0001-6318-1425; Balke, Nina/0000-0001-5865-5892 FU Division of scientific user facilities, US DOE; Humboldt foundation; Portuguese Foundation for Science and Technology (FCT); EU [NMP3-CT-2006-032616]; [PTDC/FIS/81442/2006] FX The work is supported in part (S. V. K.) by Division of scientific user facilities, US DOE. N. B. acknowledges continuous support of Humboldt foundation. Portuguese Foundation for Science and Technology (FCT) is acknowledged for the financial support via the FCT project PTDC/FIS/81442/2006. Thanks are also due to EU funded project "Multiceral" (NMP3-CT-2006-032616). NR 251 TC 156 Z9 156 U1 23 U2 270 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1629 EP 1647 DI 10.1111/j.1551-2916.2009.03240.x PG 19 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600001 ER PT J AU McCarthy, BP Pederson, LR Williford, RE Zhou, XD AF McCarthy, Benjamin P. Pederson, Larry R. Williford, Ralph E. Zhou, Xiao-Dong TI Low-Temperature Densification of Lanthanum Strontium Manganite (La1-xSrxMnO3+delta), x=0.0-0.20 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID OXIDE FUEL-CELLS; OXYGEN TRACER DIFFUSION; OXIDATION-REDUCTION BEHAVIOR; SR-DOPED LAMNO3; DEFECT CHEMISTRY; SHRINKAGE BEHAVIOR; MASS-TRANSPORT; PEROVSKITES; NONSTOICHIOMETRY; SIMS AB Intermediate-stage sintering of lanthanum strontium manganite (LSM, where Sr=0.00, 0.05, 0.10, 0.15, and 0.20) was shown in dilatometry studies to be accelerated when subjected to alternating flows of air and nitrogen. The extent of rate enhancement decreased with increased Sr content, and decreased with increased temperature, which coincides with diminished oxygen nonstoichiometry. Shrinkage rates were further shown to be sensitive to the difference in oxygen content in the alternating gas flows. Baseline air sintering rates were measured using stepwise isothermal dilatometry, from which kinetic parameters were calculated using the Makipirtti-Meng model. Activation energies for sintering in air were determined to be 255 +/- 26, 258 +/- 28, 308 +/- 32, 373 +/- 37, and 417 +/- 41 kJ/mol for Sr=0.0, 0.05, 0.10, 0.15, and 0.20, respectively. A diffusion-based model is proposed that is consistent with trends in accelerated shrinkage versus temperature. Transient cation vacancy gradients, which lead to higher cation mobility, were calculated from established oxygen diffusivities and oxygen nonstoichiometry as a function of temperature and time. A potential application of this approach is the processing of LSM-based cathode-side contact pastes in solid oxide fuel cells. C1 [McCarthy, Benjamin P.; Pederson, Larry R.; Williford, Ralph E.; Zhou, Xiao-Dong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Pederson, LR (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM larry.pederson@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory under the Solid State Energy Conversion Alliance (SECA) Coal-Based Systems program; U.S. Department of Energy [AC06 76RLO 1830] FX The authors gratefully acknowledge support from the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory under the Solid State Energy Conversion Alliance (SECA) Coal-Based Systems program (Dr. Paul Tortora, contract manager), and helpful discussions with B. J. Koeppel, P. Singh, E. V. Stephens, and J. W. Stevenson. Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the U.S. Department of Energy under Contract AC06 76RLO 1830. NR 52 TC 6 Z9 7 U1 5 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1672 EP 1678 DI 10.1111/j.1551-2916.2009.03082.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600005 ER PT J AU McCloy, JS Korenstein, R Zelinski, B AF McCloy, John S. Korenstein, Ralph Zelinski, Brian TI Effects of Temperature, Pressure, and Metal Promoter on the Recrystallized Structure and Optical Transmission of Chemical Vapor Deposited Zinc Sulfide SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SCANNING ELECTRON-MICROSCOPE; POLYCRYSTALLINE CVD ZNS; STACKING-FAULTS; GRAIN-GROWTH; CRYSTALS; TRANSFORMATION; EQUILIBRIA; DIFFUSION; NANOBELTS; DEFECTS AB Structural changes from processing in polytype-rich zinc sulfide (ZnS) are complex and poorly understood. In this study, recrystallization was induced in chemical vapor deposited ZnS by annealing and hot isostatic pressing (HIPping). Samples were characterized using optical microscopy, SEM, TEM, electron diffraction, polycrystalline and powder X-ray diffraction, and transmission spectroscopy. Recrystallization was found to reduce the hexagonality and increase the {111} texture of as-deposited ZnS. Changes in hexagonality and texture can occur independently of each other. HIPped ZnS with superior transmission exhibits both a change in texture and a reduction in hexagonal content. Reduction in hexagonality, alone, was not sufficient to improve optical transmission from the visible to the infrared. For the first time, the effects of pressure, temperature, and the presence of platinum on recrystallization during commercial ZnS HIPping are separated and identified. Platinum was found to actively promote recrystallization and silver demonstrated a similar effect. Several theories focusing on the unique polytypic nature of ZnS are offered to explain the changes in structure and properties occurring during recrystallization. These findings contribute to a broader understanding of the nature of order-disorder and martensitic phase transformations in ceramic materials. C1 Raytheon Co, Andover, MA 02139 USA. Raytheon Co, Tucson, AZ 85706 USA. RP McCloy, JS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.mccloy@pnl.gov RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 NR 55 TC 21 Z9 22 U1 2 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1725 EP 1731 DI 10.1111/j.1551-2916.2009.03123.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600014 ER PT J AU Wereszczak, AA Johanns, KE Jadaan, OM AF Wereszczak, Andrew A. Johanns, Kurt E. Jadaan, Osama M. TI Hertzian Ring Crack Initiation in Hot-Pressed Silicon Carbides SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID BRITTLE MATERIALS; FRACTURE; INDENTATION; INDENTERS; NITRIDE; DAMAGE; GLASS AB The use of Hertzian indentation to measure ring crack initiation force (RCIF) distributions in four hot-pressed silicon carbide (SiC) ceramics is described. Three diamond indenter diameters were used with each SiC; the RCIF in each test was identified with the aid of an acoustic emission system; and two-parameter Weibull RCIF distributions were determined for all 12 combinations. RCIF testing was found to be an effective discriminator of contact damage initiation and response. It consistently produced the same ranking of RCIF between the four SiCs, with all three different indenter diameters, which is noteworthy because Knoop hardness and fracture toughness measurements were only subtly different or equivalent for the four SiCs. However, because RCIF, like hardness, is a characteristic response of a target material to an applied indentation condition (e.g., a function of indenter diameter) and not a material property, the implications and possible limitations should be acknowledged when using RCIF to discriminate the target material response. C1 [Wereszczak, Andrew A.; Johanns, Kurt E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jadaan, Osama M.] Univ Wisconsin Platteville, Coll Engn Math & Sci, Platteville, WI 53818 USA. RP Wereszczak, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wereszczakaa@ornl.gov RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU U. S. Army Tank-Automotive Research, Development and Engineering Center [DE-AC-00OR22725] FX Research sponsored by Work For Others sponsor U. S. Army Tank-Automotive Research, Development and Engineering Center, under contract DE-AC-00OR22725 with UT-Battelle, LLC. NR 24 TC 8 Z9 8 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1788 EP 1795 DI 10.1111/j.1551-2916.2009.03146.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600023 ER PT J AU Zhao, Q Soyk, MW Schieffer, GM Fuhrer, K Gonin, MM Houk, RS Badman, ER AF Zhao, Qin Soyk, Matthew W. Schieffer, Gregg M. Fuhrer, Katrin Gonin, Marc M. Houk, R. S. Badman, Ethan R. TI An Ion Trap-Ion Mobility-Time of Flight Mass Spectrometer with Three Ion Sources for Ion/Ion Reactions SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID ELECTRON-TRANSFER DISSOCIATION; COLLISION-INDUCED DISSOCIATION; ELECTROSPRAYED UBIQUITIN IONS; SURFACE-INDUCED DISSOCIATION; PROTON-TRANSFER REACTIONS; SINGLY CHARGED ANIONS; NATIVE CYTOCHROME-C; GAS-PHASE PROTEINS; STRUCTURAL TRANSITIONS; CAPTURE DISSOCIATION AB This instrument combines the capabilities of ion/ion reactions with ion mobility (IM) and time-of-flight (TOF) measurements for conformation Studies and top-down analysis of large biomolecules. Ubiquitin ions from either of two electrospray ionization (ESI) sources are stored in a three dimensional (3D) ion trap (IT) and reacted with negative ions from atmospheric sampling glow discharge ionization (ASGDI). The proton transfer reaction products are then separated by IM and analyzed via a TOF mass analyzer. In this way, ubiquitin +7 ions are converted to lower charge states down to +1; the ions in lower charge states tend to be in compact conformations with cross sections down to similar to 880 angstrom(2). The duration and magnitude of the ion ejection Pulse on the IT exit and the entrance voltage on the IM drift tube can affect the measured distribution of conformers for ubiquitin +7 and +6. Alternatively, protein ions are fragmented by collision-induced dissociation (CID) in the IT, followed by ion/ion reactions to reduce the charge states of the CID product ions, thus simplifying assignment of charge states and fragments using the mobility-resolved tandem mass spectrum. Instrument characteristics and the use of a new ion trap controller and software modifications to control the entire instrument are described. (J Am Soc Mass Spectrom 2009, 20, 1549-1561) (C) 2009 American Society for Mass Spectrometry C1 [Zhao, Qin; Soyk, Matthew W.; Schieffer, Gregg M.; Badman, Ethan R.] Iowa State Univ, Dept Chem, Ames, IA USA. [Houk, R. S.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA USA. [Fuhrer, Katrin; Gonin, Marc M.] Tofwerk AG, Thun, Switzerland. RP Badman, ER (reprint author), Hoffmann La Roche Inc, Nonclin Safety, 340 Kingsland St, Nutley, NJ 07110 USA. EM ethan.badman@roche.com RI Guo, Henry/E-9618-2011 NR 73 TC 17 Z9 17 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD AUG PY 2009 VL 20 IS 8 BP 1549 EP 1561 DI 10.1016/j.jasms.2009.04.014 PG 13 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 480MV UT WOS:000268739900020 PM 19493684 ER PT J AU Miller, NL Dale, LL Brush, CF Vicuna, SD Kadir, TN Dogrul, EC Chung, FI AF Miller, Norman L. Dale, Larry L. Brush, Charles F. Vicuna, Sebastian D. Kadir, Tariq N. Dogrul, Emin C. Chung, Francis I. TI Drought Resilience of the California Central Valley Surface-Ground-Water-Conveyance System(1) SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE drought simulation; surface-ground-water response; pumping ID CLIMATE-CHANGE IMPACTS; UNITED-STATES; MANAGEMENT; UNCERTAINTY; HYDROLOGY; RESOURCES; MODEL AB A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods. C1 [Miller, Norman L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Miller, Norman L.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Dale, Larry L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, Berkeley, CA 94720 USA. [Brush, Charles F.; Kadir, Tariq N.; Dogrul, Emin C.; Chung, Francis I.] Dept Water Resources, Bay Delta Off, Modeling Support Branch, Sacramento, CA 94236 USA. [Vicuna, Sebastian D.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Miller, NL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Climate Sci Dept, Calif 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM nlmiller@lbl.gov RI Miller, Norman/E-6897-2010 FU California Energy Commission [500-02-004]; California Department of Water Resources [DE-AC03-76F00098] FX This project was supported through a grant provided by the California Energy Commission, 500-02-004, and by the California Department of Water Resources. Work for the Department of Energy is under contract DE-AC03-76F00098. NR 31 TC 7 Z9 8 U1 2 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD AUG PY 2009 VL 45 IS 4 BP 857 EP 866 DI 10.1111/j.1752-1688.2009.00329.x PG 10 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 477PV UT WOS:000268531900004 ER PT J AU Schwede, DB Dennis, RL Bitz, MA AF Schwede, Donna B. Dennis, Robin L. Bitz, Mary Ann TI The Watershed Deposition Tool: A Tool for Incorporating Atmospheric Deposition in Water-Quality Analyses(1) SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE atmospheric deposition; nitrogen loading; management tool; Total Maximum Daily Load; watershed analysis ID NORTHEASTERN UNITED-STATES; IMPACTING MODEL PERFORMANCE; DRY DEPOSITION; COASTAL WATERS; WET DEPOSITION; VERSION 4.5; NITROGEN; EQUATIONS; VIRGINIA; FORESTS AB A tool for providing the linkage between air and water-quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8-digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user-supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estimates, the contributions of wet and dry deposition to total deposition, and the potential reductions in total nitrogen deposition to the Albemarle-Pamlico basin stemming from future air emissions reductions is used to illustrate the WDT capabilities. C1 [Schwede, Donna B.; Dennis, Robin L.] US EPA, Natl Exposure Res Lab, Atmospher Modeling & Anal Div, Res Triangle Pk, NC 27711 USA. [Bitz, Mary Ann] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Schwede, DB (reprint author), US EPA, Natl Exposure Res Lab, Atmospher Modeling & Anal Div, Res Triangle Pk, NC 27711 USA. EM schwede.donna@epa.gov NR 47 TC 20 Z9 20 U1 1 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1093-474X J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD AUG PY 2009 VL 45 IS 4 BP 973 EP 985 DI 10.1111/j.1752-1688.2009.00340.x PG 13 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 477PV UT WOS:000268531900012 ER PT J AU Andrejczuk, M Grabowski, WW Malinowski, SP Smolarkiewicz, PK AF Andrejczuk, Miroslaw Grabowski, Wojciech W. Malinowski, Szymon P. Smolarkiewicz, Piotr K. TI Numerical Simulation of Cloud-Clear Air Interfacial Mixing: Homogeneous versus Inhomogeneous Mixing SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID CONVECTIVE CLOUDS; DROPLET SPECTRA; CUMULUS CLOUDS; BOUNDARY-LAYER; ENTRAINMENT; MICROPHYSICS; EVOLUTION; MODEL; TURBULENCE; SCALES AB This note presents an analysis of several dozens of direct numerical simulations of the cloud-clear air mixing in a setup of decaying moist turbulence with bin microphysics. The goal is to assess the instantaneous relationship between the homogeneity of mixing and the ratio of the time scales of droplet evaporation and turbulent homogenization. Such a relationship is important for developing improved microphysical parameterizations for large-eddy simulation of clouds. The analysis suggests a robust relationship for the range of time scale ratios between 0.5 and 10. Outside this range, the scatter of numerical data is significant, with smaller and larger time scale ratios corresponding to mixing scenarios that approach the extremely inhomogeneous and homogeneous limits, respectively. This is consistent with the heuristic argument relating the homogeneity of mixing to the time scale ratio. C1 [Grabowski, Wojciech W.] NCAR, MMM, Boulder, CO 80307 USA. [Andrejczuk, Miroslaw] Los Alamos Natl Lab, Los Alamos, NM USA. [Malinowski, Szymon P.] Univ Warsaw, Inst Geophys, Warsaw, Poland. RP Grabowski, WW (reprint author), NCAR, MMM, POB 3000, Boulder, CO 80307 USA. EM grabow@ncar.ucar.edu RI Malinowski, Szymon/A-5237-2010 OI Malinowski, Szymon/0000-0003-4987-7017 FU Los Alamos National Laboratory's Directed Research and Development [20080126DR]; NOAA [NA05OAR4310107, NA08OAR4310543]; Polish Ministry of Science and Higher Education (SPM); DOE [DEFG0208ER64535] FX This work was partially supported by the Los Alamos National Laboratory's Directed Research and Development Project 20080126DR (MA), the NOAA awards NA05OAR4310107 and NA08OAR4310543 (WWG), the Polish Ministry of Science and Higher Education (SPM), and the DOE award DEFG0208ER64535 (PKS). NR 36 TC 34 Z9 34 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2009 VL 66 IS 8 BP 2493 EP 2500 DI 10.1175/2009JAS2956.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 480QK UT WOS:000268751700024 ER PT J AU Yang, SM Heo, JW Lee, HN Song, TK Yoon, JG AF Yang, S. M. Heo, J. W. Lee, H. N. Song, T. K. Yoon, J. -G. TI Quantitative Analysis of the Nucleation and Growth of Ferroelectric Domains in Epitaxial Pb(Zr,Ti)O-3 Thin Films SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 7th Korea-Japan Conference on Ferroelectrics CY AUG 06-09, 2008 CL Cheju Natl Univ, Jeju, SOUTH KOREA HO Cheju Natl Univ DE Ferroelectric; Domain; Switching; PZT; Piezoresponse force microscopy ID WALL MOTION; CAPACITORS AB We determined simultaneously. the domain wall speed (v) and the nucleation rate (N) of ferroelectric (FE) domains in 100 nm-thick epitaxial PbZr0.2Ti0.8O3 capacitors from successive domain evolution images tinder various applied electric fields by using piezoresponse force microscopy. We found that, at a given E-app, the v and the N values decreased as the switching process proceeded. The averaged domain wall speed < v > was confirmed to follow the Merz's law, < v > proportional to exp[-(E-0/E-app)], with an activation field Eo of about 700 kV/cm. Moreover, we found that the nucleation process played a more important role in the FE domain switching at higher fields while domain wall motion mainly contributed to the switching at lower fields. C1 [Yang, S. M.; Heo, J. W.] Seoul Natl Univ, Dept Phys & Astron, ReCOE, Seoul 151747, South Korea. [Yang, S. M.; Heo, J. W.] Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul 151747, South Korea. [Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Song, T. K.] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, South Korea. [Yoon, J. -G.] Univ Suwon, Dept Phys, Hwaseong 445743, South Korea. RP Yang, SM (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCOE, Seoul 151747, South Korea. EM jgyoon@suwon.ac.kr RI Lee, Ho Nyung/K-2820-2012; Yang, Sang Mo/Q-2455-2015 OI Lee, Ho Nyung/0000-0002-2180-3975; Yang, Sang Mo/0000-0003-1809-2938 NR 24 TC 7 Z9 7 U1 0 U2 7 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD AUG PY 2009 VL 55 IS 2 SI SI BP 820 EP 824 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 483YX UT WOS:000269010700017 ER PT J AU Gupta, S Lin, J Ashby, P Pruitt, L AF Gupta, Shikha Lin, Jeremy Ashby, Paul Pruitt, Lisa TI A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article ID INTRINSIC MECHANICAL-PROPERTIES; ARTICULAR-CARTILAGE; UNCONFINED COMPRESSION; ELASTIC-MODULUS; COLLAGEN-FIBERS; INDENTATION EXPERIMENTS; BIPHASIC INDENTATION; SOFT-TISSUES; BONE; LOAD AB Nanoindentation has shown promise as a mechanical characterization tool for orthopaedic biomaterials since it can probe the properties of small, heterogeneous, irregularly shaped tissue volumes in physiological environments. However, the majority of nanoindentation analyses have been limited to the determination of linear elastic and viscoelastic properties. Since biomaterials possess complex nonlinear, hydrated, time-dependent constitutive behavior, the objective of the present study is to explore the ability of nanoindentation to determine physiologically relevant material properties using a fibril reinforced poroelastic (FRPE) model. A further goal is to ascertain the sensitivity of nanoindentation load-displacement curves to different FRPE parameters, including the elastic properties of the nonfibrillar matrix, the composition and distribution of fibers, and nonlinearity in the fluid permeability. Porcine costal cartilage specimens are experimentally tested with nanoindentation load relaxation experiments at two different loading depths and loading rates. The FRPE material properties are extracted from comparisons to finite element simulations. The study demonstrates the behavior of the model in nanoindentation is distinct from bulk indentation; the static response of the nanoindentation is determined almost exclusively by the elastic properties of the nonfibrillar matrix and the volume fraction of fibers, while the transient response is dominated by the fluid permeability of the tissue. The FRPE model can accurately describe the time-dependent mechanical behavior of costal cartilage in nanoindentation, with good agreement between experimental and numerical curve fits (R-2 = 0.98 +/- 0.01) at multiple indentation depths and indentation rates. (C) 2009 Published by Elsevier Ltd C1 [Gupta, Shikha] Univ Calif Berkeley, Med Polymers & Biomat Grp, Dept Appl Sci & Technol, Berkeley, CA 94720 USA. [Lin, Jeremy] Univ Calif San Francisco, Dept Restorat Dent, San Francisco, CA 94143 USA. [Ashby, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Imaging & Manipulat Nanostruct Facil, Berkeley, CA 94720 USA. [Pruitt, Lisa] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA 94110 USA. [Pruitt, Lisa] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Pruitt, L (reprint author), Univ Calif Berkeley, Med Polymers & Biomat Lab, 5134 Etcheverry Hall, Berkeley, CA 94720 USA. EM lpruitt@me.berkeley.edu FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX The authors would like to thank Lampros Kourtis and Katy Keenan from Dr. Dennis Carter's lab in Stanford and the Clift laboratory in Bath for generously providing the ABAQUS user subroutine for the evolving fluid-flow boundary condition, Michael Hoang for assistance with sample preparation, Cheng Li for help with indentation, and Amy Walters for help with histology. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported in part by a Grants-in-Aid research award from Sigma Xi and a Graduate Research Fellowship from the National Science Foundation. NR 67 TC 25 Z9 25 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 EI 1878-0180 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD AUG PY 2009 VL 2 IS 4 BP 326 EP 338 DI 10.1016/j.jmbbm.2008.09.003 PG 13 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 456HB UT WOS:000266833700004 PM 19627839 ER PT J AU Kruzic, JJ Kim, DK Koester, KJ Ritchie, RO AF Kruzic, J. J. Kim, D. K. Koester, K. J. Ritchie, R. O. TI Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article ID CRACK-OPENING DISPLACEMENTS; ELASTIC-PLASTIC INDENTATION; HUMAN CORTICAL BONE; VICKERS INDENTATION; MECHANICAL-PROPERTIES; RESISTANCE-CURVE; RADIAL FRACTURE; PALMQVIST CRACK; ACUTE PROBES; CUBE-CORNER AB Indentation techniques for assessing fracture toughness are attractive due to the simplicity and expediency of experiments, and because they potentially allow the characterization of both local and bulk fracture properties. Unfortunately, rarely have such techniques been proven to give accurate fracture toughness values. This is a concern, as such techniques are seeing increasing usage in the study of biomaterials and biological hard tissues. Four available indentation techniques are considered in the present article: the Vickers indentation fracture (VIF) test, the cube corner indentation fracture (CCIF) test, the Vickers crack opening displacement (VCOD) test and the interface indentation fracture (IIF) test. Each technique is discussed in terms of its suitability for assessing the absolute and relative toughness of materials or material interfaces based on the published literature on the topic. In general, the VIF and CCIF techniques are found to be poor for quantitatively evaluating toughness of any brittle material, and the large errors involved (similar to +/- 50%) make their applicability as comparative techniques limited. Indeed, indentation toughness values must differ by at least by a factor of three to conclude a significant difference in actual toughness. Additionally, new experimental results are presented on using the CCIF test to evaluate the fracture resistance of human cortical bone. Those new results indicate that inducing cracking is difficult, and that the cracks that do form are embedded in the plastic zone of the indent, invalidating the use of linear elastic fracture mechanics based techniques for evaluating the toughness associated with those cracks. The VCOD test appears to be a good quantitative method for some glasses, but initial results suggest there may be problems associated with applying this technique to other brittle materials. Finally, the IIF technique should only be considered a comparative or semi-quantitative technique for comparing material interfaces and/or the neighboring materials. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kruzic, J. J.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Kim, D. K.] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Koester, K. J.; Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Kruzic, JJ (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. EM jamie.kruzic@oregonstate.edu RI Ritchie, Robert/A-8066-2008; Kruzic, Jamie/M-3558-2014; OI Ritchie, Robert/0000-0002-0501-6998; Kruzic, Jamie/0000-0002-9695-1921; Kim, Do Kyung/0000-0001-9092-9427 FU Department of Energy [DE-AC02-05CH11231]; SBS Foundation; Korea Research Foundation [a/c KRF-2005-005-J09701] FX ROR acknowledges support from the Director, office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering of the Department of Energy under Contract No. DE-AC02-05CH11231. DKK would like to thank the SBS Foundation and Korea Research Foundation (a/c#KRF-2005-005-J09701) for supporting his sabbatical leave in Berkeley where the experimental part of this study was performed. NR 45 TC 77 Z9 78 U1 0 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD AUG PY 2009 VL 2 IS 4 BP 384 EP 395 DI 10.1016/j.jmbbm.2008.10.008 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 456HB UT WOS:000266833700010 PM 19627845 ER PT J AU Tonks, MR Bingert, JF Bronkhorst, CA Harstad, EN Tortorelli, DA AF Tonks, Michael R. Bingert, John F. Bronkhorst, Curt A. Harstad, Eric N. Tortorelli, Daniel A. TI Two stochastic mean-field polycrystal plasticity methods SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Polycrystal plasticity; Stochastic models; Texture modeling; Mean-field models; Crystal plasticity finite element analysis ID TEXTURE EVOLUTION; TAYLOR MODEL; STRAIN; CRYSTALS; LOCALIZATION; DEFORMATIONS; SIMULATION; METALS AB In this work, we develop two mean-field polycrystal plasticity models in which the crystal velocity gradients L(c) are approximated stochastically. Through comprehensive CPFEM analyses of an idealized tantalum polycrystal, we verify that the L(c) tend to follow a normal distribution and surmise that this is due to the crystal interactions. We draw on these results to develop the stochastic Taylor model (STM) and the stochastic no-constraints model (SNCM), which differ in the manner in which the crystal strain rates D(c) = 1/2(L(c) + L(cT)) are prescribed. Calibration and validation of the models are performed using data from tantalum compression experiments. Both models predict the compression textures more accurately than the fully constrained model (FCM), and the SNCM predicts them more accurately than the STM. The STM is extremely computationally efficient, only slightly more expensive than the FCM, while the SNCM is three times more computationally expensive than the STM. Published by Elsevier Ltd. C1 [Tonks, Michael R.] Idaho Natl Lab, Basic Fuels Modeling Grp, Idaho Falls, ID 83415 USA. [Bingert, John F.; Bronkhorst, Curt A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Harstad, Eric N.] Sandia Natl Labs, Albuquerque, NM 87117 USA. [Tortorelli, Daniel A.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. RP Tonks, MR (reprint author), Idaho Natl Lab, Basic Fuels Modeling Grp, Idaho Falls, ID 83415 USA. EM michael.tonks@inl.gov RI Bronkhorst, Curt/B-4280-2011 OI Bronkhorst, Curt/0000-0002-2709-1964 FU DoD/DoE Joint Munitions Technology Development Program; DoE Advanced Simulation and Computing Program FX This work was supported by the DoD/DoE Joint Munitions Technology Development Program and the DoE Advanced Simulation and Computing Program. NR 31 TC 3 Z9 3 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD AUG PY 2009 VL 57 IS 8 BP 1230 EP 1253 DI 10.1016/j.jmps.2009.04.013 PG 24 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 475GG UT WOS:000268346000006 ER PT J AU Kano, M Kohama, Y Graf, D Balakirev, F Sefat, AS Mcguire, MA Sales, BC Mandrus, D Tozer, SW AF Kano, Mika Kohama, Yoshimitsu Graf, David Balakirev, Fedor Sefat, Athena S. Mcguire, Michael A. Sales, Brian C. Mandrus, David Tozer, Stanley W. TI Anisotropy of the Upper Critical Field in a Co-Doped BaFe2As2 Single Crystal SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE Ba(Fe,Co)(2)As-2; superconductivity; upper critical field; resistivity; anisotropy ID SUPERCONDUCTIVITY AB The temperature dependence of the upper critical magnetic field (H-c2) in a BaFe1.84Co0.16As2 single crystal was determined via resistivity, for the inter-plane (H perpendicular to ab) and in-plane (H parallel to ab) directions in pulsed and static magnetic fields of up to 60 T. Suppressing superconductivity in a pulsed magnetic field at He-3 temperatures permits us to construct an H-c2-T phase diagram from quantitative H-c2(0) values and determine its behavior in low temperatures. H-c2(0) with H parallel to ab [H-c2 parallel to(0)] and H perpendicular to ab [H-c2 perpendicular to(0)] are similar to 55 and similar to 50 T respectively. These values are similar to 1.2-1.4 times larger than the weak-coupling Pauli paramagnetic limit (H-p = 1.84T(c)), indicating that enhanced paramagnetic limiting is essential and this superconductor is unconventional. While H-c2 parallel to ab is saturated at low temperature, H-c2 with H perpendicular to ab (H-c2 perpendicular to) exhibits almost linear temperature dependence towards T = 0 K which results in reduced anisotropy of H-c2 in low temperature. The anisotropy of H-c2 was similar to 3.4 near T-c, and decreases rapidly with lower temperatures reaching similar to 1.1 at T = 0.7 K. C1 [Kano, Mika; Graf, David; Tozer, Stanley W.] Natl High Magnet Field Lab, Tallahassee, FL USA. [Kohama, Yoshimitsu; Balakirev, Fedor] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA. [Kohama, Yoshimitsu] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Sefat, Athena S.; Mcguire, Michael A.; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37931 USA. RP Kano, M (reprint author), Natl High Magnet Field Lab, Tallahassee, FL USA. EM kano@magnet.fsu.edu RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Sciences and Engineering, Office of Basic Energy sciences, U.S. Department of Energy FX Research at ORNL sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy sciences, U.S. Department of Energy. NR 26 TC 78 Z9 79 U1 0 U2 14 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD AUG PY 2009 VL 78 IS 8 AR 084719 DI 10.1143/JPSJ.78.084719 PG 5 WC Physics, Multidisciplinary SC Physics GA 488GZ UT WOS:000269338700047 ER PT J AU Davidson, MW AF Davidson, Michael W. TI Ernst Abbe Microscopy SO LABMEDICINE LA English DT Biographical-Item C1 [Davidson, Michael W.] Univ Florida, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. [Davidson, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Davidson, MW (reprint author), Univ Florida, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. NR 1 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC CLINICAL PATHOLOGY PI CHICAGO PA 2100 W HARRISON ST, CHICAGO, IL 60612 USA SN 0007-5027 J9 LABMEDICINE JI Labmedicine PD AUG PY 2009 VL 40 IS 8 BP 502 EP 503 DI 10.1309/LM6YL3SHMCK6DUSM PG 2 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 477QS UT WOS:000268534200012 ER PT J AU Atcher, RW AF Atcher, Robert W. TI Managing the unmanageable SO LANCET ONCOLOGY LA English DT Editorial Material C1 Univ New Mexico, Biosci Div, Univ Calif Los Alamos Natl Lab, Albuquerque, NM 87131 USA. RP Atcher, RW (reprint author), Univ New Mexico, Biosci Div, Univ Calif Los Alamos Natl Lab, Albuquerque, NM 87131 USA. EM ratcher@msn.com OI Atcher, Robert/0000-0003-4656-2247 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1470-2045 J9 LANCET ONCOL JI Lancet Oncol. PD AUG PY 2009 VL 10 IS 8 BP 745 EP 746 PG 2 WC Oncology SC Oncology GA 479YH UT WOS:000268697700008 PM 19647197 ER PT J AU Hancock, JM Mallon, AM Beck, T Gkoutos, GV Mungall, C Schofield, PN AF Hancock, John M. Mallon, Ann-Marie Beck, Tim Gkoutos, Georgios V. Mungall, Chris Schofield, Paul N. TI Mouse, man, and meaning: bridging the semantics of mouse phenotype and human disease SO MAMMALIAN GENOME LA English DT Editorial Material ID FUNCTIONAL GENOMICS; ONTOLOGY; DATABASE; EMPRESS; TOOL; MUTAGENESIS; INTEGRATION; RESOURCE; SCREENS; WEB AB Now that the laboratory mouse genome is sequenced and the annotation of its gene content is improving, the next major challenge is the annotation of the phenotypic associations of mouse genes. This requires the development of systematic phenotyping pipelines that use standardized phenotyping procedures which allow comparison across laboratories. It also requires the development of a sophisticated informatics infrastructure for the description and interchange of phenotype data. Here we focus on the current state of the art in the description of data produced by systematic phenotyping approaches using ontologies, in particular, the EQ (Entity-Quality) approach, and what developments are required to facilitate the linking of phenotypic descriptions of mutant mice to human diseases. C1 [Hancock, John M.; Mallon, Ann-Marie; Beck, Tim] MRC, Bioinformat Grp, Harwell OX11 0RD, Oxon, England. [Gkoutos, Georgios V.] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Mungall, Chris] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schofield, Paul N.] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3DY, England. RP Hancock, JM (reprint author), MRC, Bioinformat Grp, Harwell OX11 0RD, Oxon, England. EM j.hancock@har.mrc.ac.uk RI Hancock, John/A-2442-2009 OI Hancock, John/0000-0003-2991-2217 FU Biotechnology and Biological Sciences Research Council; Medical Research Council [, MC_U142684171] NR 24 TC 14 Z9 14 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-8990 J9 MAMM GENOME JI Mamm. Genome PD AUG PY 2009 VL 20 IS 8 BP 457 EP 461 DI 10.1007/s00335-009-9208-3 PG 5 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 504ZY UT WOS:000270658400001 PM 19649761 ER PT J AU Elder, JB Kamp, RWV Wiersma, BJ AF Elder, James B. Kamp, Rodney W. Vande Wiersma, Bruce J. TI REMOTE UT Ultrasonic Testing of Buried High-Level Radioactive Waste Storage Tanks SO MATERIALS EVALUATION LA English DT Article C1 [Elder, James B.; Kamp, Rodney W. Vande; Wiersma, Bruce J.] Savannah River Natl Lab, Savannah River Nucl Solut, Mat Sci & Technol, Aiken, SC 29808 USA. RP Elder, JB (reprint author), Savannah River Natl Lab, Savannah River Nucl Solut, Mat Sci & Technol, Savannah River Site,Bldg 730-A, Aiken, SC 29808 USA. EM james.elder@srnl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD AUG PY 2009 VL 67 IS 8 BP 888 EP 894 PG 7 WC Materials Science, Characterization & Testing SC Materials Science GA 488NB UT WOS:000269355400002 ER PT J AU Zubelewicz, A AF Zubelewicz, Aleksander TI Metal behavior at extreme loading rates SO MECHANICS OF MATERIALS LA English DT Article ID DEFORMATION; CRITERIA AB At extreme loading rates some metals exhibit behavior that is characteristic of a thermodynamically open system. This openness results from a rapid movement of dislocations carrying energy between distant material points. In such instances, metals form organized meso-structures such as dislocation cells and/or coarse slip bands. With an average dislocation velocity approaching critical velocity, the material experiences a mesoscale dynamic excitation that in turn causes further rearrangement of the material's microstructure. It is shown that voids play a stabilizing role in metals. The analysis suggests that void nucleation and growth impedes the process of defect (dislocation) selforganization. (C) 2009 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zubelewicz, A (reprint author), Los Alamos Natl Lab, Div Theoret, MS B216, Los Alamos, NM 87545 USA. EM alek@lanl.gov NR 12 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD AUG PY 2009 VL 41 IS 8 BP 969 EP 974 DI 10.1016/j.mechmat.2009.02.002 PG 6 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 464NY UT WOS:000267513200007 ER PT J AU Williams, PT AF Williams, Paul T. TI Relationship of Incident Glaucoma versus Physical Activity and Fitness in Male Runners SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE EPIDEMIOLOGY; CARDIORESPIRATORY FITNESS; PREVENTION; EYE DISEASE ID OPEN-ANGLE GLAUCOMA; INDUCED OCULAR HYPOTENSION; 7-YEAR FOLLOW-UP; INTRAOCULAR-PRESSURE; DIABETES-MELLITUS; CARDIORESPIRATORY FITNESS; VIGOROUS EXERCISE; BODY-WEIGHT; RISK-FACTOR; HYPERTENSION AB WILLIAMS, P. T. Relationship of Incident Glaucoma versus Physical Activity and Fitness in Male Runners. Med. Sci. Sports Exerc.. Vol. 41, No. 8 pp. 1566-1572, 2009. Purpose: To assess the dose-response relationship of vigorous physical activity (running distance. km.d(-1)) or cardiorespiratory fitness (meters-per-second pace during a 10-km footrace) to the risk for incident glaucoma. Design: Prospective epidemiologic cohort study. Methods: Participant-reported, physician-diagnosed incident glaucoma was compared with distance run per week and 10-km footrace performance in a cohort of 29,854 male runners without diabetes followed prospectively for 7.7 yr. The survival analyses were adjusted for age. hypertension, current and past cigarette use, and intakes of meat, fish, fruit, and alcohol. Results: Two hundred incident glaucoma cases were reported during follow-tip. The risk for reported glaucoma decreased 37% per meter per second increment in a 10-km race performance (P = 0.005). Relative to the least fit men (i.e., slowest, <= 3.5 m.s(-1)), the risk for incident-reported glaucoma declined 29% in those who ran 3.6-4.0 m.s(-1) (P = 0.06) 54% for those who rail 4.1-4.5 m.s(-1) (P = 0.001), 51% for those who ran 4.6-5.0 m.s(-1) (P = 0.04), and glaucoma wag nonexistent among tire 781 men who exceeded 5.0 m.s(-1) (P = 0.03). The risk for incident, reported glaucoma decreased 5% per kilometer per day run at baseline (P = 0.04), which remained significant when adjusted for the 10-km race performance (5% reduction per kilometer per day, P = 0.04). and both body mass index and race performance (P = 0.04). Baseline hypertension was unrelated to the incident glaucoma. Conclusions: These data provide preliminary evidence that vigorous physical activity may reduce glaucoma risk, which, in the absence of medical record validation. could represent ocular hypertension in addition to frank glaucoma. Additional follow-up With validation is needed to identify the type of glaucoma affected. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; National Heart Lung and Blood Institute of the National Institutes of Health (NIH) [HL-72110]; Ernest Orlando Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX This research was supported in part by grants AG032004 from the Institute of Aging and HL-72110 from the National Heart Lung and Blood Institute of the National Institutes of Health (NIH) and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). Conflict of interest: None, except for the support of NIH grants. Contribution of author: Created the National Runners' Health Study, data analysis, wrote the paper, and is guarantor of the study. I wish to thank Kathryn Hoffman for her assistance in data collection. The results of the present study do not constitute endorsement by ACSM. NR 40 TC 13 Z9 17 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD AUG PY 2009 VL 41 IS 8 BP 1566 EP 1572 DI 10.1249/MSS.0b013e31819e420f PG 7 WC Sport Sciences SC Sport Sciences GA 472IL UT WOS:000268123700005 PM 19568204 ER PT J AU Dougherty, LM Cerreta, EK Gray, GT Trujillo, CP Lopez, MF Vecchio, KS Kusinski, GJ AF Dougherty, L. M. Cerreta, E. K. Gray, G. T., III Trujillo, C. P. Lopez, M. F. Vecchio, K. S. Kusinski, G. J. TI Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; CHANNEL ANGULAR EXTRUSION; INTERSTITIAL-FREE STEEL; 316L STAINLESS-STEEL; ADIABATIC SHEAR; TEXTURE DEVELOPMENT; BAND FORMATION; DEFORMATION; EVOLUTION; LOCALIZATION AB Reinforcement bars of microcomposite (MC) steel, composed of lath martensite and minor amounts of retained austenite, possess improved strength and corrosion characteristics over low-carbon (LC) steel rebar; however, their performance under shear loading has not previously been investigated at the microstructural level. In this study, LC and MC steel cylinders were compression tested, and specimens machined into a forced-shear geometry were subjected to quasi-static and dynamic shear loading to determine their shear behavior as a function of the strain and strain rate. The as-received and sheared microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Higher-resolution microstructural examinations were performed using transmission electron microscopy (TEM). The influence of the starting microstructure on the shear behavior was found to depend strongly on the strain rate; the MC steel exhibited not only greater strain-rate sensitivity than the LC steel but also a greater resistance to shear localization with load. In both steels, despite differences in the starting microstructure, post-mortem observations were consistent with a continuous mechanism operating within adiabatic shear bands (ASBs), in which subgrains rotated into highly misoriented grains containing a high density of dislocations. C1 [Dougherty, L. M.] Los Alamos Natl Lab, WCM 1, Los Alamos, NM 87545 USA. [Dougherty, L. M.; Cerreta, E. K.; Gray, G. T., III; Trujillo, C. P.; Lopez, M. F.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. [Vecchio, K. S.] Univ Calif San Diego, Nanoengn Dept, La Jolla, CA 92093 USA. [Kusinski, G. J.] Chevron Energy Technol Co, Richmond, CA 94802 USA. [Kusinski, G. J.] MMFX Technol Corp, Irvine, CA 92606 USA. RP Dougherty, LM (reprint author), Los Alamos Natl Lab, WCM 1, POB 1663, Los Alamos, NM 87545 USA. EM lmdough@lanl.gov RI Vecchio, Kenneth/F-6300-2011 OI Vecchio, Kenneth/0000-0003-0217-6803 NR 42 TC 6 Z9 6 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2009 VL 40A IS 8 BP 1835 EP 1850 DI 10.1007/s11661-009-9869-2 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 466OE UT WOS:000267670700009 ER PT J AU Yamamoto, Y Santella, ML Brady, MP Bei, H Maziasz, PJ AF Yamamoto, Y. Santella, M. L. Brady, M. P. Bei, H. Maziasz, P. J. TI Effect of Alloying Additions on Phase Equilibria and Creep Resistance of Alumina-Forming Austenitic Stainless Steels SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID COAL POWER-PLANTS; SCALE FORMATION; PRECIPITATION; TEMPERATURE; BEHAVIOR AB The high-temperature creep properties of a series of alumina-forming austenitic (AFA) stainless steels based on Fe-20Ni-(12-14)Cr-(2.5-4)Al-(0.2-3.3)Nb-0.1C (weight percent) were studied. Computational thermodynamics were used to aid in the interpretation of data on microstructural stability, phase equilibria, and creep resistance. Phases of MC (M: mainly Nb), M(23)C(6) (M: mainly Cr), B2 [beta-(Ni,Fe)Al], and Laves [Fe(2)(Mo,Nb)] were observed after creep-rupture testing at 750 A degrees C and 170 MPa; this was generally consistent with the thermodynamic calculations. The creep resistance increased with increasing Nb additions up to 1 wt pct in the 2.5 and 3 Al wt pct alloy series, due to the stabilization of nanoscale MC particles relative to M(23)C(6). Additions of Nb greater than 1 wt pct decreased creep resistance in the alloy series due to stabilization of the Laves phase and increased amounts of undissolved, coarse MC, which effectively reduced the precipitation of nanoscale MC particles. The additions of Al also increased the creep resistance moderately due to the increase in the volume fraction of B2 phase precipitates. Calculations suggested that optimum creep resistance would be achieved at approximately 1.5 wt pct Nb in the 4 wt pct Al alloy series. C1 [Yamamoto, Y.; Santella, M. L.; Brady, M. P.; Bei, H.; Maziasz, P. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yamamoto, Y.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Yamamoto, Y (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; OI Brady, Michael/0000-0003-1338-4747; Maziasz, Philip/0000-0001-8207-334X; Bei, Hongbin/0000-0003-0283-7990 FU USDOE [DE-AC05-00OR22725] FX The authors thank E. P. George, C. T. Liu, and J.H. Schneibel for helpful comments on this manuscript. This work was funded by the United States Department of Energy (USDOE) Fossil Energy Advanced Research Materials program. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC (Oak Ridge, TN), for the USDOE under Contract No. DE-AC05-00OR22725. The authors also acknowledge the SHaRE User Facility at the Oak Ridge National Laboratory, sponsored by the USDOE Office of Basic Energy Sciences, Division of Scientific User Facilities. NR 27 TC 39 Z9 41 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2009 VL 40A IS 8 BP 1868 EP 1880 DI 10.1007/s11661-009-9886-1 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 466OE UT WOS:000267670700012 ER PT J AU Hoche, D Muller, S Rapin, G Shinn, M Remdt, E Gubisch, M Schaaf, P AF Hoeche, Daniel Mueller, Sven Rapin, Gerd Shinn, Michelle Remdt, Elvira Gubisch, Maik Schaaf, Peter TI Marangoni Convection during Free Electron Laser Nitriding of Titanium SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID LEVEL SET METHOD; THERMAL TRANSPORT REGIMES; SURFACE MELTING PROCESSES; POOL TRANSPORT; TINX COATINGS; 2-PHASE FLOW; DYNAMICS; NITROGEN; VAPORIZATION; NITRIDATION AB Pure titanium was treated by free electron laser (FEL) radiation in a nitrogen atmosphere. As a result, nitrogen diffusion occurs and a TiN coating was synthesized. Local gradients of interfacial tension due to the local heating lead to a Marangoni convection, which determines the track properties. Because of the experimental inaccessibility of time-dependent occurrences, finite element calculations were performed, to determine the physical processes such as heat transfer, melt flow, and mass transport. In order to calculate the surface deformation of the gas-liquid interface, the level set approach was used. The equations were modified and coupled with heat-transfer and diffusion equations. The process was characterized by dimensionless numbers such as the Reynolds, Peclet, and capillary numbers, to obtain more information about the acting forces and the coating development. Moreover, the nitrogen distribution was calculated using the corresponding transport equation. The simulations were compared with cross-sectional micrographs of the treated titanium sheets and checked for their validity. Finally, the process presented is discussed and compared with similar laser treatments. C1 [Hoeche, Daniel; Mueller, Sven] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Rapin, Gerd] Inst Numer & Angew Math, D-37083 Gottingen, Germany. [Shinn, Michelle] Thomas Jefferson Natl Accelerator Facil, Free Electron Laser Grp, Newport News, VA 23606 USA. [Remdt, Elvira; Gubisch, Maik; Schaaf, Peter] Tech Univ Ilmenau, Inst Werkstofftech, FG Werkstoff Elektrotech, D-98684 Ilmenau, Germany. RP Hoche, D (reprint author), Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. EM dhoeche@uni-goettingen.dez RI Hoche, Daniel/G-8556-2013; Schaaf, Peter/B-4934-2009 OI Hoche, Daniel/0000-0002-7719-6684; Schaaf, Peter/0000-0002-8802-6621 FU Deutsche Forschungsgemeinschaft (Bonn, Germany) [DFG Scha-632/4]; United States Department of Energy, the Office of Naval Research (Arlington, VA); Commonwealth of Virginia, and the Laser Processing Consortium (Newport News, VA) FX This work is supported by the Deutsche Forschungsgemeinschaft (Bonn, Germany), under Grant No. DFG Scha-632/4. The Jefferson Lab (Newport News, VA) is supported by the United States Department of Energy, the Office of Naval Research (Arlington, VA), the Commonwealth of Virginia, and the Laser Processing Consortium (Newport News, VA). The authors gratefully acknowledge Kevin Jordan and Joseph F. Gubeli III for their assistance at the FEL Program. NR 38 TC 11 Z9 16 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD AUG PY 2009 VL 40 IS 4 BP 497 EP 507 DI 10.1007/s11663-009-9243-1 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 477CY UT WOS:000268496400008 ER PT J AU Zhang, ZT Sohn, IR Pettit, FS Meier, GH Sridhar, S AF Zhang, Z. T. Sohn, I. R. Pettit, F. S. Meier, G. H. Sridhar, S. TI Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID ASSISTED MULTIPHASE STEELS/; TRIP STEELS; SURFACE SEGREGATION; MAGNETIC-PROPERTIES; AIDED STEEL; AL; SI; ANTIMONY; BEHAVIOR; SILICON AB The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content (P(H2O)/P(H2) = 0.01 to 0.13) on the oxidation and decarburization behavior of transformation-induced plasticity ( TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)(2)SiO(4)) and ((MnO)(x)(FeO)(1-x). The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates. C1 [Zhang, Z. T.] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. [Zhang, Z. T.; Sridhar, S.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Meier, G. H.; Sridhar, S.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sohn, I. R.] POSCO, Tech Res Labs, Jeonnam 545090, South Korea. [Pettit, F. S.; Meier, G. H.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. RP Zhang, ZT (reprint author), Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. EM sridhars@andrew.cmu.edu RI Zhang, Zuotai/B-1030-2012 OI Zhang, Zuotai/0000-0002-3580-6018 FU POSCO (Jeonnam, Korea) FX The financial support from POSCO (Jeonnam, Korea) is acknowledged. T. L. Baum is acknowledged for her technical help during discussions during TG and SEM measurements. Special thanks are also extended to B. Webler, J. Nakano, and C. Thorning for instructive discussions. W. Jennings, Materials Science and Engineering, Case Western Reserve University (Cleveland, OH), is gratefully acknowledged for his help on AES and XPS analysis. NR 32 TC 17 Z9 17 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD AUG PY 2009 VL 40 IS 4 BP 567 EP 584 DI 10.1007/s11663-009-9255-x PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 477CY UT WOS:000268496400014 ER PT J AU Taheri, ML Browning, ND Lewellen, J AF Taheri, Mitra L. Browning, Nigel D. Lewellen, John TI Symposium on Ultrafast Electron Microscopy and Ultrafast Science SO MICROSCOPY AND MICROANALYSIS LA English DT Editorial Material C1 [Taheri, Mitra L.] Drexel Univ, Philadelphia, PA 19104 USA. [Browning, Nigel D.] Univ Calif Davis, Davis, CA USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Lewellen, John] Naval Postgrad Sch, Adv Proton Source, Monterey, CA USA. RP Taheri, ML (reprint author), Drexel Univ, Philadelphia, PA 19104 USA. RI Taheri, Mitra/F-1321-2011; OI Browning, Nigel/0000-0003-0491-251X NR 0 TC 4 Z9 4 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2009 VL 15 IS 4 BP 271 EP 271 DI 10.1017/S1431927609090771 PG 1 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 476ET UT WOS:000268422000001 PM 19575827 ER PT J AU Reed, BW Armstrong, MR Browning, ND Campbell, GH Evans, JE LaGrange, T Masiel, DJ AF Reed, B. W. Armstrong, M. R. Browning, N. D. Campbell, G. H. Evans, J. E. LaGrange, T. Masiel, D. J. TI The Evolution of Ultrafast Electron Microscope Instrumentation SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Annual Meeting on Microscopy and Microanalysis CY AUG, 2008 CL Albuquerque, NM DE transmission electron microscopy; in situ electron microscopy; dynamic transmission electron microscopy; ultrafast transmission electron microscopy; time resolution; coherence ID FIELD-EMISSION; IN-SITU; DIFFRACTION; TEM; CRYSTALLOGRAPHY AB Extrapolating from a brief survey of the literature, we outline a vision for the future development of time-resolved electron probe instruments that could offer levels of performance and flexibility that push the limits of physical possibility. This includes a discussion of the electron beam parameters (brightness and ernittance) that limit performance, the identification of a dimensionless invariant figure of merit for pulsed electron guns (the number of electrons per lateral coherence area, per pulse), and calculations of how this figure of merit determines the trade-off of spatial against temporal resolution for different imaging modes. Modern photonics' ability to control its fundamental particles at the quantum level, while enjoying extreme flexibility and a very large variety of operating modes, is held up as an example and a goal. We argue that this goal may be approached by combining ideas already in the literature, suggesting the need for large-scale collaborative development of next-generation time-resolved instruments. C1 [Reed, B. W.; Armstrong, M. R.; Browning, N. D.; Campbell, G. H.; Evans, J. E.; LaGrange, T.; Masiel, D. J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Browning, N. D.; Masiel, D. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM reed12@llnl.gov RI Campbell, Geoffrey/F-7681-2010; Reed, Bryan/C-6442-2013; OI Browning, Nigel/0000-0003-0491-251X NR 40 TC 47 Z9 47 U1 2 U2 43 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2009 VL 15 IS 4 BP 272 EP 281 DI 10.1017/S1431927609090394 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 476ET UT WOS:000268422000002 PM 19575828 ER PT J AU Berger, JA Hogan, JT Greco, MJ Schroeder, WA Nicholls, AW Browning, ND AF Berger, Joel A. Hogan, John T. Greco, Michael J. Schroeder, W. Andreas Nicholls, Alan W. Browning, Nigel D. TI DC Photoelectron Gun Parameters for Ultrafast Electron Microscopy SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Annual Meeting on Microscopy and Microanalysis CY AUG, 2008 CL Albuquerque, NM DE ultrafast; electron microscopy; photoemission; emittance ID X-RAY; FEMTOSECOND; DIFFRACTION; EMISSION; PULSES; ACCELERATION; DYNAMICS; CLUSTERS; METALS; PURE AB We present a characterization of the performance of an ultrashort laser pulse driven DC photoelectron gun based on the thermionic emission gun design of Togawa et al. [Togawa, K., Shintake, T., Inagaki, T., Onoe, K. & Tanaka, T. (2007). Phys Rev Spec Top-AC 10, 020703]. The gun design intrinsically provides adequate optical access and accommodates the generation of similar to 1 mm(2) electron beams while contributing negligible divergent effects at the anode aperture. Both single-photon (with up to 20,000 electrons/pulse) and two-photon photoemission are observed from Ta and Cu(100) photocathodes driven by the harmonics (similar to 4 ps pulses at 261 nm and similar to 200 fs pulses at 532 nm, respectively) of a high-power femtosecond Yb:KGW laser. The results, including the dependence of the photoemission efficiency on the polarization state of the drive laser radiation, are consistent with expectations. The implications of these observations and other physical limitations for the development of a dynamic transmission electron microscope with sub-1 nm . ps space-time resolution are discussed. C1 [Berger, Joel A.; Hogan, John T.; Greco, Michael J.; Schroeder, W. Andreas] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Nicholls, Alan W.] Univ Illinois, Res Resources Ctr, Chicago, IL 60607 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Schroeder, WA (reprint author), Univ Illinois, Dept Phys, M-C 273,845 W Taylor St, Chicago, IL 60607 USA. EM andreas@uic.edu OI Browning, Nigel/0000-0003-0491-251X NR 50 TC 5 Z9 5 U1 2 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2009 VL 15 IS 4 BP 298 EP 313 DI 10.1017/S1431927609090266 PG 16 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 476ET UT WOS:000268422000005 PM 19575831 ER PT J AU Rodenbeck, CT Knudson, RT AF Rodenbeck, Christopher T. Knudson, Richard T. TI Single-supply, TTL-level Gate Switching and Radiation Hardening by Design Using E-PHEMTs SO MICROWAVE JOURNAL LA English DT Article C1 [Rodenbeck, Christopher T.; Knudson, Richard T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodenbeck, CT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU HORIZON HOUSE PUBLICATIONS INC PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA SN 0192-6225 J9 MICROWAVE J JI Microw. J. PD AUG PY 2009 BP 20 EP + PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 489HB UT WOS:000269409700002 ER PT J AU Bearinger, JP Stone, G Dugan, LC El Dasher, B Stockton, C Conway, JW Kuenzler, T Hubbell, JA AF Bearinger, Jane P. Stone, Gary Dugan, Lawrence C. El Dasher, Bassem Stockton, Cheryl Conway, James W. Kuenzler, Tobias Hubbell, Jeffrey A. TI Porphyrin-based Photocatalytic Nanolithography A NEW FABRICATION TOOL FOR PROTEIN ARRAYS SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; THIN-FILMS; ANTIBODY MICROARRAYS; IMPRINT LITHOGRAPHY; BLOCK-COPOLYMERS; OXIDE SURFACES; CELL-ADHESION; COMB POLYMERS; RGD PEPTIDES; NANOARRAYS AB Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrated protein immobilization utilizing nanoarrays fabricated via photocatalytic nanolithography on silicon substrates where the immobilized proteins are surrounded by a non-fouling polymer background. Molecular & Cellular Proteomics 8: 1823-1831, 2009. C1 [Bearinger, Jane P.; Stone, Gary; Dugan, Lawrence C.; El Dasher, Bassem; Stockton, Cheryl] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Conway, James W.] Stanford Univ, Stanford Nanofabricat Facil, Stanford, CA 94305 USA. [Kuenzler, Tobias] ETH Honggerberg, Surface Sci & Technol Lab, CH-8093 Zurich, Switzerland. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland. RP Bearinger, JP (reprint author), Lawrence Livermore Natl Lab, L-211,7000 E Ave, Livermore, CA 94550 USA. EM bearinger1@llnl.gov RI Hubbell, Jeffrey/A-9266-2008 OI Hubbell, Jeffrey/0000-0003-0276-5456 FU National Institutes of Health [R21 EB003991] FX This work was supported, in whole or in part, by National Institutes of Health Grant R21 EB003991. This work was partially performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 54 TC 2 Z9 2 U1 1 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 VL 8 IS 8 BP 1823 EP 1831 DI 10.1074/mcp.M800585-MCP200 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483IX UT WOS:000268958700005 PM 19406753 ER PT J AU Babu, M Butland, G Diaz-Mejia, JJ Hu, P Pu, S Moreno-Hagelsieb, G Janga, SC Wodak, S Emili, A Greenblatt, J AF Babu, M. Butland, G. Diaz-Mejia, J. J. Hu, P. Pu, S. Moreno-Hagelsieb, G. Janga, S. C. Wodak, S. Emili, A. Greenblatt, J. TI Protein Complexes and Functional Pathways in S. cerevisiae and E. coli SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Babu, M.; Diaz-Mejia, J. J.; Hu, P.; Janga, S. C.; Emili, A.; Greenblatt, J.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada. [Wodak, S.; Emili, A.; Greenblatt, J.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Butland, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Diaz-Mejia, J. J.; Moreno-Hagelsieb, G.] Wilfrid Laurier Univ, Dept Biol, Waterloo, ON N2L 3C5, Canada. [Pu, S.; Wodak, S.] Hosp Sick Children, Toronto, ON M5G 1X8, Canada. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 BP S27 EP S27 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483CH UT WOS:000268939000039 ER PT J AU Du, X Rorie, J Chowdhury, S Adkins, J Anderson, G Smith, R AF Du, X. Rorie, J. Chowdhury, S. Adkins, J. Anderson, G. Smith, R. TI Identification of Protein-Protein Interactions Using Chemical Cross-linking and CID and ETD Tandem Mass Spectrometry SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Du, X.; Rorie, J.] Univ N Carolina Charlotte, Charlotte, NC USA. [Chowdhury, S.; Adkins, J.; Anderson, G.; Smith, R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 BP S33 EP S33 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483CH UT WOS:000268939000049 ER PT J AU Spalding, KL Bergmann, O Bernard, S Druid, H Buchholz, B Arner, PA Frisen, J AF Spalding, K. L. Bergmann, O. Bernard, S. Druid, H. Buchholz, B. Arner, P. A. Frisen, J. TI Age Determination in the Adult Human Brain and Body Using Bomb-Carbon SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Spalding, K. L.; Bergmann, O.; Frisen, J.] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden. [Druid, H.] Karolinska Inst, Dept Forens Med, Stockholm, Sweden. [Arner, P. A.] Karolinska Inst, Dept Med, Stockholm, Sweden. [Bernard, S.] Univ Lyon, Inst Camille Jordan, Lyon, France. [Buchholz, B.] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 BP S43 EP S43 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483CH UT WOS:000268939000067 ER PT J AU Li, J Zimmerman, LJ Park, BH Tabb, DL Liebler, DC Zhang, B AF Li, Jing Zimmerman, Lisa J. Park, Byung-Hoon Tabb, David L. Liebler, Daniel C. Zhang, Bing TI Network-assisted protein identification and data interpretation in shotgun proteomics SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE clique; data interpretation; protein identification; protein interaction network; shotgun proteomics ID YEAST SACCHAROMYCES-CEREVISIAE; BREAST-CANCER; LIQUID-CHROMATOGRAPHY; IDENTIFYING PROTEINS; EXPRESSION PROFILES; FUNCTIONAL MODULES; MASS-SPECTROMETRY; TOPOISOMERASE-I; COMPLEXES; ANNOTATION AB Protein assembly and biological interpretation of the assembled protein lists are critical steps in shotgun proteomics data analysis. Although most biological functions arise from interactions among proteins, current protein assembly pipelines treat proteins as independent entities. Usually, only individual proteins with strong experimental evidence, that is, confident proteins, are reported, whereas many possible proteins of biological interest are eliminated. We have developed a clique-enrichment approach (CEA) to rescue eliminated proteins by incorporating the relationship among proteins as embedded in a protein interaction network. In several data sets tested, CEA increased protein identification by 8-23% with an estimated accuracy of 85%. Rescued proteins were supported by existing literature or transcriptome profiling studies at similar levels as confident proteins and at a significantly higher level than abandoned ones. Applying CEA on a breast cancer data set, rescued proteins coded by well-known breast cancer genes. In addition, CEA generated a network view of the proteins and helped show the modular organization of proteins that may underpin the molecular mechanisms of the disease. Molecular Systems Biology 5: 303; published online 18 August 2009; doi: 10.1038/msb.2009.54 C1 [Li, Jing; Tabb, David L.; Liebler, Daniel C.; Zhang, Bing] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37232 USA. [Park, Byung-Hoon] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Zimmerman, Lisa J.; Tabb, David L.; Liebler, Daniel C.] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA. RP Zhang, B (reprint author), Vanderbilt Univ, Sch Med, Dept Biomed Informat, 2209 Garland Ave, Nashville, TN 37232 USA. EM bing.zhang@vanderbilt.edu OI Liebler, Daniel/0000-0002-7873-3031; Tabb, David/0000-0001-7223-578X FU National Institutes of Health (NIH)/National Cancer Institute (NCI) [R01 CA126218]; NCI [1U24CA126479] FX We thank Dr Whiteaker and Dr Kislinger for making the mouse organ data set and the mouse breast cancer data set available, respectively. This work was conducted, in part, using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. This work was supported by the National Institutes of Health (NIH)/National Cancer Institute (NCI) through grant R01 CA126218 and the NCI Clinical Proteomic Technologies Assessment for Cancer program through grant 1U24CA126479. NR 51 TC 33 Z9 33 U1 0 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD AUG PY 2009 VL 5 AR 303 DI 10.1038/msb.2009.54 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 566RG UT WOS:000275390100003 PM 19690572 ER PT J AU Sahlen, M Viana, PTP Liddle, AR Romer, AK Davidson, M Hosmer, M Lloyd-Davies, E Sabirli, K Collins, CA Freeman, PE Hilton, M Hoyle, B Kay, ST Mann, RG Mehrtens, N Miller, CJ Nichol, RC Stanford, SA West, MJ AF Sahlen, Martin Viana, Pedro T. P. Liddle, Andrew R. Romer, A. Kathy Davidson, Michael Hosmer, Mark Lloyd-Davies, Ed Sabirli, Kivanc Collins, Chris A. Freeman, Peter E. Hilton, Matt Hoyle, Ben Kay, Scott T. Mann, Robert G. Mehrtens, Nicola Miller, Christopher J. Nichol, Robert C. Stanford, S. Adam West, Michael J. CA XCS Collaboration TI The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE methods: statistical; galaxies: clusters: general; cosmological parameters; cosmology: observations; cosmology: theory; X-rays: galaxies: clusters ID X-RAY-CLUSTERS; DIGITAL SKY SURVEY; LUMINOSITY-TEMPERATURE RELATION; GAS MASS FRACTION; MICROWAVE BACKGROUND ANISOTROPIES; RELAXED GALAXY CLUSTERS; PROBE WMAP OBSERVATIONS; DARK-MATTER HALOES; POWER-SPECTRUM; HIGH-REDSHIFT AB We forecast the constraints on the values of Sigma(8), (m) and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T, z) self-calibration, we expect to measure (m) to +/- 0.03 (and (Lambda) to the same accuracy assuming flatness), and Sigma(8) to +/- 0.05, also constraining the normalization and slope of the luminosity-temperature relation to +/- 6 and +/- 13 per cent (at 1 Sigma), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2 Sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints. C1 [Sahlen, Martin; Liddle, Andrew R.; Romer, A. Kathy; Hosmer, Mark; Lloyd-Davies, Ed; Mehrtens, Nicola] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Viana, Pedro T. P.] Univ Porto, Fac Ciencias, Dept Matemat Aplicada, P-4169007 Oporto, Portugal. [Davidson, Michael; Mann, Robert G.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 9HJ, Midlothian, Scotland. [Collins, Chris A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Hilton, Matt] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Hilton, Matt] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Hoyle, Ben; Nichol, Robert C.] Univ Portsmouth, ICG, Portsmouth PO1 2EG, Hants, England. [Miller, Christopher J.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Tucson, AZ 85719 USA. [Stanford, S. Adam] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [West, Michael J.] Gemini Observ, La Serena, Chile. [West, Michael J.] European So Observ, Santiago 19, Chile. [Viana, Pedro T. P.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Sabirli, Kivanc; Freeman, Peter E.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15217 USA. [Kay, Scott T.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Manchester M13 9PL, Lancs, England. RP Sahlen, M (reprint author), Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM m.sahlen@sussex.ac.uk RI Hilton, Matthew James/N-5860-2013; OI hoyle, ben/0000-0002-2571-1357; Viana, Pedro/0000-0003-1572-8531; Sahlen, Martin/0000-0003-0973-4804 FU Swedish Galo Foundation; Gunvor & Josef Aner Foundation; C. E. Levin Foundation; Sir Richard Stapley Educational Trust; POCTI [POCI2010, CTE-AST/58888/2004]; PPARC/STFC; RAS Hosie Bequest; XMM; NASA-LTSA [NAG-11634]; Lawrence Livermore National Laboratory [W-7405-Eng-48]; HEFCE; STFC FX MS was partially supported by the Swedish Galo, Gunvor & Josef Aner and C. E. Levin foundations and the Sir Richard Stapley Educational Trust. PTPV acknowledges the support of POCI2010 through the project POCTI/CTE-AST/58888/2004. AKR, EL-D, MH and NM were supported by PPARC/STFC, and MD in part by the RAS Hosie Bequest. MS, MD, KS and MH acknowledge additional financial support from their respective universities. AKR and KS acknowledge financial support from the XMM and Chandra guest observer programmes and from the NASA-LTSA award NAG-11634. The work by SAS was performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. This work is based on data obtained by XMM-Newton, an ESA science mission funded by contributions from ESA member states and from NASA. The research made use of the NASA/GSFC-supported xspec software, and was conducted in co-operation with SGI/Intel utilizing the Altix 4700 supercomputer (COSMOS), also funded by HEFCE and STFC. We are grateful to Ronald Cools and the NINES group at KU Leuven for making the numerical integration package cubpack available to us. We thank Ben Maughan and Jochen Weller for useful discussions. NR 153 TC 38 Z9 38 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2009 VL 397 IS 2 BP 577 EP 607 DI 10.1111/j.1365-2966.2009.14923.x PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 472AJ UT WOS:000268100700001 ER PT J AU Weissmuller, J Newman, RC Jin, HJ Hodge, AM Kysar, JW AF Weissmueller, Joerg Newman, Roger C. Jin, Hai-Jun Hodge, Andrea M. Kysar, Jeffrey W. TI Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties SO MRS BULLETIN LA English DT Article ID SILVER-GOLD ALLOYS; STRESS-CHARGE RESPONSE; CU-AU ALLOYS; SURFACE-STRESS; NITRIC-ACID; ANODIC-DISSOLUTION; NOBLE-METAL; SELECTIVE DISSOLUTION; YOUNGS MODULUS; ALUMINUM FOAMS AB Nanoporous metals prepared by the corrosion of an alloy can take the form of monolithic, millimeter-sized bodies containing approximately 10(15) nanoscale ligaments per cubic millimeter. The ligament size can reach down to the very limits of stability of nanoscale objects. The processes by which nanoporous metals are formed have continued to be fascinating, even though their study in relation to surface treatment, metal refinement, and failure mechanisms can be traced back to ancient times. In fact, the prospect of using alloy corrosion as a means of making nanomaterials for fundamental studies and functional applications has led to a revived interest in the process. The quite distinct mechanical properties of nanoporous metals are one of the focus points of this interest, as relevant studies probe the deformation behavior of crystals at the lower end of the size scale. Furthermore, the coupling of bulk stress and strain to the forces acting along the surface of nanoporous metals provide unique opportunities for controlling the mechanical behavior through external variables such as the electrical or chemical potentials. C1 [Weissmueller, Joerg; Jin, Hai-Jun] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Weissmueller, Joerg] Univ Saarland, Dept Tech Phys, D-6600 Saarbrucken, Germany. [Weissmueller, Joerg] Karlsruhe Inst Technol, Karlsruhe, Germany. [Weissmueller, Joerg] Univ Dundee, Dundee DD1 4HN, Scotland. [Weissmueller, Joerg] Inst New Mat, Saarbrucken, Germany. [Newman, Roger C.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 1A1, Canada. [Newman, Roger C.] Univ Manchester, Inst Sci & Technol, Manchester M13 9PL, Lancs, England. [Hodge, Andrea M.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Hodge, Andrea M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hodge, Andrea M.] Univ So Calif, Mat Nanotechnol Grp, Los Angeles, CA 90089 USA. [Kysar, Jeffrey W.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. RP Weissmuller, J (reprint author), Forschungszentrum Karlsruhe, Inst Nanotechnol, POB 3640, D-76021 Karlsruhe, Germany. EM Joerg.Weissmueller@int.fzk.de; roger.newman@utoronto.ca; haijun.jin@int.fzk.de; ahodge@usc.edu; jk2079@columbia.edu RI Weissmuller, Jorg/C-3967-2009 OI Weissmuller, Jorg/0000-0002-8958-4414 FU National Science Foundation [CMMI-0826093] FX JWK is grateful to the National Science Foundation CMMI-0826093 for support. NR 100 TC 138 Z9 142 U1 14 U2 110 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD AUG PY 2009 VL 34 IS 8 BP 577 EP 586 DI 10.1557/mrs2009.157 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 485GZ UT WOS:000269110500012 ER PT J AU Kim, N Kim, J Uram, TD AF Kim, Namgon Kim, JongWon Uram, Thomas D. TI A hybrid multicast connectivity solution for multi-party collaborative environments SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Application-layer multicast; Multicast connectivity; UDP multicast tunneling protocol; Multicast island; Advanced collaboration environment AB In multi-party collaborative environments, a group of users can share multiple media streams via IP multicasting. However, despite of the efficiency of IP multicast, it is not widely available and alternative application-layer multicast approaches are introduced. Application-layer multicast is advantageous, however, it incurs additional processing delays. In this paper, we present a new hybrid-style application-layer multicast solution that satisfies both network efficiency and easy deployment. We achieve this goal by connecting multicast islands through UDP tunnels employing UMTP (UDP multicast tunneling protocol). We also design a MPROBE protocol to remove multicast loop among multicast island in real Internet. We verify the feasibility of the proposed solution by implementing a prototype tool, AG Connector, that works on Access Grid multi-party collaborative environment. C1 [Kim, Namgon; Kim, JongWon] GIST Networked Media Lab, Kwangju 500712, South Korea. [Uram, Thomas D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, J (reprint author), GIST Networked Media Lab, 1 Oryong Dong, Kwangju 500712, South Korea. EM ngkim@nm.gist.ac.kr; jongwon@nm.gist.ac.kr; turam@mcs.anl.gov FU Ministry of Knowledge Economy, Korea [IITA-2009-C1090-0902-0006]; US. Department of Energy [W-31-109-Eng-38] FX This research was supported by the Ministry of Knowledge Economy, Korea, under the Information Technology Research Center support program supervised by the Institute of Information Technology Advancement (grant number IITA-2009-C1090-0902-0006). We thank the Futures Laboratory and Access Grid team at Argonne National Laboratory and The University of Chicago for their support. Thomas Uram's and Namgon Kim's effort has been provided in part by the US. Department of Energy under Contract W-31-109-Eng-38. Also, we would like to appreciate JaeSeung Kwak and JeongHoon Moon at Korea Institute of Science and Technology Information (KISTI) for interesting comments, encouragements, and feedbacks. NR 24 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD AUG PY 2009 VL 44 IS 1 BP 17 EP 37 DI 10.1007/s11042-009-0266-z PG 21 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 457KJ UT WOS:000266926600002 ER PT J AU Eom, D Prezzi, D Rim, KT Zhou, H Lefenfeld, M Xiao, S Nuckolls, C Hybertsen, MS Heinz, TF Flynn, GW AF Eom, Daejin Prezzi, Deborah Rim, Kwang Taeg Zhou, Hui Lefenfeld, Michael Xiao, Shengxiong Nuckolls, Colin Hybertsen, Mark S. Heinz, Tony F. Flynn, George W. TI Structure and Electronic Properties of Graphene Nanoislands on Co(0001) SO NANO LETTERS LA English DT Article ID SCANNING TUNNELING SPECTROSCOPY; MONOLAYER GRAPHITE; SURFACE; NI(111); CARBON; STATES; FILMS AB We have grown well-ordered graphene adlayers on the lattice-matched Co(0001) surface, Low-temperature scanning tunneling microscopy measurements demonstrate an on-top registry of the carbon atoms with respect to the Co(0001) surface. The tunneling conductance spectrum shows that the electronic structure is substantially altered from that of isolated graphene, implying a strong coupling between graphene and cobalt states. Calculations using density functional theory confirm that structures with on-top registry have the lowest energy and provide clear evidence for strong electronic coupling between the graphene pi-states and Co d-states at the interface. C1 [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Eom, Daejin; Prezzi, Deborah; Heinz, Tony F.; Flynn, George W.] Columbia Univ, Nanoscale Sci & Engn Ctr, New York, NY 10027 USA. [Eom, Daejin; Rim, Kwang Taeg; Lefenfeld, Michael; Xiao, Shengxiong; Nuckolls, Colin; Flynn, George W.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Eom, Daejin; Zhou, Hui; Heinz, Tony F.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Eom, Daejin; Zhou, Hui; Heinz, Tony F.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Prezzi, Deborah] INFM CNR S3 Natl Res Ctr, I-41100 Modena, Italy. RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mhyberts@bnl.gov; tfh3@columbia.edu; gwfl@columbia.edu RI Prezzi, Deborah/E-8403-2010; bartelsdoe, ludwig/F-8008-2011; Xiao, Shengxiong/C-6156-2009; Heinz, Tony/K-7797-2015; OI Prezzi, Deborah/0000-0002-7294-7450; Xiao, Shengxiong/0000-0002-9151-9558; Heinz, Tony/0000-0003-1365-9464; Hybertsen, Mark S/0000-0003-3596-9754 FU U.S. Department of Energy [DE-FG02-88-ER13937, DE-FG02-03ER 15463, DE-AC02-98CH 10886]; National Science Foundation [CHE-06-41523, CHE-07-01483]; New York State Office of Science, Technology, and Academic Research (NYSTAR); Fondazione Cassa di Risparmio di Modena FX This work was supported by the U.S. Department of Energy (DE-FG02-88-ER13937 to G.W.F., DE-FG02-03ER 15463 to T.F.H., and DE-AC02-98CH 10886 to M.S.H.), by the National Science Foundation through the NSEC Program (CHE-06-41523), by the New York State Office of Science, Technology, and Academic Research (NYSTAR), and by the "Fondazione Cassa di Risparmio di Modena" (to D.P.). Computing time was provided by CINECA and the Center for Functional Nanomaterials at Brookhaven National Laboratory. Equipment and material support was provided by the National Science Foundation through Grant CHE-07-01483 (to G.W.F.). NR 36 TC 153 Z9 154 U1 10 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2009 VL 9 IS 8 BP 2844 EP 2848 DI 10.1021/nl900927f PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 481HB UT WOS:000268797200008 PM 19630380 ER PT J AU Jamshidi, A Neale, SL Yu, K Pauzauskie, PJ Schuck, PJ Valley, JK Hsu, HY Ohta, AT Wu, MC AF Jamshidi, Arash Neale, Steven L. Yu, Kyoungsik Pauzauskie, Peter J. Schuck, Peter James Valley, Justin K. Hsu, Hsan-Yin Ohta, Aaron T. Wu, Ming C. TI NanoPen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles SO NANO LETTERS LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; OPTOELECTRONIC TWEEZERS; SEMICONDUCTOR; MANIPULATION; ARRAYS; LITHOGRAPHY; INTEGRATION; SILICON; FUSION AB We introduce NanoPen, a novel technique for low optical power intensity, flexible, real-time reconfigurable, and large-scale light-actuated patterning of single or multiple nanoparticles, such as metallic spherical nanocrystals, and one-dimensional nanostructures, such as carbon nanotubes. NanoPen is capable of dynamically patterning nanoparticles over an area of thousands of square micrometers with light intensities <10 W/cm(2) (using a commercial projector) within seconds. Various arbitrary nanoparticle patterns and arrays (including a 10 x 10 array covering a 0.025 mm(2) area) are demonstrated using this capability. One application of NanoPen is presented through the creation of surface-enhanced Raman spectroscopy hot-spots by patterning gold nanoparticles of 90 nm diameter with enhancement factors exceeding 10(7) and picomolar concentration sensitivities. C1 [Jamshidi, Arash; Neale, Steven L.; Yu, Kyoungsik; Valley, Justin K.; Hsu, Hsan-Yin; Ohta, Aaron T.; Wu, Ming C.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Pauzauskie, Peter J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Wu, MC (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM wu@eecs.berkeley.edu RI Yu, Kyoungsik/C-7207-2009; Yu, Kyoungsik/C-2078-2011; Neale, Steven/D-1937-2009; Pauzauskie, Peter/A-1316-2014 OI Neale, Steven/0000-0002-4588-276X; FU DARPA SERS ST Fundamentals [FA9550-08-1-0257]; National Institutes of Health [PN2 EY018228]; Lawrence Livermore National Laboratory FX This work was supported in part by DARPA SERS S&T Fundamentals #FA9550-08-1-0257 (Dr. Dennis Polla) and the National Institutes of Health through the NTH Roadmap for Medical Research (Grant #PN2 EY018228). The authors thank Professor Peidong Yang, Professor Luke P. Lee, Dr. Yeonho Choi, Amit Lakhani, and Tae Joon Seok for valuable discussions and comments. P.J.P. thanks the Lawrence Livermore National Laboratory for support through the Lawrence postdoctoral fellowship. NR 40 TC 48 Z9 51 U1 0 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2009 VL 9 IS 8 BP 2921 EP 2925 DI 10.1021/nl901239a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 481HB UT WOS:000268797200021 PM 19588985 ER PT J AU Amini, S Cordoba, JM Daemen, L McGhie, AR Ni, CY Hultman, L Oden, M Barsoum, MW AF Amini, Shahram Cordoba, Jose M. Daemen, Luke McGhie, Andrew R. Ni, Chaoying Hultman, Lars Oden, Magnus Barsoum, Michel W. TI On the Stability of Mg Nanograins to Coarsening after Repeated Melting SO NANO LETTERS LA English DT Article ID NANOSTRUCTURED MATERIALS; ALUMINUM NANOPARTICLES; GOLD PARTICLES; SIZE; NANOCRYSTALS; TEMPERATURE; COMPOSITE; BEHAVIOR AB Herein we report on the extraordinary thermal stability of similar to 35 nm Mg-nanograins that constitute the matrix of a Ti2AlC-Mg composite that has previously been shown to have excellent mechanical properties. The microstructure is so stable that heating the composite three times to 700 degrees C, which is 50 degrees C over the melting point of Mg, not only resulted in the repeated melting of the Mg, but surprisingly and within the resolution of our differential scanning calorimeter, did not lead to any coarsening. The reduction in the Mg melting point due to the nanograins was similar to 50 degrees C. X-ray diffraction and neutron spectroscopy results suggest that thin, amorphous, and/or poorly crystallized rutile, anatase, and/or magnesia layers separate the Mg nanograins and prevent them from coarsening. Clearly that layer is thin enough, and thus mechanically robust enough, to survive the melting and solidification stresses encountered during cycling. Annealing in hydrogen at 250 degrees C for 20 h, also did not seem to alter the grain size significantly. C1 [Amini, Shahram; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Hultman, Lars] Linkoping Univ, Dept Phys, IFM, Thin Film Phys Div, S-58183 Linkoping, Sweden. [Daemen, Luke] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [McGhie, Andrew R.] Univ Penn, Res Struct Matter Lab, Philadelphia, PA 19104 USA. [Ni, Chaoying] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Amini, S (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM Shahram@Drexel.Edu RI Oden, Magnus/E-9662-2010; Ni, Chaoying/B-7300-2012; Lujan Center, LANL/G-4896-2012; Cordoba, Jose/B-1029-2011 OI Oden, Magnus/0000-0002-2286-5588; Cordoba, Jose/0000-0003-1699-7928 FU NSF [SGER 0736218]; ARO [DAAD49-03-1-0213]; Swedish Foundation for Strategic Research, SSF; Department of Energy's Office of Basic Energy Sciences [DE-AC52-06NA25396] FX This work was supported by the Metals Division of NSF (SGER 0736218) and ARO (DAAD49-03-1-0213) and the Swedish Foundation for Strategic Research, SSF. M.W.B. would also like to acknowledge the financial support of the Wheatley Scholar of the Lujan Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences under DOE Contract DE-AC52-06NA25396. NR 27 TC 7 Z9 7 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2009 VL 9 IS 8 BP 3082 EP 3086 DI 10.1021/nl9015683 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 481HB UT WOS:000268797200049 PM 19606848 ER PT J AU Dueber, JE Wu, GC Malmirchegini, GR Moon, TS Petzold, CJ Ullal, AV Prather, KLJ Keasling, JD AF Dueber, John E. Wu, Gabriel C. Malmirchegini, G. Reza Moon, Tae Seok Petzold, Christopher J. Ullal, Adeeti V. Prather, Kristala L. J. Keasling, Jay D. TI Synthetic protein scaffolds provide modular control over metabolic flux SO NATURE BIOTECHNOLOGY LA English DT Article ID ESCHERICHIA-COLI; ISOPRENOID PRODUCTION; BIFUNCTIONAL ENZYME; MEVALONATE PATHWAY; TYROSINE KINASE; GENE FUSION; 1,3-PROPANEDIOL; SUBSTRATE; COMPLEX; EXPRESSION AB Engineered metabolic pathways constructed from enzymes heterologous to the production host often suffer from flux imbalances, as they typically lack the regulatory mechanisms characteristic of natural metabolism. In an attempt to increase the effective concentration of each component of a pathway of interest, we built synthetic protein scaffolds that spatially recruit metabolic enzymes in a designable manner. Scaffolds bearing interaction domains from metazoan signaling proteins specifically accrue pathway enzymes tagged with their cognate peptide ligands. The natural modularity of these domains enabled us to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex and thereby achieve 77-fold improvement in product titer with low enzyme expression and reduced metabolic load. One of the same scaffolds was used to triple the yield of glucaric acid, despite high titers (0.5 g/I) without the synthetic complex. These strategies should prove generalizeable to other metabolic pathways and programmable for fine-tuning pathway flux. C1 [Dueber, John E.; Wu, Gabriel C.; Malmirchegini, G. Reza; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biomed Res QB3, Berkeley, CA 94720 USA. [Dueber, John E.; Wu, Gabriel C.; Keasling, Jay D.] Univ Calif Berkeley, SynBERC, Berkeley, CA 94720 USA. [Moon, Tae Seok; Prather, Kristala L. J.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Moon, Tae Seok; Prather, Kristala L. J.] MIT, SynBERC, Cambridge, MA 02139 USA. [Petzold, Christopher J.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Petzold, Christopher J.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [Ullal, Adeeti V.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Dueber, JE (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biomed Res QB3, Berkeley, CA 94720 USA. EM jdueber@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU UC Berkeley; QB3 Institute; National Science Foundation (NSF); Synthetic Biology Engineering Research Center [EEC-0540879]; NSF [CBET-0756801]; Bill and Melinda Gates Foundation; Joint BioEnergy Institute; Office of Naval Research Young Investigator Program [N000140510656] FX We thank A. Arkin, J. Dietrich, E. Dueber, L. Katz, and W. Whitaker for comments and discussion during the preparation of the manuscript. We also thank members of the Dueber and Keasling labs for experimental help and discussions. This work was supported by funding from UC Berkeley QB3 Institute (J. E. D.), National Science Foundation (NSF) Synthetic Biology Engineering Research Center grant no. EEC-0540879 (J. E. D., J. D. K, K. L. J. P., T. S. M.), NSF grant no. CBET-0756801 (J. E. D.), the Bill and Melinda Gates Foundation (J. D. K), Joint BioEnergy Institute (J. D. K.), the Office of Naval Research Young Investigator Program grant no. N000140510656 (K. L. J. P. and T. S. M.). NR 38 TC 471 Z9 501 U1 28 U2 275 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD AUG PY 2009 VL 27 IS 8 BP 753 EP U107 DI 10.1038/nbt.1557 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 480YY UT WOS:000268774500026 PM 19648908 ER PT J AU Phillips, CM Meng, XD Zhang, L Chretien, JH Urnov, FD Dernburg, AF AF Phillips, Carolyn M. Meng, Xiangdong Zhang, Lei Chretien, Jacqueline H. Urnov, Fyodor D. Dernburg, Abby F. TI Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans SO NATURE CELL BIOLOGY LA English DT Article ID CAENORHABDITIS-ELEGANS; X-CHROMOSOME; RECOMBINATION; MEIOSIS; PROTEINS; COMPLEX; GENOME; MECHANISMS; MAP AB Caenorhabditis elegans chromosomes contain specialized regions called pairing centres, which mediate homologous pairing and synapsis during meiosis. Four related proteins, ZIM-1, 2, 3 and HIM-8, associate with these sites and are required for their essential functions. Here we show that short sequence elements enriched in the corresponding chromosome regions selectively recruit these proteins in vivo. In vitro analysis using SELEX indicates that the binding specificity of each protein arises from a combination of two zinc fingers and an adjacent domain. Insertion of a cluster of recruiting motifs into a chromosome lacking its endogenous pairing centre is sufficient to restore homologous pairing, synapsis, crossover recombination and segregation. These findings help to illuminate how chromosome sites mediate essential aspects of meiotic chromosome dynamics. C1 [Phillips, Carolyn M.; Chretien, Jacqueline H.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Meng, Xiangdong; Zhang, Lei; Urnov, Fyodor D.] Sangamo BioSci, Pt Richmond Tech Ctr, Richmond, CA 94804 USA. [Chretien, Jacqueline H.; Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD USA. [Dernburg, Abby F.] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA USA. RP Dernburg, AF (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 470 Stanley Hall,MC 3220, Berkeley, CA 94720 USA. EM afdernburg@lbl.gov RI Phillips, Carolyn/E-8305-2011; OI Phillips, Carolyn/0000-0002-6228-6468; Dernburg, Abby/0000-0001-8037-1079 FU NSF; Burroughs Wellcome Career Award [1000950]; NIH [R01 GM065591] FX This work was supported by an NSF Predoctoral Fellowship (C. M. P.) and by Burroughs Wellcome Career Award 1000950 and NIH R01 GM065591 (A. F. D.). We are grateful to Anne Villeneuve for SYP-1 antibodies, Barbara Meyer, Kevin Corbett and Ed Rebar for valuable suggestions, to members of the Meyer lab for assistance with the extrachromosomal array assay and to members of the Dernburg lab and anonymous referees for helpful comments on the manuscript. NR 30 TC 59 Z9 64 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1465-7392 J9 NAT CELL BIOL JI Nat. Cell Biol. PD AUG PY 2009 VL 11 IS 8 BP 934 EP U66 DI 10.1038/ncb1904 PG 26 WC Cell Biology SC Cell Biology GA 478MU UT WOS:000268593200006 PM 19620970 ER PT J AU Rodier, F Coppe, JP Patil, CK Hoeijmakers, WAM Munoz, DP Raza, SR Freund, A Campeau, E Davalos, AR Campisi, J AF Rodier, Francis Coppe, Jean-Philippe Patil, Christopher K. Hoeijmakers, Wieteke A. M. Munoz, Denise P. Raza, Saba R. Freund, Adam Campeau, Eric Davalos, Albert R. Campisi, Judith TI Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion SO NATURE CELL BIOLOGY LA English DT Article ID ONCOGENE-INDUCED SENESCENCE; CELLULAR SENESCENCE; TUMOR SUPPRESSION; HUMAN FIBROBLASTS; GROWTH-FACTOR; HUMAN-CELLS; CANCER; P53; TUMORIGENESIS; TELOMERES AB Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells(1). Paradoxically, senescent cells also secrete factors that alter tissue microenvironments(2). The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signalling, usually associated with senescence, not after transient DNA damage responses (DDRs). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell-cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Furthermore, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell-cycle checkpoints and DNA repair, a new and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue. C1 [Rodier, Francis; Coppe, Jean-Philippe; Patil, Christopher K.; Hoeijmakers, Wieteke A. M.; Raza, Saba R.; Freund, Adam; Campeau, Eric; Davalos, Albert R.; Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rodier, Francis; Munoz, Denise P.; Campisi, Judith] Buck Inst Age Res, Novato, CA 94545 USA. [Freund, Adam] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jcampisi@lbl.gov RI Hoeijmakers, Wieteke/E-4022-2012 FU National Institutes of Health [AG017242, AG025708]; CABCRP [11IB-0153]; Larry L. Hillblom Foundation; Netherlands Organization for International Cooperation in Higher Education [HSP-TP 06/78]; Dutch Cancer Society; Department of Energy [DE-AC03-76SF00098] FX We thank C. Beausejour (grant CIHR # MPO-79317) for help in the design of a modified lentiviral expression system, R. Teachenor, V. Chu and G. Tang for valuable technical assistance, and P. Desprez for insightful comments on the manuscript. This work was supported by National Institutes of Health grants AG017242 (J.C.) and AG025708 (Buck Institute), a CABCRP grant 11IB-0153 (A. R. D.), a Larry L. Hillblom Foundation fellowship (C. K. P.), the Netherlands Organization for International Cooperation in Higher Education (Nuffic, HSP-TP 06/78), the Dutch Cancer Society (W. A. M. H.), and the Department of Energy under contract DE-AC03-76SF00098 to the University of California. NR 31 TC 591 Z9 604 U1 5 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1465-7392 J9 NAT CELL BIOL JI Nat. Cell Biol. PD AUG PY 2009 VL 11 IS 8 BP 973 EP U142 DI 10.1038/ncb1909 PG 15 WC Cell Biology SC Cell Biology GA 478MU UT WOS:000268593200011 PM 19597488 ER PT J AU Kawakami, T Tsujimoto, Y Kageyama, H Chen, XQ Fu, CL Tassel, C Kitada, A Suto, S Hirama, K Sekiya, Y Makino, Y Okada, T Yagi, T Hayashi, N Yoshimura, K Nasu, S Podloucky, R Takano, M AF Kawakami, T. Tsujimoto, Y. Kageyama, H. Chen, Xing-Qiu Fu, C. L. Tassel, C. Kitada, A. Suto, S. Hirama, K. Sekiya, Y. Makino, Y. Okada, T. Yagi, T. Hayashi, N. Yoshimura, K. Nasu, S. Podloucky, R. Takano, M. TI Spin transition in a four-coordinate iron oxide SO NATURE CHEMISTRY LA English DT Article ID SQUARE-PLANAR COORDINATION; LOWER MANTLE; TUNNELING MAGNETORESISTANCE; CROSSOVER; SYSTEM; DIFFRACTION; FERROMAGNET; EXCHANGE; STATE AB Spin transition has attracted the interest of researchers in various fields since the early 1930s, with thousands of examples now recognized, including those in minerals and biomolecules. However, so far the metal centres in which it has been found to occur are almost always octahedral six-coordinate 3d(4) to 3d(7) metals, such as Fe(II). A five-coordinate centre is only rarely seen. Here we report that under pressure SrFe(II)O(2), which features a four-fold square-planar coordination, exhibits a transition from high spin (S = 2) to intermediate spin (S = 1). This is accompanied by a transition from an antiferromagnetic insulating state to a ferromagnetic so-called half-metallic state: only half of the spin-down (d(xz),d(yz)) states are filled. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials. C1 [Tsujimoto, Y.; Kageyama, H.; Tassel, C.; Kitada, A.; Yoshimura, K.] Kyoto Univ, Grad Sch Sci, Dept Chem, Sakyo Ku, Kyoto 6068502, Japan. [Kawakami, T.] Nihon Univ, Inst Quantum Sci, Chiyoda Ku, Tokyo 1018308, Japan. [Chen, Xing-Qiu; Fu, C. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Suto, S.; Hirama, K.; Sekiya, Y.; Makino, Y.] Nihon Univ, Grad Sch Quantum Sci & Technol, Chiyoda Ku, Tokyo 1018308, Japan. [Okada, T.; Yagi, T.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Hayashi, N.] Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, Japan. [Nasu, S.] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Podloucky, R.] Univ Vienna, Inst Phys Chem, Vienna, Austria. [Takano, M.] Kyoto Univ, Inst Integrated Cell Mat Sci, Sakyo Ku, Kyoto 6060801, Japan. RP Kageyama, H (reprint author), Kyoto Univ, Grad Sch Sci, Dept Chem, Sakyo Ku, Kyoto 6068502, Japan. EM kage@kuchem.kyoto-u.ac.jp RI Kageyama, Hiroshi/A-4602-2010; Tsujimoto, Yoshihiro/H-6034-2012; Tassel, Cedric/L-5051-2014; Kitada, Atsushi/H-5819-2015 OI Tsujimoto, Yoshihiro/0000-0003-2140-3362; Kitada, Atsushi/0000-0002-4387-8687 FU Science Research on Priority Areas (Novel States of Matter Induced by Frustration); Ministry of Education, Culture, Sports, Science and Technology of Japan; UT-Battelle; US Department of Energy; University of Vienna through University Focus Research Area Materials Science FX This work was supported by Science Research on Priority Areas (Novel States of Matter Induced by Frustration) and also partly by the Ministry of Education, Culture, Sports, Science and Technology of Japan. Research at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy, under contract with UT-Battelle. This research used resources of the National Energy Research Computing Center, which is supported by the Office of Science of the US Department of Energy. This work was supported by the University of Vienna through the University Focus Research Area Materials Science (Multi-scale Simulations of Materials Properties and Processes in Materials). NR 36 TC 52 Z9 53 U1 5 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD AUG PY 2009 VL 1 IS 5 BP 371 EP 376 DI 10.1038/NCHEM.289 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 483VP UT WOS:000268997200016 PM 21378890 ER PT J AU Fan, ZY Razavi, H Do, JW Moriwaki, A Ergen, O Chueh, YL Leu, PW Ho, JC Takahashi, T Reichertz, LA Neale, S Yu, K Wu, M Ager, JW Javey, A AF Fan, Zhiyong Razavi, Haleh Do, Jae-won Moriwaki, Aimee Ergen, Onur Chueh, Yu-Lun Leu, Paul W. Ho, Johnny C. Takahashi, Toshitake Reichertz, Lothar A. Neale, Steven Yu, Kyoungsik Wu, Ming Ager, Joel W. Javey, Ali TI Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates SO NATURE MATERIALS LA English DT Article ID SENSITIZED SOLAR-CELLS; NANOTUBES; NANOWIRES; SINGLE AB Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed(1-3). Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies(4-6). In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars. C1 [Fan, Zhiyong; Razavi, Haleh; Do, Jae-won; Moriwaki, Aimee; Ergen, Onur; Chueh, Yu-Lun; Leu, Paul W.; Ho, Johnny C.; Takahashi, Toshitake; Neale, Steven; Yu, Kyoungsik; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Fan, Zhiyong; Razavi, Haleh; Do, Jae-won; Moriwaki, Aimee; Ergen, Onur; Chueh, Yu-Lun; Leu, Paul W.; Ho, Johnny C.; Takahashi, Toshitake; Reichertz, Lothar A.; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fan, Zhiyong; Razavi, Haleh; Do, Jae-won; Moriwaki, Aimee; Ergen, Onur; Chueh, Yu-Lun; Leu, Paul W.; Ho, Johnny C.; Takahashi, Toshitake; Neale, Steven; Yu, Kyoungsik; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Yu, Kyoungsik/C-7207-2009; Yu, Kyoungsik/C-2078-2011; Fan, Zhiyong/C-4970-2012; Ho, Johnny/K-5275-2012; Neale, Steven/D-1937-2009; Leu, Paul/B-9989-2008; Javey, Ali/B-4818-2013; Chueh, Yu-Lun/E-2053-2013 OI Ager, Joel/0000-0001-9334-9751; Fan, Zhiyong/0000-0002-5397-0129; Ho, Johnny/0000-0003-3000-8794; Neale, Steven/0000-0002-4588-276X; Leu, Paul/0000-0002-1599-7144; Chueh, Yu-Lun/0000-0002-0155-9987 FU Berkeley Sensor and Actuator Center; Office of Science; Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge G. F. Brown and J. Wu for help with simulations. This work was financially supported by Berkeley Sensor and Actuator Center. J. C. H. acknowledges an Intel Graduate Fellowship. All fabrication was carried out in the Berkeley Microfabrication Laboratory. The solar-cell experimental characterization was done at LBNL, and was supported by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 657 Z9 661 U1 38 U2 346 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2009 VL 8 IS 8 BP 648 EP 653 DI 10.1038/NMAT2493 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 474ML UT WOS:000268288000017 PM 19578336 ER PT J AU Hura, GL Menon, AL Hammel, M Rambo, RP Poole, FL Tsutakawa, SE Jenney, FE Classen, S Frankel, KA Hopkins, RC Yang, SJ Scott, JW Dillard, BD Adams, MWW Tainer, JA AF Hura, Greg L. Menon, Angeli L. Hammel, Michal Rambo, Robert P. Poole, Farris L., II Tsutakawa, Susan E. Jenney, Francis E., Jr. Classen, Scott Frankel, Kenneth A. Hopkins, Robert C. Yang, Sung-jae Scott, Joseph W. Dillard, Bret D. Adams, Michael W. W. Tainer, John A. TI Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) SO NATURE METHODS LA English DT Article ID ARCHAEON PYROCOCCUS-FURIOSUS; CRYSTAL-STRUCTURE; BIOLOGICAL MACROMOLECULES; SUPEROXIDE REDUCTASE; ANGSTROM RESOLUTION; PROTEIN; CLASSIFICATION; CONFORMATIONS; RUBREDOXIN; MECHANISM AB We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done. C1 [Tsutakawa, Susan E.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hura, Greg L.; Hammel, Michal; Rambo, Robert P.; Classen, Scott; Frankel, Kenneth A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Menon, Angeli L.; Poole, Farris L., II; Jenney, Francis E., Jr.; Hopkins, Robert C.; Yang, Sung-jae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Jenney, Francis E., Jr.] Georgia Campus Philadelphia Coll Osteopath Med, Suwanee, GA USA. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM adams@bmb.uga.edu; jat@scripps.edu FU Integrated Diffraction Analysis Technologies (IDAT); [DE-AC02-05CH11231] FX This research is part of the Molecular Assemblies: Genes and Genomes Integrated Efficiently (MAGGIE) project supported by the US Department of Energy (DOE; DE-FG0207ER64326) and benefited from allocation of supercomputer time at the National Energy Research Scientific Computing Center (NERSC). Support for advancement of SAXS technologies at the Lawrence Berkeley National Laboratory SIBYLS beamline of the Advanced Light Source came from the DOE program Integrated Diffraction Analysis Technologies (IDAT) under contract DE-AC02- 05CH11231 with the DOE. We thank I. Wilson and M. Knuth (the Scripps Research Institute) for providing protein samples from their Joint Center for Structural Genomics (JCSG). NR 42 TC 301 Z9 304 U1 8 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD AUG PY 2009 VL 6 IS 8 BP 606 EP U83 DI 10.1038/nmeth.1353 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 477CA UT WOS:000268493700023 PM 19620974 ER PT J AU Pelton, M Sader, JE Burgin, J Liu, MZ Guyot-Sionnest, P Gosztola, D AF Pelton, Matthew Sader, John E. Burgin, Julien Liu, Mingzhao Guyot-Sionnest, Philippe Gosztola, David TI Damping of acoustic vibrations in gold nanoparticles SO NATURE NANOTECHNOLOGY LA English DT Article ID METAL NANOPARTICLES; SPECTROSCOPY; EXCITATION; MECHANISM; NANORODS AB Studies of acoustic vibrations in nanometre-scale particles can provide fundamental insights into the mechanical properties of materials because it is possible to precisely characterize and control the crystallinity and geometry of such nanostructures(1-4). Metal nanoparticles are of particular interest because they allow the use of ultrafast laser pulses to generate and probe high-frequency acoustic vibrations, which have the potential to be used in a variety of sensing applications. So far, the decay of these vibrations has been dominated by dephasing due to variations in nanoparticle size(5). Such inhomogeneities can be eliminated by performing measurements on single nanoparticles deposited on a substrate(6-9), but unknown interactions between the nanoparticles and the substrate make it difficult to interpret the results of such experiments. Here, we show that the effects of inhomogeneous damping can be reduced by using bipyramidal gold nanoparticles with highly uniform sizes(10). The inferred homogeneous damping is due to the combination of damping intrinsic to the nanoparticles and the surrounding solvent; the latter is quantitatively described by a parameter-free model. C1 [Pelton, Matthew; Liu, Mingzhao; Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Sader, John E.] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia. [Burgin, Julien; Liu, Mingzhao; Guyot-Sionnest, Philippe] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Pelton, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pelton@anl.gov RI Liu, Mingzhao/A-9764-2011; Gosztola, David/D-9320-2011; Pelton, Matthew/H-7482-2013; Burgin, Julien/K-3773-2013 OI Liu, Mingzhao/0000-0002-0999-5214; Gosztola, David/0000-0003-2674-1379; Pelton, Matthew/0000-0002-6370-8765; Burgin, Julien/0000-0001-8648-3346 FU US Department of Energy [DE-AC02-06CH11357]; US National Science Foundation [CHE-0718718]; Australian Research Council FX Work at the Center for Nanoscale Materials was supported by the US Department of Energy (contract no. DE-AC02-06CH11357). J.B. was fully supported and M.Z.L, was partially supported by the US National Science Foundation (grant no. CHE-0718718). J.E.S. acknowledges support from the Australian Research Council Grants Scheme. NR 20 TC 95 Z9 95 U1 5 U2 59 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD AUG PY 2009 VL 4 IS 8 BP 492 EP 495 DI 10.1038/NNANO.2009.192 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 483DO UT WOS:000268942400011 PM 19662009 ER PT J AU Berweger, S Neacsu, CC Mao, YB Zhou, HJ Wong, SS Raschke, MB AF Berweger, Samuel Neacsu, Catalin C. Mao, Yuanbing Zhou, Hongjun Wong, Stanislaus S. Raschke, Markus B. TI Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy SO NATURE NANOTECHNOLOGY LA English DT Article ID BATIO3; MICROSCOPY; SCATTERING AB Conventional phonon Raman spectroscopy is a powerful experimental technique for the study of crystalline solids(1-5) that allows crystallography, phase and domain identification(6,7) on length scales down to similar to 1 mu m. Here we demonstrate the extension of tip-enhanced Raman spectroscopy to optical crystallography on the nanoscale by identifying intrinsic ferroelectric domains of individual BaTiO3 nanocrystals through selective probing of different transverse optical phonon modes in the system. The technique is generally applicable for most crystal classes, and for example, structural inhomogeneities, phase transitions, ferroic order and related finite-size effects occurring on nanometre length scales can be studied with simultaneous symmetry selectivity, nanoscale sensitivity and chemical specificity. C1 [Berweger, Samuel; Neacsu, Catalin C.; Raschke, Markus B.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Berweger, Samuel; Neacsu, Catalin C.; Raschke, Markus B.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mao, Yuanbing; Zhou, Hongjun; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter & Mat Sci Dept, Upton, NY 11973 USA. RP Berweger, S (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM raschke@chem.washington.edu RI Zhou, Hongjun/A-1304-2011; Raschke, Markus/F-8023-2013 FU NSF-IGERT; National Science Foundation [CHE 0748226] FX S. Berweger acknowledges support from the University of Washington Center for Nanotechnology with funding from NSF-IGERT, Funding from the National Science Foundation (NSF CAREER grant CHE 0748226) is gratefully acknowledged. NR 31 TC 60 Z9 60 U1 7 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD AUG PY 2009 VL 4 IS 8 BP 496 EP 499 DI 10.1038/NNANO.2009.190 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 483DO UT WOS:000268942400012 PM 19662010 ER PT J AU Canfield, PC AF Canfield, Paul C. TI A cook's tale SO NATURE PHYSICS LA English DT Editorial Material C1 [Canfield, Paul C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Canfield, Paul/H-2698-2014 NR 0 TC 1 Z9 1 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2009 VL 5 IS 8 BP 529 EP 530 DI 10.1038/nphys1357 PG 2 WC Physics, Multidisciplinary SC Physics GA 485OD UT WOS:000269132100002 ER PT J AU Zhao, J Adroja, DT Yao, DX Bewley, R Li, SL Wang, XF Wu, G Chen, XH Hu, JP Dai, PC AF Zhao, Jun Adroja, D. T. Yao, Dao-Xin Bewley, R. Li, Shiliang Wang, X. F. Wu, G. Chen, X. H. Hu, Jiangping Dai, Pengcheng TI Spin waves and magnetic exchange interactions in CaFe2As2 SO NATURE PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON-PNICTIDES AB Antiferromagnetism is relevant to high-temperature (high-T-c) superconductivity because copper oxide and iron arsenide superconductors arise from electron- or hole-doping of their antiferromagnetic parent compounds(1-6). There are two broad classes of explanation for antiferromagnetism: in the 'local moment' picture, appropriate for the insulating copper oxides(1), antiferromagnetic interactions are well described by a Heisenberg Hamiltonian(7,8); whereas in the 'itinerant model', suitable for metallic chromium, antiferromagnetic order arises from quasiparticle excitations of a nested Fermi surface(9,10). There has been contradictory evidence regarding the microscopic origin of the antiferromagnetic order in iron arsenide materials(5,6), with some favouring a localized picture(11-15) and others supporting an itinerant point of view(16-20). More importantly, there has not even been agreement about the simplest effective ground-state Hamiltonian necessary to describe the antiferromagnetic order(21-25). Here, we use inelastic neutron scattering to map spin-wave excitations in CaFe2As2 (refs 26, 27), a parent compound of the iron arsenide family of superconductors. We find that the spin waves in the entire Brillouin zone can be described by an effective three-dimensional local-moment Heisenberg Hamiltonian, but the large in-plane anisotropy cannot. Therefore, magnetism in the parent compounds of iron arsenide superconductors is neither purely local nor purely itinerant, rather it is a complicated mix of the two. C1 [Zhao, Jun; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Adroja, D. T.; Bewley, R.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Yao, Dao-Xin; Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Wang, X. F.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Wang, X. F.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012; Wang, Xiangfeng/I-2848-2014; Hu, Jiangping/A-9154-2010; hu, jiangping /C-3320-2014 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170; Wang, Xiangfeng/0000-0001-9845-1659; Hu, Jiangping/0000-0003-4480-1734; FU US National Science Foundation [DMR-0756568]; US Department of Energy; Division of Materials Science; DOE [DE-FG02-05ER46202]; Chinese Academy of Sciences; Natural Science Foundation of China, the Chinese Academy of Sciences and the Ministry of Science and Technology of China FX We thank A. T. Boothroyd, T. Perring, D. Singh and A. Nevidomskyy for helpful discussions. This work is supported by the US National Science Foundation through DMR-0756568 and by the US Department of Energy, Division of Materials Science, Basic Energy Sciences, through DOE DE-FG02-05ER46202. This work is also supported in part by the US Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences, is supported by the Chinese Academy of Sciences. The work at USTC is supported by the Natural Science Foundation of China, the Chinese Academy of Sciences and the Ministry of Science and Technology of China. NR 29 TC 277 Z9 280 U1 7 U2 79 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2009 VL 5 IS 8 BP 555 EP 560 DI 10.1038/NPHYS1336 PG 6 WC Physics, Multidisciplinary SC Physics GA 485OD UT WOS:000269132100013 ER PT J AU Boros, E Fedzhora, L Kantor, PB Saeger, K Stroud, P AF Boros, E. Fedzhora, L. Kantor, P. B. Saeger, K. Stroud, P. TI A Large-Scale Linear Programming Model for Finding Optimal Container Inspection Strategies SO NAVAL RESEARCH LOGISTICS LA English DT Article DE container inspection; sensor sequencing; linear programming ID DATA FUSION AB Cargo ships arriving at US ports are inspected for unauthorized materials. Because opening and manually inspecting every container is costly and time-consuming, tests are applied to decide whether a container should be opened. By utilizing a polyhedral description of decision trees, we develop a large-scale linear programming model for sequential container inspection that determines an optimal inspection strategy under various limitations, improving on earlier approaches in several ways: (a) we consider mixed strategies and multiple thresholds for each sensor, which provide more effective inspection strategies; (b) our model can accommodate realistic limitations (budget, sensor capacity, time limits, etc.), as well as multiple container types; (c) our model is computationally more tractable allowing us to solve cases that were prohibitive in preceding models, and making it possible to analyze the potential impact of new sensor technologie. (C) 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 404-420, 2009 C1 [Boros, E.; Fedzhora, L.] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA. [Kantor, P. B.] Rutgers State Univ, SCILS, New Brunswick, NJ 08901 USA. [Saeger, K.; Stroud, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Boros, E (reprint author), Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA. EM boros@rutcor.rutgers.edu RI Saeger, Kevin/O-8619-2016; OI Saeger, Kevin/0000-0002-3639-5302; Boros, Endre/0000-0001-8206-3168 FU National Science Foundation [NSFSES 05-18543]; Office of Naval Research [N00014-05-1-0237] FX The authors are thankful for the partial support by the National Science Foundation (grant NSFSES 05-18543) and the Office of Naval Research (grant N00014-05-1-0237). NR 7 TC 21 Z9 21 U1 0 U2 4 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0894-069X J9 NAV RES LOG JI Nav. Res. Logist. PD AUG PY 2009 VL 56 IS 5 BP 404 EP 420 DI 10.1002/nav.20349 PG 17 WC Operations Research & Management Science SC Operations Research & Management Science GA 473EY UT WOS:000268190000002 ER PT J AU Healy, MJ Olinger, RD Young, RJ Taylor, SE Caudell, T Larson, KW AF Healy, Michael J. Olinger, Richard D. Young, Robert J. Taylor, Shawn E. Caudell, Thomas Larson, Kurt W. TI Applying category theory to improve the performance of a neural architecture SO NEUROCOMPUTING LA English DT Article DE Category theory; Mathematical semantics; ART 1; Stack intervals; Multispectral imaging ID SPECIFICATION; NETWORKS; SYSTEMS AB A recently developed mathematical semantic theory explains the relationship between knowledge and its representation in connectionist systems. The semantic theory is based upon category theory, the mathematical theory of structure. A product of its explanatory capability is a set of principles to guide the design of future neural architectures and enhancements to existing designs. We claim that this mathematical semantic approach to network design is an effective basis for advancing the state of the art. We offer two experiments to support this claim. One of these involves multispectral imaging using data from a satellite camera. (C) 2009 Elsevier B.V. All rights reserved. C1 [Healy, Michael J.; Olinger, Richard D.; Taylor, Shawn E.; Caudell, Thomas] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Young, Robert J.; Caudell, Thomas] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Larson, Kurt W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Healy, MJ (reprint author), 13544 23rd Pl NE, Seattle, WA 98125 USA. EM mjhealy@ece.unm.edu; rolinger6@comcast.net; ryoung@cs.unm.edu; shawnt@unm.edu; tpc@ece.unm.edu; kwlarso@sandia.gov FU Sandia National Laboratories, Albuquerque, New Mexico [238984]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by Sandia National Laboratories, Albuquerque, New Mexico, under Contract no. 238984. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-2312 J9 NEUROCOMPUTING JI Neurocomputing PD AUG PY 2009 VL 72 IS 13-15 BP 3158 EP 3173 DI 10.1016/j.neucom.2009.03.008 PG 16 WC Computer Science, Artificial Intelligence SC Computer Science GA 480KP UT WOS:000268733700043 ER PT J AU Fiandaca, MS Varenika, V Eberling, J McKnight, T Bringas, J Pivirotto, P Beyer, J Hadaczek, P Bowers, W Park, J Federoff, H Forsayeth, J Bankiewicz, KS AF Fiandaca, Massimo S. Varenika, Vanja Eberling, Jamie McKnight, Tracy Bringas, John Pivirotto, Phillip Beyer, Janine Hadaczek, Piotr Bowers, William Park, John Federoff, Howard Forsayeth, John Bankiewicz, Krystof S. TI Real-time MR imaging of adeno-associated viral vector delivery to the primate brain SO NEUROIMAGE LA English DT Article DE Adeno-associated virus; Gadolinium; Liposomes; Thalamus; Putamen; Corona radiata ID CONVECTION-ENHANCED DELIVERY; GENE-THERAPY VECTOR; PARKINSONIAN MONKEYS; RAT-BRAIN; AAV-HAADC; VIRUS; LIPOSOMES; STRIATUM; INFUSION; STEM AB We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated vital vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of vital particles by continuous monitoring of distribution of Surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes. (C) 2009 Elsevier Inc. All rights reserved. C1 [Fiandaca, Massimo S.; Varenika, Vanja; Eberling, Jamie; Bringas, John; Pivirotto, Phillip; Beyer, Janine; Hadaczek, Piotr; Forsayeth, John; Bankiewicz, Krystof S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA. [Eberling, Jamie] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Funct Imaging, Berkeley, CA 94720 USA. [McKnight, Tracy] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94103 USA. [Bowers, William] Univ Rochester, Rochester, NY USA. [Park, John] Univ Calif San Francisco, Dept Hematol Oncol, San Francisco, CA 94103 USA. [Federoff, Howard] Georgetown Univ, Washington, DC USA. RP Bankiewicz, KS (reprint author), Univ Calif San Francisco, Dept Neurol Surg, 1855 Folsom St,Room 226, San Francisco, CA 94103 USA. EM Krystof.Bankiewicz@ucsf.edu FU NINDS NIH HHS [U54 NS045309, U54 NS045309-010007, R01 NS050156-03, R01 NS050156] NR 46 TC 53 Z9 54 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD AUG PY 2009 VL 47 BP T27 EP T35 DI 10.1016/j.neuroimage.2008.11.012 PG 9 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 487FX UT WOS:000269257400006 PM 19095069 ER PT J AU Firestone, RB AF Firestone, R. B. TI Nuclear Data Sheets for A=25 SO NUCLEAR DATA SHEETS LA English DT Review ID NEUTRON-RICH NUCLEI; HIGH-SPIN STATES; ENERGY-LEVELS; EXCITED-STATES; BETA-DECAY; GAMMA-DECAY; HALF-LIVES; LIFETIME MEASUREMENTS; MAGNESIUM ISOTOPES; BRANCHING RATIOS AB This evaluation of A=25 has been updated from previous evaluations published in 1998En04, 1990En08, and 1978En02. Coverage includes properties of adopted levels and gamma rays, decay-scheme data (energies, intensities and placement of radiations), and cross reference entries. The following tables continue the tradition of showing the systematic relationships between levels in A=23. These assignments are based on spectroscopic factors and energy differences where Delta E(x)=E(X)((25)Al)-E(x)((25)Mg). C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Firestone, RB (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 88R0192,1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Firestone, Richard/0000-0003-3833-5546 NR 159 TC 16 Z9 16 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD AUG PY 2009 VL 110 IS 8 BP 1691 EP 1743 DI 10.1016/j.nds.2009.06.001 PG 53 WC Physics, Nuclear SC Physics GA 477MK UT WOS:000268523000001 ER PT J AU De Frenne, D AF De Frenne, D. TI Nuclear Data Sheets for A=102 SO NUCLEAR DATA SHEETS LA English DT Review ID GAMMA-RAY SPECTROSCOPY; ELECTRIC MONOPOLE TRANSITIONS; FIRST EXCITED-STATES; NEUTRON-RICH NUCLEI; A-SIMILAR-TO-100 FISSION FRAGMENTS; GAMOW-TELLER STRENGTH; DECAY HALF-LIVES; HIGH-SPIN STATES; BETA-DECAY; IN-BEAM AB The 1998 evaluation on mass A=102 (1998De15) has been revised, taking into account all data available before december 2008. Detailed experimental information is presented from the neutron rich nucleus Rb-102 to the neutron deficient Sn-102 nucleus. No information on excited states of Rb-102 is available and very scarce for Sr-102 Especially new (HI,xn gamma) data sets for several nuclides have been evaluated and new and more accurate data for gamma intensities and multipolarities obtained. For Ru-102 very precise new data of the Budapest (n,gamma) collaboration have been included. A new and very elaborated decay scheme for In-102 is obtained. Isomerism in Y-102 and Nb-102 needs further investigation due to conflicting results. C1 [De Frenne, D.] Univ Ghent, Vakgrp Subatomaire Stralingsfys, B-9000 Ghent, Belgium. [De Frenne, D.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP De Frenne, D (reprint author), Univ Ghent, Vakgrp Subatomaire Stralingsfys, Proeftuinstr 86, B-9000 Ghent, Belgium. NR 236 TC 35 Z9 35 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD AUG PY 2009 VL 110 IS 8 BP 1745 EP + DI 10.1016/j.nds.2009.06.002 PG 170 WC Physics, Nuclear SC Physics GA 477MK UT WOS:000268523000002 ER PT J AU Baylor, LR Combs, SK Foust, CR Jernigan, TC Meitner, SJ Parks, PB Caughman, JB Fehling, DT Maruyama, S Qualls, AL Rasmussen, DA Thomas, CE AF Baylor, L. R. Combs, S. K. Foust, C. R. Jernigan, T. C. Meitner, S. J. Parks, P. B. Caughman, J. B. Fehling, D. T. Maruyama, S. Qualls, A. L. Rasmussen, D. A. Thomas, C. E. TI Pellet fuelling, ELM pacing and disruption mitigation technology development for ITER SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; INJECTION AB Plasma fuelling with pellet injection, pacing of edge localized modes (ELMs) by small frequent pellets and disruption mitigation with gas jets or injected solid material are some of the most important technological capabilities needed for successful operation of ITER. Tools are being developed at the Oak Ridge National Laboratory that can be employed on ITER to provide the necessary core pellet fuelling and the mitigation of ELMs and disruptions. Here we present progress on the development of the technology to provide reliable high throughput inner wall pellet fuelling, pellet ELM pacing with high frequency small pellets and disruption mitigation with gas jets and shattered pellets. Examples of how these tools can be employed on ITER are discussed. C1 [Baylor, L. R.; Combs, S. K.; Foust, C. R.; Jernigan, T. C.; Meitner, S. J.; Caughman, J. B.; Fehling, D. T.; Qualls, A. L.; Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Parks, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Thomas, C. E.] Third Dimens Technol LLC, Knoxville, TN 37920 USA. RP Baylor, LR (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM baylorlr@ornl.gov RI Caughman, John/R-4889-2016 OI Caughman, John/0000-0002-0609-1164 FU US Department of Energy [DE-AC05-00OR22725, DE-FG02-04ER54758] FX This work was supported by the Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the US Department of Energy under Contract No DE-AC05-00OR22725 and also supported under contract DE-FG02-04ER54758. This report was prepared as an account of work by or for the ITER Organization. The Members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the Members or any agency thereof. Dissemination of the information in this paper is governed by the applicable terms of the ITER Joint Implementation Agreement. NR 26 TC 26 Z9 26 U1 2 U2 9 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085013 DI 10.1088/0029-5515/49/8/085013 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800013 ER PT J AU Becoulet, M Huysmans, G Garbet, X Nardon, E Howell, D Garofalo, A Schaffer, M Evans, T Shaing, K Cole, A Park, JK Cahyna, P AF Becoulet, M. Huysmans, G. Garbet, X. Nardon, E. Howell, D. Garofalo, A. Schaffer, M. Evans, T. Shaing, K. Cole, A. Park, J. -K. Cahyna, P. TI Physics of penetration of resonant magnetic perturbations used for Type I edge localized modes suppression in tokamaks SO NUCLEAR FUSION LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; ERROR-FIELD; PLASMA AB Non-linear reduced MHD modelling of the toroidally rotating plasma response to resonant magnetic perturbations (RMPs) is presented for DIII-D and ITER-like typical parameter and RMP coils. The non-linear cylindrical reduced MHD code was adapted to take into account toroidal rotation and plasma braking mechanisms such as resonant one (similar to j x B) and the neoclassical toroidal viscosity (NTV) calculated for low collisionality regimes ('1/nu' and 'nu'). Counter toroidal rotation by NTV is predicted for ITER with the proposed RMP coils in 1/nu-limit. Resonant braking is localized near resonant surfaces and is weak compared with NTV in the 1/nu regime for typical DIII-D and ITER parameters. Toroidal rotation leads to the effective screening of RMPs that is larger for stronger rotation and lower resistivity, resulting mainly in central islands screening. Non-resonant helical harmonics (q not equal m/n) in RMP spectrum are not influenced by plasma rotation, and hence penetrate and are important in NTV mechanism. C1 [Becoulet, M.; Huysmans, G.; Garbet, X.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Nardon, E.; Howell, D.] Culham Sci Ctr, Euratom UKAEA Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Garofalo, A.; Schaffer, M.; Evans, T.] Gen Atom Co, San Diego, CA 92186 USA. [Shaing, K.; Cole, A.] Univ Wisconsin, Madison, WI 53706 USA. [Shaing, K.] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. [Shaing, K.] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. [Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Cahyna, P.] ASCR, Vvi, Assoc EURATOM IPPCR, Inst Plasma Phys, Prague 18200, Czech Republic. RP Becoulet, M (reprint author), IRFM, CEA, F-13108 St Paul Les Durance, France. RI Cahyna, Pavel/G-9116-2014 FU EURATOM and CEA FX This work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 24 TC 56 Z9 56 U1 2 U2 14 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085011 DI 10.1088/0029-5515/49/8/085011 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800011 ER PT J AU Budny, RV AF Budny, R. V. TI Comparisons of predicted plasma performance in ITER H-mode plasmas with various mixes of external heating SO NUCLEAR FUSION LA English DT Article ID DENSITY PEAKING; TRANSPORT MODEL; ASDEX UPGRADE; CONFINEMENT; JET; TOKAMAK; COLLISIONALITY; ABSORPTION; STABILITY; PEDESTAL AB Performance in H-mode DT plasmas in ITER with various choices of heating systems are predicted and compared. Combinations of external heating by negative ion neutral beam injection (NNBI), ion cyclotron range of frequencies and electron cyclotron heating are assumed. Scans with a range of physics assumptions about boundary temperatures in the edge pedestal, alpha ash transport and toroidal momentum transport are used to indicate effects of uncertainties. Time-dependent integrated modelling with the PTRANSP code is used to predict profiles of heating, beam torque and plasma profiles. The GLF23 model is used to predict temperature profiles. Either GLF23 or the assumption of a constant ratio for chi(phi)/chi(i) is used to predict toroidal rotation profiles driven by the beam torques. Large differences for the core temperatures are predicted with different mixes of the external heating during the density and current ramp-up phase, but the profiles are similar during the flat-top phase. With chi(phi)/chi(i) = 0.5, the predicted toroidal rotation is relatively slow and the flow shear implied by the pressure, toroidal rotation and neoclassical poloidal rotation are not sufficient to cause significant changes in the energy transport or steady state temperature profiles. The GLF23-predicted toroidal rotation is faster by a factor of six, and significant flow shear effects are predicted. Heating mixes with more NNBI power are predicted to have up to 20% higher fusion power during steady state phases. This advantage is decisive in some cases where the physics assumptions are close to marginal or critical values. L-mode plasmas are predicted having QDT similar or equal to 2-4. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Budny, RV (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM budny@princeton.edu FU US Department of Energy [DE-AC02-09CH11466] FX The author wishes to thank the PTRANSP development teams at PPPL, Lehigh, GA and LNL. This research was supported by the US Department of Energy under contract number DE-AC02-09CH11466. NR 45 TC 36 Z9 37 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085008 DI 10.1088/0029-5515/49/8/085008 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800008 ER PT J AU Burrell, KH Osborne, TH Snyder, PB West, WP Fenstermacher, ME Groebner, RJ Gohil, P Leonard, AW Solomon, WM AF Burrell, K. H. Osborne, T. H. Snyder, P. B. West, W. P. Fenstermacher, M. E. Groebner, R. J. Gohil, P. Leonard, A. W. Solomon, W. M. TI Edge pedestal control in quiescent H-mode discharges in DIII-D using co-plus counter-neutral beam injection SO NUCLEAR FUSION LA English DT Article ID D-TOKAMAK; COLLISIONALITY REGIME; STABILITY; ROTATION; OPERATION; PLASMAS; JT-60U; ELMS AB We have made two significant discoveries in our recent studies of quiescent H-mode (QH-mode) plasmas in DIII-D. First, we have found that we can control the edge pedestal density and pressure by altering the edge particle transport through changes in the edge toroidal rotation. This allows us to adjust the edge operating point to be close to, but below the ELM stability boundary, maintaining the ELM-free state while allowing up to a factor of two increase in edge pressure. The ELM boundary is significantly higher in more strongly shaped plasmas, which broadens the operating space available for QH-mode and leads to improved core performance. Second, for the first time on any tokamak, we have created QH-mode plasmas with strong edge co-rotation; previous QH-modes in all tokamaks had edge counter-rotation. This result demonstrates that counter-NBI and edge-counter rotation are not essential conditions for QH-mode. Both these investigations benefited from the edge stability predictions based on peeling-ballooning mode theory. The broadening of the ELM-stable region with plasma shaping is predicted by that theory. The theory has also been extended to provide a model for the edge harmonic oscillation that enhances edge transport in the QH-mode. Many of the features of that theory agree with the experimental results reported either previously or in this paper. One notable example is the prediction that co-rotating QH-mode is possible provided sufficient shear in the edge rotation can be created. C1 [Burrell, K. H.; Osborne, T. H.; Snyder, P. B.; West, W. P.; Groebner, R. J.; Gohil, P.; Leonard, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Burrell, KH (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-AC02-76CH03073. NR 20 TC 42 Z9 42 U1 0 U2 21 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085024 DI 10.1088/0029-5515/49/8/085024 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800024 ER PT J AU Degrassie, JS Groebner, RJ Burrell, KH Solomon, WM AF deGrassie, J. S. Groebner, R. J. Burrell, K. H. Solomon, W. M. TI Intrinsic toroidal velocity near the edge of DIII-D H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID NEUTRAL-BEAM INJECTION; RADIAL ELECTRIC-FIELD; ION ORBIT LOSS; D TOKAMAK; MOMENTUM TRANSPORT; TCV TOKAMAK; ROTATION; PEDESTAL; JT-60U; COLLISIONALITY AB The intrinsic toroidal velocity, V(phi), in DIII-D (Luxon 2002 Nucl. Fusion 42 614) H-modes is measured to be nonzero in the pedestal region, in the direction of the plasma current, co-I(p). Intrinsic, or spontaneous, velocity is that which arises with no known external momentum injection. This intrinsic velocity is measured to scale roughly linearly with the local ion temperature, T(i), V(phi) similar to T(i), in the pedestal and in the edge region just inside the pedestal. With either co-I(p), or counter-I(p) neutral beam injected torque, the pedestal velocity is accelerated in the direction of the torque; it is not a fixed boundary condition. A simple model of thermal ion orbit loss predicts the sign of V(phi), a relevant magnitude for V(phi), and the approximate scaling V(phi) similar to T(i). This model for a boundary condition on the intrinsic toroidal velocity gives a result of approximate diamagnetic form, V(phi) similar to epsilon(p)T(i)/LB(theta), where L is a scale length, B(theta) the poloidal magnetic field and epsilon(p) a small numerical parameter. This model is a local calculation of velocity, an approximation to the inherently nonlocal region of the pedestal where the thermal ion banana width is comparable to the pedestal width. In this model we also assume that the loss cone in velocity space is empty; no collisions are considered. A recent particle simulation of the pedestal region of a DIII-D NBI-driven H-mode discharge that includes collisions indicates that thermal ion orbit loss results in a co-I(p) velocity just inside the last closed flux surface (Chang and Ku 2008 Phys. Plasmas 15 062510-1). Thus, we do not expect that nonlocality nor finite collisionality wash out the effect. Inside the pedestal our model shows that thermal ion orbit loss is negligible. In this region of the edge we also measure a similar scaling for the intrinsic velocity several pedestal widths inside the pedestal location, V(phi) similar to T(i). One mechanism that could maintain the T(i) scaling inwards from the pedestal is the model of an inward momentum pinch velocity proportional to the gradient of T(i). C1 [deGrassie, J. S.; Groebner, R. J.; Burrell, K. H.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Degrassie, JS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM degrassie@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 NR 64 TC 58 Z9 58 U1 2 U2 3 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085020 DI 10.1088/0029-5515/49/8/085020 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800020 ER PT J AU Delgado-Aparicio, L Stutman, D Tritz, K Finkenthal, M Kaye, S Bell, R Kaita, R LeBlanc, B Levinton, F Menard, J Paul, S Smith, D Yuh, H AF Delgado-Aparicio, L. Stutman, D. Tritz, K. Finkenthal, M. Kaye, S. Bell, R. Kaita, R. LeBlanc, B. Levinton, F. Menard, J. Paul, S. Smith, D. Yuh, H. TI Impurity transport studies in NSTX neutral beam heated H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID X-RAY ARRAYS; INVERSION TECHNIQUE; TOKAMAKS; DIAGNOSTICS; DISCHARGES; PROFILE; PHYSICS AB The first experimental assessment of low-Z impurity transport in a neutral beam heated, high-confinement H-mode plasma sustained in a low-field, low-aspect ratio spherical tokamak, was performed at the National Spherical Torus Experiment (NSTX). The injected impurities penetrate to the core on a hundred millisecond time scale, indicating a low core particle diffusivity (less than or similar to 1 m(2) s(-1)) in good agreement with the values predicted by neoclassical transport theory. In addition, a fixed q-profile magnetic field scan that showed reduced impurity penetration at high fields is also reported. This result suggests that anomalous ion particle transport associated with turbulent long-wavelength electrostatic instabilities must be largely suppressed in the NSTX core. C1 [Delgado-Aparicio, L.; Stutman, D.; Tritz, K.; Finkenthal, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kaye, S.; Bell, R.; Kaita, R.; LeBlanc, B.; Menard, J.; Paul, S.; Smith, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Levinton, F.; Yuh, H.] NOVA Photon Inc, Princeton, NJ 08543 USA. RP Delgado-Aparicio, L (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM delgapa@pha.jhu.edu RI Stutman, Dan/P-4048-2015; OI Menard, Jonathan/0000-0003-1292-3286 FU United States DoE [DE-FG02-99ER5452]; PPPL DoE [DE-AC02-76CH03073] FX The authors would like to acknowledge the assistance of D. McCune, E. A. Feibush and R. G. Andre of the PPPL Computational Plasma Physics Group and that of the technical and engineering teems at both The Johns Hopkins University and PPPL. This work was supported by the United States DoE grant No DE-FG02-99ER5452 at The Johns Hopkins University and PPPL DoE contract No DE-AC02-76CH03073. NR 31 TC 15 Z9 15 U1 0 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085028 DI 10.1088/0029-5515/49/8/085028 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800028 ER PT J AU Groebner, RJ Leonard, AW Snyder, PB Osborne, TH Maggi, CF Fenstermacher, ME Petty, CC Owen, LW AF Groebner, R. J. Leonard, A. W. Snyder, P. B. Osborne, T. H. Maggi, C. F. Fenstermacher, M. E. Petty, C. C. Owen, L. W. TI Progress towards a predictive model for pedestal height in DIII-D SO NUCLEAR FUSION LA English DT Article ID ITER SHAPE DISCHARGES; H-MODE; TRANSPORT MODELS; ASDEX-UPGRADE; CONFINEMENT; STABILITY; PLASMAS; PHYSICS; DEPENDENCE; DYNAMICS AB Recent DIII-D pedestal studies provide improved characterization of pedestal scaling for comparison with models. A new pedestal model accurately predicts the maximum achieved pedestal width and height in type I ELMing discharges over a large range of DIII-D operational space, including ITER demonstration discharges. The model is a combination of the peeling-ballooning theory for the MHD stability limits on the pedestal with a simple pedestal width scaling in which the width is proportional to the square root of the pedestal poloidal beta. Width scalings based on the ion toroidal or poloidal gyroradius are much poorer descriptions of DIII-D data. A mass scaling experiment in H and D provides support for a poloidal beta scaling and is not consistent with an ion poloidal gyroradius scaling. Studies of pedestal evolution during the inter-ELM cycle provide evidence that both the pedestal width and height increase during pedestal buildup. Model studies with a 1D kinetic neutrals calculation show that the temporal increase in density width cannot be explained in terms of increased neutral penetration depth. These studies show a correlation of pedestal width with both the square root of the pedestal poloidal beta and the square root of the pedestal ion temperature during the pedestal buildup. C1 [Groebner, R. J.; Leonard, A. W.; Snyder, P. B.; Osborne, T. H.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Maggi, C. F.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Owen, L. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Groebner, RJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM groebner@fusion.gat.com FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AX05-00OR22725] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-AX05-00OR22725. NR 44 TC 37 Z9 37 U1 1 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085037 DI 10.1088/0029-5515/49/8/085037 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800037 ER PT J AU Kessel, CE Campbell, D Gribov, Y Saibene, G Ambrosino, G Budny, RV Casper, T Cavinato, M Fujieda, H Hawryluk, R Horton, LD Kavin, A Kharyrutdinov, R Koechl, F Leuer, J Loarte, A Lomas, PJ Luce, T Lukash, V Mattei, M Nunes, I Parail, V Polevoi, A Portone, A Sartori, R Sips, ACC Thomas, PR Welander, A Wesley, J AF Kessel, C. E. Campbell, D. Gribov, Y. Saibene, G. Ambrosino, G. Budny, R. V. Casper, T. Cavinato, M. Fujieda, H. Hawryluk, R. Horton, L. D. Kavin, A. Kharyrutdinov, R. Koechl, F. Leuer, J. Loarte, A. Lomas, P. J. Luce, T. Lukash, V. Mattei, M. Nunes, I. Parail, V. Polevoi, A. Portone, A. Sartori, R. Sips, A. C. C. Thomas, P. R. Welander, A. Wesley, J. TI Development of ITER 15 MA ELMy H-mode inductive scenario SO NUCLEAR FUSION LA English DT Article ID CURRENT DRIVE; TRANSPORT; TOKAMAKS; CONFINEMENT; SIMULATIONS; CONSUMPTION; HYBRID AB The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode and a late H-mode onset. Static equilibrium analyses for this scenario, which determine PF coil currents to produce a given plasma configuration, indicate that the original PF coil limitations do not allow low l(i) (<0.8) operation or plasmas with lower flux consumption, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the central solenoid and PF coils during a series of disturbances, heating and current drive sources for saving volt-seconds in rampup, a feasibility assessment of the 17 MA scenario was undertaken, and the rampdown phase of the discharge is discussed. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation. C1 [Kessel, C. E.; Budny, R. V.; Hawryluk, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Campbell, D.; Gribov, Y.; Loarte, A.; Polevoi, A.] Cadarache, ITER Org, F-13108 St Paul Les Durance, France. [Saibene, G.; Cavinato, M.; Portone, A.; Sartori, R.; Thomas, P. R.] FUS ENERGY, Barcelona 08019, Spain. [Ambrosino, G.] Univ Naples Federico 2, EURATOM Assoc, ENEA, CREATE,DIMET, I-80138 Naples, Italy. [Casper, T.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Fujieda, H.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Horton, L. D.; Sips, A. C. C.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Kavin, A.] DV Efremov Res & Sci Inst Electrophys Apparat, St Petersburg, Russia. [Kharyrutdinov, R.] TRINITI, Troitsk, M Reg, Russia. [Koechl, F.] Assoc EURATOM OAW ATI, Vienna, Austria. [Leuer, J.; Luce, T.; Welander, A.; Wesley, J.] Gen Atom Co, San Diego, CA USA. [Lomas, P. J.; Parail, V.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Lukash, V.] Kurchatov Inst, Russian Res Ctr, Nucl Fus Inst, Moscow, Russia. [Mattei, M.] Univ Reggio Calabria, Assoc Euratom ENEA CREATE, DIMET, Reggio Di Calabria, Italy. [Nunes, I.] Ctr Fusao Nucl, Euratom IST Fus Assoc, Lisbon, Portugal. RP Kessel, CE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ckessel@pppl.gov RI Nunes, Isabel/D-1627-2017; OI Ambrosino, Giuseppe/0000-0002-2549-2772; Nunes, Isabel/0000-0003-0542-1982; Mattei, Massimiliano/0000-0001-7951-6584 FU DoE [DE-AC02-76CH03073] FX This paper was prepared as an account of work by or for the ITER Organization. The members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the members or any agency thereof. Dissemination of the information in this paper is governed by the applicable terms of the ITER Joint Implementation Agreement. For PPPL, work supported by DoE contract DE-AC02-76CH03073. NR 27 TC 36 Z9 36 U1 0 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085034 DI 10.1088/0029-5515/49/8/085034 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800034 ER PT J AU Rudakov, DL Litnovsky, A West, WP Yu, JH Boedo, JA Bray, BD Brezinsek, S Brooks, NH Fenstermacher, ME Groth, M Hollmann, EM Huber, A Hyatt, AW Krasheninnikov, SI Lasnier, CJ McLean, AG Moyer, RA Pigarov, AY Philipps, V Pospieszczyk, A Smirnov, RD Sharpe, JP Solomon, WM Watkins, JG Wong, CPC AF Rudakov, D. L. Litnovsky, A. West, W. P. Yu, J. H. Boedo, J. A. Bray, B. D. Brezinsek, S. Brooks, N. H. Fenstermacher, M. E. Groth, M. Hollmann, E. M. Huber, A. Hyatt, A. W. Krasheninnikov, S. I. Lasnier, C. J. McLean, A. G. Moyer, R. A. Pigarov, A. Yu. Philipps, V. Pospieszczyk, A. Smirnov, R. D. Sharpe, J. P. Solomon, W. M. Watkins, J. G. Wong, C. P. C. TI Dust studies in DIII-D and TEXTOR SO NUCLEAR FUSION LA English DT Article ID MATERIALS EVALUATION SYSTEM; D TOKAMAK; PLASMA OPERATION; FUSION DEVICES; CARBON DUST; D DIVERTOR; HIGH-SPEED; WALL; SPECTROSCOPY; PARTICLES AB Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicrometre sized dust is routinely observed using Mie scattering from a Nd: Yag laser. The source is strongly correlated with the presence of type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust; on the other hand, large flakes or debris falling into the plasma may induce a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micrometre-size particles into plasma discharges. In DIII-D, a sample holder filled with 30-40 mg of dust is inserted in the lower divertor and exposed, via sweeping of the strike points, to the diverted plasma flux of high-power ELMing H-mode discharges. After a brief dwell (similar to 0.1 s) of the outer strike point on the sample holder, part of the dust penetrates into the core plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase in the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off-layer 0-2 cm radially outside of the last closed flux surface in discharges heated with 1.4 MW of NBI. Launched in this configuration, the dust perturbed the edge plasma, as evidenced by a moderate increase in the edge carbon content, but did not penetrate into the core plasma. C1 [Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; McLean, A. G.; Moyer, R. A.; Pigarov, A. Yu.; Smirnov, R. D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Litnovsky, A.; Brezinsek, S.; Huber, A.; Philipps, V.; Pospieszczyk, A.] Forschungszentrum Julich, EURATOM Assoc, Inst Energieforsch Plasmaphys, D-52425 Julich, Germany. [West, W. P.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McLean, A. G.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Sharpe, J. P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rudakov, DL (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM rudkov@fusion.gat.com RI Smirnov, Roman/B-9916-2011; Groth, Mathias/G-2227-2013; Brezinsek, Sebastijan/B-2796-2017; OI Smirnov, Roman/0000-0002-9114-5330; Brezinsek, Sebastijan/0000-0002-7213-3326; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073, DE-AC04-94AL85000, DE-AC05-00OR22725] FX This work was supported in part by the US Department of Energy under DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073, DE-AC04-94AL85000 and DE-AC05-00OR22725. The authors would like to thank Dr N. Ashikawa for providing the spherical graphite dust used in the latest dust injection experiment in DIII-D. NR 38 TC 37 Z9 37 U1 1 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085022 DI 10.1088/0029-5515/49/8/085022 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800022 ER PT J AU Sips, ACC Casper, TA Doyle, EJ Giruzzi, G Gribov, Y Hobirk, J Hogeweij, GMD Horton, LD Hubbard, AE Hutchinson, I Ide, S Isayama, A Imbeaux, F Jackson, GL Kamada, Y Kessel, C Kochl, F Lomas, P Litaudon, X Luce, TC Marmar, E Mattei, M Nunes, I Oyama, N Parail, V Portone, A Saibene, G Sartori, R Stober, JK Suzuki, T Wolfe, SM AF Sips, A. C. C. Casper, T. A. Doyle, E. J. Giruzzi, G. Gribov, Y. Hobirk, J. Hogeweij, G. M. D. Horton, L. D. Hubbard, A. E. Hutchinson, I. Ide, S. Isayama, A. Imbeaux, F. Jackson, G. L. Kamada, Y. Kessel, C. Kochl, F. Lomas, P. Litaudon, X. Luce, T. C. Marmar, E. Mattei, M. Nunes, I. Oyama, N. Parail, V. Portone, A. Saibene, G. Sartori, R. Stober, J. K. Suzuki, T. Wolfe, S. M. CA C-Mod Team ASDEX Upgrade Team DIII-D Team JET EFDA Contributors TI Experimental studies of ITER demonstration discharges SO NUCLEAR FUSION LA English DT Article ID HEATING ASSISTED STARTUP; JT-60U AB Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for E-axis < 0.23-0.33 V m(-1) is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps l(i)(3) < 0.85 during the ramp up to q(95) = 3. A rise phase with an H-mode transition is capable of achieving l(i)(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q(95) similar to 3 and the hybrid scenario at q(95) = 4-4.5 during the FT phase is documented, providing data for the l(i) (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <= 1.2 during the first half of the current decay, using a slow I-p ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating. C1 [Sips, A. C. C.; Hobirk, J.; Horton, L. D.; Stober, J. K.; ASDEX Upgrade Team] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Casper, T. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Doyle, E. J.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Doyle, E. J.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. [Giruzzi, G.; Imbeaux, F.; Litaudon, X.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Gribov, Y.] ITER IO, F-13108 St Paul Les Durance, France. [Hogeweij, G. M. D.] FOM, EURATOM Assoc, Inst Plasma Phys Rijnhuizen, Nieuwegein, Netherlands. [Hubbard, A. E.; Hutchinson, I.; Marmar, E.; Wolfe, S. M.; C-Mod Team] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Ide, S.; Isayama, A.; Kamada, Y.; Oyama, N.; Suzuki, T.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Jackson, G. L.; Luce, T. C.; DIII-D Team] Gen Atom Co, San Diego, CA USA. [Kessel, C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ USA. [Kochl, F.] OAW ATI, EURATOM Assoc, Vienna, Austria. [Lomas, P.; Parail, V.] Culham Sci Ctr, EURATOM UKAEA Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Mattei, M.] Univ Naples 2, ENEA, EURATOM Assoc, CREATE,DIAM, Aversa, CE, Italy. [Nunes, I.] Ctr Fusao Nucl, Euratom IST Fus Assoc, Lisbon, Portugal. [Portone, A.; Saibene, G.; Sartori, R.] FUS ENERGY, Barcelona 08019, Spain. [JET EFDA Contributors] Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. RP Sips, ACC (reprint author), EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. EM george.sips@jet.efda.org RI Hutchinson, Ian/D-1136-2009; Imbeaux, Frederic/A-7614-2013; Nunes, Isabel/D-1627-2017; OI Hutchinson, Ian/0000-0003-4276-6576; Nunes, Isabel/0000-0003-0542-1982; Mattei, Massimiliano/0000-0001-7951-6584 FU US Department of Energy [DE-FC02-99ER545512]; LLNL [DE-AC52-07NA27344]; UCLA [DE-FG03-01ER54615]; GA [DE-FC02-04ER54698] FX For DIII-D, the work presented is supported by the US Department of Energy under DE-AC52-07NA27344 (LLNL), DE-FG03-01ER54615 (UCLA) and DE-FC02-04ER54698 (GA).; For Alcator C-Mod, the work presented is supported by the US Department of Energy under DE-FC02-99ER545512. NR 26 TC 37 Z9 37 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085015 DI 10.1088/0029-5515/49/8/085015 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800015 ER PT J AU Snyder, PB Aiba, N Beurskens, M Groebner, RJ Horton, LD Hubbard, AE Hughes, JW Huysmans, GTA Kamada, Y Kirk, A Konz, C Leonard, AW Lonnroth, J Maggi, CF Maingi, R Osborne, TH Oyama, N Pankin, A Saarelma, S Saibene, G Terry, JL Urano, H Wilson, HR AF Snyder, P. B. Aiba, N. Beurskens, M. Groebner, R. J. Horton, L. D. Hubbard, A. E. Hughes, J. W. Huysmans, G. T. A. Kamada, Y. Kirk, A. Konz, C. Leonard, A. W. Loennroth, J. Maggi, C. F. Maingi, R. Osborne, T. H. Oyama, N. Pankin, A. Saarelma, S. Saibene, G. Terry, J. L. Urano, H. Wilson, H. R. TI Pedestal stability comparison and ITER pedestal prediction SO NUCLEAR FUSION LA English DT Article ID H-MODE PEDESTAL; TOKAMAK EDGE PLASMAS; MAGNETOHYDRODYNAMIC STABILITY; TRANSPORT BARRIER; LOCALIZED MODES; MHD STABILITY; ELMS; ENERGY; INSTABILITIES; DYNAMICS AB The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER. C1 [Snyder, P. B.; Groebner, R. J.; Leonard, A. W.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Aiba, N.; Kamada, Y.; Oyama, N.; Urano, H.] JAEA, Fus Res & Dev Directorate, Ibaraki, Japan. [Beurskens, M.; Kirk, A.; Loennroth, J.; Saarelma, S.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Horton, L. D.; Konz, C.; Maggi, C. F.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Hubbard, A. E.; Hughes, J. W.; Terry, J. L.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Huysmans, G. T. A.] Cadarache, CEA, EURATOM Assoc, St Paul Les Durance, France. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Pankin, A.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Saibene, G.] EFDA Close Support Unit Garching, Garching, Germany. [Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RP Snyder, PB (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM snyder@fusion.gat.com FU US Department of Energy [DE-FG03-95ER54309, DE-AC05-00OR22725, DE-FG02-92ER54141, DE-FC02-99ER54512] FX This work was supported in part by the US Department of Energy under DE-FG03-95ER54309, DE-AC05-00OR22725, DE-FG02-92ER54141 and DE-FC02-99ER54512. The work involves contributions from many members of the ITPA Pedestal and Edge Physics group, and the larger pedestal physics community. This report was prepared as an account of work by or for the ITER Organization. The Members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the Members or any agency thereof. NR 41 TC 103 Z9 103 U1 5 U2 18 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085035 DI 10.1088/0029-5515/49/8/085035 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800035 ER PT J AU Solomon, WM Burrell, KH Garofalo, AM Cole, AJ Budny, RV Degrassie, JS Heidbrink, WW Jackson, GL Lanctot, MJ Nazikian, R Reimerdes, H Strait, EJ Van Zeeland, MA AF Solomon, W. M. Burrell, K. H. Garofalo, A. M. Cole, A. J. Budny, R. V. deGrassie, J. S. Heidbrink, W. W. Jackson, G. L. Lanctot, M. J. Nazikian, R. Reimerdes, H. Strait, E. J. Van Zeeland, M. A. CA DIII-D Rotation Phys Task Force TI Advances in understanding the generation and evolution of the toroidal rotation profile on DIII-D SO NUCLEAR FUSION LA English DT Article ID C-MOD PLASMAS; MOMENTUM-TRANSPORT; TOKAMAK DISCHARGES; PARTICLE LOSS; HIGH-BETA; ICRF; SIMULATIONS; CONFINEMENT; TURBULENCE; JT-60U AB Recent experiments using DIII-D's capability to vary the injected torque at constant power have focused on developing the physics basis for understanding rotation through the detailed study of momentum sources, sinks and transport. Non-resonant magnetic braking has generally been considered a sink of momentum; however, recent results from DIII-D suggest that it may also act as a source. The torque applied by the field depends on the rotation relative to a non-zero 'offset' rotation. Therefore, at low initial rotation, the application of non-resonant magnetic fields can actually result in a spin-up of the plasma. Direct evidence of the effect of reverse shear Alfven eigenmodes on plasma rotation has been observed, which has been explained through a redistribution of the fast ions and subsequent modification to the neutral beam torque profile. An effective momentum source has been identified by varying the input torque from neutral beam injection at fixed beta(N), until the plasma rotation across the entire profile is essentially zero. This torque profile is largest near the edge, but is still non-negligible in the core, qualitatively consistent with models for a so-called 'residual stress'. Perturbative studies of the rotation using combinations of co- and counter-neutral beams have uncovered the existence of a momentum pinch in DIII-D H-mode plasmas, which is quantitatively similar to theoretical predictions resulting from consideration of low-k turbulence. C1 [Solomon, W. M.; Budny, R. V.; Nazikian, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Garofalo, A. M.; deGrassie, J. S.; Jackson, G. L.; Strait, E. J.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Cole, A. J.] Univ Wisconsin, Madison, WI 53706 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Lanctot, M. J.; Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP Solomon, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wsolomon@pppl.gov RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC02-76CH03073, DE-FC02-04ER54698, DE-FG02-89ER53296, SC-G903402, DE-FG02-89ER53297, DE-FG02-92ER54139] FX This work was supported by the US Department of Energy under DE-AC02-76CH03073, DE-FC02-04ER54698, DE-FG02-89ER53296, SC-G903402, DE-FG02-89ER53297 and DE-FG02-92ER54139. The authors would like to thank P. H. Diamond, T. S. Hahm and R. E. Waltz for useful discussions. NR 56 TC 48 Z9 48 U1 1 U2 9 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085005 DI 10.1088/0029-5515/49/8/085005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800005 ER PT J AU Harkonen, J Anbinderis, P Anbinderis, T Bates, R de Boer, W Borchi, E Bruzzi, M Buttar, C Chen, W Cindro, V Czellar, S Eremin, V Furgeri, A Gaubas, E Heijne, E Ilyashenko, I Kalesinskas, V Krause, M Li, Z Luukka, P Mandic, I Menichelli, D Mikuz, M Militaru, O Mueller, S Niinikoski, TO O'Shea, V Parkes, C Piotrzkowski, K Pirollo, S Pusa, P Raisanen, J Rouby, X Tuominen, E Tuovinen, E Vaitkus, J Verbitskaya, E Vayrynen, S Zavrtanik, M AF Haerkoenen, J. Anbinderis, P. Anbinderis, T. Bates, R. de Boer, W. Borchi, E. Bruzzi, M. Buttar, C. Chen, W. Cindro, V. Czellar, S. Eremin, V. Furgeri, A. Gaubas, E. Heijne, E. Ilyashenko, I. Kalesinskas, V. Krause, M. Li, Z. Luukka, P. Mandic, I. Menichelli, D. Mikuz, M. Militaru, O. Mueller, S. Niinikoski, T. O. O'Shea, V. Parkes, C. Piotrzkowski, K. Pirollo, S. Pusa, P. Raeisaenen, J. Rouby, X. Tuominen, E. Tuovinen, E. Vaitkus, J. Verbitskaya, E. Vaeyrynen, S. Zavrtanik, M. TI Development of cryogenic tracking detectors for very high luminosity experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th International Workshop on Radiation Imaging Detectors CY JUN 29-JUL 03, 2008 CL Helsinki, FINLAND SP PPANaly, Univ Helsinki, Planmed, Tieteellisten Seurain Valtuuskunta DE Detectors; Radiation hardness; Cryogenic ID TRANSIENT CURRENT; SILICON AB Experimental results and simulations of Charge Collection Efficiency (CCE) of Current Injected Detectors (CIDs) are focused. CID is a concept where the current is limited by the space charge. The injected carriers will be trapped by the deep levels. This induces a stable electric field through the entire bulk regardless of the irradiation fluence the detector has been exposed. Our results show that the CCE of CIDs is about two times higher than of regular detectors when irradiated up to 1 X 10(16) cm(-2). The higher CCE is achieved already at -50 degrees C temperatures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Haerkoenen, J.; Czellar, S.; Luukka, P.; Tuominen, E.; Tuovinen, E.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Anbinderis, P.; Anbinderis, T.; Gaubas, E.; Kalesinskas, V.; Vaitkus, J.] Vilnius State Univ, Inst Mat Sci & Appl Res, Vilnius, Lithuania. [Bates, R.; Buttar, C.; O'Shea, V.; Parkes, C.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [de Boer, W.; Furgeri, A.; Krause, M.; Mueller, S.] Univ Karlsruhe, IEKP, D-76128 Karlsruhe, Germany. [Borchi, E.; Bruzzi, M.; Menichelli, D.; Pirollo, S.] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy. [Chen, W.; Li, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cindro, V.; Mandic, I.; Mikuz, M.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana 1001, Slovenia. [Eremin, V.; Ilyashenko, I.; Verbitskaya, E.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 196140, Russia. [Heijne, E.; Niinikoski, T. O.] CERN, Geneva, Switzerland. [Militaru, O.; Piotrzkowski, K.; Rouby, X.] Univ Catholique Louvain, FNYU, B-1348 Louvain, Belgium. [Pusa, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Raeisaenen, J.; Vaeyrynen, S.] Univ Helsinki, Dept Phys, Div Mat Phys, FI-00014 Helsinki, Finland. RP Harkonen, J (reprint author), Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland. EM jaakko.haerkoenen@cern.ch; v.oshea@physics.gla.ac.uk; petteri.pusa@cern.ch RI Buttar, Craig/D-3706-2011; O'Shea, Val/G-1279-2010; Verbitskaya, Elena/D-1521-2014; Bruzzi, Mara/K-1326-2015; Tuominen, Eija/A-5288-2017; OI O'Shea, Val/0000-0001-7183-1205; Bruzzi, Mara/0000-0001-7344-8365; Tuominen, Eija/0000-0002-7073-7767; Luukka, Panja/0000-0003-2340-4641 NR 12 TC 1 Z9 1 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2009 VL 607 IS 1 BP 41 EP 44 DI 10.1016/j.nima.2009.03.116 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 483SI UT WOS:000268987900012 ER PT J AU Vabre, A Gmar, M Lazaro, D Legoupil, S Coutier, O Dazin, A Lee, WK Fezzaa, K AF Vabre, A. Gmar, M. Lazaro, D. Legoupil, S. Coutier, O. Dazin, A. Lee, W. K. Fezzaa, K. TI Synchrotron ultra-fast X-ray imaging of a cavitating flow in a Venturi profile SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th International Workshop on Radiation Imaging Detectors CY JUN 29-JUL 03, 2008 CL Helsinki, FINLAND SP PPANalyt, Univ Helsinki, Planmed, Tieteellisten Seurain Valtuuskunta DE Cavitation; Venturi; X-ray ultra-fast imaging; Synchrotron applications AB Cavitation consists of successive vaporization and condensation processes in a liquid flow, due to a large pressure decrease usually associated with sudden flow acceleration. This phenomenon occurs typically in pumps and naval propellers, on the blades' suction side and/or in periphery of the rotor. it is associated with performance decrease, blade erosion, vibrations that may lead to damage, and noise due to vapor collapse close to the solid walls. Therefore, a general understanding of the mechanisms that govern flow vaporization and condensation is of the utmost importance to reduce or at least to control these effects. A major issue is to estimate velocity fields in both phases, i.e. liquid and vapor. These combined measurements are missing in the literature. We propose a method of ultra-fast X-ray imaging to cope this lack. This method is based on X-ray absorption and phase-contrast enhancement. This technique can simultaneously measure the flow velocities of both liquid and vapor phases at kHz frequency. For the X-ray measurements, a dedicated Venturi shape canal has been designed for the experiments. The design is based on a known two-phase flows hydraulic set-up. The studied cavitation occurs downstream from the Venturi profile. The experiments were carried out at the Advanced Photon Source (APS) at Argonne National Laboratory. These experiments have confirmed the advantages of ultra-fast X-ray imaging for the visualization of liquid-vapor interfaces. Also, the feasibility of estimating velocity field in the flow is acknowledged. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vabre, A.; Gmar, M.; Lazaro, D.; Legoupil, S.] CEA LIST, F-91191 Gif Sur Yvette, France. [Coutier, O.; Dazin, A.] ENSAM Lille, LML, F-59000 Lille, France. [Lee, W. K.; Fezzaa, K.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Gmar, M (reprint author), CEA LIST, F-91191 Gif Sur Yvette, France. EM mehdi.gmar@cea.fr RI GMAR, Mehdi/D-3265-2009 NR 14 TC 9 Z9 12 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2009 VL 607 IS 1 BP 215 EP 217 DI 10.1016/j.nima.2009.03.192 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 483SI UT WOS:000268987900062 ER PT J AU Kharzeev, D Levin, E Nardi, M Tuchin, K AF Kharzeev, Dmitri Levin, Eugene Nardi, Marzia Tuchin, Kirill TI J/psi production in heavy ion collisions and gluon saturation SO NUCLEAR PHYSICS A LA English DT Article DE High energy QCD; Color glass condensate; Gluon saturation; Space-time picture at high energy; Glauber approach ID COLOR GLASS CONDENSATE; HADRON-NUCLEUS COLLISIONS; OPEN CHARM PRODUCTION; ENERGY PA-COLLISIONS; J-PSI-SUPPRESSION; HIGH-DENSITY QCD; QUARK PRODUCTION; SMALL-X; RENORMALIZATION-GROUP; SEMIHARD PROCESSES AB We calculate the inclusive J/psi production in heavy ion collisions including the effects of gluon saturation in the wave functions of the colliding nuclei. We argue that the dominant production mechanism in proton-nucleus and nucleus-nucleus collisions for heavy nuclei is different from the one in hadron-hadron interactions. We find that the rapidity distribution of primary J/psi production is more peaked around midrapidity than the analogous distribution in elementary pp collisions. We discuss the consequences of this fact on the experimentally observed J/psi suppression in Au-Au collisions at RHIC energies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tuchin, Kirill] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Levin, Eugene] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, HEP Dept, IL-69978 Tel Aviv, Israel. [Nardi, Marzia] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Tuchin, Kirill] RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. RP Tuchin, K (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM tuchin@iastate.edu NR 81 TC 21 Z9 21 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG 1 PY 2009 VL 826 IS 3-4 BP 230 EP 255 DI 10.1016/j.nuclphysa.2009.06.016 PG 26 WC Physics, Nuclear SC Physics GA 476GZ UT WOS:000268428300003 ER PT J AU Radulescu, G Mueller, DE Wagner, JC AF Radulescu, Georgeta Mueller, Donald E. Wagner, John C. TI SENSITIVITY AND UNCERTAINTY ANALYSIS OF COMMERCIAL REACTOR CRITICALS FOR BURNUP CREDIT SO NUCLEAR TECHNOLOGY LA English DT Article DE burnup credit; commercial reactor criticals; sensitivity and uncertainty analysis AB This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified. The study employed cross-section sensitivity and uncertainty analysis methods developed at Oak Ridge National Laboratory and the TSUNAMI set of tools in the SCALE code system as a means to investigate neutronic similarity on an integral and nuclide-reaction-specific level. The results indicate that except for the fresh-fuel-core configuration, all analyzed CRC state-points are either highly similar, similar, or marginally similar to the representative high-capacity cask containing spent nuclear fuel assemblies with burnups ranging from 10 to 60 GWd/t U in terms of their shared uncertainty in k(eff) due to cross-section uncertainties. On a nuclide-reaction-specific level, the CRC state-points provide significant coverage, in terms of neutronic similarity, for most of the actinides and fission products relevant to burnup credit. Hence, in principle, the evaluated CRC state-points could serve as part of a set of benchmark experiments for determining a bias and bias uncertainty to be applied to the calculated keff of a spent fuel transport/storage/disposal system to correct for approximations in computational methods and errors and uncertainties in nuclear data. Note, however, that an evaluation to quantify the uncertainties associated with various CRC modeling parameters (e.g., fuel isotopic compositions, physical characteristics of reactor core components, and reactor operating history information), which has relevance to the use of these critical configurations for bias determination, was not performed as part of this study. C1 [Radulescu, Georgeta; Mueller, Donald E.; Wagner, John C.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Radulescu, G (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700, Oak Ridge, TN 37831 USA. EM radulescug@ornl.gov RI Wagner, John/K-3644-2015; OI Wagner, John/0000-0003-0257-4502; Radulescu, Georgeta/0000-0001-7664-1718 NR 29 TC 4 Z9 4 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD AUG PY 2009 VL 167 IS 2 BP 268 EP 287 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 475PJ UT WOS:000268371800003 ER PT J AU Baker, KL AF Baker, Kevin L. TI X-ray wavefront analysis and phase reconstruction with a two-dimensional shearing interferometer SO OPTICAL ENGINEERING LA English DT Article DE shearing interferometer; x-ray; phase grating; wavefront gradient AB We present the design and simulations of the expected performance of a novel 2-D x-ray shearing interferometer. This interferometer uses crossed phase gratings in a single plane, and is capable of operation over a wide range of energies extending from several hundred electron volts to tens of kiloelectron volts by varying the grating material and thickness. This interferometer is insensitive to vibrations and, unlike Moire deflectometers implemented in the hard x-ray regime, recovers the full 2-D phase profile of the x-ray beam rather than the gradient in only one dimension. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3205036] C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave L-210, Livermore, CA 94550 USA. EM baker7@llnl.gov FU U. S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52-07NA27344. NR 13 TC 6 Z9 6 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD AUG PY 2009 VL 48 IS 8 AR 086501 DI 10.1117/1.3205036 PG 5 WC Optics SC Optics GA 504ED UT WOS:000270596700021 ER PT J AU Ikeda, Y Kobayashi, N Kondo, S Yasui, C Kuzmenko, PJ Tokoro, H Terada, H AF Ikeda, Yuji Kobayashi, Naoto Kondo, Sohei Yasui, Chikako Kuzmenko, Paul J. Tokoro, Hitoshi Terada, Hiroshi TI Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region SO OPTICAL ENGINEERING LA English DT Article DE attenuation; spectrographs; gratings; infrared; astronomy ID LASER WINDOW MATERIALS; ABSORPTION-EDGE; LATTICE EDGE; ECHELLE; SPECTROGRAPH; PERFORMANCE; TELESCOPE; SILICON AB We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of alpha(att) = 0.01 to 0.03 cm(-1) among the major candidates. The measured attenuation is roughly in proportion to lambda(-2), suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R = 300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3206734] C1 [Ikeda, Yuji] Photocoding, Kanagawa 2291104, Japan. [Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. [Kuzmenko, Paul J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tokoro, Hitoshi] Nanoopton Res Inst Inc, Gifu 5012697, Japan. [Terada, Hiroshi] Subaru Telescope, Hilo, HI 96720 USA. RP Ikeda, Y (reprint author), Photocoding, 3-16-8-101 Higashi Hashimoto, Kanagawa 2291104, Japan. EM ikeda@photocoding.com FU KAKENHI [16684001, 20340042]; Japan Society for the Promotion of Science (JSPS); NAOJ [FY2007]; Space Instrument Basic Development; Institute of Space and Astronautical Science (ISAS); Japan Aerospace Explanation Agency (JAXA) FX We would like to thank A. Tokunaga for fruitful suggestions and comments throughout this study. Most measurements were carried out at the Advanced Technology Center (ATC) of the National Astronomical Observatory of Japan (NAOJ). We feel most grateful to all the staff of ATC, especially to K. Mitsui for supporting our measurements kindly. This work was supported by KAKENHI (16684001) Grant-in-Aid for Young Scientists (A) and KAKENHI (20340042) Grant-in-Aid for Scientific Research (B) by the Japan Society for the Promotion of Science (JSPS). It is also supported by the Grant for Collaborative Basic Development (FY2007) and General Funds by NAOJ, and the Grant for the Space Instrument Basic Development (FY2007) by Institute of Space and Astronautical Science (ISAS), Japan Aerospace Explanation Agency (JAXA). A portion of this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Authors Kondo and Yasui are financially supported by the JSPS fellowship. NR 37 TC 9 Z9 10 U1 0 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD AUG PY 2009 VL 48 IS 8 AR 084001 DI 10.1117/1.3206734 PG 9 WC Optics SC Optics GA 504ED UT WOS:000270596700005 ER PT J AU McKinney, WR Kirschman, JL MacDowell, AA Warwick, T Yashchuk, VV AF McKinney, Wayne R. Kirschman, Jonathan L. MacDowell, Alastair A. Warwick, Tony Yashchuk, Valeriy V. TI Optimal tuning and calibration of bendable mirrors with slope-measuring profilers SO OPTICAL ENGINEERING LA English DT Article DE X-ray; mirror; synchrotron radiation; adaptive optics; elliptical bender; long trace profiler; LTP; surface slope measurement ID X-RAY MIRRORS; SPECIFICATION; CURVATURE; ELLIPSES AB We describe a technique to optimally tune and calibrate bendable X-ray optics for submicron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allows optimal tuning of these systems using surface slope data obtained with a slope-measuring instrument, the long trace profiler. Because of the near linearity of the problem, the minimal set of data necessary for the tuning of each bender consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning can be used for retuning to a new desired shape without removal from the beamline and remeasuring. We perform a ray trace using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3204235] C1 [McKinney, Wayne R.; Kirschman, Jonathan L.; MacDowell, Alastair A.; Warwick, Tony; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP McKinney, WR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,M-S 2R0400, Berkeley, CA 94720 USA. EM WRMcKinney@lbl.gov RI MacDowell, Alastair/K-4211-2012; McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 FU U. S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to Amparo Rommeveaux and Howard Padmore for useful discussions. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 21 TC 20 Z9 20 U1 0 U2 1 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD AUG PY 2009 VL 48 IS 8 AR 083601 DI 10.1117/1.3204235 PG 8 WC Optics SC Optics GA 504ED UT WOS:000270596700004 ER PT J AU Shah, RC Johnson, RP Shimada, T Flippo, KA Fernandez, JC Hegelich, BM AF Shah, Rahul C. Johnson, Randall P. Shimada, Tsutomu Flippo, Kirk A. Fernandez, Juan C. Hegelich, B. M. TI High-temporal contrast using low-gain optical parametric amplification SO OPTICS LETTERS LA English DT Article ID POLARIZED WAVE GENERATION; SYSTEMS; PULSES; PHASE; LASER AB We demonstrate the use of low-gain optical parametric amplification (OPA) as a means of improving temporal contrast to a detection-limited level 10(-10). 250 mu J, 500 fs pulses of 1053 nm are frequency doubled and subsequently restored to the original wavelength by OPA with >10% efficiency. (C) 2009 Optical Society of America C1 [Shah, Rahul C.; Johnson, Randall P.; Shimada, Tsutomu; Flippo, Kirk A.; Fernandez, Juan C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, RP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rpjohnson@lanl.gov RI Flippo, Kirk/C-6872-2009; Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013 OI Flippo, Kirk/0000-0002-4752-5141; Fernandez, Juan/0000-0002-1438-1815; FU U.S. Department of Energy (DOE); Los Alamos National Laboratory Directed Research and Development FX Authors acknowledge support of U.S. Department of Energy (DOE) and Los Alamos National Laboratory Directed Research and Development. We acknowledge assistance of Trident and P-24 staff. NR 11 TC 64 Z9 66 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD AUG 1 PY 2009 VL 34 IS 15 BP 2273 EP 2275 PG 3 WC Optics SC Optics GA 489FQ UT WOS:000269405900010 PM 19649068 ER PT J AU Deacon, RM DuPont, JN Kiely, CJ Marder, AR Tortorelli, PF AF Deacon, R. M. DuPont, J. N. Kiely, C. J. Marder, A. R. Tortorelli, P. F. TI Evaluation of the Corrosion Resistance of Fe-Al-Cr Alloys in Simulated Low NO (x) Environments SO OXIDATION OF METALS LA English DT Article DE Iron-aluminum-chromium alloys; Oxidation/sulfidation; Coal combustion ID IRON-ALUMINUM-ALLOYS; SULFIDATION BEHAVIOR; BASE ALLOYS; BREAKAWAY OXIDATION; H2S-H2 ATMOSPHERES; FECRAL ALLOYS; SULFUR; PRESSURES; ADDITIONS; 1173-K AB Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has led researchers to examine the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In this work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 and 700 A degrees C for short (100 h) and long (5000 h) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance during short term exposures. For longer test times, increasing the aluminum concentration improved alloy corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in slower corrosion kinetics. A general classification of the scales developed on these alloys is presented. C1 [Deacon, R. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Tortorelli, P. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Deacon, R. M.; DuPont, J. N.; Kiely, C. J.; Marder, A. R.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Deacon, RM (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM ryan.deacon@jhuapl.edu RI Tortorelli, Peter/E-2433-2011 FU Department of Energy through the National Energy Technology Laboratory [DE-FG26-04NT42169] FX This work was supported by the Department of Energy through the National Energy Technology Laboratory through grant number DE-FG26-04NT42169. The authors wish to thank Dr. Vinod Sikka of Oak Ridge National Laboratory for preparation of the alloys used in this study. NR 36 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2009 VL 72 IS 1-2 BP 67 EP 86 DI 10.1007/s11085-009-9148-z PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 460WW UT WOS:000267223400003 ER PT J AU Deacon, RM DuPont, JN Kiely, CJ Marder, AR Tortorelli, PF AF Deacon, R. M. DuPont, J. N. Kiely, C. J. Marder, A. R. Tortorelli, P. F. TI Evaluation of the Corrosion Resistance of Fe-Al-Cr Alloys in Simulated Low NO (x) Environments SO OXIDATION OF METALS LA English DT Article DE Iron-aluminum-chromium alloys; Oxidation-sulfidation; Scanning transmission electron microscopy; Electron microprobe analysis ID HIGH-TEMPERATURE; OXIDATION-SULFIDATION; H2S-H2 ATMOSPHERES; IRON ALUMINIDES; BASE ALLOYS; BEHAVIOR; CHROMIUM; KINETICS; SCALES; INTERDIFFUSION AB The first part of this manuscript presented SEM analysis of corrosion products formed on iron-aluminum-chromium alloys that were exposed to a simulated low NO (x) combustion environments. In Part II, results from electron microprobe analysis (EMPA) and scanning transmission electron microscopy (STEM) analyses of select as-corroded coupons from the long tem tests are discussed. Despite the formation of thick iron sulfide films one of the alloys, EMPA did not detect any measurable depletion of aluminum near the surface of this alloy. STEM analysis revealed that chromium was able to form chromium sulfides only on the higher aluminum content alloys, thereby preventing the formation of deleterious iron sulfides and reducing the overall corrosive attack on this alloy. Also observed in the STEM analysis was the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may serve as a secondary layer of corrosion protection in these regions. C1 [Deacon, R. M.; DuPont, J. N.; Kiely, C. J.; Marder, A. R.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Tortorelli, P. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Deacon, RM (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM ryan.deacon@jhuapl.edu RI Tortorelli, Peter/E-2433-2011 FU Department of Energy through the National Energy Technology Laboratory [DE-FG26-04NT42169] FX This work was supported by the Department of Energy through the National Energy Technology Laboratory through grant number DE-FG26-04NT42169. The authors wish to thank Dr. Vinod Sikka of Oak Ridge National Laboratory for preparation of the alloys used in this study. Dave Ackland of Lehigh University and Masashi Watanabe of Lawrence Berkeley National Laboratory are also gratefully acknowledged for their assistance with the STEM work. NR 37 TC 4 Z9 5 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2009 VL 72 IS 1-2 BP 87 EP 107 DI 10.1007/s11085-009-9150-5 PG 21 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 460WW UT WOS:000267223400004 ER PT J AU Hou, PY Izumi, T Gleeson, B AF Hou, P. Y. Izumi, T. Gleeson, B. TI Sulfur Segregation at Al2O3/gamma-Iei plus gamma'-Ni3Al Interfaces: Effects of Pt, Cr and Hf Additions SO OXIDATION OF METALS LA English DT Article DE Oxidation; Alumina; Adhesion; Nickel-aluminide; Sulfur; Segregation; Platinum; Hafnium ID HIGH-TEMPERATURE OXIDATION; THERMAL BARRIER COATINGS; ALUMINIDE DIFFUSION COATINGS; CYCLIC OXIDATION; BOND COATINGS; ALLOYS; BEHAVIOR; NI; PLATINUM; SURFACE AB The interfacial chemistry that developed as a result Al2O3-scale growth on gamma-Iei + gamma'-Ni3Al alloys at 1150 A degrees C was studied using scanning Auger microscopy after the oxide layer was scratched to spall under ultra-high vacuum. The extent of scale spallation was used to evaluate semi-quantitatively the interfacial strength. The alloys investigated were primarily gamma' in structure, containing 22 at.% Al plus further additions of Pt, Cr and/or Hf. In the case of the binary gamma + gamma' alloy, it was found that a sub-monolayer of sulfur segregated at the alloy/scale interface. Platinum reduced and hafnium eliminated sulfur segregation, but chromium enhanced it through Cr-S co-segregation, even on Pt- and Hf-containing alloys. Platinum also segregated slightly at the alloy/scale interface. The interface strength was a strong function of the sulfur content. Beyond the effect of eliminating S segregation, Pt and Hf both showed additional beneficial effects on alumina scale adhesion. C1 [Hou, P. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Izumi, T.; Gleeson, B.] Iowa State Univ, Ames, IA USA. RP Hou, PY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM pyhou@lbl.gov; izumiisu@hotmail.com; bgleeson@engr.pitt.edu FU Molecular Foundry, Lawrence Berkeley National Laboratory; Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; Force Office of Sponsored Research [MEANS-2, FA9550-05-1-0173]; Office of Naval Research [N00014-07-1-0122] FX Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Research at LBNL was sponsored by the above DOE office under contract DE-AC02-06CH11357 and by the Air Force Office of Sponsored Research under the MEANS-2 Program (Grant No. FA9550-05-1-0173). Research at Iowa State was supported by the Office of Naval Research under contract N00014-07-1-0122, with Dr. David Shifler being the Program Manager. NR 52 TC 17 Z9 17 U1 2 U2 29 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2009 VL 72 IS 1-2 BP 109 EP 124 DI 10.1007/s11085-009-9149-y PG 16 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 460WW UT WOS:000267223400005 ER PT J AU Singh, DJ Du, MH Zhang, L Subedi, A An, J AF Singh, D. J. Du, M. -H. Zhang, L. Subedi, A. An, J. TI Electronic structure, magnetism and superconductivity of layered iron compounds SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 21st International Symposium on Superconductivity CY OCT 27-29, 2008 CL Tsukuba, JAPAN SP Int Superconductiv Technol Ctr DE Band structure; Fermi surface; Magnetism; Superconductivity ID FIELDS; PHASE; ORDER AB The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe (Se, Te) have closely related electronic structures. The Fermi surface consists of disconnected hole and electron cylinders and additional hole sections that depend on the specific material. This places the materials in proximity to itinerant magnetism, both due to the high density of states and due to nesting. Comparison of density functional results and experiment provides strong evidence for itinerant spin fluctuations, which are discussed in relation to Superconductivity. It is proposed that the intermediate phase between the structural transition and the SDW transition in the oxy-pnictides is a nematic phase. (C) 2009 Elsevier B.V. All rights reserved. C1 [Singh, D. J.; Du, M. -H.; Zhang, L.; Subedi, A.; An, J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Subedi, A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [An, J.] Wuhan Univ Technol, Wuhan 430070, Peoples R China. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov RI Du, Mao-Hua/B-2108-2010; Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 35 TC 13 Z9 13 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD AUG-OCT PY 2009 VL 469 IS 15-20 BP 886 EP 889 DI 10.1016/j.physc.2009.05.091 PG 4 WC Physics, Applied SC Physics GA 496ZC UT WOS:000270018200007 ER PT J AU Baenitz, M Luders, K Maurer, D Barisic, N Cho, Y Li, Y Yu, G Zhao, X Greven, M AF Baenitz, M. Lueders, K. Maurer, D. Barisic, N. Cho, Y. Li, Y. Yu, G. Zhao, X. Greven, M. TI Vortex dynamics in single crystal Hg-1201 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 21st International Symposium on Superconductivity CY OCT 27-29, 2008 CL Tsukuba, JAPAN SP Int Superconductiv Technol Ctr DE High-T(c) superconductors; Flux creep; Pinning; Vortex dynamics ID HGBA2CUO4+DELTA AB Anisotropic Superconducting materials often show an enhanced pinning along their crystallographic ab-planes. To obtain information about such a behavior of the high-T(c) system Hg-1201 (HgBa(2)CuO(4)) Magnetic investigations on a single crystal are performed for the two field orientations, parallel to the c-axis and parallel to the ab-planes. The dependence of the ac magnetization on temperature, magnetic field and frequency is determined. Compared to former results on powder samples of this system no indication of a second peak in the imaginary part of the susceptibility chi '' is found. It seems to be shifted to higher temperatures overlapping now with the first peak. The corresponding irreversibility lines for both orientations, parallel to c and parallel to ab, are determined and discussed within the framework of a "diffusion" model. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lueders, K.; Maurer, D.] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. [Baenitz, M.] Max Planck Inst Chem Phys Feter Stoffe, D-01187 Dresden, Germany. [Barisic, N.; Cho, Y.; Zhao, X.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Barisic, N.] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Cho, Y.] Pusan Natl Univ, Team Nano Fus Technol BK21, Miryang 627706, South Korea. [Li, Y.; Yu, G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Zhao, X.] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. [Greven, M.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Luders, K (reprint author), Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany. EM lueders@physik.fu-berlin.de RI Yu, Guichuan/K-4025-2014; Barisic, Neven/E-4246-2015; Baenitz, Michael/E-4085-2016; OI Cho, Yong Chan/0000-0003-3976-8343 NR 14 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD AUG-OCT PY 2009 VL 469 IS 15-20 BP 1126 EP 1128 DI 10.1016/j.physc.2009.05.203 PG 3 WC Physics, Applied SC Physics GA 496ZC UT WOS:000270018200070 ER PT J AU Sansonetti, CJ Andrew, KL Cowan, RD AF Sansonetti, Craig J. Andrew, Kenneth L. Cowan, Robert D. TI Spectrum and energy levels of doubly ionized cesium (Cs III) SO PHYSICA SCRIPTA LA English DT Article ID TRANSITION PROBABILITIES; CONFIGURATIONS; WAVELENGTHS; LINES; XE; BA; IV AB The spectrum of doubly ionized cesium (Cs III) has been observed in the region 330-25000 angstrom, and the experimentally determined energy levels have been revised and extended. One thousand and ten spectral lines have been classified as transitions among 75 odd and 98 even parity levels, most of which are newly located. Most levels of the configurations 5s(2)5p(5), 5s5p(6) and 5s(2)5p(4)(5d, 6s, 6d, 7s, 5g, 6p and 4f) have been found and are theoretically interpreted including the most important configuration interactions. Low-lying levels of the 5s(2)5p(4)(7d, 7p and 5f) configurations and a few levels of other configurations have also been located. The Cs III ionization energy is found to be 267 736 +/- 30 cm(-1). C1 [Sansonetti, Craig J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Andrew, Kenneth L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Cowan, Robert D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sansonetti, CJ (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM craig.sansonetti@nist.gov NR 26 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD AUG PY 2009 VL 80 IS 2 AR 025303 DI 10.1088/0031-8949/80/02/025303 PG 39 WC Physics, Multidisciplinary SC Physics GA 480WI UT WOS:000268767300010 ER PT J AU Schmidt, T Flege, JI Speckmann, M Clausen, T Gangopadhyay, S Locatelli, A Mentes, TO Heun, S Guo, FZ Sutter, P Falta, J AF Schmidt, Th. Flege, J. I. Speckmann, M. Clausen, T. Gangopadhyay, S. Locatelli, A. Mentes, T. O. Heun, S. Guo, F. Z. Sutter, P. Falta, J. TI From nanoislands to nanowires: germanium on gallium-terminated silicon surfaces SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging CY SEP 15-19, 2008-2009 CL Linz, AUSTRIA ID GE ISLANDS; SI SURFACES; SI(113); MICROSCOPY AB The influence of Ga pre-adsorption on Si(111), Si(113) and Si(112) surfaces on Ge growth has been investigated by low-energy electron diffraction and microscopy as well as X-ray photoemission spectroscopy. On Si(111), step edges and substrate domain boundaries are decorated with Ga at high deposition temperatures, enabling selective growth and alignment of three-dimensional Ge islands on a chemically modulated surface. On Si(113), a morphological modulation is achieved by Ga saturation, as the Si substrate decomposes into an ordered array of (112) and (115) facets. This results in the growth of Ge islands aligned at the facets. These islands exhibit an anisotropy, as they are elongated along [110]. Ga pre-adsorption on Si(112) smoothens the initially faceted bare surface, and subsequent Ge growth leads to the formation of nanoscale Ge wires. The results are discussed in terms of surface chemistry, as well as diffusion and strain relaxation anisotropy. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Schmidt, Th.; Flege, J. I.; Speckmann, M.; Clausen, T.; Gangopadhyay, S.; Falta, J.] Univ Bremen, Inst Solid State Phys, D-28359 Bremen, Germany. [Locatelli, A.; Mentes, T. O.; Heun, S.] Sincrotrone Trieste SCpA, I-34012 Trieste, Italy. [Guo, F. Z.] SPring 8 JASRI, Mikazuki, Hyogo 6795198, Japan. [Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Schmidt, T (reprint author), Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany. EM tschmidt@ifp.uni-bremen.de RI Heun, Stefan/B-4406-2011; Speckmann, Moritz/H-3097-2011; Flege, Jan Ingo/J-6354-2012; Falta, Jens/F-4821-2016; OI Heun, Stefan/0000-0003-1989-5679; Flege, Jan Ingo/0000-0002-8346-6863; Falta, Jens/0000-0002-4154-822X; Mentes, Tevfik Onur/0000-0003-0413-9272; Locatelli, Andrea/0000-0002-8072-7343 NR 24 TC 3 Z9 3 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD AUG PY 2009 VL 206 IS 8 BP 1718 EP 1722 DI 10.1002/pssa.200881602 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 486ZY UT WOS:000269241200008 ER PT J AU Chantler, CT Laming, JM Silver, JD Dietrich, DD Mokler, PH Finch, EC Rosner, SD AF Chantler, C. T. Laming, J. M. Silver, J. D. Dietrich, D. D. Mokler, P. H. Finch, E. C. Rosner, S. D. TI Hydrogenic Lamb shift in Ge31+ and the fine-structure Lamb shift SO PHYSICAL REVIEW A LA English DT Review ID RELATIVISTIC HEAVY-IONS; HELIUM-LIKE IONS; X-RAY-IRRADIATION; CONFIGURATION-INTERACTION CALCULATIONS; BEAM-FOIL SPECTROSCOPY; ARGON RECOIL IONS; ATOMIC-COLLISIONS; PRECISION-MEASUREMENT; ELECTRON-CAPTURE; QUANTUM ELECTRODYNAMICS AB Using x-ray diffraction and beam-foil spectroscopy, we have determined precise wavelengths for Lyman alpha(1) and Lyman alpha(2) in hydrogenic germanium of 1.166 993 8 +/- 33 +/- 169 and 1.172 433 6 +/- 39 +/- 170 angstrom. Hydrogenic germanium Ge31+ 1s-2p(3/2) and 1s-2p(1/2) Lamb shifts are measured to be 66 080 +/- 237 +/- 1121 and 67 169 +/- 281 +/- 1237 cm(-1), respectively. This 14 ppm measurement of the wavelengths thus provides a 1.8% measurement of the 2p-1s Lamb shift and is an improvement by a factor of 3 over previous work. Fitting the full two-dimensional dispersion relation, including Balmer and Lyman series, limits random and systematic correlation of parameters. Dominant systematics are due to diffraction parameters including crystal thickness and alignment, differential Doppler shifts due to the variable location of spectral emission downstream of the beam-foil target, and dielectronic, 2s-1s, and 4f-2p satellites. Models developed are applicable to all relativistic plasma modeling in beam-foil spectroscopy at accelerators. The technique also reports the germanium 2p(3/2)-2p(1/2) fine structure as 397 617 +/- 251 +/- 512 cm(-1), representing a 0.14% measurement of the fine structure and a 71% measurement of the QED contribution to the hydrogenic germanium fine structure, an improvement of a factor of 6 over previous work. We also report a precise measurement of heliumlike resonances and fine structure. C1 [Chantler, C. T.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Laming, J. M.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Silver, J. D.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Dietrich, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mokler, P. H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Mokler, P. H.] Gesell Schwerionenforsch GSI, D-6100 Darmstadt, Germany. [Finch, E. C.] Trinity Coll Dublin, Dept Pure & Appl Phys, Dublin, Ireland. [Rosner, S. D.] Univ Western Ontario, London, ON N6H 3K7, Canada. RP Chantler, CT (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM chantler@unimelb.edu.au RI Chantler, Christopher/D-4744-2013 OI Chantler, Christopher/0000-0001-6608-0048 NR 122 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022508 DI 10.1103/PhysRevA.80.022508 PG 28 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200080 ER PT J AU Gidofalvi, G Mazziotti, DA AF Gidofalvi, Gergely Mazziotti, David A. TI Direct calculation of excited-state electronic energies and two-electron reduced density matrices from the anti-Hermitian contracted Schrodinger equation SO PHYSICAL REVIEW A LA English DT Article ID IRREDUCIBLE BRILLOUIN CONDITIONS; DETERMINING QUANTUM ENERGIES; WAVE-FUNCTIONS; CONFIGURATION-INTERACTION; APPROXIMATE SOLUTION; CUMULANT EXPANSION; LOWER-ORDER; BASIS-SETS; GEOMETRY; SYSTEMS AB Direct calculation of the ground-state two-electron reduced density matrix (2-RDM) and its energy has recently been achieved for many-electron atoms and molecules by solving the anti-Hermitian part of the contracted Schrodinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)]. In this paper the ACSE method is extended to computing the 2-RDMs and energies of excited states without the many-electron wave function. The contracted Schrodinger equation (CSE) is an important ingredient for excited-state 2-RDM methods because it is a stationary-state condition for both ground and excited states. We develop the theoretical framework for the ACSE as a stationary-state condition through its connections to the CSE and the Schrodinger equation. As in previous ground-state calculations, the indeterminacy of the ACSE is removed by reconstructing its 3-RDM as a functional of its 2-RDM through a cumulant theory for RDMs [D. A. Mazziotti, Chem. Phys. Lett. 289, 419 (1998)]. We calculate the initial 2-RDM from a multiconfiguration self-consistent-field calculation that includes multireference electron correlation, which can be especially important for excited states. The excited-state ACSE method is applied to computing absolute excited-state energies and vertical excitation energies of the molecules HF, H(2)O, and N(2) as well as ground and excited potential-energy curves of HF. Comparisons are made to traditional multireference methods as well as full configuration interaction. Computed excited-state 2-RDMs nearly satisfy necessary N-representability conditions. C1 [Gidofalvi, Gergely; Mazziotti, David A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Gidofalvi, Gergely; Mazziotti, David A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Gidofalvi, Gergely] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gidofalvi, G (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM damazz@uchicago.edu FU NSF [0644888]; Henry-Camille Dreyfus Foundation; David-Lucile Packard Foundation; Microsoft FX A. M. expresses his appreciation to Dudley Herschbach, Herschel Rabitz, and Alexander Mazziotti for their support and encouragement. G. G. acknowledges support from the Argonne National Laboratory. D. A. M. gratefully acknowledges the NSF (Grant No. 0644888), the Henry-Camille Dreyfus Foundation, the David-Lucile Packard Foundation, and Microsoft for their support. NR 80 TC 26 Z9 27 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022507 DI 10.1103/PhysRevA.80.022507 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200079 ER PT J AU Hu, SX Collins, LA Schneider, BI AF Hu, S. X. Collins, L. A. Schneider, B. I. TI Attosecond photoelectron microscopy of H-2(+) SO PHYSICAL REVIEW A LA English DT Article ID DEPENDENT SCHRODINGER-EQUATION; LASER-PULSES; ELECTRON-CORRELATION; DOUBLE-IONIZATION; IONIZED CLUSTERS; MOLECULES; FIELD; DISSOCIATION; DYNAMICS; HYDROGEN AB We present a numerical study of the ultrafast ionization dynamics of H-2(+) exposed to attosecond extreme ultraviolet (xuv) pulses that goes beyond the Born-Openheimer approximation. The four-dimensional, time-dependent Schrodinger equation was solved using a generalization of the finite-element discrete-variable-representation/real-space-product technique used in our previous calculations to include the dynamical motion of the nuclei. This has enabled us to expose the target to any polarized light at arbitrary angles with respect to the molecular axis. Calculations have been performed at different angles and photon energies ((h) over bar omega = 50 eV up to 630 eV) to investigate the energy and orientation dependence of the photoionization probability. A strong orientation dependence of the photoionization probability of H-2(+) was found at a photon energy of (h) over bar omega = 50 eV. At this energy, we found that the ionization probability is three times larger in the perpendicular polarization than in the parallel case. These observations are explained by the different geometric "cross sections" seen by the photoejected electron as it leaves the molecule. This ionization anisotropy vanishes at the higher-photon energy of (h) over bar omega >= 170 eV. When these higher-energy xuv pulses are polarized perpendicular to the internuclear axis, a "double-slit-like" interference pattern is observed. However, we find that the diffraction angle only approaches the classical formula phi(n)= sin(-1) (n lambda(e)/R-0), where n is the diffraction order, lambda(e) is the released electron wavelength, and R-0 is the internuclear distance, when n lambda(e) becomes less than 65% of R-0. These results illustrate the possibility of employing attosecond pulses to perform photoelectron microscopy of molecules. C1 [Hu, S. X.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Schneider, B. I.] Natl Sci Fdn, Off Cyberinfrastruct, Arlington, VA 22230 USA. [Schneider, B. I.] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. RP Hu, SX (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM shu@lle.rochester.edu RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 FU U.S. Department of Energy [DE-FC52-08NA28302, DE-AC52-06NA25396]; University of Rochester; New York State Energy Research and Development Authority FX This work was supported by the U.S. Department of Energy, Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. S. X. H is grateful for the support from the Laboratory for Laser Energetics at the University of Rochester. The Los Alamos National Laboratory (LANL) is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Calculations performed under Institutional Computing at LANL on the Coyote and Lobo platforms. NR 53 TC 35 Z9 35 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 023426 DI 10.1103/PhysRevA.80.023426 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200137 ER PT J AU Messina, R Dalvit, DAR Neto, PAM Lambrecht, A Reynaud, S AF Messina, Riccardo Dalvit, Diego A. R. Maia Neto, Paulo A. Lambrecht, Astrid Reynaud, Serge TI Dispersive interactions between atoms and nonplanar surfaces SO PHYSICAL REVIEW A LA English DT Article ID ROUGH DIELECTRIC SURFACES; ELECTROMAGNETIC-WAVES; QUANTUM ELECTRODYNAMICS; VANDERWAALS FORCES; GENERAL-THEORY; CASIMIR FORCE; SCATTERING; MIRRORS AB We calculate the dispersive force between a ground-state atom and a nonplanar surface. We present explicit results for a corrugated surface, derived from the scattering approach at first order in the corrugation amplitude. A variety of analytical results in different limiting cases, including the van der Waals and Casimir-Polder regimes, is derived. We compute numerically the exact first-order dispersive potential for arbitrary separation distances and corrugation wavelengths for a rubidium atom on top of a silicon or gold corrugated surface. We discuss in detail the inadequacy of the proximity force approximation, and present a simple but adequate approximation for computing the potential. C1 [Messina, Riccardo; Lambrecht, Astrid; Reynaud, Serge] UPMC, CNRS, ENS, Lab Kastler Brossel, F-75252 Paris 05, France. [Messina, Riccardo] Univ Palermo, Dipartimento Sci Fis & Astron, I-90123 Palermo, Italy. [Messina, Riccardo] CNSIM, I-90123 Palermo, Italy. [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Maia Neto, Paulo A.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, Brazil. RP Messina, R (reprint author), UPMC, CNRS, ENS, Lab Kastler Brossel, Case 74,Campus Jussieu, F-75252 Paris 05, France. RI Messina, Riccardo/F-4750-2012; Fluidos Complexos, INCT/H-9172-2013; Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222 FU Ministero dell'Universita e della Ricerca Scientifica e Tecnologica; Comitato Regionale di Ricerche Nucleari e di Struttura della Materia; CNPq; CAPES; FAPERJ; French Carnot Institute LETI; U.S. Department of Energy; NSF [PHY05-51164] FX We are grateful to James Babb for providing us with the dynamic polarizability data for rubidium. R. M. acknowledges partial financial support by Ministero dell'Universita e della Ricerca Scientifica e Tecnologica and by Comitato Regionale di Ricerche Nucleari e di Struttura della Materia. P.A.M.N. thanks CNPq, CAPES, and FAPERJ for financial support, and ENS for a visiting professor position. A. L. acknowledges financial support from the French Carnot Institute LETI. D. A. R. D acknowledges financial support from the U.S. Department of Energy through the LANL/LDRD Program. Part of this work was carried out at the Kavli Institute for Theoretical Physics, with support from NSF Grant No. PHY05-51164. NR 61 TC 39 Z9 39 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022119 DI 10.1103/PhysRevA.80.022119 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200031 ER PT J AU Piazza, F Collins, LA Smerzi, A AF Piazza, F. Collins, L. A. Smerzi, A. TI Vortex-induced phase-slip dissipation in a toroidal Bose-Einstein condensate flowing through a barrier SO PHYSICAL REVIEW A LA English DT Article ID SUPERFLUID-HELIUM; TRANSITION; HE-4; GAS AB We study superfluid dissipation due to phase slips for a Bose-Einstein condensate flowing through a repulsive barrier inside a torus. The barrier is adiabatically raised across the annulus, while the condensate flows with a finite quantized angular momentum. At a critical height, a vortex moves from the inner region and reaches the barrier to eventually circulate around the annulus. At a higher critical height, an antivortex also enters into the torus from the outer region. Both vortex and antivortex decrease the total angular momentum by leaving behind a 2 pi phase slip. When they collide and annihilate or orbit along the same loop, the condensate suffers a global 2 pi phase slip, and the total angular momentum decreases by one quantum. In hydrodynamic regime, the instability sets in when the local superfluid velocity equals the sound speed inside the barrier region. C1 [Piazza, F.; Smerzi, A.] Univ Trent, Dipartimento Fis, I-38050 Povo, Italy. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Piazza, F.; Smerzi, A.] Univ Trent, CNR, INFM BEC Ctr, I-38050 Povo, Italy. RP Piazza, F (reprint author), Univ Trent, Dipartimento Fis, I-38050 Povo, Italy. RI Piazza, Francesco/H-3840-2012 OI Piazza, Francesco/0000-0003-1332-6627 FU (U.S.) Department of Energy [DE-AC52-06NA25396] FX We would like to thank B. Schneider, F. Dalfovo, L. Pitaevskii, and S. Stringari for helpful discussions and Dr. S. Hu for assistance with the 3D GPE program. We acknowledge useful exchanges with W. Phillips, S. Muniz, A. Ramanathan, K. Helmerson, and P. Clade. The Los Alamos National Security, LLC for the National Nuclear Security Administration of the (U.S.) Department of Energy under Contract No. DE-AC52-06NA25396. NR 36 TC 33 Z9 33 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 021601 DI 10.1103/PhysRevA.80.021601 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200003 ER PT J AU Sau, JD Leslie, SR Stamper-Kurn, DM Cohen, ML AF Sau, Jay D. Leslie, S. R. Stamper-Kurn, D. M. Cohen, Marvin L. TI Theory of domain formation in inhomogeneous ferromagnetic dipolar condensates within the truncated Wigner approximation SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATE; DYNAMICS; SPIN-1 AB Recent experimental studies of Rb-87 spinor Bose Einstein condensates have shown the existence of a magnetic field driven quantum phase transition accompanied by structure formation on the ferromagnetic side of the transition. In this theoretical study we examine the dynamics of the unstable modes following the transition within the framework of the semiclassical truncated Wigner approximation. In the process we present a systematic study of the effects of the trap, nonlinearities, finite temperature, and dipole-dipole interactions. Starting from an initial state which includes quantum fluctuations, we attempt to make quantitative comparisons with recent experimental data on this system by combining results presented here with those presented previously [S. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen, and D. M. Stamper-Kurn, Phys. Rev. A 79, 043631 (2009)]. In the process we estimate the contribution of quantum zero-point fluctuations to the domain formation with quantitative accuracy and find discrepancies between the calculations and experiments at the quantitative level, despite the qualitative agreement between theory and experiment. We discuss the possible origins of these discrepancies. Finally, using the strong anisotropy of the trap, we propose ways to observe directly the effects of dipole-dipole interactions on the spinor condensate dynamics. C1 [Sau, Jay D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Sau, Jay D.; Stamper-Kurn, D. M.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Leslie, S. R.; Stamper-Kurn, D. M.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Sau, JD (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM jaydsau@umd.edu RI Stamper-Kurn, Dan/B-5442-2015; Leslie, Sabrina/M-3626-2016 OI Stamper-Kurn, Dan/0000-0002-4845-5835; FU NSF; U.S Department of Energy [DE-AC02-05CH11231]; DARPA's OLE Program; LDRD Program at LBNL; NSERC FX This work was supported by the NSF, the U.S Department of Energy under Contract No. DE-AC02-05CH11231, DARPA's OLE Program, and the LDRD Program at LBNL. S. R. L. acknowledges support from the NSERC. Computational resources have been provided by NSF through TeraGrid resources at SDSC, DOE at the NERSC, TACC, Indiana University. NR 26 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 023622 DI 10.1103/PhysRevA.80.023622 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200159 ER PT J AU Wu, Y Qi, YY Yan, J Wang, JG Li, Y Buenker, RJ Kato, D Krstic, PS AF Wu, Y. Qi, Y. Y. Yan, J. Wang, J. G. Li, Y. Buenker, R. J. Kato, D. Krstic, P. S. TI Low-energy electron capture in collisions of C3+ with He SO PHYSICAL REVIEW A LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; CHARGE-TRANSFER; ATOMIC-HYDROGEN; CI CALCULATIONS; PLASMA RECOMBINATION; MATRIX-ELEMENTS; DIVERTOR PLASMA; IONS; HELIUM AB Charge transfer processes due to collisions of ground-state C3+ (1s(2)2s S-2) ions with He atoms are studied using the quantum-mechanical molecular-orbital close-coupling method for energies in the range 10(-4)-2 x 10(3) eV/u. The ab initio adiabatic potentials and radial couplings utilized in the calculations are obtained from the multireference single- and double-excitation configuration interaction approach. Total and state-selective single-electron capture cross sections and rate coefficients are calculated and compared with the available experimental and theoretical data. A good agreement is found between the measured cross sections and the present calculations. However, the previous calculations of total rate coefficients using the Landau-Zener model are one to two orders of magnitude smaller than the present results. C1 [Wu, Y.; Qi, Y. Y.; Yan, J.; Wang, J. G.] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China. [Qi, Y. Y.] Jiaxing Univ, Sch Elect Engn, Jiaxing 314001, Peoples R China. [Li, Y.; Buenker, R. J.] Berg Univ Wuppertal, Fachbereich Math & Nat Wissensch C, D-42097 Wuppertal, Germany. [Kato, D.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Krstic, P. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wu, Y (reprint author), Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China. FU National Natural Science Foundation of China [10604011, 10734140, 10008803, 10878008]; National Key Laboratory of Computational Physics Foundation [9140C6904030808]; JSPS-China FX The authors would like to thank Professor R. K. Janev for helpful discussions. This work was partly supported by the National Natural Science Foundation of China (Grants No. 10604011, No. 10734140, No. 10008803, and No. 10878008) and the National Key Laboratory of Computational Physics Foundation (Grant No. 9140C6904030808). Y. W. would also like to acknowledge support from the JSPS-China core- university program. NR 43 TC 1 Z9 1 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022715 DI 10.1103/PhysRevA.80.022715 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200106 ER PT J AU Abbamonte, P Reed, JP Joe, YI Gan, Y Casa, D AF Abbamonte, P. Reed, J. P. Joe, Y. I. Gan, Yu Casa, D. TI Implicit spatial averaging in inversion of inelastic x-ray scattering data SO PHYSICAL REVIEW B LA English DT Article DE graphite; X-ray scattering ID SCIENCE AB Inelastic x-ray scattering (IXS) is now a widely used technique for studying the dynamics of electrons in condensed matter. We previously posed a solution to the phase problem for IXS [P. Abbamonte , Phys. Rev. Lett. 92, 237401 (2004)] that allows explicit reconstruction of the density propagator of a system. The propagator represents, physically, the response of the system to an idealized, point perturbation, so provides direct, real-time images of electron motion with attosecond time resolution and A degrees-scale spatial resolution. Here we show that the images generated by our procedure, as it was originally posed, are spatial averages over all source locations. Within an idealized, atomiclike model, we show that in most cases a simple relationship to the complete, unaveraged response can still be determined. We illustrate this concept for recent IXS measurements of single-crystal graphite. C1 [Abbamonte, P.; Reed, J. P.; Joe, Y. I.; Gan, Yu] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Abbamonte, P.; Reed, J. P.; Joe, Y. I.; Gan, Yu] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Casa, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Abbamonte, P (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RI Casa, Diego/F-9060-2016 FU U.S. Department of Energy [DE-FG02-07ER46459, DE-AC0206CH11357] FX We thank David Cahill, Gerard C. L. Wong, and Robert Coridan for helpful discussions, and Xiaoqian Zhang for a careful reading of the manuscript. This work was funded by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under Grant No. DE-FG02-07ER46459. Use of the Advanced Photon Source was supported by DOE under Contract No. DE-AC0206CH11357. NR 18 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054302 DI 10.1103/PhysRevB.80.054302 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500035 ER PT J AU Analytis, JG McDonald, RD Chu, JH Riggs, SC Bangura, AF Kucharczyk, C Johannes, M Fisher, IR AF Analytis, James G. McDonald, Ross D. Chu, Jiun-Haw Riggs, Scott C. Bangura, Alimamy F. Kucharczyk, Chris Johannes, Michelle Fisher, I. R. TI Quantum oscillations in the parent pnictide BaFe2As2: Itinerant electrons in the reconstructed state SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; barium compounds; Fermi surface; ground states; high-temperature superconductors; iron compounds; magnetic superconductors AB We report quantum-oscillation measurements that enable the direct observation of the Fermi surface of the low-temperature ground state of BaFe2As2. From these measurements we characterize the low-energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface. C1 [Analytis, James G.; Chu, Jiun-Haw; Kucharczyk, Chris; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Analytis, James G.; Chu, Jiun-Haw; Kucharczyk, Chris; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [McDonald, Ross D.; Riggs, Scott C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bangura, Alimamy F.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Johannes, Michelle] USN, Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA. [Analytis, James G.; Chu, Jiun-Haw; Kucharczyk, Chris; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Analytis, JG (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RI McDonald, Ross/H-3783-2013; OI McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739; Kucharczyk, Christopher/0000-0002-4712-839X FU Department of Energy; Office of Basic Energy Sciences [DE-AC02-76SF00515]; EPSRC [EP/F038836/1]; NSF; state of Florida FX The authors would like to thank Nigel Hussey, Antony Carrington, and Igor Mazin for useful comments on this work before publication. This work is supported by the Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515 and partly funded by EPSRC under Grant No. EP/F038836/1. Work performed at the NHMFL was primarily funded by NSF and the state of Florida. NR 23 TC 80 Z9 80 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064507 DI 10.1103/PhysRevB.80.064507 PG 5 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800063 ER PT J AU Andersson, DA Watanabe, T Deo, C Uberuaga, BP AF Andersson, D. A. Watanabe, T. Deo, C. Uberuaga, B. P. TI Role of di-interstitial clusters in oxygen transport in UO2+x from first principles SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; diffusion; interstitials; Monte Carlo methods; uranium compounds ID GENERALIZED GRADIENT APPROXIMATION; TEMPERATURE-ACCELERATED DYNAMICS; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; AUGMENTED-WAVE METHOD; URANIUM-DIOXIDE; ELECTRONIC-STRUCTURE; SELF-DIFFUSION; BASIS-SET; DEFECTS AB Using density functional theory, we examine a recently discovered structure for di-interstitial oxygen clusters in UO2+x in which three oxygen ions share one lattice site. This di-interstitial cluster exhibits a fast diffusion pathway; the migration barrier for these clusters is approximately half of that for mono-interstitials. Using kinetic Monte Carlo, we calculate the diffusivity of oxygen with and without the di-interstitial mechanism as a function of x and find that oxygen transport is significantly increased for higher values of x when the di-interstitial mechanism is included, agreeing much more closely with experimental data. These results emphasize the importance of clustering phenomena in UO2+x and have implications for the evolution of UO2+x. C1 [Andersson, D. A.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Watanabe, T.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Deo, C.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. RP Andersson, DA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RI Watanabe, Taku/C-7137-2011 OI Watanabe, Taku/0000-0002-7948-7573 FU DOE Nuclear Energy Fuel Cycle Research and Development (FCRD); Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program; Fuels Integrated Performance and Safety Code (IPSC) [LA0915090108]; OBES Division of Chemical Sciences [W-7405]; Seaborg Institiute at Los Alamos National Laboratory; Los Alamos National Security, LLC; National Nuclear Security Administration of the U. S. DOE [DE-AC52 06NA25396]; DOE NERI-C [DEFG07-14891] FX Work at Los Alamos National Laboratory was funded by DOE Nuclear Energy Fuel Cycle Research and Development (FCRD) Campaign, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Fuels Integrated Performance and Safety Code (IPSC) project under the AFCI Modeling and Simulation work package No. LA0915090108 as well as OBES Division of Chemical Sciences under Contract No. W-7405. D. A. A. also acknowledges support from the Seaborg Institiute at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. DOE under Contract No. DE-AC52 06NA25396. C. D. was supported by DOE NERI-C (Grant No. DEFG07-14891). NR 43 TC 38 Z9 38 U1 4 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 060101 DI 10.1103/PhysRevB.80.060101 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800001 ER PT J AU Berdiyorov, GR Yu, SH Xiao, ZL Peeters, FM Hua, J Imre, A Kwok, WK AF Berdiyorov, G. R. Yu, S. H. Xiao, Z. L. Peeters, F. M. Hua, J. Imre, A. Kwok, W. K. TI Effect of sample geometry on the phase boundary of a mesoscopic superconducting loop SO PHYSICAL REVIEW B LA English DT Article DE electrical resistivity; Ginzburg-Landau theory; mesoscopic systems; nanostructured materials; niobium; numerical analysis; phase diagrams; superconducting materials ID SURFACE SUPERCONDUCTIVITY; CYLINDER; ANTIVORTICES; QUANTIZATION; STATES; LEADS; FIELD; RINGS AB We studied the effect of sample geometry on the evolution of the superconducting state in nanoscale Nb circular and square loops by transport measurements. A multistage resistive transition with temperature is found for both samples, which is related to the effect of contact leads made from the same superconducting material. The H-T phase diagrams close to T(c0) show clear periodic oscillations on top of a parabolic background, i.e., Little-Parks effect. However, the amplitude of the oscillations decreases faster in the circular loop compared to the one in the square sample. Numerical simulations are conducted within the nonlinear Ginzburg-Landau theory to show the effect of sample geometry on the nucleation of superconductivity in superconducting loop structures. C1 [Berdiyorov, G. R.; Peeters, F. M.] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium. [Berdiyorov, G. R.; Yu, S. H.; Xiao, Z. L.; Hua, J.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Xiao, Z. L.; Hua, J.; Imre, A.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Imre, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Berdiyorov, GR (reprint author), Univ Antwerp, Dept Fys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM zxiao@niu.edu; francois.peeters@ua.ac.be RI Joshi-Imre, Alexandra/A-2912-2010; YU, SUHONG/G-7532-2015; CMT, UAntwerpen Group/A-5523-2016 OI Joshi-Imre, Alexandra/0000-0002-4271-1623; YU, SUHONG/0000-0003-2554-6520; FU National Science Foundation (NSF) [DMR0605748]; U. S. Department of Energy [DE-AC02-06CH11357, DE-FG02-06ER46334]; Flemish Science Foundation; Belgian Science Policy (IAP); FWO-Vlaanderen FX This material is based on research supported by the National Science Foundation (NSF) under Grant No. DMR0605748 and the U. S. Department of Energy Contract No. DE-AC02-06CH11357. The sample fabrication work was supported by the U. S. Department of Energy Award No. DE-FG02-06ER46334. The electron-beam and FIB patternings were performed at Argonne's Center for Nanoscale Materials (CNM). The theoretical part of the work is supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). G. R. B. acknowledges support from FWO-Vlaanderen. NR 33 TC 10 Z9 10 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064511 DI 10.1103/PhysRevB.80.064511 PG 6 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800067 ER PT J AU Biswas, RR Balatsky, A AF Biswas, Rudro R. Balatsky, Alexander TI Quasiparticle interference and Landau level spectroscopy in graphene in the presence of a strong magnetic field SO PHYSICAL REVIEW B LA English DT Article DE electronic density of states; graphene; Landau levels; quasiparticles; scanning tunnelling spectroscopy AB We present a calculation of the modulation in the local density of electronic states caused by an impurity in graphene in the presence of an external magnetic field. We focus on the spatial Fourier transform (FT) of this modulation around the impurity. The FT due to the low-energy quasiparticles is found to be nonzero over the reciprocal lattice (with a three-site basis) corresponding to graphene. At these lattice spots the FT exhibits well-defined features at wave vectors that are multiples of the inverse cyclotron orbit diameter and is cut off at the wave vector corresponding to the energy of observation. Scanning tunneling spectroscopy on graphene and the energy-resolved FT fingerprint obtained therefrom may be used to observe the quasiparticle interference of Dirac particles in graphene in the presence of magnetic field. C1 [Biswas, Rudro R.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Biswas, Rudro R.; Balatsky, Alexander] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, Alexander] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Biswas, RR (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM rrbiswas@physics.harvard.edu FU US DOE [DE-AC52-06NA25396]; LANL [UCOP-27-2009] FX We acknowledge useful discussions with V. Brar, M. Crommie, H. Dahal, B. I. Halperin, J. Lau, S. Sachdev, T. Wehling, N. C. Yeh, and Y. Zhang. We are particularly grateful to H. Manoharan and L. Mattos for useful discussions and for sharing their preliminary STM data with us. This work was performed, in part, at the CINT, a US DOEBES facility at LANL (Ref. 15) (administered using US DOE Contract No. DE-AC52-06NA25396). This work was also supported by UCOP-27-2009 funds at LANL. R. R. B. would also like to acknowledge support from the Harvard University Physics Department. NR 12 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 081412 DI 10.1103/PhysRevB.80.081412 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300032 ER PT J AU Canfield, PC Bud'ko, SL Ni, N Yan, JQ Kracher, A AF Canfield, P. C. Bud'ko, S. L. Ni, Ni Yan, J. Q. Kracher, A. TI Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; barium compounds; cobalt; copper; doping; magnetic transitions; nickel; solid-state phase transformations; superconducting materials; superconducting transitions; valency AB Study and comparison of over 30 examples of electron-doped BaFe2As2 for transition metal (TM)=Co, Ni, Cu, and (Co/Cu mixtures) have led to an understanding that the suppression of the structural/antiferromagnetic phase transition to low-enough temperature in these compounds is a necessary condition for superconductivity but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c axis) the superconducting dome exists over a limited range of values of the number of valence electrons added by doping (or values of the a/c ratio). By choosing which combination of dopants is used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of a lower-temperature superconducting dome. C1 [Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We would like to thank N. H. Sung for help in the samples growth. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 16 TC 146 Z9 146 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 060501 DI 10.1103/PhysRevB.80.060501 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800010 ER PT J AU Choi, HJ Louie, SG Cohen, ML AF Choi, Hyoung Joon Louie, Steven G. Cohen, Marvin L. TI Prediction of superconducting properties of CaB2 using anisotropic Eliashberg theory SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; calcium compounds; density functional theory; electron-phonon interactions; Fermi surface; pseudopotential methods; specific heat; strong-coupling superconductors; superconducting energy gap; superconducting materials; superconducting transition temperature ID TOTAL-ENERGY; MGB2; PSEUDOPOTENTIALS; DIBORIDES; SYSTEMS AB Superconducting properties of hypothetical simple hexagonal CaB2 are studied using the fully anisotropic Eliashberg formalism based on electronic and phononic structures and electron-phonon interactions, which are obtained from ab initio pseudopotential density-functional calculations. The superconducting transition temperature T-c, the superconducting energy gap Delta(k) on the Fermi surface, and the specific heat are obtained and compared with corresponding properties of MgB2. Our results suggest that CaB2 will have a higher T-c and a stronger two-gap nature, with a larger Delta(k) in the sigma bands but a smaller Delta(k) in the pi bands than MgB2. C1 [Choi, Hyoung Joon] Yonsei Univ, Dept Phys & IPAP, Seoul 120749, South Korea. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Choi, HJ (reprint author), Yonsei Univ, Dept Phys & IPAP, Seoul 120749, South Korea. EM h.j.choi@yonsei.ac.kr RI Choi, Hyoung Joon/N-8933-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597 FU KRF [KRF2007-314-C00075]; KOSEF [R012007-000-20922-0]; NSF [DMR07-05941]; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; U. S. Department of Energy [DE-AC02-05CH11231]; KISTI [KSC-2008S02-0004] FX This work was supported by the KRF (Grant No. KRF2007-314-C00075), by the KOSEF under Grant No. R012007-000-20922-0, by NSF under Grant No. DMR07-05941, and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2008S02-0004 ), NSF through TeraGrid resources at SDSC, and DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 37 TC 9 Z9 9 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064503 DI 10.1103/PhysRevB.80.064503 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800059 ER PT J AU Chui, ST Novosad, V Bader, SD AF Chui, S. T. Novosad, V. Bader, S. D. TI Finite frequency response of small magnetic structures under an external static field SO PHYSICAL REVIEW B LA English DT Article DE magnetic structure; magnetisation reversal; spin waves; surface states AB We apply the Holstein-Primakoff and Bogoliubov transformations to compute the spin-wave states of small magnetic structures including the effect of the dipolar interaction. We found that as the film gets thicker, states with a significant q=0 component, are hybridized with states with higher Fourier components. In the presence of a static magnetic field opposite to the magnetization direction, surface states that are responsible for magnetization reversal are coupled to the extended states. The response function is increased by an order of magnitude. This suggests an intriguing scenario for assisted switching of the magnetization with an additional external ac field. C1 [Chui, S. T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Chui, S. T.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Novosad, V.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Chui, ST (reprint author), Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 FU U. S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-FG02-07ER46360] FX This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences under Contracts No. DE-AC02-06CH11357 (at Argonne) and No. DE-FG02-07ER46360 (at UD). NR 9 TC 1 Z9 1 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054419 DI 10.1103/PhysRevB.80.054419 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500056 ER PT J AU Demsar, J Kabanov, VV Alexandrov, AS Lee, HJ Bauer, ED Sarrao, JL Taylor, AJ AF Demsar, J. Kabanov, V. V. Alexandrov, A. S. Lee, H. J. Bauer, E. D. Sarrao, J. L. Taylor, A. J. TI Hot electron relaxation in the heavy-fermion Yb1-xLuxAl3 compound using femtosecond optical pump-probe spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; ballistic transport; doping; energy gap; excited states; heavy fermion systems; high-speed optical techniques; hot carriers; Kondo effect; lutetium alloys; time resolved spectra; ytterbium alloys ID ENERGY RELAXATION; DYNAMICS; YBAL3; AG AB Femtosecond time-resolved optical spectroscopy was used to systematically study photoexcited carrier relaxation dynamics in the intermediate-valence heavy-fermion system Yb1-xLuxAl3 (0 < x < 1). Given the demonstrated sensitivity of this experimental technique to the presence of the low-energy gaps in the charge excitation spectrum, the aim of this work was to study the effect of dilution of the Kondo lattice on its low-energy electronic structure. The results imply that in Yb1-xLuxAl3 the hybridization gap, resulting from hybridization of local moments and conduction electrons, persists up to 30% doping. Interestingly, below some characteristic, doping dependent temperature T-*(x) the relaxation-time divergence, governed by the relaxation bottleneck due to the presence of the indirect hybridization gap, is truncated. This observation is attributed to the competing ballistic transport of hot electrons out of the probed volume at low temperatures. The derived theoretical model accounts for both the functional form of relaxation dynamics below T-*(x), as well as the doping dependence of the low-temperature relaxation rate in Yb1-xLuxAl3. C1 [Demsar, J.; Kabanov, V. V.] Univ Konstanz, Phys Dept & Zukunftskolleg, D-78457 Constance, Germany. [Demsar, J.] Univ Konstanz, Ctr Appl Photon, D-78457 Constance, Germany. [Demsar, J.; Kabanov, V. V.] Jozef Stefan Inst, Complex Matter Dept, SI-1000 Ljubljana, Slovenia. [Alexandrov, A. S.] Univ Loughborough, Dept Phys, Loughborough LE11 3TU, Leics, England. [Lee, H. J.; Bauer, E. D.; Sarrao, J. L.; Taylor, A. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Demsar, J (reprint author), Univ Konstanz, Phys Dept & Zukunftskolleg, D-78457 Constance, Germany. RI Bauer, Eric/D-7212-2011; Demsar, Jure/B-5578-2008; Demsar, Jure/F-7243-2016; OI Demsar, Jure/0000-0003-4551-7444; Bauer, Eric/0000-0003-0017-1937 FU Alexander von Humboldt Foundation; Zukunftskolleg and Center for Applied Photonics at the University of Konstanz; Laboratory Directed Research and Development program at Los Alamos National Laboratory; Center for Integrated Nanotechnologies at LANL FX This work was supported by the Alexander von Humboldt Foundation, Zukunftskolleg and Center for Applied Photonics at the University of Konstanz, the Laboratory Directed Research and Development program at Los Alamos National Laboratory, and the Center for Integrated Nanotechnologies at LANL. NR 25 TC 8 Z9 8 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085121 DI 10.1103/PhysRevB.80.085121 PG 6 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300056 ER PT J AU Diallo, SO Azuah, RT Kirichek, O Taylor, JW Glyde, HR AF Diallo, S. O. Azuah, R. T. Kirichek, O. Taylor, J. W. Glyde, H. R. TI Limits on Bose-Einstein condensation in confined solid He-4 SO PHYSICAL REVIEW B LA English DT Article DE Bose-Einstein condensation; neutron diffraction; solid helium; superfluidity ID SUPERSOLID HELIUM; TRANSITION; PHASE; STATE AB We report neutron-scattering measurements of the Bose-Einstein condensate (BEC) fraction, n(0), in solid helium that has a large surface to volume (S/V) ratio. Rittner and Reppy observed large superfluid fractions, rho(S)/rho, in large S/V samples with rho(S)/rho approximately proportional to S/V, up to rho(S)/rho=20% at S/V=150 cm(-1). Our goal is to reveal whether there is BEC associated with these large rho(S)/rho. Our solid volume is 100 cm(3) of commercial grade helium at 41 bars pressure (T-c similar or equal to 200 mK) in a cell that has S/V=40 cm(-1) that cannot be quenched rapidly. We find no evidence for BEC or algebraic off diagonal long-range order with n(0)=0.0 +/- 0.3% at 65 mK. C1 [Diallo, S. O.; Glyde, H. R.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Diallo, S. O.] US DOE, Ames Lab, Ames, IA 50011 USA. [Azuah, R. T.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Azuah, R. T.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Kirichek, O.; Taylor, J. W.] Rutherford Appleton Lab, ISIS Spallat Neutron Source, Didcot OX11 0QX, Oxon, England. RP Diallo, SO (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RI Kirichek, Oleg/C-2660-2013; Diallo, Souleymane/B-3111-2016 OI Diallo, Souleymane/0000-0002-3369-8391 FU U. S. DOE, Office of Science [DE-FG02-03ER46038] FX We thank Richard Down for valuable technical assistance at ISIS. This work was supported by the U. S. DOE, Office of Science (Grant No. DE-FG02-03ER46038). NR 37 TC 12 Z9 12 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 060504 DI 10.1103/PhysRevB.80.060504 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800013 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI Onset of three-dimensional Ir islands on a graphene/Ir(111) template SO PHYSICAL REVIEW B LA English DT Article DE adsorbed layers; density functional theory; discontinuous metallic thin films; graphene; iridium; metal clusters ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRON-GAS; BASIS-SET; SURFACES; METALS AB In agreement with observation, local-density approximation (LDA) optimization of one- and two-layer clusters of Ir atoms, adsorbed periodically on a graphene/Ir(111) moireacute, shows that the two-layer clusters only become favorable energetically once the clusters comprise as many as 26 adatoms. Heretofore it was known that the LDA predicts smaller islands to grow flat. In showing that the LDA captures the transition to three dimensionality, the present results support its use broadly to analyze Ir island formation on the graphene-covered metal. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, DOE. Sandia is operated by the Lockheed Martin Co. for the National Nuclear Security Administration, U.S. Department of Energy under Contract No. DE-AC04-94AL85000. VASP was developed at T. U. Wien's Institut fur Theoretische Physik. NR 23 TC 30 Z9 30 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085412 DI 10.1103/PhysRevB.80.085412 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300091 ER PT J AU Fishman, RS Okamoto, S Shum, WW Miller, JS AF Fishman, Randy S. Okamoto, Satoshi Shum, William W. Miller, Joel S. TI Giant antiferromagnetically coupled moments in a molecule-based magnet with interpenetrating lattices SO PHYSICAL REVIEW B LA English DT Article DE magnetic anisotropy; magnetic moments; metamagnetism; molecular magnetism; organic compounds; paramagnetic-antiferromagnetic transitions ID METAMAGNETIC PHASE; BUILDING-BLOCKS; 3-D; MONOCATION; DIAGRAM; STATE AB The molecule-based magnet [Ru(2)(O(2)CMe)(4)](3)[Cr(CN)(6)] contains two interpenetrating sublattices that behave like giant antiferromagnetically coupled moments with strong anisotropy. Because the sublattice moments only weakly depend on field, the volume of magnetically correlated clusters can be directly estimated from the field and temperature dependence of the magnetization while a polycrystalline sample undergoes a metamagnetic transition between antiferromagnetic and paramagnetic states. C1 [Fishman, Randy S.; Okamoto, Satoshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shum, William W.; Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; FU U.S. Department of Energy; U.S. National Science Foundation [0553573] FX We would like to acknowledge useful conversations with Bruce Gaulin. This research was sponsored by the Division of Materials Science and Engineering of the U.S. Department of Energy and by the U.S. National Science Foundation (Grant No. 0553573). NR 23 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064401 DI 10.1103/PhysRevB.80.064401 PG 5 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800030 ER PT J AU Glennon, JJ Tang, R Buhro, WE Loomis, RA Bussian, DA Htoon, H Klimov, VI AF Glennon, J. J. Tang, R. Buhro, W. E. Loomis, R. A. Bussian, D. A. Htoon, H. Klimov, V. I. TI Exciton localization and migration in individual CdSe quantum wires at low temperatures SO PHYSICAL REVIEW B LA English DT Article DE cadmium compounds; electronic density of states; excitons; II-VI semiconductors; photoluminescence; semiconductor quantum wires; wide band gap semiconductors ID ENERGY-TRANSFER; CDS1-XSEX ALLOYS; STATES; DOTS; PHOTOLUMINESCENCE; CONFINEMENT; NANOWIRES; ELECTRON; DISORDER AB Low-temperature (< 40 K) photoluminescence (PL) spectra of individual CdSe nanocrystal quantum wires exhibit narrow (< 5 meV) isolated peaks spanning a range < 50 meV. We attribute these features to emission of excitons localized in shallow (a few meV deep) tight potential minima superimposed on longer-scale and larger-amplitude variations of the potential energy. Spectrally resolved PL dynamics reveal decreasing exciton-decay rates with decreasing emission energy. These observations are consistent with exciton relaxation within a manifold of localization sites characterized by an exponential density of states. C1 [Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A.] Washington Univ, Ctr Mat Innovat, St Louis, MO 63130 USA. [Bussian, D. A.; Htoon, H.; Klimov, V. I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Bussian, D. A.; Htoon, H.; Klimov, V. I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Glennon, JJ (reprint author), Washington Univ, Dept Chem, 1 Brookings Dr,CB 1134, St Louis, MO 63130 USA. EM loomis@wustl.edu; klimov@lanl.gov RI Tang, Rui/B-6556-2013; OI Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 FU David and Lucile Packard Foundation; National Science Foundation [CHE-0518427]; Center for Materials Innovation at Washington University; Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, Office of Science; U. S. Department of Energy (DOE) FX This work was supported by the David and Lucile Packard Foundation, the National Science Foundation (Grant No. CHE-0518427), the Center for Materials Innovation at Washington University, and the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (DOE). Single-NQW measurements were conducted at the Center for Integrated Nanotechnologies (CINT) operated jointly for DOE by Los Alamos and Sandia National Laboratories as part of the CINT user program. NR 23 TC 20 Z9 20 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 081303 DI 10.1103/PhysRevB.80.081303 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300013 ER PT J AU Gorria, P Martinez-Blanco, D Perez, MJ Blanco, JA Hernando, A Laguna-Marco, MA Haskel, D Souza-Neto, N Smith, RI Marshall, WG Garbarino, G Mezouar, M Fernandez-Martinez, A Chaboy, J Barquin, LF Castrillon, JAR Moldovan, M Alonso, JIG Zhang, JH Llobet, A Jiang, JS AF Gorria, Pedro Martinez-Blanco, David Perez, Maria J. Blanco, Jesus A. Hernando, Antonio Laguna-Marco, Maria A. Haskel, Daniel Souza-Neto, N. Smith, Ronald I. Marshall, William G. Garbarino, Gaston Mezouar, Mohamed Fernandez-Martinez, Alejandro Chaboy, Jess Fernandez Barquin, L. Rodriguez Castrillon, J. A. Moldovan, M. Garcia Alonso, J. I. Zhang, Jianzhong Llobet, Anna Jiang, J. S. TI Stress-induced large Curie temperature enhancement in Fe64Ni36 Invar alloy SO PHYSICAL REVIEW B LA English DT Article DE Curie temperature; ferromagnetic materials; high-pressure effects; high-temperature effects; Invar; iron alloys; lattice constants; magnetisation; magnetoelastic effects; neutron diffraction; nickel alloys; stress effects; X-ray diffraction ID FE-NI ALLOYS; MAGNETIC-PROPERTIES; SOLID-SOLUTIONS; NICKEL ALLOYS; PRESSURE; IRON; TRANSFORMATION; TRANSITION; DEPENDENCE; EXPANSION AB We have succeeded in increasing up to 150 K the Curie temperature in the Fe64Ni36 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds. C1 [Gorria, Pedro; Martinez-Blanco, David; Perez, Maria J.; Blanco, Jesus A.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Hernando, Antonio] UCM ADIF CSIC, Inst Magnetismo Aplicado, Madrid 28230, Spain. [Laguna-Marco, Maria A.; Haskel, Daniel; Souza-Neto, N.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Smith, Ronald I.; Marshall, William G.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Garbarino, Gaston; Mezouar, Mohamed] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Fernandez-Martinez, Alejandro] Univ Grenoble, LGIT, F-38041 Grenoble, France. [Fernandez-Martinez, Alejandro] CNRS, F-38041 Grenoble, France. [Fernandez-Martinez, Alejandro] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Chaboy, Jess] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Fernandez Barquin, L.] Univ Cantabria, Fac Ciencias, CITIMAC, E-39005 Santander, Spain. [Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.] Univ Oviedo, Dept Phys & Analyt Chem, E-33006 Oviedo, Spain. [Zhang, Jianzhong; Llobet, Anna] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Jiang, J. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gorria, P (reprint author), Univ Oviedo, Dept Fis, Calvo Sotelo S-N, E-33007 Oviedo, Spain. RI Llobet, Anna/B-1672-2010; Souza-Neto, Narcizo/G-1303-2010; Fernandez-Martinez, Alejandro/B-4042-2010; Laguna-Marco, M. A./G-8042-2011; Fernandez Barquin, Luis/L-1925-2014; Blanco, Jesus/L-6508-2014; Garbarino, Gaston/D-1807-2013; Hernando, Antonio/E-2105-2015; Alonso, Jose/H-6795-2015; Moldovan, Mariella/A-4294-2008; Gorria, Pedro/B-4924-2008; OI Souza-Neto, Narcizo/0000-0002-7474-8017; Fernandez-Martinez, Alejandro/0000-0001-5073-9629; Laguna-Marco, M. A./0000-0003-4069-0395; Fernandez Barquin, Luis/0000-0003-4722-3722; Blanco, Jesus/0000-0002-8054-1442; Alonso, Jose/0000-0002-8356-3866; Moldovan, Mariella/0000-0001-6697-4252; Gorria, Pedro/0000-0002-1908-2953; Zhang, Jianzhong/0000-0001-5508-1782 FU FEDER; Spanish MICINN [MAT2008-06542-C04]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357, DE-AC52-06NA25396] FX We thank ISIS, Lujan Neutron Scattering Center at LAN-SCE, APS and ESRF for the allocation of neutron and synchrotron beam time, and the SCT at the University of Oviedo for the high-resolution XRD facility. This work was partially supported by FEDER and the Spanish MICINN (Grant No. MAT2008-06542-C04). M. A. L-M acknowledges MICINN for Postdoctoral grant. Work at Argonne & Los Alamos National Laboratories was supported by the U. S. Department of Energy, Office of Science, under Contracts No. DE-AC02-06CH11357 and No. DE-AC52-06NA25396, respectively. NR 50 TC 44 Z9 44 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064421 DI 10.1103/PhysRevB.80.064421 PG 6 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800050 ER PT J AU Grobis, M Yamachika, R Wachowiak, A Lu, XH Crommie, MF AF Grobis, M. Yamachika, R. Wachowiak, A. Lu, Xinghua Crommie, M. F. TI Phase separation and charge transfer in a K-doped C-60 monolayer on Ag(001) SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; METAL-SURFACES; THIN-FILMS; C60; SUPERCONDUCTIVITY; PHOTOEMISSION; SPECTROSCOPY; ORIENTATION; FULLERIDES; AG(111) AB We have performed a scanning tunneling microscopy and spectroscopy study of potassium-doped C-60 monolayers (KxC60) on Ag(001) in the regime of x approximate to 1. Low-temperature annealing (640 K) leads to the formation of two well-ordered KxC60 phases that exhibit differing levels of electron charge transfer. Further annealing (710 K) distills out the higher electron-doped phase from the lower electron-doped phase, leaving behind a third C-60 phase completely devoid of K. Spectroscopic measurements indicate that the electron-doping level of the higher electron-doped KC60 phase is anomalously large. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Grobis, M (reprint author), Hitachi GST, San Jose, CA 95135 USA. RI Lu, Xinghua/F-2655-2010 FU U.S. Department of Energy [DE-AC03-76SF0098] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Science, Division of Material Sciences and Engineering, U.S. Department of Energy under Contract No. DE-AC03-76SF0098. NR 40 TC 7 Z9 7 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 073410 DI 10.1103/PhysRevB.80.073410 PG 4 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900022 ER PT J AU Haraldsen, JT Barnes, T Sinclair, JW Thompson, JR Sacci, RL Turner, JFC AF Haraldsen, J. T. Barnes, T. Sinclair, J. W. Thompson, J. R. Sacci, R. L. Turner, J. F. C. TI Magnetic properties of a Heisenberg coupled-trimer molecular magnet: General results and application to spin-1/2 vanadium clusters SO PHYSICAL REVIEW B LA English DT Article AB We report predictions for the energy eigenstates and inelastic neutron-scattering excitations of an isotropic Heisenberg hexamer consisting of general spin S and S' trimers. Specializing to spin-1/2 ions, we give analytic results for the energy excitations, magnetic susceptibility, and inelastic neutron-scattering intensities for this hexamer system. To examine this model further, we compare these calculations to the measured magnetic susceptibility of a vanadium material, which is considered to be well-defined magnetically as an isolated S=1/2 V4+ trimer model. Using our model, we determine the amount of intertrimer coupling that can be accommodated by the measured susceptibility and predict the inelastic neutron-scattering spectrum for comparison with future measurements. C1 [Haraldsen, J. T.; Barnes, T.; Sinclair, J. W.; Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Haraldsen, J. T.; Thompson, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Barnes, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Sacci, R. L.; Turner, J. F. C.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sacci, R. L.] Univ Victoria, Dept Chem, Victoria, BC V8W 2Y2, Canada. [Turner, J. F. C.] Univ Sussex, Dept Chem, Brighton BN1 9RH, E Sussex, England. RP Haraldsen, JT (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Sinclair, John/E-7692-2011; Haraldsen, Jason/B-9809-2012 OI Haraldsen, Jason/0000-0002-8641-5412 FU Division of Material Science and Engineering and the Division of Physics FX We thank the Joint Institute for Neutron Sciences for funding and support of this research. We would like to thank Marshall Luban and Jon Woodward for useful discussions. The research at Oak Ridge National Laboratory was sponsored by the Division of Material Science and Engineering and the Division of Physics. NR 19 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064406 DI 10.1103/PhysRevB.80.064406 PG 7 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800035 ER PT J AU Hemmida, M von Nidda, HAK Buttgen, N Loidl, A Alexander, LK Nath, R Mahajan, AV Berger, RF Cava, RJ Singh, Y Johnston, DC AF Hemmida, M. von Nidda, H. -A. Krug Buettgen, N. Loidl, A. Alexander, L. K. Nath, R. Mahajan, A. V. Berger, R. F. Cava, R. J. Singh, Yogesh Johnston, D. C. TI Vortex dynamics and frustration in two-dimensional triangular chromium lattices SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; frustration; hydrogen compounds; lithium compounds; Neel temperature; paramagnetic resonance; sodium compounds; spin dynamics ID HEISENBERG-ANTIFERROMAGNET; MAGNETIC-PROPERTIES; EXCHANGE INTEGRALS; PHASE-TRANSITIONS; XY-MODEL; LICRO2; NACRO2; ORDER; SYSTEMS; OXIDES AB The spin dynamics of the two-dimensional (2D) triangular lattice antiferromagnets HCrO(2), LiCrO(2), and NaCrO(2) is investigated by electron spin resonance. In these oxides, on approaching the Neacuteel temperature T(N) from above, the divergence of the temperature dependent linewidth is well described in terms of a Berezinskii-Kosterlitz-Thouless scenario due to magnetic vortex-antivortex pairing. A refined analysis suggests analogies to the melting scenario of a 2D triangular lattice described by Nelson, Halperin, and Young. C1 [Hemmida, M.; von Nidda, H. -A. Krug; Buettgen, N.; Loidl, A.] Univ Augsburg, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. [Alexander, L. K.; Nath, R.; Mahajan, A. V.] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. [Nath, R.; Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Nath, R.; Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Berger, R. F.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Hemmida, M (reprint author), Univ Augsburg, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. RI Alexander, Libu/A-9989-2010; Nath, Ramesh/C-9345-2011; singh, yogesh/F-7160-2016; Loidl, Alois/L-8199-2015 OI Alexander, Libu/0000-0003-2524-8224; Loidl, Alois/0000-0002-5579-0746 FU DFG [SFB 484]; DAAD FX We are grateful to A. P. Kampf, T. Kopp, A. Krimmel, A. Skroblies, and D. V. Zakharov for fruitful discussions. This work was supported by DFG within SFB 484 (Augsburg). M. H. was partially supported by DAAD. NR 36 TC 22 Z9 22 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054406 DI 10.1103/PhysRevB.80.054406 PG 5 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500043 ER PT J AU Hoffmann, A May, SJ te Velthuis, SGE Park, S Fitzsimmons, MR Campillo, G Gomez, ME AF Hoffmann, A. May, S. J. te Velthuis, S. G. E. Park, S. Fitzsimmons, M. R. Campillo, G. Gomez, M. E. TI Magnetic depth profile of a modulation-doped La1-xCaxMnO3 exchange-biased system SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; calcium compounds; ferromagnetic materials; lanthanum compounds; magnetic multilayers; magnetic thin films; magnetisation ID THIN-FILMS; MULTILAYERS; MANGANITES; DEPENDENCE; ANISOTROPY; PHYSICS AB Recent magnetometry measurements in modulation-doped La1-xCaxMnO3 suggested that a net magnetization extends from the ferromagnetic layers into the adjacent antiferromagnet layers. Here we test this hypothesis by polarized neutron reflectometry, which allows us to determine the depth resolved magnetization profile. From fits to the reflectivity data we find that the additional magnetization does not occur at the ferromagnetic/antiferromagnetic interfaces, but rather in a thin region of the first antiferromagnetic layer adjacent to the interface with the substrate. C1 [Hoffmann, A.; May, S. J.; te Velthuis, S. G. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Park, S.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, S.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Campillo, G.; Gomez, M. E.] Univ Valle, Dept Phys, Cali 25360, Colombia. [Campillo, G.] Univ Antioquia, Inst Fis, Medellin 1226, Colombia. RP Hoffmann, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hoffmann@anl.gov RI May, Steven/D-8563-2011; Hoffmann, Axel/A-8152-2009; Lujan Center, LANL/G-4896-2012; Campillo, Gloria/A-8299-2013; te Velthuis, Suzanne/I-6735-2013 OI May, Steven/0000-0002-8097-1549; Hoffmann, Axel/0000-0002-1808-2767; te Velthuis, Suzanne/0000-0002-1023-8384 FU U. S. Department of Energy-Basic Energy Science [DEAC0206CH1357]; Argonne National Laboratory [DEAC5206NA25396]; COLCIENCIAS [043-2005]; KOSEF [R01-2008-000-21092-0, KRF-2006-005J02803] FX This work was supported by the U. S. Department of Energy-Basic Energy Science under Contract No. DEAC0206CH1357 at Argonne National Laboratory and DEAC5206NA25396 at Los Alamos National Laboratory and by COLCIENCIAS under the Excellence Center for Novel Materials, Contract No. 043-2005. S. P. was supported from KOSEF (R01-2008-000-21092-0) and (KRF-2006-005J02803) NR 32 TC 5 Z9 6 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 052403 DI 10.1103/PhysRevB.80.052403 PG 4 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500009 ER PT J AU Kim, JK Kim, KS McChesney, JL Rotenberg, E Hwang, HN Hwang, CC Yeom, HW AF Kim, J. K. Kim, K. S. McChesney, J. L. Rotenberg, E. Hwang, H. N. Hwang, C. C. Yeom, H. W. TI Two-dimensional electron gas formed on the indium-adsorbed Si(111)root 3 x root 3-Au surface SO PHYSICAL REVIEW B LA English DT Article ID PHASE; TRANSITION; WAVE; SI(111)-(ROOT-3X-ROOT-3)R30-DEGREES-AU; RECONSTRUCTION; AU AB Electronic structure of the In-adsorbed Si(111)root 3 x root 3-Au surface was investigated by core-level and angle-resolved photoelectron spectroscopy. On the Si(111)root 3 x root 3-Au surface, In adsorbates were reported to remove the characteristic domain-wall network and produce a very well-ordered root 3 x root 3 surface phase. Detailed band dispersions and Fermi surfaces were mapped for the pristine and In-dosed Si(111)root 3 x root 3-Au surfaces. After the In adsorption, the surface bands shift toward a higher binding energy, increasing substantially the electron filling of the metallic band along with a significant sharpening of the spectral features. The resulting Fermi surface indicates the formation of a perfect isotropic two-dimensional electron-gas system filled with 0.3 electrons. This band structure agrees well with that expected, in a recent density-functional theory calculation, for the conjugate-honeycomb trimer model of the pristine Si(111)root 3 x root 3-Au surface. Core-level spectra indicate that In adsorbates interact mostly with Si surface atoms. The possible origins of the electronic structure modification by In adsorbates are discussed. The importance of the domain wall and the indirect role of In adsorbates are emphasized. This system provides an interesting playground for the study of two-dimensional electron gas on solid surfaces. C1 [Kim, J. K.; Kim, K. S.; Yeom, H. W.] Yonsei Univ, Ctr Atom Wires, Seoul 120749, South Korea. [Kim, J. K.; Kim, K. S.; Yeom, H. W.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [McChesney, J. L.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hwang, H. N.; Hwang, C. C.] POSTECH, Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, Kyungbuk, South Korea. RP Yeom, HW (reprint author), Yonsei Univ, Ctr Atom Wires, Seoul 120749, South Korea. EM yeom@yonsei.ac.kr RI Rotenberg, Eli/B-3700-2009; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; McChesney, Jessica/0000-0003-0470-2088 FU MOST; BK 21 program FX This work was supported by MOST through Center for Atomic Wires and Layers of the CRi program. J. K. K. and K. S. K. were partly supported by the BK 21 program. HWY is grateful to M. H. Kang for enlightening discussion and encouragement. NR 34 TC 27 Z9 27 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 075312 DI 10.1103/PhysRevB.80.075312 PG 7 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900064 ER PT J AU Kurmaev, EZ McLeod, JA Buling, A Skorikov, NA Moewes, A Neumann, M Korotin, MA Izyumov, YA Ni, N Canfield, PC AF Kurmaev, E. Z. McLeod, J. A. Buling, A. Skorikov, N. A. Moewes, A. Neumann, M. Korotin, M. A. Izyumov, Yu. A. Ni, N. Canfield, P. C. TI Contribution of Fe 3d states to the Fermi level of CaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; core levels; density functional theory; Fermi level; high-temperature superconductors; iron compounds; valence bands; X-ray photoelectron spectra; X-ray spectra ID ELECTRONIC-STRUCTURE; SUPERCONDUCTOR; SPECTRA AB We present density functional theory (DFT) calculations and soft x-ray spectra (soft x-ray spectroscopy and x-ray photoelectron spectra) measurements of single-crystal CaFe2As2. The experimental valence-band spectra are consistent with our DFT calculations. Both theory and experiment show that the Fe 3d states dominate the Fermi level and hybridize with Ca 3d states. The simple shape of x-ray photoelectron Fe 2p core level spectrum (without any satellite structure typical for correlated systems) suggests that the Fe 3d electrons are weakly or at most moderately correlated. C1 [Kurmaev, E. Z.; Skorikov, N. A.; Korotin, M. A.; Izyumov, Yu. A.] Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620219, Russia. [McLeod, J. A.; Moewes, A.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Buling, A.; Neumann, M.] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. [Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Ni, N.; Canfield, P. C.] Iowa State Univ, US DOE, Ames, IA 50011 USA. RP Kurmaev, EZ (reprint author), Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620219, Russia. EM john.mcleod@usask.ca RI Skorikov, Nikolay/A-6728-2012; Korotin, Michael/J-3252-2013; Kurmaev, Ernst/J-4254-2013; Izyumov, Yuri/K-3449-2013; Canfield, Paul/H-2698-2014; Buling, Anna/H-4992-2016 OI Skorikov, Nikolay/0000-0002-3771-8708; Korotin, Michael/0000-0002-9603-8374; Kurmaev, Ernst/0000-0003-4625-4930; Izyumov, Yuri/0000-0002-0956-035X; Buling, Anna/0000-0001-9167-012X FU Research Council of the President of the Russian Federation [NSH1929.2008.2, NSH-1941.2008.2]; Russian Science Foundation for Basic Research [08-02-00148]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chair program; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We acknowledge support of the Research Council of the President of the Russian Federation (Grant Nos. NSH1929.2008.2 and NSH-1941.2008.2), the Russian Science Foundation for Basic Research (Project No. 08-02-00148), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canada Research Chair program. P. C. C. acknowledges useful discussions with S. L. Bud'ko and G. D. Samolyuk. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 33 TC 22 Z9 22 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054508 DI 10.1103/PhysRevB.80.054508 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500065 ER PT J AU Lany, S Zunger, A AF Lany, Stephan Zunger, Alex TI Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; HF calculations; II-VI semiconductors; indium compounds; localised states; polarons; tin compounds; wide band gap semiconductors; zinc compounds ID ZNO; ENERGY AB Acceptor-bound holes in oxides often localize asymmetrically at one out of several equivalent oxygen ligands. Whereas Hartree-Fock (HF) theory overly favors such symmetry-broken polaronic hole localization in oxides, standard local-density (LD) calculations suffer from spurious delocalization among several oxygen sites. These opposite biases originate from the opposite curvatures of the energy as a function of the fractional occupation number n, i.e., d(2)E/dn(2)< 0 in HF and d(2)E/dn(2)>0 in LD. We recover the correct linear behavior, d(2)E/dn(2)=0, that removes the (de)localization bias by formulating a generalized Koopmans condition. The correct description of oxygen hole localization reveals that the cation-site nominal single acceptors in ZnO, In2O3, and SnO2 can bind multiple holes. C1 [Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lany, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013; OI Lany, Stephan/0000-0002-8127-8885 FU U. S. Department of Energy; Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308] FX This work was funded by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL. The use of MPP capabilities at the National Energy Research Scientific Computing Center is gratefully acknowledged. NR 33 TC 171 Z9 171 U1 5 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085202 DI 10.1103/PhysRevB.80.085202 PG 5 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300058 ER PT J AU Li, HF Tian, W Zarestky, JL Kreyssig, A Ni, N Bud'ko, SL Canfield, PC Goldman, AI McQueeney, RJ Vaknin, D AF Li, Haifeng Tian, Wei Zarestky, Jerel L. Kreyssig, Andreas Ni, Ni Bud'ko, Sergey L. Canfield, Paul C. Goldman, Alan I. McQueeney, Robert J. Vaknin, David TI Magnetic and lattice coupling in single-crystal SrFe2As2: A neutron scattering study SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; high-temperature superconductors; iron compounds; magnetic hysteresis; magnetic superconductors; magnetic transition temperature; neutron diffraction; order-disorder transformations; remanence; strontium compounds; superconducting transition temperature ID SUPERCONDUCTIVITY AB A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe2As2 reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at T-O=T-N=(201.5 +/- 0.25) K. The observation of coexisting O-T phases over a finite temperature range at the transition and the sudden onset of the O distortion provide strong evidences that the structural transition is first order. The simultaneous appearance and disappearance within 0.5 K upon cooling and within 0.25 K upon warming, respectively, indicate that the magnetic and structural transitions are intimately coupled. We find that the hysteresis in the transition temperature extends over a 1-2 K range. Based on the observation of a remnant orthorhombic phase at temperatures higher than T-O, we suggest that the T-O transition may be an order-disorder transition. C1 [Li, Haifeng] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Li, HF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Vaknin, David/B-3302-2009 OI Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602; Vaknin, David/0000-0002-0899-9248 FU U.S. Department of Energy [DE-AC02-07CH11358] FX Ames Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC02-07CH11358. NR 33 TC 20 Z9 20 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054407 DI 10.1103/PhysRevB.80.054407 PG 5 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500044 ER PT J AU Lloveras, P Castan, T Porta, M Planes, A Saxena, A AF Lloveras, Pol Castan, Teresa Porta, Marcel Planes, Antoni Saxena, Avadh TI Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments SO PHYSICAL REVIEW B LA English DT Article DE ferroelastic transitions; free energy; Ginzburg-Landau theory; glass transition; iron alloys; martensitic transformations; nickel alloys; palladium alloys; titanium alloys ID FE-PD ALLOYS; SPIN-GLASS; STRAIN; TRANSFORMATIONS AB We study the combined effect of elastic anisotropy and disorder on the microstructure and thermodynamic behavior in alloys undergoing a martensitic transformation. Within a Ginzburg-Landau free-energy framework we find the region in the parameter space where a ferroelastic glassy state exists without twinning. We find that such a glassy state is of kinetic origin rather than due to geometrical frustration. The glassy behavior is characterized by simulating zero-field-cooling/field-cooling curves for different values of anisotropy and disorder. Finally, we discuss experimental implications for Fe-Pd and Ni-Ti alloys. C1 [Lloveras, Pol; Castan, Teresa; Porta, Marcel; Planes, Antoni] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Lloveras, Pol; Castan, Teresa; Porta, Marcel; Planes, Antoni; Saxena, Avadh] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Catalonia, Spain. [Porta, Marcel; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lloveras, P (reprint author), Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. RI Lloveras, Pol/M-3775-2014; Planes, Antoni/O-1904-2015; OI Lloveras, Pol/0000-0003-4133-2223; Planes, Antoni/0000-0001-5213-5714; Porta Tena, Marcel/0000-0001-7582-9671 FU CICyT (Spain) [MAT2007-61200]; DURSI (Catalonia) [2005SGR00969]; U.S. Department of Energy; DGICyT (Spain) FX This work was supported by CICyT (Spain) under Project No. MAT2007-61200, DURSI (Catalonia) under Project No. 2005SGR00969, and the U.S. Department of Energy. P.Ll. acknowledges support from DGICyT (Spain). NR 20 TC 24 Z9 26 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054107 DI 10.1103/PhysRevB.80.054107 PG 7 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500028 ER PT J AU Loginova, E Nie, S Thurmer, K Bartelt, NC McCarty, KF AF Loginova, Elena Nie, Shu Thuermer, Konrad Bartelt, Norman C. McCarty, Kevin F. TI Defects of graphene on Ir(111): Rotational domains and ridges SO PHYSICAL REVIEW B LA English DT Article DE electron microscopy; graphene; impurities; low energy electron diffraction; materials preparation; scanning tunnelling microscopy ID MONOLAYER GRAPHITE; 111 SURFACE; CARBON; RU(0001); OVERLAYERS; PT(111); LEED; DECOMPOSITION; SPECTROSCOPY; MICROSCOPY AB We use low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM) to study different orientations of single-layer graphene sheets on Ir(111). The most-abundant orientation has previously been characterized in the literature. Using selective-area LEED we find three other variants, which are rotated 14 degrees, 18.5 degrees, and 30 degrees with respect to the most common variant. The similar to 30 degrees-rotated structure is also studied by STM. We propose that all four variants are moireacute structures that can be classified using simple geometric rules involving periodic and quasiperiodic structural motifs. In addition, LEEM reveals that linear defects form in the graphene sheets during cooling from the synthesis temperature. STM shows that these defects are ridges, suggesting that the graphene sheets delaminate locally as the Ir substrate contracts. C1 [Loginova, Elena; Nie, Shu; Thuermer, Konrad; Bartelt, Norman C.; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI McCarty, Kevin/0000-0002-8601-079X; Thurmer, Konrad/0000-0002-3078-7372 FU U. S. DOE [DE-AC04-94AL85000] FX The authors thank P. J. Feibelman for helpful discussion. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U. S. DOE under Contract No. DE-AC04-94AL85000. NR 39 TC 120 Z9 123 U1 8 U2 73 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085430 DI 10.1103/PhysRevB.80.085430 PG 8 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300109 ER PT J AU Mun, ED Bud'ko, SL Ni, N Thaler, AN Canfield, PC AF Mun, Eun Deok Bud'ko, Sergey L. Ni, Ni Thaler, Alex N. Canfield, Paul C. TI Thermoelectric power and Hall coefficient measurements on Ba(Fe1-xTx)(2)As-2 (T=Co and Cu) SO PHYSICAL REVIEW B LA English DT Article DE band structure; barium compounds; cobalt compounds; copper compounds; doping; Fermi surface; Hall effect; high-temperature superconductors; iron compounds; solid-state phase transformations; thermoelectric power ID SUPERCONDUCTIVITY; METALS AB Temperature-dependent thermoelectric power (TEP) data on Ba(Fe1-xTMx)(2)As-2 (TM=Co and Cu), complemented by the Hall coefficient data on the samples from the same batches, have been measured. For Co doping we clearly see a change in the temperature-dependent TEP and Hall coefficient data when the sample is doped to sufficient e (the number of extra electrons associated with the TM doping) so as to stabilize low-temperature superconductivity. Remarkably, a similar change is found in the Cu-doped samples at comparable e value, even though these compounds do not superconduct. These changes possibly point to a significant modification of the Fermi surface/band structure of Ba(Fe1-xTMx)(2)As-2 at small electron doping, that in the case of Co doping is just before, and probably allows for, the onset of superconductivity. These data further suggest that suppression of the structural/magnetic phase transition and the establishment of a proper e value are each necessary but, individually, not sufficient conditions for superconductivity. C1 [Mun, Eun Deok] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mun, ED (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU U. S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We thank Adam Kaminski and Makariy A. Tanatar for useful discussions. We acknowledge Florence Rullier-Albenque for pointing out the full import of Ref. 19. Work at the Ames Laboratory was supported by the U. S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 21 TC 65 Z9 65 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054517 DI 10.1103/PhysRevB.80.054517 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500074 ER PT J AU Olheiser, TA Shi, Z Lawrie, DD Giannetta, RW Schlueter, JA AF Olheiser, Tyson A. Shi, Zane Lawrie, David D. Giannetta, Russell W. Schlueter, John A. TI Interplane penetration depth and coherent transport in organic superconductors SO PHYSICAL REVIEW B LA English DT Article DE d-wave superconductivity; impurity scattering; organic superconductors; penetration depth (superconductivity); superconducting energy gap ID INFRARED CONDUCTIVITY; ORDER-PARAMETER; BEDT-TTF; C-13 NMR; TEMPERATURE; STATE; KAPPA-(BEDT-TTF)(2)CU(NCS)(2); SCATTERING; ANISOTROPY; MECHANISM AB Measurements of the interlayer penetration depth lambda(perpendicular to) have been performed on single crystals of the organic superconductors kappa-(ET)(2)Cu[N(CN)(2)]Br and kappa-(ET)(2)Cu(NCS)(2). We find that lambda(perpendicular to)(0)approximate to 130 mu m for both materials. The normalized superfluid density rho(perpendicular to)=[lambda(perpendicular to)(0)/lambda(perpendicular to)(T)](2) may be fit equally well to a power law 1-rho(perpendicular to)similar to T-n with n=1.3-1.5 or to the form 1-rho(perpendicular to)=alpha(T-2/T-C)/(T+T-*), consistent with a d-wave pairing state with impurity scattering. The data imply coherent transport between conducting planes, in agreement with recent magnetoresistive measurements [J. Singleton, P. A. Goddard, A. Ardavan, N. Harrison, S. J. Blundell, J. A. Schlueter, and A. M. Kini, Phys. Rev. Lett. 88, 037001 (2002)] and in contrast to the copper oxides. C1 [Olheiser, Tyson A.; Shi, Zane; Lawrie, David D.; Giannetta, Russell W.] Univ Illinois, Loomis Lab Phys, Urbana, IL 61801 USA. [Schlueter, John A.] Argonne Natl Lab, Chem & Mat Sci Div, Argonne, IL 60439 USA. RP Giannetta, RW (reprint author), Univ Illinois, Loomis Lab Phys, Urbana, IL 61801 USA. EM russg@illinois.edu FU NSF [DMR 05-03882]; UChicago Argonne, LLC; Operator of Argonne National Laboratory ("Argonne" ); U. S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX The authors wish to thank A. Carrington and R. Prozorov for a careful reading of the paper. Research at the University of Illinois was supported by NSF Grant No. DMR 05-03882. Work at Argonne was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne" ). Argonne, a U. S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 54 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054519 DI 10.1103/PhysRevB.80.054519 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500076 ER PT J AU Ott, RT Mendelev, MI Besser, MF Kramer, MJ Almer, J Sordelet, DJ AF Ott, R. T. Mendelev, M. I. Besser, M. F. Kramer, M. J. Almer, J. Sordelet, D. J. TI Strain dependence of peak widths of reciprocal- and real-space distribution functions of metallic glasses from in situ x-ray scattering and molecular dynamics simulations SO PHYSICAL REVIEW B LA English DT Article DE copper alloys; elastic deformation; metallic glasses; molecular dynamics method; X-ray scattering; zirconium alloys ID AMORPHOUS SOLIDS; STRUCTURAL DEFECTS; DEFORMATION; MODEL AB We have examined the relationship between the variance in the atomic-level hydrostatic pressure, <>(1/2), and the widths of the first peaks in the reciprocal- and real-space distribution functions for elastically deformed metallic glasses. In situ synchrotron x-ray scattering studies performed on a binary Cu(64.5)Zr(35.5) glass subject to uniaxial loading reveal that the width of the first peak in the reduced-pair distribution function is dependent on the different elastic responses of the partial-pair correlations. Molecular dynamics (MD) simulations of the same binary glass, as well as a single-component glass, subject to hydrostatic deformation show that the widths of the first peaks in the partial-pair distribution functions are affected by length-scale-dependent changes in the relative atomic separation in the first nearest-neighbor shell. Moreover, the MD simulations show that the strain dependencies of the partial-pair peak widths do not necessarily match the strain-dependence of <>(1/2). The results suggest that the widths of the peaks in the reciprocal- and real-space functions are not solely dependent on <>(1/2) but rather are also affected by the atomic rearrangements associated with elastic deformation. C1 [Ott, R. T.; Mendelev, M. I.; Besser, M. F.; Kramer, M. J.; Sordelet, D. J.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ott, RT (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU Office of Basic Energy Sciences; United States Department of Energy [DE-AC02-07CH11358]; Advanced Photon Source [DE-AC02-06CH11357] FX The authors gratefully acknowledge D. Srolovitz (Yeshiva University) for the helpful discussions. This work was supported by the Office of Basic Energy Sciences, United States Department of Energy as follows: efforts at the Ames Laboratory were supported under Contract No. DE-AC02-07CH11358 and use of the Advanced Photon Source was supported under Contract No. DE-AC02-06CH11357. NR 27 TC 3 Z9 3 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064101 DI 10.1103/PhysRevB.80.064101 PG 14 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800016 ER PT J AU Rao, GVS Ocadlik, S Reedyk, M Petrovic, C AF Rao, G. V. Sudhakar Ocadlik, S. Reedyk, M. Petrovic, C. TI Low-frequency excitation in the optical properties of superconducting CeCoIn5 SO PHYSICAL REVIEW B LA English DT Article DE cerium alloys; cobalt alloys; energy gap; heavy fermion superconductors; indium alloys; infrared spectra; Kramers-Kronig relations; optical conductivity ID POINT-CONTACT SPECTROSCOPY; URU2SI2 AB The far-infrared optical response of CeCoIn5, a superconducting heavy fermion metal with a T-C of 2.3 K, was investigated from 5-40 cm(-1) at temperatures from 0.5-2.5 K using a polarizing interferometer and a He-3 cryostat. A strong absorption feature is revealed at low temperatures which appears to be a gap in the density of states, reminiscent of the energy gap seen in the hidden order state in URu2Si2. The depth of the spectral structure decreases with increasing temperature from 0.5 to 2.5 K indicating that the characteristic temperature for this behavior is close to the superconducting T-C. A peak in the superconducting state Kramers-Kronig-derived optical conductivity occurs just above the gap at 1.5 meV. C1 [Rao, G. V. Sudhakar; Ocadlik, S.; Reedyk, M.] Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. [Petrovic, C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Rao, GVS (reprint author), Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU U. S. Department of Energy by Brookhaven Science Associates [DE-Ac02-98CH10886]; Natural Sciences and Engineering Research Council of Canada FX We are grateful to T. Timusk for a critical reading of our manuscript and very helpful comments. A portion of this work was carried out at Brookhaven National Laboratory which is operated for the U. S. Department of Energy by Brookhaven Science Associates (Grant No. DE-Ac02-98CH10886). Work at Brock was supported by the Natural Sciences and Engineering Research Council of Canada. NR 33 TC 4 Z9 4 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064512 DI 10.1103/PhysRevB.80.064512 PG 5 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800068 ER PT J AU Sewall, SL Franceschetti, A Cooney, RR Zunger, A Kambhampati, P AF Sewall, Samuel L. Franceschetti, Alberto Cooney, Ryan R. Zunger, Alex Kambhampati, Patanjali TI Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots SO PHYSICAL REVIEW B LA English DT Article DE biexcitons; cadmium compounds; colloids; high-speed optical techniques; II-VI semiconductors; liquid semiconductors; pseudopotential methods; semiconductor quantum dots; wide band gap semiconductors ID EXCITON FINE-STRUCTURE; CARRIER MULTIPLICATION; OPTICAL GAIN; NANOCRYSTALS; SPECTROSCOPY; EMISSION; STATES AB We report on the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots using femtosecond spectroscopy and atomistic many-body pseudopotential calculations. Time-resolved spectroscopy shows that optical transitions between excitonic and biexcitonic states are distinct for absorptive and emissive transitions, leading to a larger Stokes shift for the biexciton than for the single exciton. The calculations explain the experimental results by showing that there is a previously unobserved electronic substructure to the band-edge biexciton which yields two distinct families of transitions. C1 [Franceschetti, Alberto; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sewall, Samuel L.; Cooney, Ryan R.; Kambhampati, Patanjali] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alberto_franceschetti@nrel.gov; alex_zunger@nrel.gov; pat.kambhampati@mcgill.ca RI Zunger, Alex/A-6733-2013 NR 29 TC 51 Z9 51 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 081310 DI 10.1103/PhysRevB.80.081310 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300020 ER PT J AU Tulk, CA Klug, DD Chakoumakos, BC Yang, L AF Tulk, Chris A. Klug, Dennis D. Chakoumakos, Bryan C. Yang, Ling TI Intercage guest correlations and guest clusters in high-pressure clathrate hydrates SO PHYSICAL REVIEW B LA English DT Article DE electron density; high-pressure effects; organic compounds; X-ray diffraction ID METHANE-HYDRATE; DIFFRACTION; KRYPTON; ARGON AB The positions of guest atoms in high-pressure hexagonal Kr clathrate hydrate have been determined. Additionally, the large cage guests of the initial cubic form show a displacement of similar to 0.7 A degrees from the large cage center and exhibit reduced cage-to-cage correlations in guest positions; similar disorder likely carries over to the high-pressure form. Based on size and electron density maps, up to three atoms are located in the large cage of the high-pressure hexagonal form, where two Kr atoms are 2.25 A degrees above/below the cage center and one on a ring with a radius 1.70 A degrees from the cage center. C1 [Tulk, Chris A.; Chakoumakos, Bryan C.; Yang, Ling] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Klug, Dennis D.] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. [Yang, Ling] Oak Ridge Natl Lab, Ctr Nanophased Mat Sci, Oak Ridge, TN 37831 USA. RP Tulk, CA (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Chakoumakos, Bryan/A-5601-2016; Tulk, Chris/R-6088-2016 OI Chakoumakos, Bryan/0000-0002-7870-6543; Tulk, Chris/0000-0003-3400-3878 FU Division of Materials Sciences; U. S. D. O. E. [DEAC0500OR22725] FX Oak Ridge National Laboratory is supported by the Division of Materials Sciences, U. S. D. O. E. (Contract No. DEAC0500OR22725 with UT-Battelle, LLC). The authors would like to thank J. M. Simonson, J. Horita, and D. Cole for providing laboratory space in the Chemical Sciences Division at Oak Ridge National Laboratory. NR 28 TC 4 Z9 4 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 052101 DI 10.1103/PhysRevB.80.052101 PG 4 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500001 ER PT J AU Wang, F Vishwanath, A AF Wang, Fa Vishwanath, Ashvin TI Z(2) spin-orbital liquid state in the square lattice Kugel-Khomskii model SO PHYSICAL REVIEW B LA English DT Article DE ground states; iron compounds; lattice theory; liquid theory; manganese compounds; Monte Carlo methods; scandium compounds; spin-orbit interactions; variational techniques; wave functions ID HUBBARD-MODEL; GROUND-STATE; SYSTEMS; INSULATOR; GAP AB We argue for the existence of a liquid ground state in a class of square lattice models of orbitally degenerate insulators. Starting with the SU(4)-symmetric Kugel-Khomskii model, we utilize a Majorana Fermion representation of spin-orbital operators to access unusual phases. Variational wave functions of candidate liquid phases are thus obtained, whose properties are evaluated using variational Monte Carlo. These states are disordered and are found to have excellent energetics and ground state overlap (>40%) when compared with exact diagonalization on 16-site clusters. We conclude that these are spin-orbital liquid ground states with emergent nodal fermions and Z(2) gauge fields. Connections to spin-3/2 cold-atom systems and properties in the absence of SU(4) symmetry are briefly discussed. C1 [Wang, Fa; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Fa; Vishwanath, Ashvin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 FU NSF [DMR0645691] FX We acknowledge support from NSF under Grant No. DMR0645691 and discussions with M. Hermele. NR 29 TC 30 Z9 30 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064413 DI 10.1103/PhysRevB.80.064413 PG 9 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800042 ER PT J AU Wei, QM Lian, J Boatner, LA Wang, LM Ewing, RC AF Wei, Qiangmin Lian, Jie Boatner, L. A. Wang, L. M. Ewing, R. C. TI Propagation of ripples on pyrochlore induced by ion beam bombardment SO PHYSICAL REVIEW B LA English DT Article DE cadmium compounds; electron microscopy; focused ion beam technology; ion-surface impact; shock wave effects ID SPUTTERED AMORPHOUS SOLIDS; EQUILIBRIUM TOPOGRAPHY; SURFACE; EROSION; INSTABILITY; MORPHOLOGY AB The morphological evolution of ripples formed on the surface of Cd2Nb2O7 pyrochlore single crystals by focused ion beam bombardment was investigated using in situ electron microscopy. At high ion fluences and off-normal bombardment angles, faceted surface ripples with a "terracelike" structure were observed. The ripple propagation direction was oriented along the projected ion beam direction at incident angles ranging from 35 to 65 degrees under high-dose ion bombardment. One side of the terrace was found to be perpendicular to the incident ion beam direction, while the other side was parallel to the ion beam. The terrace propagation velocity and direction were determined and interpreted on the basis of this asymmetric structure. A model based on the propagation of a shock wave that effectively "self-selects" a stable slope was developed in order to explain the observed faceted ripple formation. C1 [Wei, Qiangmin; Wang, L. M.; Ewing, R. C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wang, L. M.; Ewing, R. C.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Wang, LM (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM lmwang@umich.edu RI Lian, Jie/A-7839-2010; Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU U.S. Department of Energy [DE-FG02-02ER46005, DE-FG02-97ER45656, DE-AC0500OR22725] FX This work was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy through Grant No. DE-FG02-02ER46005 and No. DE-FG02-97ER45656 Research at Oak Ridge National Laboratory is sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under Contract No. DE-AC0500OR22725 with UT-Battelle, LLC. NR 35 TC 15 Z9 15 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085413 DI 10.1103/PhysRevB.80.085413 PG 8 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300092 ER PT J AU Yoshida, T Zhou, XJ Hussain, Z Shen, ZX Fujimori, A Eisaki, H Uchida, S AF Yoshida, T. Zhou, X. J. Hussain, Z. Shen, Z. -X. Fujimori, A. Eisaki, H. Uchida, S. TI Underlying Fermi surface of Sr14-xCaxCu24O41 in two-dimensional momentum space observed by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; charge density waves; crystallisation; Fermi surface; high-temperature superconductors; photoelectron spectra; strontium compounds; superconducting energy gap ID SUPERCONDUCTIVITY; LADDER; SR14CU24O41 AB We have performed an angle-resolved photoemission study of the two-leg ladder system Sr14-xCaxCu24O41 with x=0 and 11. "Underlying Fermi surfaces" determined from low-energy spectral-weight mapping indicates the quasi-one-dimensional nature of the electronic structure. Energy gap caused by the charge-density wave has been observed for x=0 and the gap tends to close with Ca substitution. The absence of a quasiparticle peak even in x=11 is in contrast to the two-dimensional high-T-c cuprates, implying strong carrier localization related to the hole crystallization. C1 [Yoshida, T.; Fujimori, A.; Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Zhou, X. J.] Chinese Acad Sci, Natl Lab Superconduct, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Yoshida, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. FU Ministry of Education, Science, Culture, Sports and Technology; U. S. D. O. E. [DE-FG03-01ER45876, DE-AC03-76SF00098]; Department of Energy's Office of Basic Energy Science, Division of Materials Science FX This work was supported by a Grant-in-Aid for Scientific Research in Priority Area " Invention of Anomalous Quantum Materials," a Grant-in-Aid for Young Scientists from the Ministry of Education, Science, Culture, Sports and Technology, and the U. S. D. O. E. under Contracts No. DE-FG03-01ER45876 and No. DE-AC03-76SF00098. ALS is operated by the Department of Energy's Office of Basic Energy Science, Division of Materials Science. NR 17 TC 5 Z9 5 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 052504 DI 10.1103/PhysRevB.80.052504 PG 4 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500016 ER PT J AU Zhai, H Wang, F Lee, DH AF Zhai, Hui Wang, Fa Lee, Dung-Hai TI Antiferromagnetically driven electronic correlations in iron pnictides and cuprates SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; electron correlations; Fermi surface; high-temperature superconductors; Hubbard model; iron compounds; renormalisation; strongly correlated electron systems ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; NODELESS SUPERCONDUCTING GAPS; 2-DIMENSIONAL HUBBARD-MODEL; D-WAVE SUPERCONDUCTIVITY; RENORMALIZATION-GROUP; BA0.6K0.4FE2AS2; INSTABILITY; MECHANISM; INSULATOR; SYSTEMS AB The iron pnictides and the cuprates represent two families of materials, where strong antiferromagnetic correlation drives three other distinct ordering tendencies: (1) superconducting pairing, (2) Fermi-surface distortion, and (3) orbital-current order. We propose that (1)-(3) and the antiferromagnetic correlation are the hallmarks of a class of strongly correlated materials to which the cuprates and pnictides belong. In this paper, we present the results of the functional renormalization-group studies to support the above claim. In addition, we show that as a function of the interlayer hopping parameter, the double-layer Hubbard model nicely interpolates between the cuprate and the iron pnictide physics. Finally, as a check, we will present the renormalization-group study of a ladder version of the iron pnictide and compare the results to those of the two-dimensional model. C1 [Zhai, Hui; Wang, Fa; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhai, Hui; Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhai, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhai, Hui/H-9496-2012; Wang, Fa/D-3817-2015 OI Zhai, Hui/0000-0001-8118-6027; Wang, Fa/0000-0002-6220-5349 FU DOE [DE-AC02-05CH11231] FX D. H. L. was supported by DOE Grant No. DE-AC02-05CH11231. NR 89 TC 86 Z9 86 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064517 DI 10.1103/PhysRevB.80.064517 PG 17 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800073 ER PT J AU Zhang, LJ Singh, DJ AF Zhang, Lijun Singh, D. J. TI Electronic structure and thermoelectric properties of layered PbSe-WSe2 materials SO PHYSICAL REVIEW B LA English DT Article ID BAND-STRUCTURE; PBSE; PBTE; FIGURE; MERIT; SYSTEMS; SUPERLATTICES; POWER AB The first members of the series of intergrowth PbSe-WSe2 compounds are investigated using first-principles electronic-structure calculations and Boltzmann transport theory. These materials are moderate band-gap semiconductors. The valence-band edges are primarily derived from PbSe-derived states while the conduction bands have mixed PbSe-WSe2 character. The transport calculations show that high thermopowers are attainable at moderate to high p-type doping levels, consistent with good thermoelectric performance at temperatures from 300 to 1000 K. C1 [Zhang, Lijun; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 FU Department of Energy; ORNL LDRD; S3TEC EFRC FX We are grateful to M. H. Du for helpful discussions and to David Johnson and Qiyin Lin for helpful discussions and for making available republications data. The crystal-structure figure was produced with the XCRYSDEN program. 48 This work was supported by the Department of Energy, Vehicle Technologies, Propulsion Materials Program, the ORNL LDRD program, and the S3TEC EFRC. NR 48 TC 36 Z9 38 U1 3 U2 67 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 075117 DI 10.1103/PhysRevB.80.075117 PG 8 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900039 ER PT J AU Zhang, LX Yan, YF Wei, SH AF Zhang, Lixin Yan, Yanfa Wei, Su-Huai TI Enhancing dopant solubility via epitaxial surfactant growth SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; P-TYPE ZNO; ZNSE; SEMICONDUCTORS; ENHANCEMENT; DIFFUSION AB A general concept for enhancing dopant solubility via epitaxial surfactant growth is proposed. The key of the concept is to find the appropriate surfactants that generate high (low) levels that can transfer electrons (holes) to dopant acceptor (donor) levels in p-type (n-type) doping, thus significantly lowering the formation energy of dopants. Using first-principles density-functional calculations, our concept explains excellently the recently discovered dual-surfactant effect of Sb and H on enhancing Zn doping in epitaxially grown GaP(100) thin film and suggests that sole surfactant Te can also induce enhancement of N solubility in ZnSe(100) film. We also proposed the surfactants for enhancing p-type doing of ZnO with epitaxial growth with (000 (1) over bar) surface. General rules for selecting surfactants for enhancing both p-type and n-type dopings are provided. C1 [Zhang, Lixin; Yan, Yanfa; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, LX (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU U.S. DOE [DE-AC36-08GO28308] FX The work is supported by the U.S. DOE under Contract No. DE-AC36-08GO28308 with NREL. NR 29 TC 14 Z9 15 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 073305 DI 10.1103/PhysRevB.80.073305 PG 4 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900011 ER PT J AU Zu, XT Yang, L Gao, F Peng, SM Heinisch, HL Long, XG Kurtz, RJ AF Zu, X. T. Yang, L. Gao, F. Peng, S. M. Heinisch, H. L. Long, X. G. Kurtz, R. J. TI Properties of helium defects in bcc and fcc metals investigated with density functional theory SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; density functional theory; helium; interstitials ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; POSITRON-ANNIHILATION; BASIS-SET; MIGRATION; BEHAVIOR; IRON AB The relative stability of single He defects in bcc and fcc metals is investigated using ab initio calculations based on density functional theory. The results indicate that the tetrahedral position is energetically more favorable for a He interstitial than the octahedral site in bcc metals, but the relative stability of He defects in fcc metals varies, depending on local environments. The He formation energies in bcc Fe and fcc Ni at the tetrahedral and octahedral positions with and without spin polarization are investigated. It is of interest to find that the magnetism of host atoms does not directly affect the relative stabilities of He in interstitial sites in bcc Fe and fcc Ni. C1 [Zu, X. T.; Yang, L.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Peng, S. M.; Long, X. G.] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com; fei.gao@pnl.gov RI Gao, Fei/H-3045-2012 FU U. S. Department of Energy/Office of Fusion Energy Science [DE-AC06-76RLO 1830] FX The authors ( F. G., H. L. H., and R. J.K. ) are grateful for support by the U. S. Department of Energy/Office of Fusion Energy Science under Contract No. DE-AC06-76RLO 1830. NR 21 TC 68 Z9 70 U1 3 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054104 DI 10.1103/PhysRevB.80.054104 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500025 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Ganti, MS Gangadharan, DR Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, N Li, C Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Panitkin, SY Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M Vander Molen, AM Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Walker, M Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Gangadharan, D. R. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, N. Li, C. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Panitkin, S. Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. Vander Molen, A. M. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Walker, M. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Pion interferometry in Au plus Au and Cu plus Cu collisions at s(NN)=62.4 and 200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; RELATIVISTIC NUCLEAR COLLISIONS; INTENSITY INTERFEROMETRY; FINITE TEMPERATURE; SUPERDENSE MATTER; CORRELATION RADII; IDENTICAL PIONS; ENERGY; DEPENDENCE AB We present a systematic analysis of two-pion interferometry in Au+Au collisions at s(NN)=62.4 GeV and Cu+Cu collisions at s(NN)=62.4 and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Panitkin, S. Y.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Vander Molen, A. M.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Yang, Yanyun/B-9485-2014; Cosentino, Mauro/L-2418-2014; Barnby, Lee/G-2135-2010; Sumbera, Michal/O-7497-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Strikhanov, Mikhail/P-7393-2014; Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Yang, Yanyun/0000-0002-5982-1706; Cosentino, Mauro/0000-0002-7880-8611; Barnby, Lee/0000-0001-7357-9904; Sumbera, Michal/0000-0002-0639-7323; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943; Strikhanov, Mikhail/0000-0003-2586-0405; Lee, Chang-Hwan/0000-0003-3221-1171; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU US DOE Office of Science; US NSF; Sloan Foundation; DFG; RA, RPL, and EMN of France; STFC and EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Science and Technology; NNSFC, CAS, MoST, and MoE of China; IRP and GA of the Czech Foundation; [CNRS/IN2P3]; [N202 01331/0489] FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe," CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Science and Technology, the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Foundation. We thank Polish State Committee for Scientific Research, grant: N202 01331/0489. NR 71 TC 46 Z9 47 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024905 DI 10.1103/PhysRevC.80.024905 PG 12 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400051 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Bauer, F Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camacho, CM Campbell, S Chai, JS Chang, BS Chang, WC Charvet, JL Chen, CH Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cleven, CR Cobigo, Y Cole, BA Comets, MP Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Hur, MG Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kapustinsky, J Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kim, YS Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lai, YS Lajoie, JG Layton, D Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, KB Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Lim, H Liska, T Litvinenko, A Liu, H Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCain, MC McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morino, Y Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Norman, BE Nouicer, R Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Onuki, Y Oskarsson, A Otterlund, I Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sato, HD Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanabe, R Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H Van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camacho, C. M. Campbell, S. Chai, J. -S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chen, C. -H. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Connors, M. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Dairaku, S. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S. -Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Hur, M. G. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kapustinsky, J. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kim, Y. -S. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, K. B. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Lim, H. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCain, M. C. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Norman, B. E. Nouicer, R. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Onuki, Y. Oskarsson, A. Otterlund, I. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sato, H. D. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Photon-hadron jet correlations in p plus p and Au plus Au collisions at s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; TRANSVERSE-MOMENTUM; ENERGY-LOSS; PHENIX; DETECTORS; PARTICLES; EVENTS AB We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I-AA, in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kelly, S.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Milov, A.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sato, S.; Shea, T. K.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Fung, S. -Y.; Hester, T.; Kotchetkov, D.; Li, X. H.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Xie, W.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Frantz, J. E.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Cobigo, Y.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, RU-142281 Protvino, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; Koster, J.; Layton, D.; McCain, M. C.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Semenov, A. Yu.; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V. -N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] PNPI, RU-188300 Gatchina, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Imai, K.; Inoue, Y.; Ishihara, M.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kamihara, N.; Kaneta, M.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Oka, M.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Leckey, S.; Matathias, F.; McCumber, M.; Means, N.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Dzhordzhadze, V.; Garishvili, I.; Glenn, A.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Kanou, H.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Niita, T.; Sakai, S.; Sato, S.; Sato, T.; Shimomura, M.; Shohjoh, T.; Takagi, S.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Huang, S.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Sakaguchi, T.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Basye, A. T.; Deaton, M. B.; Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Frantz, J. E.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014 OI Taketani, Atsushi/0000-0002-4776-2315; Sullivan, John/0000-0002-9067-1531; Sorensen, Soren /0000-0002-5595-5643; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; FU Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologies; Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); Korea Research Foundation and Korea Science and Engineering Foundation (Korea); Ministry of Education and Science; Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange,; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), Korea Research Foundation and Korea Science and Engineering Foundation ( Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 51 TC 42 Z9 42 U1 6 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024908 DI 10.1103/PhysRevC.80.024908 PG 14 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400054 ER PT J AU Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Azmoun, B Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Enokizono, A En'yo, H Espagnon, B Esumi, S Fields, DE Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Gastineau, F Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haggerty, JS Hagiwara, MN Hamagaki, H Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hur, MG Ichihara, T Imai, K Inaba, M Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Kawagishi, T Kazantsev, AV Kelly, S Khanzadeev, A Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Leitch, MJ Leite, MAL Lim, H Litvinenko, A Liu, MX Li, XH Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Masui, H Matathias, F McCain, MC McGaughey, PL Miake, Y Mignerey, A Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakamura, T Newby, J Nguyen, M Norman, BE Nouicer, R Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Omiwade, OO Oskarsson, A Otterlund, I Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Samsonov, V Sato, HD Sato, S Sawada, S Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Skutnik, S Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Vznuzdaev, E Wagner, M Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yanovich, A Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zimanyi, J Zolin, L AF Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J. -S. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Das, K. David, G. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S. -Y. Gadrat, S. Gastineau, F. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A Hachiya, T. Henni, A. Hadj Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Kawagishi, T. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kim, D. J. Kim, E. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Leitch, M. J. Leite, M. A. L. Lim, H. Litvinenko, A. Liu, M. X. Li, X. H. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Masui, H. Matathias, F. McCain, M. C. McGaughey, P. L. Miake, Y. Mignerey, A. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakamura, T. Newby, J. Nguyen, M. Norman, B. E. Nouicer, R. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Vznuzdaev, E. Wagner, M. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Systematic studies of elliptic flow measurements in Au plus Au collisions at s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; COLOR GLASS CONDENSATE; CENTRALITY DEPENDENCE; NUCLEAR COLLISIONS; ANISOTROPIC FLOW; PHENIX; ENERGY; COLLABORATION; MULTIPLICITY; PERSPECTIVE AB We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed. C1 [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Fung, S. -Y.; Kotchetkov, D.; Li, X. H.; Seto, R.; Xie, W.] Univ Calif Riverside, Riverside, CA 92521 USA. [Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Kelly, S.; Kinney, E.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Baldisseri, A.; Borel, H.; Cobigo, Y.; Gosset, J.; Pereira, H.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamura, T.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, RU-142281 Protvino, Russia. [Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.] Univ Illinois, Urbana, IL 61801 USA. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] Cyclotron Applicat Lab, KAERI, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Romana, A.; Tram, V. -N.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France. [Gustafsson, H. -A; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Mignerey, A.] Univ Maryland, College Pk, MD 20742 USA. [Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Hobbs, R.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, RU-188300 Gatchina, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; En'yo, H.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kiyomichi, A.; Kurita, K.; Murata, J.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Leite, M. A. L.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Hemmick, T. K.; Jacak, B. V.; Leckey, S.; Matathias, F.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, F-44307 Nantes, France. [Dzhordzhadze, V.; Glenn, A.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Nagata, Y.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Sakaguchi, T.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Afanasiev, S (reprint author), Joint Inst Nucl Res, RU-141980 Dubna, Russia. EM jacak@skipper.physics.sunysb.edu RI Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Mignerey, Alice/D-6623-2011; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Semenov, Vitaliy/E-9584-2017; OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sullivan, John/0000-0002-9067-1531 NR 52 TC 59 Z9 60 U1 4 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024909 DI 10.1103/PhysRevC.80.024909 PG 25 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400055 ER PT J AU Esbensen, H AF Esbensen, H. TI Coulomb dissociation of C-15 and radiative neutron capture on C-14 SO PHYSICAL REVIEW C LA English DT Article ID HALO NUCLEI; BREAKUP AB The semiclassical, dynamical description of diffraction dissociation of weakly bound nuclei is applied to analyze the decay-energy spectra of C-15 that have been measured at 68 MeV/nucleon on a Pb target. The optical potentials that are used to describe the nuclear interaction of C-15 with the target nucleus are realistic because the fits to the two measured spectra, one with a small and one with a very large acceptance angle, are consistent and of similar quality. The cross section for the radiative neutron capture on C-14 to the 1/2(+) ground state of C-15 is deduced from the analysis. When combined with an estimated contribution from the capture to the 5/2(+) excited state of C-15, an excellent agreement with a recent direct capture measurement is achieved. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU US Department of Energy [DE-AC02-06CH11357] FX The author is grateful to F. Nunes for discussions and to T. Nakamura for providing the data and information about the experiment. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 27 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024608 DI 10.1103/PhysRevC.80.024608 PG 8 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400041 ER PT J AU Hagen, G Papenbrock, T Dean, DJ Hjorth-Jensen, M Asokan, BV AF Hagen, G. Papenbrock, T. Dean, D. J. Hjorth-Jensen, M. Asokan, B. Velamur TI Ab initio computation of neutron-rich oxygen isotopes SO PHYSICAL REVIEW C LA English DT Article ID CHIRAL LAGRANGIANS; COUPLED-CLUSTER; NUCLEAR-FORCES; PARTICLE STABILITY; 2-NUCLEON SYSTEM; O-16; SEARCH; FIELD; O-28 AB We compute the binding energy of neutron-rich oxygen isotopes and employ the coupled-cluster method and chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order with two different cutoffs. We obtain rather well-converged results in model spaces consisting of up to 21 oscillator shells. For interactions with a momentum cutoff of 500 MeV, we find that O-28 is stable with respect to O-24, while calculations with a momentum cutoff of 600 MeV result in a slightly unbound O-28. The theoretical error estimates due to the omission of the three-nucleon forces and the truncation of excitations beyond three-particle-three-hole clusters indicate that the stability of O-28 cannot be ruled out from ab initio calculations, and that three-nucleon forces and continuum effects play the dominant role in deciding this question. C1 [Hagen, G.; Papenbrock, T.; Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Asokan, B. Velamur] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Hagen, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Hagen, Gaute/I-6146-2012; OI Hagen, Gaute/0000-0001-6019-1687; Dean, David/0000-0002-5688-703X; Papenbrock, Thomas/0000-0001-8733-2849 FU US Department of Energy [DE-AC05-00OR22725, DE-FC02-07ER41457, DE-FG02-96ER40963] FX We thank P. Fallon, R. Furnstahl, K. Jones, M. Ploszajczak, A. Schiller, and A. Taube for useful discussions. This work was supported by the US Department of Energy under Contract Nos. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC02-07ER41457 (SciDAC UNEDF), and under Grant No. DE-FG02-96ER40963 (University of Tennessee). This research used computational resources of the National Institute for Computational Sciences (UT/ORNL) and the National Center for Computational Sciences (ORNL). NR 50 TC 42 Z9 42 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 021306 DI 10.1103/PhysRevC.80.021306 PG 5 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400006 ER PT J AU Julia-Diaz, B Kamano, H Lee, TSH Matsuyama, A Sato, T Suzuki, N AF Julia-Diaz, B. Kamano, H. Lee, T. -S. H. Matsuyama, A. Sato, T. Suzuki, N. TI Dynamical coupled-channels analysis of H-1(e,e(')pi)N reactions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; MESON PRODUCTION; MODEL AB We have performed a dynamical coupled-channels analysis of available p(e,e(')pi)N data in the region of W <= 1.6 GeV and Q(2)<= 1.45 (GeV/c)(2). The channels included are gamma N-*, pi N, eta N, and pi pi N that has pi Delta, rho N, and sigma N components. With the hadronic parameters of the model determined in our previous investigations of pi N ->pi N, pi pi N reactions, we have found that the available data in the considered W <= 1.6 GeV region can be fitted well by only adjusting the bare gamma N-*-> N-* helicity amplitudes for the lowest N-* states in P-33, P-11, S-11, and D-13 partial waves. The sensitivity of the resulting parameters to the amount of data included in the analysis is investigated. The importance of coupled-channels effect on the p(e,e(')pi)N cross sections is demonstrated. The meson cloud effect, as required by the unitarity conditions, on the gamma N-*-> N-* form factors are also examined. Necessary future developments, both experimentally and theoretically, are discussed. C1 [Julia-Diaz, B.; Kamano, H.; Lee, T. -S. H.; Matsuyama, A.; Sato, T.; Suzuki, N.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Julia-Diaz, B.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Julia-Diaz, B.] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Matsuyama, A.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. [Sato, T.; Suzuki, N.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. RP Julia-Diaz, B (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. RI Julia-Diaz, Bruno/E-5825-2010 OI Julia-Diaz, Bruno/0000-0002-0145-6734 FU US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357, DE-AC05-06OR23177, DE-AC02-05CH11231]; Japan Society for the Promotion of Science [20540270, 2007-0042, FIS2008-1661] FX We would like to thank Dr. K. Park for sending the structure function data from CLAS. This work is supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357, and Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates operates Jefferson Lab, by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research( C) 20540270, and by a CPAN Consolider INGENIO CSD 2007-0042 contract and Grant No. FIS2008-1661 ( Spain). This work used resources of the National Energy Research Scientific Computing Center that is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 44 Z9 44 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 025207 DI 10.1103/PhysRevC.80.025207 PG 9 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400062 ER PT J AU Kawano, T Talou, P Lynn, JE Chadwick, MB Madland, DG AF Kawano, T. Talou, P. Lynn, J. E. Chadwick, M. B. Madland, D. G. TI Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method SO PHYSICAL REVIEW C LA English DT Article ID HAUSER-FESHBACH THEORY; COMPOUND-NUCLEUS; MODEL-CALCULATIONS; REACTION-RATES; FORMULA; SCATTERING; NEUTRONS AB We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus (169)Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section. C1 [Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kawano, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM kawano@lanl.gov FU US Department of Energy [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 47 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024611 DI 10.1103/PhysRevC.80.024611 PG 9 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400044 ER PT J AU Lane, GJ Dracoulis, GD Byrne, AP Hughes, RO Watanabe, H Kondev, FG Chiara, CJ Carpenter, MP Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Seweryniak, D Zhu, S Chowdhury, P Stefanescu, I AF Lane, G. J. Dracoulis, G. D. Byrne, A. P. Hughes, R. O. Watanabe, H. Kondev, F. G. Chiara, C. J. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Seweryniak, D. Zhu, S. Chowdhury, P. Stefanescu, I. TI Decay of a K-pi=21/2(-), 17-ms isomer in Ta-185 SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE STATES; NEUTRON-RICH TA-185; HIGH-K ISOMERS; HALF-LIFE; IDENTIFICATION; ISOTOPES; NUCLEI; LINE AB High-spin states in the neutron-rich nucleus Ta-185, populated in the decay of a long-lived, three-quasiparticle state, have been studied using deep-inelastic reactions with Xe-136 ions and a W-186 target. The lifetime of the isomer has been measured as 17(2) ms and the spin and parity determined to be K-pi=21/2(-), leading to a pi 7/2(+)[404]nu 3/2(-)[512]11/2(+)[615] configuration assignment. The isomer decays into the rotational band built upon the pi 9/2(-)[514] intrinsic state via K-forbidden transitions with reduced hindrances of 52 and 71. The pi 9/2(-)[514] state is itself an isomer with a lifetime of 17(3) ns. It decays via K-allowed E1 transitions to states in the pi 7/2(+)[404] band with strengths that are similar to equivalent transitions in the lighter tantalum isotopes. C1 [Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Hughes, R. O.; Watanabe, H.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Kondev, F. G.; Chiara, C. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Lane, GJ (reprint author), Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM Gregory.Lane@anu.edu.au RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU Australian Government Access [06/07-H-04]; Australian Research Council [DP0345844]; US DOE, Office of Nuclear Physics [DE-AC02-06CH11357, DEFG0294ER40848] FX We are grateful to R. B. Turkentine for making the target. Lane, Dracoulis, and Hughes acknowledge travel support from the Australian Government Access to Major Research Facilites Program Grant 06/07-H-04. This research was supported by a Discovery Projects grant (DP0345844) from the Australian Research Council and by the US DOE, Office of Nuclear Physics, under Contract DE-AC02-06CH11357 and Grant DEFG0294ER40848. NR 27 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024321 DI 10.1103/PhysRevC.80.024321 PG 7 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400031 ER PT J AU Lee, HY Couder, M Couture, A Falahat, S Gorres, J Lamm, L LeBlanc, PJ O'Brien, S Palumbo, A Stech, E Strandberg, E Tan, W Ugalde, C Wiescher, M AF Lee, H. Y. Couder, M. Couture, A. Falahat, S. Goerres, J. Lamm, L. LeBlanc, P. J. O'Brien, S. Palumbo, A. Stech, E. Strandberg, E. Tan, W. Ugalde, C. Wiescher, M. TI Cross-section measurement of the F-18(alpha,p)Ne-21 reaction and possible implication for neutron production in explosive helium burning SO PHYSICAL REVIEW C LA English DT Article ID R-PROCESS; NUCLEOSYNTHESIS; ASTROPHYSICS; NUCLEI; FITS AB At the high temperature and density conditions of hot or explosive helium burning, the F-18(alpha,p)Ne-21 reaction may compete successfully with the F-18(beta(+)nu) decay. This suggests Ne-21(alpha,n) as an alternative neutron source in the r-process. We have determined the total cross section of the F-18(alpha,p)Ne-21 reaction by studying the time-reverse reaction Ne-21(p,alpha)F-18. Using the activation technique, the total reaction yield was measured in the proton beam energy range of 2.3-4.0 MeV, which corresponds to energies of 0.5-2.1 MeV in the F-18+alpha system. The resulting yield curve was analyzed in terms of the thick target formalism and the R-matrix theory. The reaction rate was deduced experimentally for the first time for the temperature of 0.1 < T-9 < 1. The experimental reaction rate was compared with Hauser-Feshbach predictions. The astrophysical implications of the new rate are discussed. C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Univ Notre Dame, Joint Inst Nucl Phys, Notre Dame, IN 46556 USA. [Falahat, S.] Max Planck Inst Chem, D-55128 Mainz, Germany. RP Lee, HY (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hylee@anl.gov RI Tan, Wanpeng/A-4687-2008; Couder, Manoel/B-1439-2009 OI Tan, Wanpeng/0000-0002-5930-1823; Couder, Manoel/0000-0002-0636-744X FU National Science Foundation NSF [0434844]; Joint Institute for Nuclear Astrophysics JINA [PHY02-16783]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors thank J. Kaiser, B. Mulder, and J. Lingle for their great assistance during the experiment. Special thanks to H.-W. Becker (Ruhr-Universitat Bochum) for the hospitality and support during target implantations. The authors acknowledge A. Heger, T. Elliot, and H. Schatz for providing the input for pre-supernovae and helping network calculations. This work was supported by the National Science Foundation NSF Grant 0434844 and the Joint Institute for Nuclear Astrophysics JINA PHY02-16783. H.Y.L. acknowledges support from the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357. NR 40 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 025805 DI 10.1103/PhysRevC.80.025805 PG 8 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400073 ER PT J AU Lisetskiy, AF Kruse, MKG Barrett, BR Navratil, P Stetcu, I Vary, JP AF Lisetskiy, A. F. Kruse, M. K. G. Barrett, B. R. Navratil, P. Stetcu, I. Vary, J. P. TI Effective operators from exact many-body renormalization SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; NUCLEI AB We construct effective two-body Hamiltonians and E2 operators for the p shell by performing 16h Omega ab initio no-core shell model (NCSM) calculations for A=5 and A=6 nuclei and explicitly projecting the many-body Hamiltonians and E2 operator onto the 0h Omega space. We then separate the effective E2 operator into one-body and two-body contributions employing the two-body valence cluster approximation. We analyze the convergence of proton and neutron valence one-body contributions with increasing model space size and explore the role of valence two-body contributions. We show that the constructed effective E2 operator can be parametrized in terms of one-body effective charges giving a good estimate of the NCSM result for heavier p-shell nuclei. C1 [Lisetskiy, A. F.; Kruse, M. K. G.; Barrett, B. R.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Lisetskiy, A. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stetcu, I.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lisetskiy, AF (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. EM lisetsky@physics.arizona.edu FU NSF [PHY0244389, PHY0555396]; US DOE/SC/NP [SCW0498]; US Department of Energy [DE-FC02-07ER41457, DE-FG02-87ER40371, DE-FC02-09ER41582]; LLNL [DE-AC52-07NA27344]; GSI Helmholzzentrum fur Schwerionenforschung Darmstadt, Germany; Alexander von Humboldt Stiftung FX We thank the Department of Energy's Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. B. R. B., A. F. L., and M. K. G. K. acknowledge partial support of this work from NSF Grants PHY0244389 and PHY0555396; P. N. acknowledges support in part by the US DOE/SC/NP ( Work Proposal N. SCW0498) and US Department of Energy Grant DE-FC02-07ER41457; prepared by LLNL under Contract No. DE-AC52-07NA27344. J. P. V. acknowledges support from US Department of Energy Grants DE-FG02-87ER40371,DE-FC02-07ER41457, and DE-FC02-09ER41582; B. R. B. thanks the GSI Helmholzzentrum fur Schwerionenforschung Darmstadt, Germany, for its hospitality during the preparation of this manuscript and the Alexander von Humboldt Stiftung for its support. NR 21 TC 22 Z9 22 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024315 DI 10.1103/PhysRevC.80.024315 PG 9 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400025 ER PT J AU Randrup, J Vogt, R AF Randrup, Jorgen Vogt, Ramona TI Calculation of fission observables through event-by-event simulation SO PHYSICAL REVIEW C LA English DT Article ID THERMAL-NEUTRON FISSION; NUCLEAR-MASS FORMULA; FRAGMENTS; ENERGY; EMISSION; MULTIPLICITY; DEFORMATIONS; PU-239; U-235; U235 AB The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables. C1 [Randrup, Jorgen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Vogt, Ramona] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, Ramona] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Randrup, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. FU US Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA27344]; National Science Foundation [PHY-0555660] FX We wish to acknowledge helpful discussions with D. A. Brown, D. Gogny, E. Ormand, P. Moller, E. B. Norman, J. Pruet, W. J. Swiatecki, P. Talou, and W. Younes. This work was supported by the Director, Of. ce of Energy Research, Of. ce of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under Contract Nos. DE-AC02-05CH11231 (JR) and DE-AC52-07NA27344 (RV) and by the National Science Foundation, Grant NSF PHY-0555660 (RV). NR 25 TC 42 Z9 42 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024601 DI 10.1103/PhysRevC.80.024601 PG 11 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400034 ER PT J AU Scielzo, ND Caldwell, S Savard, G Clark, JA Deibel, CM Fallis, J Gulick, S Lascar, D Levand, AF Li, G Mintz, J Norman, EB Sharma, KS Sternberg, M Sun, T Van Schelt, J AF Scielzo, N. D. Caldwell, S. Savard, G. Clark, J. A. Deibel, C. M. Fallis, J. Gulick, S. Lascar, D. Levand, A. F. Li, G. Mintz, J. Norman, E. B. Sharma, K. S. Sternberg, M. Sun, T. Van Schelt, J. TI Double-beta-decay Q values of Te-130, Te-128, and Te-120 SO PHYSICAL REVIEW C LA English DT Article ID PRECISION MASS-SPECTROMETRY; PENNING TRAP; NEUTRINO MASS; RAMSEY METHOD; ELECTRON; LIMITS; GE-76; IONS AB The double-beta-decay Q values of Te-130, Te-128, and Te-120 have been determined from parent-daughter mass differences measured with the Canadian Penning Trap mass spectrometer. The Xe-132-Xe-129 mass difference, which is precisely known, was also determined to confirm the accuracy of these results. The Te-130 Q value was found to be 2527.01 +/- 0.32 keV, which is 3.3 keV lower than the 2003 Atomic Mass Evaluation recommended value and is consistent with another recent Penning trap measurement. The Te-128 and Te-120 Q values were found to be 865.87 +/- 1.31 and 1714.81 +/- 1.25 keV, respectively. For Te-120, this reduction in uncertainty of nearly a factor of 8 opens up the possibility of using this isotope for sensitive searches for neutrinoless double-electron capture and electron capture with beta(+) emission. C1 [Scielzo, N. D.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. [Caldwell, S.; Savard, G.; Clark, J. A.; Deibel, C. M.; Lascar, D.; Levand, A. F.; Li, G.; Sternberg, M.; Sun, T.; Van Schelt, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Caldwell, S.; Savard, G.; Sternberg, M.; Van Schelt, J.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Fallis, J.; Sharma, K. S.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Gulick, S.; Li, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Lascar, D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Mintz, J.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Scielzo, ND (reprint author), Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. FU US Department of Energy [DE-AC52-07NA27344]; Argonne National Laboratory [DE-AC0206CH11357]; Northwestern University [DE-FG02-98ER41086]; NSERC, Canada FX We thank John Greene for help making the tellurium powder targets. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Argonne National Laboratory under Contract DE-AC0206CH11357, and Northwestern University under Contract DE-FG02-98ER41086. This work was supported by NSERC, Canada, under Application Number 216974. NR 40 TC 57 Z9 57 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 025501 DI 10.1103/PhysRevC.80.025501 PG 5 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400066 ER PT J AU Semkova, V Reimer, P Altzitzoglou, T Plompen, AJM Quetel, C Sudar, S Vogl, J Koning, AJ Qaim, SM Smith, DL AF Semkova, V. Reimer, P. Altzitzoglou, T. Plompen, A. J. M. Quetel, C. Sudar, S. Vogl, J. Koning, A. J. Qaim, S. M. Smith, D. L. TI Neutron activation cross sections on lead isotopes SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; OPTICAL-MODEL; INELASTIC-SCATTERING; EXCITATION-FUNCTIONS; DATA LIBRARIES; LESS-THAN; PB; ELEMENTS; RATIOS; REGION AB The cross sections for the reactions (204)Pb(n,n(')gamma)(204)Pb(m), (204)Pb(n,2n)(203)Pb, (204)Pb(n,2n)(203)Pb(m1), (204)Pb(n,3n)(202)Pb(m), (206)Pb(n,3n)(204)Pb(m), (206)Pb(n,alpha)(203)Hg, and (208)Pb(n,p)(208)Tl were determined at the IRMM van de Graaff laboratory in the neutron energy range from 14 to 21 MeV. Both natural and enriched samples were irradiated with neutrons produced via the (3)H(d,n)(4)He reaction. The induced activities were determined by gamma-ray spectrometry using a HPGe detector in a low-background shield. Neutron fluences were determined with the well-known cross section of the (27)Al(n,alpha)(24)Na reaction. Enriched samples were essential to determine the cross sections for the reactions with (204)Pb(m) and (206)Pb(m) isomers in the final state. Accurate results for reactions with (204,206)Pb as target nuclei with natural lead samples were enabled through a precise measurement of the isotopic ratios. For a first investigation of the consequences of the present data for nuclear reaction models they were confronted with calculations based on global parameter systematics in a phenomenological and in a microscopic approach and with parameters selected to reproduce the available data. The TALYS code was used for the former two calculations involving parameter systematics while the STAPRE code was used for the latter calculation. C1 [Semkova, V.; Reimer, P.; Altzitzoglou, T.; Plompen, A. J. M.; Quetel, C.; Sudar, S.; Vogl, J.] Inst Reference Mat & Measurements, Joint Res Ctr, European Commiss, B-2440 Geel, Belgium. [Koning, A. J.] Nucl Res & Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands. [Qaim, S. M.] Forschungszentrum Julich, Inst Nukl Chem, D-52425 Julich, Germany. [Smith, D. L.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Semkova, V (reprint author), Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. EM Arjan.Plompen@ec.europa.eu RI Vogl, Jochen/A-5960-2009; OI Reimer, Peter/0000-0002-3187-2536 FU Commission of the European Communities FX The authors thank the Van de Graaff operators for the irradiation conditions that made this work possible and A. Moens for the preparation of the samples. P. R. and V. S. are grateful to the Commission of the European Communities for financial support. NR 85 TC 9 Z9 9 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024610 DI 10.1103/PhysRevC.80.024610 PG 12 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400043 ER PT J AU Simpson, GS Urban, W Genevey, J Orlandi, R Pinston, JA Scherillo, A Smith, AG Smith, JF Ahmad, I Greene, JP AF Simpson, G. S. Urban, W. Genevey, J. Orlandi, R. Pinston, J. A. Scherillo, A. Smith, A. G. Smith, J. F. Ahmad, I. Greene, J. P. TI Two-quasiparticle isomers and bands of Nd-154,Nd-156 and Sm-156,Sm-158,Sm-160 SO PHYSICAL REVIEW C LA English DT Article ID EXCITED-STATES; HIGH-SPIN; FISSION FRAGMENTS; GE DETECTORS; NUCLEI; IDENTIFICATION; TRANSITIONS; ND-152; CF-252 AB The decay of a new 3.2-mu s, (4(-)) isomeric state at 1298.0 keV has been observed using gamma-ray spectroscopy at the Lohengrin mass spectrometer of the Institut Laue-Langevin. By comparison with theoretical calculations this state was assigned a nu 5/2[642]circle times nu 3/2[521] dominant configuration. Prompt gamma-ray data from a spontaneous fission experiment have also been analyzed allowing the observation of a collective band on top of this isomeric state, the identification of a new band on top of the previously reported (5(-)) isomer of Nd-156 and the extension of collective bands on top of (5(-)) isomers of the neighboring Sm-156,Sm-158 nuclei. Quasiparticle rotor model calculations reported in this work correctly predict the energies and decay patterns of these bands. A new (5(-)) isomer in Sm-160 has also been observed. The calculations predict nu 5/2[642]circle times nu 5/2[523] dominant configurations for all these (5(-)) isomers. C1 [Simpson, G. S.; Genevey, J.; Pinston, J. A.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, LPSC,IN2P3, F-38026 Grenoble, France. [Urban, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Urban, W.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Orlandi, R.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Scherillo, A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Smith, A. G.; Smith, J. F.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.; Greene, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Simpson, GS (reprint author), Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, LPSC,IN2P3, F-38026 Grenoble, France. EM simpson@lpsc.in2p3.fr FU Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357. NR 23 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024304 DI 10.1103/PhysRevC.80.024304 PG 12 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400014 ER PT J AU Zhu, S Janssens, RVF Fornal, B Freeman, SJ Honma, M Broda, R Carpenter, MP Deacon, AN Jackson, E Kay, BP Lauritsen, T Lister, CJ Mantica, PF Otsuka, T Seweryniak, D Smith, JF Steppenbeck, D Wang, X AF Zhu, S. Janssens, R. V. F. Fornal, B. Freeman, S. J. Honma, M. Broda, R. Carpenter, M. P. Deacon, A. N. Jackson, E. Kay, B. P. Lauritsen, T. Lister, C. J. Mantica, P. F. Otsuka, T. Seweryniak, D. Smith, J. F. Steppenbeck, D. Wang, X. TI High-lying, non-yrast shell structure in Ti-52 SO PHYSICAL REVIEW C LA English DT Article ID RICH CR ISOTOPES; MODEL; NUCLEI; N=32 AB Gamma rays from Ti-52 have been studied with Gammasphere and the Fragment Mass Analyzer using reactions induced by a Ca-48 beam on a Be-9 target. The data have been used in combination with information from deep-inelastic reactions of Ca-48 beams on a thick U-238 target at an energy about 25% above the Coulomb barrier. The Ti-52 level scheme was expanded considerably, and the lifetimes of some of the identified states were determined for the first time. The excitation of two protons and two neutrons outside the Ca-48 core provide new tests of effective interactions in the full pf-shell model space. The positive-parity states in Ti-52 were compared to theoretical predictions obtained with the GXPF1A, FPD6, and KB3G effective interactions. The comparisons favor, to a degree, the results computed with the GXPF1A interaction. C1 [Zhu, S.; Janssens, R. V. F.; Carpenter, M. P.; Jackson, E.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Wang, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Fornal, B.; Broda, R.] Polish Acad Sci, Inst Phys Nucl, PL-31342 Krakow, Poland. [Freeman, S. J.; Deacon, A. N.; Kay, B. P.; Smith, J. F.; Steppenbeck, D.] Univ Manchester, Sch Phys & Astron, Schuster Lab, Manchester M13 9PL, Lancs, England. [Honma, M.] Univ Aizu, Ctr Math Sci, Fukushima 9658580, Japan. [Mantica, P. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Otsuka, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Otsuka, T.] RIKEN, Wako, Saitama 3510198, Japan. [Wang, X.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Zhu, S (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Freeman, Sean/B-1280-2010; Kay, Benjamin/F-3291-2011; OTSUKA, TAKAHARU/G-5072-2014; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy [DE-AC0206CH11357]; UK Science and Technology Facilities Council; US National Science Foundation [PHY-01-01253, PHY-0456463]; Polish Scientific Committee [2PO3B-074-18]; STFC postdoctoral fellowship FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC0206CH11357, by the UK Science and Technology Facilities Council, by US National Science Foundation Grants No. PHY-01-01253, and PHY-0456463, and by Polish Scientific Committee Grant No. 2PO3B-074-18. A. N. D. acknowledges receipt of an STFC postdoctoral fellowship. The authors thank the ATLAS operating staff for the efficient running of the accelerator and John Greene for preparing the targets used in the measurement. NR 38 TC 9 Z9 9 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024318 DI 10.1103/PhysRevC.80.024318 PG 11 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400028 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, DD Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmensta, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mulmensta, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Production of psi(2S) mesons in p(p)over-bar collisions at 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARKONIUM; HADROPRODUCTION; J/PSI AB We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu(+)mu(-) that were produced in prompt or B-decay processes from p (p) over bar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb(-1) collected by the CDF II detector at Fermilab. For events with transverse momentum p(T)(psi(2S)) > 2 GeV/c and rapidity vertical bar y(psi(2S))vertical bar < 0.6 we measure the integrated inclusive cross section sigma(p (p) over bar -> psi(2S)X) center dot Br(psi(2S) -> mu(+)mu(-) to be 3.29 +/- 0.04(stat) +/- 0.32(syst) nb. C1 [Aaltonen, T.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Ciobanu, C. I.; Di Giovanni, G. P.; Hou, S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Cabrera, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.] Baylor Univ, Waco, TX 76798 USA. [Bromberg, C.; Deninno, M.; Jha, M. K.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Wuerthwein, F.] Univ Calif San Diego, San Diego, CA 92093 USA. [Brau, B.; Bridgeman, A.; Garberson, F.; Hill, C. S.; Incandela, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Budagov, J.; Canepa, A.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budd, H. S.; Chokheli, D.; Glagolev, V.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Calancha, C.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Busetto, G.; Canepa, A.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carron, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Buzatu, A.; Davies, T.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Brigliadori, L.; Burke, S.; Carlsmith, D.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Gibson, K.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D. D.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. Chonnam Natl Univ, Taejon 305806, South Korea. Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.] UCL, London WC1E 6BT, England. [Campanelli, M.; Fernandez, J. P.; Gonzalez, O.] Ctr Invest Energet Medioambient & Tecnol, Madrid 28040, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Byrum, K. L.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Byrum, K. L.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Byrum, K. L.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Byrum, K. L.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Canelli, F.; Cully, J. C.; Gerdes, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brubaker, E.; Campbell, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Compostella, G.; Donini, J.; Dorigo, T.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.] Univ Padua, I-35131 Padua, Italy. [Chen, Y. C.; Hou, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Carls, B.; Heijboer, A.; Heinrich, J.; Keung, J.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Carrillo, S.; Chiarelli, G.; Dell'Orso, M.; Di Canto, A.; Giannetti, P.; Giunta, M.; Introzzi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Dell'Orso, M.; Di Canto, A.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.] Univ Siena, I-56127 Pisa, Italy. [Boveia, A.; Hartz, M.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Boudreau, J.; Flanagan, G.; Garfinkel, A. F.; Jones, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Bolla, G.; Budd, S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.] Texas A&M Univ, College Stn, TX 77843 USA. [Di Ruzza, B.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Di Ruzza, B.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carosi, R.; Chung, W. H.; Herndon, M.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Kim, H. W.; Kim, J. E.] Yale Univ, New Haven, CT 06520 USA. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Chonnam Natl Univ, Kwangju 500757, South Korea. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Canelli, Florencia/O-9693-2016; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Canelli, Florencia/0000-0001-6361-2117; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX This work was supported by the U.S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 18 TC 37 Z9 37 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 031103 DI 10.1103/PhysRevD.80.031103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100003 ER PT J AU Aoki, S Chiu, TW Fukaya, H Hashimoto, S Hsieh, TH Kaneko, T Matsufuru, H Noaki, J Onogi, T Shintani, E Yamada, N AF Aoki, S. Chiu, T. W. Fukaya, H. Hashimoto, S. Hsieh, T. H. Kaneko, T. Matsufuru, H. Noaki, J. Onogi, T. Shintani, E. Yamada, N. CA JLQCD TWQCD Collaborations TI Pion form factors from two-flavor lattice QCD with exact chiral symmetry SO PHYSICAL REVIEW D LA English DT Article ID MASSLESS QUARKS; GAUGE-THEORIES; ONE LOOP; EXPANSION AB We calculate pion vector and scalar form factors in two-flavor lattice QCD and study the chiral behavior of the vector and scalar radii < r(2)>(V,S). Numerical simulations are carried out on a 16(3) x 32 lattice at a lattice spacing of 0.12 fm with quark masses down to similar to m(s)/6, where m(s) is the physical strange quark mass. Chiral symmetry, which is essential for a direct comparison with chiral perturbation theory (ChPT), is exactly preserved in our calculation at finite lattice spacing by employing the overlap quark action. We utilize the so-called all-to-all quark propagator in order to calculate the scalar form factor including the contributions of disconnected diagrams and to improve statistical accuracy of the form factors. A detailed comparison with ChPT reveals that the next-to-next-to-leading-order contributions to the radii are essential to describe their chiral behavior in the region of quark mass from m(s)/6 to m(s)/2. Chiral extrapolation based on two-loop ChPT yields < r(2)>(V) = 0.409(23)(37) fm(2) and < r(2)>(S) = 0.617(79)(66) fm(2), which are consistent with phenomenological analysis. We also present our estimates of relevant low-energy constants. C1 [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Chiu, T. W.] Natl Taiwan Univ, Ctr Theoret Sci, Dept Phys, Taipei 10617, Taiwan. [Chiu, T. W.] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 10617, Taiwan. [Fukaya, H.] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Hashimoto, S.; Kaneko, T.; Noaki, J.; Yamada, N.] KEK, High Energy Accelerator Res Org, Ctr Theory, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Hsieh, T. H.] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan. [Matsufuru, H.] KEK, High Energy Accelerator Res Org, Ctr Res Comp, Tsukuba, Ibaraki 3050801, Japan. [Onogi, T.; Shintani, E.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Ibaraki 3058571, Japan. RI Hsieh, Tung-Han/E-1740-2011; Shintani, Eigo/C-8623-2016; OI Chiu, Ting-Wai/0000-0002-7371-1132 NR 60 TC 33 Z9 33 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034508 DI 10.1103/PhysRevD.80.034508 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100065 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for b -> u transitions in B-0 -> (DK)-K-0*(0) decays SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; MODES; GAMMA AB We present a study of the decays B-0 -> (DK)-K-0*(0) and B-0 -> (D) over bar K-0*(0) and K*(0) -> K+pi(-). The D-0 and the (D) over bar (0) mesons are reconstructed in the final states f = K+pi(-), K+pi(-)pi(0), K+pi(-)pi(+)pi(-), and their charge conjugates. Using a sample of 465 x 10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC, we measure the ratio R-ADS = [Gamma((B) over bar -> [f] (K) over bar (0)) + Gamma(B-0 -> [(f) over bar K-D*(0))]/[Gamma((B) over bar (0) -> [(f) over bar (D)(K)over bar>*(0))] + Gamma(B-0 -> [f](D)K*(0))] for the three final states. We do not find significant evidence for a signal and set the following limits at 95% probability: R-ADS (K pi) < 0.244, R-ADS (K pi pi(0)) < 0.181, and R-ADs (K pi pi pi)<0.391. From the combination of these three results, we find that the ratio r(S) between the b -> u and the b -> c amplitudes lies in the range [0.07,0.41] at 95% probability. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, H.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Valencia, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Jackson, G.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Sordini, V.; Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Neri, Nicola/G-3991-2012; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Neri, Nicola/0000-0002-6106-3756; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 FU European Union; A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare ( Italy), the Foundation for Fundamental Research on Matter ( The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacio ' n y Ciencia ( Spain), and the Science and Technology Facilities Council ( United Kingdom). Individuals have received support from the Marie- Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 21 TC 46 Z9 46 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 031102 DI 10.1103/PhysRevD.80.031102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100002 ER PT J AU Belikov, AV Hooper, D AF Belikov, Alexander V. Hooper, Dan TI How dark matter reionized the Universe SO PHYSICAL REVIEW D LA English DT Article ID INTERGALACTIC MEDIUM; DENSITY; IMPACT; ANNIHILATIONS; EVOLUTION; PHYSICS; DECAYS AB Although empirical evidence indicates that the Universe's gas had become ionized by redshift z approximate to 6, the mechanism by which this transition occurred remains unclear. In this article, we explore the possibility that dark matter annihilations may have played the dominant role in this process. Energetic electrons produced in these annihilations can scatter with the cosmic microwave background to generate relatively low energy gamma rays, which ionize and heat gas far more efficiently than higher energy prompt photons. In contrast to previous studies, we find that viable dark matter candidates with electroweak scale masses can naturally provide the dominant contribution to the reionization of the Universe. Intriguingly, we find that dark matter candidates capable of producing the recent cosmic ray positron excesses observed by PAMELA (or the electrons spectrum measured by the Fermi Gamma Ray Space Telescope) are also predicted to lead to the full reionization of the Universe by z similar to 6. C1 [Belikov, Alexander V.; Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Belikov, AV (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Belikov, Alexander/0000-0002-5649-0913 FU US Department of Energy, [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank Nick Gnedin and Aravind Natarajan for very helpful discussions. This work has been supported by the US Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842. NR 55 TC 45 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035007 DI 10.1103/PhysRevD.80.035007 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100072 ER PT J AU Bernard, C Detar, C Di Pierro, M El-Khadra, AX Evans, RT Freeland, ED Gamiz, E Gottlieb, S Heller, UM Hetrick, JE Kronfeld, AS Laiho, J Levkova, L Mackenzie, PB Okamoto, M Oktay, MB Simone, JN Sugar, R Toussaint, D Van de Water, RS AF Bernard, C. DeTar, C. Di Pierro, M. El-Khadra, A. X. Evans, R. T. Freeland, E. D. Gamiz, E. Gottlieb, Steven Heller, U. M. Hetrick, J. E. Kronfeld, A. S. Laiho, J. Levkova, L. Mackenzie, P. B. Okamoto, M. Oktay, M. B. Simone, J. N. Sugar, R. Toussaint, D. Van de Water, R. S. CA Fermilab Lattice MILC Collaboratio TI Visualization of semileptonic form factors from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID TWISTED BOUNDARY-CONDITIONS; BRANCHING FRACTIONS; DECAYS; HEAVY AB Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measurements often display two sets of points, one each for lattice QCD and experiment. Here we propose to display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to address correlations in the systematic errors, we use the Becirevic-Kaidalov parametrization of the D pi l nu and D -> Kl nu form factors, and an analyticity-based fit for the B -> pi l nu form factor f(+). C1 [Bernard, C.; Laiho, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [DeTar, C.; Levkova, L.; Oktay, M. B.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Di Pierro, M.] Depaul Univ, Sch Comp Sci Telecommun & Informat Syst, Chicago, IL 60604 USA. [El-Khadra, A. X.; Evans, R. T.; Gamiz, E.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Freeland, E. D.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Heller, U. M.] Amer Phys Soc, New York, NY USA. [Hetrick, J. E.] Univ Pacific, Dept Phys, Stockton, CA 95211 USA. [Kronfeld, A. S.; Mackenzie, P. B.; Okamoto, M.; Simone, J. N.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Van de Water, R. S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Bernard, C (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. RI Gamiz, Elvira/E-8009-2016; OI Gamiz, Elvira/0000-0001-5125-2687; Simone, James/0000-0001-8515-3337; Heller, Urs M./0000-0002-2780-5584; Hetrick, James/0000-0002-0740-2251 FU U. S. Department of Energy [DE-FC02-06ER41446, DE-FG0291ER40661, DE-FG02-91ER40677, DE-FG02-91ER40628, DE-FG02-04ER41298, DE-AC02-08CH10886, DE-AC02-07CH11359]; National Science Foundation [PHY-0555243, PHY-0757333, PHY-0703296, PHY-0555235, PHY-0757035]; Universities Research Associates FX We would like to thank Ian Shipsey for encouraging us to think carefully about the correlations in the systematic errors. We would like to thank Laurenz Widhalm for providing the Belle data in numerical form [ 24], and Shipsey for the BABAR and CLEO D-decay data [ 27 29]. Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the United States Department of Energy. This work was supported in part by the U. S. Department of Energy under Grants No. DE-FC02-06ER41446 ( C. D., L. L., M. B. O.), No. DE-FG0291ER40661 ( S. G.), No. DE-FG02-91ER40677 ( A. X. EK., R. T. E., E. G.), No. DE-FG02-91ER40628 ( C. B., J. L.), and No. DE-FG02-04ER41298 ( D. T.); by the National Science Foundation under Grants No. PHY-0555243, No. PHY-0757333, No. PHY-0703296 ( C. D., L. L., M. B. O.), No. PHY-0555235 ( J. L.), and No. PHY-0757035 ( R. S.); and by Universities Research Associates ( R. T. E., E. G.). This manuscript has been coauthored by an employee of Brookhaven Science Associates, LLC, under Contract No. DE-AC02-08CH10886 with the U. S. Department of Energy. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U. S. Department of Energy. NR 39 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034026 DI 10.1103/PhysRevD.80.034026 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100048 ER PT J AU Bilgici, E Flachi, A Itou, E Kurachi, M Lin, CJD Matsufuru, H Ohki, H Onogi, T Yamazaki, T AF Bilgici, Erek Flachi, Antonino Itou, Etsuko Kurachi, Masafumi Lin, C. -J. David Matsufuru, Hideo Ohki, Hiroshi Onogi, Tetsuya Yamazaki, Takeshi TI New scheme for the running coupling constant in gauge theories using Wilson loops SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SYMMETRY-BREAKING; QUENCHED LATTICE QCD; CHIRAL HIERARCHIES; TECHNICOLOR THEORIES; PHASE-TRANSITION; FLAVORS; COMPUTATION; HYPERCOLOR; SCALE; SU(2) AB We propose a new renormalization scheme of the running coupling constant in general gauge theories using the Wilson loops. The renormalized coupling constant is obtained from the Creutz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter can be calculated by adopting the zeta-function resummation techniques. We perform a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step-scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with a relatively small number of gauge configurations. C1 [Bilgici, Erek] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Flachi, Antonino; Ohki, Hiroshi; Onogi, Tetsuya] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Itou, Etsuko] Kogakuin Univ, Acad Support Ctr, Nakanomachi Hachioji 1920015, Japan. [Kurachi, Masafumi] Los Alamos Natl Lab, Theoret Div T, Los Alamos, NM 87544 USA. [Lin, C. -J. David] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. [Lin, C. -J. David] Natl Ctr Theoret Sci, Div Phys, Hsinchu 300, Taiwan. [Matsufuru, Hideo] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Ohki, Hiroshi] Kyoto Univ, Dept Phys, Kyoto 6068501, Japan. [Yamazaki, Takeshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RP Bilgici, E (reprint author), Graz Univ, Inst Phys, A-8010 Graz, Austria. EM erek.bilgici@uni-graz.at; flachi@yukawa.kyoto-u.ac.jp; itou@yukawa.kyoto-u.ac.jp; kurachi@lanl.gov; dlin@mail.nctu.edu.tw; hideo.matsufuru@kek.jp; ohki@yukawa.kyoto-u.ac.jp; onogi@yukawa.kyoto-u.ac.jp; yamazaki@ccs.tsukuba.ac.jp RI Flachi, Antonino/I-3512-2013 OI Flachi, Antonino/0000-0001-6579-2414 NR 53 TC 24 Z9 24 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034507 DI 10.1103/PhysRevD.80.034507 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100064 ER PT J AU Brambilla, N Vairo, A Tormo, XGI Soto, J AF Brambilla, Nora Vairo, Antonio Garcia i Tormo, Xavier Soto, Joan TI QCD static energy at next-to-next-to-next-to leading-logarithmic accuracy SO PHYSICAL REVIEW D LA English DT Article ID PRODUCTION NEAR-THRESHOLD; QUANTUM CHROMODYNAMICS; ULTRASOFT CONTRIBUTION; PERTURBATION-THEORY; HEAVY-QUARKONIUM; WAVE-FUNCTIONS; BETA-FUNCTION; ORDER; MASS; RENORMALIZATION AB We compute the static energy of QCD at short distances at next-to-next-to-next-to-leading logarithmic accuracy in terms of the three-loop singlet potential. By comparing our results with lattice data we extract the value of the unknown piece of the three-loop singlet potential. C1 [Brambilla, Nora; Vairo, Antonio] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Brambilla, Nora; Vairo, Antonio] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Brambilla, Nora; Vairo, Antonio] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Garcia i Tormo, Xavier] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Soto, Joan] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Soto, Joan] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Catalonia, Spain. RP Brambilla, N (reprint author), Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. RI Brambilla, Nora/O-9943-2015; Soto, Joan/F-5021-2016 OI Soto, Joan/0000-0001-5521-0900 FU MECINFN; RTN Flavianet [MRTN-CT-2006-035482]; CPAN [FPA2007-60275/, FPA2007-66665-C02-01/MEC]; ConsoliderIngenio 2010 program ( Spain) [CSD2007-00042]; CIRIT [2005SGR00564]; U. S. Department of Energy; Division of High Energy Physics [DE-AC02-06CH11357]; DFG FX We thank A. Pineda for many clarifications. N. B., J. S., and A. V. acknowledge financial support from the MECINFN exchange program (Italy-Spain) and the RTN Flavianet under Contract No. MRTN-CT-2006-035482 (EU). J. S. acknowledge financial support from the FPA2007-60275/ and FPA2007-66665-C02-01/MEC Grants, from the CPAN CSD2007-00042 ConsoliderIngenio 2010 program ( Spain), and the 2005SGR00564 CIRIT Grant ( Catalonia). The work of X. G. T. was supported in part by the U. S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The research of N. B. and A. V. was partially supported by the DFG cluster of excellence "Origin and Structure of the Universe''[39].. NR 38 TC 35 Z9 35 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034016 DI 10.1103/PhysRevD.80.034016 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100038 ER PT J AU Carlson, J White, M Padmanabhan, N AF Carlson, Jordan White, Martin Padmanabhan, Nikhil TI Critical look at cosmological perturbation theory techniques SO PHYSICAL REVIEW D LA English DT Article ID FRIEDMAN-LEMAITRE COSMOLOGIES; N-BODY SIMULATIONS; GRAVITATIONAL-INSTABILITY; POWER SPECTRUM; NONLINEAR EVOLUTION; LAGRANGIAN THEORY; ZELDOVICH APPROXIMATION; LINEAR REGIME; DARK-ENERGY; EXPANSIONS AB Recently, a number of analytic prescriptions for computing the nonlinear matter power spectrum have appeared in the literature. These typically involve resummation or closure prescriptions which do not have a rigorous error control, thus they must be compared with numerical simulations to assess their range of validity. We present a direct side-by-side comparison of several of these analytic approaches, using a suite of high-resolution N-body simulations as a reference, and discuss some general trends. All of the analytic results correctly predict the behavior of the power spectrum at the onset of nonlinearity, and improve upon a pure linear theory description at very large scales. All of these theories fail at sufficiently small scales. At low redshift the dynamic range in scale where perturbation theory is both relevant and reliable can be quite small. We also compute for the first time the two-loop contribution to standard perturbation theory for cold dark matter models, finding improved agreement with simulations at large redshift. At low redshifts however the two-loop term is larger than the one-loop term on quasilinear scales, indicating a breakdown of the perturbation expansion. Finally, we comment on possible implications of our results for future studies. A software package implementing the methods presented here is available at http://mwhite.berkeley.edu/Copter. C1 [Carlson, Jordan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Carlson, J (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. EM jwgcarlson@berkeley.edu; mwhite@berkeley.edu; NPadmanabhan@lbl.gov RI Padmanabhan, Nikhil/A-2094-2012; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 NR 57 TC 111 Z9 111 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 4 AR 043531 DI 10.1103/PhysRevD.80.043531 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FX UT WOS:000269641400046 ER PT J AU Davoudiasl, H AF Davoudiasl, Hooman TI Dark matter with time-varying leptophilic couplings SO PHYSICAL REVIEW D LA English DT Article ID HIERARCHY; DIMENSION; ENERGIES AB Two general problems arise when interpreting the recent cosmic ray data as signals of dark matter (DM) annihilation: (i) the required cross section is too large by O(100), and (ii) the annihilation products seem to be mostly leptonic. We propose to address these two problems by assuming that the couplings of DM to leptons grow with time. This can be achieved by a dynamic localization of DM in extra dimensions. A possible outcome of this proposal is a time (redshift) dependent annihilation signal, in terms of strength and dominant final states. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov NR 33 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 4 AR 043502 DI 10.1103/PhysRevD.80.043502 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FX UT WOS:000269641400017 ER PT J AU de Florian, D Sassot, R Stratmann, M Vogelsang, W AF de Florian, Daniel Sassot, Rodolfo Stratmann, Marco Vogelsang, Werner TI Extraction of spin-dependent parton densities and their uncertainties SO PHYSICAL REVIEW D LA English DT Review ID TO-LEADING-ORDER; DEEP-INELASTIC-SCATTERING; POLARIZED QUARK DISTRIBUTIONS; ANTIQUARK FLAVOR ASYMMETRY; HYPERON SEMILEPTONIC DECAYS; TARGET MASS CORRECTIONS; VECTOR BOSON PRODUCTION; N-C LIMIT; SPLITTING FUNCTIONS; QCD CORRECTIONS AB We discuss techniques and results for the extraction of the nucleon's spin-dependent parton distributions and their uncertainties from data for polarized deep-inelastic lepton-nucleon and proton-proton scattering by means of a global QCD analysis. Computational methods are described that significantly increase the speed of the required calculations to a level that allows one to perform the full analysis consistently at next-to-leading order accuracy. We examine how the various data sets help to constrain different aspects of the quark, antiquark, and gluon helicity distributions. Uncertainty estimates are performed using both the Lagrange multiplier and the Hessian approaches. We use the extracted parton distribution functions and their estimated uncertainties to predict spin asymmetries for high-transverse momentum pion and jet production in polarized proton-proton collisions at 500 GeV center-of-mass system energy at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, as well as for W boson production. C1 [de Florian, Daniel; Sassot, Rodolfo] Univ Buenos Aires, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Stratmann, Marco] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Stratmann, Marco] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP de Florian, D (reprint author), Univ Buenos Aires, Dept Fis, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina. EM deflo@df.uba.ar; sassot@df.uba.ar; marco@ribf.riken.jp; vogelsan@quark.phy.bnl.gov RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 NR 159 TC 169 Z9 170 U1 3 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034030 DI 10.1103/PhysRevD.80.034030 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100052 ER PT J AU Draper, P Liu, T Wagner, CEM AF Draper, Patrick Liu, Tao Wagner, Carlos E. M. TI Prospects for MSSM Higgs boson searches at the Fermilab Tevatron SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; EXPLICIT CP VIOLATION; BENCHMARK SCENARIOS; COMPUTATIONAL TOOL; HADRON COLLIDERS; MASS; UNIFICATION; PHENOMENOLOGY; PHYSICS; LHC AB We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m(A), tan beta) plane. C1 [Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Draper, Patrick; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Draper, P (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU U.S. Department of Energy (DOE) [DE-AC02-06CH11357, DE-FG02-90ER40560, DE-FGO2-96ER40956]; Fermi-McCormick FX Work at ANL is supported in part by the U.S. Department of Energy (DOE), Division of HEP, Contract No. DE-AC02-06CH11357. Work at EFI is supported in part by the DOE through Grant No. DE-FG02-90ER40560. T. L. is also supported by Fermi-McCormick. This work was supported in part by the DOE under Task TeV Contract No. DE-FGO2-96ER40956. NR 54 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035025 DI 10.1103/PhysRevD.80.035025 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100090 ER PT J AU Hidaka, Y Pisarski, RD AF Hidaka, Yoshimasa Pisarski, Robert D. TI Hard thermal loops, to quadratic order, in the background of a spatial 't Hooft loop SO PHYSICAL REVIEW D LA English DT Review ID QUARK-GLUON PLASMA; HOT GAUGE-THEORIES; 3-LOOP FREE-ENERGY; YANG-MILLS THEORY; FINITE-TEMPERATURE; PHASE-TRANSITION; POLYAKOV LOOP; INTERFACE TENSION; DOMAIN-WALLS; WILSON LOOP AB We compute the simplest hard thermal loops for a spatial 't Hooft loop in the deconfined phase of a SU(N) gauge theory. We expand to quadratic order about a constant background field A(0) = Q/g, where Q is a diagonal, color matrix and g is the gauge coupling constant. We analyze the problem in sufficient generality that the techniques developed can be applied to compute transport properties in a "semi"-quark gluon plasma. Notably, computations are done using the double line notation at finite N. The quark self-energy is a Q-dependent thermal mass squared similar to g(2)T(2), where T is the temperature, times the same hard thermal loop as at Q = 0. The gluon self-energy involves two pieces: a Q-dependent Debye mass squared, similar to g(2)T(2), times the same hard thermal loop as for Q = 0, plus a new hard thermal loop similar to g(2)T(3), due to the color electric field generated by a spatial 't Hooft loop. C1 [Hidaka, Yoshimasa] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Hidaka, Y (reprint author), Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. FU U.S. Department of Energy [DE-AC02-98CH10886]; Alexander von Humboldt Foundation; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan FX This research of R. D. P. was supported by the U.S. Department of Energy under Cooperative Research Agreement No. DE-AC02-98CH10886. R. D. P. also thanks the Alexander von Humboldt Foundation for their support. This research of Y. H. was supported by the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. We thank M. Creutz, K. Hubner, F. Karsch, O. Kaczmarek, C. P. Korthals Altes, P. Petreczky, C. Pica, R. Venugopalan, and L. Yaffe for discussions. We especially thank P. Cvitanovic for his detailed comments on Sec. II. NR 139 TC 28 Z9 28 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 036004 DI 10.1103/PhysRevD.80.036004 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100096 ER PT J AU Kharzeev, DE Warringa, HJ AF Kharzeev, Dmitri E. Warringa, Harmen J. TI Chiral magnetic conductivity SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; SYMMETRY BREAKING; PARITY VIOLATION; ODD BUBBLES; HOT QCD; FIELD; CONDENSATE; INSTANTONS; ANOMALIES AB Gluon field configurations with nonzero topological charge generate chirality, inducing P- and CP-odd effects. When a magnetic field is applied to a system with nonzero chirality, an electromagnetic current is generated along the direction of the magnetic field. The induced current is equal to the chiral magnetic conductivity times the magnetic field. In this article we will compute the chiral magnetic conductivity of a high-temperature plasma for nonzero frequencies. This allows us to discuss the effects of time-dependent magnetic fields, such as produced in heavy ion collisions, on chirally asymmetric systems. C1 [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Warringa, Harmen J.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Kharzeev, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kharzeev@bnl.gov; warringa@th.physik.uni-frankfurt.de FU U. S. Department of Energy. [DE-AC02-98CH10886]; Alexander von Humboldt Foundation; ExtreMe Matter Institute EMMI [HA216/EMMI] FX We are grateful to Kenji Fukushima, Larry McLerran, Dirk Rischke, and Andreas Schmitt for discussions. This manuscript has been authored under Contract No. # DE-AC02-98CH10886 with the U. S. Department of Energy. The work of H. J. W. was supported partly by the Alexander von Humboldt Foundation and partly by the ExtreMe Matter Institute EMMI in the framework of the Helmholtz Alliance Program of the Helmholtz Association (HA216/EMMI). NR 56 TC 133 Z9 135 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034028 DI 10.1103/PhysRevD.80.034028 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100050 ER PT J AU Mardon, J Nomura, Y Thaler, J AF Mardon, Jeremy Nomura, Yasunori Thaler, Jesse TI Cosmic signals from the hidden sector SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; DARK-MATTER; COSMOLOGICAL CONSTRAINTS; SYMMETRY-BREAKING; AXION; SUPERGRAVITY; GRAVITINO; ENERGIES; PHYSICS; DECAY AB Cosmologically long-lived, composite states arise as natural dark matter candidates in theories with a strongly interacting hidden sector at a scale of 10-100 TeV. Light axionlike states, with masses in the 1 MeV-10 GeV range, are also generic, and can decay via Higgs couplings to light standard model particles. Such a scenario is well motivated in the context of very low-energy supersymmetry breaking, where ubiquitous cosmological problems associated with the gravitino are avoided. We investigate the astrophysical and collider signatures of this scenario, assuming that dark matter decays into the axionlike states via dimension six operators, and we present an illustrative model exhibiting these features. We conclude that the recent data from PAMELA, FERMI, and H. E. S. S. points to this setup as a compelling paradigm for dark matter. This has important implications for future diffuse gamma ray measurements and collider searches. C1 [Mardon, Jeremy] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Mardon, J (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. OI Thaler, Jesse/0000-0002-2406-8160; Nomura, Yasunori/0000-0002-1497-1479 FU Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0457315, PHY-0555661]; Alfred P. Sloan Foundation; Miller Institute for Basic Research in Science FX This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02-05CH11231, and in part by the National Science Foundation under grant PHY-0457315. The work of Y.N. was supported in part by the National Science Foundation under grant PHY-0555661 and the Alfred P. Sloan Foundation. J.T. is supported by the Miller Institute for Basic Research in Science. NR 99 TC 53 Z9 53 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035013 DI 10.1103/PhysRevD.80.035013 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100078 ER PT J AU Martin, SP Younkin, JE AF Martin, Stephen P. Younkin, James E. TI Radiative corrections to stoponium annihilation decays SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC ELECTROWEAK BARYOGENESIS; BOUND-STATE PRODUCTION; PHASE-TRANSITION; HADRON COLLIDERS; QCD CORRECTIONS; QUARKONIUM; MSSM; SQUARKONIUM; HIGGS AB The lighter top squark in supersymmetry can live long enough to form hadronic bound states if it has no kinematically allowed two-body decays that conserve flavor. In this case, scalar stoponium may be observable through its diphoton decay mode at the CERN Large Hadron Collider, enabling a uniquely precise measurement of the top-squark mass. The viability of the signal depends crucially on the branching ratio to diphotons. We compute the next-to-leading-order QCD radiative corrections to stoponium annihilation decays to hadrons, photons, and Higgs scalar bosons. We find that the effect of these corrections is to significantly decrease the predicted branching ratio to the important diphoton channel. We also find a greatly improved renormalization-scale dependence of the diphoton branching ratio prediction. C1 [Martin, Stephen P.; Younkin, James E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-0757325] FX This work was supported in part by National Science Foundation Grant No. PHY-0757325. NR 65 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035026 DI 10.1103/PhysRevD.80.035026 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100091 ER PT J AU Osipenko, M Ripani, M Ricco, G Avakian, H De Vita, R Adams, G Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bonner, BE Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Cazes, A Ceccopieri, F Chen, S Cole, PL Collins, P Coltharp, P Corvisiero, P Crabb, D Crede, V Cummings, JP Dashyan, N De Masi, R De Sanctis, E Degtyarenko, PV Denizli, H Dennis, L Deur, A Dharmawardane, KV Dhuga, KS Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Drozdov, V Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Funsten, H Garcon, M Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Golovach, E Gonenc, A Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ilyichev, A Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Lachniet, J Laget, JM Langheinrich, J Lawrence, D Li, J Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P McAleer, S McCracken, M McKinnon, B McNabb, JWC Mecking, BA Mehrabyan, S Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M O'Rielly, GV Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Popa, I Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ritchie, BG Rosner, G Rossi, P Rubin, PD Sabatie, F Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Shvedunov, NV Skabelin, AV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Thoma, U Tkabladze, A Tkachenko, S Todor, L Trentadue, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, B Zhao, ZW AF Osipenko, M. Ripani, M. Ricco, G. Avakian, H. De Vita, R. Adams, G. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Barrow, S. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bonner, B. E. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Cazes, A. Ceccopieri, F. Chen, S. Cole, P. L. Collins, P. Coltharp, P. Corvisiero, P. Crabb, D. Crede, V. Cummings, J. P. Dashyan, N. De Masi, R. De Sanctis, E. Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dharmawardane, K. V. Dhuga, K. S. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Drozdov, V. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fatemi, R. Fedotov, G. Feldman, G. Feuerbach, R. J. Funsten, H. Garcon, M. Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Golovach, E. Gonenc, A. Gordon, C. I. O. Gothe, R. W. Griffioen, K. A. Guidal, M. Guillo, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ilyichev, A. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Li, Ji Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. McAleer, S. McCracken, M. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mehrabyan, S. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Napolitano, J. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. O'Rielly, G. V. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Philips, S. A. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Polli, E. Popa, I. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Qin, L. M. Raue, B. A. Riccardi, G. Ritchie, B. G. Rosner, G. Rossi, P. Rubin, P. D. Sabatie, F. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Shvedunov, N. V. Skabelin, A. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Thoma, U. Tkabladze, A. Tkachenko, S. Todor, L. Trentadue, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Measurement of semi-inclusive pi(+) electroproduction off the proton SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; TARGET FRAGMENTATION REGION; TRANSVERSE-MOMENTUM; PARTON DISTRIBUTIONS; AZIMUTHAL ASYMMETRY; PION ELECTROPRODUCTION; CHARGED HADRONS; HARD PROCESSES; LEADING ORDER; CROSS-SECTION AB Semi-inclusive pi(+) electroproduction on protons has been measured with the CLAS detector at Jefferson Lab. The measurement was performed on a liquid-hydrogen target using a 5.75 GeV electron beam. The complete five-fold differential cross sections were measured over a wide kinematic range including the complete range of azimuthal angles between hadronic and leptonic planes, phi, enabling us to separate the phi-dependent terms. Our measurements of the phi-independent term of the cross section at low Bjorken x were found to be in fairly good agreement with pQCD calculations. Indeed, the conventional current fragmentation calculation can account for almost all of the observed cross section, even at small pi(+) momentum. The measured center-of-momentum spectra are in qualitative agreement with high-energy data, which suggests a surprising numerical similarity between the spectator diquark fragmentation in the present reaction and the antiquark fragmentation measured in e(+)e(-) collisions. We have observed that the two phi-dependent terms of the cross section are small. Within our precision the cos2 phi term is compatible with zero, except for the low-z region, and the measured cos phi term is much smaller in magnitude than the sum of the Cahn and Berger effects. C1 [Osipenko, M.; Ripani, M.; Ricco, G.; De Vita, R.; Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; Drozdov, V.; Taiuti, M.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Funsten, H.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McCracken, M.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Hakobyan, R. S.; Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; Garcon, M.; Girod, F. X.; Laget, J. M.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Hardie, J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Baillie, N.; Butuceanu, C.; Egiyan, H.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Gonenc, A.; Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Barrow, S.; Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Eugenio, P.; Hanretty, C.; McAleer, S.; Ostrovidov, A. I.; Riccardi, G.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Ceccopieri, F.; Trentadue, L.] Ist Nazl Fis Nucl, Grp Coll Parma, I-43100 Parma, Italy. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Polli, E.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bouchigny, S.; Guidal, M.; Hadjidakis, C.; Jo, H. S.; MacCormick, M.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Boiarinov, S.; Cazes, A.; Kossov, M.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Thoma, U.] Univ Bonn, Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Skabelin, A. V.] MIT, Cambridge, MA 02139 USA. [Osipenko, M.; Drozdov, V.; Fedotov, G.; Golovach, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119899, Russia. [Ilyichev, A.] Phys Belarusian State Univ, Natl Sci & Educ Ctr Particle & High Energy, Minsk 220040, Byelarus. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Hleiqawi, I.; Mibe, T.; Niculescu, G.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Qin, L. M.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Adams, G.; Bellis, M.; Biselli, A. S.; Cummings, J. P.; Kubarovsky, V.; Kuhn, J.; Li, Ji; Napolitano, J.; Niyazov, R. A.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, New York, NY 12180 USA. [Bonner, B. E.; Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Feldman, G.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Strakovsky, I. I.; Strauch, S.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Avakian, H.; Boiarinov, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Hardie, J.; Heddle, D.; Ito, M. M.; Joo, K.; Kramer, L. H.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Raue, B. A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Thoma, U.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Ceccopieri, F.; Trentadue, L.] Univ Parma, I-43100 Parma, Italy. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Donnelly, J.; Gordon, C. I. O.; Hassall, N.; Ireland, D. G.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Melone, J. J.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Calarco, J. R.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Denizli, H.; Dytman, S.; Mehrabyan, S.; Mueller, J.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Gilfoyle, G. P.; Rubin, P. D.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Baltzell, N. A.; Cazes, A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Guillo, M.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Preedom, B. M.; Strauch, S.; Tedeschi, D. J.; Tur, C.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Crabb, D.; Fatemi, R.; Minehart, R.; Pierce, J.; Pocanic, D.; Prok, Y.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Egiyan, K. S.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Osipenko, M (reprint author), Ist Nazl Fis Nucl, Via Dodecaneso 33, I-16146 Genoa, Italy. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Drozdov, Vadim/E-5456-2012; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Schumacher, Reinhard/K-6455-2013 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Sapunenko, Vladimir/0000-0003-1877-9043; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827 FU Deutsche Forschungsgemeinschaft; Korean Science and Engineering Foundation. Jefferson Science Associates (JSA); Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy [DE-AC0584ER40150] FX National Science Foundation, an Emmy Noether grant from the Deutsche Forschungsgemeinschaft and the Korean Science and Engineering Foundation. Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC0584ER40150. NR 74 TC 49 Z9 49 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 032004 DI 10.1103/PhysRevD.80.032004 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100011 ER PT J AU Ramalho, G Tsushima, K Gross, F AF Ramalho, G. Tsushima, K. Gross, Franz TI Relativistic quark model for the Omega(-) electromagnetic form factors SO PHYSICAL REVIEW D LA English DT Article ID BARYON MAGNETIC-MOMENTS; BOUND-STATE APPROACH; QCD SUM-RULES; DECUPLET BARYONS; SKYRME MODEL; ELECTRIC QUADRUPOLE; OCTUPOLE MOMENTS; LATTICE QCD; HYPERONS; NUCLEON AB We compute the Omega(-) electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the covariant spectator theory. Our predictions for the Omega(-) electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass. C1 [Ramalho, G.; Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, EBAC Theory Ctr, Newport News, VA 23606 USA. [Ramalho, G.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC Theory Ctr, Newport News, VA 23606 USA. OI Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates [DE-AC05-06OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union FX G. R. thanks David Richard, Huey-Wen Lin, Christopher Thomas, and Nilmani Mathur for helpful discussions. This work was partially supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under Grant No. SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 Project "Study of Strongly Interacting Matter''). NR 75 TC 35 Z9 35 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 033004 DI 10.1103/PhysRevD.80.033004 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100016 ER PT J AU Slatyer, TR Padmanabhan, N Finkbeiner, DP AF Slatyer, Tracy R. Padmanabhan, Nikhil Finkbeiner, Douglas P. TI CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; DARK-MATTER; COSMIC-RAYS; COSMOLOGICAL DISTANCES; PAIR PRODUCTION; CROSS-SECTIONS; GAMMA-RAYS; ELECTRONS; IMPACT; BREMSSTRAHLUNG AB We compute in detail the rate at which energy injected by dark matter (DM) annihilation heats and ionizes the photon-baryon plasma at z similar to 1000, and provide accurate fitting functions over the relevant redshift range for a broad array of annihilation channels and DM masses. The resulting perturbations to the ionization history can be constrained by measurements of the CMB temperature and polarization angular power spectra. We show that models which fit recently measured excesses in 10-1000 GeV electron and positron cosmic rays are already close to the 95% confidence limits from WMAP. The recently launched Planck satellite will be capable of ruling out a wide range of DM explanations for these excesses. In models of dark matter with Sommerfeld-enhanced annihilation, where <> rises with decreasing WIMP velocity until some saturation point, the WMAP5 constraints imply that the enhancement must be close to saturation in the neighborhood of the Earth. C1 [Slatyer, Tracy R.; Finkbeiner, Douglas P.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Finkbeiner, Douglas P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Slatyer, TR (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM tslatyer@fas.harvard.edu; NPadmanabhan@lbl.gov; dfinkbeiner@cfa.harvard.edu RI Padmanabhan, Nikhil/A-2094-2012 NR 70 TC 221 Z9 221 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 4 AR 043526 DI 10.1103/PhysRevD.80.043526 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FX UT WOS:000269641400041 ER PT J AU Nisoli, C AF Nisoli, Cristiano TI Spiraling solitons: A continuum model for dynamical phyllotaxis of physical systems SO PHYSICAL REVIEW E LA English DT Article DE nonlinear dynamical systems; pattern formation; self-adjusting systems; solitons ID SPHERES AB A protean topological soliton has recently been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of phyllotaxis. Here, we present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as locked speed, screw shift, energy transport, and-for Wigner crystal on a nanotube-charge transport. The treatment is general and should apply to other spiraling systems. Unlike, e.g., sine-Gordon-like systems, our soliton can exist between nondegenerate structures and its dynamics extends to the domains it separates; we also predict pulses, both static and dynamic. Applications include charge transport in Wigner Crystals on nanotubes or A- to B-DNA transitions. C1 [Nisoli, Cristiano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nisoli, Cristiano] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Nisoli, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Nisoli, Cristiano/0000-0003-0053-1023 FU U.S. Department of Energy [DE-AC52-06NA25396] FX The author would like to thank Vincent Crespi and Paul Lammert (Penn State University, University Park) for useful discussions and Ryan Kalas and Nicole Jeffery (Los Alamos National Laboratory) for helping with the manuscript. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 25 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2009 VL 80 IS 2 AR 026110 DI 10.1103/PhysRevE.80.026110 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 492EQ UT WOS:000269637900020 PM 19792203 ER PT J AU Reichhardt, C Reichhardt, CJ AF Reichhardt, C. Reichhardt, C. J. Olson TI Pattern switching and polarizability for colloids in optical-trap arrays SO PHYSICAL REVIEW E LA English DT Article DE colloidal crystals; martensitic transformations; phase diagrams; radiation pressure ID HYDRODYNAMIC INTERACTIONS; SUPERCONDUCTING FILMS; LATTICES; CRYSTALS; DEFECTS AB We show that colloidal molecular crystal states interacting with a periodic substrate, such as an optical-trap array, and a rotating external field can undergo a rapid pattern switching in which the orientation of the crystal changes. In some cases, a martensiticlike symmetry switching occurs. It is also possible to create a polarized state where the colloids in each substrate minimum develop a director field which smoothly rotates with the external drive, similar to liquid-crystal behavior. These results open the possibility for creating different types of devices using photonic band-gap materials, and should be generalizable to a variety of other condensed matter systems with multiple particle trapping. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL; [DEAC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DEAC52-06NA25396. NR 40 TC 10 Z9 10 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2009 VL 80 IS 2 AR 022401 DI 10.1103/PhysRevE.80.022401 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 492EP UT WOS:000269637800122 PM 19792182 ER PT J AU Rygg, JR Frenje, JA Li, CK Seguin, FH Petrasso, RD Meyerhofer, DD Stoeckl, C AF Rygg, J. R. Frenje, J. A. Li, C. K. Seguin, F. H. Petrasso, R. D. Meyerhofer, D. D. Stoeckl, C. TI Electron-ion thermal equilibration after spherical shock collapse SO PHYSICAL REVIEW E LA English DT Article DE fusion reactors; ignition; plasma inertial confinement; plasma production ID CONFINEMENT-FUSION PLASMAS; STRONGLY COUPLED PLASMA; RHO-R; OMEGA; COMPRESSION; IGNITION AB A comprehensive set of dual nuclear product observations provides a snapshot of imploding inertial confinement fusion capsules at the time of shock collapse, shortly before the final stages of compression. The collapse of strong convergent shocks at the center of spherical capsules filled with D-2 and He-3 gases induces D-D and D-He-3 nuclear production. Temporal and spectral diagnostics of products from both reactions are used to measure shock timing, temperature, and capsule areal density. The density and temperature inferred from these measurements are used to estimate the electron-ion thermal coupling and demonstrate a lower electron-ion relaxation rate for capsules with lower initial gas density. C1 [Rygg, J. R.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Meyerhofer, D. D.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Rygg, JR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FG03-03NA00058, DE-AC52-07NA27344]; Laboratory for Laser Energetics [412160-001G]; Cooperative Agreement [DE-FC52-92SF19460]; University of Rochester FX The authors express their gratitude to the OMEGA engineers and operations crew who supported these experiments. This work was supported in part by the U.S. Department of Energy Office of Inertial Confinement Fusion (Grant No. DE-FG03-03NA00058); the Laboratory for Laser Energetics (Subcontract No. 412160-001G) under Cooperative Agreement No. DE-FC52-92SF19460, University of Rochester; New York State Energy Research and Development Authority; and performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 35 TC 8 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2009 VL 80 IS 2 AR 026403 DI 10.1103/PhysRevE.80.026403 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 492EQ UT WOS:000269637900081 PM 19792264 ER PT J AU Agapov, I Burkhardt, H Schulte, D Latina, A Blair, GA Malton, S Resta-Lopez, J AF Agapov, I. Burkhardt, H. Schulte, D. Latina, A. Blair, G. A. Malton, S. Resta-Lopez, J. TI Tracking studies of the Compact Linear Collider collimation system SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A collimation system performance study includes several types of computations performed by different codes. Optics calculations are performed with codes such as MADX, tracking studies including additional effects such as wakefields, halo and tail generation, and dynamical machine alignment are done with codes such as PLACET, and energy deposition can be studied with BDSIM. More detailed studies of hadron production in the beam halo interaction with collimators are better performed with GEANT4 and FLUKA. A procedure has been developed that allows one to perform a single tracking study using several codes simultaneously. In this paper we study the performance of the Compact Linear Collider collimation system using such a procedure. C1 [Agapov, I.; Burkhardt, H.; Schulte, D.] CERN, CH-1211 Geneva 23, Switzerland. [Latina, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Blair, G. A.; Malton, S.] Royal Holloway Univ London, John Adams Inst, Egham TW20 0EX, Surrey, England. [Resta-Lopez, J.] John Adams Inst Oxford, Oxford OX1 3RH, England. RP Agapov, I (reprint author), CERN, CH-1211 Geneva 23, Switzerland. FU STFC LC-ABD Collaboration; Commission of European Communities under the 6th Framework Programme Structuring the European Research Area [RIDS-011899] FX This work was supported in part by the STFC LC-ABD Collaboration and by the Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, Contract No. RIDS-011899. NR 21 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 081001 DI 10.1103/PhysRevSTAB.12.081001 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500007 ER PT J AU Aiba, M Fartoukh, S Franchi, A Giovannozzi, M Kain, V Lamont, M Tomas, R Vanbavinckhove, G Wenninger, J Zimmermann, F Calaga, R Morita, A AF Aiba, M. Fartoukh, S. Franchi, A. Giovannozzi, M. Kain, V. Lamont, M. Tomas, R. Vanbavinckhove, G. Wenninger, J. Zimmermann, F. Calaga, R. Morita, A. TI First beta-beating measurement and optics analysis for the CERN Large Hadron Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Proton beams were successfully steered through the entire ring of the CERN Large Hadron Collider (LHC) on September the 10th of 2008. A reasonable lifetime was achieved for the counterclockwise beam, namely beam 2, after the radiofrequency capture of the particle bunch was established. This provided the unique opportunity of acquiring turn-by-turn betatron oscillations for a maximum of 90 turns right at injection. Transverse coupling was not corrected and chromaticity was estimated to be large. Despite this largely constrained scenario, reliable optics measurements have been accomplished. These measurements together with the application of new algorithms for the reconstruction of optics errors have led to the identification of a dominant error source. C1 [Aiba, M.; Fartoukh, S.; Franchi, A.; Giovannozzi, M.; Kain, V.; Lamont, M.; Tomas, R.; Vanbavinckhove, G.; Wenninger, J.; Zimmermann, F.] CERN, CH-1211 Geneva 23, Switzerland. [Calaga, R.] BNL, Upton, NY 11973 USA. [Morita, A.] KEK, Tsukuba, Ibaraki 3050801, Japan. RP Aiba, M (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM rogelio.tomas@cern.ch NR 29 TC 9 Z9 10 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 081002 DI 10.1103/PhysRevSTAB.12.081002 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500008 ER PT J AU Bassi, G Ellison, JA Heinemann, K Warnock, R AF Bassi, Gabriele Ellison, James A. Heinemann, Klaus Warnock, Robert TI Microbunching instability in a chicane: Two-dimensional mean field treatment SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation in the coasting beam case. C1 [Bassi, Gabriele] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Bassi, Gabriele] Cockcroft Inst, Daresbury WA4 4AD, Cheshire, England. [Ellison, James A.; Heinemann, Klaus] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Warnock, Robert] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Warnock, Robert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bassi, G (reprint author), Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. EM g.bassi@dl.ac.uk; ellison@math.unm.edu; heineman@math.unm.edu; warnock@slac.stanford.edu FU U.S. Department of Energy [AC02-76SF00515, DE-FG-99ER41104] FX We gratefully acknowledge the help of T. Thomas at UNM HPC, and thank R. Ryne and P. Spentzouris for an account on NERSC. M. Venturini made valuable comments on the integral equation. This work has been partially supported by U.S. Department of Energy Contracts No. AC02-76SF00515 and No. DE-FG-99ER41104. NR 35 TC 5 Z9 5 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080704 DI 10.1103/PhysRevSTAB.12.080704 PG 24 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500004 ER PT J AU Lumpkin, AH Sereno, NS Berg, WJ Borland, M Li, Y Pasky, SJ AF Lumpkin, A. H. Sereno, N. S. Berg, W. J. Borland, M. Li, Y. Pasky, S. J. TI Characterization and mitigation of coherent-optical-transition-radiation signals from a compressed electron beam SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BUNCH COMPRESSOR AB The Advanced Photon Source (APS) injector complex includes an option for rf photocathode (PC) gun beam injection into the 450-MeV S-band linac. At the 150-MeV point, a four-dipole chicane was used to compress the micropulse bunch length from a few ps to sub-0.5 ps (FWHM). Noticeable enhancements of the optical transition radiation (OTR) signal sampled after the APS chicane were then observed as has been reported in the Linac Coherent Light Source (LCLS) injector commissioning. A far-infrared (FIR) coherent transition radiation detector and interferometer were used to monitor the bunch compression process and correlate the appearance of localized spikes of OTR signal (5 to 10 times brighter than adjacent areas) within the beam-image footprint. We have performed spectral-dependency measurements at 375 MeV with a series of bandpass filters centered in 50-nm increments from 400 to 700 nm and with an imaging spectrometer and observed a broadband enhancement in these spikes. Mitigation concepts of the observed coherent OTR, which exhibits an intensity enhancement in the red part of the visible spectrum as compared to incoherent OTR, are described. C1 [Lumpkin, A. H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sereno, N. S.; Berg, W. J.; Borland, M.; Li, Y.; Pasky, S. J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lumpkin, AH (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. FU Argonne Accelerator Institute; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-06CH11357] FX The authors acknowledge support from M. Wendt of Fermilab and R. Gerig, K.- J. Kim, and H. Weerts of the Argonne Accelerator Institute. They acknowledge S. Shoaf (ANL) for controls support and K. Nemeth (ANL) for estimating the laser-electron interaction. They also acknowledge discussions on COTR with D. Dowell, H. Loos, J. Frisch, and Z. Huang of LCLS and with R. Fiorito of the University of Maryland and D. Rule of NSWC. This work was supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357. NR 25 TC 17 Z9 17 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080702 DI 10.1103/PhysRevSTAB.12.080702 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500002 ER PT J AU Montag, C Fischer, W AF Montag, Christoph Fischer, Wolfram TI Head-on beam-beam compensation investigation in an electron-ion collider using weak-strong simulations SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The luminosity of the ring-ring version of the proposed electron-ion collider eRHIC is limited by the beam-beam effect on the electrons. Once the beam-beam limit is reached, the luminosity no longer increases linearly with the bunch intensity of the ion beam, but begins to saturate and even drops again if the beam-beam tuneshift is increased further. To overcome this limitation we investigate a compensation scheme with an electron lens acting on the electron beam. Using weak-strong simulations we find a possible luminosity increase of about a factor 2. C1 [Montag, Christoph; Fischer, Wolfram] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Montag, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 29 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 084001 DI 10.1103/PhysRevSTAB.12.084001 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500010 ER PT J AU Poole, BR Blackfield, DT Camacho, JF AF Poole, B. R. Blackfield, D. T. Camacho, J. F. TI Transient self-amplified Cerenkov radiation with a short pulse electron beam SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COHERENT SPONTANEOUS EMISSION; MASER AMPLIFIER; HIGH-POWER; NONLINEAR-ANALYSIS; WAVE-DISPERSION; CHERENKOV MASER; SUPERRADIANCE; OPERATION; GUIDE; BUNCH AB An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady-state amplifier configuration as well as operation in the self-amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady-state response, a macroparticle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady-state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady-state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of solitonlike pulses. Comparisons between the linear theory, macroparticle model, and PIC simulations are made in the appropriate regimes. C1 [Poole, B. R.; Blackfield, D. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Camacho, J. F.] NumerEx LLC, Albuquerque, NM 87106 USA. RP Poole, BR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM poole1@llnl.gov; blackfield1@llnl.gov; Frank.Camacho@kirtland.af.mil FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX The authors would like to thank Dr. George J. Caporaso for helpful discussions on FEL theory and Dr. John R. Harris for discussions on longitudinal beam dynamics. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344. NR 28 TC 1 Z9 1 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080705 DI 10.1103/PhysRevSTAB.12.080705 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500005 ER PT J AU Savage, ME Stoltzfus, BS AF Savage, M. E. Stoltzfus, B. S. TI High reliability low jitter 80 kV pulse generator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 Omega, from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5: 6 Omega, 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10(-4). The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While reliability is usually important, and is coupled with jitter, reliability is seldom given more than a qualitative analysis (if any at all). We will show how reliability of the system was calculated, and results of a jitter-reliability tradeoff study. We will describe the behavior of sulfur hexafluoride as the insulating gas in the mildly nonuniform field geometry at pressures of 300 to 500 kPa. We will show the resistance of the arc channels, and show the performance comparisons with normal two-channel operation, and single channel operation. C1 [Savage, M. E.; Stoltzfus, B. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Savage, ME (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Dr. D. E. Bliss and Dr. J. R. Woodworth for generous and invaluable advice on the optical system. D. Spencer and P. Wakeland did an outstanding job designing the mechanical components for the deployed system and the prototype. The authors are also indebted to Dr. J. E. Maenchen for having the foresight to allow the development work to be conducted, and to Dr. W. A. Stygar for continual encouragement of the effort. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 55 TC 7 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080401 DI 10.1103/PhysRevSTAB.12.080401 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA V25IT UT WOS:000208472400001 ER PT J AU Talman, R Chao, AW AF Talman, Richard Chao, Alexander W. TI Orlov, Tarasov, and the Robinson sum rule SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A paper proving a result now commonly known as "Robinson sum rule'' was published by Orlov and Tarasov {J. Exp. Theor. Phys. 34, 651 (1958) [Sov. Phys. JETP 34, 339 (1958)]} at about the same time that Robinson himself published the result [Phys. Rev. 111, 373 (1958)]. We assigned ourselves the task of reviewing this work, as narrowly as possible, in hopes of understanding how it should be considered in view of the existing attribution. The chronology of the work is reviewed and the degree to which the two works were independent and have qualitatively different content is considered. C1 [Talman, Richard] Cornell Univ, Cornell Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Chao, Alexander W.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Talman, R (reprint author), Cornell Univ, Cornell Lab Elementary Particle Phys, Ithaca, NY 14853 USA. NR 19 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 084901 DI 10.1103/PhysRevSTAB.12.084901 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500012 ER PT J AU Wheatley, V Samtaney, R Pullin, DI AF Wheatley, V. Samtaney, R. Pullin, D. I. TI The Richtmyer-Meshkov instability in magnetohydrodynamics SO PHYSICS OF FLUIDS LA English DT Article ID TAYLOR INSTABILITY AB In ideal magnetohydrodynamics (MHD), the Richtmyer-Meshkov instability can be suppressed by the presence of a magnetic field. The interface still undergoes some growth, but this is bounded for a finite magnetic field. A model for this flow has been developed by considering the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This was accomplished by analytically solving the linearized initial value problem in the framework of ideal incompressible MHD. To assess the performance of the model, its predictions are compared to results obtained from numerical simulation of impulse driven linearized, shock driven linearized, and nonlinear compressible MHD for a variety of cases. It is shown that the analytical linear model collapses the data from the simulations well. The predicted interface behavior well approximates that seen in compressible linearized simulations when the shock strength, magnetic field strength, and perturbation amplitude are small. For such cases, the agreement with interface behavior that occurs in nonlinear simulations is also reasonable. The effects of increasing shock strength, magnetic field strength, and perturbation amplitude on both the flow and the performance of the model are investigated. This results in a detailed exposition of the features and behavior of the MHD Richtmyer-Meshkov flow. For strong shocks, large initial perturbation amplitudes, and strong magnetic fields, the linear model may give a rough estimate of the interface behavior, but it is not quantitatively accurate. In all cases examined the accuracy of the model is quantified and the flow physics underlying any discrepancies is examined. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3194303] C1 [Wheatley, V.] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia. [Samtaney, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pullin, D. I.] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. RP Wheatley, V (reprint author), Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia. RI Wheatley, Vincent/D-9627-2013 OI Wheatley, Vincent/0000-0002-7287-7659 FU Accelerated Strategic Computing Initiative (ASCI/ASAP); DOE [7405-ENG-48]; U.S. DOE [AC02-09CH11466] FX V. Wheatley and D. I. Pullin were supported by the Academic Strategic Alliances Program of the Accelerated Strategic Computing Initiative (ASCI/ASAP) under Subcontract No. B341492 of DOE Contract No. W-7405-ENG-48. R. Samtaney was supported by U.S. DOE Contract No. DE-AC02-09CH11466. NR 14 TC 11 Z9 11 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2009 VL 21 IS 8 AR 082102 DI 10.1063/1.3194303 PG 13 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 502KA UT WOS:000270456500009 ER PT J AU Borovsky, JE Gary, SP AF Borovsky, Joseph E. Gary, S. Peter TI On shear viscosity and the Reynolds number of magnetohydrodynamic turbulence in collisionless magnetized plasmas: Coulomb collisions, Landau damping, and Bohm diffusion SO PHYSICS OF PLASMAS LA English DT Review ID SOLAR-WIND TURBULENCE; FIELD ELECTRON-TRANSPORT; KINETIC ALFVEN WAVES; LOW-FREQUENCY WAVES; PARALLEL BOW SHOCK; MHD TURBULENCE; INTERPLANETARY TURBULENCE; HYDROMAGNETIC TURBULENCE; INTERSTELLAR TURBULENCE; SPACECRAFT OBSERVATIONS AB For a collisionless plasma, the magnetic field B enables fluidlike behavior in the directions perpendicular to B; however, fluid behavior alongy may fail. The magnetic field also introduces an Alfven-wave nature to flows perpendicular to B. All Alfven waves are subject to Landau damping, which introduces a flow dissipation (viscosity) in collisionless plasmas. For three magnetized plasmas (the solar wind, the Earth's magnetosheath, and the Earth's plasma sheet), shear viscosity by Landau damping, Bohm diffusion, and by Coulomb collisions are investigated. For magnetohydrodynamic turbulence in those three plasmas, integral-scale Reynolds numbers are estimated, Kolmogorov dissipation scales are calculated, and Reynolds-number scaling is discussed. Strongly anisotropic Kolmogorov k(-5/3) and mildly anisotropic Kraichnan k(-3/2) turbulences are both considered and the effect of the degree of wavevector anisotropy on quantities such as Reynolds numbers and spectral-transfer rates are calculated. For all three plasmas, Braginskii shear viscosity is much weaker than shear viscosity due to Landau damping, which is somewhat weaker than Bohm diffusion. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3155134] C1 [Borovsky, Joseph E.; Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 176 TC 12 Z9 12 U1 4 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082307 DI 10.1063/1.3155134 PG 22 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500017 ER PT J AU Chen, CD Patel, PK Hey, DS Mackinnon, AJ Key, MH Akli, KU Bartal, T Beg, FN Chawla, S Chen, H Freeman, RR Higginson, DP Link, A Ma, TY MacPhee, AG Stephens, RB Van Woerkom, LD Westover, B Porkolab, M AF Chen, C. D. Patel, P. K. Hey, D. S. Mackinnon, A. J. Key, M. H. Akli, K. U. Bartal, T. Beg, F. N. Chawla, S. Chen, H. Freeman, R. R. Higginson, D. P. Link, A. Ma, T. Y. MacPhee, A. G. Stephens, R. B. Van Woerkom, L. D. Westover, B. Porkolab, M. TI Bremsstrahlung and K alpha fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PLASMA INTERACTIONS; SOLID INTERACTIONS; FUSION IGNITION; PULSE; TRANSPORT; TARGET; RAYS AB The Bremsstrahlung and K-shell emission from 1 x 1 x 1 mm(3) planar targets irradiated by a short-pulse 3 x 10(18) - 8 x 10(19) W/cm(2) laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device. From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3%-12%, representing 20%-40% total conversion efficiencies, were inferred for intensities up to 8 x 10(19) W/cm(2). Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3183693] C1 [Chen, C. D.; Porkolab, M.] MIT, Plasma Sci Fus Ctr, Cambridge, MA 02139 USA. [Patel, P. K.; Hey, D. S.; Mackinnon, A. J.; Key, M. H.; Chen, H.; Ma, T. Y.; MacPhee, A. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92121 USA. [Bartal, T.; Beg, F. N.; Chawla, S.; Higginson, D. P.; Ma, T. Y.; Westover, B.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Freeman, R. R.; Link, A.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. RP Chen, CD (reprint author), MIT, Plasma Sci Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016 OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 (Authorization Review No. LLNL-JRNL-415191). NR 38 TC 43 Z9 44 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082705 DI 10.1063/1.3183693 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500035 ER PT J AU Cohen, BI Williams, EA Berger, RL Pesme, D Riconda, C AF Cohen, B. I. Williams, E. A. Berger, R. L. Pesme, D. Riconda, C. TI Stimulated Brillouin backscattering and ion acoustic wave secondary instability (vol 16, 032701, 2009) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Cohen, B. I.; Williams, E. A.; Berger, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pesme, D.] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France. [Riconda, C.] Univ Paris 06, CEA, CNRS, Ecole Polytech,PAPD LULI, F-94200 Ivry, France. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 5 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 089902 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500070 ER PT J AU Guttenfelder, W Anderson, DT Anderson, FSB Canik, JM Likin, KM Talmadge, JN AF Guttenfelder, W. Anderson, D. T. Anderson, F. S. B. Canik, J. M. Likin, K. M. Talmadge, J. N. TI Edge turbulence measurements in electron-heated Helically Symmetric Experiment plasmas SO PHYSICS OF PLASMAS LA English DT Article ID TEMPERATURE-FLUCTUATIONS; GYROKINETIC SIMULATIONS; COMPARING SIMULATION; ANOMALOUS TRANSPORT; CHAPTER 2; TOKAMAKS; STELLARATORS; CONFINEMENT; MODEL; HSX AB This paper presents edge measurements utilizing Langmuir probes to characterize plasma turbulence in the Helically Symmetric Experiment (HSX) [F. S. B. Anderson et al., Fusion Technol. 27, 273 (1995)]. Normalized density and potential fluctuations exhibit strong intensities but are comparable to mixing length estimates using measured correlation lengths. The correlation lengths are isotropic with respect to radial and poloidal directions and follow local (gyro-Bohm) drift wave expectations. These observations are common to measurements in both the optimized quasihelically symmetric (QHS) configuration, as well as a configuration where the symmetry is degraded intentionally. The resulting turbulent particle flux in higher density QHS discharges is in good quantitative agreement with transport analysis using three-dimensional neutral gas simulations. The measured turbulence characteristics are compared to a quasilinear trapped electron mode (TEM) drift wave model [H. Nordman, J. Weiland, and A. Jarmen, Nucl. Fusion 30, 983 (1990)] that has been used to predict the anomalous transport in HSX. While quantitative differences exist (factors of 2-3), there is a general consistency between the turbulence measurements and the TEM drift wave model. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3205884] C1 [Guttenfelder, W.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Guttenfelder, W (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM w.guttenfelder@warwick.ac.uk OI Canik, John/0000-0001-6934-6681 FU U.S. Department of Energy [DE-FG02-93ER54222] FX This work was supported by the U.S. Department of Energy under Contract No. DE-FG02-93ER54222. NR 56 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082508 DI 10.1063/1.3205884 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500026 ER PT J AU Krommes, JA AF Krommes, John A. TI Comment on "Guiding center plasma models in three dimensions" [Phys. Plasmas 15, 092112 (2008)] SO PHYSICS OF PLASMAS LA English DT Editorial Material ID NONLINEAR GYROKINETIC THEORY; EQUATIONS; MOTION; FIELD AB Recent assertions that guiding-center theory breaks down at second order for three-dimensional magnetic fields with nonzero, torsion are argued to be incorrect. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206670] C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM krommes@princeton.edu NR 17 TC 7 Z9 7 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 084701 DI 10.1063/1.3206670 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500065 ER PT J AU Ku, LP Boozer, AH AF Ku, Long-Poe Boozer, Allen H. TI Nonaxisymmetric shaping of tokamaks preserving quasiaxisymmetry SO PHYSICS OF PLASMAS LA English DT Article ID STELLARATOR; STABILITY; PHYSICS; CONFIGURATIONS; EQUILIBRIA; PROGRESS; PLASMAS; DESIGN; LIMITS AB If quasiaxisymmetry is preserved, nonaxisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is to provide that specificity for nonaxisymmetric shaping. Whether nonaxisymmetric shaping is essential, or just an alternative strategy, to the success of tokamak fusion systems can only be assessed after axisymmetric alternatives are suggested and subjected to a similar study. Sequences of three-field-period quasiaxisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of nonaxisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3207010] C1 [Ku, Long-Poe] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, New York, NY 10027 USA. RP Ku, LP (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM lpku@pppl.gov; ahb17@columbia.edu FU U.S. Department of Energy [ER54333]; Princeton Plasma Physics Laboratory [DE-AC02-09CH11466] FX This work was supported by U.S. Department of Energy through the Grant No. ER54333 to Columbia University and the Contract No. DE-AC02-09CH11466 to Princeton Plasma Physics Laboratory. NR 31 TC 5 Z9 5 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082506 DI 10.1063/1.3207010 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500024 ER PT J AU Park, JK Boozer, AH Menard, JE Gerhardt, SP Sabbagh, SA AF Park, Jong-Kyu Boozer, Allen H. Menard, Jonathan E. Gerhardt, Stefan P. Sabbagh, Steve A. TI Shielding of external magnetic perturbations by torque in rotating tokamak plasmas SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; ERROR FIELD AMPLIFICATION; RESISTIVE WALL MODES; DIII-D; HIGH-BETA; STABILIZATION; PHYSICS; NSTX AB The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma requires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essentially limited and must be consistent with the external response of a plasma equilibrium (f) over right arrow=(j) over right arrow x (B) over right arrow. Here magnetic measurements on National Spherical Torus Experiment device are used to derive the energy and the torque, and these empirical evaluations are compared with theoretical calculations based on perturbed scalar pressure equilibria (f) over right arrow=(del) over right arrowp coupled with the theory of nonambipolar transport. The measurement and the theory are consistent within acceptable uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This is expected since the currents associated with the torque are ignored in scalar pressure equilibria, but these currents tend to shield the perturbation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206668] C1 [Park, Jong-Kyu; Menard, Jonathan E.; Gerhardt, Stefan P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.; Sabbagh, Steve A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 FU DOE [DE-AC02-76CH03073, DE-FG02-03ERS496] FX This work was supported by DOE Contract Nos. DE-AC02-76CH03073 (PPPL) and DE-FG02-03ERS496 (CU). NR 28 TC 15 Z9 15 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082512 DI 10.1063/1.3206668 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500030 ER PT J AU Schlossberg, DJ Mckee, GR Fonck, RJ Burrell, KH Gohil, P Groebner, RJ Shafer, MW Solomon, WM Wang, G AF Schlossberg, D. J. McKee, G. R. Fonck, R. J. Burrell, K. H. Gohil, P. Groebner, R. J. Shafer, M. W. Solomon, W. M. Wang, G. TI Dependence of the low to high confinement mode transition power threshold and turbulence flow shear on injected torque SO PHYSICS OF PLASMAS LA English DT Article ID L-H TRANSITION; BEAM EMISSION-SPECTROSCOPY; VELOCITY SHEAR; DIII-D; FLUCTUATION MEASUREMENTS; TRANSPORT; TOKAMAK; PLASMA; SUPPRESSION; PHYSICS AB The power required to induce a bifurcation from a low-confinement mode to a high-confinement mode in DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas is found to depend sensitively on the injected neutral beam torque and consequent toroidal rotation. Plasmas exhibit a factor of 2-4 reduction in this power threshold, dependent on ion del B drift direction. Correlated with this change, turbulence velocity measurements near 0.950 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches. C1 [Coleman, Jeffrey J.; Rounsley, Steve D.; Rodriguez-Carres, Marianela; Wasmann, Catherine C.; White, Gerard J.; Napoli, Carolyn A.; Barker, Bridget M.; Kroken, Scott; Zamora, Jorge; Temporini, Esteban; VanEtten, Hans D.] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA. [Coleman, Jeffrey J.] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Rounsley, Steve D.] Univ Arizona, Inst BIO5, Tucson, AZ USA. [Rodriguez-Carres, Marianela] Duke Univ, Dept Biol, Durham, NC USA. [Kuo, Alan; Salamov, Asaf; Shapiro, Harris; Pangilinan, Jasmyn; Lindquist, Erika; Grigoriev, Igor V.] Energy Joint Genome Inst, US Dept, Walnut Creek, CA USA. [Grimwood, Jane; Schmutz, Jeremy] Stanford Human Genome Ctr, Joint Genome Inst, Palo Alto, CA USA. [Grimwood, Jane; Schmutz, Jeremy] Hudson Alpha Inst Biotechnol, Hudson Alpha Genome Sequencing Ctr, Huntsville, AL USA. [Taga, Masatoki] Okayama Univ, Dept Biol, Okayama, Japan. [Zhou, Shiguo; Schwartz, David C.; Lamers, Casey] Univ Wisconsin, Lab Mol & Computat Genom, Madison, WI USA. [Freitag, Michael] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Freitag, Michael] Oregon State Univ, Ctr Genome Res & Biocomp, Corvallis, OR 97331 USA. [Ma, Li-jun] Broad Inst, Cambridge, MA USA. [Danchin, Etienne G. J.; Henrissat, Bernard; Coutinho, Pedro M.] Univ Aix Marseille 1, CNRS, Architecture & Fonct Macromol Biol, Marseille, France. [Danchin, Etienne G. J.; Henrissat, Bernard; Coutinho, Pedro M.] Univ Aix Marseille 2, CNRS, Architecture & Fonct Macromol Biol, F-13284 Marseille 07, France. [Danchin, Etienne G. J.] Ctr Rech, Inst Natl Rech Agron, Sophia Antipolis, France. [Nelson, David R.] Univ Tennessee, Dept Mol Sci, Memphis, TN USA. [Straney, Dave] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20742 USA. [Gribskov, Michael] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Rep, Martijn] Univ Amsterdam, Amsterdam, Netherlands. [Molnar, Istvan] Univ Arizona, SW Ctr Nat Prod Res & Commercializat, Off Arid Lands Studies, Tucson, AZ USA. [Rensing, Christopher] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ USA. [Kennell, John C.] St Louis Univ, Dept Biol, St Louis, MO 63103 USA. [Farman, Mark L.] Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA. [Selker, Eric U.] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA. [Geiser, David M.] Penn State Univ, Fusarium Res Ctr, Dept Plant Pathol, University Pk, PA 16802 USA. [Covert, Sarah F.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Temporini, Esteban] Vilmorin Inc, Tucson, AZ USA. RP Coleman, JJ (reprint author), Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA. EM vanetten@ag.arizona.edu RI Henrissat, Bernard/J-2475-2012; Danchin, Etienne/A-6648-2008; Zhou, Shiguo/B-3832-2011; Rensing, Christopher/D-3947-2011; Geiser, David/J-9950-2013; Molnar, Istvan/A-5863-2008; Taga, Masatoki/B-2089-2011; Coleman, Jeffrey/E-2981-2015; OI Danchin, Etienne/0000-0003-4146-5608; Zhou, Shiguo/0000-0001-7421-2506; Rensing, Christopher/0000-0002-5012-7953; Molnar, Istvan/0000-0002-3627-0454; Gribskov, Michael/0000-0002-1718-0242; Ma, Li-Jun/0000-0002-2733-3708; Barker, Bridget/0000-0002-3439-4517; Coleman, Jeffrey/0000-0001-8579-1996; Nelson, David/0000-0003-0583-5421 FU US Department of Energy's Office of Science; Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and Los Alamos National Laboratory under Contract DE-AC02-06NA25396. Personnel at these laboratories were involved in all aspects of this research. The sequence of Nectria haematococca is available at http://www.jgi.doe.gov/nectria. Partial support for personnel was also obtained from NRA/USDA grant 2008-00645. NR 102 TC 158 Z9 221 U1 7 U2 49 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2009 VL 5 IS 8 AR e1000618 DI 10.1371/journal.pgen.1000618 PG 14 WC Genetics & Heredity SC Genetics & Heredity GA 516HS UT WOS:000271533500032 PM 19714214 ER PT J AU Geller, SF Guerin, KI Visel, M Pham, A Lee, ES Dror, AA Avraham, KB Hayashi, T Ray, CA Reh, TA Bermingham-McDonogh, O Triffo, WJ Bao, SW Isosomppi, J Vastinsalo, H Sankila, EM Flannery, JG AF Geller, Scott F. Guerin, Karen I. Visel, Meike Pham, Aaron Lee, Edwin S. Dror, Amiel A. Avraham, Karen B. Hayashi, Toshinori Ray, Catherine A. Reh, Thomas A. Bermingham-McDonogh, Olivia Triffo, William J. Bao, Shaowen Isosomppi, Juha Vastinsalo, Hanna Sankila, Eeva-Marja Flannery, John G. TI CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development SO PLOS GENETICS LA English DT Article ID SYNDROME TYPE-III; PROTEIN HARMONIN USH1C; USHER-SYNDROME TYPE-1; CGMP-PHOSPHODIESTERASE; PHENOTYPIC VARIABILITY; PHOTORECEPTOR CELLS; MOLECULAR LINKS; GENE-EXPRESSION; BETA-SUBUNIT; HEARING-LOSS AB Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RTPCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Muller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration. C1 [Geller, Scott F.; Guerin, Karen I.; Visel, Meike; Pham, Aaron; Lee, Edwin S.; Bao, Shaowen; Flannery, John G.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Dror, Amiel A.; Avraham, Karen B.] Tel Aviv Univ, Sackler Sch Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel. [Hayashi, Toshinori; Ray, Catherine A.; Reh, Thomas A.; Bermingham-McDonogh, Olivia] Univ Washington, Sch Med, Dept Biol Struct, Seattle, WA 98195 USA. [Triffo, William J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Isosomppi, Juha; Vastinsalo, Hanna; Sankila, Eeva-Marja] Univ Helsinki, Biomedicum Helsinki, Folkhalsan Inst Genet, Helsinki, Finland. [Isosomppi, Juha; Vastinsalo, Hanna; Sankila, Eeva-Marja] Univ Helsinki, Dept Med Genet, Helsinki, Finland. [Sankila, Eeva-Marja] Helsinki Univ Eye Hosp, Helsinki, Finland. RP Geller, SF (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. EM drgeller@gmail.com; flannery@berkeley.edu FU Foundation Fighting Blindness; European Commission [LSHG-CT-20054-512063, EUMODIC 037188]; Hope for Vision FX The authors gratefully acknowledge financial support for this work: Foundation Fighting Blindness (JGF), European Commission FP6 Integrated Projects EuroHear LSHG-CT-20054-512063 and EUMODIC 037188 (KBA), and Hope for Vision (TAR and OBMcD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 72 TC 19 Z9 19 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2009 VL 5 IS 8 AR e1000607 DI 10.1371/journal.pgen.1000607 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 516HS UT WOS:000271533500022 PM 19680541 ER PT J AU Li, SW Tang, XH Seetharaman, J Yang, CY Gu, Y Zhang, J Du, HL Shih, JWK Hew, CL Sivaraman, J Xia, NS AF Li, Shaowei Tang, Xuhua Seetharaman, J. Yang, Chunyan Gu, Ying Zhang, Jun Du, Hailian Shih, J. Wai Kuo Hew, Choy-Leong Sivaraman, J. Xia, Ningshao TI Dimerization of Hepatitis E Virus Capsid Protein E2s Domain Is Essential for Virus-Host Interaction SO PLOS PATHOGENS LA English DT Article ID PHOTOREALISTIC MOLECULAR GRAPHICS; AUTOMATED STRUCTURE SOLUTION; DENSITY MODIFICATION; RECEPTOR-BINDING; ANTIGENICITY; DIVERSITY; RESOLVE; SYSTEM; SITES; SOLVE AB Hepatitis E virus (HEV), a non-enveloped, positive-stranded RNA virus, is transmitted in a faecal-oral manner, and causes acute liver diseases in humans. The HEV capsid is made up of capsomeres consisting of homodimers of a single structural capsid protein forming the virus shell. These dimers are believed to protrude from the viral surface and to interact with host cells to initiate infection. To date, no structural information is available for any of the HEV proteins. Here, we report for the first time the crystal structure of the HEV capsid protein domain E2s, a protruding domain, together with functional studies to illustrate that this domain forms a tight homodimer and that this dimerization is essential for HEV-host interactions. In addition, we also show that the neutralizing antibody recognition site of HEV is located on the E2s domain. Our study will aid in the development of vaccines and, subsequently, specific inhibitors for HEV. C1 [Li, Shaowei; Yang, Chunyan; Gu, Ying; Zhang, Jun; Du, Hailian; Shih, J. Wai Kuo; Xia, Ningshao] Xiamen Univ, Natl Inst Diagnost & Vaccine Dev Infect Dis, Sch Life Sci, Xiamen, Peoples R China. [Li, Shaowei; Tang, Xuhua; Zhang, Jun; Hew, Choy-Leong; Sivaraman, J.; Xia, Ningshao] Xiamen Univ, Xiamen NUS Joint Lab Biomed Sci, Xiamen, Peoples R China. [Tang, Xuhua; Hew, Choy-Leong; Sivaraman, J.] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore. [Seetharaman, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, SW (reprint author), Xiamen Univ, Natl Inst Diagnost & Vaccine Dev Infect Dis, Sch Life Sci, Xiamen, Peoples R China. EM dbsjayar@nus.edu.sg; nsxia@xmu.edu.cn RI Gu, Y/G-4686-2010; Xia, NS/G-4647-2010; Sivaraman, J/H-8028-2012; Hew, Choy Leong/I-1501-2012; Zhang, Jun/G-4598-2010 OI Hew, Choy Leong/0000-0002-9441-0064; Zhang, Jun/0000-0002-6601-9180 FU Ministry of Education [B06016]; National Natural Science Foundation [30500092, 30600106, 30870514]; Project 863 [2006AA020905, 2006AA02A209]; Key Program in Infectious Diseases [2008ZX10004-015]; People's Republic of China; Academic Research Fund [R154000254112]; National University of Singapore, Singapore FX The authors would like to acknowledge funding support from the Project 111 of the Ministry of Education (Grant no. B06016), the National Natural Science Foundation (Grant no. 30500092, 30600106, 30870514), the Project 863 (Grant no. 2006AA020905, 2006AA02A209), the Key Program in Infectious Diseases (Grant No. 2008ZX10004-015), People's Republic of China. JS and CLH acknowledge research support from Academic Research Fund (JS Grant no. R154000254112, ARF), National University of Singapore, Singapore. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 34 TC 58 Z9 69 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD AUG PY 2009 VL 5 IS 8 AR e1000537 DI 10.1371/journal.ppat.1000537 PG 10 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 506VK UT WOS:000270804500022 PM 19662165 ER PT J AU Cockerill, K Daniel, L Malczynski, L Tidwell, V AF Cockerill, Kristan Daniel, Lacy Malczynski, Leonard Tidwell, Vincent TI A fresh look at a policy sciences methodology: collaborative modeling for more effective policy SO POLICY SCIENCES LA English DT Article DE System dynamics; Complex systems; Collaborative modeling; Public participation; Interdisciplinary ID PROBLEM STRUCTURING METHODS; SYSTEM DYNAMICS; DECISION-MAKING; CONSENSUS; FUTURE; VIEW; PERCEPTIONS; COMMITMENT; MANAGEMENT AB Collaborative modeling offers a novel methodology that integrates core ideals in the policy sciences. The principles behind collaborative modeling enable policy researchers and decision makers to address interdisciplinarity, complex systems, and public input in the policy process. This approach ideally utilizes system dynamics to enable a multidisciplinary group to explore the relationships in a complex system. We propose that there is a spectrum of possibilities for applying collaborative modeling in the policy arena, ranging from the purely academic through full collaboration among subject matter experts, the general public, and decision makers. Likewise, there is a spectrum of options for invoking collaboration within the policy process. Results from our experiences suggest that participants in a collaborative modeling project develop a deeper level of understanding about the complexity in the policy issue being addressed; increase their agreement about root problems; and gain an appreciation for the uncertainty inherent in data and methods in studying complex systems. We conclude that these attributes of collaborative modeling make it an attractive option for improving the decision-making process as well as on-the-ground decisions. C1 [Cockerill, Kristan] Appalachian State Univ, Sustainable Dev Program, Boone, NC 28607 USA. [Daniel, Lacy] Daniel Consulting, Estancia, NM 87016 USA. [Malczynski, Leonard; Tidwell, Vincent] Sandia Natl Labs, Geohydrol Dept, Albuquerque, NM 87185 USA. RP Cockerill, K (reprint author), Appalachian State Univ, Sustainable Dev Program, Boone, NC 28607 USA. EM cockerillkm@appstate.edu; rlardaniel@earthlink.net; lamalcz@sandia.gov; vctidwe@sandia.gov RI Cockerill, Kristan/J-7179-2012 NR 85 TC 10 Z9 10 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-2687 J9 POLICY SCI JI Policy Sci. PD AUG PY 2009 VL 42 IS 3 BP 211 EP 225 DI 10.1007/s11077-009-9080-8 PG 15 WC Planning & Development; Public Administration; Social Sciences, Interdisciplinary SC Public Administration; Social Sciences - Other Topics GA 473FW UT WOS:000268192500002 ER PT J AU Bender, CM Cooper, F Khare, A Mihaila, B Saxena, A AF Bender, Carl M. Cooper, Fred Khare, Avinash Mihaila, Bogdan Saxena, Avadh TI Compactons in PT-symmetric generalized Korteweg-de Vries equations SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 8th Conference on Non-Hermitian Hamiltonians in Quantum Physics CY JAN 13-16, 2009 CL Mumbai, INDIA SP Bhabba Atom Res Ctr, Tata Inst Fund Res DE Compactons; PT symmetry; generalized KdV equations ID SCHRODINGER-EQUATIONS; VARIATIONAL METHOD; SOLITON STABILITY; KDV-TYPE AB This paper considers the PE-symmetric extensions of the equations examined by Cooper, Shepard and Sodano. From the scaling properties of the PT-symmetric equations a general theorem relating the energy, momentum and velocity of any solitary-wave solution of the generalized KdV equation is derived. We also discuss the stability of the compacton solution as a function of the parameters affecting the nonlinearities. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Bender, Carl M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Cooper, Fred] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Khare, A (reprint author), Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India. EM khare@iopb.res.in RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 16 TC 13 Z9 13 U1 0 U2 3 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD AUG PY 2009 VL 73 IS 2 BP 375 EP 385 PG 11 WC Physics, Multidisciplinary SC Physics GA 491AF UT WOS:000269548500017 ER PT J AU Welch, J Backer, D Blitz, L Bock, DCJ Bower, GC Cheng, C Croft, S Dexter, M Engargiola, G Fields, E Forster, J Gutierrez-Kraybill, C Heiles, C Helfer, T Jorgensen, S Keating, G Lugten, J MacMahon, D Milgrome, O Thornton, D Urry, L van Leeuwen, J Werthimer, D Williams, PH Wright, M Tarter, J Ackermann, R Atkinson, S Backus, P Barott, W Bradford, T Davis, M DeBoer, D Dreher, J Harp, G Jordan, J Kilsdonk, T Pierson, T Randall, K Ross, J Shostak, S Fleming, M Cork, C Vitouchkine, A Wadefalk, N Weinreb, S AF Welch, Jack Backer, Don Blitz, Leo Bock, Douglas C. -J. Bower, Geoffrey C. Cheng, Calvin Croft, Steve Dexter, Matt Engargiola, Greg Fields, Ed Forster, James Gutierrez-Kraybill, Colby Heiles, Carl Helfer, Tamara Jorgensen, Susanne Keating, Garrett Lugten, John MacMahon, Dave Milgrome, Oren Thornton, Douglas Urry, Lynn van Leeuwen, Joeri Werthimer, Dan Williams, Peter H. Wright, Melvin Tarter, Jill Ackermann, Robert Atkinson, Shannon Backus, Peter Barott, William Bradford, Tucker Davis, Michael DeBoer, Dave Dreher, John Harp, Gerry Jordan, Jane Kilsdonk, Tom Pierson, Tom Randall, Karen Ross, John Shostak, Seth Fleming, Matt Cork, Chris Vitouchkine, Artyom Wadefalk, Niklas Weinreb, Sander TI The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI SO PROCEEDINGS OF THE IEEE LA English DT Article DE Antenna arrays; antenna feeds; array signal processing; astronomy; receivers; search for extraterrestrial intelligence AB The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of commercial off-the-shelf components, and the cost/performance tradeoffs that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed. C1 [Welch, Jack; Backer, Don; Blitz, Leo; Bock, Douglas C. -J.; Bower, Geoffrey C.; Cheng, Calvin; Croft, Steve; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James; Gutierrez-Kraybill, Colby; Heiles, Carl; Helfer, Tamara; Jorgensen, Susanne; Keating, Garrett; MacMahon, Dave; Milgrome, Oren; Thornton, Douglas; Urry, Lynn; Werthimer, Dan; Williams, Peter H.; Wright, Melvin] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Lugten, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [van Leeuwen, Joeri] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Tarter, Jill; Ackermann, Robert; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Michael; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth] SETI Inst, Mountain View, CA 94043 USA. [Barott, William] Embry Riddle Aeronaut Univ, Dept Elect & Syst Engn, Daytona Beach, FL 32114 USA. [DeBoer, Dave] CSIRO, ATNF, Epping, NSW 1710, Australia. [Fleming, Matt; Cork, Chris; Vitouchkine, Artyom] Minex Engn, Antioch, CA 94509 USA. [Wadefalk, Niklas] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden. [Weinreb, Sander] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. RP Welch, J (reprint author), Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. EM wwelch@astro.berkeley.edu OI Williams, Peter/0000-0003-3734-3587; Croft, Steve/0000-0003-4823-129X FU Paul G. Allen Family Foundation [5784]; National Science Foundation [0540599, 0540690] FX This work was supported in part by the Paul G. Allen Family Foundation under Grant 5784, the National Science Foundation under Grants 0540599, and 0540690, Nathan Myhrvold, Greg Papadopoulos, Xilinx Inc., the SETI Institute, the University of California, Berkeley, and other private and corporate donors. NR 18 TC 56 Z9 57 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD AUG PY 2009 VL 97 IS 8 BP 1438 EP 1447 DI 10.1109/JPROC.2009.2017103 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 472WW UT WOS:000268164600010 ER PT J AU Mascarenas, DL Park, G Farinholt, KM Todd, MD Farrar, CR AF Mascarenas, D. L. Park, G. Farinholt, K. M. Todd, M. D. Farrar, C. R. TI A low-power wireless sensing device for remote inspection of bolted joints SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE structural health monitoring; impedance method; bolted joints; active sensing ID SENSOR; IDENTIFICATION; ACTUATOR AB A new bolted-joint monitoring system is presented. This system consists of structural joint members equipped with piezoelectric (PZT) sensing elements and a wireless impedance device for data acquisition and communication. PZT enhanced washers are used to continuously monitor the condition of the joint by monitoring its dynamic characteristics. The mechanical impedance matching between the PZT enhanced devices and the joint connections is used as a key feature to monitor the preload changes and to prevent further failure. The dynamic response is readily measured using the electromechanical coupling property of the PZT patch, in which its electrical impedance is directly coupled with the mechanical impedance of the structure. A new miniaturized and portable impedance measuring device is implemented for the practical implementation of the proposed method. The proposed system can be used for the remote and rapid inspection of bolt tension and connection damage. Both theoretical modelling and experimental verification are presented to demonstrate the effectiveness of the proposed concept. C1 [Park, G.; Farinholt, K. M.; Farrar, C. R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Mascarenas, D. L.; Todd, M. D.] Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92103 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Mail Stop T001, Los Alamos, NM 87545 USA. EM gpark@lanl.gov RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 FU LANL/UCSD FX This research was funded by part of the LANL/UCSD Education Collaboration Tasks. Thanks are extended to Mr Eric Flynn for creating a graphical user interface for WID2. NR 24 TC 20 Z9 21 U1 0 U2 10 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0954-4100 J9 P I MECH ENG G-J AER JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. PD AUG PY 2009 VL 223 IS G5 BP 565 EP 575 DI 10.1243/09544100JAERO378 PG 11 WC Engineering, Aerospace; Engineering, Mechanical SC Engineering GA 484GZ UT WOS:000269033500009 ER PT J AU Schwartz, AJ Cynn, H Blobaum, KJM Wall, MA Moore, KT Evans, WJ Farber, DL Jeffries, JR Massalski, TB AF Schwartz, A. J. Cynn, H. Blobaum, K. J. M. Wall, M. A. Moore, K. T. Evans, W. J. Farber, D. L. Jeffries, J. R. Massalski, T. B. TI Atomic structure and phase transformations in Pu alloys SO PROGRESS IN MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Materials Structures - Nabarro Legacy held at the 2008 MRS Spring Meeting CY MAR 24-28, 2008 CL San Francisco, CA SP MRS ID RAY-ABSORPTION SPECTROSCOPY; ALPHA-PLUTONIUM METAL; DOUBLE-C CURVE; AT. PERCENT GA; DELTA-PHASE; MARTENSITIC-TRANSFORMATION; LOW-TEMPERATURE; CRYSTAL-STRUCTURE; ELECTRONIC-STRUCTURE; PLASTIC-DEFORMATION AB Plutonium and plutonium-based alloys containing Al or Ga exhibit numerous phases with crystal structures ranging from simple monoclinic to face-centered cubic. Only recently, however, has there been increased convergence in the actinides community on the details of the equilibrium form of the phase diagrams. Practically speaking, while the phase diagrams that represent the stability of the fcc delta-phase field at room temperature are generally applicable, it is also recognized that Pu and its alloys are never truly in thermodynamic equilibrium because of self-irradiation effects, primarily from the alpha decay of Pu isotopes. This article covers past and current research on several properties of Pu and Pu-(Al or Ga) alloys and their connections to the crystal structure and the microstructure. We review the consequences of radioactive decay, the recent advances in understanding the electronic structure, the current research on phase transformations and their relations to phase diagrams and phase stability, the nature of the isothermal martensitic delta -> alpha' transformation, and the pressure-induced transformations in the delta-phase alloys. New data are also presented on the structures and phase transformations observed in these materials following the application of pressure, including the formation of transition phases. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Schwartz, A. J.; Cynn, H.; Blobaum, K. J. M.; Wall, M. A.; Moore, K. T.; Evans, W. J.; Farber, D. L.; Jeffries, J. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Massalski, T. B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Schwartz, AJ (reprint author), Lawrence Livermore Natl Lab, L-041,7000 E Ave, Livermore, CA 94550 USA. EM schwartz6@llnl.gov RI Farber, Daniel/F-9237-2011 NR 114 TC 29 Z9 30 U1 3 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6425 J9 PROG MATER SCI JI Prog. Mater. Sci. PD AUG PY 2009 VL 54 IS 6 BP 909 EP 943 DI 10.1016/j.pmatsci.2009.03.003 PG 35 WC Materials Science, Multidisciplinary SC Materials Science GA 468SM UT WOS:000267841100011 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm TI Solar Cell Efficiency Tables (Version 34) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID MULTICRYSTALLINE AB Consolidated tables showing all extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and flew entries since January, 2009 are reviewed. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. RP Green, MA (reprint author), Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au NR 50 TC 167 Z9 170 U1 3 U2 39 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2009 VL 17 IS 5 BP 320 EP 326 DI 10.1002/pip.911 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 476IU UT WOS:000268433900006 ER PT J AU Glover, BB Perry, WL AF Glover, Brian B. Perry, W. Lee TI Microwave Properties of TATB Particles from Measurements of the Effective Permittivity of TATB Powders SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Energy; Explosive; Microwave; Mixtures; Permittivity; TATB ID MIXTURE AB Complex permittivity is the constitutive property required to fully define the absorption, reflection, and transmission of microwave frequency electromagnetic energy for a non-magnetic material. We report the complex permittivity of 1,3,5-triamino2,4,6-trinitrobenzene (TATB) powder from 1 to 18 GHz. The average complex permittivity of individual TATB particles was estimated from measurements of the complex permittivity of the powder at two different densities. TATB was found to have low permittivity, low dielectric loss with nearly constant valued permittivity between I and 18 GHz. These data are used to calculate the complex permittivity of a composite composed of TATB and Kel-F 800. C1 [Glover, Brian B.; Perry, W. Lee] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Glover, BB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM gloverb@lanl.gov OI Perry, William/0000-0003-1993-122X FU Los Alamos National Laboratory; United States Department of Energy [DE-AC52-06NA25396] FX This work was supported by Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, L. L. C. under the auspices of the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC52-06NA25396. NR 16 TC 4 Z9 4 U1 1 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD AUG PY 2009 VL 34 IS 4 BP 347 EP 350 DI 10.1002/prep.200800070 PG 4 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 486WZ UT WOS:000269232700009 ER PT J AU Teng, PK Eisenberg, D AF Teng, Poh K. Eisenberg, David TI Short protein segments can drive a non-fibrillizing protein into the amyloid state SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE amyloid; domain swapping; functional networks; prion structure; protein interactions ID PAIRED HELICAL FILAMENTS; ALPHA-SYNUCLEIN; PARKINSONS-DISEASE; RIBONUCLEASE-A; BETA-STRUCTURE; TAU-PROTEIN; FIBRILS; MUTATIONS; CONFORMATION; AGGREGATION AB Protein fibrils termed amyloid-like are associated with numerous degenerative diseases as well as some normal cellular functions. Specific short segments of amyloid-forming proteins have been shown to form fibrils themselves. However, it has not been shown in general that these segments are capable of driving a protein from its native structure into the amyloid state. We applied the 3D profile method to identify fibril-forming segments within the amyloid-forming human proteins tau, alpha-synuclein, PrP prion and amyloid-beta. Ten segments, six to eight residues in length, were chosen and inserted into the C-terminal hinge loop of the highly constrained enzyme RNase A, and tested for fibril growth and Congo red birefringence. We find that all 10 unique inserts cause RNase A to form amyloid-like fibrils which display characteristic yellow to apple-green Congo red birefringence when observed with cross polarizers. These six to eight residue inserts can fibrillize RNase A and are sufficient for amyloid fibril spine formation. C1 [Teng, Poh K.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, Dept Biol Chem,UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Teng, Poh K.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, Dept Chem & Biochem,UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, Dept Biol Chem,UCLA DOE Inst Genom & Prote, Box 951570, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Eisenberg, David/E-2447-2011 FU National Science Foundation [MCB-0445429]; National Institute on Aging [1R01 AG029430]; United States Department of Energy Office of Biological and Environmental Research FX This work was supported by the National Science Foundation (MCB-0445429); the National Institute on Aging (1R01 AG029430) and the United States Department of Energy Office of Biological and Environmental Research. NR 35 TC 54 Z9 54 U1 1 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD AUG PY 2009 VL 22 IS 8 BP 531 EP 536 DI 10.1093/protein/gzp037 PG 6 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 478KV UT WOS:000268588100011 PM 19602569 ER PT J AU Splettstoesser, T Noe, F Oda, T Smith, JC AF Splettstoesser, Thomas Noe, Frank Oda, Toshiro Smith, Jeremy C. TI Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE actin; molecular dynamics simulation; actin polymerization; conformational change; nucleotide ID CRYSTAL-STRUCTURE; MONOMERIC ACTIN; BETA-ACTIN; FILAMENT; PROTEINS; PROFILIN; HYDROLYSIS; COMPLEX; CELLS; MODEL AB The assembly of monomeric G-actin into filamentous F-actin is nucleotide dependent: ATP-G-actin is favored for filament growth at the "barbed end" of F-actin, whereas ADP-G-actin tends to dissociate from the "pointed end." Structural differences between ATP- and ADPG-actin are examined here using multiple molecular dynamics simulations. The "open" and "closed" conformational states of G-actin in aqueous solution are characterized, with either ATP or ADP in the nucleotide binding pocket. With both ATP and ADP bound, the open state closes in the absence of actin-bound profilin. The position of the nucleotide in the protein is found to be correlated with the degree of opening of the active site cleft. Further, the simulations reveal the existence of a structurally well-defined, compact, "superclosed" state of ATP-G-actin, as yet unseen crystallographically and absent in the ADPG-actin simulations. The superclosed state resembles structurally the actin monomer in filament models derived from fiber diffraction and is putatively the polymerization competent conformation of ATP-G-actin. C1 [Splettstoesser, Thomas; Noe, Frank; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany. [Noe, Frank] FU Berlin, DFG Res Ctr Matheon, D-14159 Berlin, Germany. [Oda, Toshiro] RIKEN Spring 8 Ctr, RIKEN Harima Inst, Mikazuki, Hyogo 6795148, Japan. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Splettstoesser, T (reprint author), IWR Heidelberg, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM thomas.splettstoesser@iwr.uni-heidelberg.de RI Oda, Toshiro/F-6151-2011; smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU Ministry of Science, Research and the Arts of Baden-Wurttemberg (Biomimetische Modelle der Zellmechanik) [24-7532.22-19-12/1]; Deutsche Forschungsgemeinschaft [SM 63/8-1,2]; DOE Laboratory-Directed Research and Development FX Grant sponsor: Ministry of Science, Research and the Arts of Baden-Wurttemberg (Biomimetische Modelle der Zellmechanik); Grant number: 24-7532.22-19-12/1; Grant sponsor: the Deutsche Forschungsgemeinschaft; Grant number: SM 63/8-1,2; Grant sponsor: DOE Laboratory-Directed Research and Development grant. NR 43 TC 13 Z9 13 U1 1 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD AUG 1 PY 2009 VL 76 IS 2 BP 353 EP 364 DI 10.1002/prot.22350 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 457WQ UT WOS:000266966300008 PM 19156817 ER PT J AU Rusch, GM Bast, CB Cavender, FL AF Rusch, George M. Bast, Cheryl B. Cavender, Finis L. TI Establishing a point of departure for risk assessment using acute inhalation toxicology data SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Review DE Point of departure; Risk assessment; Median lethal; Acute inhalation toxicity; Estimating non-lethal exposure levels; LC(50) ID PETROLEUM HYDROCARBON TOXICITY; EXPOSURE GUIDELINE LEVELS; METHYL ISOCYANATE; HAZARDOUS SUBSTANCES; MAMMALIAN TOXICITY; HUMAN RESPONSE; RATS; MICE; VAPORS; CARCINOGENICITY AB A simple method is presented for estimating a non-lethal level for inhalation toxicity studies. By reviewing 209 LC(50) studies representing 96 chemicals that also reported a non-lethal level, it has been shown that taking 1/3 of the LC(50) is a conservative estimate for a non-lethal exposure level. This approach was also compared to studies with LC(01) and BMCL(05) calculations. In the 38 studies that reported either of these values, again taking 1/3 of the LC(50) provided a more conservation estimate for the non-lethal threshold. The studies included time intervals from 5 min out to 8 h and utilized multiple species such as the rat, mouse, hamster, guinea pig and dog. In all but 13 cases, taking 1/3 of the LC(50) provided a more conservative estimate for a non-lethal exposure level compared to the experimentally observed value. In all but one of the 13 cases, the higher values were consequences of the selection of the exposure levels. (C) 2009 Elsevier Inc. All rights reserved. C1 [Rusch, George M.] Honeywell Int, DABT, Fellow ATS, Morristown, NJ 08807 USA. [Bast, Cheryl B.] Oak Ridge Natl Lab, Toxicol & Hazard Assessment Grp, Div Environm Sci, Oak Ridge, TN 37830 USA. [Cavender, Finis L.] DABT, Hendersonville, NC 28739 USA. RP Rusch, GM (reprint author), Honeywell Int, DABT, Fellow ATS, 101 Columbia Rd, Morristown, NJ 08807 USA. EM george.rusch@honeywell.com RI Bast, Cheryl/B-9436-2012 NR 143 TC 7 Z9 7 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD AUG PY 2009 VL 54 IS 3 BP 247 EP 255 DI 10.1016/j.yrtph.2009.05.001 PG 9 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 476TX UT WOS:000268469900007 PM 19427887 ER PT J AU Fthenakis, V Kim, HC AF Fthenakis, Vasilis Kim, Hyung Chul TI Land use and electricity generation: A life-cycle analysis SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Land occupation; Transformation; Renewable; Photovoltaics; Coal; Biomass; Wind; Nuclear ID CO2 EMISSIONS; FRAMEWORK AB Renewable-energy sources often are regarded as dispersed and difficult to collect, thus requiring substantial land resources in comparison to conventional energy sources. In this review, we present the normalized land requirements during the life cycles of conventional- and renewable-energy options, covering coal, natural gas, nuclear, hydroelectric, photovoltaics, wind, and biomass. We compared the land transformation and occupation matrices within a life-cycle framework across those fuel cycles. Although the estimates vary with regional and technological conditions, the photovoltaic (PV) cycle requires the least amount of land among renewable-energy options, while the biomass cycle requires the largest amount. Moreover, we determined that, in most cases, ground-mount PV systems in areas of high insolation transform less land than the coal-fuel cycle coupled with surface mining. In terms of land occupation, the biomass-fuel cycle requires the greatest amount, followed by the nuclear-fuel cycle. Although not detailed in this review, conventional electricity-generation technologies also pose secondary effects on land use, including contamination and disruptions of the ecosystems of adjacent lands, and land disruptions by fuel-cycl e-related accidents. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, Natl PV Environm Res Ctr, Upton, NY 11973 USA. [Fthenakis, Vasilis; Kim, Hyung Chul] Columbia Univ, Ctr Life Cycle Anal, New York, NY 10027 USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, Natl PV Environm Res Ctr, Bldg 475B, Upton, NY 11973 USA. EM vmf@bnl.gov OI Kim, Hyung Chul/0000-0002-0992-4547 NR 56 TC 110 Z9 111 U1 4 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD AUG-SEP PY 2009 VL 13 IS 6-7 BP 1465 EP 1474 DI 10.1016/j.rser.2008.09.017 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 444ZL UT WOS:000266019300024 ER PT J AU Arena, DA Ding, Y Vescovo, E Zohar, S Guan, Y Bailey, WE AF Arena, D. A. Ding, Y. Vescovo, E. Zohar, S. Guan, Y. Bailey, W. E. TI A compact apparatus for studies of element and phase-resolved ferromagnetic resonance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; THIN-FILMS; RAY; NI81FE19; PRECESSION; DYNAMICS; DOPANTS; NICKEL AB We present a compact sample holder equipped with electromagnets and high frequency transmission lines; the sample holder is intended for combined x-ray magnetic circular dichroism (XMCD) and ferromagnetic resonance measurements (FMR). Time-resolved measurements of resonant x-ray detected FMR during forced precession are enabled by use of a rf excitation that is phase-locked to the storage ring bunch clock. Several applications of the combined XMCD+FMR technique are presented, demonstrating the flexibility of the experimental design. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3190402] C1 [Arena, D. A.; Ding, Y.; Vescovo, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zohar, S.; Guan, Y.; Bailey, W. E.] Columbia Univ, Dept Appl Phys, Mat Sci Program, New York, NY 10027 USA. RP Arena, DA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM darena@bnl.gov FU Army Research Office [ARO-43986-MS-YIP]; National Science Foundation [NSFDMR-02-39724]; U.S. Department of Energy [W-31-109-Eng-38, DE-AC02-98CH10886] FX hard is gratefully acknowledged, as is the beam line support provided by David Keavney and colleagues at the Advanced Photon Source. This work was partially supported by the Army Research Office with Grant No. ARO-43986-MS-YIP and the National Science Foundation with Grant No. NSFDMR-02-39724. The use of the Advanced Photon Source was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. The support of the NSLS under DOE Contract No. DE-AC02-98CH10886 is also gratefully acknowledged. NR 32 TC 20 Z9 20 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083903 DI 10.1063/1.3190402 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000025 PM 19725663 ER PT J AU Denes, P Doering, D Padmore, HA Walder, JP Weizeorick, J AF Denes, P. Doering, D. Padmore, H. A. Walder, J. -P. Weizeorick, J. TI A fast, direct x-ray detection charge-coupled device SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-RESISTIVITY SILICON; CCD AB A charge-coupled device (CCD) capable of 200 Mpixels/s readout has been designed and fabricated on thick, high-resistivity silicon. The CCDs, up to 600 mu m thick, are fully depleted, ensuring good infrared to x-ray detection efficiency, together with a small point spread function. High readout speed, with good analog performance, is obtained by the use of a large number of parallel output ports. A set of companion 16-channel custom readout integrated circuits, capable of 15 bits of dynamic range, is used to read out the CCD. A gate array-controlled back end data acquisition system frames and transfers images, as well as provides the CCD clocks. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3187222] C1 [Denes, P.; Doering, D.; Walder, J. -P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Padmore, H. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Weizeorick, J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Denes, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 5 TC 33 Z9 33 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083302 DI 10.1063/1.3187222 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000008 PM 19725646 ER PT J AU Gopalsami, N Chien, HT Heifetz, A Koehl, ER Raptis, AC AF Gopalsami, N. Chien, H. T. Heifetz, A. Koehl, E. R. Raptis, A. C. TI Millimeter wave detection of nuclear radiation: An alternative detection mechanism SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206114] C1 [Gopalsami, N.; Chien, H. T.; Heifetz, A.; Koehl, E. R.; Raptis, A. C.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Gopalsami, N (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy [W-31-109-ENG-38]; Victoria Franques of Office of Nonproliferation Research and Development under the National Nuclear Security Administration FX This work is supported by the U.S. Department of Energy under Contract No. W-31-109-ENG-38. The authors wish to thank Dr. Victoria Franques of Office of Nonproliferation Research and Development under the National Nuclear Security Administration for financial support. NR 10 TC 8 Z9 8 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 084702 DI 10.1063/1.3206114 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000035 PM 19725673 ER PT J AU Jansen, P Chandler, DW Strecker, KE AF Jansen, Paul Chandler, David W. Strecker, Kevin E. TI A compact molecular beam machine SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; PRODUCTS; ATOMS AB We have developed a compact, low cost, modular, crossed molecular beam machine. The new apparatus utilizes several technological advancements in molecular beams valves, ion detection, and vacuum pumping to reduce the size, cost, and complexity of a molecular beam apparatus. We apply these simplifications to construct a linear molecular beam machine as well as a crossed-atomic and molecular beam machine. The new apparatus measures almost 50 cm in length, with a total laboratory footprint less than 0.25 m(2) for the crossed-atomic and molecular beam machine. We demonstrate the performance of the apparatus by measuring the rotational temperature of nitric oxide from three common molecular beam valves and by observing collisional energy transfer in nitric oxide from a collision with argon. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206367] C1 [Jansen, Paul] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Chandler, David W.; Strecker, Kevin E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Jansen, P (reprint author), Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. EM kstreck@sandia.gov FU U. S. Department of Energy FX Funding for this work was provided by the U. S. Department of Energy, Office of Basic Energy Science. Sandia National laboratory is a multidisciplinary laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy. NR 15 TC 7 Z9 7 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083105 DI 10.1063/1.3206367 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000006 PM 19725644 ER PT J AU Li, RK Tang, CX Du, YC Huang, WH Du, Q Shi, JR Yan, LX Wang, XJ AF Li, Renkai Tang, Chuanxiang Du, Yingchao Huang, Wenhui Du, Qiang Shi, Jiaru Yan, Lixin Wang, Xijie TI Experimental demonstration of high quality MeV ultrafast electron diffraction SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICROSCOPY; RESOLUTION; GUN AB The simulation optimization and an experimental demonstration of improved performances of mega-electron-volt ultrafast electron diffraction (MeV UED) are reported in this paper. Using ultrashort high quality electron pulses from an S-band photocathode rf gun and a polycrystalline aluminum foil as the sample, we experimentally demonstrated an improved spatial resolution of MeV UED, in which the Debye-Scherrer rings of the (111) and (200) planes were clearly resolved. This result showed that MeV UED is capable to achieve an atomic level spatial resolution and a similar to 100 A temporal resolution simultaneously, and will be a unique tool for ultrafast structural dynamics studies. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3194047] C1 [Li, Renkai; Tang, Chuanxiang; Du, Yingchao; Huang, Wenhui; Du, Qiang; Shi, Jiaru; Yan, Lixin] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Wang, Xijie] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, RK (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM lrk@mails.thu.edu.cn OI Li, Renkai/0000-0002-3163-5506 FU National Natural Science Foundation of China (NSFC) [10735050, 10875070]; National Basic Research Program of China [2007CB815102] FX The authors acknowledge many helpful discussions with Dr. Jim Cao, Dr. Yutong Li, and Dr. Wenxi Liang. This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 10735050 and 10875070 and by the National Basic Research Program of China (973 Program) under Grant No. 2007CB815102. NR 20 TC 30 Z9 30 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083303 DI 10.1063/1.3194047 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000009 PM 19725647 ER PT J AU Liu, Y Baktash, C Beene, JR Geppert, C Gottwald, T Havener, CC Kessler, T Krause, HF Schultz, DR Stracener, DW Vane, CR Wies, K Wendt, K AF Liu, Y. Baktash, C. Beene, J. R. Geppert, Ch. Gottwald, T. Havener, C. C. Kessler, T. Krause, H. F. Schultz, D. R. Stracener, D. W. Vane, C. R. Wies, K. Wendt, K. TI Emittance characterization of a hot-cavity laser ion source at Holifield Radioactive Ion Beam Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MASS SEPARATOR; SPACE CHARGE; IONIZATION; ISOLDE; ISOTOPES; TRIUMF; HRIBF; NI; GE AB The first investigation of the transverse emittance of a hot-cavity laser ion source based on all-solid-state Ti:sapphire lasers is presented. The emittances of (63)Cu ion beams generated by three-photon resonant ionization are measured and compared with that of the (69)Ga and (39)K ion beams resulting from surface ionization in the same ion source. A self-consistent unbiased elliptical exclusion method is adapted for noise reduction and emittance analysis. Typical values of the rms and 90% fractional emittances of the Cu ion beams at 20 keV energy are found to be about 2 and 8 pi mm mrad, respectively, for the ion currents of 2-40 nA investigated. The emittances of the laser-produced Cu ion beams are smaller than those of the surface-ionized Ga and K ion beams. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3184343] C1 [Liu, Y.; Baktash, C.; Beene, J. R.; Havener, C. C.; Krause, H. F.; Schultz, D. R.; Stracener, D. W.; Vane, C. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Geppert, Ch.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Liu, Y (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM liuy@ornl.gov RI Wendt, Klaus/D-7306-2011 OI Wendt, Klaus/0000-0002-9033-9336 FU US Department of Energy [DE-AC05-00OR22725]; German Bundesminis-terium fur Bildung und Forschung [06MZ197, 06MZ215]; European Union [506065] FX This research has been sponsored by the US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, as well as by the German Bundesminis-terium fur Bildung und Forschung under Contract Nos. 06MZ197 and 06MZ215, and by the European Union Sixth Framework through RII3-EURONS (Contract No. 506065). NR 26 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083304 DI 10.1063/1.3184343 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000010 PM 19725648 ER PT J AU Nazaretski, E Graham, KS Thompson, JD Wright, JA Pelekhov, DV Hammel, PC Movshovich, R AF Nazaretski, E. Graham, K. S. Thompson, J. D. Wright, J. A. Pelekhov, D. V. Hammel, P. C. Movshovich, R. TI Design of a variable temperature scanning force microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; FIBEROPTIC INTERFEROMETER; FERROMAGNETIC-RESONANCE; ULTRAHIGH-VACUUM; CANTILEVERS; SAMPLE; SENSITIVITY; MODULATION; FIELDS; RESOLUTION AB We have developed the variable temperature scanning force microscope capable of performing both magnetic resonance force microscopy (MRFM) and magnetic force microscopy (MFM) measurements in the temperature range between 5 and 300 K. Modular design, large scanning area, and interferometric detection of the cantilever deflection make it a sensitive, easy to operate, and reliable instrument suitable for, studies of the dynamic and static magnetization in various systems. We have verified the performance of the microscope by imaging vortices in a Nb thin film in the MFM mode of operation. MRFM spectra in a diphenyl-picryl-hydrazyl film were recorded to evaluate the MRFM mode of operation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3212561] C1 [Nazaretski, E.; Graham, K. S.; Thompson, J. D.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wright, J. A.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Nazaretski, E (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 FU U.S. Department of Energy [DEFG02-03ER46054]; NSF [0654431] FX This work was supported by the U.S. Department of Energy and was performed in part, at the Center for Integrated Nanotechnologies at Los Alamos and Sandia National Laboratories. Personnel at Ohio State University were supported by the U.S. Department of Energy through Grant No. DEFG02-03ER46054. One of the authors J.A.W. was supported through the MSTP Fellowship at UCLA funded by NSF Grant No. 0654431. Technical assistance of J. Kevin Baldwin with fabrication of Nb films for vortex studies is acknowledged. NR 59 TC 19 Z9 20 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083704 DI 10.1063/1.3212561 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000021 PM 19725659 ER PT J AU Qiao, S Ma, DW Feng, DL Marks, S Schlueter, R Prestemon, S Hussain, Z AF Qiao, S. Ma, Dewei Feng, Donglai Marks, S. Schlueter, R. Prestemon, S. Hussain, Z. TI Knot undulator to generate linearly polarized photons with low on-axis power density SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FIGURE-8 UNDULATOR; LIGHT-SOURCE AB Heat load on beamline optics is a serious obstacle for devices designed to generate pure linearly polarized photons in third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by implementing a figure-eight design configuration. As yet there has been no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel design and operational mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Additionally, the minimum photon energy capability of linearly polarized photons can be significantly extended by this method. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3204452] C1 [Qiao, S.; Ma, Dewei; Feng, Donglai] Fudan Univ, Dept Phys, Adv Mat Lab, Shanghai 200433, Peoples R China. [Qiao, S.; Ma, Dewei; Feng, Donglai] Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China. [Qiao, S.] Stanford Univ, Dept Phys, Dept Appl Phys, Stanford, CA 94305 USA. [Qiao, S.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Qiao, S.; Marks, S.; Schlueter, R.; Prestemon, S.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Qiao, S (reprint author), Fudan Univ, Dept Phys, Adv Mat Lab, Shanghai 200433, Peoples R China. FU Shanghai Pujiang program. FX This research was partly supported by Shanghai Pujiang program. NR 12 TC 4 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 085108 DI 10.1063/1.3204452 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000044 PM 19725682 ER PT J AU Theobald, W Stoeckl, C Jaanimagi, PA Nilson, PM Storm, M Meyerhofer, DD Sangster, TC Hey, D MacKinnon, AJ Park, HS Patel, PK Shepherd, R Snavely, RA Key, MH King, JA Zhang, B Stephens, RB Akli, KU Highbarger, K Daskalova, RL Van Woerkom, L Freeman, RR Green, JS Gregori, G Lancaster, K Norreys, PA AF Theobald, W. Stoeckl, C. Jaanimagi, P. A. Nilson, P. M. Storm, M. Meyerhofer, D. D. Sangster, T. C. Hey, D. MacKinnon, A. J. Park, H. -S. Patel, P. K. Shepherd, R. Snavely, R. A. Key, M. H. King, J. A. Zhang, B. Stephens, R. B. Akli, K. U. Highbarger, K. Daskalova, R. L. Van Woerkom, L. Freeman, R. R. Green, J. S. Gregori, G. Lancaster, K. Norreys, P. A. TI A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID POTASSIUM ACID PHTHALATE; OMEGA LASER; SUBPICOSECOND LASER; REFLECTION; SPECTROMETER; SPECTROSCOPY; IGNITION; FACILITY; PULSES; REGION AB A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the similar to 1.5 to 2 keV range (6.2-8.2 angstrom wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4 x 10(20) W/cm(2). The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of similar to 10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He(alpha) and Ly(alpha) resonance lines were similar to 1.8 and similar to 1.0 mJ/eV sr (similar to 0.4 and 0.25 J/angstrom sr), respectively, for 220 J, 10 ps laser irradiation. 0 2009 American Institute of Physics. [DOI: 10.1063/1.3193716] C1 [Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Hey, D.; MacKinnon, A. J.; Park, H. -S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [King, J. A.; Zhang, B.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Stephens, R. B.; Akli, K. U.] Gen Atom Co, San Diego, CA 92186 USA. [Highbarger, K.; Daskalova, R. L.; Van Woerkom, L.; Freeman, R. R.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. [Green, J. S.; Gregori, G.; Lancaster, K.; Norreys, P. A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gregori, G.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Storm, M.] Univ Rochester, Inst Opt, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Patel, Pravesh/E-1400-2011; Nilson, Philip/A-2493-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Park, Hae-Sim/0000-0003-2614-0303; Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority; University of California Lawrence Livermore National Laboratory [W-7405Eng-48 UCRL - PRES213395]; EPSRC [EP/G007187/1]; Science and Technology Facilities Council of the United Kingdom FX This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, the New York State Energy Research and Development Authority, and the University of California Lawrence Livermore National Laboratory under Contract No. W-7405Eng-48 UCRL - PRES213395. The work of GG was supported in part by EPSRC Grant No. EP/G007187/1 and by the Science and Technology Facilities Council of the United Kingdom. The support of the DOE does not constitute an endorsement by DOE of the views expressed in this article. NR 30 TC 3 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083501 DI 10.1063/1.3193716 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000011 PM 19725649 ER PT J AU Weber, JKR Rey, CA Neuefeind, J Benmore, CJ AF Weber, J. K. R. Rey, C. A. Neuefeind, J. Benmore, C. J. TI Acoustic levitator for structure measurements on low temperature liquid droplets SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION AB A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of similar to 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3196177] C1 [Weber, J. K. R.] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Weber, J. K. R.; Benmore, C. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rey, C. A.] Charles Rey Inc, Lake Zurich, IL 60047 USA. [Neuefeind, J.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Weber, JKR (reprint author), Mat Dev Inc, Arlington Hts, IL 60004 USA. EM info@matsdev.com RI Neuefeind, Joerg/D-9990-2015; OI Neuefeind, Joerg/0000-0002-0563-1544; Benmore, Chris/0000-0001-7007-7749 FU UT-Battelle, LLC [4000061892, 4000067087]; U.S. Department of Energy [DE-AC05-00OR22725]; APS; U.S. DOE; Argonne National Laboratory [DE-AC02-06CH11357] FX Work was supported under the following contracts: MDI, subcontract Nos. 4000061892 and 4000067087 from UT-Battelle, LLC. SNS Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy and managed by UT-Battelle, LLC. APS, U.S. DOE, Argonne National Laboratory was supported under Contract No. DE-AC02-06CH11357. NR 22 TC 25 Z9 27 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083904 DI 10.1063/1.3196177 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000026 PM 19725664 ER PT J AU Carter, J Fu, EG Martin, M Xie, GQ Zhang, X Wang, YQ Wijesundera, D Wang, XM Chu, WK Shao, L AF Carter, Jesse Fu, E. G. Martin, Michael Xie, Guoqiang Zhang, X. Wang, Y. Q. Wijesundera, D. Wang, X. M. Chu, Wei-Kan Shao, Lin TI Effects of Cu ion irradiation in Cu50Zr45Ti5 metallic glass SO SCRIPTA MATERIALIA LA English DT Article DE Metallic glass; Ion irradiation; Crystallization ID ELECTRON-IRRADIATION; AMORPHOUS-ALLOYS; CRYSTALLIZATION; DIFFUSION; LIQUID; PHASE; NANOCRYSTALLIZATION; TRANSFORMATION; BINARY AB We studied the role of thermal spike in nanocrystallization of Cu50Zr45Ti5 metallic glasses after 1 MeV Cu ion irradiation at room temperature. Nanocrystals of Cu10Zr7 and CuZr2 phases are formed after the ion irradiation. The study suggests that thermal spike formation and subsequent quenching are too fast to allow direct structural transformation in the damage cascade regions. The overall irradiation effects are caused by enhanced atomic mobility due to increased excessive free volume. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Carter, Jesse; Martin, Michael; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Xie, Guoqiang] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wijesundera, D.; Wang, X. M.; Chu, Wei-Kan] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Wijesundera, D.; Wang, X. M.; Chu, Wei-Kan] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM lshao@mailaps.org RI Xie, Guoqiang/A-8619-2011; Wijesundera, Dharshana/G-3363-2012; Zhang, Xinghang/H-6764-2013 OI Wijesundera, Dharshana/0000-0001-5482-8768; Zhang, Xinghang/0000-0002-8380-8667 FU Siemens Power Generation Emerging Technologies; NRC Early Career Development; DOE [DE-FC07-05ID14657, DE-FG02-05ER46208]; State of Texas through the Texas Center for Superconductivity at the University of Houston FX This work was financially supported by the University Embryonic Technologies Program from Siemens Power Generation Emerging Technologies. L.S. would like to acknowledge the support from the NRC Early Career Development Grant. X.Z. acknowledges the support by DOE under Grant No. DE-FC07-05ID14657. This work was performed, in part, at the Center for Integrated Nanotechnologies, a DOE-supported user facility. The University of Houston group is supported by the State of Texas through the Texas Center for Superconductivity at the University of Houston, and through the DOE under Grant No. DE-FG02-05ER46208 NR 34 TC 18 Z9 21 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2009 VL 61 IS 3 BP 265 EP 268 DI 10.1016/j.scriptamat.2009.03.060 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 455TH UT WOS:000266788200010 ER PT J AU Wall, JJ Almer, JD Vogel, SC Liaw, PK Choo, H Liu, CT AF Wall, J. J. Almer, J. D. Vogel, S. C. Liaw, P. K. Choo, H. Liu, C. T. TI Synchrotron X-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy SO SCRIPTA MATERIALIA LA English DT Article DE Heterogeneous nucleation; Glass forming ability; BMG; Nucleation ID METALLIC-GLASS; QUASI-CRYSTALS; CRYSTALLIZATION; NANOCRYSTALLIZATION; DEVITRIFICATION AB The metallic glass-forming alloy VIT-105 (Zr(52.5)Cu(17.9)Ni(14.6)Al(14.6)Ti(5)) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fee "big cube" phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wall, J. J.; Vogel, S. C.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liaw, P. K.; Choo, H.; Liu, C. T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Choo, H.; Liu, C. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Wall, JJ (reprint author), Elect Power Res Inst, Charlotte, NC 28262 USA. EM jwall@epri.com RI Lujan Center, LANL/G-4896-2012; Choo, Hahn/A-5494-2009; OI Choo, Hahn/0000-0002-8006-8907; Vogel, Sven C./0000-0003-2049-0361 FU Department of Energy's Office of Basic Energy Sciences [DE-AC5206NA25396]; National Science Foundation [DMR-0231320] FX The authors J.J.W. and S.C.V. acknowledge the support of The Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC5206NA25396. The authors J.J.W., P.K.L. and H.C. greatly acknowledge the support of the National Science Foundation International Materials Institutes (IMI) Program, DMR-0231320, with Dr. C. Huber as the Program Director. NR 24 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2009 VL 61 IS 3 BP 293 EP 295 DI 10.1016/j.scriptamat.2009.04.004 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 455TH UT WOS:000266788200017 ER PT J AU Gerber, TP Ball, DY AF Gerber, Theodore P. Ball, Deborah Yarsike TI Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia SO SOCIAL STUDIES OF SCIENCE LA English DT Article; Proceedings Paper CT 101st Annual Meeting of the American-Sociological-Association CY AUG 11-14, 2006 CL Montreal, CANADA SP Amer Sociol Assoc DE institutional change; professional norms; scientists ID ANTI-PLAGUE SYSTEM; SOCIOECONOMIC PROBLEMS; SCIENCE; POLICY; WEST; PROLIFERATION; TECHNOLOGY; COMMUNITY; STRUGGLE; PHYSICS AB How do scientists react when the institutional setting in which they conduct their work changes radically? How do longa standing norms regarding the social responsibility of scientists fares What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose research institutions experienced a sustained crisis and sweeping changes following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists' social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common but far from universal among Russian scientists. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. us for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially oriented norms. C1 [Gerber, Theodore P.] Univ Wisconsin, Dept Sociol, Madison, WI 53706 USA. [Ball, Deborah Yarsike] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gerber, TP (reprint author), Univ Wisconsin, Dept Sociol, 1180 Observ Dr, Madison, WI 53706 USA. EM tgerber@ssc.wisc.edu; dyball@llnl.gov RI Gerber, Theodore/A-5212-2014 OI Gerber, Theodore/0000-0001-8899-6815 NR 70 TC 4 Z9 4 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0306-3127 J9 SOC STUD SCI JI Soc. Stud. Sci. PD AUG PY 2009 VL 39 IS 4 BP 529 EP 567 DI 10.1177/0306312709103477 PG 39 WC History & Philosophy Of Science SC History & Philosophy of Science GA 463NQ UT WOS:000267439300002 ER PT J AU Huebner, WF Johnson, LN Boice, DC Bradley, P Chocron, S Ghosh, A Giguere, PT Goldstein, R Guzik, JA Keady, JJ Mukherjee, J Patrick, W Plesko, C Walker, JD Wohletz, K AF Huebner, W. F. Johnson, L. N. Boice, D. C. Bradley, P. Chocron, S. Ghosh, A. Giguere, P. T. Goldstein, R. Guzik, J. A. Keady, J. J. Mukherjee, J. Patrick, W. Plesko, C. Walker, J. D. Wohletz, K. TI A comprehensive program for countermeasures against potentially hazardous objects (PHOs) SO SOLAR SYSTEM RESEARCH LA English DT Article ID IMPACTOR AB At the hundredth anniversary of the Tunguska event in Siberia it is appropriate to discuss measures to avoid such occurrences in the future. Recent discussions about detecting, tracking, cataloguing, and characterizing near-Earth objects (NEOs) center on objects larger than about 140 m in size. However, objects smaller than 100 m are more frequent and can cause significant regional destruction of civil infrastructures and population centers. The cosmic object responsible for the Tunguska event provides a graphic example: although it is thought to have been only about 50 to 60 m in size, it devastated an area of about 2000 km(2). Ongoing surveys aimed at early detection of a potentially hazardous object (PHO: asteroid or comet nucleus that approaches the Earth's orbit within 0.05 AU) are only a first step toward applying countermeasures to prevent an impact on Earth. Because "early" may mean only a few weeks or days in the case of a Tunguska-sized object or a longperiod comet, deflecting the object by changing its orbit is beyond the means of current technology, and destruction and dispersal of its fragments may be the only reasonable solution. Highly capable countermeasures- always at the ready-are essential to defending against an object with such short warning time, and therefore short reaction time between discovery and impending impact. We present an outline for a comprehensive plan for countermeasures that includes smaller (Tunguska-sized) objects and long-period comets, focuses on short warning times, uses non-nuclear methods (e.g., hyper-velocity impactor devices and conventional explosives) whenever possible, uses nuclear munitions only when needed, and launches from the ground. The plan calls for international collaboration for action against a truly global threat. C1 [Huebner, W. F.; Boice, D. C.; Chocron, S.; Ghosh, A.; Goldstein, R.; Mukherjee, J.; Patrick, W.; Walker, J. D.] SW Res Inst, San Antonio, TX 78228 USA. [Johnson, L. N.] NASA Headquarters, SMD, Washington, DC 20546 USA. [Bradley, P.; Giguere, P. T.; Guzik, J. A.; Keady, J. J.; Plesko, C.; Wohletz, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Huebner, WF (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. OI Bradley, Paul/0000-0001-6229-6677 NR 9 TC 7 Z9 7 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0038-0946 J9 SOLAR SYST RES+ JI Solar Syst. Res. PD AUG PY 2009 VL 43 IS 4 BP 334 EP 342 DI 10.1134/S003809460904008X PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 482RE UT WOS:000268905600008 ER PT J AU McComas, DJ Allegrini, F Bochsler, P Bzowski, M Collier, M Fahr, H Fichtner, H Frisch, P Funsten, HO Fuselier, SA Gloeckler, G Gruntman, M Izmodenov, V Knappenberger, P Lee, M Livi, S Mitchell, D Mobius, E Moore, T Pope, S Reisenfeld, D Roelof, E Scherrer, J Schwadron, N Tyler, R Wieser, M Witte, M Wurz, P Zank, G AF McComas, D. J. Allegrini, F. Bochsler, P. Bzowski, M. Collier, M. Fahr, H. Fichtner, H. Frisch, P. Funsten, H. O. Fuselier, S. A. Gloeckler, G. Gruntman, M. Izmodenov, V. Knappenberger, P. Lee, M. Livi, S. Mitchell, D. Moebius, E. Moore, T. Pope, S. Reisenfeld, D. Roelof, E. Scherrer, J. Schwadron, N. Tyler, R. Wieser, M. Witte, M. Wurz, P. Zank, G. TI IBEX-Interstellar Boundary Explorer SO SPACE SCIENCE REVIEWS LA English DT Review DE Interstellar boundary; Termination shock; Heliopause; Energetic Neutral Atom; ENA; LISM ID ENERGETIC NEUTRAL ATOMS; WIND TERMINATION SHOCK; SOLAR-WIND; MAGNETIC-FIELD; ACCELERATION; HELIOSHEATH; HELIOSPHERE; IONS; INJECTION; HYDROGEN AB The Interstellar Boundary Explorer (IBEX) is a small explorer mission that launched on 19 October 2008 with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium. IBEX is designed to achieve this objective by answering four fundamental science questions: (1) What is the global strength and structure of the termination shock, (2) How are energetic protons accelerated at the termination shock, (3) What are the global properties of the solar wind flow beyond the termination shock and in the heliotail, and (4) How does the interstellar flow interact with the heliosphere beyond the heliopause? The answers to these questions rely on energy-resolved images of energetic neutral atoms (ENAs), which originate beyond the termination shock, in the inner heliosheath. To make these exploratory ENA observations IBEX carries two ultra-high sensitivity ENA cameras on a simple spinning spacecraft. IBEX's very high apogee Earth orbit was achieved using a new and significantly enhanced method for launching small satellites; this orbit allows viewing of the outer heliosphere from beyond the Earth's relatively bright magnetospheric ENA emissions. The combination of full-sky imaging and energy spectral measurements of ENAs over the range from similar to 10 eV to 6 keV provides the critical information to allow us to achieve our science objective and understand this global interaction for the first time. The IBEX mission was developed to provide the first global views of the Sun's interstellar boundaries, unveiling the physics of the heliosphere's interstellar interaction, providing a deeper understanding of the heliosphere and thereby astrospheres throughout the galaxy, and creating the opportunity to make even greater unanticipated discoveries. C1 [McComas, D. J.; Allegrini, F.; Livi, S.; Pope, S.; Scherrer, J.] SW Res Inst, San Antonio, TX 78228 USA. [Bochsler, P.; Wieser, M.; Wurz, P.] Univ Bern, Inst Phys, Bern, Switzerland. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Collier, M.; Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fahr, H.] Univ Bonn, D-5300 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, Bochum, Germany. [Frisch, P.] Univ Chicago, Chicago, IL 60637 USA. [Funsten, H. O.; Reisenfeld, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gloeckler, G.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gruntman, M.] Univ So Calif, Los Angeles, CA 90089 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Knappenberger, P.] Adler Planetarium, Chicago, IL 60605 USA. [Lee, M.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Mitchell, D.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Schwadron, N.] Boston Univ, Boston, MA 02215 USA. [Tyler, R.] Orbital Sci Corp, Dulles, VA 20166 USA. [Witte, M.] Max Planck Inst Aeron, Katlenburg Lindau, Germany. [Zank, G.] Univ Alabama, Huntsville, AL 35899 USA. RP McComas, DJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.edu RI Moore, Thomas/D-4675-2012; Izmodenov, Vladislav/K-6073-2012; Collier, Michael/I-4864-2013; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Moore, Thomas/0000-0002-3150-1137; Izmodenov, Vladislav/0000-0002-1748-0982; Collier, Michael/0000-0001-9658-6605; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 NR 41 TC 159 Z9 159 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 11 EP 33 DI 10.1007/s11214-009-9499-4 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300002 ER PT J AU Funsten, HO Allegrini, F Bochsler, P Dunn, G Ellis, S Everett, D Fagan, MJ Fuselier, SA Granoff, M Gruntman, M Guthrie, AA Hanley, J Harper, RW Heirtzler, D Janzen, P Kihara, KH King, B Kucharek, H Manzo, MP Maple, M Mashburn, K McComas, DJ Moebius, E Nolin, J Piazza, D Pope, S Reisenfeld, DB Rodriguez, B Roelof, EC Saul, L Turco, S Valek, P Weidner, S Wurz, P Zaffke, S AF Funsten, H. O. Allegrini, F. Bochsler, P. Dunn, G. Ellis, S. Everett, D. Fagan, M. J. Fuselier, S. A. Granoff, M. Gruntman, M. Guthrie, A. A. Hanley, J. Harper, R. W. Heirtzler, D. Janzen, P. Kihara, K. H. King, B. Kucharek, H. Manzo, M. P. Maple, M. Mashburn, K. McComas, D. J. Moebius, E. Nolin, J. Piazza, D. Pope, S. Reisenfeld, D. B. Rodriguez, B. Roelof, E. C. Saul, L. Turco, S. Valek, P. Weidner, S. Wurz, P. Zaffke, S. TI The Interstellar Boundary Explorer High Energy (IBEX-Hi) Neutral Atom Imager SO SPACE SCIENCE REVIEWS LA English DT Review DE Interstellar boundary; Termination shock; Heliopause; Energetic neutral atom; ENA; LISM ID THIN CARBON FOILS; KEV IONS; MISSION; EMISSION; REGION; POLAR AB The IBEX-Hi Neutral Atom Imager of the Interstellar Boundary Explorer (IBEX) mission is designed to measure energetic neutral atoms (ENAs) originating from the interaction region between the heliosphere and the local interstellar medium (LISM). These ENAs are plasma ions that have been heated in the interaction region and neutralized by charge exchange with the cold neutral atoms of the LISM that freely flow through the interaction region. IBEX-Hi is a single pixel ENA imager that covers the ENA spectral range from 0.38 to 6 keV and shares significant energy overlap and overall design philosophy with the IBEX-Lo sensor. Because of the anticipated low flux of these ENAs at 1 AU, the sensor has a large geometric factor and incorporates numerous techniques to minimize noise and backgrounds. The IBEX-Hi sensor has a field-of-view (FOV) of 6.5A degrees x6.5A degrees FWHM, and a 6.5A degrees x360A degrees swath of the sky is imaged over each spacecraft spin. IBEX-Hi utilizes an ultrathin carbon foil to ionize ENAs in order to measure their energy by subsequent electrostatic analysis. A multiple coincidence detection scheme using channel electron multiplier (CEM) detectors enables reliable detection of ENAs in the presence of substantial noise. During normal operation, the sensor steps through six energy steps every 12 spacecraft spins. Over a single IBEX orbit of about 8 days, a single 6.5A degrees x360A degrees swath of the sky is viewed, and re-pointing of the spin axis toward the Sun near perigee of each IBEX orbit moves the ecliptic longitude by about 8A degrees every orbit such that a full sky map is acquired every six months. These global maps, covering the spectral range of IBEX-Hi and coupled to the IBEX-Lo maps at lower and overlapping energies, will answer fundamental questions about the structure and dynamics of the interaction region between the heliosphere and the LISM. C1 [Funsten, H. O.; Fagan, M. J.; Guthrie, A. A.; Harper, R. W.; Kihara, K. H.; Manzo, M. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Allegrini, F.; Dunn, G.; Everett, D.; Hanley, J.; Maple, M.; Mashburn, K.; McComas, D. J.; Pope, S.; Rodriguez, B.; Valek, P.; Weidner, S.] SW Res Inst, San Antonio, TX 78238 USA. [Bochsler, P.; Piazza, D.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Ellis, S.; Granoff, M.; Heirtzler, D.; King, B.; Kucharek, H.; Moebius, E.; Nolin, J.; Turco, S.; Zaffke, S.] Univ New Hampshire, Durham, NH 03824 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gruntman, M.] Univ So Calif, Astronaut & Space Technol Div, Viterbi Sch Engn, Los Angeles, CA 90089 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Roelof, E. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Funsten, HO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hfunsten@lanl.gov RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Valek, Philip/0000-0002-2318-8750; Moebius, Eberhard/0000-0002-2745-6978 NR 31 TC 100 Z9 101 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 75 EP 103 DI 10.1007/s11214-009-9504-y PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300004 ER PT J AU Allegrini, F Crew, GB Demkee, D Funsten, HO McComas, DJ Randol, B Rodriguez, B Schwadron, NA Valek, P Weidner, S AF Allegrini, F. Crew, G. B. Demkee, D. Funsten, H. O. McComas, D. J. Randol, B. Rodriguez, B. Schwadron, N. A. Valek, P. Weidner, S. TI The IBEX Background Monitor SO SPACE SCIENCE REVIEWS LA English DT Review DE IBEX background; Channel electron multiplier; Carbon foil; Upstream event ID THIN CARBON FOILS; ULTRAVIOLET; MULTIPLIER; IONS AB The IBEX Background Monitor (IBaM) provides a small and lightweight method for independently measuring IBEX's high-energy proton background by integrating the flux of >similar to 14 keV protons over a similar to 7A degrees conical FOV. The IBaM is part of the IBEX-Hi sensor and has a co-aligned look direction. This paper describes the principle of the IBaM and details its design and responses. In particular, we show the response of major components to both ions and ultraviolet (UV) light background. We also provide the geometric factor and calculate expected count rates. C1 [Allegrini, F.; Demkee, D.; McComas, D. J.; Randol, B.; Rodriguez, B.; Valek, P.; Weidner, S.] SW Res Inst, San Antonio, TX 78238 USA. [Crew, G. B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP Allegrini, F (reprint author), SW Res Inst, San Antonio, TX 78238 USA. EM fallegrini@swri.edu RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Valek, Philip/0000-0002-2318-8750 NR 9 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 105 EP 115 DI 10.1007/s11214-008-9439-8 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300005 ER PT J AU Fuselier, SA Bochsler, P Chornay, D Clark, G Crew, GB Dunn, G Ellis, S Friedmann, T Funsten, HO Ghielmetti, AG Googins, J Granoff, MS Hamilton, JW Hanley, J Heirtzler, D Hertzberg, E Isaac, D King, B Knauss, U Kucharek, H Kudirka, F Livi, S Lobell, J Longworth, S Mashburn, K McComas, DJ Mobius, E Moore, AS Moore, TE Nemanich, RJ Nolin, J O'Neal, M Piazza, D Peterson, L Pope, SE Rosmarynowski, P Saul, LA Scherrer, JR Scheer, JA Schlemm, C Schwadron, NA Tillier, C Turco, S Tyler, J Vosbury, M Wieser, M Wurz, P Zaffke, S AF Fuselier, S. A. Bochsler, P. Chornay, D. Clark, G. Crew, G. B. Dunn, G. Ellis, S. Friedmann, T. Funsten, H. O. Ghielmetti, A. G. Googins, J. Granoff, M. S. Hamilton, J. W. Hanley, J. Heirtzler, D. Hertzberg, E. Isaac, D. King, B. Knauss, U. Kucharek, H. Kudirka, F. Livi, S. Lobell, J. Longworth, S. Mashburn, K. McComas, D. J. Moebius, E. Moore, A. S. Moore, T. E. Nemanich, R. J. Nolin, J. O'Neal, M. Piazza, D. Peterson, L. Pope, S. E. Rosmarynowski, P. Saul, L. A. Scherrer, J. R. Scheer, J. A. Schlemm, C. Schwadron, N. A. Tillier, C. Turco, S. Tyler, J. Vosbury, M. Wieser, M. Wurz, P. Zaffke, S. TI The IBEX-Lo Sensor SO SPACE SCIENCE REVIEWS LA English DT Review DE Neutral atom imaging; Heliosphere; Termination shock; Energetic neutral atoms; Magnetosphere; Surface ionization ID ENERGETIC NEUTRAL ATOMS; NEGATIVE-ION PRODUCTION; SURFACE-IONIZATION; SPECTROGRAPH; INSTRUMENTS; SPACECRAFT; HYDROGEN; SYSTEM; CHIP AB The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7A degrees x7A degrees in three 90A degrees sectors and approximately 3.5A degrees x3.5A degrees in the fourth 90A degrees sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7A degrees x7A degrees) quadrants of the collimator so that the interstellar neutrals are detected with 3.5A degrees x3.5A degrees angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission. C1 [Fuselier, S. A.; Ghielmetti, A. G.; Hamilton, J. W.; Hertzberg, E.; Isaac, D.; Moore, A. S.; Tillier, C.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Clark, G.; Ellis, S.; Googins, J.; Granoff, M. S.; Heirtzler, D.; King, B.; Knauss, U.; Kucharek, H.; Kudirka, F.; Livi, S.; Longworth, S.; Moebius, E.; Nolin, J.; O'Neal, M.; Peterson, L.; Turco, S.; Tyler, J.; Vosbury, M.; Zaffke, S.] Univ New Hampshire, Durham, NH 03824 USA. [Bochsler, P.; Piazza, D.; Saul, L. A.; Scheer, J. A.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Dunn, G.; Hanley, J.; McComas, D. J.; Pope, S. E.; Scherrer, J. R.] SW Res Inst, San Antonio, TX 78238 USA. [Chornay, D.; Lobell, J.; Moore, T. E.; Rosmarynowski, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wieser, M.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Schlemm, C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mashburn, K.] Montana State Univ, Bozeman, MT 59717 USA. [Funsten, H. O.] Los Alamos Natl Lab, ISR Div MS B241, Los Alamos, NM 87535 USA. [Friedmann, T.] Sandia Lab, Albuquerque, NM 87185 USA. [Nemanich, R. J.] Univ Arizona, Tucson, AZ USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. [Crew, G. B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, 3251 Hanover St, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com; gbc@sapce.mit.edu; tafried@sandia.gov; gmetti@spasci.com; Jon.Hamilton@lmco.com; Eric.Hertzberg@lmco.com; Donald.Isaac@lmco.com; kmashburn@swri.edu; Eberhard.Moebius@unh.edu; Thomas.e.moore@nasa.gov; chuck.schlemm@jhuapl.edu; nathanas@bu.edu; Clemons.Tillier@lmco.com; wieser@irf.se; peter.wurz@phim.unibe.ch RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; Clark, George/L-6433-2015; OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 NR 35 TC 92 Z9 93 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 117 EP 147 DI 10.1007/s11214-009-9495-8 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300006 ER PT J AU Wurz, P Fuselier, SA Mobius, E Funsten, HO Brandt, PC Allegrini, F Ghielmetti, AG Harper, R Hertzberg, E Janzen, P Kucharek, H McComas, DJ Roelof, EC Saul, L Scheer, J Wieser, M Zheng, Y AF Wurz, P. Fuselier, S. A. Moebius, E. Funsten, H. O. Brandt, P. C. Allegrini, F. Ghielmetti, A. G. Harper, R. Hertzberg, E. Janzen, P. Kucharek, H. McComas, D. J. Roelof, E. C. Saul, L. Scheer, J. Wieser, M. Zheng, Y. TI IBEX Backgrounds and Signal-to-Noise Ratio SO SPACE SCIENCE REVIEWS LA English DT Review DE Interstellar boundary; Energetic Neutral Atom; ENA; Instrumentation ID ENERGETIC NEUTRAL ATOM; SOLAR-WIND; RING CURRENT; ION DISTRIBUTIONS; CHARGE-EXCHANGE; PLASMA SHEET; HELIOSHEATH; SHOCK; INTERSTELLAR; PRESSURE AB The Interstellar Boundary Explorer (IBEX) mission will provide maps of energetic neutral atoms (ENAs) originating from the boundary region of our heliosphere. On IBEX there are two sensors, IBEX-Lo and IBEX-Hi, covering the energy ranges from 10 to 2000 eV and from 300 to 6000 eV, respectively. The expected ENA signals at 1 AU are low, therefore both sensors feature large geometric factors. In addition, special attention has to be paid to the various sources of background that may interfere with our measurement. Because IBEX orbits the Earth, ion, electron, and ENA populations of the Earth's magnetosphere are prime background sources. Another potential background source is the magnetosheath and the solar wind plasma when the spacecraft is outside the magnetosphere. UV light from the night sky and the geocorona have to be considered as background sources as well. Finally background sources within each of the sensors must be examined. C1 [Wurz, P.; Saul, L.; Scheer, J.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Fuselier, S. A.; Ghielmetti, A. G.; Hertzberg, E.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Palo Alto, CA 94304 USA. [Moebius, E.; Kucharek, H.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.; Kucharek, H.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Funsten, H. O.; Harper, R.; Janzen, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wieser, M.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Brandt, P. C.; Roelof, E. C.; Zheng, Y.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Allegrini, F.; McComas, D. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. RP Wurz, P (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM peter.wurz@space.unibe.ch RI Zheng, Yihua/D-7368-2012; Funsten, Herbert/A-5702-2015; Brandt, Pontus/N-1218-2016; OI Funsten, Herbert/0000-0002-6817-1039; Brandt, Pontus/0000-0002-4644-0306; Moebius, Eberhard/0000-0002-2745-6978 NR 46 TC 23 Z9 23 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 173 EP 206 DI 10.1007/s11214-009-9515-8 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300008 ER PT J AU Schwadron, NA Crew, G Vanderspek, R Allegrini, F Bzowski, M DeMagistre, R Dunn, G Funsten, H Fuselier, SA Goodrich, K Gruntman, M Hanley, J Heerikuisen, J Heirtlzer, D Janzen, P Kucharek, H Loeffler, C Mashburn, K Maynard, K McComas, DJ Moebius, E Prested, C Randol, B Reisenfeld, D Reno, M Roelof, E Wu, P AF Schwadron, N. A. Crew, G. Vanderspek, R. Allegrini, F. Bzowski, M. DeMagistre, R. Dunn, G. Funsten, H. Fuselier, S. A. Goodrich, K. Gruntman, M. Hanley, J. Heerikuisen, J. Heirtlzer, D. Janzen, P. Kucharek, H. Loeffler, C. Mashburn, K. Maynard, K. McComas, D. J. Moebius, E. Prested, C. Randol, B. Reisenfeld, D. Reno, M. Roelof, E. Wu, P. TI The Interstellar Boundary Explorer Science Operations Center SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar wind; Termination shock; Interstellar boundaries; Interstellar medium; Energetic neutral atoms ID TERMINATION SHOCK AB The Interstellar Boundary Explorer (IBEX) Science Operations Center is responsible for supporting analysis of IBEX data, generating special payload command procedures, delivering the IBEX data products, and building the global heliospheric maps of energetic neutral atoms (ENAs) in collaboration with the IBEX team. We describe here the data products and flow, the sensor responses to ENA fluxes, the heliospheric transmission of ENAs (from 100 AU to 1 AU), and the process of building global maps of the heliosphere. The vast majority of IBEX Science Operations Center (ISOC) tools are complete, and the ISOC is in a remarkable state of readiness due to extensive reviews, tests, rehearsals, long hours, and support from the payload teams. The software has been designed specifically to support considerable flexibility in the process of building global flux maps. Therefore, as we discover the fundamental properties of the interstellar interaction, the ISOC will iteratively improve its pipeline software, and, subsequently, the heliospheric flux maps that will provide a keystone for our global understanding of the solar wind's interaction with the interstellar medium. The ISOC looks forward to the next chapter of the IBEX mission, as the tools we have developed will be used in partnership with the IBEX team and the scientific community over the coming years to define our global understanding of the solar wind's interaction with the local interstellar medium. C1 [Schwadron, N. A.; Goodrich, K.; Maynard, K.; Prested, C.; Wu, P.] Boston Univ, Boston, MA 02215 USA. [Crew, G.; Vanderspek, R.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Mashburn, K.] Montana State Univ, Missoula, MT USA. [Allegrini, F.; Dunn, G.; Hanley, J.; Loeffler, C.; McComas, D. J.; Randol, B.] SW Res Inst, San Antonio, TX 78238 USA. [Bzowski, M.] Space Res Ctr PAS, PL-00716 Warsaw, Poland. [DeMagistre, R.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Gruntman, M.] Univ So Calif, Astronaut & Space Technol Div, Viterbi Sch Engn, Los Angeles, CA USA. [Heerikuisen, J.] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA. [Funsten, H.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. [Janzen, P.; Reisenfeld, D.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Dept ADCS, Palo Alto, CA 93404 USA. [Heirtlzer, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Heirtlzer, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Schwadron, NA (reprint author), Boston Univ, 725 Commonwealth Ave, Boston, MA 02215 USA. EM nathanas@bu.edu; gbc@space.mit.edu; rvdspek@bu.edu; fallegrini@swri.edu; bzowski@cbk.waw.pl; bob.demajistre@jhuapl.edu; gdunn@swri.edu; hfunsten@lanl.gov; stephen.a.fusilier@lmco.com; kgoodri@bu.edu; mikeg@usc.edu; jhanley@swri.edu; jacobh@ucr.edu; dheirtzl@atlas.sr.unh.edu; pjanzen@lanl.gov; kucharek@atlas.sr.unh.edu; cloeffler@swri.edu; kmashburn@swri.edu; maynard@bu.edu; dmccomas@swri.edu; eberhard.meobius@unh.edu; cprested@bu.edu; brandol@swri.edu; dan.resienfeld@umontana.edu; mreno@swri.edu; ed.roelof@jhuapl.edu; pwu@bu.edu RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 FU IBEX project FX This work was supported by the IBEX project. NR 13 TC 23 Z9 23 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 207 EP 234 DI 10.1007/s11214-009-9513-x PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300009 ER PT J AU Koike, M Ishino, M Imazono, T Sano, K Sasai, H Hatayama, M Takenaka, H Heimann, PA Gullikson, EM AF Koike, Masato Ishino, Masahiko Imazono, Takashi Sano, Kazuo Sasai, Hiroyuki Hatayama, Masatoshi Takenaka, Hisataka Heimann, Philip A. Gullikson, Eric M. TI Development of soft X-ray multilayer laminar-type plane gratings and varied-line-spacing spherical grating for flat-field spectrograph in the 1-8 keV region SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article; Proceedings Paper CT 19th International Congress on X-Ray Optics and Microanalysis CY SEP 16-21, 2007 CL Univ Kyoto, Kyoto, JAPAN SP Japanese Discuss Grp X-Ray Anal, Japan Soc Anal Chem HO Univ Kyoto DE Diffraction grating; Holographic grating; Multilayer; Spectrometer; Soft X-ray ID SPECTROMETER; TRANSMISSION AB W/C and Co/SiO(2) multilayer laminar-type holographic plane gratings (groove density 1/sigma=1200 lines/mm) in the 1-8 keV region are developed. For the Co/SiO(2) grating the diffraction efficiencies of 0.41 and 0.47 at 4 and 6 keV, respectively, and for the W/C grating 0.38 at 8 keV are observed. Taking advantage of the outstanding high diffraction efficiencies into practical soft X-ray spectrographs a Mo/SiO(2) multilayer varied-line-spacing (VLS) laminar-type spherical grating (1/sigma=2400 lines/mm) is also developed for use with a flat field spectrograph in the region of 1.7 keV. For the Mo/SiO(2) multilayer grating the diffraction efficiencies of 0.05-0.20 at 0.9-1.8 keV are observed. The FWHMs of the measured line profiles of Hf-M alpha(1)(1644.6 eV), Si-K alpha(1)(1740.0 eV), and W-M alpha(1) (1775.4 eV) are 13.7 eV, 8.0 eV, and 8.7 eV, respectively. (C) 2009 Elsevier B.V. All rights reserved. C1 [Koike, Masato; Ishino, Masahiko; Imazono, Takashi] Japan Atom Energy Agcy, Tokyo, Japan. [Sasai, Hiroyuki] Shimadzu Co Ltd, Kyoto, Japan. [Heimann, Philip A.; Gullikson, Eric M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Koike, M (reprint author), Japan Atom Energy Agcy, Tokyo, Japan. EM koike.masato@jaea.go.jp NR 15 TC 8 Z9 9 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD AUG PY 2009 VL 64 IS 8 BP 756 EP 760 DI 10.1016/j.sab.2009.05.013 PG 5 WC Spectroscopy SC Spectroscopy GA 496RY UT WOS:000269995300007 ER PT J AU Wang, X Trociewitz, UP Schwartz, J AF Wang, X. Trociewitz, U. P. Schwartz, J. TI Self-field quench behaviour of YBa2Cu3O7-delta coated conductors with different stabilizers SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID NORMAL-ZONE PROPAGATION; PROTECTION; MAGNETS; TEMPERATURE; VOLTAGE; SYSTEM; COPPER; COILS AB Self-field quench behaviours of YBa2Cu3O7-delta coated conductors with different stabilizers are studied. Samples include one with Cu on both sides (Cu-Cu), one with stainless steel on both sides (SS-SS), and one with Cu on one side and stainless steel on the other (Cu-SS). The measurements of the minimum quench energy (MQE) and normal zone propagation velocity (NZPV) are taken at various temperatures (30-75 K), and transport currents (30% I-c to 90% I-c) at a typical pressure of 10(-5) Pa. Of the three samples, the Cu-Cu sample has the highest MQE while the SS-SS one has the lowest MQE at the same temperature and percentage of I-c; the NZPV in the SS-SS sample is found to be the highest while those of the Cu-Cu and Cu-SS samples are similar. The normal zone voltage and the hot-spot temperature are also compared. Both the classic adiabatic quench propagation model and the interface resistance model are used to explain the NZPV and MQE differences between the samples. The implications for conductor design and quench detection and protection are discussed. C1 [Wang, X.; Trociewitz, U. P.; Schwartz, J.] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Wang, X.; Schwartz, J.] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. [Schwartz, J.] FAMU FSU Coll Engn, Dept Mech Engn, Tallahassee, FL 32310 USA. [Wang, X.] FAMU FSU Coll Engn, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA. RP Wang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM schwartz@magnet.fsu.edu RI Wang, Xiaorong/D-5311-2009; Schwartz, Justin/D-4124-2009; OI Schwartz, Justin/0000-0002-7590-240X; Wang, Xiaorong/0000-0001-7065-8615 NR 47 TC 21 Z9 21 U1 4 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2009 VL 22 IS 8 AR 085005 DI 10.1088/0953-2048/22/8/085005 PG 13 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 474BT UT WOS:000268257900006 ER PT J AU Zhou, H Maiorov, B Baily, SA Dowden, PC Kennison, JA Stan, L Holesinger, TG Jia, QX Foltyn, SR Civale, L AF Zhou, H. Maiorov, B. Baily, S. A. Dowden, P. C. Kennison, J. A. Stan, L. Holesinger, T. G. Jia, Q. X. Foltyn, S. R. Civale, L. TI Thickness dependence of critical current density in YBa2Cu3O7-delta films with BaZrO3 and Y2O3 addition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COATED CONDUCTORS; SUPERCONDUCTING FILMS AB We report the thickness dependence of critical current density (J(c)) in YBa2Cu3O7-delta (YBCO) films with 5 mol% BaZrO3 (BZO) and 5 mol% Y2O3 additions grown on single crystal SrTiO3 substrates by pulsed laser deposition (PLD). The results show that adding BZO + Y2O3 has reduced the thickness dependence of the self-field critical current density (J(c)(sf)), compared to that observed in optimized YBCO films, with a significant enhancement of J(c)(sf) in the thick film region (> 2 mu m). The so-called 'dead layer' did not appear until the film thickness was greater than 6.4 mu m. We attribute this improvement to the additional pinning centers introduced in the bulk by the addition and a decrease in microstructure degradation with thickness. As a result, J(c)(sf) remains as high as 2.3 MA cm(-2) in a 6.4 mu m thick film. The combination of this high J(c)(sf) value and the enhancement of the in-field J(c) induced by the additions, which was observed in the whole thickness range, leads to a critical current per centimeter width (Ic-w) in excess of 400 A cm(-1) at 1 T and 75.5 K and 530 A cm(-1) at 3 T and 65 K under all field directions. C1 [Zhou, H.; Maiorov, B.; Baily, S. A.; Dowden, P. C.; Kennison, J. A.; Stan, L.; Holesinger, T. G.; Jia, Q. X.; Foltyn, S. R.; Civale, L.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Zhou, H (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. EM hzhou4@ncsu.edu; lcivale@lanl.gov RI Jia, Q. X./C-5194-2008; OI Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 FU US Department of Energy-Office of Electricity Delivery and Energy Reliability; Superconductivity Program for Electric Power Systems. FX This work was sponsored by US Department of Energy-Office of Electricity Delivery and Energy Reliability, Superconductivity Program for Electric Power Systems. NR 20 TC 36 Z9 38 U1 3 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2009 VL 22 IS 8 AR 085013 DI 10.1088/0953-2048/22/8/085013 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 474BT UT WOS:000268257900014 ER PT J AU Shin, Y Kim, JY Wang, CM Bonnet, JF Weil, KS AF Shin, Yongsoon Kim, Jin Yong Wang, Chongmin Bonnet, Jeff F. Weil, K. Scott TI Controlled deposition of covalently bonded tantalum oxide on carbon supports by solvent evaporation sol-gel process SO SURFACE SCIENCE LA English DT Article DE Tantalum oxide; Sol-gel; Covalent bond; Nanocomposite: carbon ID NANOTUBES AB A simple strategy for covalently attaching Ta2O5 particles onto functionalized graphitic carbon supports has been developed to fabricate hybrid nanocomposites. in this process, tantalum ethoxide was directly reacted with functional groups on the carbon surface to form covalent bonding, which caused the carbonyl stretches of the carbon supports to be blue-shifted to 50-70 cm(-1) after Ta2O5 particle deposition. Homogeneously deposited Ta2O5 particles on the carbon supports have been studied by X-ray diffraction (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM). (C) 2009 Elsevier B.V. All rights reserved. C1 [Shin, Yongsoon; Kim, Jin Yong; Wang, Chongmin; Bonnet, Jeff F.; Weil, K. Scott] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov; jin.kim@pnl.gov NR 16 TC 6 Z9 6 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD AUG 1 PY 2009 VL 603 IS 15 BP 2290 EP 2293 DI 10.1016/j.susc.2009.05.006 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 475PC UT WOS:000268371000007 ER PT J AU Bhattacharyya, MH AF Bhattacharyya, Maryka H. TI Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Review DE Cadmium; Bone; Skeleton; Osteoporosis; Osteoblast; Osteoclast; Gene expression; Mouse; Rat; Organ culture; Cell culture; Environmental exposure; Postmenopausal women; Pregnancy; Lactation ID EMBRYONIC CHICK BONE; PROSTAGLANDIN E-2 PRODUCTION; RENAL TUBULAR DYSFUNCTION; MOUSE OSTEOBLASTIC CELLS; NUTRIENT-SUFFICIENT DIET; CALCIUM-DEFICIENT DIET; LOW-LEVEL EXPOSURE; TISSUE-CULTURE; ENVIRONMENTAL EXPOSURE; MICROARRAY ANALYSIS AB Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure, within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bhattacharyya, Maryka H.] Argonne Natl Lab, Div Environm Sci, Lemont, IL 60439 USA. RP Bhattacharyya, MH (reprint author), Med Coll Georgia, Dept Med, Augusta, GA 30912 USA. EM mhbhatt@anl.gov FU US Department of Energy; US National Institutes of Health [RO1ES004816, RO1ES007398]; Philip Morris USA Inc; Philip Morris International FX This article represents many years of research in the laboratories of the author and many investigators worldwide, all of whom have achieved major milestones ill the common quest for meaningful answers to questions regarding cadmium's effect on bone. The author acknowledges the extensive contributions by many members of her group, most of whose names appear in the referenced publications. The author's research was supported by the US Department of Energy, the US National Institutes of Health (RO1ES004816, RO1ES007398), and Philip Morris USA Inc and Philip Morris International. NR 84 TC 66 Z9 71 U1 1 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD AUG 1 PY 2009 VL 238 IS 3 BP 258 EP 265 DI 10.1016/j.taap.2009.05.015 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 472QS UT WOS:000268147600009 PM 19463839 ER PT J AU Lu, C Lee, SY Han, WS McPherson, BJ Lichtner, PC AF Lu, Chuan Lee, Si-Yong Han, Weon Shik McPherson, Brain J. Lichtner, Peter C. TI Comments on "Abrupt-Interface Solution for Carbon dioxide Injection into Porous Media" by M. Dentz and D. Tartakovsky SO TRANSPORT IN POROUS MEDIA LA English DT Editorial Material DE Comment; Analytical solution; Carbon sequestration; Porous media ID HYDRAULIC CONDUCTIVITY AB Several numerical simulations were conducted to compare the results with analytical solutions given by "Abrupt-Interface Solution for Carbon Dioxide Injection into Porous Media" by M. Dentz and D. Tartakovsky, "Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection" by J. M. Nordbotten et al. C1 [Lu, Chuan; Lee, Si-Yong; Han, Weon Shik; McPherson, Brain J.] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84112 USA. [Lichtner, Peter C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP McPherson, BJ (reprint author), Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84112 USA. EM mcpherson@co2.egi.utah.edu NR 9 TC 14 Z9 14 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD AUG PY 2009 VL 79 IS 1 SI SI BP 29 EP 37 DI 10.1007/s11242-009-9362-9 PG 9 WC Engineering, Chemical SC Engineering GA 476MK UT WOS:000268446400003 ER PT J AU Greene, DL AF Greene, David L. TI Feebates, footprints and highway safety SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT LA English DT Article DE Feebates; Fuel economy; Traffic safety; Downsizing of vehicles ID FUEL-ECONOMY AB This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer's choice of vehicle size. A vehicle's size is measured by its "footprint", the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not Such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size. thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle's footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles. (C) 2009 Elsevier Ltd. All rights reserved. C1 Natl Transportat Res Ctr, Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Greene, DL (reprint author), Natl Transportat Res Ctr, Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM dlgreene@ornl.gov NR 20 TC 11 Z9 11 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1361-9209 J9 TRANSPORT RES D-TR E JI Transport. Res. Part D-Transport. Environ. PD AUG PY 2009 VL 14 IS 6 BP 375 EP 384 DI 10.1016/j.trd.2009.01.002 PG 10 WC Environmental Studies; Transportation; Transportation Science & Technology SC Environmental Sciences & Ecology; Transportation GA 475SW UT WOS:000268382300002 ER PT J AU Wharton, S Schroeder, M Bible, K Falk, M Paw, KT AF Wharton, Sonia Schroeder, Matt Bible, Ken Falk, Matthias Paw U, Kyaw Tha TI Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA SO TREE PHYSIOLOGY LA English DT Article DE AmeriFlux; canopy conductance; eddy covariance; evapotranspiration; the Priestley-Taylor coefficient; Pseudotsuga menziesii; Wind River ID LEAF-AREA INDEX; PSEUDOTSUGA-TSUGA FOREST; CARBON-DIOXIDE EXCHANGE; CONIFEROUS FORESTS; EDDY-COVARIANCE; GROWTH FOREST; SOIL-WATER; HYDRAULIC REDISTRIBUTION; ECOSYSTEM RESPIRATION; STOMATAL CLOSURE AB This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral (ES) stands (0-15 years old) and an old-growth (OG) (similar to 450-500 years old) forest in the Wind River Experimental Forest, Washington, USA. We use eddy covariance flux measurements of carbon dioxide (F(NEE)), latent energy (lambda E) and sensible heat (H) to derive evapotranspiration rate (E(T)), Bowen ratio (beta), water use efficiency (WUE), canopy conductance (G(c)), the Priestley-Taylor coefficient (alpha) and a canopy decoupling factor (Omega). The canopy and bulk parameters are examined to find out how ecophysiological responses to water stress, including changes in relative soil water content (theta(r)) and vapour pressure deficit (delta e), differ among the two forest successional stages. Despite different rainfall patterns in 2006 and 2007, we observed site-specific diurnal patterns of E(T), alpha, G(c), delta e and theta(r) during both years. The largest stand differences were (1) at the OG forest high morning G(c) (> 10 mm s(-1)) coincided with high net CO(2) uptake (F(NEE) = -9 to -6 mu mol m(-2) s(-1)), but a strong negative response in OG G(c) to moderate delta e was observed later in the afternoons and subsequently reduced daily E(T) and (2) at the ES stands total E(T) was higher (+ 72 mm) because midday G(c) did not decrease until very low water availability levels (theta(r) < 30%) were reached at the end of the summer. Our results suggest that ES stands are more likely than mature forests to experience constraints on gas exchange if the dry season becomes longer or intensifies because water conserving ecophysiological responses were observed in the youngest stands only at the very end of the seasonal drought. C1 [Wharton, Sonia; Falk, Matthias; Paw U, Kyaw Tha] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Schroeder, Matt; Bible, Ken] Univ Washington, Coll Forest Resources, Seattle, WA 98195 USA. RP Wharton, S (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. EM wharton4@llnl.gov FU Office of Science; National Institute for Global Environmental Change [DE-FC03-90ER61010]; Jastro Shields Research Scholarship (UC Davis); University of Washington; USDA Forest Service/PNW Station; National Nuclear Security Administration [DE-AC52-07NA27344] FX S. W. would like to especially thank Mark Creighton and Annie Hamilton at the Wind River Canopy Crane Research Facility for their hospitality and assistance with logistics throughout this project. The authors also thank Dr. Dennis Baldocchi and Youngryel Ryu (UC Berkeley) and Dr. Susan Ustin (UC Davis) for their technical advice and help in the preparation of this manuscript, and the Editor and the two anonymous reviewers for their beneficial critiques and suggestions. This research was supported by the Office of Science, US Department of Energy, through the Western Regional Center of the National Institute for Global Environmental Change (Cooperative Agreement No. DE-FC03-90ER61010) and the Jastro Shields Research Scholarship (UC Davis). Any opinions, findings and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the view of the DOE. The Wind River Canopy Crane Research Facility is operated under joint sponsorship of the University of Washington and the USDA Forest Service/PNW Station and we acknowledge both for significant support. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 67 TC 12 Z9 13 U1 3 U2 23 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD AUG PY 2009 VL 29 IS 8 BP 959 EP 974 DI 10.1093/treephys/tpp039 PG 16 WC Forestry SC Forestry GA 472GC UT WOS:000268117200001 PM 19502614 ER PT J AU Munro, JB Sanbonmatsu, KY Spahn, CMT Blanchard, SC AF Munro, James B. Sanbonmatsu, Kevin Y. Spahn, Christian M. T. Blanchard, Scott C. TI Navigating the ribosome's metastable energy landscape SO TRENDS IN BIOCHEMICAL SCIENCES LA English DT Review ID TRANSFER-RNA-BINDING; ELONGATION-FACTOR-G; PEPTIDE-BOND FORMATION; ESCHERICHIA-COLI RIBOSOMES; SHINE-DALGARNO INTERACTION; MESSENGER-RNA; HYBRID-STATE; 70S RIBOSOME; PROTEIN-SYNTHESIS; SINGLE RIBOSOMES AB The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape. C1 [Munro, James B.; Blanchard, Scott C.] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA. [Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Spahn, Christian M. T.] Charite, Inst Med Phys & Biophys, D-10117 Berlin, Germany. RP Blanchard, SC (reprint author), Weill Cornell Med Coll, Dept Physiol & Biophys, 1300 York Ave, New York, NY 10021 USA. EM scb2005@med.cornell.edu RI Blanchard, Scott/A-5804-2009 FU National Institutes of Health [GM 079238]; National Science Foundation [0644129]; Human Frontiers in Science Program FX reviews and critical comments during the preparation of this manuscript. The authors also thank Joachim Frank (Howard Hughes Medical Institute, Columbia University) for granting permission to present structural models of tRNA hybrid states determined by cryo-EM. This work was supported by the National Institutes of Health (GM 079238), the National Science Foundation (0644129) and the Human Frontiers in Science Program. NR 85 TC 78 Z9 82 U1 1 U2 6 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0968-0004 J9 TRENDS BIOCHEM SCI JI Trends Biochem.Sci. PD AUG PY 2009 VL 34 IS 8 BP 390 EP 400 DI 10.1016/j.tibs.2009.04.004 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 488WT UT WOS:000269381700003 PM 19647434 ER PT J AU Neethirajan, S Gordon, R Wang, LJ AF Neethirajan, Suresh Gordon, Richard Wang, Lijun TI Potential of silica bodies (phytoliths) for nanotechnology SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID DIATOM NANOTECHNOLOGY; ELECTRON-MICROSCOPY; EQUISETUM-HYEMALE; CONFINED MEDIA; UPTAKE SYSTEM; PLANTS; RICE; GROWTH; GEL; POACEAE AB Many plant systems accumulate silica in solid form, creating intracellular or extracellular silica bodies (phytoliths) that are essential for growth, mechanical strength, rigidity, predator and fungal defence, stiffness and cooling. Silica is an inorganic amorphous oxide formed by polymerization processes within plants. There has been much research to gain new insights into its biochemistry and to mimic biosilicification. We review the background on plant silica bodies, silica uptake mechanisms and applications, and suggest possible ways of producing plant silica bodies with new functions. Silica bodies offer complementary properties to diatoms for nanotechnology, including large-scale availability from crop wastes, lack of organic impurities (in some), microencapsulation and microcrystalline quartz with possibly unique optical properties. C1 [Neethirajan, Suresh] Univ Manitoba, Dept Biosyst Engn, Canadian Wheat Board Ctr Grain Storage Res, Winnipeg, MB R3T 5V6, Canada. [Gordon, Richard] Univ Manitoba, Dept Radiol, HSC, Winnipeg, MB R3A 1R9, Canada. [Wang, Lijun] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Gordon, R (reprint author), Univ Manitoba, Dept Radiol, HSC, Room GA216,820 Sherbrook St, Winnipeg, MB R3A 1R9, Canada. EM GordonR@cc.umanitoba.ca RI Neethirajan, Suresh/B-6204-2010; Gordon, Richard/A-4994-2012 OI Neethirajan, Suresh/0000-0003-0990-0235; Gordon, Richard/0000-0003-4970-9953 NR 88 TC 48 Z9 54 U1 3 U2 34 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD AUG PY 2009 VL 27 IS 8 BP 461 EP 467 DI 10.1016/j.tibtech.2009.05.002 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 482WP UT WOS:000268921400005 PM 19577814 ER PT J AU Demirkanli, DI Molz, FJ Kaplan, DI Fjeld, RA AF Demirkanli, Deniz I. Molz, Fred J. Kaplan, Daniel I. Fjeld, Robert A. TI Soil-Root Interactions Controlling Upward Plutonium Transport in Variably Saturated Soils SO VADOSE ZONE JOURNAL LA English DT Article ID SURFACE WATER-TABLE; SITE VADOSE ZONE; PLANT UPTAKE; RADIONUCLIDE TRANSPORT; CROP UPTAKE; MIGRATION; REDUCTION; ADSORPTION; GROWTH; XYLEM AB Due to its high toxicity and a long half-life, processes that may enhance Pu mobility in the environment and possible transport and exposure pathways need to be better understood and identified. The results of long-term Pu field lysimeter experiments at the Savannah River Site showed anomalous distributions below the source, with significant upward migration above the source. A previously developed reactive transport model with an initial application of a steady downward velocity successfully simulated the below-source distribution of the lysimeter data. Development and coupling of a transient flow model with root water uptake to the reactive transport model yielded a downward distribution fit almost identical to that from the steady-state flow application. The model predicted very little upward migration, however. Additional evaluations done by testing several soil hydraulic-and chemistry-related mechanisms that may enhance upward migration yielded no improvement. We developed an extension of the reactive transport model to include and test a new mechanism: root Pu uptake and xylem transport. The extended model produced simulations that capture the general behavior of the upward migration with no effect on the below-source fit. These results, with the support of the additional finding that elevated Pu concentrations in the lysimeter surface sediment originated from the source used in the experiments, indicated that Pu root uptake and transport is a valid explanation for the observed upward migration and may play an important role in near-surface Pu transport. Further research is needed to identify the uptake mechanisms and Pu behavior within plant systems, with special attention directed to the effect of Pu complexation with different chelating agents in soil and plants (siderophores, phytosiderophores, and others). C1 [Demirkanli, Deniz I.; Molz, Fred J.; Fjeld, Robert A.] Clemson Univ, Dep Environm Engn & Earth Sci, LG Rich Environm Res Lab, Anderson, SC 29625 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dep Environm Engn & Earth Sci, LG Rich Environm Res Lab, 342 Comp Ct, Anderson, SC 29625 USA. EM fredi@clemson.edu FU Biological and Environmental Research Division in the Office of Science, U.S. Department of Energy (DOE); DOE [DE-AC09-96SR18500]; [DE-FG0207ER64401] FX This research was supported by the Environmental Remediation Science Program within the Biological and Environmental Research Division in the Office of Science, U.S. Department of Energy (DOE). Work at Clemson University was conducted under grant no. DE-FG0207ER64401. Work at the Savannah River National Laboratory (SRNL) was conducted under DOE contract DE-AC09-96SR18500. NR 47 TC 7 Z9 7 U1 3 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2009 VL 8 IS 3 BP 574 EP 585 DI 10.2136/vzj2008.0159 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 482GE UT WOS:000268871900004 ER PT J AU Oostrom, M Wietsma, TW Dane, JH Truex, MJ Ward, AL AF Oostrom, M. Wietsma, T. W. Dane, J. H. Truex, M. J. Ward, A. L. TI Desiccation of Unsaturated Porous Media: Intermediate-Scale Experiments and Numerical Simulation SO VADOSE ZONE JOURNAL LA English DT Article ID SANDS AB Soil desiccation (drying), involving water evaporation induced by air injection and extraction, is a potentially robust vadose zone remediation process to limit migration of inorganic or radionuclide contaminants through the vadose zone. Desiccation also has the potential to improve gas-phase-based treatments by reducing water saturation and therefore increasing sediment gas-phase permeability. Before this technology can be deployed in the field, concerns related to energy limitations, osmotic effects, and potential contaminant remobilization after rewetting must be addressed. A series of detailed, intermediate-scale laboratory experiments, using unsaturated homogeneous and heterogeneous systems, was conducted to improve our understanding of energy balance issues related to soil desiccation. The experiments were subsequently simulated with the multifluid flow simulator STOMP, using independently obtained hydraulic and thermal porous medium properties. In all experiments, the injection of dry air proved to be an effective means for removing essentially all moisture from the test media. Observed evaporative cooling generally decreased with increasing distance from the gas inlet chamber. The fine-grained sand embedded in the medium-grained sand of the heterogeneous system showed two local temperature minima associated with the cooling. The first one occurred because of evaporation in the adjacent medium-grained sand, whereas the second minimum was attributed to evaporative cooling in the fine-grained sand itself. Results of the laboratory tests were simulated accurately only if the thermal properties of the flow cell walls and insulation material were taken into account, indicating that the appropriate physics were incorporated into the simulator. C1 [Oostrom, M.; Truex, M. J.; Ward, A. L.] Pacific NW Natl Lab, Div Energy & Environm, Richland, WA 99354 USA. [Wietsma, T. W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Dane, J. H.] Auburn Univ, Dep Agron & Soils, Auburn, AL 36849 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Div Energy & Environm, POB 999,MS K9-33, Richland, WA 99354 USA. EM mart.oostrom@pnl.gov FU [DE-AC06-76RLO 1830] FX Funding for this research was provided by Fluor Hanford, Inc. PNNL is operated by the Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830. The intermediate-scale experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. Scientists interested in conducting experimental work in the EMSL are encouraged to contact M. Oostrom (mart.oostrom@pnl.gov). NR 12 TC 13 Z9 14 U1 0 U2 14 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2009 VL 8 IS 3 BP 643 EP 650 DI 10.2136/vzj2008.0182 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 482GE UT WOS:000268871900011 ER PT J AU Pasyanos, ME Walter, WR AF Pasyanos, Michael E. Walter, William R. TI Improvements to regional explosion identification using attenuation models of the lithosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEISMIC DISCRIMINATION; NUCLEAR-TEST; EARTHQUAKES; WAVES; DEPTH AB Regional P/S amplitudes have been recognized as an effective discriminant between earthquakes and explosions. While closely spaced events generally discriminate easily, the application of this technique to broad regions has been hampered by large variations in the amplitude of phases due to the attenuation of the crust and upper mantle. Making use of a recent P-wave and S-wave attenuation model of the lithosphere, we have found that correcting the events using our amplitude methodology significantly reduces the scattering in the earthquake population. We demonstrate an application of this technique to station NIL using broad-area earthquakes and the 1998 Indian nuclear explosion using the Pn/Lg discriminant in the 1-2 Hz passband. We find that the explosion, which is lost in the scatter of the earthquakes in the uncorrected discriminant, clearly separates by correcting for attenuation structure. We see a similar reduction in scatter and separation for the Pn/Sn and Pg/Lg discriminants. Citation: Pasyanos, M. E., and W. R. Walter (2009), Improvements to regional explosion identification using attenuation models of the lithosphere, Geophys. Res. Lett., 36, L14304, doi: 10.1029/2009GL038505. C1 [Pasyanos, Michael E.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pasyanos, ME (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM pasyanos1@llnl.gov RI Pasyanos, Michael/C-3125-2013; Walter, William/C-2351-2013 OI Walter, William/0000-0002-0331-0616 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would especially like to thank Eric Matzel for making many of the amplitude measurements used in the attenuation tomography. We thank Neil Selby and an anonymous reviewer for their comments. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-411835. NR 19 TC 10 Z9 10 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 31 PY 2009 VL 36 AR L14304 DI 10.1029/2009GL038505 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 479AP UT WOS:000268631400001 ER PT J AU Guilderson, TP Fallon, S Moore, MD Schrag, DP Charles, CD AF Guilderson, T. P. Fallon, S. Moore, M. D. Schrag, D. P. Charles, C. D. TI Seasonally resolved surface water Delta C-14 variability in the Lombok Strait: A coralline perspective SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID INDONESIAN THROUGHFLOW; INDIAN-OCEAN; TROPICAL PACIFIC; RADIOCARBON; THERMOCLINE; MONSOON; FLOW; TEMPERATURE; RECORDS; MODEL AB We have explored surface water mixing in the Lombok Strait through a bimonthly resolved surface water Delta C-14 time series reconstructed from a coral in the Lombok Strait that spans 1937 through 1990. The prebomb surface water Delta C-14 average is -60.5 parts per thousand and individual samples range from -72 parts per thousand to 134 parts per thousand. The annual average postbomb maximum occurs in 1973 at 122 parts per thousand The timing of the postbomb maximum is consistent with a primary subtropical source for the surface waters in the Indonesian seas. During the postbomb period, the coral records regular seasonal cycles of 5 parts per thousand to 20 parts per thousand. Seasonal high Delta C-14 occur during March-May (warm, low salinity), and low Delta C-14 occur in September (cool, higher salinity). The Delta C-14 seasonality is coherent and in phase with the seasonal Delta C-14 cycle observed in Makassar Strait. We estimate the influence of high Delta C-14 Makassar Strait (North Pacific) water flowing through the Lombok Strait using a two end-member mixing model and the seasonal extremes observed at the two sites. The percentage of Makassar Strait water varies between 16 parts per thousand and 70 parts per thousand, and between 1955 and 1990, it averages at 40 parts per thousand. The rich Delta C-14 variability has a biennial component reflecting remote equatorial Indian Ocean forcing and a component in the ENSO band, which is interpreted to reflect Pacific forcing on the Delta C-14 signature in Lombok Strait. C1 [Guilderson, T. P.; Fallon, S.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Guilderson, T. P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, T. P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Moore, M. D.; Charles, C. D.] Scripps Inst Oceanog, Div Geol Res, La Jolla, CA 92093 USA. [Schrag, D. P.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Guilderson, TP (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, L 397 7000 East Ave, Livermore, CA 94551 USA. EM tguilderson@llnl.gov RI Fallon, Stewart/G-6645-2011 OI Fallon, Stewart/0000-0002-8064-5903 FU UC/LLNL LDRD [01-ERI-009]; NSF [OCE-9796253] FX We thank Jessica Westbrook for assistance with milling samples and preparing graphite targets and Ethan Goddard for performing the stable isotope measurements. Discussions with Susan Hautala have been especially helpful. The ARAND software package is maintained by Philip Howell (Brown University). This manuscript benefited from the comments and suggestions of two anonymous reviewers. This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract number W-7405-Eng-48. Funding for this project was supplied by UC/LLNL LDRD (01-ERI-009) and NSF's program in Physical and Chemical Oceanography (OCE-9796253). Data will be archived at NOAA's WDC-A, Boulder, Colorado. NR 47 TC 8 Z9 8 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUL 31 PY 2009 VL 114 AR C07029 DI 10.1029/2008JC004876 PG 9 WC Oceanography SC Oceanography GA 479BC UT WOS:000268632800001 ER PT J AU Rodak, LE Kuchibhatla, S Korakakis, D AF Rodak, L. E. Kuchibhatla, Sridhar Korakakis, D. TI Suspended aluminum nitride structures grown via metal organic vapor phase epitaxy SO MATERIALS LETTERS LA English DT Article DE Thin films; Piezoelectric materials; Epitaxial growth ID ALN; FABRICATION; MICROBRIDGES AB The development of III-Nitride suspended structures for Micro-Electro, Mechanical Systems (MEMS) and Nano-Electro Mechanical Systems (NEMS) is challenging due to lack of selective etching techniques. Recent efforts have focused on the removal of sacrificial layers based on material properties, such as crystalline quality, bandgap, polarity, doping, etc. These techniques require several processing steps in addition to precise control over the sacrificial and functional layer properties. In this work, conditions have been identified for the growth of etch-resistant polycrystalline AIN films via Metal Organic Vapor Phase Epitaxy (MOVPE) on silicon oxide surfaces, thus allowing silicon oxide to be used as a sacrificial layer in a surface micro-machining process. The MOVPE growth conditions reported result in a well oriented crystal with superior mechanical strength demonstrated by the fabrication of unsupported AIN structures with widths from 5 mu m to 110 mu m and air gaps ranging from 200 nm to 800 nm. This technique simplifies the fabrication process of AIN suspended structures and is well suited for achieving group III-Nitride heteroepitaxial MEMS/NEMS systems. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rodak, L. E.; Kuchibhatla, Sridhar; Korakakis, D.] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. [Korakakis, D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Rodak, LE (reprint author), W Virginia Univ, Lane Dept Comp Sci & Elect Engn, POB 6109, Morgantown, WV 26506 USA. EM lrodak@mix.wvu.edu; skuchibh@mix.wvu.edu; Dimitris.Korakakis@mail.wvu.edu FU AIXTRON; DOE/NETL RDS [DE-AC26-04NT41817]; EPS [0554328]; West Virginia Graduate Student Fellowship in Science, Technology, Engineering, and Math (STEM) FX This work was supported in part by AIXTRON, DOE/NETL RDS contract DE-AC26-04NT41817, and NSF RII contract EPS 0554328. L.E.R was supported by the West Virginia Graduate Student Fellowship in Science, Technology, Engineering, and Math (STEM). NR 22 TC 2 Z9 2 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JUL 31 PY 2009 VL 63 IS 18-19 BP 1571 EP 1573 DI 10.1016/j.matlet.2009.03.047 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 461NE UT WOS:000267273000002 ER PT J AU Thompson, LH Hinz, JM AF Thompson, Larry H. Hinz, John M. TI Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: Mechanistic insights SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE DNA crosslinking; Mutagenesis; Crosslink repair; DNA replication forks; Chromosomal instability; Translesion synthesis; Homologous recombination repair ID INTERSTRAND CROSS-LINKS; DOUBLE-STRAND BREAKS; S-PHASE CHECKPOINT; SISTER-CHROMATID EXCHANGES; NUCLEOTIDE EXCISION-REPAIR; EARLY EMBRYONIC LETHALITY; BLOOMS-SYNDROME HELICASE; DAMAGE-RESPONSE PATHWAY; NUCLEAR RAD51 FOCI; ALPHA-II-SPECTRIN AB The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking. (C) 2009 Elsevier B.V. All rights reserved. C1 [Thompson, Larry H.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94551 USA. [Hinz, John M.] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. RP Thompson, LH (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, L452, Livermore, CA 94550 USA. EM thompson14@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NCI/NIH [CA712566] FX We thank Nigel Jones for discussion of the details in the models, and both Paul Wilson and Minoru Takata for extensive editorial comments on the manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The DOE Low Dose Radiation Research Program and NCI/NIH grant CA712566 funded this work. NR 283 TC 109 Z9 112 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD JUL 31 PY 2009 VL 668 IS 1-2 BP 54 EP 72 DI 10.1016/j.mrfmmm.2009.02.003 PG 19 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 484LN UT WOS:000269046500007 PM 19622404 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of Semileptonic B Decays into Orbitally Excited Charmed Mesons SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a study of B decays into semileptonic final states containing charged and neutral D(1)(2420) and D(2)*(2460). The analysis is based on a data sample of 208 fb(-1) collected at the Y(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the semileptonic branching fractions are extracted from measurements of the mass difference Delta m = m(D**) - m(D) distribution. Product branching fractions are determined to be B(B(+) -> D(1)(0)l(+)nu(l)) x B(D(1)(0) -> D(*+)pi(-)) = (2.97 +/- 0.17 +/- 0.17) x 10(-3), B(B(+) -> D(2)*l(+)nu(e)) x B(D(2)*(0) -> D((*)+)pi(-)) = (2.29 +/- 0.23 +/- 0.21) x 10(-3), B(B(0) -> D(1)(-)l(+)nu(l)) x B(D(1)(-) -> D*(0)pi(-)) = (2.78 +/- 0.24 +/- 0.25) x 10(-3) and B(B(0) -> D(2)*(-)l(+)nu(l)) x B(D(2)(*-) -> D((*)0)pi(-)) = (1.77 +/- 0.26 +/- 0.11) x 10(-3). In addition we measure the branching ratio Gamma(D2* -> D pi(-))/Gamma(D(2)* -> D((*))pi(-)) = 0.62 +/- 0.03 +/- 0.02. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Dipartimento Fis, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Etud Saclay, SPP, Irfu, CEA, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; dong, liaoyuan/0000-0002-4773-5050; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN ( Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN ( Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 20 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051803 DI 10.1103/PhysRevLett.103.051803 PG 7 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300021 ER PT J AU Bai, Y Han, ZY AF Bai, Yang Han, Zhenyu TI Measuring a Long-Range Dark Matter Force at the Large Hadron Collider SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEASURING MASSES AB A long-range "dark force'' has recently been proposed to mediate the dark matter (DM) annihilation. If DM particles are copiously produced at the Large Hadron Collider, the light dark force mediator will also be produced through radiation. We demonstrate how and how precise we can utilize this fact to measure the coupling constant of the dark force. The light mediator's mass is measured for the "lepton jet'' to which it decays. In addition, the mass of the DM particle is determined using the m(T2) technique. Knowing these quantities is critical for calculating the DM relic density. C1 [Bai, Yang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Han, Zhenyu] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bai@fnal.gov; zhenyuhan@physics.ucdavis.edu FU United States Department of Energy [DE-FG03-91ER40674] FX We thank P. Fox, K. C. Kong, and J. Lykken for interesting discussions. Z. H. is supported in part by the United States Department of Energy Grant No. DE-FG03-91ER40674. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 23 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051801 DI 10.1103/PhysRevLett.103.051801 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300019 PM 19792485 ER PT J AU Bostwick, A McChesney, JL Emtsev, KV Seyller, T Horn, K Kevan, SD Rotenberg, E AF Bostwick, Aaron McChesney, Jessica L. Emtsev, Konstantin V. Seyller, Thomas Horn, Karsten Kevan, Stephen D. Rotenberg, Eli TI Quasiparticle Transformation during a Metal-Insulator Transition in Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXIAL GRAPHENE; BANDGAP AB Here we show, with simultaneous transport and photoemission measurements, that the graphene-terminated SiC(0001) surface undergoes a metal-insulator transition upon dosing with small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi-liquid behavior and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state. C1 [Bostwick, Aaron; McChesney, Jessica L.; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Emtsev, Konstantin V.; Seyller, Thomas] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany. [Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. [Kevan, Stephen D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Bostwick, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Kevan, Stephen/F-6415-2010; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; Kevan, Stephen/0000-0002-4621-9142; McChesney, Jessica/0000-0003-0470-2088 FU Office of Science, Basic Energy Sciences, of the U. S. Department of Energy [DE-AC0205CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Basic Energy Sciences, of the U. S. Department of Energy under Contract DE-AC0205CH11231. NR 31 TC 127 Z9 127 U1 5 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 056404 DI 10.1103/PhysRevLett.103.056404 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300054 PM 19792520 ER PT J AU Chiow, SW Herrmann, S Chu, S Muller, H AF Chiow, Sheng-wey Herrmann, Sven Chu, Steven Mueller, Holger TI Noise-Immune Conjugate Large-Area Atom Interferometers SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINE-STRUCTURE CONSTANT; GRAVITY-GRADIOMETER; BRAGG SCATTERING; LASER; WAVE AB We present a pair of simultaneous conjugate Ramsey-Borde atom interferometers using large (20hk)-momentum transfer beam splitters, where hk is the photon momentum. Simultaneous operation allows for common-mode rejection of vibrational noise. This allows us to surpass the enclosed space-time area of previous interferometers with a splitting of 20hk by a factor of 2500. Using a splitting of 10hk, we demonstrate a 3.4 ppb resolution in the measurement of the fine structure constant. Examples for applications in tests of fundamental laws of physics are given. C1 [Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Mueller, Holger] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Chiow, SW (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 FU National Science Foundation [0400866]; Air Force Office of Scientific Research [FA9550-04-1-0040] FX S. H. and H. M. thank the Alexander von Humboldt foundation. This material is based upon work supported by the National Science Foundation under Grant No. 0400866 and by the Air Force Office of Scientific Research under Grant Number FA9550-04-1-0040. NR 37 TC 32 Z9 32 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 050402 DI 10.1103/PhysRevLett.103.050402 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300002 PM 19792468 ER PT J AU Gorham, PW Allison, P Barwick, SW Beatty, JJ Besson, DZ Binns, WR Chen, C Chen, P Clem, JM Connolly, A Dowkontt, PF DuVernois, MA Field, RC Goldstein, D Goodhue, A Hast, C Hebert, CL Hoover, S Israel, MH Kowalski, J Learned, JG Liewer, KM Link, JT Lusczek, E Matsuno, S Mercurio, BC Miki, C Miocinovic, P Nam, J Naudet, CJ Ng, J Nichol, RJ Palladino, K Reil, K Romero-Wolf, A Rosen, M Ruckman, L Saltzberg, D Seckel, D Varner, GS Walz, D Wang, Y Wu, F AF Gorham, P. W. Allison, P. Barwick, S. W. Beatty, J. J. Besson, D. Z. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Dowkontt, P. F. DuVernois, M. A. Field, R. C. Goldstein, D. Goodhue, A. Hast, C. Hebert, C. L. Hoover, S. Israel, M. H. Kowalski, J. Learned, J. G. Liewer, K. M. Link, J. T. Lusczek, E. Matsuno, S. Mercurio, B. C. Miki, C. Miocinovic, P. Nam, J. Naudet, C. J. Ng, J. Nichol, R. J. Palladino, K. Reil, K. Romero-Wolf, A. Rosen, M. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Walz, D. Wang, Y. Wu, F. CA ANITA Collaboration TI New Limits on the Ultrahigh Energy Cosmic Neutrino Flux from the ANITA Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY AIR-SHOWERS; COHERENT RADIO EMISSION; SPECTRUM; DETECTOR; CHARGE AB We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) similar or equal to 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers. C1 [Gorham, P. W.; Allison, P.; Hebert, C. L.; Kowalski, J.; Learned, J. G.; Link, J. T.; Matsuno, S.; Miki, C.; Miocinovic, P.; Romero-Wolf, A.; Rosen, M.; Ruckman, L.; Varner, G. S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Barwick, S. W.; Goldstein, D.; Nam, J.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Beatty, J. J.; Mercurio, B. C.; Palladino, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, P.; Field, R. C.; Hast, C.; Ng, J.; Reil, K.; Walz, D.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Clem, J. M.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [Goodhue, A.; Hoover, S.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [DuVernois, M. A.; Lusczek, E.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Liewer, K. M.; Naudet, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Connolly, A.; Nichol, R. J.] UCL, Dept Phys, London, England. [Chen, C.; Nam, J.; Wang, Y.; Wu, F.] Natl Taiwan Univ, Grad Inst Astrophys, Dept Phys, Taipei, Taiwan. [Chen, C.; Nam, J.; Wang, Y.; Wu, F.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei, Taiwan. RP Gorham, PW (reprint author), Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. RI Nichol, Ryan/C-1645-2008; Vieregg, Abigail/D-2287-2012; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011; OI Beatty, James/0000-0003-0481-4952; Lusczek, Elizabeth/0000-0003-4680-965X NR 31 TC 85 Z9 85 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051103 DI 10.1103/PhysRevLett.103.051103 PG 5 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300013 PM 19792479 ER PT J AU McQueen, TM Williams, AJ Stephens, PW Tao, J Zhu, Y Ksenofontov, V Casper, F Felser, C Cava, RJ AF McQueen, T. M. Williams, A. J. Stephens, P. W. Tao, J. Zhu, Y. Ksenofontov, V. Casper, F. Felser, C. Cava, R. J. TI Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe1.01Se SO PHYSICAL REVIEW LETTERS LA English DT Article ID IRON; SMFEASO1-XFX; DIAGRAM; ORDER; FESE AB In this Letter we show that superconducting Fe1.01Se undergoes a structural transition at 90 K from a tetragonal to an orthorhombic phase but that nonsuperconducting Fe1.03Se does not. High resolution electron microscopy at low temperatures further reveals an unexpected additional modulation of the crystal structure of the superconducting phase that involves displacements of the Fe atoms, and that the nonsuperconducting composition shows a different, complex nanometer-scale structural modulation. Finally, we show that magnetism is not the driving force for the phase transition in the superconducting phase. C1 [McQueen, T. M.; Williams, A. J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Stephens, P. W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tao, J.; Zhu, Y.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ksenofontov, V.; Casper, F.; Felser, C.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. RP McQueen, TM (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Casper, Frederick/A-5782-2009; Felser, Claudia/A-5779-2009; OI Felser, Claudia/0000-0002-8200-2063; Ksenofontov, Vadim/0000-0002-1420-1124 FU Department of Energy, Division of Basic Energy Sciences [DE-FG02-98ER45706]; National Synchrotron Light Source, BNL; Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX T. M. M. gratefully acknowledges support from the NSF. The work at Princeton was supported by the Department of Energy, Division of Basic Energy Sciences, grant DE-FG02-98ER45706. The work at Brookhaven National Lab (BNL) as well as use of the National Synchrotron Light Source, BNL, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 22 TC 191 Z9 193 U1 17 U2 98 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 057002 DI 10.1103/PhysRevLett.103.057002 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300060 PM 19792526 ER PT J AU Orlandi, R de Angelis, G Bizzeti, PG Lunardi, S Gadea, A Bizzeti-Sona, AM Bracco, A Brandolini, F Carpenter, MP Chiara, CJ Della Vedova, F Farnea, E Greene, JP Lenzi, SM Leoni, S Lister, CJ Marginean, N Mengoni, D Napoli, DR Singh, BSN Pechenaya, OL Recchia, F Reviol, W Sahin, E Sarantites, DG Seweryniak, D Tonev, D Ur, CA Valiente-Dobon, JJ Wadsworth, R Wiedemann, KT Zhu, S AF Orlandi, R. de Angelis, G. Bizzeti, P. G. Lunardi, S. Gadea, A. Bizzeti-Sona, A. M. Bracco, A. Brandolini, F. Carpenter, M. P. Chiara, C. J. Della Vedova, F. Farnea, E. Greene, J. P. Lenzi, S. M. Leoni, S. Lister, C. J. Marginean, N. Mengoni, D. Napoli, D. R. Singh, B. S. Nara Pechenaya, O. L. Recchia, F. Reviol, W. Sahin, E. Sarantites, D. G. Seweryniak, D. Tonev, D. Ur, C. A. Valiente-Dobon, J. J. Wadsworth, R. Wiedemann, K. T. Zhu, S. TI Coherent Contributions to Isospin Mixing in the Mirror Pair As-67 and Se-67 SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMASPHERE; STATES; SHELL; DETECTORS AB Isospin symmetry breaking has been investigated in mass A = 67 mirror nuclei through the experimental determination of the E1 strengths of analog electromagnetic transitions. Lifetimes of excited states have been measured in Se-67 and As-67 with the centroid shift method. Through the comparison of the B(E1) strengths of the mirror 9/2(+) -> 7/2(-) transitions, the isovector and the isoscalar components of the electromagnetic transition amplitude were extracted. The presence of a large isoscalar component provides evidence for coherent contributions to isospin mixing, probably involving the isovector giant monopole resonance. C1 [Orlandi, R.; de Angelis, G.; Gadea, A.; Della Vedova, F.; Napoli, D. R.; Recchia, F.; Sahin, E.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Bizzeti, P. G.; Bizzeti-Sona, A. M.] Univ Florence, Dipartimento Fis, I-50019 Florence, Italy. [Bizzeti, P. G.; Bizzeti-Sona, A. M.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Lunardi, S.; Brandolini, F.; Farnea, E.; Lenzi, S. M.; Marginean, N.; Mengoni, D.; Ur, C. A.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Lunardi, S.; Brandolini, F.; Farnea, E.; Lenzi, S. M.; Marginean, N.; Mengoni, D.; Ur, C. A.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Bracco, A.; Leoni, S.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Bracco, A.; Leoni, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Carpenter, M. P.; Greene, J. P.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.] Washington Univ, St Louis, MO 63130 USA. [Singh, B. S. Nara; Wadsworth, R.] Univ York, York YO10 5DD, N Yorkshire, England. [Tonev, D.] BAS, Inst Nucl Res & Nucl Energy, Sofia 1784, Bulgaria. [Wiedemann, K. T.] Univ Sao Paulo, Sao Paulo, Brazil. RP Orlandi, R (reprint author), Univ W Scotland, Paisley PA1 2BE, Renfrew, Scotland. EM Riccardo.Orlandi@uws.ac.uk RI Lenzi, Silvia/I-6750-2012; Gadea, Andres/L-8529-2014; Carpenter, Michael/E-4287-2015; Marginean, Nicolae Marius/C-4732-2011; Napoli, Daniel R./D-9863-2012 OI Gadea, Andres/0000-0002-4233-1970; Carpenter, Michael/0000-0002-3237-5734; Napoli, Daniel R./0000-0002-8154-6958 FU U. S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-88ER-40406] FX This work was partly supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-88ER-40406. We thank the accelerator crew of ANL for excellent support. NR 20 TC 15 Z9 15 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 052501 DI 10.1103/PhysRevLett.103.052501 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300026 PM 19792492 ER PT J AU Schmidt, F Rozo, E Dodelson, S Hui, L Sheldon, E AF Schmidt, Fabian Rozo, Eduardo Dodelson, Scott Hui, Lam Sheldon, Erin TI Size Bias in Galaxy Surveys SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAK-LENSING SURVEYS; QUASARS; DISTRIBUTIONS; SHEAR AB Only certain galaxies are included in surveys: those bright and large enough to be detectable as extended sources. Because gravitational lensing can make galaxies appear both brighter and larger, the presence of foreground inhomogeneities can scatter galaxies across not only magnitude cuts but also size cuts, changing the statistical properties of the resulting catalog. Here we explore this size bias and how it combines with magnification bias to affect galaxy statistics. We demonstrate that photometric galaxy samples from current and upcoming surveys can be even more affected by size bias than by magnification bias. C1 [Schmidt, Fabian; Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schmidt, Fabian; Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Rozo, Eduardo] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Dodelson, Scott] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hui, Lam] Columbia Univ, Dept Phys, ISCAP, New York, NY 10027 USA. [Sheldon, Erin] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Schmidt, F (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Schmidt, Fabian/0000-0002-6807-7464 FU Kavli Institute for Cosmological Physics [NSF PHY-0114422, NSF PHY-0551142]; Center for Cosmology and Astro-Particle Physics (CCAPP); NSF [AST 0707985]; U. S. Department of Energy [DE-FG02-95ER40896]; DOE [DE-FG02-92-ER40699] FX This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142. E. R. was funded by the Center for Cosmology and Astro-Particle Physics (CCAPP) at The Ohio State University and by NSF grant AST 0707985. S. D. is supported by the U. S. Department of Energy including Grant No. DE-FG02-95ER40896. L. H. is supported by DOE Grant No. DE-FG02-92-ER40699. NR 18 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051301 DI 10.1103/PhysRevLett.103.051301 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300016 PM 19792482 ER PT J AU Seal, K Jesse, S Nikiforov, MP Kalinin, SV Fujii, I Bintachitt, P Trolier-McKinstry, S AF Seal, K. Jesse, S. Nikiforov, M. P. Kalinin, S. V. Fujii, I. Bintachitt, P. Trolier-McKinstry, S. TI Spatially Resolved Spectroscopic Mapping of Polarization Reversal in Polycrystalline Ferroelectric Films: Crossing the Resolution Barrier SO PHYSICAL REVIEW LETTERS LA English DT Article ID HYSTERESIS; DEPENDENCE; CERAMICS; DYNAMICS; WALL AB The mesoscopic reversible and irreversible polarization dynamics in polycrystalline PZT thin film capacitors are studied using local spectroscopic mapping and macroscopic first-order reversal curve measurements. The transition from a regime of short range domain wall motion to the formation of mesoscopic clusters to complete switching is observed. The fractal dimension of the clusters is consistent with the random-bond disorder model. The combination of macroscopic and local measurements allows the characteristics length scales corresponding to the transition from Rayleigh to Preisach behaviors and onset of macroscopic averaging to be determined. C1 [Seal, K.; Jesse, S.; Nikiforov, M. P.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fujii, I.; Bintachitt, P.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Fujii, Ichiro/O-6257-2015; OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Trolier-McKinstry, Susan/0000-0002-7267-9281 FU Center for Nanophase Materials Sciences; CNMS FX The research is supported by the Center for Nanophase Materials Sciences (K. S., A. P. B., and S. V. K.) and in part by CNMS user proposal CNMS2006- 020 (P. B. and S. T. M.). Funding for work at Penn State was supplied by the Center for Dielectric Studies, the National Security Science and Engineering Faculty program and the Royal Thai Government (P. B.). The authors gratefully acknowledge Dr. Roger Proksch and Asylum Research Corporation for the beta version of the high-field PFM module and valuable discussions. NR 28 TC 13 Z9 13 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 057601 DI 10.1103/PhysRevLett.103.057601 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300069 PM 19792535 ER PT J AU Yuan, F Zhou, J AF Yuan, Feng Zhou, Jian TI Collins Function and the Single Transverse Spin Asymmetry SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; DRELL-YAN PROCESSES; ODD PARTON DISTRIBUTIONS; CHIRAL-ODD; HARD-SCATTERING; ORDER 1/Q; QCD; FRAGMENTATION; LEPTOPRODUCTION AB We study the Collins mechanism for the single transverse spin asymmetry in the collinear factorization approach. The corresponding twist-three fragmentation function is identified. We show that the Collins function calculated in this approach is universal. We further examine its contribution to the single transverse spin asymmetry of semi-inclusive hadron production in deep inelastic scattering and demonstrate that the transverse momentum dependent and twist-three collinear approaches are consistent in the intermediate transverse momentum region where both apply. C1 [Yuan, Feng; Zhou, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Zhou, Jian] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. RP Yuan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Yuan, Feng/N-4175-2013 FU U. S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; RIKEN, Brookhaven National Laboratory FX We thank Bowen Xiao for collaboration at the early stage of this work. We are also grateful to Yuji Koike, Andreas Metz, and Werner Vogelsang for discussions and comments. This work was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory, and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 49 TC 58 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 052001 DI 10.1103/PhysRevLett.103.052001 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300022 PM 19792488 ER PT J AU Wang, M Vail, SA Keirstead, AE Marquez, M Gust, D Garcia, AA AF Wang, Mao Vail, Sean A. Keirstead, Amy E. Marquez, Manuel Gust, Devens Garcia, Antonio A. TI Preparation of photochromic poly(vinylidene fluoride-co-hexafluoropropylene) fibers by electrospinning SO POLYMER LA English DT Article DE Electrospinning; Photochromic fibers ID BLOCK-COPOLYMER FIBERS; POLYMER NANOFIBERS; ALCOHOL) NANOFIBERS; CONTROLLED-RELEASE; SPIROPYRAN; MEMBRANES; SURFACE; FLUORESCENCE; TRANSPORT; SYSTEM AB Photochromic poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) fibers were prepared by electrospinning from a solution of copolymer and ester-functionalized nitrospiropyran (SPEST) molecules. The surface and internal features of the electrospun (ES) fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (WAXD). The strong segregation of fluorine-rich groups on the fiber surface, which occurs during and/or after the electrospinning process, is driven by the lower surface tension for fluorine-rich groups and leads to encapsulation of SPEST predominantly near the core of the fibers, as confirmed by both X-ray photoelectron spectroscopy (XPS) and dynamic water contact angle (CA) measurements. The photochromic behavior of the spiropyran is preserved in the polymeric fibers, as confirmed by steady-state absorption and emission spectroscopy. Both isomeric forms of the photochrome in SP-PVDF-co-HFP were emissive, an effect that is thought to be due to the steric and/or electrostatic restrictions on the ring-opening reaction imposed by the fiber. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Marquez, Manuel; Garcia, Antonio A.] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. [Wang, Mao] Philip Morris Inc, Ctr Res & Technol, Richmond, VA 23219 USA. [Vail, Sean A.; Keirstead, Amy E.; Gust, Devens] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Keirstead, Amy E.] Univ New England, Dept Chem & Phys, Biddeford, ME 04005 USA. [Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Marquez, Manuel] YNANO LLC, Midlothian, VA 23113 USA. RP Garcia, AA (reprint author), Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. EM tony.garcia@asu.edu FU U.S. Department of Energy [DEFG0291ER45439] FX S.A.V. gratefully acknowledges the INEST Postdoctoral Program (Philip Morris USA) for financial support. We thank Timothy Karcher of the LeRoy Eyring Center for Solid State Science (Arizona State University) for XPS surface analysis, and Vicki L. Baliga and Jeffrey Molnar (PMUSA) for SEM analysis. WAXD data for this publication was carried in the Center for Microanalysis of Materials, University of Illinois at Urbana-Champaign, which is partially supported by the U.S. Department of Energy under grant DEFG0291ER45439. We thank Jacinta Conrad for providing the WAXD data. NR 73 TC 15 Z9 18 U1 3 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD JUL 31 PY 2009 VL 50 IS 16 BP 3974 EP 3980 DI 10.1016/j.polymer.2009.06.044 PG 7 WC Polymer Science SC Polymer Science GA 480KE UT WOS:000268732500014 ER PT J AU Lince, JR Kim, HI Adams, PM Dickrell, DJ Dugger, MT AF Lince, Jeffrey R. Kim, Hyun I. Adams, Paul M. Dickrell, Daniel J. Dugger, Michael T. TI Nanostructural, electrical, and tribological properties of composite Au-MoS2 coatings SO THIN SOLID FILMS LA English DT Article DE Nanocomposite films; Solid lubricant; Molybdenum disulfide; Sliding friction; Electrical contacts; Sputter deposition; X-ray diffraction; Auger electron spectroscopy ID SOLID LUBRICANT FILMS; MOS2; WEAR; PERFORMANCE; CONTACT AB Considerable research has been done on the tribological properties of cosputtered metal/MoS2 solid lubricant films with low metal content (<20 at.%) because of their usefulness in applications at high Hertzian contact stress (around 1 GPa). However, cosputtered Au-MoS2 coatings with a much higher range of metal contents up to (95 at.%) have shown surprisingly good performance at low contact stresses (as low as 0.1 MPa). In the present study, transmission electron microscopy, X-ray diffraction and electrical resistance measurements of cosputtered Au-MoS2 coatings reveal them to be composites of nanocrystalline Au particles within an amorphous MoS2 matrix. Electrical conductivity images of the coatings displayed metallic (Au) and semi-conducting (MoS2) domains of nanometer dimensions. Auger Nanoprobe analyses confirmed that sliding on the coatings causes the formation of a pure MoS2 layer about a nanometer thick on top of the bulk of the coatings. Lattice resolution atomic force microscopy revealed that this nanometer-thick MoS2 layer is crystalline, and oriented with the basal plane (0001) parallel to the coating surface. Electrical resistance obtained during sliding and pull-off force measurements was consistent with the structure of the coatings. Sliding friction data on the coatings support previous results showing that performance at different Hertzian contact stresses correlated strongly with Au content (C) 2009 Elsevier B.V. All rights reserved. C1 [Lince, Jeffrey R.; Kim, Hyun I.; Adams, Paul M.] Aerosp Corp, Space Mat Lab, El Segundo, CA 90245 USA. [Dickrell, Daniel J.] Univ Florida, Dept Mech Engn, Gainesville, FL 32611 USA. [Dugger, Michael T.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. RP Lince, JR (reprint author), Aerosp Corp, Space Mat Lab, El Segundo, CA 90245 USA. EM jeffrey.r.lince@aero.org RI Lince, Jeffrey/N-1437-2013 OI Lince, Jeffrey/0000-0002-6545-6346 FU U.S. Air Force Space and Missile Systems Center [FA8802-04-C-0001]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by The Aerospace Corporation's Mission Oriented Investigation and Experimentation program, funded by the U.S. Air Force Space and Missile Systems Center under Contract No. FA8802-04-C-0001. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors gratefully acknowledge the assistance of Jim Kirsch in the maintenance and operation of the sputter-deposition system. NR 22 TC 17 Z9 17 U1 9 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2009 VL 517 IS 18 BP 5516 EP 5522 DI 10.1016/j.tsf.2009.03.210 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 460IZ UT WOS:000267182700023 ER PT J AU Harilal, SS Allain, JP Hassanein, A Hendricks, MR Nieto-Perez, M AF Harilal, S. S. Allain, J. P. Hassanein, A. Hendricks, M. R. Nieto-Perez, M. TI Reactivity of lithium exposed graphite surface SO APPLIED SURFACE SCIENCE LA English DT Article DE Plasma-facing components; X-ray photoelectron spectroscopy; Low-energy ion scattering spectroscopy; Lithium; Lithium-graphite intercalation ID RAY PHOTOELECTRON-SPECTROSCOPY; LIQUID LITHIUM; SPHERICAL TORUS; XPS ANALYSIS; TOKAMAK; PLASMA; OXIDES; NSTX; INTERCALATION; ELECTROLYTES AB Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air. (C) 2009 Elsevier B. V. All rights reserved. C1 [Harilal, S. S.; Allain, J. P.; Hassanein, A.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Hendricks, M. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nieto-Perez, M.] CICATA IPN, Queretaro 76090, Mexico. RP Harilal, SS (reprint author), Purdue Univ, Sch Nucl Engn, 400 Cent Dr, W Lafayette, IN 47907 USA. EM sharilal@purdue.edu RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; Nieto-Perez, Martin/0000-0001-6600-9786; Allain, Jean Paul/0000-0003-1348-262X NR 39 TC 22 Z9 22 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2009 VL 255 IS 20 BP 8539 EP 8543 DI 10.1016/j.apsusc.2009.06.009 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 472IM UT WOS:000268123800038 ER PT J AU Rodriguez, JA Hanson, JC Wen, W Wang, XQ Brito, JL Martinez-Arias, A Fernandez-Garcia, M AF Rodriguez, Jose A. Hanson, Jonathan C. Wen, Wen Wang, Xianqin Brito, Joaquin L. Martinez-Arias, Arturo Fernandez-Garcia, Marcos TI In-situ characterization of water-gas shift catalysts using time-resolved X-ray diffraction SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Workshop of the European-Synchrotron-Radiation-Facility CY FEB, 2008 CL Grenoble, FRANCE SP European Synchrotron Radiat Fac DE X-ray diffraction; In-situ characterization; Water-gas shift reaction; Hydrogen production ID MIXED-METAL OXIDES; CHEMICAL-PROPERTIES; POWDER DIFFRACTION; NANOPARTICLES; MECHANISM; NIMOO4; CU; REDUCTION; VACANCIES; ZEOLITES AB Time-resolved X-ray diffraction (XRD) has emerged as a powerful technique for studying the behavior of heterogeneous catalysts (metal oxides, sulfides, carbides, phosphides, zeolites, etc.) in-situ during reaction conditions. The technique can identify the active phase of a heterogeneous catalyst and how its structure changes after interacting with the reactants and products (80 K < T < 1200 K; P < 50 atm). In this article, we review a series of recent works that use in-situ time-resolved XRD for studying the water-gas shift reaction (WGS, CO + H(2)O -> H(2) + CO(2)) over several mixed-metal oxides: CuMoO(4), NiMoO(4), Ce(1-x)Cu(x)O(2-delta) and CuFe(2)O(4). Under reaction conditions the oxides undergo partial reduction. Neutral Cu(0) (i.e. no Cu(1+) or Cu(2+) cations) and Ni(0) are the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the important role played by O vacancies in the mechanism for the WGS. In the case of Ce(1-x)Cu(x)O(2-delta) Rietveld refinement shows expansions/contractions in the oxide lattice which track steps within the WGS process: CO(gas) + O(oxi) -> CO(2)(gas) + O(vac); H(2)O(gas) + O(vac) -> O(oxi) + H(2)(gas). (C) 2008 Elsevier B.V. All rights reserved. C1 [Rodriguez, Jose A.; Hanson, Jonathan C.; Wen, Wen; Wang, Xianqin] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Brito, Joaquin L.] Inst Venezolano Invest Cient, Caracas 1020A, Venezuela. [Martinez-Arias, Arturo; Fernandez-Garcia, Marcos] Ctr Super Invest Cient, Inst Catalisis & Petroleoquim, Madrid 28049, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Brito, Joaquin/F-4974-2010; Fernandez-Garcia, Marcos/A-8122-2014; Hanson, jonathan/E-3517-2010 NR 33 TC 27 Z9 27 U1 1 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 30 PY 2009 VL 145 IS 3-4 BP 188 EP 194 DI 10.1016/j.cattod.2008.11.018 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 483XP UT WOS:000269006900002 ER PT J AU Chupas, PJ Chapman, KW Chen, HL Grey, CP AF Chupas, Peter J. Chapman, Karena W. Chen, Hailong Grey, Clare P. TI Application of high-energy X-rays and Pair-Distribution-Function analysis to nano-scale structural studies in catalysis SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Workshop of the European-Synchrotron-Radiation-Facility CY FEB, 2008 CL Grenoble, FRANCE SP European Synchrotron Radiat Fac DE Pair-Distribution-Function; High-energy X-rays; Supported catalyst; In situ studies ID IN-SITU; NEUTRON-DIFFRACTION; HIGH-RESOLUTION; NANOPARTICLES; GAMMA-AL2O3; CLUSTERS; DETECTOR; POWDER; STATE; NMR AB We investigate the structure of supported Pt catalysts using high-energy X-ray scattering coupled with Pair-Distribution-Function (PDF) analysis. Recently, experimental approaches that enable the collection of PDF data in situ have been developed with time-resolution sufficient to study the structure of Pt nanoparticles as they form. The differential PDF approach is utilized which allows the atom-atom correlations involving only Pt to be selectively recovered, enabling structural investigation of the supported particles and the mechanism of their formation. in parallel to the in situ analysis, we have examined samples prepared ex situ. Data collected on the ex situ samples show that the initial deposition of Pt(4+) occurs as the PtCl(6)(2-) species which are retained even when annealed in an oxygen atmosphere. The Pt differential PDFs of the samples reduced in hydrogen at 200 and 500 degrees C indicated nano-crystalline face-centered-cubic (fcc) metallic Pt particles. The ex situ reduced samples also contain a weak correlations at 21 A, which we assign to Pt-O interactions between the particles and the support surface. The in Situ experiments, following the reduction of Pt(4+) from 0 to 227 degrees C, indicate that the initial Pt nano-particles formed are ca. 1 nm in size, and become larger and more crystalline by 200 degrees C. The data suggest a particle growth mechanism where the initial particles that form are small (< 1 nm), then agglomerate into ensembles of many small particles and lastly anneal to form larger well-ordered particles. Lastly, we discus potential future developments in operando PDF studies, and identify opportunities for synchronous application of complementary methods. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chupas, Peter J.; Chapman, Karena W.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Chen, Hailong; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Chupas, PJ (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave,Bldg 433, Argonne, IL 60439 USA. EM chupas@aps.anl.gov RI Chen, Hailong/B-3998-2011; Chen, Hailong/F-7954-2011; Chapman, Karena/G-5424-2012 OI Chen, Hailong/0000-0001-8283-2860; NR 29 TC 33 Z9 33 U1 4 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 30 PY 2009 VL 145 IS 3-4 BP 213 EP 219 DI 10.1016/j.cattod.2009.03.026 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 483XP UT WOS:000269006900005 ER PT J AU Berman, GP Borgonovi, F Dalvit, DAR AF Berman, G. P. Borgonovi, F. Dalvit, D. A. R. TI Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems SO CHAOS SOLITONS & FRACTALS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; PHASE DIFFUSION; ANHARMONIC-OSCILLATOR; DECOHERENCE; MECHANICS; CHAOS AB We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular "quantum" perturbation for observables in some "mesoscopic" region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular. we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Borgonovi, F.] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy. [Berman, G. P.; Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Borgonovi, F.] Sez Pavia, Ist Nazl Fis Nucl, Pavia, Italy. RP Borgonovi, F (reprint author), Univ Cattolica, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy. EM f.borgonovi@dmf.unicatt.it OI borgonovi, fausto/0000-0002-9730-1189 FU U.S. Department of Energy at Los Alamos National Laboratory [DEAC52-06NA25396] FX We are thankful to M.G. Boshier, B.M. Chernobrod, L. Pezze, G.V. Shlypanikovi and E.M. Timmermans for useful discussions. Part of this work was done during the stay of G.P.B. and D.A.R.D. at the Institut Henri Poincare-Centre Emile Borel. The authors thank this institution for hospitality and support. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DEAC52-06NA25396. NR 36 TC 2 Z9 2 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-0779 J9 CHAOS SOLITON FRACT JI Chaos Solitons Fractals PD JUL 30 PY 2009 VL 41 IS 2 BP 919 EP 929 DI 10.1016/j.chaos.2008.04.022 PG 11 WC Mathematics, Interdisciplinary Applications; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 462TO UT WOS:000267379700041 ER PT J AU Sanchez-Roman, M McKenzie, JA Wagener, ADR Rivadeneyra, MA Vasconcelos, C AF Sanchez-Roman, Monica McKenzie, Judith A. Rebello Wagener, Angela de Luca Rivadeneyra, Maria A. Vasconcelos, Crisogono TI Presence of sulfate does not inhibit low-temperature dolomite precipitation SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE dolomite; sulfate inhibition model; moderately halophilic aerobic bacteria; dumbbell and spheroid crystal morphology ID MODERATELY HALOPHILIC BACTERIA; ALKALI-METAL CHLORIDES; SOUTH-AUSTRALIA; REDUCING BACTERIA; CALCIUM-CARBONATE; COORONG REGION; LIQUID-MEDIA; DIFFERENT SALINITIES; ANAEROBIC OXIDATION; LAGOA-VERMELHA AB The hypothesis that sulfate inhibits dolomite formation evolved from geochemical studies of porewaters from deep-sea sedimentary sequences and has been tested with hydrothermal experiments. We examined the sulfate inhibition factor using aerobic culture experiments with Virgibacillus marismortui and Halomonas meridiana, two moderately halophilic aerobic bacteria, which metabolize independent of sulfate concentration. The culture experiments were conducted at 25 and 35 degrees C using variable SO(4)(2-) concentrations (0, 14, 28 and 56 mM) and demonstrate that halophilic aerobic bacteria mediate direct precipitation of dolomite with or without SO(4)(2-) in the culture media which simulate dolomite occurrences commonly found under the Earth's surface conditions. Hence, we report that the presence of sulfate does not inhibit dolomite precipitation. Further, we hypothesize that, if sedimentary dolomite is a direct precipitate, as in our low-temperature culture experiments, the kinetic factors involved are likely to be quite different from those governing a dolomite replacement reaction, such as in hydrothermal experiments. Consequently, the occurrence and, presumably, growth of dolomite in SO(4)(2-)-rich aerobic cultures may shed new light on the long-standing Dolomite Problem. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sanchez-Roman, Monica; Rivadeneyra, Maria A.] Univ Granada, Dept Microbiol, Fac Pharm, E-18071 Granada, Spain. [Sanchez-Roman, Monica; McKenzie, Judith A.; Vasconcelos, Crisogono] ETH, Inst Geol, CH-8092 Zurich, Switzerland. [Sanchez-Roman, Monica] Univ Georgia, NASA, Astrobiol Inst, Aiken, SC 29808 USA. [Sanchez-Roman, Monica] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29808 USA. [Rebello Wagener, Angela de Luca] PUC, Dept Chem, BR-22453900 Rio De Janeiro, Brazil. RP Sanchez-Roman, M (reprint author), Univ Granada, Dept Microbiol, Fac Pharm, E-18071 Granada, Spain. EM msanchezroman@ugr.es RI Wagener, Angela/H-3128-2011 OI Wagener, Angela/0000-0003-4495-6074 FU The Swiss Science National Foundation (SNF) [20-067620, 20-105149] FX The Swiss Science National Foundation (SNF) is gratefully acknowledged for financial support through Grant No. 20-067620 and 20-105149. We acknowledge the assistance of Thomas Pettke, Eric Reusser, Luca Caricchi and Anne Greet Bittermann with Laser Ablation ICP-MS, Electron Microprobe and SEM analyses. Peggy Delaney, David T Wright, Max Coleman and three anonymous reviewers provided comments that greatly improved the earlier versions of this manuscript. NR 74 TC 54 Z9 69 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 30 PY 2009 VL 285 IS 1-2 BP 131 EP 139 DI 10.1016/j.epsl.2009.06.003 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 536RY UT WOS:000273062700013 ER PT J AU Thomas, JH AF Thomas, J. H. TI STRONGLY INTERACTING MATTER AT RHIC SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT High Energy Physics Conference on Particle Physics, Astrophysics and Quantum Field Theory - 75 Years since Solvay CY NOV 27, 2008 CL Singapore, SINGAPORE ID PARITY VIOLATION; HOT QCD; COLLISIONS AB Experiments at the Relativistic Heavy Ion Collider (RHIC) have yielded an abundance of data which suggest that a new state of matter has been produced in ultra-relativistic heavy ion collisions. This new state of matter is a strongly interacting Quark Gluon Plasma that behaves like a nearly perfect fluid with very low viscosity. I will review the experimental observations that point to the existence of the sQGP, and in particular I will emphasize the particle spectra and the flow data. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Thomas, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS 70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Thomas, James/0000-0002-6256-4536 NR 14 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD JUL 30 PY 2009 VL 24 IS 18-19 BP 3266 EP 3275 DI 10.1142/S0217751X09046862 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 481WE UT WOS:000268842300004 ER PT J AU Lance, S Nenes, A Mazzoleni, C Dubey, MK Gates, H Varutbangkul, V Rissman, TA Murphy, SM Sorooshian, A Flagan, RC Seinfeld, JH Feingold, G Jonsson, HH AF Lance, Sara Nenes, Athanasios Mazzoleni, Claudio Dubey, Manvendra K. Gates, Harmony Varutbangkul, Varuntida Rissman, Tracey A. Murphy, Shane M. Sorooshian, Armin Flagan, Richard C. Seinfeld, John H. Feingold, Graham Jonsson, Haflidi H. TI Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; HYGROSCOPIC GROWTH; CCN ACTIVITY; INSTRUMENT DESCRIPTION; CHEMICAL-COMPOSITION; LIGHT-ABSORPTION; SURFACE-TENSION; PARTICLES; SIZE; WATER AB In situ cloud condensation nuclei (CCN) measurements were obtained in the boundary layer over Houston, Texas, during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign onboard the CIRPAS Twin Otter. Polluted air masses in and out of cloudy regions were sampled for a total of 22 flights, with CCN measurements obtained for 17 of these flights. In this paper, we focus on CCN closure during two flights, within and downwind of the Houston regional plume and over the Houston Ship Channel. During both flights, air was sampled with particle concentrations exceeding 25,000 cm(-3) and CCN concentrations exceeding 10,000 cm(-3). CCN closure is evaluated by comparing measured concentrations with those predicted on the basis of measured aerosol size distributions and aerosol mass spectrometer particle composition. Different assumptions concerning the internally mixed chemical composition result in average CCN overprediction ranging from 3% to 36% (based on a linear fit). It is hypothesized that the externally mixed fraction of the aerosol contributes much of the CCN closure scatter, while the internally mixed fraction largely controls the overprediction bias. On the basis of the droplet sizes of activated CCN, organics do not seem to impact, on average, the CCN activation kinetics. C1 [Lance, Sara; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Dubey, Manvendra K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lance, Sara; Feingold, Graham] Natl Ocean & Atmospher Adm, Div Chem Sci, Boulder, CO 80305 USA. [Gates, Harmony; Varutbangkul, Varuntida; Rissman, Tracey A.; Murphy, Shane M.; Sorooshian, Armin; Flagan, Richard C.; Seinfeld, John H.] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. [Jonsson, Haflidi H.] USN, Postgrad Sch, Ctr Interdisciplinary Remotely Piloted Aircraft S, Marina, CA 93933 USA. [Mazzoleni, Claudio] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Lance, Sara; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Lance, S (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. EM athanasios.nenes@gatech.edu RI Dubey, Manvendra/E-3949-2010; Lance, Sara/A-4834-2011; Mazzoleni, Claudio/E-5615-2011; Feingold, Graham/B-6152-2009; Manager, CSD Publications/B-2789-2015 OI Dubey, Manvendra/0000-0002-3492-790X; FU National Oceanic and Atmospheric Administration (NOAA) [NA05OAR4310101, NA06OAR4310082]; NSF; Office of Naval Research; Georgia Institute of Technology; National Center for Atmospheric Research (NCAR) Advanced Study Program (ASP) Graduate Fellowship; National Research Council Research Associateships Program Fellowship FX We acknowledge support from the National Oceanic and Atmospheric Administration (NOAA) under contracts NA05OAR4310101 and NA06OAR4310082, the support of an NSF CAREER grant, and the Office of Naval Research. S. L. would like to acknowledge the support of a Georgia Institute of Technology (Georgia Tech) Presidential Fellowship, a National Center for Atmospheric Research (NCAR) Advanced Study Program (ASP) Graduate Fellowship, and a National Research Council Research Associateships Program Fellowship (awarded January 2008). We also thank C. Brock and three anonymous reviewers for helpful comments, as well as A. Stohl and S. Ekhardt for providing the Flexpart back trajectory results. M. K. D. and C. M. thank LANL-LDRD and DOE-Office of Science-OBER-ASP for support of the photoacoustic deployment. NR 51 TC 52 Z9 52 U1 3 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 30 PY 2009 VL 114 AR D00F15 DI 10.1029/2008JD011699 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 479AT UT WOS:000268631800002 ER PT J AU Vasiliou, A Nimlos, MR Daily, JW Ellison, GB AF Vasiliou, AnGayle Nimlos, Mark R. Daily, John W. Ellison, G. Barney TI Thermal Decomposition of Furan Generates Propargyl Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CELLULOSE PYROLYSIS KINETICS; INFRARED-ABSORPTION SPECTRA; BOND-DISSOCIATION ENERGIES; PHOTOELECTRON-SPECTROSCOPY; SELF-REACTION; MOLECULAR CHARACTERIZATION; FLOW REACTOR; BIOMASS; RECOMBINATION; DEGRADATION AB The thermal decomposition of furan has been studied by a 1 mm x 2 cm tubular silicon carbide reactor, C(4)H(4)O + Delta -> products. Unlike previous studies, these experiments are able to identify the initial furan decomposition products. Furan is entrained in either He or Ar carrier gas and is passed through a heated (1600 K) SiC tubular reactor. Furan decomposes during transit through the tubular reactor (approximately 65 mu s) and exits to a vacuum chamber. Within one nozzle diameter of leaving the nozzle, the gases cool to less than 50 K, and all reactions cease. The resultant molecular beam is interrogated by photoionization mass spectroscopy as well as infrared spectroscopy. Earlier G2(MP2) electronic structure calculations predicted that furan will thermally decompose to acetylene, ketene, carbon monoxide, and propyne at lower temperatures. At higher temperatures, these calculations forecast that propargyl radical could result. We observe all of these species (see Scheme 1). As the pressure in the tubular reactor is raised, the photoionization mass spectra show clear evidence for the formation of aromatic hydrocarbons. C1 [Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Vasiliou, AnGayle; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM niark_nimlos@nrel.gov; john.daily@colorado.edu; barney@jila.colorado.edu FU DOE's National Renewal Energy Laboratory [1544759]; Chemical Physics Program, United States Department of Energy [DE-FG02-93ER14364]; National Science Foundation [CHE-0848606] FX This research was supported by the DOE's National Renewal Energy Laboratory (Contract No. 1544759) and by grants from the Chemical Physics Program, United States Department of Energy (DE-FG02-93ER14364) and the National Science Foundation (CHE-0848606). We are grateful to Dr. Hans-Heinrich Carstensen, Dr. David Robichaud, and Dr. Krzysztof M. Piech for stimulating discussions. NR 59 TC 36 Z9 37 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 30 PY 2009 VL 113 IS 30 BP 8540 EP 8547 DI 10.1021/jp903401h PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 473SR UT WOS:000268230200013 PM 19719311 ER PT J AU Dong, HT Nimlos, MR Himmel, ME Johnson, DK Qian, XH AF Dong, Haitao Nimlos, Mark R. Himmel, Michael E. Johnson, David K. Qian, Xianghong TI The Effects of Water on beta-D-Xylose Condensation Reactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CONTINUUM SOLVATION METHODS; CELLULOSE-I-BETA; HYDRONIUM ION; CHEMICAL-REACTIONS; PEPTIDE-SYNTHESIS; PROTON-TRANSFER; EXCESS PROTON; ENERGY; HYDROLYSIS AB Car-Parrinello-based ab initio molecular dynamics Simulations (CPMD) combined with metadynamics (MTD) simulations were used to determine the reaction energetics for the beta-D-xylose condensation reaction to form beta-1,4-linked xylobiose in a dilute acid solution. Protonation of the hydroxyl group on the xylose molecule and the subsequent breaking of the C-O bond were found to be the rate-limiting step during the xylose condensation reaction. Water and water structure was found to play a critical role in these reactions due to the proton's high affinity for water molecules. The reaction free energy and reaction barrier were determined using CPMD-MTD. We found that solvent reorganization due to proton partial desolvation must be taken into account in order to obtain the correct reaction activation energy. Our calculated reaction free energy and reaction activation energy compare well with available experimental results. C1 [Dong, Haitao; Qian, Xianghong] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. [Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Himmel, Michael E.; Johnson, David K.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Qian, XH (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. EM xhqian@engr.colostate.edu RI Johnson, David/G-4959-2011; Qian, Xianghong/C-4821-2014 OI Johnson, David/0000-0003-4815-8782; FU National Renewable Energy Laboratory [ZCO-7-77386-01] FX This work is supported by the Department of Energy Office of the Biomass Program via a Subcontract from the National Renewable Energy Laboratory (ZCO-7-77386-01). The authors thank Robert N. Goldberg, Bernd Ensing, and Nisanth Nair for helpful discussions. Calculations were carried out using the computing facilities at Colorado State University, National Renewable Energy Laboratory, and Teragrid. NR 64 TC 32 Z9 32 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 30 PY 2009 VL 113 IS 30 BP 8577 EP 8585 DI 10.1021/jp9025442 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 473SR UT WOS:000268230200017 PM 19572686 ER PT J AU Harder, E Walters, DE Bodnar, YD Faibish, RS Roux, B AF Harder, Edward Walters, D. Eric Bodnar, Yaroslav D. Faibish, Ron S. Roux, Benoit TI Molecular Dynamics Study of a Polymeric Reverse Osmosis Membrane SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLYAMIDE THIN-FILMS; WATER; SIMULATION; SILICALITE; SEPARATION; DIFFUSION; MIXTURE; MODEL AB Molecular dynamics (MD) simulations are used to investigate the properties of an atomic model of an aromatic polyamide reverse osmosis membrane. The monomers forming the polymeric membrane are cross-linked progressively on the basis of a heuristic distance criterion during MD simulations until the system interconnectivity reaches completion. Equilibrium MD simulations of the hydrated membrane are then used to determine the density and diffusivity of water within the membrane. Given a 3 MPa pressure differential and a 0.125 mu m width membrane, the simulated water flux is calculated to be 1.4 x 10(-6) m/s, which is in fair agreement with an experimental flux measurement of 7.7 x 10(-6) m/s. C1 [Bodnar, Yaroslav D.; Faibish, Ron S.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Walters, D. Eric] Rosalind Franklin Univ Med & Sci, Chicago Med Sch, N Chicago, IL 60064 USA. [Harder, Edward; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Ctr Integrat Sci, Chicago, IL 60637 USA. RP Faibish, RS (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM roux@uchicago.edu; rfaibish@anl.gov FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory. We would like to thank Yun Luo for helpful discussions. NR 32 TC 46 Z9 46 U1 8 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 30 PY 2009 VL 113 IS 30 BP 10177 EP 10182 DI 10.1021/jp902715f PG 6 WC Chemistry, Physical SC Chemistry GA 473SY UT WOS:000268231000021 PM 19586002 ER PT J AU Sporleder, D Wilson, DP White, MG AF Sporleder, David Wilson, Daniel P. White, Michael G. TI Final State Distributions of O-2 Photodesorbed from TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TIO2 110 SURFACE; MOLECULAR-OXYGEN; TITANIUM-DIOXIDE; INDUCED DESORPTION; REDUCED TIO2(110); METAL-OXIDES; RUTILE TIO2; ADSORPTION; PHOTOCATALYSIS; DISSOCIATION AB The UV photodesorption of molecular oxygen from a reduced TiO2(110) single-crystal surface was investigated as a function of photon excitation energy, substrate temperature, and preannealing conditions. A pump-delayed-probe method using pulsed lasers for UV excitation (pump) and VUV ionization (probe) were used in conjunction with time-of-flight mass spectrometry to measure velocity distributions of the desorbing O-2 molecules. The measured velocity distributions exhibit three distinct features, two of which are attributed to prompt desorption resulting in "fast" velocity distributions and one "slow" channel whose average kinetic energy tracks the surface temperature. The latter is assigned to trapping-desorption of photoexcited O-2* which are trapped in the physisorption well prior to thermal desorption. The velocity distributions show no dependence on photon energy over the range studied (3.45-4.16 eV), consistent with a substrate-mediated, hole-capture desorption mechanism. The observed prompt desorption channels have mean translational energies of similar to 0.14 and similar to 0.50 eV and are attributed to the photodesorption of two distinct initial states of chemisorbed oxygen. The identities of the chemisorbed initial states associated with oxygen vacancy or interstitial defect sites are discussed in light of previous experimental and theoretical studies of oxygen on reduced TiO2(110) surfaces. C1 [Sporleder, David; Wilson, Daniel P.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov FU Brookhaven National Laboratory [DE-AC02-98CH10086] FX The authors acknowledge Dr. Robert J. Beuhler (BNL) for his help with construction and design of many parts of the apparatus and Dr. Michael A. Henderson (PNNL) for helpful discussions. This research was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10086 with the US Department of Energy (Division of Chemical Sciences). NR 70 TC 43 Z9 43 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 30 PY 2009 VL 113 IS 30 BP 13180 EP 13191 DI 10.1021/jp901065j PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 473TZ UT WOS:000268233800042 ER PT J AU Weiss, BM Iglesia, E AF Weiss, Brian M. Iglesia, Enrique TI NO Oxidation Catalysis on Pt Clusters: Elementary Steps, Structural Requirements, and Synergistic Effects of NO2 Adsorption Sites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CO OXIDATION; CARBON-MONOXIDE; PARTICLE-SIZE; OXYGEN; PLATINUM; PT(111); STORAGE; SURFACE; OXIDES; O-2 AB Kinetic and isotopic methods show that NO oxidation on supported Pt clusters involves kinetically relevant reaction of O-2 with vacancy sites on surfaces nearly saturated with oxygen adatoms (O*). The oxygen chemical potential at Pt surfaces that determines the O* coverage is rigorously described by an O-2 virtual pressure and determined by the thermodynamics of NO2-NO interconversion reactions. NO oxidation and oxygen isotopic exchange processes are described by the same rate constant, consistent with similar kinetically relevant O-2 dissociation steps for both reactions. NO oxidation, NO2 decomposition, and O-16(2)-O-18(2), exchange rates increased markedly with increasing Pt cluster size (1-8 nm); these clusters remain metallic at all O-2 virtual pressures prevalent during NO oxidation, These effects of cluster size reflect the higher vacancy concentrations and more facile oxygen desorption on larger Pt clusters, which bind oxygen adatoms weaker than more coordinatively unsaturated surface Pt atoms on smaller clusters. These trends are similar to those found for methane and dimethyl ether combustion on Pt and Pd catalysts, which also require vacancy sites on O*-saturated cluster surfaces in their respective kinetically relevant steps. Inhibition of NO oxidation by NO2 persists to undetectable NO2 concentrations; thus, NO oxidation turnover rates increase significantly when NO2 adsorption sites present on BaCO3/Al2O3 are placed within diffusion distances of Pt clusters. NO oxidation rates on intrapellet catalyst-adsorbent mixtures are described accurately by a simple reaction-adsorption model in which NO2 adsorbs via displacement of CO2 on BaCO3 surfaces. C1 [Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Ford Motor Company FX We thank the Ford Motor Company for financial support and Drs. Robert McCabe and George W. Graham for technical advice. B.W. acknowledges the support from Chevron in the form of the Berkeley-Chevron Graduate Fellowship. We also thank Dr. Jon G. McCarty (Eaton Corp.) for technical advice about the Pt-PtOx phase behavior, and Prof. Matthew Neurock (University of Virginia) for discussions about electronic effects in catalysis. NR 45 TC 52 Z9 53 U1 3 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 30 PY 2009 VL 113 IS 30 BP 13331 EP 13340 DI 10.1021/jp902209f PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 473TZ UT WOS:000268233800061 ER PT J AU Kulkarni, A Mehraeen, S Reed, BW Okamoto, NL Browning, ND Gates, BC AF Kulkarni, Apoorva Mehraeen, Shareghe Reed, Bryan W. Okamoto, Norihiko L. Browning, Nigel D. Gates, Bruce C. TI Nearly Uniform Decaosmium Clusters Supported on MgO: Characterization by X-ray Absorption Spectroscopy and Scanning Transmission Electron Microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SPECTRA AB Samples containing small, nearly uniform clusters of a heavy metal, Os, were prepared on a high-area porous support consisting of light atoms, MgO, to provide an opportunity for a critical assessment of estimates of cluster size determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Supported carbonyl clusters approximated as decaosmium were prepared by reductive carbonylation of adsorbed Os(3)(CO)(12) at 548 K and 1 bar. Infrared (IR) spectra of the clusters resemble those attributed in earlier work to supported clusters similar to [Os(10)C(CO)(24)](2-), consistent with the EXAFS data. The spectra indicate a molar yield of decaosmium carbonyl clusters of about 65-70%. As these clusters were treated in flowing H(2), they were partially decarbonylated, as shown by IR and EXAFS spectra. The rms (root-mean-square) radii of the undecarbonylated and partially decarbonylated clusters were found by HAADF-STEM to be 3.11 +/- 0.09 and 3.06 +/- 0.05 angstrom, respectively, and the close agreement between these values is consistent with the inference that the cluster frame was essentially the same in each. The average rms radius of the undecarbonylated clusters, estimated oil the basis of EXAFS data, was 2.94 +/- 0.07 angstrom, calculated on the basis of the assumption that the osmium frame matched that of [Os(10)C(CO)(24)](2-). EXAFS analysis of the data characterizing the partially decarbonylated sample, aided by the STEM results, showed, consistent with the STEM results, that the partial decarbonylation did not lead to a significant change in the rills radius of the metal frame. C1 [Kulkarni, Apoorva; Mehraeen, Shareghe; Okamoto, Norihiko L.; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Reed, Bryan W.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu RI Okamoto, Norihiko/A-7345-2010; Reed, Bryan/C-6442-2013; OI Okamoto, Norihiko/0000-0003-0199-7271; Browning, Nigel/0000-0003-0491-251X FU National Science Foundation [CTS-05-00511]; ExxonMobil; National Synchrotron Light Source (NSLS) FX We thank P. A. Stevens and M. Sansone of ExxonMobil Research and Engineering Co. and Larry Fareria of Brookhaven National Laboratory for helpful discussions and assistance in the acquisition of EXAFS data. This work was supported by the National Science Foundation, GOALI Grant CTS-05-00511, and ExxonMobil. We acknowledge the National Synchrotron Light Source (NSLS), a national user facility operated by Brookhaven National laboratory on behalf of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, for access to beam time at beamline X-18B. We thank ExxonMobil for providing access to beam time at beamline X-10C. NR 19 TC 6 Z9 6 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 30 PY 2009 VL 113 IS 30 BP 13377 EP 13385 DI 10.1021/jp903309d PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 473TZ UT WOS:000268233800066 ER PT J AU Raymond, KN AF Raymond, Kenneth N. TI SUPRAMOLECULAR CHEMISTRY Phosphorus caged SO NATURE LA English DT Editorial Material C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu NR 5 TC 17 Z9 17 U1 4 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 30 PY 2009 VL 460 IS 7255 BP 585 EP 586 DI 10.1038/460585a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 476PK UT WOS:000268454300040 ER PT J AU Miles, LG Isberg, SR Glenn, TC Lance, SL Dalzell, P Thomson, PC Moran, C AF Miles, Lee G. Isberg, Sally R. Glenn, Travis C. Lance, Stacey L. Dalzell, Pauline Thomson, Peter C. Moran, Chris TI A genetic linkage map for the saltwater crocodile (Crocodylus porosus) SO BMC GENOMICS LA English DT Article ID QUANTITATIVE-ANALYSIS; PRODUCTION TRAITS; SYNAPTONEMAL COMPLEX; VERTEBRATE EVOLUTION; NONAVIAN REPTILES; CHICKEN GENOME; DNA MARKERS; SEX; RECOMBINATION; MICROSATELLITES AB Background: Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection of complex quantitative trait loci (QTL), and in order to permit systematic genome scans for the identification of genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be necessary. Results: A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus) was constructed using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male recombination map lengths were 1824.1 and 319.0 centimorgans (cM) respectively, revealing an uncommonly large disparity in recombination map lengths between sexes (ratio of 5.7:1). Conclusion: We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex determination (TSD). However, at this point the reason for this disparity in saltwater crocodiles remains unclear. This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In addition, since many of the markers placed on this genetic map have been evaluated in up to 18 other extant species of crocodilian, this map will be of intrinsic value to comparative mapping efforts aimed at understanding genome content and organization among crocodilians, as well as the molecular evolution of reptilian and other amniote genomes. As researchers continue to work towards elucidation of the crocodilian genome, this first generation map lays the groundwork for more detailed mapping investigations, as well as providing a valuable scaffold for future genome sequence assembly. C1 [Miles, Lee G.; Isberg, Sally R.; Thomson, Peter C.; Moran, Chris] Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia. [Isberg, Sally R.] Porosus Pty Ltd, Palmerston, NT 0831, Australia. [Glenn, Travis C.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Dalzell, Pauline] S Eastern Area Lab Serv, Randwick, NSW 2031, Australia. RP Moran, C (reprint author), Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia. EM leemiles@vetsci.usyd.edu.au; sally@crocfarmsnt.com; travisg@uga.edu; lance@Srel.edu; pauline.dalzell@sesiahs.health.nsw.gov.au; petert@camden.usyd.edu.au; chrism@vetsci.usyd.edu.au RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Rural Industries Research and Development Corporation [US-139A] FX We would especially like to acknowledge the management and staff at Darwin Crocodile Farm (Porosus Pty Ltd) for allowing access to the animals, and for their assistance with sample and data collection. We would also like to acknowledge Dr Dan Peterson at Mississippi Genome Exploration Laboratory (MGEL), Mississippi State University, USA, for providing the BAC library resources, and to thank both him and Dr Xueyan Shan for their contribution to the project. We would also like to acknowledge and thank Dr Ken Jones and Mr Brad Temple at SREL for their contributions to the data generation, and Ms Camilla Whittington of the University of Sydney for copyediting the manuscript. NR 62 TC 16 Z9 17 U1 1 U2 40 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 29 PY 2009 VL 10 AR 339 DI 10.1186/1471-2164-10-339 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 490NZ UT WOS:000269509100001 PM 19640266 ER PT J AU Juarez-Arellano, EA Winkler, B Friedrich, A Bayarjargal, L Milman, V Yan, JY Clark, SM AF Juarez-Arellano, Erick A. Winkler, Bjoern Friedrich, Alexandra Bayarjargal, Lkhamsuren Milman, Victor Yan, Jinyuan Clark, Simon M. TI Stability field of the high-(P, T) Re2C phase and properties of an analogous osmium carbide phase SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rhenium carbide; Osmium carbide; Synchrotron radiation; Compressibility; Diamond anvil cell; High pressures and temperatures ID DIAMOND-ANVIL CELL; 1ST PRINCIPLES; RHENIUM; PRESSURE; DIFFRACTION; OSC; TRANSITION; CARBON; MBAR; RUC AB The formation of a hexagonal rhenium carbide phase, Re2C, from the elements has been studied in a laser heated diamond anvil cell in a P, V range of 20-40 GPa and 1000-2000 K. No indication for the existence of cubic rhenium carbide, as suggested in the literature, or any other phase was found and Re2C is the only phase formed in the Re-C system up to around 70 GPa and 4000 K. A fit of a 3rd-order Birch-Murnaghan equation of state to the Re2C P, V-data results in a bulk modulus of B-0 = 405(30)GPa (B' = 4.6). The linear compressibility of Re2C along [0 0 1] (similar to 500 GPa) is significantly larger than the compressibility in the (0 0 1) plane (similar to 360 GPa parallel to [1 0 0]). Based on the observations for Re2C, we predict the structure and elastic properties of an analogous Os2C phase, which is, at least in the athermal limit, more stable than any other osmium carbide studied previously by density functional theory based calculations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Juarez-Arellano, Erick A.] Autonomous Univ State Morelos, CIICAp, Cuernavaca, Morelos, Mexico. [Juarez-Arellano, Erick A.; Winkler, Bjoern; Friedrich, Alexandra; Bayarjargal, Lkhamsuren] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany. [Milman, Victor] Accelrys, Cambridge CB4 0WN, England. [Yan, Jinyuan; Clark, Simon M.] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. RP Juarez-Arellano, EA (reprint author), Autonomous Univ State Morelos, CIICAp, Av Univ 1001, Cuernavaca, Morelos, Mexico. EM ejuarez@uaem.mx RI Milman, Victor/M-6117-2015; Clark, Simon/B-2041-2013 OI Milman, Victor/0000-0003-2258-1347; Juarez-Arellano, Erick/0000-0003-4844-8317; Clark, Simon/0000-0002-7488-3438 FU Deutsche Forschungsgemeinschaft [Wi-1232]; CONACyT; CNV-Foundation; Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES, the Consortium for Materials Properties Research in Earth Science [EAR 06-49658]; ESRF FX This research was supported by Deutsche Forschungsgemeinschaft (Project Wi-1232), in the framework of the DFG-SPP 1236. EAJA thanks the CONACyT and AF thanks the CNV-Foundation for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under contract DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Science under NSF Cooperative Agreement EAR 06-49658. Also, we are grateful to the ESRF for beam time and financial support. NR 29 TC 30 Z9 31 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 29 PY 2009 VL 481 IS 1-2 BP 577 EP 581 DI 10.1016/j.jallcom.2009.03.029 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 468EV UT WOS:000267798700117 ER PT J AU Zhang, Q Chung, I Jang, JI Ketterson, JB Kanatzidis, MG AF Zhang, Qichun Chung, In Jang, Joon I. Ketterson, John B. Kanatzidis, Mercouri G. TI Chalcogenide Chemistry in Ionic Liquids: Nonlinear Optical Wave-Mixing Properties of the Double-Cubane Compound [Sb7S8Br2](AlCl4)(3) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OPEN-FRAMEWORK CHALCOGENIDES; GENERATION; CS; NANORODS; FIGURE; LAYERS; LIGHT; MERIT; RB AB The new cation [Sb7S8Br2](3+) has a double-cubane structure and forms as the [AlCl4](-) salt from the ionic liquid EMIMBr-AlCl3 (EMIM = 1-ethyl-3-methylimidazolium) at 165 degrees C. The compound is noncentrosymmetric with space group P2(1)2(1)2(1) and exhibits second-harmonic and difference-frequency nonlinear optical response across a wide range of the visible and near-infrared regions. C1 [Zhang, Qichun; Chung, In; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Jang, Joon I.; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Chicago, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI zhang, qichun/A-2253-2011; Ketterson, John/B-7234-2009; Chung, In/K-5036-2012 FU National Science Foundation [DMR-0801855] FX Financial support from the National Science Foundation (DMR-0801855) is gratefully acknowledged. NR 31 TC 139 Z9 139 U1 0 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 9896 EP + DI 10.1021/ja903881m PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000019 PM 19580274 ER PT J AU Liu, G Zhao, DC Tomsia, AP Minor, AM Song, XY Saiz, E AF Liu, Gao Zhao, Dacheng Tomsia, Antoni P. Minor, Andrew M. Song, Xiangyun Saiz, Eduardo TI Three-Dimensional Biomimetic Mineralization of Dense Hydrogel Templates SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROXYAPATITE FORMATION; CALCIUM PHOSPHATES; SOAKING PROCESS; COMPOSITES; BIOMINERALIZATION; SCAFFOLDS; SYSTEMS; GROWTH AB An electric-current-assisted method was used to mineralize dense hydrogels and create hydroxyapatite/hydrogel. composites with unique hierarchical structures. The microstructure of the final material can be controlled by the mineralization technique and the chemistry of the organic matrix. A hydroxyapatite/hydrogel composite was obtained with a large inorganic content (similar to 60% of the weight of the organics). After being heated to 1050 degrees C, the sintered inorganic phase has a very uniformly distributed porosity and its Brunauer-Emmett-Teller (BET) surface area is 0.68 m(2)/g. C1 [Liu, Gao; Zhao, Dacheng; Song, Xiangyun] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Tomsia, Antoni P.; Minor, Andrew M.; Saiz, Eduardo] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Minor, Andrew M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov FU National Institutes of Health (NIH) [5R01 DE015633]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health (NIH) under Grant No. 5R01 DE015633. The FIB and TEM work was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 31 Z9 31 U1 6 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 9937 EP + DI 10.1021/ja903817z PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000038 PM 19621954 ER PT J AU Kliewer, CJ Bieri, M Somorjai, GA AF Kliewer, Christopher J. Bieri, Marco Somorjai, Gabor A. TI Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELECTIVE HYDROGENATION; UNSATURATED ALDEHYDES; THEORETICAL APPROACH; PT(111); SURFACE; ADSORPTION; CATALYSTS; PRESSURE; C=O; 3-METHYL-CROTONALDEHYDE AB Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three alpha,beta-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr of aldehyde, 100 Torr of hydrogen) in the temperature range of 295-415 K. SFG-VS data showed that acrolein has mixed adsorption species of eta(2)-di-sigma(CC)-trans, eta(2)-di-sigma(CC)-cis as well as highly coordinated eta(3) or eta(4) species. Crotonaldehyde adsorbed to Pt(111) as eta(2) surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the eta(2) adsorption species and became more highly coordinated as the temperature was raised to 415 K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation "cracking" product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotyl alcohol. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Kliewer, Christopher/E-4070-2010 OI Kliewer, Christopher/0000-0002-2661-1753 FU U.S. Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation (SNF) FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. M. B. thanks the Swiss National Science Foundation (SNF) for financial support. NR 34 TC 59 Z9 59 U1 6 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 9958 EP 9966 DI 10.1021/ja8092532 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000041 PM 19580314 ER PT J AU Krishnan, M Smith, JC AF Krishnan, Marimuthu Smith, Jeremy C. TI Response of Small-Scale, Methyl Rotors to Protein-Ligand Association: A Simulation Analysis of Calmodulin-Peptide Binding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MAGNETIC-RESONANCE RELAXATION; DIFFRACTION STRUCTURE DETERMINATION; NUCLEIC-ACID COMPONENTS; MODEL-FREE APPROACH; MOLECULAR-DYNAMICS; NMR RELAXATION; ORDER PARAMETERS; AMINO-ACIDS; FREE-ENERGY; CONFORMATIONAL ENTROPY AB Changes in the free energy barrier (Delta E), entropy, and motional parameters associated with the rotation of methyl groups in a protein (calmodulin (CaM)) on binding a ligand (the calmodulin-binding domain of smooth-muscle myosin (smMLCKp)) are investigated using molecular dynamics simulation. In both the bound and uncomplexed forms of CaM, the methyl rotational free energy barriers follow skewed-Gaussian distributions that are not altered significantly upon ligand binding. However, site-specific perturbations are found. Around 11% of the methyl groups in CaM exhibit changes in Delta E greater than 0.7 kcal/mol on binding. The rotational entropies of the methyl groups exhibit a nonlinear dependence on Delta E The relations are examined between motional parameters (the methyl rotational NMR order parameter and the relaxation time) and Delta E Low-barrier methyl group rotational order parameters deviate from ideal tetrahedrality by up to similar to 20%. There is a correlation between rotational barrier changes and proximity to the protein-peptide binding interface. Methyl groups that exhibit large changes in Delta E are found to report on elements in the protein undergoing structural change on binding. C1 [Krishnan, Marimuthu; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, UT, Oak Ridge, TN 37831 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Krishnan, M (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, UT, Oak Ridge, TN 37831 USA. EM krishnanm@ornl.gov RI smith, jeremy/B-7287-2012; Krishnan, Marimuthu/A-6443-2012 OI smith, jeremy/0000-0002-2978-3227; FU U.S. Department of Energy FX This work was funded by an Oak Ridge National Laboratory Neutron Sciences Laboratory-Directed Research and Development grant from the U.S. Department of Energy. NR 62 TC 13 Z9 13 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 10083 EP 10091 DI 10.1021/ja901276n PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000056 PM 19621963 ER PT J AU Godula, K Umbel, ML Rabuka, D Botyanszki, Z Bertozzi, CR Parthasarathy, R AF Godula, Kamil Umbel, Marissa L. Rabuka, David Botyanszki, Zsofia Bertozzi, Carolyn R. Parthasarathy, Raghuveer TI Control of the Molecular Orientation of Membrane-Anchored Biomimetic Glycopolymers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FRAGMENTATION CHAIN TRANSFER; SUPPORTED LIPID-MEMBRANES; MICROSCOPY; BILAYERS; POLYMERIZATION; JUNCTIONS; POLYMERS; SURFACES AB Quantifying and controlling the orientation of surface-bound macromolecules is crucial to a wide range of processes in areas as diverse as biology, materials science, and nanotechnology. Methods capable of directing orientation, as well as an understanding of the underlying physical mechanisms are, however, lacking. In this paper, we describe experiments in which the conformations of structurally well-defined polymers anchored to fluid lipid membranes were probed using Fluorescence Interference Contrast Microscopy (FLIC), an optical technique that provides topographic information with few-nanometer precision. The novel rodlike polymers mimic the architecture of mucin glycoproteins and feature a phospholipid tail for membrane incorporation and a fluorescent optical probe for FLIC imaging situated at the opposite termini of the densely glycosylated polymeric backbones. We find that the orientation of the rigid, approximately 30 nm long glycopolymers depends profoundly on the properties of the optical reporter. Molecules terminated with Alexa Fluor 488 projected away from the lipid bilayer by 11 +/- 1 nm, consistent with entropy-dominated sampling of the membrane-proximal space. Molecules terminated with Texas Red lie flat at the membrane (height, 0 +/- 2 nm), implying that interactions between Texas Red and the bilayer dominate the polymers' free energy. These results demonstrate the design of macromolecules with specific orientational preferences, as well as nanometer-scale measurement of their orientation. Importantly, they reveal that seemingly minute changes in molecular structure, in this case fluorophores that comprise only 2% of the total molecular weight, can significantly alter the molecule's presentation to the surrounding environment. C1 [Umbel, Marissa L.; Parthasarathy, Raghuveer] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Umbel, Marissa L.; Parthasarathy, Raghuveer] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. [Godula, Kamil; Rabuka, David; Botyanszki, Zsofia; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Godula, Kamil; Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Parthasarathy, R (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM raghu@uoregon.edu RI Parthasarathy, Raghuveer/A-5958-2008 OI Parthasarathy, Raghuveer/0000-0002-6006-4749 FU U.S. Department of Energy [AC03-76SF00098]; NIH [K99M080585-01]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation [CHE-0755544] FX This work was partly supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, within the Interfacing Nanostructures Initiative and NIH (K99M080585-01). Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 MLU was supported by the National Science Foundation Research Experience for Undergraduates (REU) program (Award CHE-0755544). R.P. ackowledges support from the Alfred P. Sloan Foundation. We thank Dr. Ki Tae Nam for his help with acquiring TEM images, and Christopher Harland and Jordan Crist for experimental assistance with supported membranes. NR 27 TC 21 Z9 21 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 10263 EP 10268 DI 10.1021/ja903114g PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000075 PM 19580278 ER PT J AU Pickering, IJ Sneeden, EY Prince, RC Block, E Harris, HH Hirsch, G George, GN AF Pickering, Ingrid J. Sneeden, Eileen Yu Prince, Roger C. Block, Eric Harris, Hugh H. Hirsch, Gregory George, Graham N. TI Localizing the Chemical Forms of Sulfur in Vivo Using X-ray Fluorescence Spectroscopic Imaging: Application to Onion (Allium cepa) Tissues SO BIOCHEMISTRY LA English DT Article ID ABSORPTION-SPECTROSCOPY; XANES SPECTROSCOPY; SITU OBSERVATION; HOMOCYSTEINE; BIOCHEMISTRY; SPECIATION; CHEMISTRY; ALLIINASE; SELENIUM; CYSTEINE AB Sulfur has a particularly rich biochemistry and fills a number of important roles in biology. In situ information on sulfur biochemistry is generally difficult to obtain because of a lack of biophysical techniques that have sufficient sensitivity to molecular form. We have recently reported that sulfur K-edge X-ray absorption spectroscopy can be used as a direct probe of the sulfur biochemistry of living mammalian cells [Gnida, M., et al. (2007) Biochemistry 46 14735-14741]. Here we report an extension of this work and develop sulfur K-edge X-ray fluorescence spectroscopic imaging as an in vivo probe of sulfur metabolism in living cells. For this work, we have chosen onion (Allium cepa) as a tractable model system with well-developed sulfur biochemistry and present evidence of the localization of a number of different chemical forms. X-ray absorption spectroscopy of onion sections showed increased levels of lachrymatory factor (LF) and thiosulfinate and decreased levels of sulfoxide (LF precursor) following cell breakage. In Intact cells, X-ray fluorescence spectroscopic imaging showed elevated levels of sulfoxides in the cytosol and elevated levels of reduced Sulfur in the central transport vessels and bundle sheath cells. C1 [Pickering, Ingrid J.; George, Graham N.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. [Sneeden, Eileen Yu; Harris, Hugh H.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Prince, Roger C.] ExxonMobil Biomed Sci Inc, Annandale, NJ 08801 USA. [Block, Eric] SUNY Albany, Dept Chem, Albany, NY 12222 USA. [Harris, Hugh H.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Hirsch, Gregory] Hirsch Sci, Pacifica, CA 94044 USA. RP Pickering, IJ (reprint author), Univ Saskatchewan, Dept Geol Sci, 114 Sci Pl, Saskatoon, SK S7N 5E2, Canada. EM ingrid.pickering@usask.ca; g.george@usask.ca RI Harris, Hugh/A-4983-2008; George, Graham/E-3290-2013; Pickering, Ingrid/A-4547-2013; Block, Eric/D-3989-2014; OI Prince, Roger/0000-0002-5174-4216; Pickering, Ingrid/0000-0002-0936-2994; Harris, Hugh/0000-0002-3472-8628 FU National Institutes of Health [GM-57375]; U.S. Department of Energy, Offices of Basic Energy Sciences and Biological and Environmental Research; National Institutes off Health; Canadian Institutes of Health Research and the Natural Sciences and Enigineering Research Council of Canada; Canada Research Chair awards; National Science Foundation [CHE-0744578] FX This work was supported by Grant GM-57375 from the National Institutes of Health. The Stanford Synchrotron Radiation Lightsource is funded by the U.S. Department of Energy, Offices of Basic Energy Sciences and Biological and Environmental Research, with additional support from the National Institutes off Health. Work at the University of Saskatchewan was supported by the Canadian Institutes of Health Research and the Natural Sciences and Enigineering Research Council of Canada and by Canada Research Chair awards (G.N.G. and I.J.P.). Work at the University at Albany was Supported by Grant CHE-0744578 from the National Science Foundation. NR 38 TC 27 Z9 27 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 28 PY 2009 VL 48 IS 29 BP 6846 EP 6853 DI 10.1021/bi900368x PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 473AN UT WOS:000268175600015 PM 19463015 ER PT J AU Mehboob, S Guo, L Fu, WT Mittal, A Yau, T Truong, K Johlfs, M Long, F Fung, LWM Johnson, ME AF Mehboob, Shahila Guo, Liang Fu, Wentao Mittal, Anuradha Yau, Tiffany Truong, Kent Johlfs, Mary Long, Fei Fung, Leslie W. -M. Johnson, Michael E. TI Glutamate Racemase Dimerization Inhibits Dynamic Conformational Flexibility and Reduces Catalytic Rates SO BIOCHEMISTRY LA English DT Article ID MOLECULAR-DYNAMICS; SOLUTION SCATTERING; PROTEINS; STABILITY; COMPLEX; DOMAIN AB Glutamate racemase (RacE) is a bacterial enzyme that converts L-glutamate to D-glutamate, ail essential precursor for peptidoglycan synthesis. In prior work, we have shown that both isoforms cocrystallize With D-glutamate as dimers, and the enzyme is in a closed conformation with limited access to the active site [May, M., et al. (2007) J. Mol. Biol. 371, 1219-1237]. The active site of RacE2 is especially restricted. We utilize several computational and experimental approaches to understand the overall conformational dynamics involved during catalysis when the ligand enters and the product exits the active site. Our steered molecular dynamics simulations and normal-mode analysis results indicate that the monomeric form of the enzyme is more flexible than the native dimeric form. These results Suggest that the monomeric enzyme might be more active than the dimeric form. We thus generated site-specific mutations that disrupt dimerization and find that the mutants exhibit significantly higher catalytic rates in the D-Glu to L-Glu reaction direction than the native enzyme. Low-resolution models restored from solution X-ray scattering studies correlate well with the first six normal modes of the dimeric form or the enzyme, obtained from NMA. Thus, along with the local active site residues, global domain motions appear to be implicated in the catalytically relevant structural dynamics of this enzyme and suggest that increased flexibility may accelerate catalysis. This is a novel observation that residues distant from the catalytic site restrain catalytic activity through formation of the dimer structure. C1 [Mehboob, Shahila; Fu, Wentao; Mittal, Anuradha; Yau, Tiffany; Truong, Kent; Johlfs, Mary; Johnson, Michael E.] Univ Illinois, Ctr Pharmaceut Biotechnol, Chicago, IL 60607 USA. [Guo, Liang] Argonne Natl Lab, Adv Photon Source, BioCAT, Argonne, IL 60439 USA. [Long, Fei; Fung, Leslie W. -M.] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Mehboob, S (reprint author), Univ Illinois, Ctr Pharmaceut Biotechnol, Chicago, IL 60607 USA. EM shahila@uic.edu; mjohnson@uic.edu RI Johnson, Michael/F-5141-2013; ID, BioCAT/D-2459-2012 FU National Institutes of Health [A1056575] FX This work was supported by National Institutes of Health Grant A1056575. NR 31 TC 9 Z9 9 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 28 PY 2009 VL 48 IS 29 BP 7045 EP 7055 DI 10.1021/bi9005072 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 473AN UT WOS:000268175600033 PM 19552402 ER PT J AU Wang, XB Jagoda-Cwiklik, B Chi, CX Xing, XP Zhou, MF Jungwirth, P Wang, LS AF Wang, Xue-Bin Jagoda-Cwiklik, Barbara Chi, Chaoxian Xing, Xiao-Peng Zhou, Mingfei Jungwirth, Pavel Wang, Lai-Sheng TI Microsolvation of the acetate anion [CH3CO2-(H2O)(n), n=1-3]: A photoelectron spectroscopy and ab initio computational study SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DOUBLY-CHARGED ANION; WATER CLUSTERS; GAS-PHASE; DYNAMICS; SOLVATION; PHOTODETACHMENT; CHEMISTRY; DIANIONS; DISSOCIATION; DISSOLUTION AB A combined photoelectron spectroscopy and ab initio theoretical study was carried out to study the microsolvation of the acetate anion. Photoelectron spectra of cold solvated clusters CH3CO2-(H2O)(n) (n = 1-3) at 12 K were obtained and compared with theoretical calculations. The first water is shown to bind to the -CO2- group in a bidentate fashion, whereas both water-water and water-CO2- interactions are shown for n = 2 and 3. Significant rearrangement of the solvation structures is observed upon electron detachment, and water-CH3 interactions are present for all the neutral clusters, CH3CO2( H2O)(n) (n = 1-3). (c) 2009 Elsevier B. V. All rights reserved. C1 [Wang, Xue-Bin; Xing, Xiao-Peng; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Xing, Xiao-Peng; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Jagoda-Cwiklik, Barbara] Hebrew Univ Jerusalem, Fritz Haber Inst Mol Dynam, IL-91904 Jerusalem, Israel. [Chi, Chaoxian; Zhou, Mingfei] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysts & Innovat Mat, Adv Mat Lab, Shanghai 200433, Peoples R China. [Jungwirth, Pavel] Acad Sci Czech Republic, Inst Organ Chem & Biochem, Ctr Complex Mol Syst & Biomol, CR-16610 Prague 6, Czech Republic. RP Wang, XB (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM xuebin.wang@pnl.gov; pavel.jungwirth@uochb.cas.cz; ls.wang@pnl.gov RI Jungwirth, Pavel/D-9290-2011 OI Jungwirth, Pavel/0000-0002-6892-3288 FU US Department of Energy (DOE); National Natural Science Foundation of China [20528303]; Czech Ministry of Education [LC512]; Czech Science Foundation [203/08/0114] FX The experimental work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. M. F. Z. wishes to thank the National Natural Science Foundation of China ( Grant No. 20528303) for partial support of the work. Support from the Czech Ministry of Education ( Grant LC512) and the Czech Science Foundation ( Grant 203/08/0114) for the computational work is gratefully acknowledged. Part of the work in Prague was supported via Project Z40550506. NR 38 TC 10 Z9 10 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 28 PY 2009 VL 477 IS 1-3 BP 41 EP 44 DI 10.1016/j.cplett.2009.06.074 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 475BF UT WOS:000268329800008 ER PT J AU Jiang, DE AF Jiang, De-en TI Au adatom-linked CH3S-Au-SCH3 complexes on Au(111) SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; TOTAL-ENERGY CALCULATIONS; THIOLATE-PROTECTED AU-38; AUGMENTED-WAVE METHOD; C(4 X-2) STRUCTURE; CRYSTAL-STRUCTURES; SOLID-STATE; BASIS-SET; GOLD; CLUSTER AB A novel chain structure made of gold adatoms and gold-thiolate complexes on Au(111) is predicted here by first principles density functional theory. In this structure, the CH3S-Au-SCH3 complexes are parallel to each other and linked together by interactions between Au adatoms and Au atoms in the complexes as well as by bonding between the Au adatoms and the CH3S-groups in the CH3S-Au-SCH3 complexes. This new structure is compared with previously proposed gold-thiolate polymers on Au(111) and found to be energetically competitive with previous models at both low and high coverages. (c) 2009 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011 OI Jiang, De-en/0000-0001-5167-0731 FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 28 PY 2009 VL 477 IS 1-3 BP 90 EP 94 DI 10.1016/j.cplett.2009.06.073 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 475BF UT WOS:000268329800019 ER PT J AU Lucchese, RR Bozek, JD Das, A Poliakoff, ED AF Lucchese, Robert R. Bozek, John D. Das, Aloke Poliakoff, E. D. TI Vibrational branching ratios in the (b(2u))(-1) photoionization of C6F6 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE bond lengths; molecule-photon collisions; organic compounds; oscillator strengths; photoionisation; positive ions; resonant states; vibrational states ID CROSS-SECTIONS; MOLECULAR PHOTOIONIZATION; HIGH-RESOLUTION; BASIS-SETS; SCATTERING; SPECTROSCOPY AB The vibrational branching ratios in the photoionization of C6F6 leading to the C B-2(2u) state of C6F6+ are considered. Computational and experimental data are compared for the excitation of two totally symmetric modes. Resonant features at photon energies near 19 and 21 eV are found. A detailed analysis of the computed results shows that the two resonance states have different responses to changes in the C-C and C-F bond lengths. We find that the energies of both of the resonant states decrease with increasing bond lengths. In contrast to the energy positions, however, the resonant widths and the integrated oscillator strength of the resonances can either increase or decrease with increasing bond length depending on the nature and location of the resonant state and the location of the bond under consideration. With increasing C-F bond length, we find that the energy of the antibonding sigma resonance localized on the ring has a decreasing resonance energy and also a decreasing lifetime. This behavior is in contrast to the usual behavior of shape resonance energies where increasing a bond length leads to decreasing resonance energies and increasing resonance lifetimes. Finally, for the first time, we examine the effect of simultaneously occurring multiple vibrations on the resonance profile for valence photoionization, and we find that the inclusion of more than a single vibrational mode substantially attenuates the strength of resonance. C1 [Lucchese, Robert R.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Bozek, John D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Das, Aloke; Poliakoff, E. D.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. RP Lucchese, RR (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM lucchese@mail.chem.tamu.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; OI Bozek, John/0000-0001-7486-7238; Lucchese, Robert/0000-0002-7200-3775 FU U.S. Department of Energy [DE-FG02-01ER15178]; Texas A&M University Supercomputing Facility FX D. P. and R. R. L. acknowledge that this work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-01ER15178). This work was also supported by the Texas A&M University Supercomputing Facility. NR 19 TC 6 Z9 6 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2009 VL 131 IS 4 AR 044311 DI 10.1063/1.3180817 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 478UL UT WOS:000268613700042 PM 19655871 ER PT J AU Streets, DG Yan, F Chin, M Diehl, T Mahowald, N Schultz, M Wild, M Wu, Y Yu, C AF Streets, David G. Yan, Fang Chin, Mian Diehl, Thomas Mahowald, Natalie Schultz, Martin Wild, Martin Wu, Ye Yu, Carolyne TI Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SULFUR-DIOXIDE EMISSIONS; SURFACE SOLAR-RADIATION; INTERANNUAL VARIABILITY; HYDROLOGICAL CYCLE; GOCART MODEL; SATELLITE; CLIMATE; ASIA; DIMETHYLSULFIDE; INVENTORY AB Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (< 1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period. C1 [Streets, David G.; Yan, Fang; Yu, Carolyne] Argonne Natl Lab, Argonne, IL 60439 USA. [Yan, Fang] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Chin, Mian; Diehl, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mahowald, Natalie] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Schultz, Martin] Forschungszentrum Julich, D-52425 Julich, Germany. [Wild, Martin] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Wu, Ye] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. RP Streets, DG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Yan, Fang/F-2625-2010; Wild, Martin/J-8977-2012; Chin, Mian/J-8354-2012; Mahowald, Natalie/D-8388-2013; Yan, Fang/F-4527-2014; Wu, Ye/O-9779-2015; Schultz, Martin/I-9512-2012 OI Yan, Fang/0000-0002-1960-0511; Streets, David/0000-0002-0223-1350; Mahowald, Natalie/0000-0002-2873-997X; Schultz, Martin/0000-0003-3455-774X FU Argonne National Laboratory; University of Chicago Argonne, LLC [DE-AC02-06CH11357]; Swiss National Centre for Competence in Climate Research (NCCR Climate) FX The work performed at Argonne National Laboratory was funded by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research. The authors gratefully acknowledge the support of Ashley Williamson and Bob Vallario in that office. Argonne National Laboratory is operated by the University of Chicago Argonne, LLC, under contract DE-AC02-06CH11357 with the U. S. Department of Energy. The radiation data archives at ETH Zurich are supported by funding from the Swiss National Centre for Competence in Climate Research (NCCR Climate). NR 77 TC 90 Z9 91 U1 4 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 28 PY 2009 VL 114 AR D00D18 DI 10.1029/2008JD011624 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 479AS UT WOS:000268631700002 ER PT J AU Colgan, J Foster, M Pindzola, MS Bray, I Stelbovics, AT Fursa, DV AF Colgan, J. Foster, M. Pindzola, M. S. Bray, I. Stelbovics, A. T. Fursa, D. V. TI Triple differential cross sections for the electron-impact ionization of helium at 102 eV incident energy SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID SHARING KINEMATICS; APPROXIMATIONS; SCATTERING; COLLISIONS AB We examine the time-dependent close-coupling (TDCC) approach to electron-impact single ionization of helium and study the convergence properties of our method. As an example, we compare our calculations to recent measurements of the triple differential cross sections from He after 102 eV electron impact, made for asymmetric electron energies and a variety of electron geometries. We find that our calculations compare well to the measurements and to convergent close-coupling calculations. C1 [Colgan, J.; Foster, M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.; Bray, I.; Stelbovics, A. T.; Fursa, D. V.] Curtin Univ Technol, ARC Ctr Antimatter Matter Studies, Perth, WA 6845, Australia. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Fursa, Dmitry/C-2301-2009; Bray, Igor/B-8586-2009; OI Fursa, Dmitry/0000-0002-3951-9016; Bray, Igor/0000-0001-7554-8044; Colgan, James/0000-0003-1045-3858 FU US Department of Energy [DE-AC5206NA25396]; DOE; NSF; LANL Institutional Computing Resources award FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no DE-AC5206NA25396. One of us (JC) would like to thank the ARC Centre for Antimatter-Matter Studies for their generous hospitality during a recent visit. The support of the Australian Partnership for Advanced Computing and its Western Australian node iVEC are gratefully acknowledged. A portion of this work was performed through DOE and NSF grants to Auburn University. Computational work was carried out at NERSC, in Oakland, CA, and through a LANL Institutional Computing Resources award. NR 17 TC 28 Z9 28 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 28 PY 2009 VL 42 IS 14 AR 145002 DI 10.1088/0953-4075/42/14/145002 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 470AI UT WOS:000267943500006 ER PT J AU Margolin, LG AF Margolin, L. G. TI Finite-scale equations for compressible fluid flow SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE compressible flow; finite-scale equations; implicit large eddy simulation ID IMPLICIT LES; HYDRODYNAMICS; SIMULATIONS; TRANSPORT; MODELS AB Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Margolin, LG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM len@lanl.gov NR 18 TC 14 Z9 14 U1 1 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 28 PY 2009 VL 367 IS 1899 BP 2861 EP 2871 DI 10.1098/rsta.2008.0290 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461PX UT WOS:000267281900006 PM 19531508 ER PT J AU Grinstein, FF AF Grinstein, Fernando F. TI On integrating large eddy simulation and laboratory turbulent flow experiments SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE turbulent flow experiments; large eddy simulation; subgrid scales; initial conditions; boundary conditions ID RICHTMYER-MESHKOV INSTABILITY; BOUNDARY-VALUE PROBLEMS; GAS-TURBINE COMBUSTOR; INFLOW CONDITIONS; FLUID-DYNAMICS; SHEAR-LAYER; GENERATION; SYSTEMS; SCALE AB Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Grinstein, FF (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. EM fgrinstein@lanl.gov NR 37 TC 12 Z9 12 U1 0 U2 5 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 28 PY 2009 VL 367 IS 1899 BP 2931 EP 2945 DI 10.1098/rsta.2009.0059 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461PX UT WOS:000267281900011 PM 19531513 ER PT J AU Jansson, J Willing, B Lucio, M Fekete, A Dicksved, J Halfvarson, J Tysk, C Schmitt-Kopplin, P AF Jansson, Janet Willing, Ben Lucio, Marianna Fekete, Ages Dicksved, Johan Halfvarson, Jonas Tysk, Curt Schmitt-Kopplin, Philippe TI Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease SO PLOS ONE LA English DT Article AB The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention. RP Jansson, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. EM schmitt-kopplin@helmholtz-muenchen.de RI Schmitt-Kopplin, Philippe/H-6271-2011; Jansson, Janet/F-9951-2012; OI Schmitt-Kopplin, Philippe/0000-0003-0824-2664; Dicksved, Johan/0000-0002-7515-4480; Halfvarson, Jonas/0000-0003-0122-7234 NR 32 TC 194 Z9 199 U1 6 U2 73 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 28 PY 2009 VL 4 IS 7 AR e6386 DI 10.1371/journal.pone.0006386 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 475YW UT WOS:000268404900012 PM 19636438 ER PT J AU Hlavacek, WS Faeder, JR AF Hlavacek, William S. Faeder, James R. TI The Complexity of Cell Signaling and the Need for a New Mechanics SO SCIENCE SIGNALING LA English DT Article ID NETWORKS; TRANSDUCTION; RESPONSES; PATHWAY; CAMP AB Cell signaling systems respond to multiple inputs, such as ligands of cellsurface receptors; and produce multiple outputs, such as changes in gene expression and cellular activities, including motility, proliferation, and death. This "macroscopic" input-output behavior is generated by a web of molecular interactions that can be viewed as taking place at a lower, "microscopic" level. These interactions prominently involve posttranslational modification of proteins and the nucleation of protein complexes. Behaviors at both the micro- and macroscopic levels are complex and must be probed systematically and characterized quantitatively as a prelude to the development of a predictive understanding of a cell signaling system. We must also have a theoretical framework or a mechanics within which we can determine how macroscopic behaviors emerge from known microscopic behaviors or change with manipulations of microscopic behaviors. To connect behaviors at both levels, we suggest that a new mechanics is now required. Newly available data support the idea that this mechanics should enable one to track the site-specific details of molecular interactions in a model, such as the phosphorylation status of individual amino acid residues within a protein. C1 [Faeder, James R.] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15260 USA. [Hlavacek, William S.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Faeder, JR (reprint author), Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15260 USA. EM faeder@pitt.edu OI Hlavacek, William/0000-0003-4383-8711 NR 22 TC 15 Z9 15 U1 0 U2 7 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD JUL 28 PY 2009 VL 2 IS 81 AR pe46 DI 10.1126/scisignal.281pe46 PG 3 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 569MM UT WOS:000275601200005 PM 19638613 ER PT J AU Babin, S Bugrov, A Cabrini, S Dhuey, S Goltsov, A Ivonin, I Kley, EB Peroz, C Schmidt, H Yankov, V AF Babin, S. Bugrov, A. Cabrini, S. Dhuey, S. Goltsov, A. Ivonin, I. Kley, E. -B. Peroz, C. Schmidt, H. Yankov, V. TI Digital optical spectrometer-on-chip SO APPLIED PHYSICS LETTERS LA English DT Article DE computer-generated holography; electron beam lithography; etching; hafnium compounds; integrated optoelectronics; optical planar waveguides; silicon compounds; spectrometers ID GRATINGS AB A concept of digital optical spectrometer-on-chip is proposed and results of their fabrication and characterization are reported. The devices are based on computer-designed digital planar holograms which involves millions of lines specifically located and oriented in order to direct output light into designed focal points according to the wavelength. Spectrometers were fabricated on silicon dioxide and hafnium dioxide planar waveguides using electron beam lithography and dry etching. Optical performances of devices with up to 1000 channels for a central wavelength of 660 nm are reported. C1 [Babin, S.; Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA. [Kley, E. -B.; Schmidt, H.] Friedrich Schiller Univ, Inst Appl Phys, D-07745 Jena, Germany. [Bugrov, A.; Goltsov, A.; Ivonin, I.; Yankov, V.] Nanoopt Devices, Washington Township, NJ 07676 USA. [Cabrini, S.; Dhuey, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94702 USA. RP Peroz, C (reprint author), aBeam Technol, 5286 Dunnigan Ct, Castro Valley, CA 94546 USA. EM cp@abeamtech.com FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 6 TC 17 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 041105 DI 10.1063/1.3190199 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900005 ER PT J AU Cubukcu, E Zhang, S Park, YS Bartal, G Zhang, X AF Cubukcu, Ertugrul Zhang, Shuang Park, Yong-Shik Bartal, Guy Zhang, Xiang TI Split ring resonator sensors for infrared detection of single molecular monolayers SO APPLIED PHYSICS LETTERS LA English DT Article DE infrared detectors; monolayers; plasmonics; self-assembly ID ENHANCED RAMAN-SCATTERING; SPECTROSCOPY; ANTENNAS; NANOPARTICLES; ABSORPTION AB We report a surface enhanced molecular detection technique with zeptomole sensitivity that relies on resonant coupling of plasmonic modes of split ring resonators and infrared vibrational modes of a self-assembled monolayer of octadecanthiol molecules. Large near-field enhancements at the gap of split ring resonators allow for this resonant coupling when the molecular absorption peaks overlap spectrally with the plasmonic resonance. Electromagnetic simulations support experimental findings. C1 [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cubukcu, Ertugrul; Zhang, Shuang; Park, Yong-Shik; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cubukcu@berkeley.edu; xzhang@me.berkeley.edu RI Cubukcu, Ertugrul/F-4807-2010; Zhang, Xiang/F-6905-2011; zhang, shuang/G-5224-2011; Cubukcu, Ertugrul/D-5007-2012 FU National Institutes of Health through the NIH Roadmap for Medical Research [PN2 EY018228]; NSF Nanoscale Science and Engineering Center (NSEC) [CMMI-0751621] FX We acknowledge financial support from the National Institutes of Health through the NIH Roadmap for Medical Research (PN2 EY018228) and the NSF Nanoscale Science and Engineering Center (NSEC) under Grant No. CMMI-0751621. NR 24 TC 118 Z9 121 U1 5 U2 62 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 043113 DI 10.1063/1.3194154 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900057 ER PT J AU Huang, L Schofield, MA Zhu, Y AF Huang, L. Schofield, M. A. Zhu, Y. TI Direct observation of the controlled magnetization reversal processes in Py/Al/Py asymmetric ring stacks SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium; magnetic domain walls; magnetic multilayers; magnetic thin films; magnetisation reversal; metallic thin films; micromagnetics; Permalloy; spin valves ID ELECTRON HOLOGRAPHY; MICROSCOPY AB Electron holographic experiments were performed to study the magnetization reversal process of patterned Py/Al/Py (20nm/20nm/10nm) asymmetric ring stacks. By changing the in-plane field applied perpendicular to the ring's symmetric axis, we directly observed the vortex-based magnetization reversal process through controlled domain wall motion and annihilation. The two magnetic layers were found to switch at different critical fields, leading to the existence of various distinct domain state combinations. Quantitative agreement was obtained between measured phase shifts and those derived from micromagnetic calculations, which allows us to resolve the layer-by-layer magnetic behavior as a function of applied external field. C1 [Huang, L.; Schofield, M. A.; Zhu, Y.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Huang, L (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM lhuang@bnl.gov FU U. S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX The authors gratefully acknowledge M. Beleggia and V. V. Volkov for stimulating discussions. Sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory. This work is supported by U. S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. NR 17 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 042501 DI 10.1063/1.3187545 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900034 ER PT J AU Zorba, V Mao, XL Russo, RE AF Zorba, Vassilia Mao, Xianglei Russo, Richard E. TI Laser wavelength effects in ultrafast near-field laser nanostructuring of Si SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; high-speed optical techniques; laser materials processing; machining; nanofabrication; nanostructured materials; semiconductor growth; silicon ID FEMTOSECOND LASER; OPTICAL MICROSCOPY; NANOSCALE; SILICON; SPECTROSCOPY; IRRADIATION; ABLATION; SURFACE; PULSES; SCALE AB We study the effect of laser wavelength (400 and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond pulse duration regime through subwavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure, which can be tuned between craters and protrusions. A single or a few femtosecond pulses can deliver enough energy on the substrate to induce subdiffraction limited surface modification, which is among the smallest ever reported in subwavelength apertured near-field scanning optical microscope schemes. C1 [Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zorba, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov RI Zorba, Vassilia/C-4589-2015 FU Chemical Science Division, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-05CH11231] FX This research has been supported by the Chemical Science Division, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 25 TC 19 Z9 19 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 041110 DI 10.1063/1.3193537 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900010 ER PT J AU Ramalho, G Pena, MT Gross, F AF Ramalho, G. Pena, M. T. Gross, Franz TI Electric quadrupole and magnetic octupole moments of the Delta SO PHYSICS LETTERS B LA English DT Article ID LATTICE QCD; FORM-FACTORS; MODEL; DECUPLET; NUCLEON; BARYONS AB Using a covariant spectator constituent quark model we predict an electric quadrupole moment Q(Delta+) = -0.043 e fm(2) and a magnetic octupole moment O Delta+ = -0.0035 e fm(3) for the Delta(+) excited state of the nucleon. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Ramalho, G.; Gross, Franz] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. RP Ramalho, G (reprint author), Ctr Fis Teor Particulas, Av Rovisco Pais, P-1049001 Lisbon, Portugal. EM gilberto@cftp.ist.utl.pt RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC [DE-AC05-060R23177]; Portuguese Fundacao para a Cinciae Tecnologia (FCT) [SFRH/BPD/26886/2006] FX This work was partially support by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-060R23177. G.R. was supported by the Portuguese Fundacao para a Cinciae Tecnologia (FCT) under the grant SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 project "Study of strongly interacting matter"). NR 44 TC 24 Z9 24 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 27 PY 2009 VL 678 IS 4 BP 355 EP 358 DI 10.1016/j.physletb.2009.06.052 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477QO UT WOS:000268533800005 ER PT J AU Kuhn, JN Tsung, CK Huang, W Somorjai, GA AF Kuhn, John N. Tsung, Chia-Kuang Huang, Wenyu Somorjai, Gabor A. TI Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation SO JOURNAL OF CATALYSIS LA English DT Article DE Nanoparticle; Capping agent; Ethylene hydrogenation; CO oxidation; Platinum ID ELECTRON-BEAM LITHOGRAPHY; SUM-FREQUENCY GENERATION; MESOPOROUS SBA-15 SILICA; PYRROLE HYDROGENATION; CATALYTIC-ACTIVITY; PARTICLE-SIZE; SHAPE CONTROL; SURFACE-AREA; CO OXIDATION; NANOCRYSTALS AB The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H-2 chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties. Published by Elsevier Inc. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Director, Office of Science; Office of Basic Energy Sciences; Division of Chemical Sciences; Geological and Biosciences and Division of Materials Sciences and Engineering; US Department of Energy [DE-AC02-05CH11231]; Chevron's Richmond Technological Center FX We gratefully acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the US Department of Energy under contract No. DE-AC02-05CH11231. Additional financial support from and collaboration with Chevron's Richmond Technological Center are also appreciated. Finally, we thank the Molecular Foundry of the Lawrence Berkeley National Laboratory and Professor A. Paul Alivisatos for use of their facilities. NR 33 TC 97 Z9 98 U1 10 U2 100 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD JUL 25 PY 2009 VL 265 IS 2 BP 209 EP 215 DI 10.1016/j.jcat.2009.05.001 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 474PS UT WOS:000268297000010 ER PT J AU Kim, BJ Miyamoto, Y Ma, BW Frechet, JMJ AF Kim, Bumjoon J. Miyamoto, Yoshikazu Ma, Biwu Frechet, Jean M. J. TI Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID POLYMER SOLAR-CELLS; BULK HETEROJUNCTION MATERIALS; CHARGE-TRANSPORT; MOLECULAR-WEIGHT; IMAGING TECHNIQUE; FILM MORPHOLOGY; END GROUP; PERFORMANCE; POLY(3-HEXYLTHIOPHENE); DEVICES AB Photocrosslinkable bromine-functionalized poly(3-hexylthiophene) (P3HT-Br) copolymers designed for application in solution-processed organic photovoltaics are prepared by copolymerization of 2-bromo-3-(6-bromohexyl) thiophene and 2-bromo-3-hexylthiophene. The monomer ratio is carefully controlled to achieve a UV photocrosslinkable layer while retaining the pi-pi stacking feature of the conjugated polymers. The new materials are used as electron donors in both bulk heterojunction (BHJ) and bilayer type photovoltaic devices. Unlike devices prepared from either P3HT:PCBM blend or P3HT-Br:PCBM blend without UV treatment, photocrosslinked P3HT-Br:PCBM devices are stable even when annealed for two days at the elevated temperature of 150 degrees C as the nanophase separated morphology of the bulk heterojunction is stabilized as confirmed by optical microscopy and grazing incidence wide angle X-ray scattering (GIWAXS). When applied to solution-processed bilayer devices, the photocrosslinkable materials show high power conversion efficiencies (similar to 2%) and excellent thermal stability (3 days at 150 degrees C). Such performance, one of the highest obtained for a bilayer device fabricated by solution processing, is achieved as crosslinking does not disturb the pi-pi stacking of the polymer as confirmed by GIWAXS measurements, These novel photocrosslinkable materials provide ready access to efficient bilayer devices thus enabling the fundamental study of photophysical characteristics, charge generation, and transport across a well-defined interface. C1 [Kim, Bumjoon J.; Miyamoto, Yoshikazu; Ma, Biwu; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, Bumjoon J.; Miyamoto, Yoshikazu; Ma, Biwu; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Bumjoon J.] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. RP Kim, BJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Ma, Biwu/B-6943-2012; Kim, Bumjoon J./C-1714-2011; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC0205CH11231]; US Department of Energy FX B. J. K and Y. M. contributed equally to this work. Financial support of this work by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. A portion of the work was performed at the Molecular Foundry and the Stanford Synchrotron Radiation Laboratory also supported by the US Department of Energy. Y.M. thanks JSR Corporation for support. The authors acknowledge Dr. M. F. Toney at SSRL for assistance in GIWAXS measurements NR 49 TC 167 Z9 171 U1 7 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 24 PY 2009 VL 19 IS 14 BP 2273 EP 2281 DI 10.1002/adfm.200900043 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 478RR UT WOS:000268606500012 ER PT J AU Mahan, AH Su, TN Williamson, DL Gedvilas, LM Ahrenkiel, SP Parilla, PA Xu, YQ Ginley, DA AF Mahan, A. Harv Su, Tining Williamson, Don L. Gedvilas, Lynn M. Ahrenkiel, S. Phil Parilla, Phillip A. Xu, Yueqin Ginley, David A. TI Identification of Nucleation Center Sites in Thermally Annealed Hydrogenated Amorphous Silicon SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID A-SI-H; GRAIN POLYCRYSTALLINE SILICON; SOLID-PHASE CRYSTALLIZATION; CHEMICAL-VAPOR-DEPOSITION; STRUCTURAL INFORMATION; DEVICE-QUALITY; FILMS; MICROSTRUCTURE; TEMPERATURE; ALLOYS AB Utilizing the concepts of a critical crystallite size and local film inhomogeneity, it is shown that nucleation in thermally annealed hydrogenated amorphous silicon occurs in the more well ordered spatial regions in the network, which are defined by the initial inhomogeneous H distributions in the as-grown films. Although the film H evolves very early during annealing, the local film order is largely retained in the still amorphous films even after the vast majority of the H is evolved, and the more well ordered regions which are the nucleation center sites for crystallization are those spatial regions which do not initially contain clustered H, as probed by H NMR spectroscopy. The sizes of these better ordered regions relative to a critical crystallite size determine the film incubation times (the time before the onset of crystallization). Changes in film short range order upon H evolution, and the presence of microvoid type structures in the as grown films play no role in the crystallization process. While the creation of dangling bonds upon H evolution may play a role in the actual phase transformation itself, the film defect densities measured just prior to the onset of crystallization exhibit no trends which can be correlated with the film incubation times. C1 [Mahan, A. Harv; Gedvilas, Lynn M.; Parilla, Phillip A.; Xu, Yueqin; Ginley, David A.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Su, Tining; Williamson, Don L.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Ahrenkiel, S. Phil] S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. RP Mahan, AH (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM harv.mahan@nrel.gov FU US Department of Energy [DE-AC36-99GO10337] FX This work was supported by the US Department of Energy under subcontract DE-AC36-99GO10337. NR 48 TC 21 Z9 21 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 24 PY 2009 VL 19 IS 14 BP 2338 EP 2344 DI 10.1002/adfm.200801709 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 478RR UT WOS:000268606500021 ER PT J AU Soule, T Palmer, K Gao, QJ Potrafka, RM Stout, V Garcia-Pichel, F AF Soule, Tanya Palmer, Kendra Gao, Qunjie Potrafka, Ruth M. Stout, Valerie Garcia-Pichel, Ferran TI A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria SO BMC GENOMICS LA English DT Article ID LEUCINE DEHYDROGENASE; SIGNAL-TRANSDUCTION; NOSTOC-COMMUNE; DIVERSITY; 2-COMPONENT; PIGMENT; GENE; TRYPTOPHAN; ACIDS AB Background: The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome) involved in the biosynthesis of scytonemin. We provide further genomic characterization of these genes in N. punctiforme and extend it to homologous regions in other cyanobacteria. Results: Six putative genes in the scytonemin gene cluster (NpR1276 to NpR1271 in the N. punctiforme genome), with no previously known protein function and annotated in this study as scyA to scyF, are likely involved in the assembly of scytonemin from central metabolites, based on genetic, biochemical, and sequence similarity evidence. Also in this cluster are redundant copies of genes encoding for aromatic amino acid biosynthetic enzymes. These can theoretically lead to tryptophan and the tyrosine precursor, p-hydroxyphenylpyruvate, (expected biosynthetic precursors of scytonemin) from end products of the shikimic acid pathway. Redundant copies of the genes coding for the key regulatory and rate-limiting enzymes of the shikimic acid pathway are found there as well. We identified four other cyanobacterial strains containing orthologues of all of these genes, three of them by database searches (Lyngbya PCC 8106, Anabaena PCC 7120, and Nodularia CCY 9414) and one by targeted sequencing (Chlorogloeopsis sp. strain Cgs-089; CCMEE 5094). Genomic comparisons revealed that most scytonemin-related genes were highly conserved among strains and that two additional conserved clusters, NpF5232 to NpF5236 and a putative two-component regulatory system (NpF1278 and NpF1277), are likely involved in scytonemin biosynthesis and regulation, respectively, on the basis of conservation and location. Since many of the protein product sequences for the newly described genes, including ScyD, ScyE, and ScyF, have export signal domains, while others have putative transmembrane domains, it can be inferred that scytonemin biosynthesis is compartmentalized within the cell. Basic structural monomer synthesis and initial condensation are most likely cytoplasmic, while later reactions are predicted to be periplasmic. Conclusion: We show that scytonemin biosynthetic genes are highly conserved among evolutionarily diverse strains, likely include more genes than previously determined, and are predicted to involve compartmentalization of the biosynthetic pathway in the cell, an unusual trait for prokaryotes. C1 [Soule, Tanya; Palmer, Kendra; Gao, Qunjie; Potrafka, Ruth M.; Stout, Valerie; Garcia-Pichel, Ferran] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Soule, Tanya] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Garcia-Pichel, F (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM tanya.soule@srnl.doe.gov; kendra.harris@asu.edu; gao.qunjie@asu.edu; ruth.potrafka@asu.edu; vstout@asu.edu; ferran@asu.edu NR 41 TC 32 Z9 33 U1 1 U2 17 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 24 PY 2009 VL 10 AR 336 DI 10.1186/1471-2164-10-336 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 490NU UT WOS:000269508600003 PM 19630972 ER PT J AU Perrine, CL Ganguli, A Wu, P Bertozzi, CR Fritz, TA Raman, J Tabak, LA Gerken, TA AF Perrine, Cynthia L. Ganguli, Anjali Wu, Peng Bertozzi, Carolyn R. Fritz, Timothy A. Raman, Jayalakshmi Tabak, Lawrence A. Gerken, Thomas A. TI Glycopeptide-preferring Polypeptide GalNAc Transferase 10 (ppGalNAc T10), Involved in Mucin-type O-Glycosylation, Has a Unique GalNAc-O-Ser/Thr-binding Site in Its Catalytic Domain Not Found in ppGalNAc T1 or T2 SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ACETYL-D-GALACTOSAMINE; N-ACETYLGALACTOSAMINYLTRANSFERASE FAMILY; NEIGHBORING RESIDUE GLYCOSYLATION; PEPTIDE ACCEPTOR PREFERENCES; UDP-GALNAC; TANDEM REPEAT; FUNCTIONAL-CHARACTERIZATION; DROSOPHILA-MELANOGASTER; LINKED GLYCOSYLATION; STAUDINGER LIGATION AB Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer GalNAc from UDP-GalNAc to the Ser and Thr residues of polypeptide acceptors. Some members of the family prefer previously glycosylated peptides (ppGalNAc T7 and T10), whereas others are inhibited by neighboring glycosylation (ppGalNAc T1 and T2). Characterizing their peptide and glycopeptide substrate specificity is critical for understanding the biological role and significance of each isoform. Utilizing a series of random peptide and glycopeptide substrates, we have obtained the peptide and glycopeptide specificities of ppGalNAc T10 for comparison with ppGalNAc T1 and T2. For the glycopeptide substrates, ppGalNAc T10 exhibited a single large preference for Ser/Thr-O-GalNAc at the +1 (C-terminal) position relative to the Ser or Thr acceptor site. ppGalNAc T1 and T2 revealed no significant enhancements suggesting Ser/Thr-O-GalNAc was inhibitory at most positions for these isoforms. Against random peptide substrates, ppGalNAc T10 revealed no significant hydrophobic or hydrophilic residue enhancements, in contrast to what has been reported previously for ppGalNAc T1 and T2. Our results reveal that these transferases have unique peptide and glycopeptide preferences demonstrating their substrate diversity and their likely roles ranging from initiating transferases to filling-in transferases. C1 [Gerken, Thomas A.] Case Western Reserve Univ, Sch Med, Dept Pediat, Cleveland, OH 44106 USA. [Perrine, Cynthia L.; Gerken, Thomas A.] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA. [Gerken, Thomas A.] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA. [Gerken, Thomas A.] Case Western Reserve Univ, WA Bernbaum Ctr Cyst Fibrosis Res, Cleveland, OH 44106 USA. [Ganguli, Anjali; Wu, Peng; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fritz, Timothy A.; Raman, Jayalakshmi; Tabak, Lawrence A.] NIDDK, Sect Biol Chem, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA. RP Gerken, TA (reprint author), Case Western Reserve Univ, Sch Med, Dept Pediat, BRB 823,2109 Adelbert Rd, Cleveland, OH 44106 USA. EM txg2@cwru.edu FU National Institutes of Health [CA-78834]; NCI [GM66047]; NIDDK FX This work was supported, in whole or in part, by National Institutes of Health Grants CA-78834 from NCI (to T. A. G.) and GM66047 (to C. R. B.) and an NIDDK intramural program grant (to L. A. T.). NR 51 TC 31 Z9 36 U1 0 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 24 PY 2009 VL 284 IS 30 BP 20387 EP 20397 DI 10.1074/jbc.M109.017236 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 471ZO UT WOS:000268097400064 PM 19460755 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Production of Narrow t(b)over-bar Resonances in 1:9 fb(-1) of p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID RIGHT GAUGE-SYMMETRY; MODEL; VIOLATION; PHYSICS AB We present new limits on resonant t (b) over bar production in p (p) over bar collisions at root s = 1.96 TeV, using 1.9 fb(-1) of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate t (b) over bar mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous t (b) over bar production as modeled by W' -> t (b) over bar. We set a new limit on a right-handed W' with standard model-like coupling, excluding any mass below 800 GeV/c(2) at 95% C.L. The cross section for any narrow, resonant t (b) over bar production between 750 and 950 GeV/c(2) is found to be less than 0.28 pb at 95% C. L. We also present an exclusion of the W' coupling strength versus W' mass over the range 300-950 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, Athens 15771, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Mills, C.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Mulmenstadt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, UMR7585,IN2P3, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Di Ruzza, B.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 NR 29 TC 51 Z9 51 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 041801 DI 10.1103/PhysRevLett.103.041801 PG 7 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400010 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for Second-Class Currents in tau(-) -> omega pi(-)nu(tau) SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO; COLLISIONS; PHYSICS; DECAYS; JETS AB We report an analysis of tau(-) decaying into omega pi(-)nu(tau) with omega -> pi(+)pi(-)pi(0) using a data sample containing nearly 320 x 10(6)tau pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents, and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Tennessee, Knoxville, TN 37996 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Corwin, Luke/0000-0001-7143-3821; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Martinelli, Maurizio/0000-0003-4792-9178; Wilson, Robert/0000-0002-8184-4103 NR 19 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 041802 DI 10.1103/PhysRevLett.103.041802 PG 7 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400011 ER PT J AU Bischofs, IB Schmidt, SS Schwarz, US AF Bischofs, Ilka B. Schmidt, Sebastian S. Schwarz, Ulrich S. TI Effect of Adhesion Geometry and Rigidity on Cellular Force Distributions SO PHYSICAL REVIEW LETTERS LA English DT Article ID FOCAL ADHESIONS; STRESS FIBERS; LIVING CELLS; SHAPE AB The behavior and fate of tissue cells are controlled by the rigidity and geometry of their adhesive environment, possibly through forces localized to sites of adhesion. We introduce a mechanical model that predicts cellular force distributions for cells adhering to adhesive patterns with different geometries and rigidities. For continuous adhesion along a closed contour, forces are predicted to be localized to the corners. For discrete sites of adhesion, the model predicts the forces to be mainly determined by the lateral pull of the cell contour. With increasing distance between two neighboring sites of adhesion, the adhesion force increases because the cell shape results in steeper pulling directions. Softer substrates result in smaller forces. Our predictions agree well with experimental force patterns measured on pillar assays. C1 [Bischofs, Ilka B.; Schmidt, Sebastian S.; Schwarz, Ulrich S.] Univ Heidelberg, D-69120 Heidelberg, Germany. [Bischofs, Ilka B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94710 USA. [Schmidt, Sebastian S.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Schwarz, Ulrich S.] Univ Karlsruhe, Theoret Biophys Grp, D-76128 Karlsruhe, Germany. RP Bischofs, IB (reprint author), Univ Heidelberg, Neuenheimer Feld 267, D-69120 Heidelberg, Germany. EM ilka@bischofs-pfeifer.eu; Ulrich.Schwarz@kit.edu RI Schwarz, Ulrich/K-4111-2014 OI Schwarz, Ulrich/0000-0003-1483-640X FU Center for Modelling and Simulations in the Biosciences (BIOMS) at Heidelberg; Karlsruhe Institute of Technology (KIT) FX We thank Franziska Klein, Dirk Lehnert, and Martin Bastmeyer for many helpful discussions and Chris Chen and Chris Lemmon for providing supplementary data for Fig. 4. This work was supported by the Center for Modelling and Simulations in the Biosciences (BIOMS) at Heidelberg and by the Karlsruhe Institute of Technology (KIT) through its Concept for the Future. NR 12 TC 44 Z9 45 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 048101 DI 10.1103/PhysRevLett.103.048101 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400072 PM 19659402 ER PT J AU Chickering, WE Eisenstein, JP Reno, JL AF Chickering, W. E. Eisenstein, J. P. Reno, J. L. TI Hot-Electron Thermocouple and the Diffusion Thermopower of Two-Dimensional Electrons in GaAs SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAS; FIELD AB A simple hot-electron thermocouple is realized in a two-dimensional electron system (2DES) and used to measure the diffusion thermopower of the 2DES at zero magnetic field. This hot-electron technique, which requires no micron-scale patterning of the 2DES, is much less sensitive than conventional methods to phonon-drag effects. Our thermopower results are in good agreement with the Mott formula for diffusion thermopower for temperatures up to T similar to 2 K. C1 [Chickering, W. E.; Eisenstein, J. P.] CALTECH, Pasadena, CA 91125 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chickering, WE (reprint author), CALTECH, Pasadena, CA 91125 USA. FU DOE [DE-FG03-99ER45766]; Microsoft Project Q FX We thank Gil Refael, Sankar Das Sarma, and Ady Stern for helpful discussions. This work was supported via DOE Grant No. DE-FG03-99ER45766 and Microsoft Project Q. NR 15 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 046807 DI 10.1103/PhysRevLett.103.046807 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400055 PM 19659385 ER PT J AU Froula, DH Divol, L London, RA Berger, RL Doppner, T Meezan, NB Ross, JS Suter, LJ Sorce, C Glenzer, SH AF Froula, D. H. Divol, L. London, R. A. Berger, R. L. Doeppner, T. Meezan, N. B. Ross, J. S. Suter, L. J. Sorce, C. Glenzer, S. H. TI Observation of the Density Threshold Behavior for the Onset of Stimulated Raman Scattering in High-Temperature Hohlraum Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; LASER-PLASMA; TARGETS; INSTABILITY AB We show that the measured stimulated Raman scattering (SRS) in a large-scale high-temperature plasma scales strongly with the plasma density, increasing by an order of magnitude when the electron density is increased by 20%. This is consistent with linear theory, including pump depletion, in a uniform plasma and, as the density is typically constrained by other processes, this effect will set a limit on drive laser beam intensity for forthcoming ignition experiments at the National Ignition Facility. Control of SRS at laser intensities consistent with 285 eV ignition hohlraums is achieved by using polarization smoothing which increases the intensity threshold for the onset of SRS by 1.6 +/- 0.2. These results were quantitatively predicted by full beam three-dimensional numerical laser-plasma interaction simulations. C1 [Froula, D. H.; Divol, L.; London, R. A.; Berger, R. L.; Doeppner, T.; Meezan, N. B.; Ross, J. S.; Suter, L. J.; Sorce, C.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Froula, DH (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. EM froula1@llnl.gov FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 22 TC 23 Z9 23 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 045006 DI 10.1103/PhysRevLett.103.045006 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400036 ER PT J AU Harding, EC Hansen, JF Hurricane, OA Drake, RP Robey, HF Kuranz, CC Remington, BA Bono, MJ Grosskopf, MJ Gillespie, RS AF Harding, E. C. Hansen, J. F. Hurricane, O. A. Drake, R. P. Robey, H. F. Kuranz, C. C. Remington, B. A. Bono, M. J. Grosskopf, M. J. Gillespie, R. S. TI Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAYLEIGH-TAYLOR; PROPAGATION AB A laser initiated experiment is described in which an unstable plasma shear layer is produced by driving a blast wave along a plastic surface with sinusoidal perturbations. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vortices characteristic of the Kelvin-Helmholtz instability. The experiment used x-ray radiography to capture the first well-resolved images of Kelvin-Helmholtz vortices in a high-energy-density plasma. C1 [Harding, E. C.; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Gillespie, R. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Hansen, J. F.; Hurricane, O. A.; Robey, H. F.; Remington, B. A.; Bono, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Harding, EC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. OI Drake, R Paul/0000-0002-5450-9844 FU Stockpile Stewardship Academic Alliances program through DOE Research [DE-FG52-07NA28058, DE-FG52-04NA00064] FX The authors acknowledge Chuck Sorce, Omega Operations Staff, LLNL Target Fabrication, and Michigan Target Fabrication for their outstanding support. This research was sponsored by the Stockpile Stewardship Academic Alliances program through DOE Research Grant No. DE-FG52-07NA28058, and by DOE Research Grant No. DE-FG52-04NA00064 and other grants and contracts. NR 26 TC 46 Z9 46 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 045005 DI 10.1103/PhysRevLett.103.045005 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400035 PM 19659365 ER PT J AU Henig, A Kiefer, D Markey, K Gautier, DC Flippo, KA Letzring, S Johnson, RP Shimada, T Yin, L Albright, BJ Bowers, KJ Fernandez, JC Rykovanov, SG Wu, HC Zepf, M Jung, D Liechtenstein, VK Schreiber, J Habs, D Hegelich, BM AF Henig, A. Kiefer, D. Markey, K. Gautier, D. C. Flippo, K. A. Letzring, S. Johnson, R. P. Shimada, T. Yin, L. Albright, B. J. Bowers, K. J. Fernandez, J. C. Rykovanov, S. G. Wu, H. -C. Zepf, M. Jung, D. Liechtenstein, V. Kh. Schreiber, J. Habs, D. Hegelich, B. M. TI Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA INTERACTIONS; PULSES AB We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of similar to 7 X 10(19) W/cm(2). An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target. Our experimental results are supported by both particle-in-cell (PIC) simulations and an analytical model. C1 [Henig, A.; Kiefer, D.; Rykovanov, S. G.; Wu, H. -C.; Jung, D.; Schreiber, J.; Habs, D.] Max Planck Inst Quantum Opt, Garching, Germany. [Henig, A.; Kiefer, D.; Jung, D.; Liechtenstein, V. Kh.; Schreiber, J.; Habs, D.; Hegelich, B. M.] Univ Munich, Dept Phys, D-8046 Garching, Germany. [Markey, K.; Zepf, M.] Queens Univ Belfast, Dept Phys & Astron, Belfast BT7 1NN, Antrim, North Ireland. [Gautier, D. C.; Flippo, K. A.; Letzring, S.; Johnson, R. P.; Shimada, T.; Yin, L.; Albright, B. J.; Bowers, K. J.; Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rykovanov, S. G.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Liechtenstein, V. Kh.] RRC Kurchatov Inst, Moscow 123182, Russia. [Schreiber, J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2BZ, England. RP Henig, A (reprint author), Max Planck Inst Quantum Opt, Garching, Germany. EM andreas.henig@mpq.mpg.de RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; Zepf, Matt/M-1232-2014; Flippo, Kirk/C-6872-2009; OI Fernandez, Juan/0000-0002-1438-1815; Flippo, Kirk/0000-0002-4752-5141; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320 FU U. S. DOE; DFG [TR18]; IMPRS-PS; DAAD FX We thank J. Meyer-ter-Vehn for fruitful discussions. This work was performed under the auspices of the U. S. DOE and was supported by the LANL LDRD program and by the DFG under Contract No. TR18 and the DFG cluster of excellence MAP. A. Henig, D. Kiefer, D. Jung, and S. G. Rykovanov acknowledge financial support from IMPRS-PS, J. Schreiber from DAAD. NR 23 TC 130 Z9 130 U1 4 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 045002 DI 10.1103/PhysRevLett.103.045002 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400032 PM 19659362 ER PT J AU Kapetanakis, MD Perakis, IE Wickey, KJ Piermarocchi, C Wang, J AF Kapetanakis, M. D. Perakis, I. E. Wickey, K. J. Piermarocchi, C. Wang, J. TI Femtosecond Coherent Control of Spins in (Ga, Mn)As Ferromagnetic Semiconductors Using Light SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMIMAGNETIC SEMICONDUCTORS; BRILLOUIN-ZONE; L-POINT; MAGNETIZATION; MAGNETOOPTICS AB Using density matrix equations of motion, we predict a femtosecond collective spin tilt triggered by nonlinear, near-ultraviolet (similar to 3 eV), coherent photoexcitation of (Ga, Mn) As ferromagnetic semiconductors with linearly polarized light. This dynamics results from carrier coherences and nonthermal populations excited in the {111} equivalent directions of the Brillouin zone and triggers a subsequent uniform precession. We predict nonthermal magnetization control by tuning the laser frequency and polarization direction. Our mechanism explains recent ultrafast pump-probe experiments. C1 [Kapetanakis, M. D.; Perakis, I. E.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. [Kapetanakis, M. D.; Perakis, I. E.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Wickey, K. J.; Piermarocchi, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Wang, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, J.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Kapetanakis, MD (reprint author), Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. RI Piermarocchi, Carlo/A-2427-2008; Perakis, Ilias/G-9186-2011; OI Piermarocchi, Carlo/0000-0003-2762-8562; KAPETANAKIS, MYRON/0000-0003-1503-9787 FU HYSWITCH; U.S. National Science Foundation [DMR0608501]; U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX This work was supported by the E.U. STREP program HYSWITCH, the U.S. National Science Foundation grant DMR0608501, and the U.S. Department of Energy-Basic Energy Sciences under contract DE-AC02-07CH11358. NR 35 TC 26 Z9 26 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 047404 DI 10.1103/PhysRevLett.103.047404 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400070 PM 19659400 ER PT J AU Liao, JF Koch, V AF Liao, Jinfeng Koch, Volker TI Exposing the Noncollectivity in Elliptic Flow SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; COLLISIONS; INTERFEROMETRY; COLLABORATION; PERSPECTIVE; DEPENDENCE; SIGNATURE; SPS AB We show that backward-forward elliptic anisotropy correlation provides an experimentally accessible observable which distinguishes between collective and noncollective contributions to the observed elliptic anisotropy nu(2) in relativistic heavy ion collisions. The measurement of this observable will reveal the momentum scale at which collective expansion seizes and where the elliptic anisotropy is dominated by (semi) hard processes. C1 [Liao, Jinfeng; Koch, Volker] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liao, JF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, MS70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jliao@lbl.gov; vkoch@lbl.gov FU Office of High Energy and Nuclear Physics; Divisions of Nuclear Physics; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank M. Ploskon and A. Poskanzer for discussions on the experimental aspects of the proposed observable. This work is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 042302 DI 10.1103/PhysRevLett.103.042302 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400013 PM 19659343 ER PT J AU Park, CH Son, YW Yang, L Cohen, ML Louie, SG AF Park, Cheol-Hwan Son, Young-Woo Yang, Li Cohen, Marvin L. Louie, Steven G. TI Landau Levels and Quantum Hall Effect in Graphene Superlattices SO PHYSICAL REVIEW LETTERS LA English DT Article ID MASSLESS DIRAC FERMIONS; EPITAXIAL GRAPHENE; BERRYS PHASE; GAS AB We show that, when graphene is subjected to an appropriate one-dimensional external periodic potential, additional branches of massless fermions are generated with nearly the same electron-hole crossing energy as that at the original Dirac point of graphene. Because of these new zero-energy branches, the Landau levels at charge neutral filling become 4(2N + 1)-fold degenerate (with N 0, 1, 2,..., tunable by the potential strength and periodicity) with the corresponding Hall conductivity sigma(xy) showing a step of size 4(2N + 1)e(2)/h. These theoretical findings are robust against variations in the details of the external potential and provide measurable signatures of the unusual electronic structure of graphene superlattices. C1 [Park, Cheol-Hwan; Yang, Li; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Park, Cheol-Hwan; Yang, Li; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Son, Young-Woo] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea. RP Park, CH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI Park, Cheol-Hwan/A-1543-2009; son, Young-Woo/B-2566-2010 OI Park, Cheol-Hwan/0000-0003-1584-6896; NR 37 TC 104 Z9 105 U1 2 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 046808 DI 10.1103/PhysRevLett.103.046808 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400056 PM 19659386 ER PT J AU Perkins, LJ Betti, R LaFortune, KN Williams, WH AF Perkins, L. J. Betti, R. LaFortune, K. N. Williams, W. H. TI Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility SO PHYSICAL REVIEW LETTERS LA English DT Article AB Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of similar to 120-250 MJ may be possible with laser drive energies of 1-1.6 MJ, while gains of similar to 50 may still be achievable at only similar to 0.2 MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G similar to 126E (MJ)(0.510). This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path. C1 [Perkins, L. J.; LaFortune, K. N.; Williams, W. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Perkins, LJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U. S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LDRD-08-ERD-050] FX We are pleased to acknowledge informative discussions with J. Nuckolls. This work performed under auspices of U. S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by LDRD-08-ERD-050. NR 16 TC 87 Z9 93 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 045004 DI 10.1103/PhysRevLett.103.045004 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400034 PM 19659364 ER PT J AU Rahaman, S Elomaa, VV Eronen, T Hakala, J Jokinen, A Kankainen, A Rissanen, J Suhonen, J Weber, C Aysto, J AF Rahaman, S. Elomaa, V. -V. Eronen, T. Hakala, J. Jokinen, A. Kankainen, A. Rissanen, J. Suhonen, J. Weber, C. Aysto, J. TI Accurate Q Value for the Sn-112 Double-beta Decay and its Implication for the Search of the Neutrino Mass SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXOTIC NUCLEI; PENNING TRAPS; RAMSEY METHOD; ION; IGISOL; SPECTROMETRY; ELECTRON; ISOLTRAP; CAPTURE; BEAMS AB The Q value of the Sn-112 double-beta decay was determined by using a Penning trap mass spectrometer. The new atomic-mass difference between Sn-112 and Cd-112 of 1919.82(16) keV is 25 times more precise than the previous value of 1919(4) keV. This result removes the possibility of enhanced resonance capture of the neutrinoless double-EC decay to the excited 0(+) state at 1871.00(19) keV in Cd-112. C1 [Rahaman, S.; Elomaa, V. -V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Rissanen, J.; Suhonen, J.; Weber, C.; Aysto, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. RP Rahaman, S (reprint author), Los Alamos Natl Lab, Phys Div P 23, Mail Stop H803, Los Alamos, NM 87545 USA. EM mrahaman@lanl.gov RI Kankainen, Anu/K-3448-2014; Jokinen, Ari/C-2477-2017 OI Kankainen, Anu/0000-0003-1082-7602; Jokinen, Ari/0000-0002-0451-125X NR 28 TC 58 Z9 58 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 042501 DI 10.1103/PhysRevLett.103.042501 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400014 PM 19659344 ER PT J AU Samulon, EC Kohama, Y McDonald, RD Shapiro, MC Al-Hassanieh, KA Batista, CD Jaime, M Fisher, IR AF Samulon, E. C. Kohama, Y. McDonald, R. D. Shapiro, M. C. Al-Hassanieh, K. A. Batista, C. D. Jaime, M. Fisher, I. R. TI Asymmetric Quintuplet Condensation in the Frustrated S = 1 Spin Dimer Compound Ba3Mn2O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; TLCUCL3; F2PNNNO; SYSTEM AB Ba3Mn2O8 is a spin-dimer compound based on pairs of S = 1, 3d(2), Mn5+ ions arranged on a triangular lattice. Antiferromagnetic intradimer exchange leads to a singlet ground state in zero field, with excited triplet and quintuplet states at higher energy. High field thermodynamic measurements are used to establish the phase diagram, revealing a substantial asymmetry of the quintuplet condensate. This striking effect, all but absent for the triplet condensate, is due to a fundamental asymmetry in quantum fluctuations of the paramagnetic phases near the various critical fields. C1 [Samulon, E. C.; Shapiro, M. C.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Samulon, E. C.; Shapiro, M. C.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Kohama, Y.; McDonald, R. D.; Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Kohama, Y.] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Al-Hassanieh, K. A.; Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Samulon, EC (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RI McDonald, Ross/H-3783-2013; Jaime, Marcelo/F-3791-2015; Batista, Cristian/J-8008-2016; OI McDonald, Ross/0000-0002-0188-1087; Jaime, Marcelo/0000-0001-5360-5220; Mcdonald, Ross/0000-0002-5819-4739 FU National Science Foundation, Division of Materials Research [DMR-0705087, DMR-0084173]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515, DE-AC52-06NA25396]; State of Florida FX The authors acknowledge experimental assistance from N. Harrison and V. Zapf. Work at Stanford University is supported by the National Science Foundation, Division of Materials Research under grant DMR-0705087. Crystal growth equipment purchased with support from the Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-76SF00515. Most of the experimental portion of this work was performed at the NHMFL, which is supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the DOE. The theoretical portion of this work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 22 TC 16 Z9 16 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 047202 DI 10.1103/PhysRevLett.103.047202 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400064 PM 19659394 ER PT J AU Uche, OU Perez, D Voter, AF Hamilton, JC AF Uche, O. U. Perez, D. Voter, A. F. Hamilton, J. C. TI Rapid Diffusion of Magic-Size Islands by Combined Glide and Vacancy Mechanism SO PHYSICAL REVIEW LETTERS LA English DT Article ID EMBEDDED-ATOM METHOD; CLUSTER DIFFUSION; AG OVERLAYER; SURFACES; DYNAMICS; NI(100); CU(100); GROWTH; MOTION AB Using molecular dynamics, nudged elastic band, and embedded atom methods, we show that certain 2D Ag islands undergo extremely rapid one-dimensional diffusion on Cu(001) surfaces. Indeed, below 300 K, hopping rates for "magic-size'' islands are orders of magnitude faster than hopping rates for single Ag adatoms. This rapid diffusion requires both the c(10 x 2) hexagonally packed superstructure typical of Ag on Cu(001) and appropriate "magic sizes'' for the islands. The novel highly cooperative diffusion mechanism presented here couples vacancy diffusion with simultaneous core glide. C1 [Uche, O. U.; Hamilton, J. C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Perez, D.; Voter, A. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Uche, OU (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. OI Voter, Arthur/0000-0001-9788-7194 FU U. S. Department of Energy, Basic Energy Sciences, Division of Materials Science [DE-AC04-94AL85000]; Sandia National Laboratory [DE-AC52-O6NA25396]; Los Alamos National Security LLC FX We gratefully acknowledge N. C. Bartelt for helpful discussions and NSF's Teragrid for providing computer resources. D. P. gratefully acknowledges Director's Funding at Los Alamos National Laboratory (LANL). This work was supported by the U. S. Department of Energy, Basic Energy Sciences, Division of Materials Science, under Contract No. DE-AC04-94AL85000 at Sandia National Laboratory and Contract No. DE-AC52-O6NA25396 at LANL. LANL is operated by Los Alamos National Security LLC, for the NNSA. NR 21 TC 14 Z9 14 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 046101 DI 10.1103/PhysRevLett.103.046101 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400043 PM 19659373 ER PT J AU Varga, T Kumar, A Vlahos, E Denev, S Park, M Hong, S Sanehira, T Wang, Y Fennie, CJ Streiffer, SK Ke, X Schiffer, P Gopalan, V Mitchell, JF AF Varga, T. Kumar, A. Vlahos, E. Denev, S. Park, M. Hong, S. Sanehira, T. Wang, Y. Fennie, C. J. Streiffer, S. K. Ke, X. Schiffer, P. Gopalan, V. Mitchell, J. F. TI Coexistence of Weak Ferromagnetism and Ferroelectricity in the High Pressure LiNbO3-Type Phase of FeTiO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTIFERROICS; MANGANITES AB We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below similar to 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure. C1 [Varga, T.; Hong, S.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kumar, A.; Vlahos, E.; Denev, S.; Gopalan, V.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Park, M.] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Sanehira, T.; Wang, Y.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Fennie, C. J.] Cornell Univ, Dept Appl & Engn Phys, Ithaca, NY 14853 USA. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Ke, X.; Schiffer, P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Ke, X.; Schiffer, P.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Varga, T (reprint author), Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RI Schiffer, Peter/F-3227-2011; Kumar, Amit/C-9662-2012; Hong, Seungbum/B-7708-2009; OI Wang, Yanbin/0000-0001-5716-3183; Kumar, Amit/0000-0002-1194-5531; Hong, Seungbum/0000-0002-2667-1983; Schiffer, Peter/0000-0002-6430-6549 FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG01-94ER14466]; National Science Foundation [DMR-0820404, DMR-0507146, DMR-0512165, DMR 0520404] FX Work at Argonne and use of the Advanced Photon Source and the Center for Nanoscale Materials is supported by the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. Portions of this work were performed at the GEeoSoilEnviroCARS, which is supported by the National Science Foundation-Earth Sciences (EAR-0622171) and the Department of Energy-Geosciences (DE-FG01-94ER14466). P. S. and V. G. acknowledge support from the National Science Foundation Grants No. DMR-0820404, No. DMR-0507146, and No. DMR-0512165. C.J.F. acknowledges support from the Cornell Center for Materials Research with funding from the National Science Foundation (cooperative agreement DMR 0520404). NR 24 TC 63 Z9 64 U1 6 U2 52 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 24 PY 2009 VL 103 IS 4 AR 047601 DI 10.1103/PhysRevLett.103.047601 PG 4 WC Physics, Multidisciplinary SC Physics GA 474TQ UT WOS:000268307400071 PM 19659401 ER PT J AU Acciari, VA Aliu, E Arlen, T Bautista, M Beilicke, M Benbow, W Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Celik, O Cesarini, A Chow, YC Ciupik, L Cogan, P Cui, W Dickherber, R Fegan, SJ Finley, JP Fortin, P Fortson, L Furniss, A Gall, D Gillanders, GH Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Swordy, SP Theiling, M Toner, JA Varlotta, A Vincent, S Wakely, SP Ward, JE Weekes, TC Weinstein, A Williams, DA Wissel, S Wood, M Walker, RC Davies, F Hardee, PE Junor, W Ly, C Aharonian, F Akhperjanian, AG Anton, G de Almeida, UB Bazer-Bachi, AR Becherini, Y Behera, B Bernlohr, K Bochow, A Boisson, C Bolmont, J Borrel, V Brucker, J Brun, F Brun, P Buhler, R Bulik, T Busching, I Boutelier, T Chadwick, PM Charbonnier, A Chaves, RCG Cheesebrough, A Chounet, LM Clapson, AC Coignet, G Dalton, M Daniel, MK Davids, ID Degrange, B Deil, C Dickinson, HJ Djannati-Atai, A Domainko, W Drury, LO Dubois, F Dubus, G Dyks, J Dyrda, M Egberts, K Emmanoulopoulos, D Espigat, P Farnier, C Feinstein, F Fiasson, A Forster, A Fontaine, G Fussling, M Gabici, S Gallant, YA Gerard, L Gerbig, D Giebels, B Glicenstein, JF Gluck, B Goret, P Gohring, D Hauser, D Hauser, M Heinz, S Heinzelmann, G Henri, G Hermann, G Hinton, JA Hoffmann, A Hofmann, W Holleran, M Hoppe, S Horns, D Jacholkowska, A de Jager, OC Jahn, C Jung, I Katarzynski, K Katz, U Kaufmann, S Kendziorra, E Kerschhaggl, M Khangulyan, D Khelifi, B Keogh, D Kluzniak, W Kneiske, T Komin, N Kosack, K Lamanna, G Lenain, JP Lohse, T Marandon, V Martin, JM Martineau-Huynh, O Marcowith, A Maurin, D McComb, TJL Medina, MC Moderski, R Moulin, E Naumann-Godo, M de Naurois, M Nedbal, D Nekrassov, D Nicholas, B Niemiec, J Nolan, SJ Ohm, S Olive, JF Wilhelmi, ED Orford, KJ Ostrowski, M Panter, M Arribas, MP Pedaletti, G Pelletier, G Petrucci, PO Pita, S Raue, M Rayner, SM Renaud, M Rieger, F Ripken, J Rob, L Rosier-Lees, S Rowell, G Rudak, B Rulten, CB Ruppel, J Sahakian, V Santangelo, A Schlickeiser, R Schock, FM Schroder, R Schwanke, U Schwarzburg, S Schwemmer, S Shalchi, A Sikora, M Skilton, JL Sol, H Spangler, D Stawarz, L Steenkamp, R Stegmann, C Stinzing, F Superina, G Szostek, A Tam, PH Tavernet, JP Terrier, R Tibolla, O Tluczykont, M van Eldik, C Vasileiadis, G Venter, C Venter, L Vialle, JP Vincent, P Vivier, M Volk, HJ Volpe, F Wagner, SJ Ward, M Zdziarski, AA Zech, A Anderhub, H Antonelli, LA Antoranz, P Backes, M Baixeras, C Balestra, S Barrio, JA Bastieri, D Gonzlez, JB Becker, JK Bednarek, W Berger, K Bernardini, E Biland, A Bock, RK Bonnoli, G Bordas, P Tridon, DB Bosch-Ramon, V Bose, D Braun, I Bretz, T Britvitch, I Camara, M Carmona, E Commichau, S Contreras, JL Cortina, J Costado, MT Covino, S Curtef, V Dazzi, F De Angelis, A Del Pozo, ED Mendez, CD De los Reyes, R De Lotto, B De Maria, M De Sabata, F Dominguez, A Dorner, D Doro, M Elsaesser, D Errando, M Ferenc, D Fernndez, E Firpo, R Fonseca, MV Font, L Galante, N Lopez, RJG Garczarczyk, M Gaug, M Goebel, F Hadasch, D Hayashida, M Herrero, A Hildebrand, D Hohne-Monch, D Hose, J Hsu, CC Jogler, T Kranich, D La Barbera, A Laille, A Leonardo, E Lindfors, E Lombardi, S Longo, F Lopez, M Lorenz, E Majumdar, P Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Mariotti, M Martinez, M Mazin, D Meucci, M Miranda, JM Mirzoyan, R Miyamoto, H Moldon, J Moles, M Moralejo, A Nieto, D Nilsson, K Ninkovic, J Oya, I Paoletti, R Paredes, JM Pasanen, M Pascoli, D Pauss, F Pegna, RG Perez-Torres, MA Persic, M Peruzzo, L Prada, F Prandini, E Puchades, N Reichardt, I Rhode, W Ribo, M Rico, J Rissi, M Robert, A Rugamer, S Saggion, A Saito, TY Salvati, M Sanchez-Conde, M Satalecka, K Scalzotto, V Scapin, V Schweizer, T Shayduk, M Shore, SN Sidro, N Sierpowska-Bartosik, A Sillanpaa, A Sitarek, J Sobczynska, D Spanier, F Stamerra, A Stark, LS Takalo, L Tavecchio, F Temnikov, P Tescaro, D Teshima, M Torres, DF Turini, N Vankov, H Wagner, RM Zabalza, V Zandanel, F Zanin, R Zapatero, J AF Acciari, V. A. Aliu, E. Arlen, T. Bautista, M. Beilicke, M. Benbow, W. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Cui, W. Dickherber, R. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gillanders, G. H. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Swordy, S. P. Theiling, M. Toner, J. A. Varlotta, A. Vincent, S. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Williams, D. A. Wissel, S. Wood, M. Walker, R. C. Davies, F. Hardee, P. E. Junor, W. Ly, C. Aharonian, F. Akhperjanian, A. G. Anton, G. de Almeida, U. Barres Bazer-Bachi, A. R. Becherini, Y. Behera, B. Bernloehr, K. Bochow, A. Boisson, C. Bolmont, J. Borrel, V. Brucker, J. Brun, F. Brun, P. Buehler, R. Bulik, T. Buesching, I. Boutelier, T. Chadwick, P. M. Charbonnier, A. Chaves, R. C. G. Cheesebrough, A. Chounet, L. -M. Clapson, A. C. Coignet, G. Dalton, M. Daniel, M. K. Davids, I. D. Degrange, B. Deil, C. Dickinson, H. J. Djannati-Atai, A. Domainko, W. Drury, L. O'C Dubois, F. Dubus, G. Dyks, J. Dyrda, M. Egberts, K. Emmanoulopoulos, D. Espigat, P. Farnier, C. Feinstein, F. Fiasson, A. Foerster, A. Fontaine, G. Fuessling, M. Gabici, S. Gallant, Y. A. Gerard, L. Gerbig, D. Giebels, B. Glicenstein, J. F. Glueck, B. Goret, P. Goehring, D. Hauser, D. Hauser, M. Heinz, S. Heinzelmann, G. Henri, G. Hermann, G. Hinton, J. A. Hoffmann, A. Hofmann, W. Holleran, M. Hoppe, S. Horns, D. Jacholkowska, A. de Jager, O. C. Jahn, C. Jung, I. Katarzynski, K. Katz, U. Kaufmann, S. Kendziorra, E. Kerschhaggl, M. Khangulyan, D. Khelifi, B. Keogh, D. Kluzniak, W. Kneiske, T. Komin, Nu. Kosack, K. Lamanna, G. Lenain, J. -P. Lohse, T. Marandon, V. Martin, J. M. Martineau-Huynh, O. Marcowith, A. Maurin, D. McComb, T. J. L. Medina, M. C. Moderski, R. Moulin, E. Naumann-Godo, M. de Naurois, M. Nedbal, D. Nekrassov, D. Nicholas, B. Niemiec, J. Nolan, S. J. Ohm, S. Olive, J. -F. Wilhelmi, E. de Ona Orford, K. J. Ostrowski, M. Panter, M. Arribas, M. Paz Pedaletti, G. Pelletier, G. Petrucci, P. -O. Pita, S. Raue, M. Rayner, S. M. Renaud, M. Rieger, F. Ripken, J. Rob, L. Rosier-Lees, S. Rowell, G. Rudak, B. Rulten, C. B. Ruppel, J. Sahakian, V. Santangelo, A. Schlickeiser, R. Schoeck, F. M. Schroeder, R. Schwanke, U. Schwarzburg, S. Schwemmer, S. Shalchi, A. Sikora, M. Skilton, J. L. Sol, H. Spangler, D. Stawarz, L. Steenkamp, R. Stegmann, C. Stinzing, F. Superina, G. Szostek, A. Tam, P. H. Tavernet, J. -P. Terrier, R. Tibolla, O. Tluczykont, M. van Eldik, C. Vasileiadis, G. Venter, C. Venter, L. Vialle, J. P. Vincent, P. Vivier, M. Voelk, H. J. Volpe, F. Wagner, S. J. Ward, M. Zdziarski, A. A. Zech, A. Anderhub, H. Antonelli, L. A. Antoranz, P. Backes, M. Baixeras, C. Balestra, S. Barrio, J. A. Bastieri, D. Gonzlez, J. Becerra Becker, J. K. Bednarek, W. Berger, K. Bernardini, E. Biland, A. Bock, R. K. Bonnoli, G. Bordas, P. Tridon, D. Borla Bosch-Ramon, V. Bose, D. Braun, I. Bretz, T. Britvitch, I. Camara, M. Carmona, E. Commichau, S. Contreras, J. L. Cortina, J. Costado, M. T. Covino, S. Curtef, V. Dazzi, F. De Angelis, A. Del Pozo, E. De Cea Mendez, C. Delgado De los Reyes, R. De Lotto, B. De Maria, M. De Sabata, F. Dominguez, A. Dorner, D. Doro, M. Elsaesser, D. Errando, M. Ferenc, D. Fernndez, E. Firpo, R. Fonseca, M. V. Font, L. Galante, N. Lopez, R. J. Garcia Garczarczyk, M. Gaug, M. Goebel, F. Hadasch, D. Hayashida, M. Herrero, A. Hildebrand, D. Hoehne-Moench, D. Hose, J. Hsu, C. C. Jogler, T. Kranich, D. La Barbera, A. Laille, A. Leonardo, E. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lorenz, E. Majumdar, P. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Mariotti, M. Martinez, M. Mazin, D. Meucci, M. Miranda, J. M. Mirzoyan, R. Miyamoto, H. Moldon, J. Moles, M. Moralejo, A. Nieto, D. Nilsson, K. Ninkovic, J. Oya, I. Paoletti, R. Paredes, J. M. Pasanen, M. Pascoli, D. Pauss, F. Pegna, R. G. Perez-Torres, M. A. Persic, M. Peruzzo, L. Prada, F. Prandini, E. Puchades, N. Reichardt, I. Rhode, W. Ribo, M. Rico, J. Rissi, M. Robert, A. Ruegamer, S. Saggion, A. Saito, T. Y. Salvati, M. Sanchez-Conde, M. Satalecka, K. Scalzotto, V. Scapin, V. Schweizer, T. Shayduk, M. Shore, S. N. Sidro, N. Sierpowska-Bartosik, A. Sillanpaa, A. Sitarek, J. Sobczynska, D. Spanier, F. Stamerra, A. Stark, L. S. Takalo, L. Tavecchio, F. Temnikov, P. Tescaro, D. Teshima, M. Torres, D. F. Turini, N. Vankov, H. Wagner, R. M. Zabalza, V. Zandanel, F. Zanin, R. Zapatero, J. CA VERITAS Collaboration VLBA 43 Ghz M87 Monitoring Team HESS Collaboration MAGIC Collaboration TI Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy SO SCIENCE LA English DT Article ID SUPERMASSIVE BLACK-HOLE; M87 JET; TEV EMISSION; CRAB-NEBULA; INNER JET; VARIABILITY; TELESCOPE; OUTBURST; NUCLEUS; VERITAS AB The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole. C1 [Acciari, V. A.; Benbow, W.; Kildea, J.; Perkins, J. S.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Holder, J.; Roache, E.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Fortin, P.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Walker, R. C.; Davies, F.] NRAO, Socorro, NM 87801 USA. [Davies, F.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Hardee, P. E.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Junor, W.] Los Alamos Natl Lab, MS D436, ISR 2, Los Alamos, NM USA. [Ly, C.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Aharonian, F.; Bernloehr, K.; Bochow, A.; Buehler, R.; Chaves, R. C. G.; Clapson, A. C.; Deil, C.; Domainko, W.; Egberts, K.; Hoffmann, A.; Hofmann, W.; Hoppe, S.; Khangulyan, D.; Kosack, K.; Nekrassov, D.; Ohm, S.; Panter, M.; Rieger, F.; Tibolla, O.; van Eldik, C.; Voelk, H. J.; Volpe, F.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Akhperjanian, A. G.; Sahakian, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Bazer-Bachi, A. R.; Borrel, V.; Olive, J. -F.] Ctr Etud Spatiale Rayonnements, CNRS, UPS, F-31029 Toulouse 4, France. [Horns, D.; Kneiske, T.; Ripken, J.; Tluczykont, M.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Bernloehr, K.; Dalton, M.; Fuessling, M.; Kerschhaggl, M.; Lohse, T.; Arribas, M. Paz; Schwanke, U.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Boisson, C.; Lenain, J. -P.; Martin, J. M.; Medina, M. C.; Sol, H.; Venter, L.] Univ Paris Diderot, CNRS, Observ Paris, Lab Univers & Theories, F-92190 Meudon, France. [Brun, F.; Glicenstein, J. F.; Goret, P.; Komin, Nu.; Moulin, E.; Vivier, M.] Commissariat Energie Atom CE Saclay, Inst Rech Lois Fondamentales Univers, Direct Sci Mat, F-91191 Gif Sur Yvette, France. [de Almeida, U. Barres; Chadwick, P. M.; Cheesebrough, A.; Daniel, M. K.; Dickinson, H. J.; Keogh, D.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Rulten, C. B.; Spangler, D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Buesching, I.; Davids, I. D.; de Jager, O. C.; Venter, C.] North West Univ, Unit Space Phys, ZA-2520 Potchefstroom, South Africa. [Chounet, L. -M.; Degrange, B.; Fontaine, G.; Giebels, B.; Khelifi, B.; Naumann-Godo, M.; Superina, G.; Volpe, F.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Coignet, G.; Dubois, F.; Lamanna, G.; Rosier-Lees, S.; Vialle, J. P.] Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Becherini, Y.; Djannati-Atai, A.; Gerard, L.; Marandon, V.; Wilhelmi, E. de Ona; Pita, S.; Terrier, R.] Univ Paris 07, CNRS, Observ Paris, CEA,UMR 7164, F-75205 Paris 13, France. [Aharonian, F.; Drury, L. O'C; Gabici, S.] Dublin Inst Adv Studies, Dublin 2, Ireland. [Behera, B.; Emmanoulopoulos, D.; Espigat, P.; Gallant, Y. A.; Hauser, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hoffmann, A.; Kaufmann, S.; Kendziorra, E.; Kerschhaggl, M.; Pedaletti, G.; Pelletier, G.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Tam, P. H.; Tibolla, O.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Anderhub, H.] Univ Heidelberg, D-69117 Heidelberg, Germany. [Farnier, C.; Feinstein, F.; Fiasson, A.; Gallant, Y. A.; Marcowith, A.; Vasileiadis, G.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, F-34095 Montpellier 5, France. [Anton, G.; Brucker, J.; Glueck, B.; Goehring, D.; Jahn, C.; Jung, I.; Katz, U.; Schoeck, F. M.; Stegmann, C.; Stinzing, F.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Boutelier, T.; Dubus, G.; Pelletier, G.; Petrucci, P. -O.; Szostek, A.] Univ Grenoble 1, CNRS, Astrophys Lab, Inst Natl Sci Univers, F-38041 Grenoble 9, France. [Santangelo, A.; Schwarzburg, S.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Bolmont, J.; Brun, F.; Charbonnier, A.; Jacholkowska, A.; Martineau-Huynh, O.; Maurin, D.; de Naurois, M.; Tavernet, J. -P.; Vincent, P.] Univ Paris 07, CNRS, Univ Paris 06, Lab Phys Nucl & Hautes,IN2P3, F-75252 Paris 5, France. [Nedbal, D.; Rob, L.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic. [Gerbig, D.; Kluzniak, W.; Ruppel, J.; Schlickeiser, R.; Schroeder, R.] Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany. [Davids, I. D.; Steenkamp, R.] Univ Namibia, Windhoek, Namibia. [Ostrowski, M.; Stawarz, L.; Szostek, A.] Uniwersytet Jagiellonski, Obserwatorium Astron, PL-30244 Krakow, Poland. [Bulik, T.; Dyks, J.; Moderski, R.; Rudak, B.; Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Hinton, J. A.; Skilton, J. L.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Nicholas, B.; Rowell, G.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Katarzynski, K.] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland. [Baixeras, C.; Font, L.; Hadasch, D.; Robert, A.; Zapatero, J.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Bastieri, D.; Bock, R. K.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Pascoli, D.; Saggion, A.; Scalzotto, V.] Univ Padua, I-35131 Padua, Italy. [Gonzlez, J. Becerra; Costado, M. T.; Mendez, C. Delgado; Lopez, R. J. Garcia; Gaug, M.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Bednarek, W.; Berger, K.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Majumdar, P.; Satalecka, K.] DESY, D-15738 Zeuthen, Germany. [Bock, R. K.; Tridon, D. Borla; Carmona, E.; Galante, N.; Goebel, F.; Hayashida, M.; Hsu, C. C.; Jogler, T.; Lorenz, E.; Mirzoyan, R.; Miyamoto, H.; Ninkovic, J.; Saito, T. Y.; Schweizer, T.; Shayduk, M.; Sitarek, J.; Teshima, M.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bonnoli, G.; Leonardo, E.; Paoletti, R.; Pegna, R. G.; Stamerra, A.; Turini, N.] Univ Siena, I-53100 Siena, Italy. [Bordas, P.; Bosch-Ramon, V.; Moldon, J.; Paredes, J. M.; Ribo, M.; Zabalza, V.] Univ Barcelona, IEEC, Inst Ciencias Cosmos, E-08028 Barcelona, Spain. [Bretz, T.; Elsaesser, D.; Mannheim, K.; Ruegamer, S.; Spanier, F.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Cortina, J.; Errando, M.; Fernndez, E.; Firpo, R.; Garczarczyk, M.; Martinez, M.; Moralejo, A.; Puchades, N.; Reichardt, I.; Rico, J.; Sidro, N.; Tescaro, D.; Zanin, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Costado, M. T.; Lopez, R. J. Garcia] Dept Astrofis, E-38206 Tenerife, Spain. [Dazzi, F.; De Angelis, A.; De Lotto, B.; De Maria, M.; De Sabata, F.; Longo, F.; Mankuzhiyil, N.; Scapin, V.] Univ Udine, I-33100 Udine, Italy. [Del Pozo, E. De Cea; Sierpowska-Bartosik, A.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Dominguez, A.; Moles, M.; Perez-Torres, M. A.; Sanchez-Conde, M.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Ferenc, D.; Laille, A.] Univ Calif Davis, Davis, CA 95616 USA. [Lindfors, E.; Nilsson, K.; Pasanen, M.; Sillanpaa, A.; Takalo, L.] Turku Univ, Tuorla Observ, FI-21500 Piikkio, Finland. [Maneva, G.; Temnikov, P.; Vankov, H.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Persic, M.] INAF, Osservatorio Astron, I-34143 Trieste, Italy. [Rico, J.; Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bastieri, D.; Bock, R. K.; Doro, M.; Lombardi, S.; Paoletti, R.; Persic, M.; Peruzzo, L.; Prandini, E.; Saggion, A.; Scalzotto, V.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Bonnoli, G.; Leonardo, E.; Paoletti, R.; Stamerra, A.; Turini, N.] Ist Nazl Fis Nucl, I-53100 Siena, Italy. [Dazzi, F.; De Angelis, A.; De Lotto, B.; De Maria, M.; De Sabata, F.; Longo, F.; Mankuzhiyil, N.; Scapin, V.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Persic, M.] Ist Nazl Fis Nucl, I-34143 Trieste, Italy. [Shore, S. N.] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. RP Beilicke, M (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM beilicke@physics.wustl.edu; krawcz@wuphys.wustl.edu; cwalker@aoc.nrao.edu; phardee@bama.ua.edu; martin.raue@mpi-hd.mpg.de; mazin@ifae.es; robert.wagner@mpp.mpg.de RI Daniel, Michael/A-2903-2010; Temnikov, Petar/L-6999-2016; Drury, Luke/B-1916-2017; Barrio, Juan/L-3227-2014; Cortina, Juan/C-2783-2017; Font, Lluis/L-4197-2014; Moralejo Olaizola, Abelardo/M-2916-2014; Ribo, Marc/B-3579-2015; Katarzynski, Krzysztof/G-4528-2014; Antoranz, Pedro/H-5095-2015; Anton, Gisela/C-4840-2013; Fonseca Gonzalez, Maria Victoria/I-2004-2015; Delgado, Carlos/K-7587-2014; Nieto, Daniel/J-7250-2015; Maneva, Galina/L-7120-2016; Backes, Michael/N-5126-2016; Torres, Diego/O-9422-2016; Reichardt, Ignasi/P-7478-2016; Horns, Dieter/C-9727-2011; Venter, Christo/E-6884-2011; Braun, Isabel/C-9373-2012; Mannheim, Karl/F-6705-2012; Doro, Michele/F-9458-2012; van Eldik, Christopher/C-3901-2013; Katz, Uli/E-1925-2013; Tjus, Julia/G-8145-2012; Fontaine, Gerard/D-6420-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Rico, Javier/K-8004-2014; Fernandez, Ester/K-9734-2014; GAug, Markus/L-2340-2014 OI LA BARBERA, ANTONINO/0000-0002-5880-8913; Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910; Cesarini, Andrea/0000-0002-8611-8610; de los Reyes Lopez, Raquel/0000-0003-0485-9552; De Lotto, Barbara/0000-0003-3624-4480; Hsu, Ching-Cheng/0000-0001-9406-2023; De Angelis, Alessandro/0000-0002-3288-2517; Persic, Massimo/0000-0003-1853-4900; Temnikov, Petar/0000-0002-9559-3384; Drury, Luke/0000-0002-9257-2270; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; leonardo, elvira/0000-0003-0271-7673; Chadwick, Paula/0000-0002-1468-2685; Costado, M. Teresa/0000-0002-2672-4061; Kneiske, Tanja M./0000-0002-3210-6200; Font, Lluis/0000-0003-2109-5961; Moralejo Olaizola, Abelardo/0000-0002-1344-9080; Antoranz, Pedro/0000-0002-3015-3601; Anton, Gisela/0000-0003-2039-4724; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; Delgado, Carlos/0000-0002-7014-4101; Nieto, Daniel/0000-0003-3343-0755; Backes, Michael/0000-0002-9326-6400; Torres, Diego/0000-0002-1522-9065; Reichardt, Ignasi/0000-0003-3694-3820; Venter, Christo/0000-0002-2666-4812; Braun, Isabel/0000-0002-9389-0502; Doro, Michele/0000-0001-9104-3214; van Eldik, Christopher/0000-0001-9669-645X; Katz, Uli/0000-0002-7063-4418; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Rico, Javier/0000-0003-4137-1134; GAug, Markus/0000-0001-8442-7877 FU ETH [TH 34/043]; Polish MniSzW [N N203 390834]; Young Investigators Program of the Helmholtz Gemeinschaft; U.S. Department of Energy; NSF; Smithsonian Institution; Natural Sciences and Engineering Research Council of Canada; Science Foundation Ireland; STFC, U.K FX This work was also supported by ETH research grant TH 34/043, the Polish MniSzW grant N N203 390834, and the Young Investigators Program of the Helmholtz Gemeinschaft. VERITAS: This research is supported by grants from the U.S. Department of Energy, NSF, the Smithsonian Institution, the Natural Sciences and Engineering Research Council of Canada, Science Foundation Ireland, and the STFC in the U.K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and the collaborating institutions in the construction and operation of the instrument. VLBA: The Very Long Baseline Array is operated by the National Radio Astronomy Observatory, a facility of NSF, operated under cooperative agreement by Associated Universities, Inc. NR 31 TC 115 Z9 115 U1 2 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 24 PY 2009 VL 325 IS 5939 BP 444 EP 448 DI 10.1126/science.1175406 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 474AR UT WOS:000268255100048 ER PT J AU Tukel, C Wilson, RP Nishimori, JH Pezeshki, M Chromy, BA Baumler, AJ AF Tuekel, Cagla Wilson, R. Paul Nishimori, Jessalyn H. Pezeshki, Milad Chromy, Brett A. Baeumler, Andreas J. TI Responses to Amyloids of Microbial and Host Origin Are Mediated through Toll-like Receptor 2 SO CELL HOST & MICROBE LA English DT Article ID ENTERICA SEROTYPE TYPHIMURIUM; ESCHERICHIA-COLI; NITRIC-OXIDE; ALZHEIMERS-DISEASE; FIMBRIAL OPERONS; SEPTIC SHOCK; CURLI FIBERS; SALMONELLA; ACTIVATION; EXPRESSION AB Curli fibrils are proteinaceous bacterial structures formed by amyloid fibrils composed of the major curli subunit CsgA. Like beta-amyloid 1-42, which is associated with brain inflammation and Alzheimer's disease, curli fibrils have been implicated in the induction of host inflammatory responses. However, the underlying mechanisms of amyloid-induced inflammation are not fully understood. In a mouse sepsis model, we show that curli fibrils contributed to Nos2 expression, a hallmark of inflammation, by stimulating Toll-like receptor (TLR) 2. The TLR2 agonist activity was reduced by an amyloidogenicity-lowering amino acid substitution (N122A) in CsgA. Amyloid-forming synthetic peptides corresponding to P-amyloid 1-42 or CsgA 111-151 stimulated Nos2 production in macrophages and microglia cells through a TLR2-dependent mechanism. This activity was abrogated when an N122A substitution was introduced into the synthetic CsgA peptide. The induction of TLR2-mediated responses by bacterial and eukaryotic amyloids may explain the inflammation associated with amyloids and the resulting pathologies. C1 [Tuekel, Cagla; Wilson, R. Paul; Nishimori, Jessalyn H.; Pezeshki, Milad; Baeumler, Andreas J.] Univ Calif Davis, Dept Med Microbiol & Immunol, Sch Med, Davis, CA 95616 USA. [Chromy, Brett A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Baumler, AJ (reprint author), Univ Calif Davis, Dept Med Microbiol & Immunol, Sch Med, Davis, CA 95616 USA. EM ajbaumler@ucdavis.edu RI Baumler, Andreas/H-2301-2011 OI Baumler, Andreas/0000-0001-9152-7809 FU Public Health Service [AI040124, AI044170, AI076246, AI079173]; American Heart Association [0835248N]; U.S. Department of Energy [DE-AC52-07NA27344]; [LDRD-08-ER-020] FX We would like to thank Charles L. Bevins and Renee M. Tsolis for helpful comments on the manuscript. Work in A.J.B.'s laboratory is supported by Public Health Service grants AI040124, AI044170, AI076246, and AI079173. C.T. is supported by Scientist Development Grant 0835248N from the American Heart Association. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and supported by grant LDRD-08-ER-020 for the portion of the work done at LLNL. NR 46 TC 51 Z9 52 U1 0 U2 9 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1931-3128 J9 CELL HOST MICROBE JI Cell Host Microbe PD JUL 23 PY 2009 VL 6 IS 1 BP 45 EP 53 DI 10.1016/j.chom.2009.05.020 PG 9 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 477YX UT WOS:000268556000007 PM 19616765 ER PT J AU Wang, WG Liu, XH Xie, SC Boyle, J McFarlane, SA AF Wang, Weiguo Liu, Xiaohong Xie, Shaocheng Boyle, Jim McFarlane, Sally A. TI Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATIFORM CLOUD; CLIMATE SIMULATIONS; CONTACT NUCLEATION; ENERGY BUDGET; PART II; SENSITIVITY; CAM3; AEROSOL; SCHEME; RADAR AB Cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool-International Cloud Experiment by the U. S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within the mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in situ data, is needed. C1 [Wang, Weiguo; Liu, Xiaohong; McFarlane, Sally A.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Xie, Shaocheng; Boyle, Jim] Lawrence Livermore Natl Lab, Atmosphere Earth & Energy Div, Livermore, CA 94550 USA. RP Wang, WG (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM xiaohong.liu@pnl.gov RI McFarlane, Sally/C-3944-2008; Wang, Weiguo/B-4948-2009; Xie, Shaocheng/D-2207-2013; Liu, Xiaohong/E-9304-2011 OI Xie, Shaocheng/0000-0001-8931-5145; Liu, Xiaohong/0000-0002-3994-5955 FU Department of Energy (DOE) [DE-AC06-76RLO 1830, DE-AC52-07NA27344] FX The authors would like to acknowledge support from the Department of Energy (DOE) Climate and Environmental Science Division Atmospheric Radiation Measurement program and Climate Change Prediction Program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Work at LLNL was performed under the auspices of the U. S. DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 42 TC 7 Z9 8 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 23 PY 2009 VL 114 AR D14107 DI 10.1029/2008JD011220 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 475IK UT WOS:000268351600002 ER PT J AU Yang, XL Goldsmith, CF Tranter, RS AF Yang, Xueliang Goldsmith, C. Franklin Tranter, Robert S. TI Decomposition and Vibrational Relaxation in CH3I and Self-Reaction of CH3 Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SHOCK-TUBE; HIGH-TEMPERATURES; LASER-SCHLIEREN; RATE CONSTANTS; METHYL-IODIDE; ALKYL IODIDES; DISSOCIATION; KINETICS; INCUBATION; PYROLYSIS AB Vibrational relaxation and dissociation of CH3I, 2-20% in krypton, have been investigated behind incident shock waves in a diaphragmless shock tube at 20, 66, 148, and 280 Torr and 630-2200 K by laser schlieren densitometry. The effective collision energy obtained from the vibrational relaxation experiments has a small, positive temperature dependence (down) = 63 x (T/298)(0.56) cm(-1). First-order rate coefficients for dissociation of CH3I show a strong pressure dependence and are close to the low-pressure limit. Restricted-rotor Gorin model RRKM calculations fit the experimental results very well with (down) = 378 x (T/298)(0.457) cm(-1). The secondary chemistry of this reaction system is dominated by reactions of methyl radicals and the reaction of the H atom with CH3I. The results of the decomposition experiments are very well simulated with a model that incorporates methyl recombination and reactions of methylene. Second-order rate coefficients for ethane dissociation to two methyl radicals were derived from the experiments and yield k = (4.50 +/- 0.50) x 10(17) exp(-32709/T) cm(3) mol(-1) s(-1), in good agreement with previous measurements. Rate coefficients for H + CH3I were also obtained and give k = (7.50 +/- 1.0) x 10(13) exp(-601/T) cm(3) mol(-1) s(-1), in reasonable agreement with a previous experimental value. C1 [Yang, Xueliang; Tranter, Robert S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Goldsmith, C. Franklin] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. RP Tranter, RS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tranter@anl.gov RI Yang, Xueliang/D-8983-2011 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Departinent of Energy [DE-AC02-06CH11357]; National Science Foundation FX This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Departinent of Energy, under contract number DE-AC02-06CH11357. C.F.G. also wishes to acknowledge support from the National Science Foundation under the Graduate Research Fellowship Program. We would like to thank John H. Kiefer for many interesting discussions concerning this work and Lawrence B. Harding and Stephen J. Klippenstein for discussion of the methylene-forming reactions. NR 48 TC 18 Z9 18 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 23 PY 2009 VL 113 IS 29 BP 8307 EP 8317 DI 10.1021/jp903336u PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 472NS UT WOS:000268139400022 PM 19569702 ER PT J AU Yang, XL Jasper, AW Kiefer, JH Tranter, RS AF Yang, Xueliang Jasper, Ahren W. Kiefer, John H. Tranter, Robert S. TI The Dissociation of Diacetyl: A Shock Tube and Theoretical Study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID THERMAL UNIMOLECULAR REACTIONS; ACETYL RADICALS; FLASH-PHOTOLYSIS; MASTER EQUATION; RATE CONSTANTS; LOW-PRESSURES; BASIS-SETS; GAS-PHASE; AB-INITIO; PYROLYSIS AB The dissociation of diacetyl dilute in krypton has been studied in a shock tube using laser schlieren densitometry at 1200-1800 K and reaction pressures of 55 +/- 2, 120 +/- 3, and 225 +/- 5 Torr. The experimentally determined rate coefficients show falloff and an ab initio/Master Equation/VRC-TST analysis was used to determine pressure-dependent: rate coefficient expressions that are in good agreement with the experimental data. From the theoretical calculations K(infinity)(T) = 5.029 x 10(19) (T/298 K)(-3.40) exp(-37665/T) s(-1) for 300 < T < 2000 K. The laser schlieren profiles were simulated using a model for methyl recombination with appropriate additions for diacetyl. From the Simulations rate coefficients were determined for CH(3) + CH(3) = C(2)H(6) and CH(3) + C(4)H(6)O(2) = CH(3)CO + CH(2)CO + CH(4) (k(T) = 2.818T(4.00) exp(-5737/T) cm(3) mol(-1) s(-1)). Excellent agreement is found between the simulations and experimental profiles, and Troe type parameters have been calculated for the dissociation of diacetyl and the recombination of methyl radicals. C1 [Yang, Xueliang; Tranter, Robert S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Kiefer, John H.] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. RP Tranter, RS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tranter@anl.gov RI Jasper, Ahren/A-5292-2011; Yang, Xueliang/D-8983-2011 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357, DE-AC04-94-AL85000, DE-FE-85ER13384] FX This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under Contract Numbers DE-AC02-06CH11357, DE-AC04-94-AL85000, DE-FE-85ER13384. NR 50 TC 17 Z9 17 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 23 PY 2009 VL 113 IS 29 BP 8318 EP 8326 DI 10.1021/jp903716f PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 472NS UT WOS:000268139400023 PM 19569704 ER PT J AU Ye, XG Cui, ST de Almeida, V Khomami, B AF Ye, Xianggui Cui, Shengting de Almeida, Valmor Khomami, Bamin TI Interfacial Complex Formation in Uranyl Extraction by Tributyl Phosphate in Dodecane Diluent: A Molecular Dynamics Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NITRIC-ACID; SUPERCRITICAL CO2; AQUEOUS-SOLUTION; SIMULATIONS; NITRATE; WATER; TBP; HYDRATION; POTENTIALS; 18-CROWN-6 AB Atomistic simulations have been carried out in a multicomponent two-phase system (aqueous and organic phases in direct contact) to investigate the interfacial molecular mechanisms leading to uranyl extraction from the aqueous to organic phase. The aqueous phase consists of the dissolved ions UO(2)(2+) and nitrate NO(3)(-), with or without H(3)O(+), in water to describe acidic or neutral condition; the organic phase consists of tributyl phosphate, the extractant, in dodecane as the diluent. We find that the interface facilitates the formation of various uranyl complexes, with a general formula UO(2)(2+)(NO(3)(-))(n)center dot mTBP center dot kH(2)O, with n + m + k = 5, suggesting a 5-fold coordination. The coordination for all three molecular entities has the common feature that they all bind to the uranyl at the uranium atom with an oxygen atom in the equatorial plane perpendicular to the molecular axis of the uranyl, forming a 5-fold symmetry plane. Nitric acid has a strong effect in enhancing the formation of extractable species, which is consistent with experimental findings. C1 [Ye, Xianggui; Cui, Shengting; Khomami, Bamin] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [de Almeida, Valmor] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Cui, ST (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM scui@utk.edu; bkhomami@utk.edu RI de Almeida, Valmor/P-5498-2016 OI de Almeida, Valmor/0000-0003-0899-695X FU U.S. Department of Energy [DE AC05-00OR22725] FX The authors would like to thank Drs. Benjarnin Hay and Bruce Moyer of Oak Ridge National Laboratory for stimulating discussions during the course of this work. The work is supported by a Joint Directed Research and Development prograrn at University of Tennessee and a Laboratory Directed Research and Developirient project (ORNL), managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE AC05-00OR22725. NR 32 TC 18 Z9 18 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 23 PY 2009 VL 113 IS 29 BP 9852 EP 9862 DI 10.1021/jp810796m PG 11 WC Chemistry, Physical SC Chemistry GA 472NU UT WOS:000268139600029 PM 19569638 ER PT J AU Nguyen, HG Konya, G Eyring, EM Hunter, DB Truong, TN AF Nguyen, Hoa G. Konya, Gabor Eyring, Edward M. Hunter, Douglas B. Truong, Thanh N. TI Theoretical Study on the Interaction between Xenon and Positively Charged Silver Clusters in Gas Phase and on the (001) Chabazite Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NMR CHEMICAL-SHIFTS; XE-129 NMR; AB-INITIO; CRYSTAL-STRUCTURE; EMBEDDED-CLUSTER; Y-ZEOLITES; BASIS-SETS; ADSORPTION; LOCATION; NITROGEN AB A systematic study on the adsorption of xenon on silver clusters in the gas phase and on the (001) surface of silver-exchanged chabazite is reported. Density functional theory at the B3LYP level with the cluster model was employed. The results indicate that the dominant part of the binding is the a donation, which is the charge transfer front the 5p orbital of Xe to the 5s orbital of Ag and is not the previously suggested d(pi)-d(pi) back-donation. A correlation between the binding energy and the degree of a donation is found. Xenon was found to bind strongly to silver cluster cations and not to neutral ones. The binding strength decreases as the Cluster size increases for both cases, clusters in the gas-phase and on the chabazite surface. The Ag(+) cation is the strongest binding site for xenon both in gas phase and on the chabazite surface with the binding energies of 73.9 and 14.5 kJ/mol, respectively. The results also suggest that the smaller silver clusters contribute to the negative chemical shifts observed in the (129)Xe NMR spectra in experiments. C1 [Nguyen, Hoa G.; Konya, Gabor; Eyring, Edward M.; Truong, Thanh N.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Hunter, Douglas B.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Truong, TN (reprint author), Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA. FU U.S. Department of Energy [DE-AC09-08SR22470] FX This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. All calculations were performed at the Center for High Performance Computing at the University of Utah. H.G.N. thanks the Vietnam Education Foundation for their partial support and Dr. Treesukol for his advice. NR 43 TC 10 Z9 10 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 23 PY 2009 VL 113 IS 29 BP 12818 EP 12825 DI 10.1021/jp902798w PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 472NW UT WOS:000268139800031 ER PT J AU Fix, T Liberati, M Aubriet, H Sahonta, SL Bali, R Becker, C Ruch, D MacManus-Driscoll, JL Arenholz, E Blamire, MG AF Fix, T. Liberati, M. Aubriet, H. Sahonta, S-L Bali, R. Becker, C. Ruch, D. MacManus-Driscoll, J. L. Arenholz, E. Blamire, M. G. TI Ferromagnetism in Co-doped (La,Sr)TiO3 SO NEW JOURNAL OF PHYSICS LA English DT Article ID THIN-FILMS; OXIDE; ZNO; TEMPERATURE; SURFACE AB The origin of ferromagnetism in Co-doped (La,Sr)TiO3 epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10 K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co. C1 [Fix, T.; Sahonta, S-L; Bali, R.; MacManus-Driscoll, J. L.; Blamire, M. G.] Univ Cambridge, Dept Mat Sci, Cambridge CB2 3QZ, England. [Liberati, M.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Aubriet, H.; Becker, C.; Ruch, D.] Ctr Rech Publ Henri Tudor, Lab Technol Ind, L-4002 Esch Sur Alzette, Luxembourg. RP Fix, T (reprint author), Univ Cambridge, Dept Mat Sci, Pembroke St, Cambridge CB2 3QZ, England. EM tf255@cam.ac.uk RI Bali, Rantej/C-2023-2012 FU European Union FX We acknowledge the financial support from the European Union under Framework 6 program for the Nanoxide project (Novel Nanoscale Devices based on functional Oxide Interfaces). We are grateful to Mary Vickers for fruitful discussions on XRD. NR 26 TC 8 Z9 8 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 23 PY 2009 VL 11 AR 073042 DI 10.1088/1367-2630/11/7/073042 PG 10 WC Physics, Multidisciplinary SC Physics GA 474ZV UT WOS:000268324700006 ER PT J AU Liu, JZ Zunger, A AF Liu, Jefferson Zhe Zunger, Alex TI Thermodynamic theory of epitaxial alloys: first-principles mixed-basis cluster expansion of (In, Ga)N alloy film SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SHORT-RANGE-ORDER; SUBSTRATE-INDUCED STABILIZATION; COMPOSITION PHASE-DIAGRAMS; III-V-ALLOYS; CU-AU; SEMICONDUCTOR ALLOYS; LASER-DIODES; METAL-ALLOYS; NOBLE-METALS; AG-AU AB Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN)(2)/(GaN)(2) (at x = 0.50) and (InN)(4)/(GaN)(1) (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy. C1 [Liu, Jefferson Zhe; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Liu, JZ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Liu, Jefferson zhe/B-5916-2008; Zunger, Alex/A-6733-2013 OI Liu, Jefferson zhe/0000-0002-5282-7945; NR 81 TC 9 Z9 9 U1 1 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 22 PY 2009 VL 21 IS 29 AR 295402 DI 10.1088/0953-8984/21/29/295402 PG 19 WC Physics, Condensed Matter SC Physics GA 466JC UT WOS:000267656400008 PM 21828531 ER PT J AU Muduli, PK Rice, WC He, L Collins, BA Chu, YS Tsui, F AF Muduli, P. K. Rice, W. C. He, L. Collins, B. A. Chu, Y. S. Tsui, F. TI Study of magnetic anisotropy and magnetization reversal using the quadratic magnetooptical effect in epitaxial CoxMnyGez(111) films SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY-DIFFRACTION; THIN-FILMS; HEUSLER ALLOY; FE FILMS; CO2MNGE; KERR; BEAM AB Magnetic anisotropy, magnetization reversal and the magnetooptic Kerr effect in CoxMnyGez have been studied over a range of compositions between 0 and 50 at.% of Ge and between 1 and 3 in the Co to Mn atomic ratio, including the Heusler alloy Co2MnGe. A strong quadratic magnetooptic Kerr effect has been observed within a narrow region of composition centered around the Co to Mn atomic ratio of 2, which has been used to probe and quantify the magnetic anisotropy and magnetization reversal of the system. The anisotropy is sixfold with a weak uniaxial component, and it exhibits sensitive dependence on composition, especially on the atomic ratio between Co and Mn. The magnetization reversal process is consistent with the single-domain Stoner-Wohlfarth model. C1 [Muduli, P. K.; Rice, W. C.; He, L.; Collins, B. A.; Tsui, F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Chu, Y. S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Muduli, PK (reprint author), Royal Inst Technol, Dept Microelect & Appl Phys, S-16440 Kista, Sweden. EM ftsui@physics.unc.edu RI Muduli, Pranaba/B-9334-2008; He, Liang/E-5935-2012; Collins, Brian/M-5182-2013 OI Muduli, Pranaba/0000-0002-0061-8455; Collins, Brian/0000-0003-2047-8418 FU US DOE BES [DE-FG02-05ER46216]; US NSF [DMR-0441218]; US Department of Energy, Office of Sciences, Office of Basic Energy Sciences [DE-AC02-06CH11357]; APS [5F-00428] FX The work is supported by US DOE BES DE-FG02-05ER46216. MBE synthesis is supported by US NSF DMR-0441218. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Sciences, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. An APS subcontract no. 5F-00428 for partial student support (BAC) is also acknowledged. NR 49 TC 9 Z9 9 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 22 PY 2009 VL 21 IS 29 AR 296005 DI 10.1088/0953-8984/21/29/296005 PG 11 WC Physics, Condensed Matter SC Physics GA 466JC UT WOS:000267656400021 PM 21828544 ER PT J AU Gao, XF Wang, L Ohtsuka, Y Jiang, DE Zhao, YL Nagase, S Chen, ZF AF Gao, Xingfa Wang, Lu Ohtsuka, Yuhki Jiang, De-en Zhao, Yuliang Nagase, Shigeru Chen, Zhongfang TI Oxidation Unzipping of Stable Nanographenes into Joint Spin-Rich Fragments SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ZIGZAG GRAPHENE NANORIBBONS; MOLECULAR-ORBITAL METHODS; GRAPHITE OXIDE; MAGNETIC-PROPERTIES; HALF-METALLICITY; BASIS SETS; DENSITY; EXCHANGE; SHEETS; CARBON AB When an all-benzenoid nanographene is linearly unzipped into oxygen-joined fragments, the oxidized benzenoid rings (aromatic sextets) selectively adopt the low-spin (Delta S = 0) or high-spin conformation (Delta S = 1) to yield the thermally most stable isomer. The selection of the conformation depends simply on the position of the aromatic sextets: the inner ones prefer the high-spin conformation, whereas the peripheral ones prefer the low-spin conformation. Therefore, the resulting most stable isomer has a total spin whose value equals the number of inner aromatic sextets (n(i)) along the oxidizing line. The nanographene fragments contained in this isomer have a ferromagnetic spin coupling. Due to the tautomerization between the high-spin and low-spin conformations, there also exist other possible isomers with higher energies and with spins at ground state ranging from 0 to (n(i) - 1). The rich geometrically correlated spins and the adjustable energy gaps indicate great potential of the graphene oxides in spintronic devices. C1 [Gao, Xingfa; Wang, Lu; Ohtsuka, Yuhki; Nagase, Shigeru] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, MS6201, Oak Ridge, TN 37931 USA. [Zhao, Yuliang] Chinese Acad Sci, Inst High Energy Phys, Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100191, Peoples R China. [Zhao, Yuliang] Natl Ctr Nanosci & Technol China, Beijing 100080, Peoples R China. [Chen, Zhongfang] Univ Puerto Rico, Dept Chem, Inst Funct Nanomat, San Juan, PR 00931 USA. RP Nagase, S (reprint author), Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. EM nagase@ims.ac.jp; zhongfangchen@gmail.com RI Chen, Zhongfang/A-3397-2008; Gao, Xingfa/E-5691-2010; Jiang, De-en/D-9529-2011; Wang, Lu/D-2528-2011 OI Gao, Xingfa/0000-0002-1636-6336; Jiang, De-en/0000-0001-5167-0731; FU MEXT of Japan; NSF [CHE-0716718]; Institute for Functional Nanomaterials [0701525]; U.S. Environmental Protection Agency [RD-83385601]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX This work Was Supported in Japan by the Grand-in-Aid for Scientific Research on Priority Area and Next Generation Super Computing Project (Nanoscience Program) from the MEXT of Japan, and in the USA by NSF Grant CHE-0716718, the Institute for Functional Nanomaterials (NSF Grant 0701525), the U.S. Environmental Protection Agency (EPA Grant No. RD-83385601). and Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. We thank the referees for their instructive suggestions, which made important contributions for the improvement of this work. NR 76 TC 36 Z9 36 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 22 PY 2009 VL 131 IS 28 BP 9663 EP 9669 DI 10.1021/ja902878w PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 475XG UT WOS:000268399800027 PM 19555060 ER PT J AU Zhu, KK Hu, JZ She, XY Liu, J Nie, ZM Wang, Y Peden, CHF Kwak, JH AF Zhu, Kake Hu, Jianzhi She, Xiaoyan Liu, Jun Nie, Zimin Wang, Yong Peden, Charles H. F. Kwak, Ja Hun TI Characterization of Dispersed Heteropoly Acid on Mesoporous Zeolite Using Solid-State P-31 NMR Spin-Lattice Relaxation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BREATHING IONIC-CRYSTAL; SINGLE-CRYSTALS; ISOTHERMAL MICROCALORIMETRY; CATALYTIC-PROPERTIES; NEUTRON-DIFFRACTION; AEROBIC OXIDATIONS; MOLECULAR-SIEVE; CATIONIC SILICA; POLYOXOMETALATE; H3PW12O40 AB Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H3PW12O40 (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including P-31 magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support. C1 [Zhu, Kake; Hu, Jianzhi; She, Xiaoyan; Liu, Jun; Nie, Zimin; Wang, Yong; Peden, Charles H. F.; Kwak, Ja Hun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Wang, Yong/C-2344-2013; Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU Pacific Northwest National Laboratory (PNNL); Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE); Battelle Memorial Institute [DE-AC05-76RL01830] FX The work is supported by the Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) and by the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). TEM and NMR investigation was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830. NR 44 TC 23 Z9 23 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 22 PY 2009 VL 131 IS 28 BP 9715 EP 9721 DI 10.1021/ja901317r PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 475XG UT WOS:000268399800032 PM 19601683 ER PT J AU Wang, XB Sergeeva, AP Xing, XP Massaouti, M Karpuschkin, T Hampe, O Boldyrev, AI Kappes, MM Wang, LS AF Wang, Xue-Bin Sergeeva, Alina P. Xing, Xiao-Peng Massaouti, Maria Karpuschkin, Tatjana Hampe, Oliver Boldyrev, Alexander I. Kappes, Manfred M. Wang, Lai-Sheng TI Probing the Electronic Stability of Multiply Charged Anions: Sulfonated Pyrene Tri- and Tetraanions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; REPULSIVE COULOMB BARRIER; GAUSSIAN-BASIS SETS; GAS-PHASE; PHOTOELECTRON-SPECTROSCOPY; TETRAHALIDE DIANIONS; ISOLATED PLATINUM; CLUSTER IONS; PHOTODETACHMENT; CHEMISTRY AB The strong intramolecular Coulomb repulsion in multiply charged anions (MCAs) creates a potential barrier that provides dynamic stability to MCAs and allows electronically metastable species to be observed. The 1-hydroxy-3,6,8-pyrene-trisulfonate {[Py(OH)(SO3)(3)](3-) or HPTS3-} was recently observed as a long-lived metastable MCA with a large negative electron binding energy of -0.66 eV. Here we use Penning trap mass spectrometry to monitor the spontaneous decay of HPTS3- -> HPTS center dot 2- + e(-) and have determined the half-life of HPTS3- to be 0.1 s. To explore the limit of electronic metastability, we tried to make the related quadruply charged pyrene-1,3,6,8-tetrasulfonate {[Py(SO3)(4)](4-)}. However, only its decay product, the triply charged radical anion [Py(SO3)(4)](center dot 3-), as well as the triply charged ion-pairs [Py(SO3)(4)H](3-) and [Py(SO3)(4)Na](3-), was observed, suggesting that the tremendous intramolecular Coulomb repulsion makes the [Py(SO3)(4)](4-) anion extremely short-lived. Photoelectron spectroscopy data showed that (Py(SO3)(4)](center dot 3-) is an electronically stable species with electron binding energies of +0.5 eV, whereas [Py(SO3)(4)H](3-) and [Py(SO3)(4)Na](3-) possess electron binding energies of 0.0 and -0.1 eV, respectively. Ab initio calculations confirmed the stability of these triply charged species and further predicted a large negative electron binding energy (-2.78 eV) for [Py(SO3)(4)](4-), consistent with its short lifetime. C1 [Sergeeva, Alina P.; Boldyrev, Alexander I.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Wang, Xue-Bin; Xing, Xiao-Peng; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Xing, Xiao-Peng; Wang, Lai-Sheng] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Massaouti, Maria; Karpuschkin, Tatjana; Hampe, Oliver; Kappes, Manfred M.] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Hampe, Oliver; Kappes, Manfred M.] Univ Karlsruhe, Inst Phys Chem, D-76128 Karlsruhe, Germany. RP Boldyrev, AI (reprint author), Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. EM a.i.boldyrev@usu.edu; manfred.kappes@chemie.uni-karlsruhe.de; ls.wang@pnl.gov RI Hampe, Oliver/C-4955-2011; Boldyrev, Alexander/C-5940-2009 OI Boldyrev, Alexander/0000-0002-8277-3669 FU U.S. Department of Energy (DOE); Office of Basic Energy Sciences; Chemical Sciences Division; National Science Foundation [CHE-0749496, CHE-0714851, CTS-0321170]; Pacific Northwest National Laboratory; Deutsche Forschungsgemeinschaft (DFG); Helmholtz-Gemeinschaft (HGF) FX The experimental work carried out in Richland was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division, and partly by the National Science Foundation (CHE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. The theoretical work done in Logan was supported by the National Science Foundation (CHE-0714851). Computer time from the Center for High Performance Computing at Utah State University is gratefully acknowledged. The computational resource, the Uinta cluster supercomputer, was provided through the National Science Foundation under Grant CTS-0321170 with matching funds provided by Utah State University. The experiments carried out in Karlsruhe were supported by the Deutsche Forschungsgemeinschaft (DFG) through the Center of Functional Nanostructures (CFN) and the Forschungszentrum Karlsruhe (a national research center funded by the Helmholtz-Gemeinschaft (HGF)). NR 44 TC 8 Z9 8 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 22 PY 2009 VL 131 IS 28 BP 9836 EP 9842 DI 10.1021/ja903615g PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 475XG UT WOS:000268399800045 PM 19552438 ER PT J AU Cho, J Levy, N Kirakosian, A Comstock, MJ Lauterwasser, F Frechet, JMJ Crommie, MF AF Cho, Jongweon Levy, Niv Kirakosian, Armen Comstock, Matthew J. Lauterwasser, Frank Frechet, Jean M. J. Crommie, Michael F. TI Surface anchoring and dynamics of thiolated azobenzene molecules on Au(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE organic compounds; scanning tunnelling microscopy; surface dynamics; surface morphology ID SELF-ASSEMBLED MONOLAYERS; SINGLE-MOLECULE; CONDUCTANCE; ROTATION AB We have investigated the temperature-dependent behavior of thiolated azobenzene molecules on Au(111) using scanning tunneling microscopy. The addition of a thiol functional group to azobenzene molecules leads to increased surface anchoring of single azobenzene molecules to gold. Thiolated azobenzene shows diverse surface morphology and does not form well-ordered structures at low coverage. At elevated temperatures, anchored molecules are observed to spin in place via hindered rotation. By measuring the number of rotating molecules as a function of temperature and using a simple model, we are able to estimate the energy barrier and attempt frequency for thermally induced hindered rotation to be 102 +/- 3 meV and 110 +/- 2 GHz, respectively. C1 [Cho, Jongweon; Levy, Niv; Kirakosian, Armen; Comstock, Matthew J.; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cho, Jongweon; Levy, Niv; Kirakosian, Armen; Comstock, Matthew J.; Lauterwasser, Frank; Frechet, Jean M. J.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lauterwasser, Frank; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Cho, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM crommie@socrates.berkeley.edu RI Cho, Jongweon/F-3704-2011 FU Director, Office of Science; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering Division; U. S. Department of Energy [DE-AC03-76SF0098] FX We are grateful to Luis Berbil-Batista and Dan Poulsen for helpful discussions. Financial support for this work was provided by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC03-76SF0098. NR 26 TC 6 Z9 6 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2009 VL 131 IS 3 AR 034707 DI 10.1063/1.3168524 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 473LE UT WOS:000268206800053 PM 19624221 ER PT J AU Korzdorfer, T Tretiak, S Kummel, S AF Koerzdoerfer, T. Tretiak, S. Kuemmel, S. TI Fluorescence quenching in an organic donor-acceptor dyad: A first principles study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; charge exchange; density functional theory; dyes; light emitting diodes; molecular dynamics method; radiation quenching; solar cells ID DENSITY-FUNCTIONAL THEORY; MM3 FORCE-FIELD; ELECTRONIC-ENERGY TRANSFER; LIGHT-EMITTING-DIODES; MOLECULAR-MECHANICS; CHARGE-TRANSFER; EXCITED-STATES; PHENYLENEVINYLENE OLIGOMERS; PERYLENE BISIMIDE; MODEL AB Perylene bisimide and triphenyl diamine are prototypical organic dyes frequently used in organic solar cells and light emitting devices. Recent Foumlrster-resonant-energy-transfer experiments on a bridged organic dyad consisting of triphenyl diamine as an energy-donor and perylene bisimide as an energy-acceptor revealed a strong fluorescence quenching on the perylene bisimide. This quenching is absent in a solution of free donors and acceptors and thus attributed to the presence of the saturated CH(2)O(CH(2))(12)-bridge. We investigate the cause of the fluorescence quenching as well as the special role of the covalently bound bridge by means of time dependent density functional theory and molecular dynamics. The conformational dynamics of the bridged system leads to a charge transfer process between donor and acceptor that causes the acceptor fluorescence quenching. C1 [Koerzdoerfer, T.; Kuemmel, S.] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Tretiak, S.] Los Alamos Natl Lab, Div Theoret, CNLS, Los Alamos, NM 87545 USA. [Tretiak, S.] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. RP Korzdorfer, T (reprint author), Univ Bayreuth, Inst Phys, POB 101251, D-95440 Bayreuth, Germany. EM thomas.koerzdoerfer@uni-bayreuth.de RI Korzdorfer, Thomas/B-8266-2014; Kummel, Stephan/K-5634-2014; Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Kummel, Stephan/0000-0001-5914-6635 FU U. S. Department of Energy [DE-AC52-06NA25396]; Studienstiftung des deutschen Volkes FX T. K. and S. K. thank C. Hofmann, P. Bauer, M. Thelakkat, and J. Kohler for stimulating discussions on the topic and for providing experimental data. T. K. acknowledges the hospitality of the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. T. K. thanks S. Kilina, E. Badaeva, and S. Difley for fruitful discussions on charge transfer and for their help in setting up the molecular dynamics simulations. S. K. and T. K. are grateful for support from the ENB program "Macromolecular Science." T. K. gratefully acknowledges support by the Studienstiftung des deutschen Volkes. NR 75 TC 7 Z9 7 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2009 VL 131 IS 3 AR 034310 DI 10.1063/1.3160666 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 473LE UT WOS:000268206800032 PM 19624200 ER PT J AU Zhang, T Deng, Y Johnson, S Liu, G AF Zhang, T. Deng, Y. Johnson, S. Liu, G. TI Highly efficient blue polyfluorene-based polymer light-emitting diodes through solvent vapour annealing SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID INJECTION; TRANSPORT; POLY(9,9-DIOCTYLFLUORENE); ELECTRON; DEVICE; ELECTROLUMINESCENCE; COPOLYMERS; EMISSION; DOPANT; METAL AB A highly efficient blue polymer light-emitting diode based on poly(9,9-di(2-(2-(2-methoxy-ethoxy)ethoxy)ethyl)fluorenyl-2,7-diyl) ( PFOEO(3)) by solvent vapour annealing the polymer emitting layer is fabricated in a bilayer device with Al cathode. High electroluminescent efficiency is achieved by balancing charge injection. Better contact interface between the polymer and the cathode was formed by making chain conformation reoriented with solvent vapour exposure. The effect of solvent vapour exposure on the potential barrier height of the interface is estimated using the Richardson-Schottky model. The maximum efficiency that was achieved was 2.3 cd A(-1) for the vapour exposed device compared with 0.9 cd A(-1) for the untreated pristine device. C1 [Zhang, T.; Deng, Y.; Johnson, S.; Liu, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov FU US Department of Energy's Building Technologies (BT) Programme; National Energy Technology Laboratory FX This project is sponsored by the US Department of Energy's Building Technologies (BT) Programme and the National Energy Technology Laboratory through its competitive research and development (R&D) programme. The goal of the DOE/BT's Lighting R&D Programme is to develop viable technologies having the technical potential to conserve 50% of lighting consumption by 2025. The Programme partners with industry, utilities, universities and research institutions to create energy efficient lighting technologies in pursuit of this goal. NR 23 TC 4 Z9 4 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 21 PY 2009 VL 42 IS 14 AR 145104 DI 10.1088/0022-3727/42/14/145104 PG 5 WC Physics, Applied SC Physics GA 470AN UT WOS:000267944000016 ER PT J AU Argyris, D Cole, DR Striolo, A AF Argyris, Dimitrios Cole, David R. Striolo, Alberto TI Hydration Structure on Crystalline Silica Substrates SO LANGMUIR LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; ON-A-CHIP; HYDROPHILIC SURFACES; NEUTRON-SCATTERING; CARBON NANOTUBES; WATER-STRUCTURE; LIQUID WATER; VYCOR GLASS; ADSORPTION; NANOTRIBOLOGY AB The structure of interfacial water at the silica solid surfaces was investigated using molecular dynamics simulations. Different degrees of surface hydroxylation were employed to assess the effect of the surface chemistry on the structure of interfacial water. Density profiles, in-plane radial distribution functions, in-plane density distribution, and hydrogen-bond profiles were calculated. Our results show that the surface hydroxylation affects the structure, orientation, and hydrogen-bond network of interfacial water molecules. Data analysis suggests that the degree of hydroxylation controls the amount of water molecules in the first interfacial layer as well as the distance between the first adsorbed layer and the substrate. Well-organized and uniform structures of interfacial water appear on the homogeneously hydroxylated surface, while a heterogeneous interfacial structure, characterized by extensive water-water hydrogen bonds, forms on the partially hydroxylated surface. We demonstrate that both the local surface chemistry and water-water hydrogen bonds are the dominant factors that determine the structural properties of interfacial water. C1 [Argyris, Dimitrios; Striolo, Alberto] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. [Cole, David R.] Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. RP Striolo, A (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX Financial support was provided, in part, by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, by Contract No. DE-AC05-00OR22725 to Oak Ridge National Laboratory (managed and operated by UT-Battelle, LLC). Generous allocations of computing time were provided by the OU Supercomputing Center for Education and Research (OS-CER) at the University of Oklahoma and by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. NR 56 TC 61 Z9 61 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 21 PY 2009 VL 25 IS 14 BP 8025 EP 8035 DI 10.1021/la9005136 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 472NI UT WOS:000268138400034 PM 19456184 ER PT J AU Rodriguez-Santiago, V Fedkin, MV Wesolowski, DJ Rosenqvist, J Lvov, SN AF Rodriguez-Santiago, Victor Fedkin, Mark V. Wesolowski, David J. Rosenqvist, Joergen Lvov, Serguei N. TI Electrophoretic Study of the SnO2/Aqueous Solution Interface up to 260 degrees C SO LANGMUIR LA English DT Article ID RUTILE-WATER INTERFACE; ELECTRIC DOUBLE-LAYER; COMPOSITE MEMBRANES; HIGH-TEMPERATURE; MACROSCOPIC PROPERTIES; EQUILIBRIUM-CONSTANTS; SURFACE PROTONATION; RELATIVE-HUMIDITY; AQUEOUS-SOLUTIONS; ION ADSORPTION AB An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO2 (cassiterite)/aqueous Solution (10(-3) mol kg(-1) NaCl) interface over the temperature range from 25 to 260 degrees C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO2 were obtained for the first time. From these IEP values, the standard thermodynamic functions were calculated for the protonation-deprotonation equilibrium at the SnO2 Surface, using the I-pK surface complexation model. It was found that the IEP values for SnO2 decrease with increasing temperature, and this behavior is compared to the predicted values by the multisite complexation (MUSIC) model and other semitheoretical treatments, and were found to be in excellent agreement. C1 [Rodriguez-Santiago, Victor; Lvov, Serguei N.] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Lvov, Serguei N.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Rodriguez-Santiago, Victor; Fedkin, Mark V.; Lvov, Serguei N.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Wesolowski, David J.; Rosenqvist, Joergen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lvov, SN (reprint author), Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. EM lvov@psu.edu RI Rodriguez-Santiago, Victor/B-7447-2011; OI Rodriguez-Santiago, Victor/0000-0002-8389-5414 FU National Science Foundation [EAR 07-32559]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC05-00OR22725] FX The authors gratefully acknowledge the financial support of this work by the National Science Foundation (EAR 07-32559) and U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT Battelle, LLC. The authors also acknowledge use of facilities at the PSU site of NSF NNIN. NR 56 TC 13 Z9 14 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 21 PY 2009 VL 25 IS 14 BP 8101 EP 8110 DI 10.1021/la900611u PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 472NI UT WOS:000268138400044 PM 19594185 ER PT J AU Carneiro, JP Mustapha, B Ostroumov, PN AF Carneiro, J. -P. Mustapha, B. Ostroumov, P. N. TI Beam physics of the 8-GeV H- linac SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Accelerator modeling; Hydrogen ion linac AB Fermilab is developing the concept and design of an 8-GeV superconducting H- linac with the primary mission of increasing the intensity of the Main Injector for the production of neutrino superbeams. The front-end of the linac up to 420 MeV operates at 325 MHz and accelerates the beam from the ion source using a room temperature radio-frequency quadrupole followed by short CH type resonators and superconducting spoke resonators. In the high-energy section, the acceleration is provided by superconducting elliptical 1.3 GHz cavities similar to the ones developed for the International Linear Collider (ILC). The beam physics for the linac is presented in this paper using two beam dynamics codes: TRACK and ASTRA. (C) 2009 Elsevier B.V. All rights reserved. C1 [Carneiro, J. -P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Mustapha, B.; Ostroumov, P. N.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Carneiro, JP (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM carneiro@fnal.gov FU U.S. Department of Energy [DE-AC02-06CH11357, DE-AC02-07CH11359] FX The authors would like to thank V. Aseev (ANQL), D. Johnson, V. Shiltsev and R.C. Webber (FNAL) for helpful discussion and information, K. Floettmann (DESY) for his support in using ASTRA and I. Hofmann (GSI) for providing the stability chart. This work is supported by the U.S. Department of Energy under Contracts DE-AC02-06CH11357 and DE-AC02-07CH11359. NR 38 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 271 EP 280 DI 10.1016/j.nima.2009.04.054 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600006 ER PT J AU Kondrashev, S Barcikowski, A Mustapha, B Ostroumov, PN Vinogradov, N AF Kondrashev, S. Barcikowski, A. Mustapha, B. Ostroumov, P. N. Vinogradov, N. TI Development of a pepper pot emittance probe and its application for ECR ion beam studies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Beam emittance; ECR ion source; Pepper pot; DC ion beam; CsI(Tl) scintillator ID GENERATION AB A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 mu s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beams with current densities down to about 100 nA/cm(2). The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 pi mm mrad for light ions to 0.05-0.09 pi mm mrad for highly charged (209)Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation. Published by Elsevier B.V. C1 [Kondrashev, S.; Barcikowski, A.; Mustapha, B.; Ostroumov, P. N.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Vinogradov, N.] No Illinois Univ, De Kalb, IL 60115 USA. RP Kondrashev, S (reprint author), Argonne Natl Lab, Div Phys, Bldg 203, Argonne, IL 60439 USA. EM kondrashev@anl.gov FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The authors are grateful to R.H. Scott for his help with the ECR ion source operation, to M. Anthony, P. Wilt and S.I. Sharamentov for their electronics support, and to A. Pikin for discussions about the pepper-pot technique. NR 17 TC 13 Z9 15 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 296 EP 304 DI 10.1016/j.nima.2009.04.050 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600009 ER PT J AU Adragna, P Alexa, C Anderson, K Antonaki, A Arabidze, A Batkova, L Batusov, V Beck, HP Bednar, P Kuutmann, EB Biscarat, C Blanchot, G Bogush, A Bohm, C Boldea, V Bosman, M Bromberg, C Budagov, J Burckhart-Chromek, D Caprini, M Caloba, L Calvet, D Carli, T Carvalho, J Cascella, M Castelo, J Castillo, MV Cavalli-Sforza, M Cavasinni, V Cerqueira, AS Clement, C Cobal, M Cogswell, F Constantinescu, S Costanzo, D Corso-Radu, A Cuenca, C Damazio, DO David, M Davidek, T De, K Del Prete, T Di Girolamo, B Dita, S Djobava, T Dobson, M Dolejsi, J Dolezal, Z Dotti, A Downing, R Efthymiopoulos, I Eriksson, D Errede, D Errede, S Farbin, A Fassouliotis, D Febbraro, R Fedorko, I Fenyuk, A Ferdi, C Ferrer, A Flaminio, V Francis, D Fullana, E Gadomski, S Gameiro, S Garde, V Gellerstedt, K Giakoumopoulou, V Gildemeister, O Gilewsky, V Giokaris, N Gollub, N Gomes, A Gonzalez, V Gorini, B Grenier, P Gris, P Gruwe, M Guarino, V Guicheney, C Gupta, A Haeberli, C Hakobyan, H Haney, M Hellman, S Henriques, A Higon, E Holmgren, S Hurwitz, M Huston, J Iglesias, C Isaev, A Plante, IJL Jon-And, K Joos, M Junk, T Karyukhin, A Kazarov, A Khandanyan, H Khramov, J Khubua, J Kolos, S Korolkov, I Krivkova, P Kulchitsky, Y Kurochkin, Y Kuzhir, P Le Compte, T Lefevre, R Lehmann, G Leitner, R Lembesi, M Lesser, J Li, J Liablin, M Lokajicek, M Lomakin, Y Lupi, A Maidanchik, C Maio, A Makouski, M Maliukov, S Manousakis, A Mapelli, L Marques, C Marroquim, F Martin, F Mazzoni, E Merritt, F Miagkov, A Miller, R Minashvili, I Miralles, L Montarou, G Mosidze, M Myagkov, A Nemecek, S Nessi, M Nodulman, L Nordkvist, B Norniella, O Onofre, A Oreglia, M Pallin, D Pantea, D Petersen, J Pilcher, J Pina, J Pinhao, J Podlyski, F Portell, X Poveda, J Pribyl, L Price, LE Proudfoot, J Ramstedt, M Richards, R Roda, C Romanov, V Rosnet, P Roy, P Ruiz, A Rumiantsev, V Russakovich, N Salto, O Salvachua, B Sanchis, E Sanders, H Santoni, C Santos, J Saraiva, JG Sarri, F Satsunkevitch, I Says, LP Schlager, G Schlereth, J Seixas, JM Sellden, B Shalanda, N Shevtsov, P Shochet, M Silva, J Da Silva, P Simaitis, V Simonyan, M Sissakian, A Sjolin, J Solans, C Solodkov, A Soloviev, I Solovyanov, O Sosebee, M Spano, F Stanek, R Starchenko, E Starovoitov, P Stavina, P Suk, M Sykora, I Tang, F Tas, P Teuscher, R Tokar, S Topilin, N Torres, J Tremblet, L Tsiareshka, P Tylmad, M Underwood, D Unel, G Usai, G Valero, A Valkar, S Valls, JA Vartapetian, A Vazeille, F Vichou, I Vinogradov, V Vivarelli, I Volpi, M White, A Zaitsev, A Zenine, A Zenis, T AF Adragna, P. Alexa, C. Anderson, K. Antonaki, A. Arabidze, A. Batkova, L. Batusov, V. Beck, H. P. Bednar, P. Kuutmann, E. Bergeaas Biscarat, C. Blanchot, G. Bogush, A. Bohm, C. Boldea, V. Bosman, M. Bromberg, C. Budagov, J. Burckhart-Chromek, D. Caprini, M. Caloba, L. Calvet, D. Carli, T. Carvalho, J. Cascella, M. Castelo, J. Castillo, M. V. Cavalli-Sforza, M. Cavasinni, V. Cerqueira, A. S. Clement, C. Cobal, M. Cogswell, F. Constantinescu, S. Costanzo, D. Corso-Radu, A. Cuenca, C. Damazio, D. O. David, M. Davidek, T. De, K. Del Prete, T. Di Girolamo, B. Dita, S. Djobava, T. Dobson, M. Dolejsi, J. Dolezal, Z. Dotti, A. Downing, R. Efthymiopoulos, I. Eriksson, D. Errede, D. Errede, S. Farbin, A. Fassouliotis, D. Febbraro, R. Fedorko, I. Fenyuk, A. Ferdi, C. Ferrer, A. Flaminio, V. Francis, D. Fullana, E. Gadomski, S. Gameiro, S. Garde, V. Gellerstedt, K. Giakoumopoulou, V. Gildemeister, O. Gilewsky, V. Giokaris, N. Gollub, N. Gomes, A. Gonzalez, V. Gorini, B. Grenier, P. Gris, P. Gruwe, M. Guarino, V. Guicheney, C. Gupta, A. Haeberli, C. Hakobyan, H. Haney, M. Hellman, S. Henriques, A. Higon, E. Holmgren, S. Hurwitz, M. Huston, J. Iglesias, C. Isaev, A. Plante, I. Jen-La Jon-And, K. Joos, M. Junk, T. Karyukhin, A. Kazarov, A. Khandanyan, H. Khramov, J. Khubua, J. Kolos, S. Korolkov, I. Krivkova, P. Kulchitsky, Y. Kurochkin, Yu Kuzhir, P. Le Compte, T. Lefevre, R. Lehmann, G. Leitner, R. Lembesi, M. Lesser, J. Li, J. Liablin, M. Lokajicek, M. Lomakin, Y. Lupi, A. Maidanchik, C. Maio, A. Makouski, M. Maliukov, S. Manousakis, A. Mapelli, L. Marques, C. Marroquim, F. Martin, F. Mazzoni, E. Merritt, F. Miagkov, A. Miller, R. Minashvili, I. Miralles, L. Montarou, G. Mosidze, M. Myagkov, A. Nemecek, S. Nessi, M. Nodulman, L. Nordkvist, B. Norniella, O. Onofre, A. Oreglia, M. Pallin, D. Pantea, D. Petersen, J. Pilcher, J. Pina, J. Pinhao, J. Podlyski, F. Portell, X. Poveda, J. Pribyl, L. Price, L. E. Proudfoot, J. Ramstedt, M. Richards, R. Roda, C. Romanov, V. Rosnet, P. Roy, P. Ruiz, A. Rumiantsev, V. Russakovich, N. Salto, O. Salvachua, B. Sanchis, E. Sanders, H. Santoni, C. Santos, J. Saraiva, J. G. Sarri, F. Satsunkevitch, I. Says, L. -P. Schlager, G. Schlereth, J. Seixas, J. M. Sellden, B. Shalanda, N. Shevtsov, P. Shochet, M. Silva, J. Da Silva, P. Simaitis, V. Simonyan, M. Sissakian, A. Sjolin, J. Solans, C. Solodkov, A. Soloviev, I. Solovyanov, O. Sosebee, M. Spano, F. Stanek, R. Starchenko, E. Starovoitov, P. Stavina, P. Suk, M. Sykora, I. Tang, F. Tas, P. Teuscher, R. Tokar, S. Topilin, N. Torres, J. Tremblet, L. Tsiareshka, P. Tylmad, M. Underwood, D. Unel, G. Usai, G. Valero, A. Valkar, S. Valls, J. A. Vartapetian, A. Vazeille, F. Vichou, I. Vinogradov, V. Vivarelli, I. Volpi, M. White, A. Zaitsev, A. Zenine, A. Zenis, T. TI Testbeam studies of production modules of the ATLAS Tile Calorimeter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Hadron calorimeter; Performance ID IRON; ELECTRONICS; SYSTEM; MUONS AB We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was similar to 70 pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of sigma/E = 52.9%/root E circle plus 5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter. (C) 2009 Elsevier B.V. All rights reserved. C1 [Davidek, T.] Charles Univ Prague, Fac Math & Phys, IPNP, CR-18000 Prague, Czech Republic. [Adragna, P.; Cascella, M.; Cavasinni, V.; Costanzo, D.; Del Prete, T.; Dotti, A.; Flaminio, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Usai, G.; Vivarelli, I.] Univ Pisa, Pisa, Italy. [Adragna, P.; Cascella, M.; Cavasinni, V.; Costanzo, D.; Del Prete, T.; Dotti, A.; Flaminio, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Usai, G.; Vivarelli, I.] Ist Nazl Fis Nucl, Pisa, Italy. [Alexa, C.; Boldea, V.; Caprini, M.; Constantinescu, S.; Dita, S.; Pantea, D.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Anderson, K.; Farbin, A.; Gupta, A.; Hurwitz, M.; Plante, I. Jen-La; Merritt, F.; Oreglia, M.; Pilcher, J.; Sanders, H.; Shochet, M.; Tang, F.; Teuscher, R.] Univ Chicago, Chicago, IL 60637 USA. [Antonaki, A.; Arabidze, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Lembesi, M.; Manousakis, A.] Univ Athens, Athens, Greece. [Batkova, L.; Bednar, P.; Fedorko, I.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Bratislava, Slovakia. [Batusov, V.; Budagov, J.; Khramov, J.; Khubua, J.; Kulchitsky, Y.; Liablin, M.; Lomakin, Y.; Maliukov, S.; Minashvili, I.; Romanov, V.; Russakovich, N.; Sissakian, A.; Topilin, N.; Tsiareshka, P.; Vinogradov, V.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Beck, H. P.; Gadomski, S.; Haeberli, C.] Univ Bern, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Kuutmann, E. Bergeaas; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S.; Jon-And, K.; Lesser, J.; Nordkvist, B.; Ramstedt, M.; Sellden, B.; Sjolin, J.; Tylmad, M.] Stockholm Univ, S-10691 Stockholm, Sweden. [Biscarat, C.; Calvet, D.; Febbraro, R.; Ferdi, C.; Garde, V.; Grenier, P.; Gris, P.; Guicheney, C.; Lefevre, R.; Martin, F.; Montarou, G.; Pallin, D.; Podlyski, F.; Rosnet, P.; Roy, P.; Santoni, C.; Says, L. -P.; Vazeille, F.] Univ Clermont Ferrand, LPC Clermont Ferrand, Clermont Ferrand, France. [Blanchot, G.; Bosman, M.; Cavalli-Sforza, M.; Iglesias, C.; Korolkov, I.; Miralles, L.; Norniella, O.; Portell, X.; Salto, O.; Volpi, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bogush, A.; Kulchitsky, Y.; Kurochkin, Yu; Satsunkevitch, I.; Tsiareshka, P.] Natl Acad Sci, Inst Phys, Minsk, Byelarus. [Bromberg, C.; Huston, J.; Miller, R.; Richards, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Burckhart-Chromek, D.; Carli, T.; Cobal, M.; Corso-Radu, A.; Davidek, T.; Di Girolamo, B.; Dobson, M.; Efthymiopoulos, I.; Farbin, A.; Francis, D.; Gameiro, S.; Gildemeister, O.; Gollub, N.; Gorini, B.; Grenier, P.; Gruwe, M.; Henriques, A.; Joos, M.; Lehmann, G.; Mapelli, L.; Martin, F.; Nessi, M.; Petersen, J.; Pribyl, L.; Schlager, G.; Spano, F.; Tremblet, L.; Unel, G.] CERN, Geneva, Switzerland. [Caloba, L.; Cerqueira, A. S.; Damazio, D. O.; Maidanchik, C.; Marroquim, F.; Seixas, J. M.; Da Silva, P.] COPPE EE UFRJ, Rio De Janeiro, Brazil. [Carvalho, J.; Pinhao, J.] Univ Coimbra, LIP, P-3000 Coimbra, Portugal. [Carvalho, J.; Pinhao, J.] Univ Coimbra, FCTUC, P-3000 Coimbra, Portugal. [Castelo, J.; Castillo, M. V.; Cuenca, C.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls, J. A.] Univ Valencia, CSIC, Ctr Mixto, IFIC, E-46100 Valencia, Spain. [Cogswell, F.; Downing, R.; Errede, D.; Errede, S.; Haney, M.; Junk, T.; Khandanyan, H.; Simaitis, V.; Vichou, I.] Univ Illinois, Urbana, IL 61801 USA. [David, M.; Gomes, A.; Maio, A.; Marques, C.; Onofre, A.; Pina, J.; Santos, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, LIP, P-1699 Lisbon, Portugal. [David, M.; Gomes, A.; Maio, A.; Marques, C.; Pina, J.; Santos, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, FCUL, P-1699 Lisbon, Portugal. [De, K.; Li, J.; Sosebee, M.; Vartapetian, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Djobava, T.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, HEPI, GE-380086 Tbilisi, Rep of Georgia. [Fenyuk, A.; Isaev, A.; Karyukhin, A.; Makouski, M.; Miagkov, A.; Myagkov, A.; Shalanda, N.; Solodkov, A.; Solovyanov, O.; Starchenko, E.; Zaitsev, A.; Zenine, A.] Inst High Energy Phys, Protvino, Russia. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Shevtsov, P.; Starovoitov, P.] Natl Ctr Particles & High Energy Phys, Minsk, Byelarus. [Guarino, V.; Le Compte, T.; Nodulman, L.; Price, L. E.; Proudfoot, J.; Schlereth, J.; Stanek, R.; Underwood, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hakobyan, H.; Simonyan, M.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Kazarov, A.; Kolos, S.; Soloviev, I.] Petersburg Nucl Phys Inst PNPI, Gatchina, Russia. [Lokajicek, M.; Nemecek, S.; Pribyl, L.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Unel, G.] Univ Calif Irvine, Irvine, CA 92717 USA. RP Davidek, T (reprint author), Charles Univ Prague, Fac Math & Phys, IPNP, Holesovickach 2, CR-18000 Prague, Czech Republic. EM Tomas.Davidek@cern.ch RI Alexa, Calin/F-6345-2010; Nemecek, Stanislav/G-5931-2014; Nemecek, Stanislav/C-3487-2012; Kuzhir, Polina/H-8653-2012; Lokajicek, Milos/G-7800-2014; Bosman, Martine/J-9917-2014; Torres, Jose/H-3231-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Cascella, Michele/B-6156-2013; Pina, Joao /C-4391-2012; Inerge, Inct/J-8679-2013; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Fullana Torregrosa, Esteban/A-7305-2016; Gonzalez Millan, Vicente/J-3023-2012; SANCHIS, ENRIQUE/J-7348-2016; Ruiz, Alberto/E-4473-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Karyukhin, Andrey/J-3904-2014 OI Gomes, Agostinho/0000-0002-5940-9893; Maio, Amelia/0000-0001-9099-0009; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Beck, Hans Peter/0000-0001-7212-1096; IGLESIAS FERNANDEZ, CARLOS ANGEL/0000-0002-1755-2712; Kuzhir, Polina/0000-0003-3689-0837; Bosman, Martine/0000-0002-7290-643X; Torres, Jose/0000-0002-1525-1828; Ferrer, Antonio/0000-0003-0532-711X; Cascella, Michele/0000-0003-2091-2501; Pina, Joao /0000-0001-8959-5044; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Gonzalez Millan, Vicente/0000-0001-6014-2586; SANCHIS, ENRIQUE/0000-0002-9689-9131; Ruiz, Alberto/0000-0002-3639-0368; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Karyukhin, Andrey/0000-0001-9087-4315 NR 55 TC 29 Z9 29 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 362 EP 394 DI 10.1016/j.nima.2009.04.009 PG 33 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600017 ER PT J AU Onuki, Y Akiba, Y En'yo, H Fujiwara, K Haki, Y Hashimoto, K Ichimiya, R Kasai, M Kawashima, M Kurita, K Kurosawa, M Mannel, EJ Nakano, K Pak, R Sekimoto, M Sondheim, WE Taketani, A Togawa, M Yamamoto, Y AF Onuki, Y. Akiba, Y. En'yo, H. Fujiwara, K. Haki, Y. Hashimoto, K. Ichimiya, R. Kasai, M. Kawashima, M. Kurita, K. Kurosawa, M. Mannel, E. J. Nakano, K. Pak, R. Sekimoto, M. Sondheim, W. E. Taketani, A. Togawa, M. Yamamoto, Y. TI Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Silicon sensor; Pixel; Assembly; Alignment; Adhesive; Encapsulation ID DETECTOR; VIBRATIONS; ALICE AB The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements. (C) 2009 Elsevier B.V. All rights reserved. C1 [Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Ichimiya, R.; Kurosawa, M.; Nakano, K.; Taketani, A.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Togawa, M.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Haki, Y.; Hashimoto, K.; Kasai, M.; Kawashima, M.; Kurita, K.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Mannel, E. J.] Columbia Univ, New York, NY 10027 USA. [Mannel, E. J.] Nevis Labs, Irvington, NY 10533 USA. [Pak, R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Sekimoto, M.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Sondheim, W. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yamamoto, Y.] Univ Electrocommun, Dept Mech Engn & Intelligent Syst, Tokyo, Japan. RP Onuki, Y (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM onuki@awa.tohoku.ac.jp RI En'yo, Hideto/B-2440-2015; Taketani, Atsushi/E-1803-2017 OI Taketani, Atsushi/0000-0002-4776-2315 NR 12 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 395 EP 403 DI 10.1016/j.nima.2009.04.041 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600018 ER PT J AU Va'vra, J Leith, DWGS Ratcliff, B Ramberg, E Albrow, M Ronzhin, A Ertley, C Natoli, T May, E Byrum, K AF Va'vra, J. Leith, D. W. G. S. Ratcliff, B. Ramberg, E. Albrow, M. Ronzhin, A. Ertley, C. Natoli, T. May, E. Byrum, K. TI Beam test of a Time-of-Flight detector prototype SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photodetectors; TOF ID MCP-PMT; RESOLUTION AB We report on results of a Time-of-Flight (TOF) counter prototype in beam tests at SLAC and Fermilab. Using two identical 64-pixel Photonis Microchannel Plate Photomultipliers (MCP-PMTs) to provide start and stop signals, each having a 1-cm-long quartz Cherenkov radiator, we have achieved a timing resolution Of sigma(single_detector)similar to 14 ps. (C) 2009 Elsevier B.V. All rights reserved. C1 [Va'vra, J.; Leith, D. W. G. S.; Ratcliff, B.] Stanford Univ, SLAC, Stanford, CA 94309 USA. [Ramberg, E.; Albrow, M.; Ronzhin, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ertley, C.; Natoli, T.] Univ Chicago, Chicago, IL 60637 USA. [May, E.; Byrum, K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Va'vra, J (reprint author), Stanford Univ, SLAC, Stanford, CA 94309 USA. EM jjv@slac.stanford.edu NR 9 TC 19 Z9 19 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 404 EP 410 DI 10.1016/j.nima.2009.04.053 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600019 ER PT J AU Aharrouche, M Colas, J Di Ciaccio, L El Kacimi, M Gaumer, O Gouanere, M Goujdami, D Lafaye, R Laplace, S Le Maner, C Neukermans, L Perrodo, P Poggioli, L Prieur, D Przysiezniak, H Sauvage, G Wingerter-Seez, I Zitoun, R Lanni, F Ma, H Rajagopalan, S Rescia, S Takai, H Belymam, A Benchekroun, D Hakimi, M Hoummada, A Gao, Y Lu, L Stroynowski, R Aleksa, M Carli, T Fassnacht, P Gianotti, F Hervas, L Lampl, W Collot, J Hostachy, JY Ledroit-Guillon, F Malek, F Martin, P Viret, S Leltchouk, M Parsons, JA Simion, S Barreiro, F Del Peso, J Labarga, L Oliver, C Rodier, S Barrillon, P Djama, F Hubaut, F Mangeard, PS Monnier, E Niess, V Pralavorio, P Resende, B Sauvage, D Serfon, C Tisserant, S Toth, J Zhang, H Banfi, D Carminati, L Cavalli, D Costa, G Delmastro, M Fanti, M Mandelli, L Mazzanti, M Tartarelli, GF Kotov, K Maslennikov, A Pospelov, G Tikhonov, Y Bourdarios, C Fayard, L Fournier, D Iconomidou-Fayard, L Kado, M Parrour, G Plamondon, M Puzo, P Rousseau, D Sacco, R Serin, L Unal, G Zerwas, D Dekhissi, B Derkaoui, J El Kharrim, A Maaroufi, F Cleland, W Lacour, D Laforge, B Nikolic-Audit, I Schwemling, P Ghazlane, H El Moursli, RC Fakhr-Eddine, AI Boonekamp, M Mansoulie, B Meyer, P Schwindling, J Lund-Jensen, B Tayalati, Y AF Aharrouche, M. Colas, J. Di Ciaccio, L. El Kacimi, M. Gaumer, O. Gouanere, M. Goujdami, D. Lafaye, R. Laplace, S. Le Maner, C. Neukermans, L. Perrodo, P. Poggioli, L. Prieur, D. Przysiezniak, H. Sauvage, G. Wingerter-Seez, I. Zitoun, R. Lanni, F. Ma, H. Rajagopalan, S. Rescia, S. Takai, H. Belymam, A. Benchekroun, D. Hakimi, M. Hoummada, A. Gao, Y. Lu, L. Stroynowski, R. Aleksa, M. Carli, T. Fassnacht, P. Gianotti, F. Hervas, L. Lampl, W. Collot, J. Hostachy, J. Y. Ledroit-Guillon, F. Malek, F. Martin, P. Viret, S. Leltchouk, M. Parsons, J. A. Simion, S. Barreiro, F. Del Peso, J. Labarga, L. Oliver, C. Rodier, S. Barrillon, P. Djama, F. Hubaut, F. Mangeard, P. S. Monnier, E. Niess, V. Pralavorio, P. Resende, B. Sauvage, D. Serfon, C. Tisserant, S. Toth, J. Zhang, H. Banfi, D. Carminati, L. Cavalli, D. Costa, G. Delmastro, M. Fanti, M. Mandelli, L. Mazzanti, M. Tartarelli, G. F. Kotov, K. Maslennikov, A. Pospelov, G. Tikhonov, Yu. Bourdarios, C. Fayard, L. Fournier, D. Iconomidou-Fayard, L. Kado, M. Parrour, G. Plamondon, M. Puzo, P. Rousseau, D. Sacco, R. Serin, L. Unal, G. Zerwas, D. Dekhissi, B. Derkaoui, J. El Kharrim, A. Maaroufi, F. Cleland, W. Lacour, D. Laforge, B. Nikolic-Audit, I. Schwemling, Ph. Ghazlane, H. El Moursli, R. Cherkaoui Fakhr-Eddine, A. Idrissi Boonekamp, M. Mansoulie, B. Meyer, P. Schwindling, J. Lund-Jensen, B. Tayalati, Y. TI Study of the response of ATLAS electromagnetic liquid argon calorimeters to muons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Calorimeters; High-energy physics; Particle detectors; Response to Muons ID PERFORMANCE; MODULE-0 AB The response of the ATLAS electromagnetic calorimeter to muons has been studied in this paper. Results on signal over noise ratio, assessment of the detector response uniformity, and position resolution are presented. The possibility to study fine details of the structure of the detector through its response to muons is illustrated on a specific example. Finally, the performance obtained on muons in test-beam is used to estimate the detector uniformity and time alignment precision that will be reachable after the commissioning of the ATLAS detector with cosmic rays. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lacour, D.; Laforge, B.; Nikolic-Audit, I.; Schwemling, Ph.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Lacour, D.; Laforge, B.; Nikolic-Audit, I.; Schwemling, Ph.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Aharrouche, M.; Colas, J.; Di Ciaccio, L.; El Kacimi, M.; Gaumer, O.; Gouanere, M.; Goujdami, D.; Lafaye, R.; Laplace, S.; Le Maner, C.; Neukermans, L.; Perrodo, P.; Poggioli, L.; Prieur, D.; Przysiezniak, H.; Sauvage, G.; Wingerter-Seez, I.; Zitoun, R.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Lanni, F.; Ma, H.; Rajagopalan, S.; Rescia, S.; Takai, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Belymam, A.; Benchekroun, D.; Hakimi, M.; Hoummada, A.] Fac Sci Ain Chock, Casablanca, Morocco. [Toth, J.] KFKI, Budapest, Hungary. [Gao, Y.; Lu, L.; Stroynowski, R.] So Methodist Univ, Dallas, TX 75275 USA. [Aleksa, M.; Carli, T.; Fassnacht, P.; Gianotti, F.; Hervas, L.; Lampl, W.] European Lab Particle Phys CERN, CH-1211 Geneva 23, Switzerland. [Collot, J.; Hostachy, J. Y.; Ledroit-Guillon, F.; Malek, F.; Martin, P.; Viret, S.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3, F-38026 Grenoble, France. [Leltchouk, M.; Parsons, J. A.; Simion, S.] Columbia Univ, Nevis Labs, Irvington, NY 10533 USA. [Barreiro, F.; Del Peso, J.; Labarga, L.; Oliver, C.; Rodier, S.] Univ Autonoma Madrid, Dept Phys, E-28049 Madrid, Spain. [Barrillon, P.; Djama, F.; Hubaut, F.; Mangeard, P. S.; Monnier, E.; Niess, V.; Pralavorio, P.; Resende, B.; Sauvage, D.; Serfon, C.; Tisserant, S.; Toth, J.; Zhang, H.] Univ Aix Marseille 2, Ctr Phys Particules Marseille, CNRS, IN2P3, F-13288 Marseille, France. [Banfi, D.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G. F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Banfi, D.; Carminati, L.; Cavalli, D.; Costa, G.; Delmastro, M.; Fanti, M.; Mandelli, L.; Mazzanti, M.; Tartarelli, G. F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Kotov, K.; Maslennikov, A.; Pospelov, G.; Tikhonov, Yu.; Bourdarios, C.] Budker Inst Nucl Phys, RU-630090 Novosibirsk, Russia. [Fayard, L.; Fournier, D.; Iconomidou-Fayard, L.; Kado, M.; Parrour, G.; Plamondon, M.; Puzo, P.; Rousseau, D.; Sacco, R.; Serin, L.; Unal, G.; Zerwas, D.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, F-91898 Orsay, France. [Dekhissi, B.; Derkaoui, J.; El Kharrim, A.; Maaroufi, F.] Univ Mohammed Premier, Lab Phys Theor & Phys Particules, Oujda, Morocco. [Cleland, W.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Ghazlane, H.] Ctr Natl Energie Sci & Tech Nucl, Rabat, Morocco. [Ghazlane, H.; El Moursli, R. Cherkaoui; Fakhr-Eddine, A. Idrissi] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Boonekamp, M.; Mansoulie, B.; Meyer, P.; Schwindling, J.] CE Saclay, Serv Phys Particules, DAPNIA, CEA, F-91191 Gif Sur Yvette, France. [Lund-Jensen, B.; Tayalati, Y.] Royal Inst Technol, Stockholm, Sweden. RP Schwemling, P (reprint author), Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. EM schwemli@lpnhep.in2p3.fr RI Rescia, Sergio/D-8604-2011; Delmastro, Marco/I-5599-2012; Tartarelli, Giuseppe Francesco/A-5629-2016 OI Rescia, Sergio/0000-0003-2411-8903; Delmastro, Marco/0000-0003-2992-3805; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X NR 15 TC 7 Z9 7 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 419 EP 431 DI 10.1016/j.nima.2009.05.021 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600021 ER PT J AU Argyriades, J Arnold, R Augier, C Baker, J Barabash, AS Bongrand, M Broudin-Bay, G Brudanin, VB Caffrey, AJ Chapon, A Chauveau, E Daraktchieva, Z Durand, D Egorov, VG Fatemi-Ghomi, N Flack, R Freshville, A Guillon, B Hubert, P Jullian, S Kauer, M King, S Kochetov, OI Konovalov, SI Kovalenko, VE Lalanne, D Lang, K Lemiere, Y Lutter, G Mamedov, F Marquet, C Martin-Albo, J Mauger, F Nachab, A Nasteva, I Nemchenok, IB Nguyen, CH Nova, F Novella, P Ohsumi, H Pahlka, RB Perrot, F Piquemal, F Reyss, JL Ricol, JS Saakyan, R Sarazin, X Simard, L Shitov, YA Smolnikov, AA Snow, S Soldner-Rembold, S Stekl, I Sutton, CS Szklarz, G Thomas, J Timkin, VV Tretyak, VI Tretyak, VI Umatov, VI Vala, L Vanyushin, IA Vasiliev, VA Vorobel, V Vylov, T AF Argyriades, J. Arnold, R. Augier, C. Baker, J. Barabash, A. S. Bongrand, M. Broudin-Bay, G. Brudanin, V. B. Caffrey, A. J. Chapon, A. Chauveau, E. Daraktchieva, Z. Durand, D. Egorov, V. G. Fatemi-Ghomi, N. Flack, R. Freshville, A. Guillon, B. Hubert, Ph. Jullian, S. Kauer, M. King, S. Kochetov, O. I. Konovalov, S. I. Kovalenko, V. E. Lalanne, D. Lang, K. Lemiere, Y. Lutter, G. Mamedov, F. Marquet, Ch. Martin-Albo, J. Mauger, F. Nachab, A. Nasteva, I. Nemchenok, I. B. Nguyen, C. H. Nova, F. Novella, P. Ohsumi, H. Pahlka, R. B. Perrot, F. Piquemal, F. Reyss, J. L. Ricol, J. S. Saakyan, R. Sarazin, X. Simard, L. Shitov, Yu. A. Smolnikov, A. A. Snow, S. Soldner-Rembold, S. Stekl, I. Sutton, C. S. Szklarz, G. Thomas, J. Timkin, V. V. Tretyak, V. I. Tretyak, Vl. I. Umatov, V. I. Vala, L. Vanyushin, I. A. Vasiliev, V. A. Vorobel, V. Vylov, Ts. TI Measurement of the background in the NEMO 3 double beta decay experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Double beta decay; NEMO; Background; Radon; Low radioactivity ID DIFFUSION-COEFFICIENT; DETECTOR; MO-100 AB In the double beta decay experiment NEMO 3 a precise knowledge of the background in the signal region is of outstanding importance. This article presents the methods used in NEMO 3 to evaluate the backgrounds resulting from most if not all possible origins. It also illustrates the power of the combined tracking-calorimetry technique used in the experiment. (C) 2009 Elsevier B.V. All rights reserved. C1 [Arnold, R.; Kovalenko, V. E.; Tretyak, V. I.] Univ Strasbourg, IPHC, CNRS, IN2P3, F-67037 Strasbourg, France. [Argyriades, J.; Augier, C.; Bongrand, M.; Broudin-Bay, G.; Jullian, S.; Lalanne, D.; Sarazin, X.; Simard, L.; Szklarz, G.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Baker, J.; Caffrey, A. J.] INL, Idaho Falls, ID 83415 USA. [Barabash, A. S.; Konovalov, S. I.; Umatov, V. I.; Vanyushin, I. A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Chauveau, E.; Hubert, Ph.; Lutter, G.; Marquet, Ch.; Nachab, A.; Nguyen, C. H.; Perrot, F.; Piquemal, F.; Ricol, J. S.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, CNRS,IN2P3, F-33175 Gradignan, France. [Brudanin, V. B.; Egorov, V. G.; Kochetov, O. I.; Kovalenko, V. E.; Nemchenok, I. B.; Shitov, Yu. A.; Smolnikov, A. A.; Timkin, V. V.; Tretyak, V. I.; Vylov, Ts.] Joint Inst Nucl Res, Dubna 141980, Russia. [Fatemi-Ghomi, N.; Nasteva, I.; Snow, S.; Soldner-Rembold, S.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Mamedov, F.; Stekl, I.; Vala, L.] Czech Tech Univ, IEAP, CZ-12800 Prague, Czech Republic. [Daraktchieva, Z.; Flack, R.; Freshville, A.; Kauer, M.; King, S.; Saakyan, R.; Thomas, J.; Vasiliev, V. A.] UCL, London WC1E 6BT, England. [Lang, K.; Pahlka, R. B.] Univ Texas Austin, Austin, TX 78712 USA. [Chapon, A.; Durand, D.; Guillon, B.; Lemiere, Y.; Mauger, F.] Univ Caen, LPC Caen, ENSICAEN, CNRS,IN2P3, F-14032 Caen, France. [Nova, F.] Univ Autonoma Barcelona, Barcelona, Spain. [Martin-Albo, J.; Novella, P.] Univ Valencia, IFIC, CSIC, Valencia, Spain. [Ohsumi, H.] Saga Univ, Saga 8408502, Japan. [Reyss, J. L.] CNRS, LSCE, F-91190 Gif Sur Yvette, France. [Sutton, C. S.] MHC, S Hadley, MA 01075 USA. [Vorobel, V.] Charles Univ Prague, Fac Math & Phys, CZ-12116 Prague, Czech Republic. [Tretyak, Vl. I.] MSP, INR, UA-03680 Kiev, Ukraine. [Nguyen, C. H.] Hanoi Univ Sci, Hanoi, Vietnam. RP Tretyak, VI (reprint author), Univ Strasbourg, IPHC, CNRS, IN2P3, F-67037 Strasbourg, France. EM tretyak@jinr.ru RI Shitov, Yuri/J-2318-2012; Nemchenok, Igor/F-9715-2014; Novella, Pau/K-2845-2014; Nasteva, Irina/M-8764-2014; Vala, Ladislav/L-4938-2016; Barabash, Alexander/S-8851-2016; OI Novella, Pau/0000-0002-0923-3172; Nasteva, Irina/0000-0001-7115-7214; Martin-Albo, Justo/0000-0002-7318-1469; Tretyak, Vladimir/0000-0002-2369-0679 FU RFBR [06-02-16672, 06-02-72553]; Russian Federal Agency for Atomic Energy; Grant Agencies of the Czech Republic [MSM 6840770029, LA305, LC07050] FX The authors would like to thank the Modane Underground Laboratory staff for their technical assistance in running the experiment. Portions of this work were supported by Grants from RFBR (nos. 06-02-16672 and 06-02-72553) and by the Russian Federal Agency for Atomic Energy. We acknowledge support by the Grant Agencies of the Czech Republic (MSM 6840770029, LA305 and LC07050). NR 20 TC 36 Z9 36 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 449 EP 465 DI 10.1016/j.nima.2009.04.011 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600025 ER PT J AU Cooper, RJ Boston, AJ Boston, HC Cresswell, JR Grint, AN Harkness, LJ Nolan, PJ Oxley, DC Scraggs, DP Mather, AR Lazarus, I Simpson, J AF Cooper, R. J. Boston, A. J. Boston, H. C. Cresswell, J. R. Grint, A. N. Harkness, L. J. Nolan, P. J. Oxley, D. C. Scraggs, D. P. Mather, A. R. Lazarus, I. Simpson, J. TI Positron Emission Tomography imaging with the SmartPET system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Planar HPGe detector; Pulse Shape Analysis; Positron Emission Tomography ID SMALL-ANIMAL PET; POSITION SENSITIVITY; HPGE DETECTORS AB The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cooper, R. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Harkness, L. J.; Nolan, P. J.; Oxley, D. C.; Scraggs, D. P.; Mather, A. R.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Lazarus, I.; Simpson, J.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Cooper, RJ (reprint author), Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. EM cooperrj@ornl.gov FU Engineering and Physical Sciences Research Council and Medical Research Council FX The authors would like to thank the Engineering and Physical Sciences Research Council and Medical Research Council for financial support. NR 31 TC 1 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 523 EP 532 DI 10.1016/j.nima.2009.04.015 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600034 ER PT J AU Ross, TJ Beausang, CW Lee, IY Macchiavelli, AO Gros, S Cromaz, M Clark, RM Fallon, P Jeppesen, H Allmond, JM AF Ross, T. J. Beausang, C. W. Lee, I. Y. Macchiavelli, A. O. Gros, S. Cromaz, M. Clark, R. M. Fallon, P. Jeppesen, H. Allmond, J. M. TI Neutron damage tests of a highly segmented germanium crystal SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Germanium detectors; Neutron damage; Gamma-ray tracking; Gamma-ray arrays ID RADIATION-DAMAGE; N-TYPE; DETECTORS; PERFORMANCE; GRETA AB To evaluate the effect of neutron damage on the performance of highly segmented germanium detectors the P3 prototype detector for the GRETINA array was subjected to a neutron flux of similar to 3 x 10(9) n/cm(2) over a period of 5 days. During the irradiation, the resolution (full-width half-maximum (FWHM)) of the 1332 keV (60)Co photopeak increased from similar to 1.8 to similar to 6.0 keV while the full-width at tenth maximum (FWTM) increased from similar to 4 keV to more than 12 keV. Following the irradiation the detector was successfully annealed and the energy resolution returned to pre-irradiation values. All detector segments were fully functional before and after the annealing and following multiple room-temperature cycles. A comparison of digitized pulse shapes in the damaged and annealed detector indicates that the effect of extreme neutron damage (FWHM = 6 keV) on the position resolution is on the order of similar to 1.7 mm while for 3 keV resolution the position resolution degrades by similar to 0.5 mm. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ross, T. J.; Beausang, C. W.; Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Lee, I. Y.; Macchiavelli, A. O.; Gros, S.; Cromaz, M.; Clark, R. M.; Fallon, P.; Jeppesen, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ross, T. J.] Univ Surrey, Dept Phys, Guildford GU2 7JL, Surrey, England. RP Beausang, CW (reprint author), Univ Richmond, Dept Phys, Richmond, VA 23173 USA. EM cbeausan@richmond.edu OI Allmond, James Mitchell/0000-0001-6533-8721 FU U.S. Department of Energy [DE-FG52-06NA26206, DE-FG02-05ER41379, DE-AC02-05CH11231] FX This work was performed under the auspices of the U.S. Department of Energy by the University of Richmond under grant numbers DE-FG52-06NA26206 and DE-FG02-05ER41379. The work at Lawrence Berkeley National Laboratory is supported by the U.S. DOE under Contract Number DE-AC02-05CH11231. NR 15 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 533 EP 544 DI 10.1016/j.nima.2009.04.024 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600035 ER PT J AU Glister, J Ron, G Lee, B Beck, A Brash, E Camsonne, A Choi, S Dumas, J Feuerbach, R Gilman, R Higinbotham, DW Jiang, X Jones, MK Beck, SMT McCullough, E Paolone, M Piasetzky, E Roche, J Rousseau, Y Sarty, AJ Sawatzky, B Strauch, S AF Glister, J. Ron, G. Lee, B. Beck, A. Brash, E. Camsonne, A. Choi, S. Dumas, J. Feuerbach, R. Gilman, R. Higinbotham, D. W. Jiang, X. Jones, M. K. Beck, S. May-Tal McCullough, E. Paolone, M. Piasetzky, E. Roche, J. Rousseau, Y. Sarty, A. J. Sawatzky, B. Strauch, S. TI Proton polarimeter calibration between 82 and 217 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Analyzing power; Polarization; Polarimeter ID C ANALYZING POWER; JEFFERSON-LAB; HALL-A; SCATTERING; NUCLEONS AB The proton analyzing power in carbon has been measured for energies of 82-217 MeV and proton scattering angles of 5-41 degrees. The measurements were carried out using polarized protons from the elastic scattering (1)H((e) over right arrow, (p) over right arrow) reaction and the Focal Plane Polarimeter (FPP) in Hall A of Jefferson Lab. A new parameterization of the FPP p-C analyzing power was fit to the data, which is in good agreement with previous parameterizations and provides an extension to lower energies and larger angles. The main conclusions are that all polarimeters to date give consistent measurements of the carbon analyzing power, independently of the details of their construction and that measuring on a larger angular range significantly improves the polarimeter figure of merit at low energies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Glister, J.; McCullough, E.; Sarty, A. J.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Glister, J.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada. [Ron, G.; Piasetzky, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Lee, B.; Choi, S.] Seoul Natl Univ, Seoul 151747, South Korea. [Beck, A.; Beck, S. May-Tal] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel. [Brash, E.] Christopher Newport Univ, Newport News, VA 23606 USA. [Camsonne, A.; Feuerbach, R.; Gilman, R.; Higinbotham, D. W.; Jones, M. K.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Dumas, J.; Gilman, R.; Jiang, X.; Rousseau, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Paolone, M.; Strauch, S.] Univ S Carolina, Columbia, SC 29208 USA. [Roche, J.] Ohio Univ, Athens, OH 45701 USA. [Sawatzky, B.] Univ Virginia, Charlottesville, VA 22094 USA. [Sawatzky, B.] Temple Univ, Philadelphia, PA 19122 USA. RP Glister, J (reprint author), St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. EM jglister@jlab.org RI Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014 OI Higinbotham, Douglas/0000-0003-2758-6526 FU U.S. Department of Energy [DE-AC02-06CH11357, DE-AC05-06OR23177]; U.S. National Science Foundation; Argonne National Laboratory; Israel Science Foundation; Korea Science Foundation; US-Israeli Bi-National Scientific Foundation; Walter C. Sumner Foundation; U.S. National Science Foundation [PHY 9213864, PHY 9213869] FX We thank the Jefferson Lab Physics and Accelerator Divisions for their contributions. This work was supported by the U.S. Department of Energy, the U.S. National Science Foundation, Argonne National Laboratory under Contract DE-AC02-06CH11357, the Israel Science Foundation, the Korea Science Foundation, the US-Israeli Bi-National Scientific Foundation, the Natural Sciences and Engineering Research Council of Canada, the Killam Trusts Fund and the Walter C. Sumner Foundation. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility under DOE Contract DE-AC05-06OR23177. The polarimeter was funded by the U.S. National Science Foundation, Grants PHY 9213864 and PHY 9213869. NR 27 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 578 EP 584 DI 10.1016/j.nima.2009.04.051 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600040 ER PT J AU Mei, DM Zhang, C Hime, A AF Mei, D. -M. Zhang, C. Hime, A. TI Evaluation of (alpha, n) induced neutrons as a background for dark matter experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE (alpha, n) neutrons; Dark matter detection ID PRODUCTION CROSS-SECTIONS; LIGHT-ELEMENTS; SEARCH; LIMITS; YIELDS AB Neutrons from (alpha, n) reactions through thorium and uranium decays are important sources of background for direct dark matter detection. The neutron yields and energy spectra from a range of materials that are used to build dark matter detectors are calculated and tabulated. In addition to thorium and uranium decays, we found that alpha-particles from samarium, often the dopant of the window materials of photomultiplier tubes (PMT), are also an important source of neutron yield. The results in this paper can be used as the input to Monte Carlo simulations for many materials that will be used for next generation experiments. Published by Elsevier B.V. C1 [Mei, D. -M.; Zhang, C.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Zhang, C.] Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R China. [Hime, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mei, DM (reprint author), Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. EM dongming.mei@usd.edu FU NSF [0758120]; Office of Research at The University of South Dakota; Laboratory Directed Research and Development FX The authors wish to thank Yongchen Sun and Christina Keller at The University of South Dakota for the invaluable support that made this work successful. This work was supported in part by the NSF Grant 0758120, the Office of Research at The University of South Dakota, and by Laboratory Directed Research and Development at Los Alamos National Laboratory. NR 36 TC 29 Z9 29 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 651 EP 660 DI 10.1016/j.nima.2009.04.032 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600048 ER PT J AU Talamo, A Gohar, Y Rabiti, C Aliberti, G Kondev, F Smith, D Zhong, Z Kiyavitskaya, H Bournos, V Fokov, Y Routkovskaya, C Serafimovich, I AF Talamo, Alberto Gohar, Y. Rabiti, C. Aliberti, G. Kondev, F. Smith, D. Zhong, Z. Kiyavitskaya, H. Bournos, V. Fokov, Y. Routkovskaya, C. Serafimovich, I. TI Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Area method; Sjostrand method; Bell correction factor; MCNP; YALINA-Booster; Pulsed neutron source ID TRANSMUTATION; REACTIVITY; SYSTEMS AB One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjostrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjostrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor. Published by Elsevier B.V. C1 [Talamo, Alberto; Gohar, Y.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. [Rabiti, C.] Idaho Natl Lab, Idaho Falls, ID 83403 USA. RP Talamo, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM atalamo@anl.gov OI talamo, alberto/0000-0001-5685-0483 NR 23 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 661 EP 668 DI 10.1016/j.nima.2009.04.029 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600049 ER PT J AU Keister, JW Smedley, J AF Keister, Jeffrey W. Smedley, John TI Single crystal diamond photodiode for soft X-ray radiometry SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Diamond; Electronic; Responsivity; X-ray; Detectors; Diode ID NUCLEAR RADIATION DETECTORS; PHOTOCONDUCTIVE DETECTORS; CVD DIAMOND; PERFORMANCE AB Method is presented to obtain current-mode responsivity from diamond photodiode in the soft X-ray range (0.25-7 keV). Pulsed bias and blocking contacts are used to mitigate artifacts of charge trapping and photoconductive gain. Mean electron-hole pair creation energy is measured from experimental data to be 13.25 +/- 0.5eV. Responsivity of diodes made from commercially available 500 mu m thick single-crystal diamond (under conditions described) is reported. Published by Elsevier B.V. C1 [Keister, Jeffrey W.; Smedley, John] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Keister, JW (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM jkeister@bnl.gov; smedley@bnl.gov FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; US Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This manuscript has been authored by Brookhaven Science Associates, LLC under Contract no. DE-AC02-98CH10886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. Use of beamlines at the National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. NR 30 TC 20 Z9 21 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 774 EP 779 DI 10.1016/j.nima.2009.04.044 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600065 ER PT J AU Voss, LF Reinhardt, CE Graff, RT Conway, AM Nikolic, RJ Deo, N Cheung, CL AF Voss, L. F. Reinhardt, C. E. Graff, R. T. Conway, A. M. Nikolic, R. J. Deo, Nirmalendu Cheung, Chin Li TI Comparison of CF4 and SF6 based plasmas for ECR etching of isotopically enriched (10)boron films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron; Boron; Detector; Plasma; Etch; Processing ID NEUTRON DETECTORS; GLOW-DISCHARGE AB Isotopically enriched (10)boron films have been successfully etched in an Electron Cyclotron Resonance (ECR) etching tool using CF4 and SF6 based plasmas. Comparisons between the two are made with regard to etch rate, selectivity to the underlying Si device structure, and morphology of the (10)boron post-etching. Our present film etching development is expected to be critical for the fabrication of next generation thermal neutron solid state detectors based on (10)boron. Published by Elsevier B.V. C1 [Voss, L. F.; Reinhardt, C. E.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Deo, Nirmalendu; Cheung, Chin Li] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Deo, Nirmalendu; Cheung, Chin Li] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Voss, LF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM voss5@llnl.gov RI Voss, Lars/C-3623-2009; Cheung, Chin Li/B-8270-2013 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-411210] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-411210. NR 14 TC 8 Z9 8 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 21 PY 2009 VL 606 IS 3 BP 821 EP 823 DI 10.1016/j.nima.2009.05.020 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476PD UT WOS:000268453600073 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Romeo, GC Cindolo, F Corradi, M Iacobucci, G Margotti, A Massam, T Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A Palmonari, F De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, R Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behrens, U Blohm, C Bonato, A Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Ukleja, J Wolf, G Wrona, K Molina, AGY Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Rosin, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kozulia, A Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Uribe-Estrada, C Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Heusch, C Sadrozinski, H Seiden, A Wichmann, R Williams, DC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaju, H Kitamura, S Ota, O Ri, YD Cirio, R Costa, M Ferrero, MI Monaco, V Peroni, C Sacchi, R Sola, V Solano, A Cartiglia, N Maselli, S Staiano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Tymieniecka, T Zarnecki, AF Adamus, M Plucinski, P Ukleja, A Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Romeo, G. Cara Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Massam, T. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. Palmonari, F. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, R. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behrens, U. Blohm, C. Bonato, A. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Ukleja, J. Wolf, G. Wrona, K. Molina, A. G. Yaguees Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Uribe-Estrada, C. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Heusch, C. Sadrozinski, H. Seiden, A. Wichmann, R. Williams, D. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaju, H. Kitamura, S. Ota, O. Ri, Y. D. Cirio, R. Costa, M. Ferrero, M. I. Monaco, V. Peroni, C. Sacchi, R. Sola, V. Solano, A. Cartiglia, N. Maselli, S. Staiano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Tymieniecka, T. Zarnecki, A. F. Adamus, M. Plucinski, P. Ukleja, A. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Deep inelastic scattering with leading protons or large rapidity gaps at HERA SO NUCLEAR PHYSICS B LA English DT Article ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; PARTON DISTRIBUTIONS; DIFFRACTIVE SCATTERING; CROSS-SECTION; PLUG CALORIMETER; EP COLLISIONS; MONTE-CARLO; ENERGY; CONSTRUCTION AB The dissociation of virtual photons, gamma*p -> X-p, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q(2) > 2 GeV2 and gamma*p centre-of-mass energies 40 < W < 240 GeV, with M-X > 2 GeV, where M-X is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and Phi. the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q(2) and x(P), the fraction of the proton's momentum carried by the diffractive exchange. as well as beta, the Bjorken variable defined with respect to the diffractive exchange. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Massam, T.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Palmonari, F.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Palmonari, F.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, R.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Behnke, O.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Ukleja, J.; Wolf, G.; Wrona, K.; Molina, A. G. Yaguees; Youngman, C.; Zeuner, W.; Gialas, I.] DESY, D-2000 Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fac Phys, Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev & Kiev Natl Univ, Inst Nucl Res, Natl Acad Sci, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Uribe-Estrada, C.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Heusch, C.; Sadrozinski, H.; Seiden, A.; Wichmann, R.; Williams, D. C.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaju, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Cirio, R.; Costa, M.; Ferrero, M. I.; Monaco, V.; Peroni, C.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Cirio, R.; Costa, M.; Ferrero, M. I.; Monaco, V.; Peroni, C.; Sacchi, R.; Sola, V.; Solano, A.; Cartiglia, N.; Maselli, S.; Staiano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Tymieniecka, T.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Ukleja, A.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, P.; Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Tymieniecka, T.] Univ Podlasie, Siedlce, Poland. RP Haas, T (reprint author), DESY, Notkestr 85, D-2000 Hamburg, Germany. EM tobias.haas@desy.de RI WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Korzhavina, Irina/D-6848-2012; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; OI Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337 FU US Department of Energy; Italian National Institute for Nuclear Physics (INFN); German Federal Ministry for Education and Research (BMBF) [05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA, 05 HZ4KHA]; Malaysian government; US National Science Foundation; Polish State Committee for Scientific Research [DESY/256/2006 - 154/DES/2006/03]; Polish Ministry of Science and Higher Education; COCOS [MTKD-CT-2004-517186]; Warsaw University, Poland; Moscow State University, Russia; Royal Society of Edinburgh; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); DESY, Germany; Korean Ministry of Education and Korea Science and Engineering Foundation; FNRS; CICYT; Natural Sciences and Engineering Research Council of Canada (NSERC); German Federal Ministry for Education and Research (BMBF); Russian Foundation for Basic Research [05-02-39028-NSFC-a]; RF [N 1456.2008.2]; Russian Ministry of Education and Science; Netherlands Foundation for Research on Matter (FOM); STFC; [1 P03B 04529 (2005-2008)] FX Supported by the US Department of Energy; Supported by the Italian National Institute for Nuclear Physics (INFN).; Supported by the German Federal Ministry for Education and Research (BMBF), under contract numbers 05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA and 05 HZ4KHA.; Supported by an FRGS grant from the Malaysian government.; Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.; Supported by the Polish State Committee for Scientific Research, project No. DESY/256/2006 - 154/DES/2006/03.; Supported by the Polish Ministry of Science and Higher Education as a scientific project (2006-2008).; Supported by the research grant No. 1 P03B 04529 (2005-2008).; This work was supported in part by the Marie Curie Actions Transfer of Knowledge project COCOS (contract MTKD-CT-2004-517186).; Partially supported by Warsaw University, Poland.; Partly supported by Moscow State University, Russia.; Royal Society of Edinburgh, Scottish Executive Support Research Fellow.; Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research.; Supported by DESY, Germany.; Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation.; Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office.; Supported by the Spanish Ministry of Education and Science through funds provided by CICYT.; Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).; Partially supported by the German Federal Ministry for Education and Research (BMBF).; Partly supported by Russian Foundation for Basic Research grant No. 05-02-39028-NSFC-a.; Supported by RF Presidential grant N 1456.2008.2 for the leading scientific schools and by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics.; Supported by the Netherlands Foundation for Research on Matter (FOM).; STFC Advanced Fellow. NR 67 TC 49 Z9 49 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD JUL 21 PY 2009 VL 816 IS 1-2 BP 1 EP 61 DI 10.1016/j.nuclphysb.2009.03.003 PG 61 WC Physics, Particles & Fields SC Physics GA 446TY UT WOS:000266145300001 ER PT J AU Moffet, RC Prather, KA AF Moffet, Ryan C. Prather, Kimberly A. TI In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aerosol; atmosphere; climate; composition ID CITY METROPOLITAN-AREA; BLACK CARBON; MASS-SPECTROMETRY; LIGHT-SCATTERING; PARTICLES; AEROSOL; ABSORPTION; CLIMATE; ATOFMS; CAMPAIGN AB Our ability to predict how global temperatures will change in the future is currently limited by the large uncertainties associated with aerosols. Soot aerosols represent a major research focus as they influence climate by absorbing incoming solar radiation resulting in a highly uncertain warming effect. The uncertainty stems from the fact that the actual amount soot warms our atmosphere strongly depends on the manner and degree in which it is mixed with other species, a property referred to as mixing state. In global models and inferences from atmospheric heating measurements, soot radiative forcing estimates currently differ by a factor of 6, ranging between 0.2-1.2 W/m(2), making soot second only to CO2 in terms of global warming potential. This article reports coupled in situ measurements of the size-resolved mixing state, optical properties, and aging timescales for soot particles. Fresh fractal soot particles dominate the measured absorption during peak traffic periods (6-9 AM local time). Immediately after sunrise, soot particles begin to age by developing a coating of secondary species including sulfate, ammonium, organics, nitrate, and water. Based on these direct measurements, the core-shell arrangement results in a maximum absorption enhancement of 1.6 x over fresh soot. These atmospheric observations help explain the larger values for soot forcing measured by others and will be used to obtain closure in optical property measurements to reduce one of the largest remaining uncertainties in climate change. C1 [Prather, Kimberly A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Prather, Kimberly A.] Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Moffet, Ryan C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Prather, KA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM kprather@ucsd.edu RI Prather, Kimberly/A-3892-2008 OI Prather, Kimberly/0000-0003-3048-9890 FU California Air Resources Board [04-336]; Glenn T. Seaborg postdoctoral fellowship FX We thank Sharon Qin, Steve Toner, and Laura Shields for help gathering data in Riverside. Nancy Marley and Jeff Gaffney graciously provided absorption measurements. Jain Wang and Don Collins kindly provided size distribution measurements. California Air Resources Board provided funding under Grant 04-336. R. C. M. acknowledges funding provided by the Glenn T. Seaborg postdoctoral fellowship. The Molina Center for Energy and the Environment provided support for the measurements in Mexico City. NR 34 TC 163 Z9 169 U1 12 U2 88 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 21 PY 2009 VL 106 IS 29 BP 11872 EP 11877 DI 10.1073/pnas.0900040106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 473BI UT WOS:000268178400013 PM 19581581 ER PT J AU Thomas, S Evans, JW Gavel, D Dillon, D Macintosh, B AF Thomas, Sandrine Evans, Julia W. Gavel, Donald Dillon, Daren Macintosh, Bruce TI Amplitude variations on a MEMS-based extreme adaptive optics coronagraph testbed SO APPLIED OPTICS LA English DT Article ID LABORATORY DEMONSTRATION; EXTRASOLAR PLANET AB High-contrast imaging techniques such as coronagraphy are expected to play an important role in the imaging of extrasolar planets. Instruments like the Gemini Planet Imager (GPI) or the Spectro-Polar-Imetric High-Contrast Exoplanet Research (SPHERE) require high-dynamic range, achieved using coronagraphs to block light coming from the parent star. An extremely good adaptive optics (AO) system is required to reduce dynamic atmospheric wavefront errors to 50-100 nm rms. Systematic wavefront errors must also be controlled at the nanometer-equivalent level to remove persistent speckle artifacts. While precision AO systems can control wavefront phase errors at this level, systematic amplitude or intensity errors can also produce speckle artifacts and are uncontrolled by traditional AO phase conjugation. On the Laboratory for Adaptive Optics (LAO) extreme AO testbed, we observed a discrepancy between the coronagraphic image profile and the profile predicted by simple simulations using the measured optical phase, which could potentially be explained by amplitude variations. Measurements showed up to 7% rms intensity changes across the microelectrical mechanical (MEM) plane of the system. We identified potential sources of amplitude variation and compared them to a Fresnel model of the system. One potential concern was the surface structure of the MEM system's (MEMS) deformable mirror, but analysis shows that it induces at most 2% rms variation. The bulk of the observed intensity variation is due to nonuniform illumination of the system by the input single-mode fiber and phase errors mixing into amplitude at the nonpupil-plane due to the Talbot effect, coupled with residual astigmatism in the pupil imager. (C) 2009 Optical Society of America C1 [Thomas, Sandrine; Macintosh, Bruce] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Evans, Julia W.; Gavel, Donald; Dillon, Daren; Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Thomas, S (reprint author), Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA. EM sthomas@ucolick.org FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors gratefully acknowledge the Gordon and Betty Moore Foundation for postdoctoral support of S. Thomas via the Laboratory for Adaptive Optics at UC Santa Cruz. This work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 23 TC 2 Z9 2 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 20 PY 2009 VL 48 IS 21 BP 4077 EP 4089 DI 10.1364/AO.48.004077 PG 13 WC Optics SC Optics GA 483GC UT WOS:000268949800004 PM 19623221 ER PT J AU Duda, JC Smoyer, JL Norris, PM Hopkins, PE AF Duda, John C. Smoyer, Justin L. Norris, Pamela M. Hopkins, Patrick E. TI Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium; elasticity; graphite; metal-insulator boundaries; specific heat; thermal conductivity; vibrational modes ID GRAPHITE AB This model is an extension of the diffuse mismatch model (DMM), tailored to accurately predict thermal boundary conductance (h(BD)) at interfaces where one material comprising the interface is characterized by high elastic anisotropy. Temperature-dependent specific heat is calculated with this vibrational model and compared to published values. Modifications to the DMM that incorporate the vibrational model are presented with predictions of h(BD) at a metal-graphite interface. This model slightly underestimates experimental data, as expected, as the large acoustic mismatch between metals and graphite suggests inelastic scattering, something the DMM does not take into account. C1 [Duda, John C.; Smoyer, Justin L.; Norris, Pamela M.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Hopkins, Patrick E.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Duda, JC (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM duda@virginia.edu; jls5ra@virginia.edu; pamela@virginia.edu; pehopki@sandia.gov RI Duda, John/A-7214-2011 FU Office of Naval Research; MURI [N00014-07-1-0723]; National Science Foundation; Sandia National Laboratories Harry S. Truman Fellowship; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the financial support of Office of Naval Research through a MURI grant (Grant No. N00014-07-1-0723). J.C.D is greatly appreciative for financial support from the National Science Foundation through the Graduate Research Fellowship Program. J.C.D. and J.L.S. would like to thank Dr. William Soffa from U. Va. for his meticulous instruction and helpful insight. P. E. H. is grateful for funding from the LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 17 TC 46 Z9 47 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 20 PY 2009 VL 95 IS 3 AR 031912 DI 10.1063/1.3189087 PG 3 WC Physics, Applied SC Physics GA 475ZA UT WOS:000268405300025 ER PT J AU Klem, JF Kim, JK Cich, MJ Keeler, GA Hawkins, SD Fortune, TR AF Klem, J. F. Kim, J. K. Cich, M. J. Keeler, G. A. Hawkins, S. D. Fortune, T. R. TI Mesa-isolated InGaAs photodetectors with low dark current SO APPLIED PHYSICS LETTERS LA English DT Article DE dark conductivity; diffusion; gallium arsenide; III-V semiconductors; indium compounds; passivation; photodetectors; photodiodes ID ABSORPTION; WAVELENGTH; MIRRORS AB We demonstrate InGaAs photodiodes with an epitaxial heterostructure that allows simple mesa isolation of individual devices with low dark current and high responsivity. An undoped InAlAs barrier and passivation layer enables isolation of detectors without exposing the InGaAs active region, while simultaneously reducing electron diffusion current. Photodetectors with mesa sizes as small as 25x25 mu m(2) exhibit dark current densities of 10 nA/cm(2) at 295 K and responsivities of 0.62 A/W at 1550 nm. C1 [Klem, J. F.; Kim, J. K.; Cich, M. J.; Keeler, G. A.; Hawkins, S. D.] Sandia Natl Labs, Albuquerque, NM 87111 USA. [Fortune, T. R.] Sandia Staffing Alliance, Albuquerque, NM 87110 USA. RP Klem, JF (reprint author), Sandia Natl Labs, POB 5800,MS 1085, Albuquerque, NM 87111 USA. EM jklem@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge the technical contributions of T. Bauer to this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 13 TC 6 Z9 6 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 20 PY 2009 VL 95 IS 3 AR 031112 DI 10.1063/1.3184807 PG 3 WC Physics, Applied SC Physics GA 475ZA UT WOS:000268405300012 ER PT J AU Liu, G Stillman, W Rumyantsev, S Shao, Q Shur, M Balandin, AA AF Liu, G. Stillman, W. Rumyantsev, S. Shao, Q. Shur, M. Balandin, A. A. TI Low-frequency electronic noise in the double-gate single-layer graphene transistors SO APPLIED PHYSICS LETTERS LA English DT Article DE 1; f noise; flicker noise; graphene; hafnium compounds; transistors ID FIELD-EFFECT TRANSISTORS; DEPENDENCE; TRANSPORT AB The authors report the results of an experimental investigation of the low-frequency noise in the double-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by similar to 20 nm of HfO2 from the single-layer graphene channels. The measurements revealed low flicker noise levels with the normalized noise spectral density close to 1/f (f is the frequency) and Hooge parameter alpha(H)approximate to 2x10(-3). The analysis of noise spectral density dependence on the top and bottom gate biases helped to elucidate the noise sources in these devices. The obtained results are important for graphene electronic and sensor applications. C1 [Liu, G.; Shao, Q.; Balandin, A. A.] Univ Calif Riverside, Bourns Coll Engn, Nanodevice Lab, Dept Elect Engn, Riverside, CA 92521 USA. [Liu, G.; Shao, Q.; Balandin, A. A.] Univ Calif Riverside, Bourns Coll Engn, Nanodevice Lab, Mat Sci & Engn Program, Riverside, CA 92521 USA. [Stillman, W.; Rumyantsev, S.; Shur, M.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Stillman, W.; Rumyantsev, S.; Shur, M.] Rensselaer Polytech Inst, Ctr Integrated Elect, Troy, NY 12180 USA. [Rumyantsev, S.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Shao, Q.] Lawrence Livermore Natl Lab, Ctr Micro & Nano Technol, Livermore, CA 94550 USA. RP Balandin, AA (reprint author), Univ Calif Riverside, Bourns Coll Engn, Nanodevice Lab, Dept Elect Engn, Riverside, CA 92521 USA. EM balandin@ee.ucr.edu RI Balandin, Alexander/F-9230-2011; Shao, Qinghui/A-1756-2013; Shur, Michael/A-4374-2016; Liu, Guanxiong/E-2052-2016 OI Shur, Michael/0000-0003-0976-6232; FU DARPA-SRC Focus Center Research Program (FCRP) through its Center on Functional Engineered Nano Architectonics (FENA); Interconnect Focus Center (IFC); AFOSR [A9550-08-1-0100]; IFC FX The work at UCR was supported by DARPA-SRC Focus Center Research Program (FCRP) through its Center on Functional Engineered Nano Architectonics (FENA) and Interconnect Focus Center (IFC) and by AFOSR Award No. A9550-08-1-0100. The work at RPI was supported by the IFC seed funding. NR 21 TC 81 Z9 81 U1 5 U2 58 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 20 PY 2009 VL 95 IS 3 AR 033103 DI 10.1063/1.3180707 PG 3 WC Physics, Applied SC Physics GA 475ZA UT WOS:000268405300054 ER PT J AU Shin, J Kalinin, SV Plummer, EW Baddorf, AP AF Shin, Junsoo Kalinin, S. V. Plummer, E. W. Baddorf, A. P. TI Electronic transport through in situ grown ultrathin BaTiO3 films SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; dielectric hysteresis; dielectric polarisation; ferroelectric switching; ferroelectric thin films; pulsed laser deposition; scanning tunnelling microscopy; scanning tunnelling spectroscopy; stochastic processes ID TUNNEL-JUNCTIONS AB Polarization-mediated transport properties of ultrathin (4 and 10 unit cells) fully strained polar BaTiO3 films are studied by scanning tunneling microscopy and spectroscopy. High quality BaTiO3 films are grown on SrRuO3/SrTiO3 by pulsed laser deposition and characterized in situ in ultrahigh vacuum. Previous structural measurements have shown that these films are polarized. Current-voltage curves exhibit features at similar to +/- 2.5 V, which show hysteresis consistent with bias-induced polarization switching. The intensity and voltage of the features indicate a stochastic process. These features are not observed on nonpolarized SrTiO3 films grown and characterized similarly. C1 [Shin, Junsoo] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kalinin, S. V.; Baddorf, A. P.] Oak Ridge Natl Lab, Div Mat Sci, Ctr Nanophase, Oak Ridge, TN 37831 USA. [Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Shin, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM jshin@ornl.gov; baddorfap@ornl.gov RI Kalinin, Sergei/I-9096-2012; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Baddorf, Arthur/0000-0001-7023-2382 FU Oak Ridge National Laboratory's Division of Materials Science and Engineering (J.S.); Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy FX Research was sponsored by Oak Ridge National Laboratory's Division of Materials Science and Engineering (J.S.) and Center for Nanophase Materials Sciences (A. P. B. and S. V. K.), sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 15 TC 6 Z9 6 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 20 PY 2009 VL 95 IS 3 AR 032903 DI 10.1063/1.3186067 PG 3 WC Physics, Applied SC Physics GA 475ZA UT WOS:000268405300047 ER PT J AU Yerci, S Li, R Kucheyev, SO van Buuren, T Basu, SN Dal Negro, L AF Yerci, S. Li, R. Kucheyev, S. O. van Buuren, T. Basu, S. N. Dal Negro, L. TI Energy transfer and 1.54 mu m emission in amorphous silicon nitride films SO APPLIED PHYSICS LETTERS LA English DT Article DE amorphous state; annealing; doping profiles; erbium; photoluminescence; silicon compounds; solid-state phase transformations; sputter deposition; thin films ID SI NANOCRYSTALS; PHOTOLUMINESCENCE; LUMINESCENCE; ER3+ AB Er-doped amorphous silicon nitride films with various Si concentrations (Er:SiNx) were fabricated by reactive magnetron cosputtering followed by thermal annealing. The effects of Si concentrations and annealing temperatures were investigated in relation to Er emission and excitation processes. Efficient excitation of Er ions was demonstrated within a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er:SiNx. A systematic optimization of the 1.54 mu m emission was performed and a fundamental trade-off was discovered between Er excitation and emission efficiency due to excess Si incorporation. These results provide an alternative approach for the engineering of sensitized Si-based light sources and lasers. C1 [Yerci, S.; Li, R.; Dal Negro, L.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Kucheyev, S. O.; van Buuren, T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Basu, S. N.; Dal Negro, L.] Boston Univ, Div Mat Sci & Engn, Brookline, MA 02446 USA. [Basu, S. N.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. RP Dal Negro, L (reprint author), Boston Univ, Dept Elect & Comp Engn, 8 St Marys St, Boston, MA 02215 USA. EM dalnegro@bu.edu RI Yerci, Selcuk/C-7993-2014 OI Yerci, Selcuk/0000-0003-0599-588X FU U. S. DOE [DE-AC52-07NA27344] FX This work was partially supported by the U. S. Air Force MURI program on "Electrically Pumped Silicon-Based Lasers for Chip-Scale Nanophotonic Systems" supervised by Dr. Gernot Pomrenke. Work at LLNL was performed under the auspices of the U. S. DOE by LLNL under Contract No. DE-AC52-07NA27344. NR 21 TC 37 Z9 37 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 20 PY 2009 VL 95 IS 3 AR 031107 DI 10.1063/1.3184790 PG 3 WC Physics, Applied SC Physics GA 475ZA UT WOS:000268405300007 ER PT J AU Spence, EJ Reuter, K Forest, CB AF Spence, E. J. Reuter, K. Forest, C. B. TI A SPHERICAL PLASMA DYNAMO EXPERIMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: magnetic fields; MHD; plasmas; stars: magnetic fields ID MAGNETIC PRANDTL NUMBERS; FIELD; FLOW; SATURATION; SIMULATION; THRESHOLD; LAMINAR; CUSP AB We propose a plasma experiment to be used to investigate fundamental properties of astrophysical dynamos. The highly conducting, fast-flowing plasma will allow experimenters to explore systems with magnetic Reynolds numbers an order of magnitude larger than those accessible with liquid-metal experiments. The plasma is confined using a ring-cusp strategy and subject to a toroidal differentially rotating outer boundary condition. As proof of principle, we present magnetohydrodynamic simulations of the proposed experiment. When a von Karman-type boundary condition is specified, and the magnetic Reynolds number is large enough, dynamo action is observed. At different values of the magnetic Prandtl and Reynolds numbers the simulations demonstrate either laminar or turbulent dynamo action. C1 [Spence, E. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Reuter, K.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Forest, C. B.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Spence, EJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cbforest@wisc.edu NR 55 TC 24 Z9 24 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2009 VL 700 IS 1 BP 470 EP 478 DI 10.1088/0004-637X/700/1/470 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 467UP UT WOS:000267768900040 ER PT J AU Seitenzahl, IR Meakin, CA Lamb, DQ Truran, JW AF Seitenzahl, Ivo R. Meakin, Casey A. Lamb, Don Q. Truran, James W. TI INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; shock waves; supernovae: general; white dwarfs ID DELAYED-DETONATION; WHITE-DWARFS; DEFLAGRATION PHASE; THERMONUCLEAR SUPERNOVAE; EXPLOSION; EVOLUTION; IGNITION; FLAME; SIMULATIONS; STARS AB We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model. C1 [Seitenzahl, Ivo R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Seitenzahl, Ivo R.; Meakin, Casey A.; Truran, James W.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Seitenzahl, Ivo R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Meakin, Casey A.; Lamb, Don Q.; Truran, James W.] Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. [Meakin, Casey A.; Lamb, Don Q.; Truran, James W.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Meakin, Casey A.] Univ Arizona, Steward Observ, Tucson, AZ 85719 USA. [Truran, James W.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Truran, James W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Seitenzahl, IR (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. OI Seitenzahl, Ivo/0000-0002-5044-2988 FU US Department of Energy [B523820]; National Science Foundation [PHY 02-16783]; German Research Foundation [RO 3676/1-1]; Argonne National Laboratory [W-31-109-ENG-38] FX We would like to thank Dean Townsley and George C. Jordan IV for their helpful suggestions and discussions. This work is supported in part by the US Department of Energy under contract B523820 to the ASC Alliances Center for Astrophysical Flashes and in part by the National Science Foundation under grant PHY 02-16783 for the Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA) and in part by the Emmy Noether Program of the German Research Foundation (DFG; RO 3676/1-1). J.W.T. acknowledges support from Argonne National Laboratory, operated under contract No. W-31-109-ENG-38 with the DOE. NR 48 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2009 VL 700 IS 1 BP 642 EP 653 DI 10.1088/0004-637X/700/1/642 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 467UP UT WOS:000267768900052 ER PT J AU Oxley, DS Walters, RW Copenhafer, JE Meyer, TY Petoud, S Edenborn, HM AF Oxley, D. Samuel Walters, Robert W. Copenhafer, James E. Meyer, Tara Y. Petoud, Stephane Edenborn, Harry M. TI Mono- and Terfluorene Oligomers as Versatile Sensitizers for the Luminescent Eu3+ Cation SO INORGANIC CHEMISTRY LA English DT Article ID ENERGY-TRANSFER; COMPLEXES; EUROPIUM; LIGANDS AB We present the design, synthesis, and physical and photophysical characterization of Eu3+ and Gd3+ complexes formed with two ligands bearing either one or three fluorene sensitizer units. As a novel sensitizing approach, the oligomer length is used to control the energies of the triplet states of the sensitizer and to mediate the sensitizer to lanthanide energy transfer. C1 [Meyer, Tara Y.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. RP Meyer, TY (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM tmeyer@pitt.edu; spetoud@pitt.edu; Harry.Edenborn@netl.doe.gov RI Petoud, Stephane/D-2022-2012; Petoud, Stephane/L-6973-2015; OI Petoud, Stephane/0000-0001-5232-6537; Meyer, Tara/0000-0002-9810-454X FU RDS [DE-AC26-04NT41817]; PPG Industries FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in clean coal technology under the RDS contract DE-AC26-04NT41817. R.W.W. thanks PPG Industries for support. NR 13 TC 11 Z9 13 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6332 EP 6334 DI 10.1021/ic9002324 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900004 PM 19522468 ER PT J AU Cai, YP Zhou, XX Zhou, ZY Zhu, SZ Thallapally, PK Liu, J AF Cai, Yue-Peng Zhou, Xiu-Xia Zhou, Zheng-Yuan Zhu, Shi-Zheng Thallapally, Praveen K. Liu, Jun TI Single-Crystal-to-Single-Crystal Transformation in a One-Dimensional Ag-Eu Helical System SO INORGANIC CHEMISTRY LA English DT Article ID COORDINATION POLYMERS; MOLECULES; POLYMORPHISM; EXPANSION; SORPTION; OXIDES AB Single-crystal-to-single-crystal transformation of one-dimensional 4d-4f coordination polymers has been investigated for the first time. More importantly, we observed the transformation of a mesohelical chain to a rac-helical chain as a function of the temperature. C1 [Cai, Yue-Peng; Zhou, Xiu-Xia; Zhou, Zheng-Yuan] S China Normal Univ, Sch Chem & Environm, Key Lab Technol Electrochem Energy Storage & Powe, Guangzhou 510006, Guangdong, Peoples R China. [Zhu, Shi-Zheng] Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Organofluorine Chem, Shanghai 200032, Peoples R China. [Thallapally, Praveen K.; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cai, YP (reprint author), S China Normal Univ, Sch Chem & Environm, Key Lab Technol Electrochem Energy Storage & Powe, Guangzhou 510006, Guangdong, Peoples R China. EM ypcai8@yahoo.com; praveen.thallapally@pnl.gov RI thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 FU National Natural Science Foundation of China [20772037]; Science and Technology Planning Project of Guangdong Province [2006A 10 902002]; Natural Science Foundation of Guangdong Province [06025033]; U.S. Department of Energy's Office of Basic Energy Sciences FX This work has been supported by the National Natural Science Foundation of China (Grant 20772037), the Science and Technology Planning Project of Guangdong Province (Grant 2006A 10 902002), and the Natural Science Foundation of Guangdong Province (Grant 06025033). P.K.T. and J.L. thank the U.S. Department of Energy's Office of Basic Energy Sciences for support. The Pacific Northwest National Laboratory is a U.S. Department or Energy multiprogram national laboratory operated by Battelle under Contract DEAC05-76RL01830. NR 25 TC 73 Z9 74 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6341 EP 6343 DI 10.1021/ic9007125 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900007 PM 19552381 ER PT J AU You, TS Lidin, S Gourdon, O Wu, YQ Miller, GJ AF You, Tae-Soo Lidin, Sven Gourdon, Olivier Wu, Yaqiao Miller, Gordon J. TI To What Extent Does the Zintl-Klemm Formalism Work? The Eu(Zn1-xGex)(2) Series SO INORGANIC CHEMISTRY LA English DT Article ID INTERMETALLIC COMPOUNDS; ALB2-TYPE STRUCTURE; TERNARY SILICIDES; SUPERCONDUCTIVITY; PHASES; SR; BEHAVIOR; LA3IN5; CA; BA AB The series of ternary polar intermetallics Eu(Zn1-xGex)(2) (0 <= x <= 1) has been investigated and characterized by powder and single-crystal X-ray diffraction as well as physical property measurements. For 0.50(2) <= x < 0.75(2), this series shows a homogeneity width of hexagonal AIB(2)-type phases space group P6/mmm, Pearson symbol hP3) with Zn and Ge atoms statistically distributed in the planar polyanionic 6(3) nets. As the Ge content increases in this range, a decreases from 4.3631(6) angstrom to 4.2358(6) angstrom, while c increases from 4.3014(9) angstrom to 4.5759(9) angstrom, resulting in an increasing c/a ratio. Furthermore, the Zn-Ge bond distance in the hexagonal net drops from 2.5190(3) angstrom to 2.4455(3) angstrom, while the anisotropy of the displacement ellipsoids significantly increases along the c direction. For x < 0.50 and x > 0.75, respectively, orthorhombic KHg2-type and trigonal EuGe2-type phases occur as a second phase in mixtures with an AIB(2)-type phase, Diffraction of the x = 0.75(2) sample shows incommensurate modulation along the c direction; a structural model in super space group P31(00 gamma)00s reveals puckered 6(3) nets. Temperature-dependent magnetic susceptibility measurements for two AIB(2)-type compounds show Curie-Weiss behavior above 40.0(2) K and 45.5(2) K with magnetic moments of 7.98(1)mu(B) for Eu(Zn0.48Ge0.52(2))(2) and 7.96(1)mu(B) for Eu(Zn0.30Ge0.70(2))(2), respectively, indicating a (4f)(7) electronic configuration for Eu atoms (Eu2+). The Zintl-Klemm formalism accounts for the lower limit of Ge content in the AIB(2)-type phases but does not identify the observed upper limit. In a companion paper, the intrinsic relationships among chemical structures, compositions, and electronic structures are analyzed by electronic structure calculations. C1 [You, Tae-Soo; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Lidin, Sven] Stockholm Univ, Dept Phys Inorgan & Struct Chem, S-10691 Stockholm, Sweden. [Gourdon, Olivier] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA. [Wu, Yaqiao] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gmiller@iastate.edu OI Lidin, Sven/0000-0001-9057-8233 FU NSF DMR [02-41092, 06-05949] FX This work Was Supported by NSF DMR 02-41092 and 06-05949. The authors are grateful to Dr. Warren Straszheim at Iowa State University for the EDXS measurements and to Dr. Walter Schnelle at Max-Planck-Institute for Chemical Physics of Solids in Dresden, Germany, for magnetization measurements, We would also like to thank Dr. Vaclav Petricek for his helpful contributions oil the super space group approach. NR 41 TC 10 Z9 10 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6380 EP 6390 DI 10.1021/ic900628k PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900016 PM 19530690 ER PT J AU Pol, VG Thiyagarajan, P Moreno, JMC Popa, M AF Pol, Vilas G. Thiyagarajan, P. Moreno, Jose M. Calderon Popa, Monica TI Solvent-Free Fabrication of Rare LaCO3OH Luminescent Superstructures SO INORGANIC CHEMISTRY LA English DT Article ID THERMAL-DECOMPOSITION; AUTOGENIC PRESSURE; ELEVATED-TEMPERATURE; PARAMAGNETIC CARBON; HYDROTHERMAL METHOD; FACILE SYNTHESIS; ELECTRIC-FIELD; NANOPARTICLES; NANOWIRES; PARTICLES AB Lanthanum hydroxycarbonate (LaCO3OH) superstructures [LHS] decorated with carbon spheres are synthesized by a solvent-free, one-pot Reactions under Autogenic Pressure at Elevated Temperature (RAPET) process, dissociating a single lanthanum acetate hydrate (LAH) precursor. The structure of the as-synthesized LHS are studied by powder X-ray diffraction, high-resolution transmission electron microscopy, morphology by field-emission scanning electron microscopy, and the composition by energy dispersive X-ray analysis, elemental mapping, as well as FT-IR spectroscopy. The photoluminescence results showed an emission band centered at 465 nm (lambda = exc. 360 nm) for the hexagonal phase of LHS. The mechanistic elucidation for the fabrication of LaCO3OH decorated with carbon spheres is developed on the basis of obtained thermal [TGA and DTA] data on initial LAH reactant. C1 [Pol, Vilas G.; Thiyagarajan, P.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Moreno, Jose M. Calderon; Popa, Monica] Acad Romana, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania. RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vilaspol@gmail.com RI Calderon Moreno, Jose/B-2867-2008; Popa, Monica/C-4370-2011 OI Calderon Moreno, Jose/0000-0001-8376-9082; Popa, Monica/0000-0002-5661-5931 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Authors thanks to Dr. Elena Shevchenko for providing assistance to the FE-SEM measurements. NR 46 TC 17 Z9 17 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6417 EP 6424 DI 10.1021/ic900824n PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900020 PM 19534514 ER PT J AU Ghosh, P Fagan, PJ Marshall, WJ Hauptman, E Bullock, RM AF Ghosh, Prasenjit Fagan, Paul J. Marshall, William J. Hauptman, Elisabeth Bullock, R. Morris TI Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol SO INORGANIC CHEMISTRY LA English DT Article ID ALKALINE-EARTH METALLOCENES; KINETICALLY INERT PROTON; METAL-METAL BOND; DIHYDROGEN COMPLEXES; IONIC HYDROGENATION; INDENYL COMPLEXES; SELECTIVE DEOXYGENATION; ELECTRONIC-STRUCTURE; TUNGSTEN COMPLEXES; RING-SLIPPAGE AB A ruthenium hydride with a bulky tetra-substituted Cp ligand, (Cp(iPr4))RU(CO)(2)H (Cp(iPr4) = C(5)(i-C(3)H(7))(4)H was prepared from the reaction of RU(3)(CO)(12) with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (Cp(iPr4))RU(CO)(2)H was determined by X-ray crystallography. The ruthenium hydride complex (C(5)Bz(5))RU(CO)(2)H (Bz = CH(2)Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)RU(CO)(2)](2), was produced from the reaction of 1,2,3-trimethylindene with Ru(3)(CO)(12), and protonation of this dimer with HOTf gives {[(1,2,3-trimethylindenyl)Ru(CO)(2)](2)-(mu-H)(+)OTf(-). A series of ruthenium hydride complexes CpRu(CO)(L)(H) [L = P(OPh)(3), PCy(3), PMe(3), P(p-C(6)H(4)F)(3)] were prepared by reaction of Cp(CO)(2)RuH with added L. Protonation of (Cp(iPr4))RU(CO)(2)H, Cp*Ru(CO)(2)H, or CpRu(CO)[P-(OPh)(3)]H by HOTf at -80 degrees C led to equilibria with the cationic dihydrogen complexes, but H(2) was released at higher temperatures. Protonation of CpRu[P(OPh)(3)](2)H with HOTf gave an observable dihydrogen complex, [CpRu[P(OPh)(3)](2)(eta(2)-H(2))}(+)OTf(-) that was converted at -20 degrees C to the dihydrde complex {CpRu[P(OPh)(3)](2)(H)(2)}(+)OTf(-). These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carded out in sulfolane solvent with added HOTf under H(2) (750 psi) at 110 degrees C. C1 [Ghosh, Prasenjit; Bullock, R. Morris] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bullock, R. Morris] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. [Fagan, Paul J.; Marshall, William J.; Hauptman, Elisabeth] EI DuPont de Nemours & Co Inc, Cent Res & Dev, Expt Stn, Wilmington, DE 19880 USA. RP Bullock, RM (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM morris.bullock@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU U.S. Department of Energy [DE-AC02-98CH 10886] FX Research at Brookhaven National Laboratory was carried out under contract DE-AC02-98CH 10886 with the U.S. Department of Energy. We thank the U.S. Department of Energy, Office ol'Scietice, Office of Basic Energy Sciences. Division of Chernical Sciences, and the Laboratory Technology Research Program, for support. Pacific Northwest National Labonatory is operated by Battcllc for the U S. Department of Energy. We thank Prof. Robert Angclici and Max Ovchiiiiiikov (lowa State University) for it sample of the BF,-. We Ru complex, 1[(C'5H3)2(SiMC')2]IZUI(CO)4 1-1-1)'I thank Dr. David Grills (Brookhaven) for liclpful diSCLISSiOlIS on the I R spectra. NR 62 TC 28 Z9 28 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6490 EP 6500 DI 10.1021/ic900413y PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900027 PM 19548688 ER PT J AU Weck, PF Kim, E Poineau, F Rodriguez, EE Sattelberger, AP Czerwinski, KR AF Weck, Philippe F. Kim, Eunja Poineau, Frederic Rodriguez, Efrain E. Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Technetium(IV) Halides Predicted from First-Principles SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; CHLORIDE; TETRACHLORIDE; CHEMISTRY; DESIGN; RADII AB We report the crystal structures of the novel technetium tetrahalides TcX(4) [X = F, I], as predicted from first-principles calculations. Isomorphous with TcCl(4) and TcBr(4) crystals, TcF(4) is orthorhombic with the centro-symmetric space group Pbca, while Tcl(4) crystallizes in the monoclinic space group P2(1)/c. The structures, [TcX(2)(mu-X)(4/2)](infinity), consist of distorted edge-sharing octahedral groups of composition TcX(6) linked into endless cis chains. A possible explanation for the differences between these structures is offered in terms of varying degrees of bonding within the chains. C1 [Weck, Philippe F.; Poineau, Frederic; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Weck, Philippe F.; Poineau, Frederic; Czerwinski, Kenneth R.] Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Kim, Eunja] Dept Phys & Astron, Las Vegas, NV 89154 USA. [Rodriguez, Efrain E.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Sci & Engn Directorate, Argonne, IL 60439 USA. RP Weck, PF (reprint author), Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM weckp@unlv.nevada.edu RI Lujan Center, LANL/G-4896-2012; Rodriguez, Efrain/N-1928-2013; OI Rodriguez, Efrain/0000-0001-6044-1543; , Philippe/0000-0002-7610-2893 FU U.S. Department of Energy [DE-FG52-06NA26399] FX Funding for this research was provided by the U.S. Department of Energy, agreement no. DE-FG52-06NA26399. NR 22 TC 17 Z9 17 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6555 EP 6558 DI 10.1021/ic900476m PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900034 PM 19537760 ER PT J AU Li, B Kim, SJ Miller, GJ Corbett, JD AF Li, Bin Kim, Sung-Jin Miller, Gordon J. Corbett, John D. TI Gold Tetrahedra as Building Blocks in K3Au5Tr (Tr = In, Tl) and Rb2Au3Tl and in Other Compounds: A Broad Group of Electron-Poor Intermetallic Phases SO INORGANIC CHEMISTRY LA English DT Article ID QUASI-CRYSTALLINE APPROXIMANTS; SOLID-STATE; RUBIDIUM-GOLD; CLUSTER PHASE; METALS; SUBSTITUTION; CHEMISTRY; ELEMENTS; NETWORKS; AU AB The alkali-metal gold trielides K3Au5Tr (Tr = In (I), Tl (II)) and Rb2Au3Tl (III) have been obtained directly from the elements, and their orthorhombic structures determined by single-crystal X-ray diffraction means (I/II: Imma, a = 5.562(1), 5.595(1); b = .19.645(4),19.706(4); c = 8.502(2), 8.430(2) A; Z = 4, respectively; III: Pmma, a = 5.660(1), b = 6.741 (1), c = 9.045(2) angstrom, Z= 4). These exhibit zigzag chains of Tr that link puckered sheets (I/II) or chains (III) of gold tetrahedra condensed through shared vertices. The segregation of Au and Tr components is striking relative to the evidently stronger and preferred Au-Tr bonding in neighboring gold- and alkali-metal-poorer triel phases. The close packing of K/Rb (A) about the gold tetrahedra gives each A and Au-4 component 7-10 and 10 neighbors of the other type, respectively. Tight-binding-linear-muffin-tin-orbital-atomic sphere approximation band structure calculations show that the title phases lie near or at electronic pseudogaps. The gold substructure is the dominant feature of the densities of states, with moderately broad 5d(10) features as favored by relativistic effects. Likewise, crystal orbital Hamilton population results indicate optimization of Au-Au bonding at the expense of the stronger heteroatomic Au-Tr interactions. Stabilization of these unusual structures appears to follow in part from the presence of numerous short and individually weak A-Au interactions, as manifested by appreciable mixing of s, p, and d valence orbitals on A into network bonding states, Au 5d in particular. These and related phases define a family of Au-4-based phases with particularly low e/a values of 1.2 similar to 2.3 (over all atoms, omitting Au 5d), closely related to the cubic Laves-type structures. The same region also contains Tr-richer tunnel and network structures with relatively fewer cations that also appear to be dominated by Au-Au and Au-Tr bonding. C1 [Corbett, John D.] Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. EM jcorbett@iastate.edu FU U.S. Department of Energy (DOE) [DE-AC02-07CH11358] FX This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE). Arrics Laboratory is operated for DOE by Iowa State University under contract No. DE-AC02-07CH11358. NR 69 TC 34 Z9 34 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6573 EP 6583 DI 10.1021/ic9004856 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900037 PM 20507109 ER PT J AU Hannibal, L Smith, CA Smith, JA Axhemi, A Miller, A Wang, SH Brasch, NE Jacobsen, DW AF Hannibal, Luciana Smith, Clyde A. Smith, Jessica A. Axhemi, Armend Miller, Abby Wang, Sihe Brasch, Nicola E. Jacobsen, Donald W. TI High Resolution Crystal Structure of the Methylcobalamin Analogues Ethylcobalamin and Butylcobalamin by X-ray Synchrotron Diffraction SO INORGANIC CHEMISTRY LA English DT Article ID DEPENDENT METHIONINE SYNTHASE; REDUCTIVE DECHLORINATION; CO(III) ION; COBALAMINS; COENZYME; VITAMIN-B-12; TRANSCOBALAMIN; MECHANISM; BOND; ADENOSYLCOBALAMIN AB The X-ray crystal structures of the methylcobalamin (MeCbl) analogues ethylcobalamin (EtCbl) and butylcobalamin (BuCbl) are reported. The X-ray crystal structures of EtCbl and BuCbl were obtained with some of the lowest crystallographic residuals ever achieved for cobalamins.(R = 0.0468 and 0.0438, respectively). The Co-C bond distances for EtCbl and BuCbl are 2.023(2) and 2.028(4) angstrom, whereas the Co-alpha-5,6-dimethylbenzimidazole (Co-N3B) bond distances were 2.232(1) and 2.244(1) angstrom, respectively. Although EtCbl and BuCbl displayed a longer Co-N3B bond than that observed in the naturally occurring methylcobalamin, the orientation of the alpha-5,6-dimethylbenzi midazole moiety with respect to the corrin ring did not vary substantially among the structures. The lengthening of both Co-C and Co-N3B bonds in EtCbl and BuCbl can be attributed to the "inverse" trans influence exerted by the a-donating alkyl groups, typically observed in alkylcobalamins. Analysis of the molecular surface maps showed that the alkyl ligands in EtCbl and BuCbl are directed toward the hydrophobic side of the corrin ring. The corrin fold angles in EtCbl and BuCbl were determined to be 14.7 degrees and 13.1 degrees, respectively. A rough correlation exists between the corrin fold angle and the length of the Co-N3B bond, and both alkylcobalamins follow the same trend. C1 [Hannibal, Luciana; Axhemi, Armend; Jacobsen, Donald W.] Cleveland Clin, Lerner Res Inst, Dept Cell Biol, Cleveland, OH 44195 USA. [Hannibal, Luciana; Jacobsen, Donald W.] Kent State Univ, Sch Biomed Sci, Kent, OH 44242 USA. [Smith, Clyde A.; Smith, Jessica A.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Miller, Abby; Wang, Sihe] Cleveland Clin, Dept Clin Pathol, Cleveland, OH 44195 USA. [Brasch, Nicola E.; Jacobsen, Donald W.] Kent State Univ, Dept Chem, Kent, OH 44242 USA. [Jacobsen, Donald W.] Case Western Reserve Univ, Cleveland Clin, Lerner Coll Med, Dept Mol Med, Cleveland, OH 44106 USA. RP Jacobsen, DW (reprint author), Cleveland Clin, Lerner Res Inst, Dept Cell Biol, Cleveland, OH 44195 USA. EM jacobsd@ccf.org OI Hannibal, Luciana/0000-0002-0911-5758 FU National Heart, Lung and Blood Institute of the National Institutes of Health [HL71907]; Kent State University; U.S. Department of Energy; National Institutes of Health (NCRR, BTP, NIGMS) FX This research was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health (HL71907 to D.W.J.) and Kent State University (N.E.B.). SSRL is a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. I-lie SSRL Structural Molecular Biology Program is Supported by the Department or Energy (BES, BER) and by the National Institutes of Health (NCRR, BTP, NIGMS). NR 51 TC 8 Z9 8 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6615 EP 6622 DI 10.1021/ic900590p PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900042 PM 19545130 ER PT J AU Tobash, PH Bobev, S Thompson, JD Sarrao, JL AF Tobash, Paul H. Bobev, Svilen Thompson, Joe D. Sarrao, John L. TI Magnesium Substitutions in Rare-Earth Metal Germanides with the Orthorhombic Gd5Si4-type Structure. Synthesis, Crystal Chemistry, and Magnetic Properties of RE5-xMgxGe4 (RE = Gd-Tm, Lu, and Y) SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRONIC-STRUCTURE; GIANT MAGNETORESISTANCE; ELECTRICAL-RESISTANCE; NEUTRON-DIFFRACTION; NANOSCALE ZIPPERS; PHASE-TRANSITION; ZINTL PHASE; TB; GD-5(SI2GE2); BEHAVIOR AB A series of magnesium-substituted rare-earth metal germanides with a general formula RE5-xMgxGe4 (x approximate to 1.0-2.3; RE = Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction, These compounds crystallize with the common Gd5Si4 type structure in the orthorhombic space group Pnma (No. 62; Z = 4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45% at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE3+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of the magnetic properties as a function of the Mg content are also discussed. C1 [Tobash, Paul H.; Bobev, Svilen] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Thompson, Joe D.; Sarrao, John L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bobev, S (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM bobev@udel.edu FU National Science Foundation [DMR-0743916]; University of Delaware; International Centre for Diffraction Data (ICDD) FX Svilen Bobev acknowledges financial support from the National Science Foundation through Grant DMR-0743916 (CAREER). P.H.T. thanks the University of Delaware for the University GraduateFellowship and the International Centre for Diffraction Data (ICDD) for the Ludo Frevel Crystallography Scholarship. Work at LANL was done under the auspices of the U.S. DOE. NR 76 TC 21 Z9 21 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6641 EP 6651 DI 10.1021/ic900616c PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900045 PM 19419182 ER PT J AU Tian, GX Rao, LF AF Tian, Guoxin Rao, Linfeng TI Effect of Temperature on the Complexation of Uranium(VI) with Fluoride in Aqueous Solutions SO INORGANIC CHEMISTRY LA English DT Article ID VARIABLE TEMPERATURES; STRONG ELECTROLYTES; SPECTROSCOPY; CONSTANTS AB Complexation of U(VI) with fluoride at elevated temperatures in aqueous solutions was studied by spectrophotometry, Four successive complexes, UO(2)F(+), UO(2)F(2)(aq), UO(2)F(3)(-), and UO(2)F(4)(2-), were identified, and the stability constants at 25, 40, 55, and 70 degrees C were calculated. The stability of the complexes increased as the temperature was elevated. The enthalpies of complexation at 25 degrees C were determined by microcalorimetry. Thermodynamic parameters indicate that the complexation of U(VI) with fluoride in aqueous solutions at 25 to 70 degrees C is slightly endothermic and entropy-driven. The Specific Ion Interaction (SIT) approach was used to obtain the thermodynamic parameters of complexation at infinite dilution. Structural information on the U(VI)/fluoride complexes was obtained by extended X-ray absorption fine structure spectroscopy. C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM lrao@lbl.gov FU U.S. Department or Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Science and the Director, OST&I Program, Office of Civilian Radioactive Waste Management, U.S. Department or Energy, under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 30 TC 15 Z9 15 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 20 PY 2009 VL 48 IS 14 BP 6748 EP 6754 DI 10.1021/ic900681x PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 472ND UT WOS:000268137900055 PM 19514738 ER PT J AU Dimits, AM Wang, CM Caffisch, R Cohen, BI Huang, YH AF Dimits, Andris M. Wang, Chiaming Caffisch, Russel Cohen, Bruce I. Huang, Yanghong TI Understanding the accuracy of Nanbu's numerical Coulomb collision operator SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Coulomb collisions; Lorentz collisions; Numerical methods; Monte Carlo methods; Collisional plasma ID PARTICLE-IN-CELL; PLASMAS; SIMULATION; MODEL AB We investigate the accuracy of and assumptions underlying the numerical binary Monte Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997) 4642]. The numerical experiments that resulted in the parameterization of the collision kernel used in Nanbu's operator are argued to be an approximate realization of the Coulomb-Lorentz pitch-angle scattering process, for which an analytical solution for the collision kernel is available. It is demonstrated empirically that Nanbu's collision operator quite accurately recovers the effects of Coulomb-Lorentz pitch-angle collisions, or processes that approximate these (Such interspecies Coulomb collisions with very small mass ratio) even for very large values of the collisional time step. An investigation of the analytical solution shows that Nanbu's parameterized kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values of the time step. Careful numerical and analytical investigations are presented, which show that the time dependence of the relaxation of a temperature anisotropy by Coulomb-Lorentz collisions has a richer structure than previously thought, and is not accurately represented by an exponential decay with a single decay rate. Finally, a practical collision algorithm is proposed that for small-mass-ratio interspecies Coulomb collisions improves on the accuracy of Nanbu's algorithm. (c) 2009 Elsevier Inc. All rights reserved. C1 [Dimits, Andris M.; Cohen, Bruce I.] Lawrence Livermore Natl Lab, Fus Energy Program, Livermore, CA 94550 USA. [Wang, Chiaming; Caffisch, Russel; Huang, Yanghong] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90036 USA. RP Dimits, AM (reprint author), Lawrence Livermore Natl Lab, Fus Energy Program, POB 808, Livermore, CA 94550 USA. EM dimits1@llnl.gov RI Huang, Yanghong/C-1142-2014 OI Huang, Yanghong/0000-0003-4145-6621 NR 17 TC 9 Z9 9 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2009 VL 228 IS 13 BP 4881 EP 4892 DI 10.1016/j.jcp.2009.03.041 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 459TU UT WOS:000267133900013 ER PT J AU Al-Hassanieh, KA Busser, CA Martins, GB AF Al-Hassanieh, K. A. Buesser, C. A. Martins, G. B. TI ELECTRON TRANSPORT IN STRONGLY CORRELATED NANOSTRUCTURES SO MODERN PHYSICS LETTERS B LA English DT Review DE Quantum dots; electron transport; Kondo effect ID RENORMALIZATION-GROUP APPROACH; WALLED CARBON NANOTUBES; DILUTE MAGNETIC-ALLOYS; COUPLED QUANTUM DOTS; ANDERSON MODEL; STATIC PROPERTIES; KONDO PROBLEM; CONDUCTANCE; MOLECULE; TRANSISTOR AB We present a short review on electron transport in strongly correlated nanostructures, quantum dots in particular. We describe briefly the main correlation effects, namely the Coulomb blockade and Kondo effect, and introduce three widely used numerical techniques to study these effects. We then give a brief summary of some more elaborate set-ups where two or more effects compete, making the transport properties very interesting to study. In particular, we report the cases of multilevel quantum dots, carbon nanotube based quantum dots, and quantum dots coupled by RKKY interaction. C1 [Al-Hassanieh, K. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Buesser, C. A.; Martins, G. B.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. RP Al-Hassanieh, KA (reprint author), Los Alamos Natl Lab, Div Theoret, MS B262, Los Alamos, NM 87545 USA. EM khaled@lanl.gov; carlos.busser@gmail.com; martins@oakland.edu RI Busser, Carlos/K-1017-2014; Martins, George/C-9756-2012 OI Busser, Carlos/0000-0002-0353-7490; Martins, George/0000-0001-7846-708X FU National Science Foundation [DMR-0710529]; Research Corporation [CC6542]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX G. B. Martins and C. A. Busser acknowledge funding from the National Science Foundation Grant No. DMR-0710529. G. B. Martins acknowledges partial support from the Research Corporation (Contract CC6542). K. A. Al-Hassanieh acknowledges the hospitality of Oakland University during the completion of this review. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 109 TC 2 Z9 2 U1 2 U2 16 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9849 EI 1793-6640 J9 MOD PHYS LETT B JI Mod. Phys. Lett. B PD JUL 20 PY 2009 VL 23 IS 18 BP 2193 EP 2213 DI 10.1142/S0217984909020473 PG 21 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 476MV UT WOS:000268447600001 ER PT J AU Lin, B Urayama, S Saroufeem, RMG Matthews, DL Demos, SG AF Lin, Bevin Urayama, Shiro Saroufeem, Ramez M. G. Matthews, Dennis L. Demos, Stavros G. TI Real-time microscopic imaging of esophageal epithelial disease with autofluorescence under ultraviolet excitation SO OPTICS EXPRESS LA English DT Article ID HIGH-GRADE DYSPLASIA; OPTICAL COHERENCE TOMOGRAPHY; BARRETTS-ESOPHAGUS; SCATTERING SPECTROSCOPY; CANCER; THERAPY; TISSUE; ADENOCARCINOMA; IDENTIFICATION; FLUORESCENCE AB Detection of esophageal disease in current clinical practice is limited to visualization of macroscopic epithelial morphology. In this work, we investigate high resolution autofluorescence imaging under ultra violet excitation to visualize microscopic epithelial changes related to disease progression using a bench top prototype microscope. The approach is based on the hypothesis that UV excitation light can only penetrate the superficial layer of cells resulting in autofluorescence images of the epithelial layer without using an additional image sectioning approach. The experiments were performed using ex vivo human esophagus biopsy specimens. The results indicate that cellular morphology information related to disease progression is attainable without tissue preparation. (C) 2009 Optical Society of America C1 [Lin, Bevin; Matthews, Dennis L.; Demos, Stavros G.] Univ Calif Davis, Davis NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Lin, Bevin; Matthews, Dennis L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Urayama, Shiro] Univ Calif Davis, Med Ctr, Div Gastroenterol & Hepatol, Sacramento, CA 95817 USA. [Saroufeem, Ramez M. G.] Univ Calif Davis, Med Ctr, Dept Pathol, Sacramento, CA 95817 USA. [Matthews, Dennis L.] Univ Calif Davis, Med Ctr, Dept Neurol Surg, Sacramento, CA 95817 USA. [Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lin, B (reprint author), Univ Calif Davis, Davis NSF Ctr Biophoton Sci & Technol, 2700 Stockton Blvd,Suite 1400, Sacramento, CA 95817 USA. EM belin@ucdavis.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [Contract DE-AC52-07NA27344]; Center for Biophotonics; NSF Science and Technology Center [PHY 0120999] FX We thank the gastroenterology medical team at the University of California, Davis Medical Center for their patience and assistance with this study, and Evan Applegate for his help. This work performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research is supported by funding from the Center for Biophotonics, an NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. NR 28 TC 7 Z9 7 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 20 PY 2009 VL 17 IS 15 BP 12502 EP 12509 DI 10.1364/OE.17.012502 PG 8 WC Optics SC Optics GA 475XE UT WOS:000268399500030 PM 19654651 ER PT J AU Zhou, Y Buckingham, AC Bataille, F Mathelin, L AF Zhou, Ye Buckingham, A. C. Bataille, F. Mathelin, L. TI Minimum state for high Reynolds and Peclet number turbulent flows SO PHYSICS LETTERS A LA English DT Article ID ENERGY-TRANSFER; ISOTROPIC TURBULENCE; SCALES; RANGE AB Direct numerical simulations (DNS) or experiments for the very high Reynolds (Re) and Peclet (Pe) number flows commonly exceed the resolution possible even when use is made of the most advanced computer capability or most sophisticated diagnostics and physical capabilities of advanced laboratory facilities. In practice use is made of statistical flow data bases developed at the highest Re and Pe levels achievable within the currently available facility limitations. In addition, there is presently no metric to indicate whether and how much of the fully resolved physics of the flow of interest has been captured within the facilities available. In this Letter the authors develop the necessary metric criteria for homogeneous. isotropic and shear layer flows. it is based on establishing a smaller subset of the total range of dynamic scale interactions that will still faithfully reproduce all of the essential, significant, influences of the larger range of scale interactions. The work identifies a minimum significant Re and Pe level that must be obtained by DNS or experiment in order to capture all of the significant dynamic influences in data which is then scaleable to flows of interest. Hereafter this is called the minimum state. Determination of the minimum state is based on finding a minimum scale separation for the energy-containing scales of the flow and scalar fields sufficient to prevent contamination by interaction with the (non-universal) velocity dissipation and scalar diffusivity inertial range scale limits. (C) 2009 Published by Elsevier B.V. C1 [Zhou, Ye; Buckingham, A. C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Bataille, F.] CNRS, PROMES, F-66100 Perpignan, France. [Mathelin, L.] CNRS, LIMSI, F-91403 Orsay, France. RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM yezhou@llnl.gov FU Lawrence Livermore National Security, LLC (LLNS) [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC (LLNS), under Contract No. DE-AC52-07NA27344. The first author is extremely grateful to University of Perpignan for supporting his visit. He also thanks the organizers of The Nature of High Reynolds Number Turbulence Programme, Professor Yukio Kaneda and Professor Katepalli Sreenivasan, for inviting him to deliver the invited talk on this topic at Isaac Newton Institute for Mathematical Sciences, Cambridge University. NR 16 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUL 20 PY 2009 VL 373 IS 31 BP 2746 EP 2749 DI 10.1016/j.physleta.2009.05.034 PG 4 WC Physics, Multidisciplinary SC Physics GA 477QN UT WOS:000268533700027 ER PT J AU Kim, TH Zhang, XG Feng, JF Han, XF Li, AP AF Kim, T. -H. Zhang, X. -G. Feng, J. F. Han, X. F. Li, A. P. TI Enhanced conductance blockade due to Pauli exclusion in tunnel junctions with half-metallic electrodes SO PHYSICS LETTERS A LA English DT Article ID FILMS; RESISTIVITY; FERROMAGNET; SRTIO3 AB A defect-state mediated conductance blockade effect has been studied in magnetic tunnel junctions consisting of La(0.7)Sr(0.3)MnO(3) (LSMO) electrodes and a SrTiO(3) (STO) barrier. The blockade threshold is an order of magnitude greater than the Coulomb charging energy estimated from the conductance oscillations at low temperature. The blockade voltage decreases with the increase of the temperature or the magnetic field, whereas the Coulomb charging energy washes out at higher temperature but it does not show strong dependence on magnetic field. An explanation is offered in terms of the spin blockade effect due to the combination of the discrete Coulomb charging on the defect state in STO and the half-metallicity of the LSMO electrodes. The result sheds new light on the half-metallic nature of LSMO. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kim, T. -H.; Zhang, X. -G.; Li, A. P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Feng, J. F.; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov RI Feng, Jiafeng/C-4772-2009; Kim, Tae-Hwan/A-5636-2010; Li, An-Ping/B-3191-2012 OI Feng, Jiafeng/0000-0001-9535-6912; Kim, Tae-Hwan/0000-0001-5328-0913; Li, An-Ping/0000-0003-4400-7493 FU Ministry of Science and Technology (MOST) [2006CB932200]; Chinese National Natural Science Foundation (NSFC) [10574156, 50528101, 50721001] FX The work at Oak Ridge National Laboratory was supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy. X.F.H. thanks the partial support of the State Key Project of Fundamental Research, Ministry of Science and Technology (MOST, Grant No. 2006CB932200). and Chinese National Natural Science Foundation (NSFC, Grant Nos. 10574156, 50528101 and 50721001). NR 23 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUL 20 PY 2009 VL 373 IS 31 BP 2782 EP 2785 DI 10.1016/j.physleta.2009.05.060 PG 4 WC Physics, Multidisciplinary SC Physics GA 477QN UT WOS:000268533700035 ER PT J AU Adamova, D Agakichiev, G Antonczyk, D Appelshauser, H Belaga, V Bielcikova, J Braun-Munzinger, P Busch, O Cherlin, A Damjanovic, S Dietel, T Dietrich, L Drees, A Dubitzky, W Esumi, SI Filimonov, K Fomenko, K Fraenkel, Z Garabatos, C Glassel, P Holeczek, J Kalisky, M Kniege, S Kushpil, V Maas, A Marin, A Milosevic, J Milov, A Miskowiec, D Panebrattsev, Y Petchenova, O Petracek, V Pfeiffer, A Ploskon, M Rak, J Ravinovich, I Rehak, P Sako, H Schmitz, W Schuchmann, S Sedykh, S Shimansky, S Stachel, J Sumbera, M Tilsner, H Tserruya, I Wessels, JP Wienold, T Wurm, JP Xie, W Yurevich, S Yurevich, V AF Adamova, D. Agakichiev, G. Antonczyk, D. Appelshaeuser, H. Belaga, V. Bielcikova, J. Braun-Munzinger, P. Busch, O. Cherlin, A. Damjanovic, S. Dietel, T. Dietrich, L. Drees, A. Dubitzky, W. Esumi, S. I. Filimonov, K. Fomenko, K. Fraenkel, Z. Garabatos, C. Glaessel, P. Holeczek, J. Kalisky, M. Kniege, S. Kushpil, V. Maas, A. Marin, A. Milosevic, J. Milov, A. Miskowiec, D. Panebrattsev, Yu. Petchenova, O. Petracek, V. Pfeiffer, A. Ploskon, M. Rak, J. Ravinovich, I. Rehak, P. Sako, H. Schmitz, W. Schuchmann, S. Sedykh, S. Shimansky, S. Stachel, J. Sumbera, M. Tilsner, H. Tserruya, I. Wessels, J. P. Wienold, T. Wurm, J. P. Xie, W. Yurevich, S. Yurevich, V. TI Modification of jet-like correlations in Pb-Au collisions at 158A GeV/c SO PHYSICS LETTERS B LA English DT Article ID QUARK-GLUON PLASMA; RADIATIVE ENERGY-LOSS; COLLABORATION; PERSPECTIVE; FLOW AB Results of a two-particle correlation analysis of high-p, charged particles in Pb-Au collisions at 158A GeV/c are presented. The data have been recorded by the CERES experiment at the CERN-SPS. The correlations are Studied as function of transverse momentum, particle charge and collision centrality. We observe a jet-like structure in the vicinity of a high-pi trigger particle and a broad back-to-back distribution. The yields of associated particles per trigger show a strong dependence on the trigger/associate charge combination. A comparison to PYTHIA confirms the jet-like pattern at the nearside but suggests a strong modification at the away-side, implying significant energy transfer of the hard-scattered parton to the medium. (C) 2009 Elsevier B.V. All rights reserved. C1 [Antonczyk, D.; Appelshaeuser, H.; Kniege, S.; Ploskon, M.; Schuchmann, S.] Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. [Adamova, D.; Kushpil, V.; Sumbera, M.] Nucl Phys Inst ASCR, Rez 25068, Czech Republic. [Braun-Munzinger, P.] GSI Helmholtzzentrum Schwer Forsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Belaga, V.; Fomenko, K.; Panebrattsev, Yu.; Petchenova, O.; Shimansky, S.; Yurevich, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bielcikova, J.; Rak, J.; Wurm, J. P.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Braun-Munzinger, P.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Braun-Munzinger, P.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. [Bielcikova, J.; Busch, O.; Damjanovic, S.; Dietrich, L.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Glaessel, P.; Milosevic, J.; Petracek, V.; Schmitz, W.; Stachel, J.; Tilsner, H.; Wienold, T.; Yurevich, S.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Cherlin, A.; Fraenkel, Z.; Milov, A.; Ravinovich, I.; Tserruya, I.; Xie, W.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Dietel, T.; Kalisky, M.; Wessels, J. P.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Drees, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Pfeiffer, A.] CERN, CH-1211 Geneva 23, Switzerland. [Rehak, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Appelshauser, H (reprint author), Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. EM appels@ikf.uni-frankfurt.de RI Sumbera, Michal/O-7497-2014; Adamova, Dagmar/G-9789-2014; OI Sumbera, Michal/0000-0002-0639-7323; Maas, Axel/0000-0002-4621-2151 FU GSI-FE; German BMBF; Virtual Institute VI-SIM and the ExtreMe Matter Institute EMMI of the German Helmholtz Association; Israel Science Foundation; Minerva Foundation; Grant Agency and Ministry of Education of the Czech Republic FX This work was supported by GSI-F&E, the German BMBF, the Virtual Institute VI-SIM and the ExtreMe Matter Institute EMMI of the German Helmholtz Association, the Israel Science Foundation, the Minerva Foundation and by the Grant Agency and Ministry of Education of the Czech Republic. NR 28 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 20 PY 2009 VL 678 IS 3 BP 259 EP 263 DI 10.1016/j.physletb.2009.05.048 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477FC UT WOS:000268503000001 ER PT J AU Zhou, J Yuan, F Liang, ZT AF Zhou, Jian Yuan, Feng Liang, Zuo-Tang TI Drell-Yan lepton pair azimuthal asymmetry in hadronic processes SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-SPIN ASYMMETRIES; DEEP-INELASTIC SCATTERING; ANGULAR-DISTRIBUTION; POWER CORRECTIONS; PARTON DISTRIBUTIONS; STATE INTERACTIONS; SINGLE-SPIN; QCD; COLLISIONS; MOMENTUM AB We study the azimuthal asymmetry (cos2 phi) in the Drell-Yan lepton pair production in hadronic scattering processes at moderate transverse momentum region, taking into account the contributions from the twist-three quark-gluon correlations from the unpolarized hadrons. The contributions are found to dominate the asymmetry, and are not power suppressed by q(perpendicular to)/Q at small q(perpendicular to) where q(perpendicular to) and Q are the transverse momentum and invariant mass of the lepton pair. Accordingly, the Lam-Tung relation will be violated at this momentum region, and its violation depends on the twist-three functions. However, at large transverse momentum q(perpendicular to) similar to Q, the Lam-Tung relation still holds because all corrections are power suppressed by Lambda(2)/q(perpendicular to)(2) similar to Lambda(2)/Q(2) where Lambda is the typical nonperturbative scale. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhou, Jian; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Zhou, Jian; Liang, Zuo-Tang] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM jzhou@lbl.gov; fyuan@lbl.gov; liang@sdu.edu.cn RI Yuan, Feng/N-4175-2013 FU US Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; National Natural Science Foundation of China [10525523]; China Scholarship Council FX We thank Jianwei Qiu and Werner Vogelsang for interesting discussions. This work was supported in part by the US Department of Energy under contract DE-AC02-05CH11231 and the National Natural Science Foundation of China under the approval No. 10525523. We are grateful to RIKEN, Brookhaven National Laboratory and the US Department of Energy (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. J.Z. is partially supported by China Scholarship Council. NR 54 TC 12 Z9 12 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 20 PY 2009 VL 678 IS 3 BP 264 EP 268 DI 10.1016/j.physletb.2009.06.041 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477FC UT WOS:000268503000002 ER PT J AU Barger, V Gao, Y Keung, WY Marfatia, D Shaughnessy, G AF Barger, V. Gao, Y. Keung, W. -Y. Marfatia, D. Shaughnessy, G. TI Dark matter and pulsar signals for Fermi LAT, PAMELA, ATIC, HESS and WMAP data SO PHYSICS LETTERS B LA English DT Review ID RAY POSITRON FRACTION; GAMMA-RAYS; EGRET DATA; EMISSION; GALAXY AB We analyze new diffuse gamma-ray data from the Fermi Gamma-ray Space Telescope, which do not confirm an excess in the EGRET data at galactic mid-latitudes, in combination with measurements of electron and positron fluxes from PAMELA, Fermi and HESS within the context of three possible sources: dark matter (DM) annihilation or decay into charged leptons, and a continuum distribution of pulsars. We allow for variations in the backgrounds, consider several DM halo profiles, and account for systematic uncertainties in data where possible. We find that all three scenarios represent the data well. The pulsar description holds for a wide range of injection energy spectra. We compare with ATIC data and the WMAP haze where appropriate. but do not fit these data since the former are discrepant with Fermi data and the latter are Subject to large systematic uncertainties. We show that for cusped halo profiles, Fermi could observe a spectacular gamma-ray signal of DM annihilation from the galactic center while seeing no excess at mid-latitudes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Marfatia, D.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Barger, V.; Gao, Y.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Keung, W. -Y.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Shaughnessy, G.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shaughnessy, G.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Marfatia, D (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. EM marfatia@ku.edu OI Keung, Wai-Yee/0000-0001-6761-9594 NR 103 TC 59 Z9 59 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 20 PY 2009 VL 678 IS 3 BP 283 EP 292 DI 10.1016/j.physletb.2009.06.030 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477FC UT WOS:000268503000005 ER PT J AU Del Sesto, RE McCleskey, TM Macomber, C Ott, KC Koppisch, AT Baker, GA Burrell, AK AF Del Sesto, Rico E. McCleskey, T. Mark Macomber, Clay Ott, Kevin C. Koppisch, Andrew T. Baker, Gary A. Burrell, Anthony K. TI Limited thermal stability of imidazolium and pyrrolidinium ionic liquids SO THERMOCHIMICA ACTA LA English DT Article DE Ionic liquids; Thermal stability; Imidazolium; Pyrrolidinium ID CATALYSIS; SOLVENTS; SALTS AB Ionic liquids, with their vast applications, have been touted as being thermally stable to very high temperatures. However, decomposition not detected by standard TGA and NMR techniques are observed with spectroscopic techniques sensitive enough to see small amounts of impurities. Decomposition temperatures of common ionic liquids appear to occur at hundreds of degrees below those temperatures previously reported. (C) 2009 Elsevier B.V. All rights reserved. C1 [Del Sesto, Rico E.; McCleskey, T. Mark; Macomber, Clay; Ott, Kevin C.; Koppisch, Andrew T.; Burrell, Anthony K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Burrell, AK (reprint author), Los Alamos Natl Lab, MS J514, Los Alamos, NM 87545 USA. EM Burrell@lanl.gov RI McCleskey, Thomas/J-4772-2012; Baker, Gary/H-9444-2016; OI Baker, Gary/0000-0002-3052-7730; Mccleskey, Thomas/0000-0003-3750-3245 FU DOE; Los Alamos National Laboratory FX This work was supported by the DOE Buildings Technology Program. GAB acknowledges generous support by a Frederick Reines Fellowship funded by Los Alamos National Laboratory. NR 17 TC 50 Z9 50 U1 2 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD JUL 20 PY 2009 VL 491 IS 1-2 BP 118 EP 120 DI 10.1016/j.tca.2009.02.023 PG 3 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 471JJ UT WOS:000268053200019 ER PT J AU Takano, R Nidom, CA Kiso, M Muramoto, Y Yamada, S Sakai-Tagawa, Y Macken, C Kawaoka, Y AF Takano, Ryo Nidom, Chairul A. Kiso, Maki Muramoto, Yukiko Yamada, Shinya Sakai-Tagawa, Yuko Macken, Catherine Kawaoka, Yoshihiro TI Phylogenetic characterization of H5N1 avian influenza viruses isolated in Indonesia from 2003-2007 SO VIROLOGY LA English DT Article DE Influenza; H5N1 subtype; Indonesia; Phylogenetic analysis; Reassortment; Evolution ID A H5N1; HONG-KONG; IDENTIFICATION; DIVERSITY; CHINA; ASIA AB The wide distribution of H5N1 highly pathogenic avian influenza viruses is a global threat to human health. Indonesia has had the largest number of human infections and fatalities caused by these viruses. To understand the enzootic conditions of the viruses in Indonesia, twenty-four H5N1 viruses isolated from poultry from 2003 to 2007 were phylogenetically characterized. Although previous studies exclusively classified the Indonesian viruses into clades 2.1.1-2.1.3, Our phylogenetic analyses showed a new sublineage that did not belong to any of the present clades. In addition, novel reassortant viruses were identified that emerged between this new sublineage and other clades in 2005-2006 on Java Island. H5N1 viruses were introduced from Java Island to Sulawesi, Kalimantan, and Sumatra Island on multiple occasions from 20032007, causing the geographical expansion of these viruses in Indonesia. These findings identify Java Island as the epicenter of the Indonesian H5N1 virus expansion. (C) 2009 Elsevier Inc. All rights reserved. C1 [Takano, Ryo; Kiso, Maki; Muramoto, Yukiko; Yamada, Shinya; Sakai-Tagawa, Yuko; Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol,Minato Ku, Tokyo 1088639, Japan. [Nidom, Chairul A.] Airlangga Univ, Trop Dis Ctr, Fac Vet Med, Surabaya 60115, Indonesia. [Nidom, Chairul A.] Airlangga Univ, Trop Dis Ctr, Collaborating Res Ctr Emerging & Reemerging Infec, Surabaya 60115, Indonesia. [Macken, Catherine] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Int Res Ctr Infect Dis, Minato Ku, Tokyo 1088639, Japan. [Kawaoka, Yoshihiro] Univ Wisconsin, Sch Vet Med, Dept Pathobiol Sci, Madison, WI 53706 USA. RP Kawaoka, Y (reprint author), Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol,Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088639, Japan. EM kawaoka@ims.u-tokyo.ac.jp FU Ministries of Education, Culture, Sports, Science, and Technology; ERATO; U.S. Department of Energy through the LANL/LDRD Program; National Institute of Allergy and Infectious Diseases Public Health Service FX We thank Susan Watson and Krisna Wells for editing the manuscript. This work was supported by a grant-in-aid for Specially Promoted Research and by a contract research fund for the Program for Funding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministries of Education, Culture, Sports, Science, and Technology and by grants-in-aid of Health, Labor, and Welfare of Japan, by ERATO (Japan Science and Technology Agency), by the U.S. Department of Energy through the LANL/LDRD Program and by the National Institute of Allergy and Infectious Diseases Public Health Service research grants. NR 25 TC 19 Z9 20 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD JUL 20 PY 2009 VL 390 IS 1 BP 13 EP 21 DI 10.1016/j.virol.2009.04.024 PG 9 WC Virology SC Virology GA 473OX UT WOS:000268218200002 PM 19464724 ER PT J AU Xing, J Burkom, H Moniz, L Edgerton, J Leuze, M Tokars, J AF Xing, Jian Burkom, Howard Moniz, Linda Edgerton, James Leuze, Michael Tokars, Jerome TI Evaluation of sliding baseline methods for spatial estimation for cluster detection in the biosurveillance system SO INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS LA English DT Article AB Background: The Centers for Disease Control and Prevention's (CDC's) BioSense system provides near-real time situational awareness for public health monitoring through analysis of electronic health data. Determination of anomalous spatial and temporal disease clusters is a crucial part of the daily disease monitoring task. Our study focused on finding useful anomalies at manageable alert rates according to available BioSense data history. Methods: The study dataset included more than 3 years of daily counts of military outpatient clinic visits for respiratory and rash syndrome groupings. We applied four spatial estimation methods in implementations of space-time scan statistics cross-checked in Matlab and C. We compared the utility of these methods according to the resultant background cluster rate (a false alarm surrogate) and sensitivity to injected cluster signals. The comparison runs used a spatial resolution based on the facility zip code in the patient record and a finer resolution based on the residence zip code. Results: Simple estimation methods that account for day-of-week (DOW) data patterns yielded a clear advantage both in background cluster rate and in signal sensitivity. A 28-day baseline gave the most robust results for this estimation; the preferred baseline is long enough to remove daily fluctuations but short enough to reflect recent disease trends and data representation. Background cluster rates were lower for the rash syndrome counts than for the respiratory counts, likely because of seasonality and the large scale of the respiratory counts. Conclusion: The spatial estimation method should be chosen according to characteristics of the selected data streams. In this dataset with strong day-of-week effects, the overall best detection performance was achieved using subregion averages over a 28-day baseline stratified by weekday or weekend/holiday behavior. Changing the estimation method for particular scenarios involving different spatial resolution or other syndromes can yield further improvement. C1 [Xing, Jian; Tokars, Jerome] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. [Burkom, Howard; Moniz, Linda] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Edgerton, James] Edge Space Syst Inc, Glenelg, MD 21737 USA. [Leuze, Michael] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Xing, J (reprint author), Ctr Dis Control & Prevent, 1600 Clifton Rd NE, Atlanta, GA 30333 USA. EM esw4@cdc.gov; Howard.Burkom@jhuapl.edu; Linda.Moniz@jhuapl.edu; Jim.Edgerton@EdgeSpaceSystems.com; MikeLeuze@hotmail.com; jit1@cdc.gov OI burkom, howard/0000-0003-0667-9467 NR 17 TC 7 Z9 7 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1476-072X J9 INT J HEALTH GEOGR JI Int. J. Health Geogr. PD JUL 17 PY 2009 VL 8 AR 45 DI 10.1186/1476-072X-8-45 PG 17 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 482MI UT WOS:000268892600001 PM 19615075 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Tesarek, R Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tesarek, R. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of New Charmless Decays of Bottom Hadrons SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-DECAY; CDF; PHYSICS; TRIGGER; GAMMA AB We search for new charmless decays of neutral b hadrons to pairs of charged hadrons, using 1 fb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We report the first observation of the B-s(0)-> K-pi(+) decay and measure B(B-s(0)-> K-pi(+))=(5.0 +/- 0.7(stat)+/- 0.8(syst))x10(-6). We also report the first observation of charmless b-baryon decays, and measure B(Lambda(0)(b)-> p pi(-))=(3.5 +/- 0.6(stat)+/- 0.9(syst))x10(-6) and B(Lambda(0)(b)-> pK(-))=(5.6 +/- 0.8(stat)+/- 1.5(syst))x10(-6). No evidence is found for other modes, and we set the limit B(B-s(0)->pi(+)pi(-))< 1.2x10(-6) at 90% C.L. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Azfar, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Martinez, M.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Movilla Fernandez, P.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tesarek, R.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Brigliadori, L.; Compostella, G.; Donini, J.; Dorigo, T.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bedeschi, F.; Carosi, R.; Chiarelli, G.; Giannetti, P.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Piacentino, G.; Ristori, L.; Sartori, L.; Scuri, F.; Sforza, F.; Sidoti, A.; Trovato, M.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Gallinaro, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Penzo, A.; Rossi, M.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Anastassov, A.; Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012 OI Osterberg, Kenneth/0000-0003-4807-0414; MARTINEZ, MARIO/0000-0002-3135-945X; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Chiarelli, Giorgio/0000-0001-9851-4816; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; the A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 36 TC 58 Z9 58 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 031801 DI 10.1103/PhysRevLett.103.031801 PG 8 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300013 ER PT J AU Chen, YL Iyo, A Yang, WL Ino, A Arita, M Johnston, S Eisaki, H Namatame, H Taniguchi, M Devereaux, TP Hussain, Z Shen, ZX AF Chen, Yulin Iyo, Akira Yang, Wanli Ino, Akihiro Arita, M. Johnston, Steve Eisaki, Hiroshi Namatame, H. Taniguchi, M. Devereaux, Thomas P. Hussain, Zahid Shen, Z. -X. TI Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID LINE-SHAPE; T-C; BI2SR2CACU2O8+DELTA; DISPERSION; ENERGY AB Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped high T-c superconductor Ba2Ca3Cu4O8F2 (F0234) revealed fine structure in the band dispersion, identifying the unconventional association of hole and electron doping with the inner and outer CuO2 layers, respectively. For the states originating from two inequivalent CuO2 layers, different energy scales are observed in dispersion kinks associated with the collective mode coupling, with the larger energy scale found in the electron (n-) doped state which also has stronger coupling strength. Given the earlier finding that the superconducting gap is substantially larger along the n-type Fermi surface, our observations connect the mode coupling energy and strength with magnitude of the pairing gap. C1 [Chen, Yulin; Johnston, Steve; Devereaux, Thomas P.; Shen, Z. -X.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. [Chen, Yulin; Johnston, Steve; Devereaux, Thomas P.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Chen, Yulin; Johnston, Steve; Devereaux, Thomas P.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Chen, Yulin; Yang, Wanli; Hussain, Zahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Iyo, Akira; Eisaki, Hiroshi] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Ino, Akihiro; Taniguchi, M.] Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398526, Japan. [Arita, M.; Namatame, H.; Taniguchi, M.] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Higashihiroshima 7390046, Japan. RP Chen, YL (reprint author), SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. RI Chen, Yulin/C-1918-2012; Yang, Wanli/D-7183-2011; Johnston, Steven/J-7777-2016 OI Yang, Wanli/0000-0003-0666-8063; FU DOE-BES; DMSE [DE-AC02-76SF00515]; ALS [DE-AC02-05CH11231] FX This work is supported by DOE-BES, DMS&E at SLAC (DE-AC02-76SF00515) and ALS (DE-AC02-05CH11231). NR 24 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 036403 DI 10.1103/PhysRevLett.103.036403 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300048 PM 19659301 ER PT J AU Cheng, S Stoica, AD Wang, XL Ren, Y Almer, J Horton, JA Liu, CT Clausen, B Brown, DW Liaw, PK Zuo, L AF Cheng, S. Stoica, A. D. Wang, X. -L. Ren, Y. Almer, J. Horton, J. A. Liu, C. T. Clausen, B. Brown, D. W. Liaw, P. K. Zuo, L. TI Deformation Crossover: From Nano- to Mesoscale SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; NANOCRYSTALLINE METALS; PLASTIC-DEFORMATION; MECHANICAL-BEHAVIOR; STRENGTH; EVOLUTION; STRAIN; CREEP; TWINS AB In situ synchrotron and neutron diffraction were used to study deformation mechanisms in Ni over a broad range of grain sizes. The experimental data show that unlike in coarse-grained metals, where the deformation is dominated by dislocation slip, plastic deformation in nanocrystalline Ni is mediated by grain-boundary activities, as evidenced by the lack of intergranular strain and texture development. For ultrafine-grained Ni, although dislocation slip is an active deformation mechanism, deformation twinning also plays an important role, whose propensity increases with the grain size. C1 [Cheng, S.; Stoica, A. D.; Wang, X. -L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Cheng, S.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ren, Y.; Almer, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Horton, J. A.; Liu, C. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, C. T.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China. [Clausen, B.; Brown, D. W.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Zuo, L.] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110004, Peoples R China. RP Cheng, S (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangxl@ornl.gov RI Wang, Xun-Li/C-9636-2010; Cheng, Sheng/D-9153-2013; Stoica, Alexandru/K-3614-2013; Clausen, Bjorn/B-3618-2015 OI Wang, Xun-Li/0000-0003-4060-8777; Cheng, Sheng/0000-0003-1137-1926; Stoica, Alexandru/0000-0001-5118-0134; Clausen, Bjorn/0000-0003-3906-846X FU U. S. Department of Energy (DOE); Office of Basic Energy Sciences [DE-AC05-00OR22725, DE AC52 06NA25396]; U. S. DOE [AC02-06CH11357]; Natural Science Foundation of China [50528102] FX The authors thank Dr. E. Ma for helpful discussions. This research was supported by U. S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Use of APS was supported by the U. S. DOE under Contract No. DE-AC02-06CH11357. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the US DOE, Office of Basic Energy Sciences under Contract DE AC52 06NA25396. L. Z. and X. L. W. thank Natural Science Foundation of China for supporting their collaborative research (No. 50528102). NR 32 TC 37 Z9 37 U1 6 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 035502 DI 10.1103/PhysRevLett.103.035502 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300041 PM 19659294 ER PT J AU Ding, F Huang, JY Yakobson, BI AF Ding, Feng Huang, Jian Yu Yakobson, Boris I. TI Comment on "Mechanism for Superelongation of Carbon Nanotubes at High Temperatures" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by Chun Tang, Wanlin Guo, and Changfeng Chen, Phys. Rev. Lett. 100, 175501 (2008). The authors of the Letter offer a Reply. C1 [Ding, Feng] Hong Kong Polytech Univ, Kowloon, Hong Kong, Peoples R China. [Yakobson, Boris I.] Rice Univ, Houston, TX 77006 USA. [Huang, Jian Yu] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ding, F (reprint author), Hong Kong Polytech Univ, Kowloon, Hong Kong, Peoples R China. RI Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Ding, Feng/0000-0001-9153-9279; NR 9 TC 2 Z9 2 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 039601 DI 10.1103/PhysRevLett.103.039601 PG 1 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300076 PM 19659329 ER PT J AU Feagin, JM Colgan, J Huetz, A Reddish, TJ AF Feagin, J. M. Colgan, J. Huetz, A. Reddish, T. J. TI Electron-Pair Excitations and the Molecular Coulomb Continuum SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOTO-DOUBLE-IONIZATION; DOUBLE PHOTOIONIZATION; FRAGMENTATION; DEUTERIUM; H-2 AB Electron-pair excitations in the molecular hydrogen continuum are described by quantizing rotations of the momentum plane of the electron pair about the pair's relative momentum. A heliumlike description of the molecular photodouble ionization is thus extended to higher angular momenta of the electron pair. A simple three-state superposition is found to account surprisingly well for recent observations of noncoplanar electron-pair, molecular-axis angular distributions. C1 [Feagin, J. M.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92834 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Huetz, A.] Univ Paris 11, CNRS, LIXAM, UMR8624, F-91405 Orsay, France. [Reddish, T. J.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. RP Feagin, JM (reprint author), Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92834 USA. EM jfeagin@fullerton.edu OI Colgan, James/0000-0003-1045-3858 FU Office of Basic Energy Sciences; U. S. Department of Energy; Los Alamos National Laboratory; Los Alamos National Security; LLC for the National Nuclear Security Administration; U. S. Department of Energy [DE-AC5206NA25396] FX This project has been supported by the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, U. S. Department of Energy. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC5206NA25396. NR 15 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 033002 DI 10.1103/PhysRevLett.103.033002 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300020 PM 19659273 ER PT J AU Kreidi, K Demekhin, PV Jahnke, T Weber, T Havermeier, T Liu, XJ Morisita, Y Schossler, S Schmidt, LPH Schoffler, M Odenweller, M Neumann, N Foucar, L Titze, J Ulrich, B Sturm, F Stuck, C Wallauer, R Voss, S Lauter, I Kim, HK Rudloff, M Fukuzawa, H Prumper, G Saito, N Ueda, K Czasch, A Jagutzki, O Schmidt-Bocking, H Scheit, S Cederbaum, LS Dorner, R AF Kreidi, K. Demekhin, Ph. V. Jahnke, T. Weber, Th. Havermeier, T. Liu, X. -J. Morisita, Y. Schoessler, S. Schmidt, L. Ph. H. Schoeffler, M. Odenweller, M. Neumann, N. Foucar, L. Titze, J. Ulrich, B. Sturm, F. Stuck, C. Wallauer, R. Voss, S. Lauter, I. Kim, H. K. Rudloff, M. Fukuzawa, H. Pruemper, G. Saito, N. Ueda, K. Czasch, A. Jagutzki, O. Schmidt-Boecking, H. Scheit, S. Cederbaum, L. S. Doerner, R. TI Photo- and Auger-Electron Recoil Induced Dynamics of Interatomic Coulombic Decay SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOMENTUM SPECTROSCOPY; FRAGMENTATION; PHOTOELECTRON; CLUSTERS; ION AB At photon energies near the Ne K edge it is shown that for 1s ionization the Auger electron, and for 2s ionization the fast photoelectron, launch vibrational wave packets in a Ne dimer. These wave packets then decay by emission of a slow electron via interatomic Coulombic decay (ICD). The measured and computed ICD electron spectra are shown to be significantly modified by the recoil induced nuclear motion. C1 [Kreidi, K.; Jahnke, T.; Havermeier, T.; Schoessler, S.; Schmidt, L. Ph. H.; Schoeffler, M.; Odenweller, M.; Neumann, N.; Foucar, L.; Titze, J.; Ulrich, B.; Sturm, F.; Stuck, C.; Wallauer, R.; Voss, S.; Lauter, I.; Kim, H. K.; Rudloff, M.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Kreidi, K.] DESY, D-22607 Hamburg, Germany. [Demekhin, Ph. V.] Univ Kassel, Inst Phys, EP 4, D-34132 Kassel, Germany. [Weber, Th.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Liu, X. -J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Morisita, Y.; Saito, N.] AIST, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058568, Japan. [Scheit, S.] Univ Tokyo, Grad Sch Arts & Sci, Dept Basic Sci, Tokyo 1538902, Japan. [Cederbaum, L. S.] Heidelberg Univ, PCI, INF 229, D-69120 Heidelberg, Germany. RP Kreidi, K (reprint author), Goethe Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM doerner@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008; Saito, Norio/E-2890-2014; Demekhin, Philipp/K-9375-2016 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848; FU EU Marie Curie [PIIF-GA-2008-219224] FX This work was supported by BMBF, DFG, BESSY, JSPS, and MEXT. We thank S. Cramm and the staff at BESSY for excellent support. We are grateful to S. Stoychev and A. Kuleff for stimulating discussion. K. K. and T. W. acknowledge support by DESY. S. S., and X. J. L acknowledges support by JSPS. L. S. C. acknowledges support by DFG. Ph. V. D. was funded by the EU Marie Curie (PIIF-GA-2008-219224). NR 24 TC 24 Z9 24 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 033001 DI 10.1103/PhysRevLett.103.033001 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300019 PM 19659272 ER PT J AU Manuel, P Chapon, LC Radaelli, PG Zheng, H Mitchell, JF AF Manuel, P. Chapon, L. C. Radaelli, P. G. Zheng, H. Mitchell, J. F. TI Magnetic Correlations in the Extended Kagome YBaCo4O7 Probed by Single-Crystal Neutron Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID OXYGEN ABSORPTION; ANTIFERROMAGNET; FRUSTRATION; LATTICE AB We have studied the frustrated system YBaCo4O7.0 generally described as an alternating stacking of kagome and triangular layers of magnetic ions on a trigonal lattice, by single-crystal neutron diffraction experiments above the Neacuteel ordering transition. Experimental data reveal pronounced magnetic diffuse scattering, which is successfully modeled by direct Monte Carlo simulations. Long-range magnetic correlations are found along the c axis, due to the presence of corner-sharing bipyramids, creating quasi-one-dimensional order at finite temperature. In contrast, in the kagome layers (ab plane), the spin-spin correlation function, displaying a short-range 120 degrees configuration, decays rapidly as typically found in spin liquids. YBaCo4O7 experimentally realizes a new class of two-dimensional frustrated systems where the strong out-of-plane coupling does not lift the in-plane degeneracy, but instead acts as an external "field." C1 [Manuel, P.; Chapon, L. C.; Radaelli, P. G.] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Manuel, P (reprint author), STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. EM pascal.manuel@stfc.ac.uk RI Radaelli, Paolo/C-2952-2011 OI Radaelli, Paolo/0000-0002-6717-035X FU Work at Argonne National Laboratory [DE-AC02-06CH11357]; UChicago Argonne, LLC; Operator of Argonne National Laboratory; U. S. Department of Energy Office of Science Laboratory FX The authors would like to thank John Chalker for stimulating discussions. Work at Argonne National Laboratory was supported under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC, Operator of Argonne National Laboratory, a U. S. Department of Energy Office of Science Laboratory. NR 15 TC 52 Z9 53 U1 0 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 037202 DI 10.1103/PhysRevLett.103.037202 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300060 PM 19659313 ER PT J AU Xia, Y Qian, D Wray, L Hsieh, D Chen, GF Luo, JL Wang, NL Hasan, MZ AF Xia, Y. Qian, D. Wray, L. Hsieh, D. Chen, G. F. Luo, J. L. Wang, N. L. Hasan, M. Z. TI Fermi Surface Topology and Low-Lying Quasiparticle Dynamics of Parent Fe1+xTe/Se Superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the first photoemission study of Fe1+xTe-the host compound of the newly discovered iron-chalcogenide superconductors (maximum T-c similar to 27 K). Our results reveal a pair of nearly electron-hole compensated Fermi pockets, strong Fermi velocity renormalization, and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the "X" point of the Brillouin zone which is consistent with a long-range ordered magnetostructural ground state. No signature of Fermi surface nesting instability associated with Q=(pi/2,pi/2) is observed. Our results collectively reveal that the Fe1+xTe series is different from the undoped phases of the high T-c pnictides and likely harbor an unusual mechanism for superconductivity and magnetic order. C1 [Xia, Y.; Qian, D.; Wray, L.; Hsieh, D.; Hasan, M. Z.] Princeton Univ, Dept Phys, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Qian, D.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Wray, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94305 USA. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Hasan, M. Z.] Princeton Univ, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. RP Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. EM mzhasan@Princeton.edu RI HASAN, M. Zahid/D-8237-2012; Qian, Dong/O-1028-2015 FU U. S. DOE- BES [DE-FG02-05ER46200]; NSFC; CAS China FX We thank P. W. Anderson, B. A. Bernevig, D. A. Huse, D.- H. Lee, Y. Ran, Z. Tesanovic, A. Vishwanath, and C. Xu for discussions. The synchrotron x- ray experiments at ALS/LBNL are supported by the U. S. DOE- BES (Contract No. DE-FG02-05ER46200) and materials growth supported by NSFC and CAS China. NR 23 TC 154 Z9 157 U1 4 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 037002 DI 10.1103/PhysRevLett.103.037002 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300055 PM 19659308 ER PT J AU Yoshida, T Hashimoto, M Ideta, S Fujimori, A Tanaka, K Mannella, N Hussain, Z Shen, ZX Kubota, M Ono, K Komiya, S Ando, Y Eisaki, H Uchida, S AF Yoshida, T. Hashimoto, M. Ideta, S. Fujimori, A. Tanaka, K. Mannella, N. Hussain, Z. Shen, Z. -X. Kubota, M. Ono, K. Komiya, Seiki Ando, Yoichi Eisaki, H. Uchida, S. TI Universal versus Material-Dependent Two-Gap Behaviors of the High-T-c Cuprate Superconductors: Angle-Resolved Photoemission Study of La2-xSrxCuO4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID UNDERDOPED BI2212; PSEUDOGAP; GAP; LIQUID; STATE; PHASE; MODEL AB We have investigated the doping and temperature dependences of the pseudogap and superconducting gap in the single-layer cuprate La2-xSrxCuO4 by angle-resolved photoemission spectroscopy. The results clearly exhibit two distinct energy and temperature scales, namely, the gap around (pi, 0) of magnitude Delta(*) and the gap around the node characterized by the d-wave order parameter Delta(0). In comparison with Bi2212 having higher T-c's, Delta(0) is smaller, while Delta(*) and T-* are similar. This result suggests that Delta(*) and T-* are approximately material-independent properties of a single CuO2 plane, in contrast to the material-dependent Delta(0), representing the pairing strength. C1 [Yoshida, T.; Hashimoto, M.; Ideta, S.; Fujimori, A.; Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Tanaka, K.; Mannella, N.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Tanaka, K.; Mannella, N.; Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kubota, M.; Ono, K.] KEK, Inst Mat Struct Sci, Photon Factory, Tsukuba, Ibaraki 3050801, Japan. [Komiya, Seiki] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Ando, Yoichi] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Yoshida, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. RI Ando, Yoichi/B-8163-2013; Ono, Kanta/I-3226-2014 OI Ando, Yoichi/0000-0002-3553-3355; Ono, Kanta/0000-0002-3285-9093 FU Ministry of Education, Science, Culture, Sports and Technology; U. S. DOE [DE-FG03-01ER45876, DE-AC03-76SF00098]; KAKENHI [19674002, 20030004]; Department of Energy's Office of Basic Energy Science; Division of Materials Science. Experiment at the Photon Factory; Photon Factory Program Advisory Committee [2006S2-001] FX We are grateful to C. M. Ho, M. Ido, G.-q. Zheng, and C. Panagopoulos for enlightening discussions. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area "Invention of Anomalous Quantum Materials'', Grant-in-Aid for Young Scientists from the Ministry of Education, Science, Culture, Sports and Technology and the U. S. DOE Contract DE-FG03-01ER45876 and DE-AC03-76SF00098. Y. A. was supported by KAKENHI 19674002 and 20030004. ALS is operated by the Department of Energy's Office of Basic Energy Science, Division of Materials Science. Experiment at the Photon Factory was approved by the Photon Factory Program Advisory Committee (Proposal No. 2006S2-001). NR 35 TC 79 Z9 80 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 037004 DI 10.1103/PhysRevLett.103.037004 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300057 PM 19659310 ER PT J AU Zhang, HZ Owens, JF Wang, EK Wang, XN AF Zhang, Hanzhong Owens, J. F. Wang, Enke Wang, Xin-Nian TI Tomography of High-Energy Nuclear Collisions with Photon-Hadron Correlations SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS AB Within the next-to-leading order (NLO) perturbative QCD (PQCD) parton model, suppression of away-side hadron spectra associated with a high p(T) photon due to parton energy loss is studied in high-energy heavy-ion collisions. Because of the sharp falloff of the gamma-jet spectrum in momentum imbalance p(T)(jet)-p(T)(gamma)> 0 in NLO PQCD, hadron spectra at large z(T)=p(T)(h)/p(T)(gamma)greater than or similar to 1 are more susceptible to parton energy loss and therefore are dominated by surface emission of gamma-associated jets with almost no energy loss, whereas small z(T) hadrons mainly come from the volume emission of jets with reduced energy. These lead to different centrality dependence of the gamma-hadron suppression for different values of z(T). Therefore, a complete measurement of the suppression of gamma-triggered hadron spectra allows a true tomographic study of the quark-gluon plasma in high-energy heavy-ion collisions. C1 [Zhang, Hanzhong; Wang, Enke; Wang, Xin-Nian] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Zhang, Hanzhong; Wang, Enke] Huazhong Normal Univ, Key Lab Quark & Lepton Phys, Minist Educ, Wuhan 430079, Peoples R China. [Owens, J. F.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Zhang, HZ (reprint author), Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 FU DOE [DE-AC02-05CH11231, DEFG02-97IR40122]; NSFC of China [10825523, 10875052, 10635020]; MOE of China [IRT0624]; MOSTof China [2008CB317106]; MOE and SAFEA of China [PITDU-B08033] FX We thank P. Jacobs, S. Mioduszewski, and M. Nguyen for helpful comments. This work was supported by the DOE under Contracts No. DE-AC02-05CH11231 and No. DEFG02-97IR40122; by the NSFC of China under Projects No. 10825523, No. 10875052, and No. 10635020; by MOE of China under Project No. IRT0624; by MOSTof China under Project No. 2008CB317106; and by MOE and SAFEA of China under Project No. PITDU-B08033. NR 30 TC 46 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 17 PY 2009 VL 103 IS 3 AR 032302 DI 10.1103/PhysRevLett.103.032302 PG 4 WC Physics, Multidisciplinary SC Physics GA 471WF UT WOS:000268088300016 PM 19659269 ER PT J AU Desai, K Kit, K Li, JJ Davidson, PM Zivanovic, S Meyer, H AF Desai, Keyur Kit, Kevin Li, Jiajie Davidson, P. Michael Zivanovic, Svetlana Meyer, Harry TI Nanofibrous chitosan non-wovens for filtration applications SO POLYMER LA English DT Article DE Chitosan; Filtration; Nanofibers ID RAY PHOTOELECTRON-SPECTROSCOPY; SURFACE-PROPERTIES; CHITIN; MEMBRANES; FILTERS; MEDIA; FILMS AB Chitosan containing nanofibrous filter media has the advantage of filtering material based on both its size and functionality. They can be potentially applicable in a wide variety of filtration applications ranging from water purification media to air filter media. We have fabricated nanofibrous filter media by electrospinning of chitosan/PEO blend solutions onto a spunbonded non-woven polypropylene substrate. Filter media with varying fiber diameter and filter basis weight were obtained. Heavy metal binding, anti-microbial and physical filtrations efficiencies of these chitosan based filter media were studied and correlated with the surface chemistry and physical characteristics of these nanofibrous filter media. Filtration efficiency of the nanofiber mats was strongly related to the size of the fibers and its surface chitosan content. Hexavalent chromium binding capacities up to 35 mg chromium/g chitosan were exhibited by chitosan based nanofibrous filter media along with a 2-3 log reduction in Escherichia coli bacteria cfu. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Desai, Keyur; Kit, Kevin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Li, Jiajie; Davidson, P. Michael; Zivanovic, Svetlana] Univ Tennessee, Dept Food Sci & Technol, Knoxville, TN 37996 USA. [Meyer, Harry] Oak Ridge Natl Lab, HTML Share User Facil, Oak Ridge, TN 37831 USA. RP Kit, K (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM kkit@utk.edu RI Davidson, Philip/A-9908-2008; Zivanovic, Svetlana/B-1272-2008 OI Davidson, Philip/0000-0001-5224-6799; FU U.S. EPA Science [GR832372] FX This research is funded by U.S. EPA Science To Achieve Results (STAR) Program Grant # GR832372. NR 32 TC 84 Z9 91 U1 17 U2 160 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUL 17 PY 2009 VL 50 IS 15 BP 3661 EP 3669 DI 10.1016/j.polymer.2009.05.058 PG 9 WC Polymer Science SC Polymer Science GA 474TJ UT WOS:000268306700032 ER PT J AU Liu, Z Otto-Bliesner, BL He, F Brady, EC Tomas, R Clark, PU Carlson, AE Lynch-Stieglitz, J Curry, W Brook, E Erickson, D Jacob, R Kutzbach, J Cheng, J AF Liu, Z. Otto-Bliesner, B. L. He, F. Brady, E. C. Tomas, R. Clark, P. U. Carlson, A. E. Lynch-Stieglitz, J. Curry, W. Brook, E. Erickson, D. Jacob, R. Kutzbach, J. Cheng, J. TI Transient Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod Warming SO SCIENCE LA English DT Article ID ATLANTIC THERMOHALINE CIRCULATION; ABRUPT CLIMATE-CHANGE; PAST 20,000 YEARS; OVERTURNING CIRCULATION; SURFACE-TEMPERATURE; HEINRICH EVENTS; GLACIAL MAXIMUM; RAPID CHANGES; MODEL; OCEAN AB We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bolling-Allerod (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot. C1 [Liu, Z.; Cheng, J.] Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Nanjing 210044, Peoples R China. [Liu, Z.] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R China. [Liu, Z.; He, F.; Kutzbach, J.; Cheng, J.] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA. [Liu, Z.; He, F.; Kutzbach, J.; Cheng, J.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Otto-Bliesner, B. L.; Brady, E. C.; Tomas, R.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Clark, P. U.; Brook, E.] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. [Carlson, A. E.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Carlson, A. E.] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA. [Lynch-Stieglitz, J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Curry, W.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Erickson, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jacob, R.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Liu, Z (reprint author), Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Nanjing 210044, Peoples R China. EM zliu3@wisc.edu RI Jacob, Robert/D-2580-2011; He, Feng/B-3583-2008; OI Jacob, Robert/0000-0002-9444-6593; He, Feng/0000-0002-3355-6406; Lynch-Stieglitz, Jean/0000-0002-9353-1972 FU NSF; NCAR; Chinese NSF [NSFC40875058]; U.S. Department of Energy INCITE program and Abrupt Climate Change Program FX This research was supported mainly by the Paleoclimate Program of NSF, NCAR, and Chinese NSF (NSFC40875058). The computing is supported by the U.S. Department of Energy INCITE program and Abrupt Climate Change Program. This paper is CCR contribution No. 980. NR 43 TC 252 Z9 258 U1 7 U2 97 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 17 PY 2009 VL 325 IS 5938 BP 310 EP 314 DI 10.1126/science.1171041 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 471DZ UT WOS:000268036600043 PM 19608916 ER PT J AU Maji, SK Perrin, MH Sawaya, MR Jessberger, S Vadodaria, K Rissman, RA Singru, PS Nilsson, KPR Simon, R Schubert, D Eisenberg, D Rivier, J Sawchenko, P Vale, W Riek, R AF Maji, Samir K. Perrin, Marilyn H. Sawaya, Michael R. Jessberger, Sebastian Vadodaria, Krishna Rissman, Robert A. Singru, Praful S. Nilsson, K. Peter R. Simon, Rozalyn Schubert, David Eisenberg, David Rivier, Jean Sawchenko, Paul Vale, Wylie Riek, Roland TI Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules SO SCIENCE LA English DT Article ID MOLECULAR-ORGANIZATION; PROLACTIN GRANULES; ALZHEIMERS-DISEASE; ALPHA-SYNUCLEIN; PROTEIN; FIBRILS; BIOGENESIS; CELLS; GLYCOSAMINOGLYCANS; AMYLOIDOGENESIS AB Amyloids are highly organized cross-beta-sheet-rich protein or peptide aggregates that are associated with pathological conditions including Alzheimer's disease and type II diabetes. However, amyloids may also have a normal biological function, as demonstrated by fungal prions, which are involved in prion replication, and the amyloid protein Pmel17, which is involved in mammalian skin pigmentation. We found that peptide and protein hormones in secretory granules of the endocrine system are stored in an amyloid-like cross-beta-sheet-rich conformation. Thus, functional amyloids in the pituitary and other organs can contribute to normal cell and tissue physiology. C1 [Maji, Samir K.; Riek, Roland] ETH, Phys Chem Lab, CH-8093 Zurich, Switzerland. [Perrin, Marilyn H.; Rivier, Jean; Sawchenko, Paul; Vale, Wylie] Salk Inst Biol Studies, Clayton Fdn Labs Peptide Biol, La Jolla, CA 92037 USA. [Sawaya, Michael R.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Jessberger, Sebastian; Vadodaria, Krishna] ETH, Inst Cell Biol, Dept Biol, CH-8093 Zurich, Switzerland. [Rissman, Robert A.] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA. [Singru, Praful S.] Tufts Med Ctr, Div Endocrinol Diabet & Metab, Boston, MA 02111 USA. [Nilsson, K. Peter R.; Simon, Rozalyn] Linkoping Univ, IFM, Dept Chem, SE-58183 Linkoping, Sweden. [Schubert, David] Salk Inst Biol Studies, Cellular Neurobiol Lab, La Jolla, CA 92037 USA. RP Riek, R (reprint author), ETH, Phys Chem Lab, Wolfgang Paulistr 10, CH-8093 Zurich, Switzerland. EM roland.riek@phys.chem.ethz.ch OI Maji, Samir K./0000-0002-9110-1565 FU Swiss National Foundation; Clayton Medical Research Foundation Inc.; National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) [PO1 DK026741-29] FX Supported by the Swiss National Foundation, Clayton Medical Research Foundation Inc., and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant PO1 DK026741-29 NR 37 TC 362 Z9 374 U1 2 U2 98 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 17 PY 2009 VL 325 IS 5938 BP 328 EP 332 DI 10.1126/science.1173155 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 471DZ UT WOS:000268036600048 PM 19541956 ER PT J AU Tartakovsky, DM Dentz, M Lichtner, PC AF Tartakovsky, Daniel M. Dentz, Marco Lichtner, Peter C. TI Probability density functions for advective-reactive transport with uncertain reaction rates SO WATER RESOURCES RESEARCH LA English DT Article ID HETEROGENEOUS POROUS FORMATIONS; PORE-SIZE DISTRIBUTION; STOCHASTIC-ANALYSIS; SOLUTE TRANSPORT; GAUSSIAN CLOSURE; UNSATURATED FLOW; AQUIFERS; MEDIA; SOILS AB We derive probability density functions for advective transport of a solute that undergoes a heterogeneous chemical reaction involving an aqueous solution reacting with a solid phase. This enables us to quantify uncertainty associated with spatially varying reaction rate constants for both linear and nonlinear kinetic rate laws. While many standard techniques for uncertainty quantification in groundwater hydrology yield only concentration's mean and variance, the proposed approach leads to its full probabilistic description. This allows one to compute so-called rare events (distribution tails), which are required in modern probabilistic risk analyses. We also compute an effective (apparent and upscaled) kinetic rate constant, a parameter that enters transport equations governing the spatiotemporal evolution of mean concentration. We demonstrate that the effective kinetic rate of nonlinear reactions is time-dependent. This behavior provides a possible explanation for the observed discrepancy between laboratory-measured rate constants on uniform grain sizes and measurements in natural systems where the grain size distributions are heterogeneous. C1 [Tartakovsky, Daniel M.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Dentz, Marco] Tech Univ Catalonia, Dept Geotech Engn & Geosci, E-08034 Barcelona, Spain. [Lichtner, Peter C.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Tartakovsky, DM (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr,Mail Code 0411, La Jolla, CA 92093 USA. EM dmt@ucsd.edu; marco.dentz@upc.edu; lichtner@lanl.gov RI Tartakovsky, Daniel/E-7694-2013; Dentz, Marco/C-1076-2015 OI Dentz, Marco/0000-0002-3940-282X FU DOE Office of Science Advanced Scientific Computing Research [DE-FC0207ER64324]; Spanish Ministry of Science and Education; Catalan Agency for Administration of Universities and Research FX We thank the two anonymous reviewers and the Associate Editor Olaf Cirpka for their invaluable comments. This research was partially supported by the DOE Office of Science Advanced Scientific Computing Research program in Applied Mathematical Sciences and by the Office of Science (BER), cooperative agreement DE-FC0207ER64324. M. D. gratefully acknowledges the financial support of the program Ramon y Cajal of the Spanish Ministry of Science and Education and through a travel grant by the Catalan Agency for Administration of Universities and Research. NR 26 TC 33 Z9 33 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUL 17 PY 2009 VL 45 AR W07414 DI 10.1029/2008WR007383 PG 8 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 471ZD UT WOS:000268096300001 ER PT J AU Komarneni, M Sand, A Goering, J Burghaus, U Lu, M Veca, LM Sun, YP AF Komarneni, M. Sand, A. Goering, J. Burghaus, U. Lu, M. Veca, L. Monica Sun, Ya-Ping TI Possible effect of carbon nanotube diameter on gas-surface interactions - The case of benzene, water, and n-pentane adsorption on SWCNTs at ultra-high vacuum conditions SO CHEMICAL PHYSICS LETTERS LA English DT Article ID CATALYSTS; ALKANES AB Effect of carbon nanotubes (CNT) crystal structure on chemical activity (SAR) has been studied extensively in CNT suspension. However, these effects are experimentally underexplored for gas-CNT interactions (heterogeneous catalysis). We report about ultra-high vacuum kinetics experiments on metallic, semiconducting, and mixed CNTs. A weak and probe molecule specific SAR is present for adsorption inside the CNTs but not for the population of external sites. The experimental data are in part consistent with theoretical predictions. (C) 2009 Elsevier B. V. All rights reserved. C1 [Komarneni, M.; Sand, A.; Goering, J.; Burghaus, U.] N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58105 USA. [Lu, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Veca, L. Monica; Sun, Ya-Ping] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Veca, L. Monica; Sun, Ya-Ping] Clemson Univ, Lab Emerging Mat & Technol, Clemson, SC 29634 USA. RP Burghaus, U (reprint author), N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58105 USA. EM uwe.burghaus@ndsu.edu RI Veca, Lucia/A-4622-2012; komarneni, mallikharjuna rao/E-1889-2015; OI komarneni, mallikharjuna rao/0000-0002-3269-1606; Sand, Andrew/0000-0002-7166-2066 FU US Department of Energy [DE-FG02-08 ER15987] FX Financial support by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy is acknowledged through Grant DE-FG02-08 ER15987. NR 25 TC 14 Z9 14 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 16 PY 2009 VL 476 IS 4-6 BP 227 EP 231 DI 10.1016/j.cplett.2009.05.072 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 467SK UT WOS:000267762500022 ER PT J AU Chylek, P Folland, CK Lesins, G Dubey, MK Wang, MY AF Chylek, Petr Folland, Chris K. Lesins, Glen Dubey, Manvendra K. Wang, Muyin TI Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA-ICE VARIABILITY; SURFACE-TEMPERATURE; CLIMATE RESPONSE; 20TH-CENTURY; CIRCULATION; RECORD; COVER AB Understanding Arctic temperature variability is essential for assessing possible future melting of the Greenland ice sheet, Arctic sea ice and Arctic permafrost. Temperature trend reversals in 1940 and 1970 separate two Arctic warming periods (1910-1940 and 1970-2008) by a significant 1940-1970 cooling period. Analyzing temperature records of the Arctic meteorological stations we find that (a) the Arctic amplification (ratio of the Arctic to global temperature trends) is not a constant but varies in time on a multi-decadal time scale, (b) the Arctic warming from 1910-1940 proceeded at a significantly faster rate than the current 1970-2008 warming, and (c) the Arctic temperature changes are highly correlated with the Atlantic Multi-decadal Oscillation (AMO) suggesting the Atlantic Ocean thermohaline circulation is linked to the Arctic temperature variability on a multi-decadal time scale. Citation: Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang (2009), Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 36, L14801, doi: 10.1029/2009GL038777. C1 [Chylek, Petr; Dubey, Manvendra K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Folland, Chris K.] Met Off Hadley Ctr Climate Change, Exeter EX1 3PB, Devon, England. [Lesins, Glen] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Wang, Muyin] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. RP Chylek, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Dubey, Manvendra/E-3949-2010; Folland, Chris/I-2524-2013; Wang, Muyin/K-4006-2014 OI Dubey, Manvendra/0000-0002-3492-790X; FU Los Alamos National Laboratory's Directed Research and Development Project [LA-UR-09-02452]; Joint DECC, Defra and MoD Integrated Climate Programme DECC/Defra [GA01101]; MoD [CBC/2B/0417 Annex C5] FX The reported research ( LA-UR-09-02452) was partially supported by Los Alamos National Laboratory's Directed Research and Development Project entitled "Flash Before the Storm" and partially by the Joint DECC, Defra and MoD Integrated Climate Programme DECC/Defra ( GA01101), MoD ( CBC/2B/0417 Annex C5). We thank Jerry North and anonymous reviewers for their comments that led to a considerable improvement of the manuscript. NR 31 TC 82 Z9 83 U1 2 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2009 VL 36 AR L14801 DI 10.1029/2009GL038777 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 471XH UT WOS:000268091200003 ER PT J AU Kim, P Meyer, HM Agnihotri, S AF Kim, Pyoungehung Meyer, Harry M. Agnihotri, Sandeep TI Effect of Surface Oxygen and Temperature on External and Micropore Adsorption of Water in Single-Walled Carbon Nanotubes by Gravimetric and Spectroscopic Experiments SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ACTIVATED CARBON; GRAPHITIC NANOPORES; ORGANIC VAPORS; POROUS CARBONS; ISOTHERMS; BUNDLES; EQUILIBRIUM; SIMULATION; MOLECULES; CHEMISTRY AB Gravimetric water adsorption experiments (T = 5, 20, and 35 degrees C and 0 < P/P-o < 0.95) were performed on several chemically and structurally distinct samples of single-walled carbon nanotubes including two activated carbon samples. The isotherms followed the type V curve and were fitted to a semiempirical model which allowed the adsorptive contributions of primary sites and micropores (referred to here as pseudoexperimental isotherms) to be distinguished with statistical confidence. The isosteric heats of water adsorption calculated from experimental isotherms ranged between 46 and 58 kJ/mol. The same calculations were performed on the separated adsorptive components (functional groups and micropore isotherms) and were found to be 0.5-16 kJ/mol and 1-8.6 kJ/mol, respectively, These values are similar to those available in the current literature reportedly estimated by calorimetric and molecular simulation techniques. From semiempirical modeling, we were also able to qualitatively estimate temperature sensitive water specific sample properties such as the concentration of primary sites (found directly related to % O) and the size of water clusters aggregating on primary sites (found inversely related to % O) and those filling micropores (found directly related to the dominant pore size) and adsorption equilibrium constants. We believe that Our approach is useful in interpreting experimental water adsorption thus aiding purely simulation based methods of studying the behavior of water in nanocarbons. C1 [Kim, Pyoungehung; Agnihotri, Sandeep] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Meyer, Harry M.] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Agnihotri, S (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM sagnhott@utk.edu FU National Science Foundation [CBET-0836365]; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. FX The work was partially supported by the National Science Foundation (award number: CBET-0836365). A Portion of this research was conducted at the SHaRE UserFacility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. NR 43 TC 6 Z9 6 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 16 PY 2009 VL 113 IS 28 BP 12109 EP 12117 DI 10.1021/jp900609a PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 472NT UT WOS:000268139500023 ER PT J AU Lee, JRI O'Malley, RL O'Connell, TJ Vollmer, A Rayment, T AF Lee, Jonathan R. I. O'Malley, Rachel L. O'Connell, Timothy J. Vollmer, Antje Rayment, Trevor TI X-ray Absorption Spectroscopy Characterization of Cu Underpotential Deposition on Au(111) and Organothiol-Self-Assembled-Monolayer-Modified Au(111) Electrodes from Sulfate Supporting Electrolyte SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; IN-SITU; FINE-STRUCTURE; COPPER DEPOSITION; GOLD ELECTRODES; ALKANETHIOLATE MONOLAYERS; ATOMIC-STRUCTURE; SURFACE EXAFS; EDGE STRUCTURE; SULFURIC-ACID AB Cu K-edge X-ray absorption spectroscopy (XAS) has been used for the in situ structural characterization of Cu monolayers prepared on both bare Au(111) and butanethiol self-assembled monolayer (BT-SAM)-modified Au(111) electrodes by underpotential deposition (UPD) from a sulfate supporting electrolyte. in conjunction with electrochemical measurements, the XAS studies enable assignment of the evolution in interfacial Structure of both systems as a function of the applied electrochemical potential. The measurements of Cu adlayer formation on unmodified Au(111) from sulfate supporting electrolyte, ail extensively studied and model UPD system, allow a reevaluation of XAS as an alternative or complementary technique to more established methods for the structural investigation of the electrified interface, such as X-ray diffraction (XRD) and surface X-ray scattering (SXS). The experiments reported in this paper indicate that recent technological advances enable XAS studies of UPD monolayers to be conducted on a time scale comparable to that of XRD and SXS. Meanwhile, the XAS data are consistent with the accepted model for the evolution in structure of the Cu adlayer under increasingly reducing conditions: following the formation of a commensurate (root 3 x root 3)R30 degrees (theta(sc) = 0.67) adlayer in which the Cu adatoms Occupy the 3-fold hollow sites, additional UPD results in I Cu-(1 x 1) monolayer structure. Theoretical modeling of the XAS data also allows a Structural assignment for the coadsorbed anion overlayer and illustrates that the sulfate ions adopt a (root 3 x root 3)R30 degrees (theta(sc) = 0.33) arrangement on the Surface of both Cu adlayers. The XAS characterization of Cu UPD oil BT-SAM-modified Au electrodes indicates that the Cu adatoms reside in face-centered cubic 3-fold hollow sites of an unreconstructed Au(111) surface. This is significant because it Suggests that formation of the Cu UPD adlayer lifts, at least in part, the organothiol-SAM-induced reconstruction of the Au substrate surface. The local environment of the Cu adatoms presents the possibility that adlayer regions with a Cu-(1 x 1) structure form on the Au surface, which Support a coadsorbed (root 3 x root 3)R30 degrees (theta(sc) 0.33) overlayer of BT sulfur atoms residing in the 3-fold hollow sites of the UPD monolayer. C1 [Lee, Jonathan R. I.; O'Malley, Rachel L.; O'Connell, Timothy J.; Vollmer, Antje; Rayment, Trevor] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Lee, Jonathan R. I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vollmer, Antje] Helmholtz Zentrum Berlin BESSY II, D-12489 Berlin, Germany. [Rayment, Trevor] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. RP Rayment, T (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. EM trevor.rayment@diamond.ac.uk FU Engineering and Physical Sciences Research Council; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX All XAS experiments were conducted at the SRS and the ESRF. We thank the SRS staff, particularly Bob Bilsborrow and Lorrie Murphy, for their invaluable assistance during the course of the work presented in this paper. We acknowledge the ESRF for the provision of synchrotron radiation facilities and thank Thomas Neisius for assistance in using beamline ID26. J.R.I.L. thanks the Engineering and Physical Sciences Research Council for financial support and Dr. Sven L. M. Schroder for helpful discussions. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 90 TC 9 Z9 9 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 16 PY 2009 VL 113 IS 28 BP 12260 EP 12271 DI 10.1021/jp8099412 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 472NT UT WOS:000268139500041 ER PT J AU Zboray, M Bell, AT Iglesia, E AF Zboray, Michael Bell, Alexis T. Iglesia, Enrique TI Role of C-H Bond Strength in the Rate and Selectivity of Oxidative Dehydrogenation of Alkanes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VANADIUM-OXIDE CATALYSTS; ISOTOPIC TRACER; PROPANE; PATHWAYS; ETHANE; MOLYBDENUM; ENERGIES; SURFACES AB The oxidative dehydrogenation of alkanes (C(2)H(6), C(3)H(8), i-C(4)H(10), and n-C(4)H(10)) was investigated on VO(x) supported on Al(2)O(3). Rate constants for alkane dehydrogenation (k(1)), alkane combustion (k(2)), and alkene combustion (k(3)) were measured, and a model was developed to describe the effects of alkane composition on these rate constants. The proposed model accounts for the effects of the number of C-H bonds available for activation and the relative strengths of these bonds in both the reactant and the product molecules. The Bronsted-Evans-Polanyi (BEP) relationship is used to relate activation energies of secondary and tertiary C-H bonds to that of primary C-H bonds. The model gives a reasonable approximation of the relative order of alkane reactivity, expressed by k(1) + k(2), and the relative ranking of alkanes with respct to combustion versus oxidative dehydrogenation, expressed by k(2)/k(1). The ratio of k(2)/k(1) is described by the product of two components: one that depends oil the nature, number, and relative strength of C-H bonds of surface alkoxides, and a second one that is independent of the alkoxide composition and structure but depends on the difference in the entropy of activation for CO(x) precursor versus alkene formation. The model also explains the observed variation of k(3) with alkene composition by considering two precursor states for alkenes. One is strongly bound through pi-orbital interactions with Lewis acid centers, and the second weakly binds via H bonding and van der Waals interactions, similar to the binding of alkanes. As a result, the rate of alkene combustion depends strongly oil the large heats of adsorption of alkenes and only slightly on the presence of weak allylic C-H bonds. The high rate of C(2)H(4) combustion is thus a consequence of its high heat of adsorption. C1 [Bell, Alexis T.] Univ Calif Berkeley, Div Chem Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Div Chem Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu; iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017; OI Iglesia, Enrique/0000-0003-4109-1001; Bell, Alexis/0000-0002-5738-4645 FU US Department of Energy [DE-AC03-76SF00098] FX The authors thank Connie Lim for assistance with experiments. This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC03-76SF00098. NR 25 TC 16 Z9 17 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 16 PY 2009 VL 113 IS 28 BP 12380 EP 12386 DI 10.1021/jp901595k PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 472NT UT WOS:000268139500056 ER PT J AU Petrik, NG Zhang, ZR Du, YG Dohnalek, Z Lyubinetsky, I Kimmel, GA AF Petrik, Nikolay G. Zhang, Zhenrong Du, Yingge Dohnalek, Zdenek Lyubinetsky, Igor Kimmel, Greg A. TI Chemical Reactivity of Reduced TiO2(110): The Dominant Role of Surface Defects in Oxygen Chemisorption SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TITANIUM-DIOXIDE; RUTILE TIO2; WATER FILMS; OH GROUPS; O-2; DISSOCIATION AB O-2 chemisorption on reduced, rutile TiO2(110) with various concentrations of oxygen vacancies (O-v) and bridging hydroxyls (OHb) is investigated with scanning tunneling microscopy, temperature-programmed desorption, and electron-stimulated desorption. On the annealed surface, two oxygen molecules can be chemisorbed per O-v. The same amount of O-2 chemisorbs on surfaces where each O-v is converted to two OHb's by exposure to water (i.e., 1 O-2 per OHb). Surfaces with few or no O-v's or OHb's can be created by exposing the hydroxylated surface to O-2 at room temperature, and the amount of O-2 that chemisorbs on these surfaces at low temperatures is only similar to 20% of the amount on the annealed (reduced) surface. In contrast, the amount of chemisorbed O-2 increases by more than a factor of 2 when the OHb concentration is enhanced-without changing the concentration of subsurface Ti interstitials. The results indicate that the reactivity of TiO2(110) is primarily controlled by the amount of electron-donating surface species such as O-v's and/or OHb's, and not Ti3+ interstitials. C1 [Petrik, Nikolay G.; Zhang, Zhenrong; Dohnalek, Zdenek; Kimmel, Greg A.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Du, Yingge; Lyubinetsky, Igor] Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999, Richland, WA 99352 USA. RI Petrik, Nikolay/G-3267-2015; OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440; Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy (DOE) [DE-AC06-76RLO 1830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical and Materials Sciences Division. The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE, Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 32 TC 86 Z9 86 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 16 PY 2009 VL 113 IS 28 BP 12407 EP 12411 DI 10.1021/jp901989x PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 472NT UT WOS:000268139500060 ER PT J AU Lu, JL Kosuda, KM Van Duyne, RP Stair, PC AF Lu, Junling Kosuda, Kathryn M. Van Duyne, Richard P. Stair, Peter C. TI Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV-visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SILICA MIXED OXIDES; TITANIA-SILICA; SELECTIVE OXIDATION; ACTIVE-SITES; THIN-FILMS; TIO2; TIO2-SIO2; SPECTRA; GROWTH; ISOPROPOXIDE AB Highly uniform submonolayer to multilayer thin films of titanium dioxide supported on high surface area silica gel have been synthesized by atomic layer deposition (ALD) using titanium tetrachloride (TiCl4) and titanium isopropoxide (TTIP) as metal precursors. The deposition rate of titania films from TiCl4 was found to be stable in the 150-300 degrees C temperature range, which is slightly higher than that from TTIP at 150 degrees C. UV-visible diffuse reflectance spectroscopy (DRS) shows that the coordination geometry of Ti cations depends on the number of ALD cycles and the precursor but is essentially independent of deposition temperature. Using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and visible Raman spectroscopy with pyridine as a probe molecule, we found all of the titania films Studied to exhibit Lewis acidity but only films containing chloride or carbonyl impurities possessed Bronsted acid sites. Additionally, three new pronounced bands in the Raman spectra, nu(6b) (638 cm(-1)), nu(9a) (1200 cm(-1)), and nu(2) (3103 cm(-1)), provide strong spectroscopic evidence for Bronsted acid sites on the surface. C1 [Lu, Junling; Kosuda, Kathryn M.; Van Duyne, Richard P.; Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Lu, Junling; Kosuda, Kathryn M.; Van Duyne, Richard P.; Stair, Peter C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI Lu, Junling/F-3791-2010 OI Lu, Junling/0000-0002-7371-8414 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-97ER14789]; Air Force Office of Scientific Research (AFOSR) [F49620-02-1-0381, FA-9550-07-1-0526]; Defense Threat Reduction Agency (DTRA) [FA9550-06-1-0558] FX This work was financially supported by the Office of Basic Energy Sciences, U.S. Department of Energy (Grant DE-FG02-97ER14789). The ALD system construction was funded by the Air Force Office of Scientific Research (AFOSR) (MURI F49620-02-1-0381 and DURIP FA-9550-07-1-0526) and the Defense Threat Reduction Agency (DTRA) JSTO FA9550-06-1-0558. The authors thank Jeffrey W. Elam and Joseph A. Libera for technical assistance. NR 51 TC 49 Z9 49 U1 1 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 16 PY 2009 VL 113 IS 28 BP 12412 EP 12418 DI 10.1021/jp902200c PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 472NT UT WOS:000268139500061 ER PT J AU Solecki, DJ Trivedi, N Govek, EE Kerekes, RA Gleason, SS Hatten, ME AF Solecki, David J. Trivedi, Niraj Govek, Eve-Ellen Kerekes, Ryan A. Gleason, Shaun S. Hatten, Mary E. TI Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration SO NEURON LA English DT Article ID DENDRITIC SPINE MORPHOGENESIS; DEVELOPING CEREBELLAR CORTEX; CELL-MIGRATION; CYTOPLASMIC DYNEIN; CEREBRAL-CORTEX; LIS1; MICROTUBULE; PROTRUSION; TRANSPORT; POLARITY AB Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6 alpha localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement. Ectopic expression or silencing of Par6 alpha inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to "pull" the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6 alpha. C1 [Solecki, David J.; Trivedi, Niraj] St Jude Childrens Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA. [Govek, Eve-Ellen; Hatten, Mary E.] Rockefeller Univ, Dev Neurobiol Lab, New York, NY 10065 USA. [Kerekes, Ryan A.; Gleason, Shaun S.] Oak Ridge Natl Lab, Image Sci & Machine Vis Grp, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37830 USA. RP Solecki, DJ (reprint author), St Jude Childrens Hosp, Dept Dev Neurobiol, 262 Danny Thomas Pl, Memphis, TN 38105 USA. EM david.solecki@stjude.org FU American Lebanese Syrian Associated Charities; NCI [2 P30CA021765-30]; March of Dimes Basil O'Connor Starter Scholar Research Award; NIH [R01-NS15429-26, R01 NS051778-02] FX We are grateful to Drs. Linda Van Aelst and Bob Adelstein for critically reading the manuscript, Dr. Rick Horwitz for helpful discussions, and Dr. Jakub Famulski for aiding with the shRNA experiments. We are indebted to Dr. Bill Bement for providing the panel of UTRCH-ABD vectors and Dr. Atsushi Miyawaki for providing the Venus reporter. We also thank Dr. Anne Bresnick for the MLCK cDNA, Dr. Shuh Narumiya for the Rockl cDNA, Dr. Gary Banker for the Map2C cDNA, Dr. Ken Jacobson for the Paxillin cDNA, and Greg Law (Perkin Elmer) for the extended use of an Ultraview confocal microscope. We also thank Dr. Regan Baird and Intelligent Imaging Innovations for setting up our Marianas Workstation and developing Slidebook tools for volumetric and line-scanning analysis. This work was supported by American Lebanese Syrian Associated Charities (ALSAC; D.J.S.), NCI 2 P30CA021765-30 (D.J.S.), a March of Dimes Basil O'Connor Starter Scholar Research Award (D.J.S.), and NIH grants R01-NS15429-26 (M.E.H.) and R01 NS051778-02 (M.E.H.). NR 72 TC 113 Z9 115 U1 1 U2 10 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 J9 NEURON JI Neuron PD JUL 16 PY 2009 VL 63 IS 1 BP 63 EP 80 DI 10.1016/j.neuron.2009.05.028 PG 18 WC Neurosciences SC Neurosciences & Neurology GA 473EX UT WOS:000268189900009 PM 19607793 ER PT J AU West, DL Montgomery, FC Armstrong, TR AF West, David L. Montgomery, Fred C. Armstrong, Timothy R. TI A technique for monitoring SO(2) in combustion exhausts: Use of a non-Nernstian sensing element in combination with an upstream catalytic filter SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Sulfur oxide sensor; SO(2) sensor; Non-Nernstian sensor; Mixed-potential sensor; Potentiometric sensor ID SEMICONDUCTIVE THIN FILMS; STABILIZED ZIRCONIA; SOLID-ELECTROLYTE; GAS SENSORS; OXIDE ELECTRODES; DETECTOR AB Detection of sulfur dioxide (SO(2)) at high temperature (600-750 degrees C) in the presence of some interferents found in combustion exhausts (NO(2), NO, CO(2), CO, and hydrocarbon (C(3)H(6))) is described. The detection scheme involves use of a catalytic filter in front of a non-Nernstian (mixed-potential) sensing element. The catalytic filter was a Ni:Cr powder bed operating at 850 degrees C, and the sensing elements were pairs of platinum (Pt) and oxide (Ba-promoted copper chromite ((Ba,Cu)(x)Cr(y)O(z)) or Sr-modified lanthanum ferrite (LSF)) electrodes on yttria-stabilized zirconia. The Ni:Cr powder bed was capable of reducing the sensing element response to NO(2), NO, CO, and C(3)H(6), but the presence of NO(2) or NO ("NO(x)", at 100 ppm by volume) still interfered with the SO(2) response of the Pt-(Ba,Cu)(x)Cr(y)O(z) sensing element at 600 degrees C, causing approximately a 7 mV (20%) reduction in the response to 120 ppm SO(2) and a response equivalent to about 20 ppm SO(2) in the absence of SO(2). The Pt-LSF sensing element, operated at 750 degrees C, did not suffer from this NO(x) interference but at the cost of a reduced SO(2) response magnitude (120 ppm SO(2) yielded similar to 10 mV, in contrast to similar to 30 mV for the Pt-(Ba,Cu)(x)Cr(y)O(z) sensing element). The powder bed and Pt-LSF sensing element were operated continuously over approximately 350 h, and the response to SO(2) drifted downward by about 7%, with most of this change occurring during the initial 100 h of operation. (C) 2009 Elsevier B.V. All rights reserved. C1 [West, David L.; Montgomery, Fred C.; Armstrong, Timothy R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP West, DL (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6075, Oak Ridge, TN 37831 USA. EM westdl@ornl.gov RI West, David/A-3414-2009 OI West, David/0000-0002-1265-9350 FU United States Department of Energy (DOE) Fossil Energy Advanced Research Materials Program; DOE [DE-AC05-00OR22725] FX This work was funded in part by the United States Department of Energy (DOE) Fossil Energy Advanced Research Materials Program. Oak Ridge National Laboratory is operated by UT-Battelle, LLC for DOE under contract DE-AC05-00OR22725. NR 32 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 16 PY 2009 VL 140 IS 2 BP 482 EP 489 DI 10.1016/j.snb.2009.05.012 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 473NW UT WOS:000268215200023 ER PT J AU Reeves, GD Chan, A Rodger, C AF Reeves, Geoffrey D. Chan, Anthony Rodger, Craig TI New Directions for Radiation Belt Research SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RELATIVISTIC ELECTRONS; MAGNETOSPHERE; LOSSES C1 [Reeves, Geoffrey D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Chan, Anthony] Rice Univ, Houston, TX USA. [Rodger, Craig] Univ Otago, Dunedin, New Zealand. RP Reeves, GD (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. RI Reeves, Geoffrey/E-8101-2011; Rodger, Craig/A-1501-2011 OI Reeves, Geoffrey/0000-0002-7985-8098; Rodger, Craig/0000-0002-6770-2707 FU International Union of Radio Science (URSI); University of Otago; Rice University FX The authors would like to thank the participants in the Rarotonga workshop - Jay Albert, Jacob Bortnik, Scott Elkington, Brian Fraser, Reiner Friedel, Rory Gamble, Richard Horne, Vania Jordanova, Craig Kletzing, Louis Ozeke, Richard Thorne, and Mike Wiltberger - for providing the basis for this manuscript and for numerous contributions to its contents. All workshop participants would also like to thank Umbe Cantu for invaluable help in setting up the workshop as well as the International Union of Radio Science (URSI), the University of Otago, and Rice University for financial support. NR 21 TC 19 Z9 19 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUL 16 PY 2009 VL 7 AR S07004 DI 10.1029/2008SW000436 PG 5 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 471YX UT WOS:000268095700001 ER PT J AU Miller, AE Hollars, CW Lane, SM Laurence, TA AF Miller, Abigail E. Hollars, Christopher W. Lane, Stephen M. Laurence, Ted A. TI Fluorescence Cross-Correlation Spectroscopy as a Universal Method for Protein Detection with Low False Positives SO ANALYTICAL CHEMISTRY LA English DT Article ID IMMUNORADIOMETRIC SANDWICH ASSAYS; PRION PROTEIN; SINGLE-MOLECULE; LIVE CELLS; KINETICS; COMPLEXES; FLUCTUATIONS; EXCITATION; DISEASE; BINDING AB Specific, quantitative, and sensitive protein detection with minimal sample preparation is an enduring need in biology and medicine. Protein detection assays ideally provide quick, definitive measurements that use only small amounts of material. Fluorescence cross-correlation spectroscopy (FCCS) has been proposed and developed as a protein detection assay for several years. Here, we combine several recent advances in FCCS apparatus and analysis to demonstrate it as an important method for sensitive, quantitative, information-rich protein detection with low false positives. The addition of alternating laser excitation (ALEX) to FCCS along with a method to exclude signals from occasional aggregates leads to a very low rate of false positives, allowing the detection and quantification of the concentrations of a wide variety of proteins. We detect human chorionic gonadotropin (hCG) using an antibody-based sandwich assay and quantitatively compare our results with calculations based on binding equilibrium equations. Furthermore, using our aggregate exclusion method, we detect smaller oligomers; of the prion protein PrP by excluding bright signals from large aggregates. C1 [Miller, Abigail E.; Hollars, Christopher W.; Lane, Stephen M.; Laurence, Ted A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Miller, Abigail E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lane, Stephen M.] Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. RP Laurence, TA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM laurence2@llnl.gov RI Laurence, Ted/E-4791-2011 OI Laurence, Ted/0000-0003-1474-779X FU CBST; DOE; U.S. Department of Energy [DE-AC52-07NA27344]; University of California [PHY 0120999] FX We thank Man Sun Sy, Case Western Reserve University, and Jim De Yoreo, LLNL, for the gift of PrP. This work was supported by CBST, and DOE. A.E.M. was supported by the SEGRF program at LLNL. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Center for Biophotonics, an NSF Science and Technology Center, is managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. NR 43 TC 5 Z9 5 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2009 VL 81 IS 14 BP 5614 EP 5622 DI 10.1021/ac9001645 PG 9 WC Chemistry, Analytical SC Chemistry GA 472MF UT WOS:000268135000005 PM 19522509 ER PT J AU Ozanich, RM Bruckner-Lea, CJ Warner, MG Miller, K Antolick, KC Marks, JD Lou, JL Grate, JW AF Ozanich, Richard M., Jr. Bruckner-Lea, Cynthia J. Warner, Marvin G. Miller, Keith Antolick, Kathryn C. Marks, James D. Lou, Jianlong Grate, Jay W. TI Rapid Multiplexed Flow Cytometric Assay for Botulinum Neurotoxin Detection Using an Automated Fluidic Microbead-Trapping Flow Cell for Enhanced Sensitivity SO ANALYTICAL CHEMISTRY LA English DT Article ID TOXIN TYPE-A; CLOSTRIDIUM-BOTULINUM; RENEWABLE MICROCOLUMNS; FLUORESCENCE DETECTION; MOLECULAR EVOLUTION; BINDING DOMAIN; IMMUNOASSAY; ANTIBODIES; INJECTION; SUSPENSION AB A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain BoNT/A-HC as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (similar to 50 pg/mL for BoNT/A-HC-fragment) for the 15 min fluidic assay in buffer. C1 [Ozanich, Richard M., Jr.; Bruckner-Lea, Cynthia J.; Warner, Marvin G.; Miller, Keith; Antolick, Kathryn C.; Grate, Jay W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Marks, James D.; Lou, Jianlong] Univ Calif San Francisco, Dept Anesthesia, San Francisco, CA 94110 USA. RP Ozanich, RM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM richard.ozanich@pnl.gov FU United States Department of Homeland Security Science and Technology Directorate [HSHQDC-06-X-00213]; U.S. Department of Energy's Office of Biological and Environmental Research; United States Department of Energy by Battelle Memorial Institute [DE-AC0676RLO 1830] FX This work has been supported in part with funding from the United States Department of Homeland Security Science and Technology Directorate, project lAA No. HSHQDC-06-X-00213. 'Me research was performed in part at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the United States Department of Energy by Battelle Memorial Institute under contract DE-AC0676RLO 1830. NR 62 TC 13 Z9 15 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2009 VL 81 IS 14 BP 5783 EP 5793 DI 10.1021/ac9006914 PG 11 WC Chemistry, Analytical SC Chemistry GA 472MF UT WOS:000268135000027 PM 19530657 ER PT J AU Yang, SJ Kataeva, I Hamilton-Brehm, SD Engle, NL Tschaplinski, TJ Doeppke, C Davis, M Westpheling, J Adams, MWW AF Yang, Sung-Jae Kataeva, Irina Hamilton-Brehm, Scott D. Engle, Nancy L. Tschaplinski, Timothy J. Doeppke, Crissa Davis, Mark Westpheling, Janet Adams, Michael W. W. TI Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe "Anaerocellum thermophilum" DSM 6725 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CLOSTRIDIUM-THERMOCELLUM; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; EXTREME THERMOPHILE; CELLULOLYTIC BACTERIUM; ZYMOMONAS-MOBILIS; GEN-NOV; CRYSTALLINITY; CELLULASE; XYLAN; DIGESTIBILITY AB Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that "Anaerocellum thermophilum" DSM 6725, an anaerobic bacterium that grows optimally at 75 degrees C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 degrees C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 degrees C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms. C1 [Yang, Sung-Jae; Kataeva, Irina; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott D.; Engle, Nancy L.; Tschaplinski, Timothy J.; Doeppke, Crissa; Davis, Mark; Westpheling, Janet; Adams, Michael W. W.] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Doeppke, Crissa; Davis, Mark] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Westpheling, Janet] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Adams, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Life Sci Bldg, Athens, GA 30602 USA. EM adams@bmb.uga.edu OI Tschaplinski, Timothy/0000-0002-9540-6622; davis, mark/0000-0003-4541-9852 FU BioEnergy Science Center [DE-PS02-06ER64304]; Oak Ridge National Laboratory; U.S. Department of Energy Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by grant DE-PS02-06ER64304 from the BioEnergy Science Center, Oak Ridge National Laboratory, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 41 TC 101 Z9 105 U1 6 U2 37 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL 15 PY 2009 VL 75 IS 14 BP 4762 EP 4769 DI 10.1128/AEM.00236-09 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 468UC UT WOS:000267847000013 PM 19465524 ER PT J AU Schubbe, S Williams, TJ Xie, G Kiss, HE Brettin, TS Martinez, D Ross, CA Schuler, D Cox, BL Nealson, KH Bazylinski, DA AF Schuebbe, Sabrina Williams, Timothy J. Xie, Gary Kiss, Hajnalka E. Brettin, Thomas S. Martinez, Diego Ross, Christian A. Schueler, Dirk Cox, B. Lea Nealson, Kenneth H. Bazylinski, Dennis A. TI Complete Genome Sequence of the Chemolithoautotrophic Marine Magnetotactic Coccus Strain MC-1 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Review ID BACTERIUM MAGNETOSPIRILLUM-MAGNETOTACTICUM; PERIPLASMIC NITRATE REDUCTASE; OXYGEN-CONTROLLED FERMENTER; HEMERYTHRIN-LIKE DOMAIN; PARACOCCUS-PANTOTROPHUS; ESCHERICHIA-COLI; AQUASPIRILLUM-MAGNETOTACTICUM; MAGNETOSOME FORMATION; SULFUR OXIDATION; TRANSCRIPTIONAL ACTIVATION AB The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci. C1 [Schuebbe, Sabrina; Ross, Christian A.; Bazylinski, Dennis A.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Williams, Timothy J.] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia. [Xie, Gary; Kiss, Hajnalka E.; Brettin, Thomas S.; Martinez, Diego] Los Alamos Natl Lab, Div Biosci, Los Alamos, NM USA. [Xie, Gary; Kiss, Hajnalka E.; Brettin, Thomas S.; Martinez, Diego] US DOE, Joint Genome Inst, Los Alamos, NM USA. [Schueler, Dirk] Univ Munich, Dept Biol 1, D-80638 Munich, Germany. [Cox, B. Lea; Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. RP Bazylinski, DA (reprint author), Univ Nevada, Sch Life Sci, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA. EM dennis.bazylinski@unlv.edu OI xie, gary/0000-0002-9176-924X FU University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231, DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396]; U.S. National Science Foundation [EAR-0715492] FX Sequencing was performed under the auspices of the U. S. Department of Energy's Office of Science, Biological and Environmental Research Program and was supported by the University of California Lawrence Berkeley National Laboratory (contracts DE-AC02-05CH11231 and DE-AC52-07NA27344) and the Los Alamos National Laboratory (contract DE-AC02-06NA25396). This work was also partially supported by U.S. National Science Foundation grant EAR-0715492 to D. A. NR 121 TC 60 Z9 61 U1 4 U2 23 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL 15 PY 2009 VL 75 IS 14 BP 4835 EP 4852 DI 10.1128/AEM.02874-08 PG 18 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 468UC UT WOS:000267847000021 PM 19465526 ER PT J AU Ed, L Nomi, H Mark, G Raymond, C Suzanna, L AF Ed, Lee Nomi, Harris Mark, Gibson Raymond, Chetty Suzanna, Lewis TI Apollo: a community resource for genome annotation editing SO BIOINFORMATICS LA English DT Article ID DATABASE; SEQUENCE; BROWSER; TOOL AB Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. C1 [Ed, Lee; Nomi, Harris; Mark, Gibson; Suzanna, Lewis] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Bioinformat Open Source Projects, Berkeley, CA 94720 USA. [Raymond, Chetty] Carnegie Inst Washington, Stanford, CA USA. RP Ed, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Bioinformat Open Source Projects, Berkeley, CA 94720 USA. EM elee@berkeleybop.org OI Lewis, Suzanna/0000-0002-8343-612X FU National Institute of General Medical Sciences (NIGMS) [1R01GM080203-01] FX National Institute of General Medical Sciences (NIGMS) (National Institutes of Health grant 1R01GM080203-01). NR 10 TC 7 Z9 7 U1 1 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 15 PY 2009 VL 25 IS 14 BP 1836 EP 1837 DI 10.1093/bioinformatics/btp314 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 466MI UT WOS:000267665900020 ER PT J AU Moeller, SJ Maloney, T Parvaz, MA Dunning, JP Alia-Klein, N Woicik, PA Hajcak, G Telang, F Wang, GJ Volkow, ND Goldstein, RZ AF Moeller, Scott J. Maloney, Thomas Parvaz, Muhammad A. Dunning, Jonathan P. Alia-Klein, Nelly Woicik, Patricia A. Hajcak, Greg Telang, Frank Wang, Gene-Jack Volkow, Nora D. Goldstein, Rita Z. TI Enhanced Choice for Viewing Cocaine Pictures in Cocaine Addiction SO BIOLOGICAL PSYCHIATRY LA English DT Article DE Choice behavior; cocaine addiction; craving; IAPS pictures reward; neuropsychology; salience; unconscious motivation ID DOPAMINE D2 RECEPTORS; NEUROANATOMICAL SPECIFICITY; ATTENTIONAL BIAS; MONETARY REWARD; RHESUS-MONKEYS; USERS; FOOD; STRESS; CUES; REINFORCEMENT AB Background: Individuals with cocaine use disorder (CUD) chose cocaine over nondrug rewards. in two newly designed laboratory tasks with pictures, we document this modified choice outside of a cocaine administration paradigm. Methods: Choice for viewing cocaine, pleasant, unpleasant, or neutral pictures-under explicit contingencies (choice made between two fully visible side-by-side images) and under more implicit contingencies (selections made between pictures hidden under flipped-over cards)-was examined in 20 CUD and 20 matched healthy control subjects. Subjects also provided self-reported ratings of each picture's pleasantness and arousal. Results: Under both contingencies, CUD subjects chose to view more cocaine pictures than control subjects, group differences that were not fully explained by the self-reported picture ratings. Furthermore, whereas CUD subjects' choice for viewing cocaine pictures exceeded choice for viewing unpleasant pictures (but did not exceed choice for viewing pleasant pictures, in contrast to their self-reported ratings), healthy control subjects avoided viewing cocaine pictures as frequently as, or even more than, unpleasant pictures. Finally, CUD subjects with the most cocaine viewing selections, even when directly compared with selections of the pleasant pictures, also reported the most frequent recent cocaine use. Conclusions: Enhanced drug-related choice in cocaine addiction can be demonstrated even for nonpharmacologic (pictorial) stimuli. This choice, which is modulated by alternative stimuli, partly transcends self-reports (possibly indicative of a disconnect in cocaine addiction between self-reports and objective behavior) to provide an objective marker of addiction severity. Neuroimaging studies are needed to establish the neural underpinnings of such enhanced cocaine-related choice. C1 [Moeller, Scott J.] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA. [Maloney, Thomas; Parvaz, Muhammad A.; Dunning, Jonathan P.; Alia-Klein, Nelly; Woicik, Patricia A.; Telang, Frank; Wang, Gene-Jack; Goldstein, Rita Z.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dunning, Jonathan P.; Hajcak, Greg] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Directors Off, Bethesda, MD USA. RP Moeller, SJ (reprint author), Univ Michigan, Dept Psychol, 3221 E Hall, Ann Arbor, MI 48109 USA. EM smoeller@umich.edu RI Moeller, Scott/L-5549-2016; OI Moeller, Scott/0000-0002-4449-0844; Parvaz, Muhammad/0000-0002-2671-2327 FU National Institute on Drug Abuse [1R01DA023579, R21DA02062]; General Clinical Research Center [5-MO1-RR-10710] FX This study was supported by grants from the National Institute on Drug Abuse (to RZG, Grant Nos. 1R01DA023579 and R21DA02062) and General Clinical Research Center (5-MO1-RR-10710) NR 56 TC 37 Z9 37 U1 6 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD JUL 15 PY 2009 VL 66 IS 2 BP 169 EP 176 DI 10.1016/j.biopsych.2009.02.015 PG 8 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 463YO UT WOS:000267470400010 PM 19358975 ER PT J AU Haynes, DJ Berry, DA Shekhawat, D Spivey, JJ AF Haynes, Daniel J. Berry, David A. Shekhawat, Dushyant Spivey, James J. TI Catalytic partial oxidation of n-tetradecane using Rh and Sr substituted pyrochlores: Effects of sulfur SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT International Symposium on Catalysis - Art to Science CY SEP 03, 2007 CL Univ Limerick, Limerick, IRELAND HO Univ Limerick DE Catalytic partial oxidation; Logistic fuel reforming; Pyrochlore; Rhodium; Fuel cell; Fuel processing ID CONTACT-TIME REACTORS; FUEL-CELL; DEEP HYDRODESULFURIZATION; REFORMING CATALYSTS; ION CONDUCTIVITY; LIGHT PARAFFINS; METHANE; OXIDE; GAS; METAL AB The presence of high levels of organosulfur compounds hinders the catalytic partial oxidation (CPOX) of logistic fuels into a H(2)-rich gas stream for fuel cells. These species poison traditional supported metal catalysts because the sulfur adsorbs strongly to electron dense metal clusters and promotes the formation of carbon on the surface. To minimize deactivation by sulfur, two substituted lanthanum zirconate (LZ) pyrochlores (La(2)Zr(2)O(7)) identified in a previous study [D.J. Haynes, D.A. Berry, D. Shekhawat, J.J. Spivey, Catal. Today 136 (2008) 206], were investigated: (a) La-Rh-Zr (LRZ) and La-Sr-Rh-Zr (LSRZ). Using unsubstituted lanthanum zirconate and a conventional 0.5 wt% Rh/gamma-Al(2)O(3) as comparisons, these four catalysts were exposed to a feed containing 1000 ppmw dibenzothiophene (DBT) in n-tetradecane (TD). DBT rapidly deactivated both the 0.5 wt% Rh/gamma-Al(2)O(3) and LZ. The LRZ catalyst experienced a gradual deactivation, suggesting that Rh substitution into the pyrochlore structure, by itself, cannot completely eliminate deactivation by sulfur. However, the additional substitution of Sr stabilized yields of H(2) and CO in the presence of DBT at levels only slightly below those observed without sulfur in the feed. After sulfur was removed from the feed, each catalyst was able to recover some activity. The recovery appears to be linked to carbon formed on active sites. The 0.5 wt% Rh/gamma-Al(2)O(3), LZ, and LRZ all had comparable amounts of carbon formed on the surface: 0.90, 0.80 and 0.86 g(carbon)/g(cat). respectively. Of these three catalysts, only the LRZ was able to recover a significant portion of initial activity, suggesting that the carbon formed indiscriminately on the surface, and not solely on the active sites. LSRZ was able to regain almost its initial activity once sulfur was removed from the feed, and had the least amount of carbon on the surface (0.30 g(carbon)/g(cat)). It is hypothesized that oxygen-ion mobility, which results from Sr substitution, reduces carbon formation and the deactivation by sulfur. (C) 2008 Elsevier B.V. All rights reserved. C1 [Haynes, Daniel J.; Berry, David A.; Shekhawat, Dushyant] Natl Energy Technol Lab, US Dept Energy, Morgantown, WV 26507 USA. [Haynes, Daniel J.] Parsons, South Pk, PA 15129 USA. [Haynes, Daniel J.; Spivey, James J.] Louisiana State Univ, Gordon A & Mary Clain Dept Chem Engn, Baton Rouge, LA 70803 USA. RP Haynes, DJ (reprint author), Natl Energy Technol Lab, US Dept Energy, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Daniel.Haynes@pp.netl.doe.gov; David.Berry@netl.doe.gov; Dushyant.Shekhawat@netl.doe.gov; jjspivey@lsu.edu NR 40 TC 33 Z9 33 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 15 PY 2009 VL 145 IS 1-2 BP 121 EP 126 DI 10.1016/j.cattod.2008.05.014 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 464PJ UT WOS:000267517500018 ER PT J AU Wigand, M Kaszuba, JP Carey, JW Hollis, WK AF Wigand, Marcus Kaszuba, John P. Carey, J. William Hollis, W. Kirk TI Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface SO CHEMICAL GEOLOGY LA English DT Article; Proceedings Paper CT General Assembly of the European-Geosciences-Union CY APR 15-20, 2007 CL Vienna, AUSTRIA SP European Geosci Union DE Carbon sequestration; Geochemistry; Wellbore cement; Caprock; Carbon dioxide; Alteration ID SOLUBILITY; SEDIMENTS; HYDRATION; EVOLUTION; STORAGE AB The potential impact to the integrity of wellbore cements as a result of exposure to supercritical carbon dioxide (SCCO2) has been raised as an area of some concern with respect to long-term effectiveness Of CO2 storage in geological formations. In flow-through experiments we simulated diffusion of brine and SCCO2 from the interface between wellbore cement and caprock into a fracture-bearing Portland cement. The experiments were performed at in-situ reservoir pressure (pore pressure: 19.9 MPa) and temperature (54 degrees C) conditions for 113 days. For this purpose we saturated illite-rich shale and the Portland cement core (2.02 cm x 5.35 cm) with 1.65 M brine for 14 days. After this period of time we injected SCCO2 into the system for 99 days and simulated a diffusion process by using a pressure gradient of 0.7 MPa. Calcite precipitation occurred within the fracture and the induced pressure of crystal growth may explain an increase in the relative permeability along the fracture with time. SCCO2-induced reactions extended -5 mm into the Portland cement core from the fracture and formed an orange-colored zone. The orange-colored zone is nearly completely carbonated with crystalline phases consisting mainly of calcite, aragonite, and vaterite. The only crystalline cement component that persisted in the orange-colored zone was brownmillerite. Interior portions of the hydrated cement were partially carbonated, modified in texture and contained newly formed calcite, hydrogarnet and hydrocalumite (Friedel's salt). Cement porosity decreased from 37.8% to 23.8% during carbonation and was associated with a 19.6% increase in mass. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wigand, Marcus; Hollis, W. Kirk] Los Alamos Natl Lab, Chem Sci & Engn C CSE, Los Alamos, NM 87545 USA. [Kaszuba, John P.; Carey, J. William] Los Alamos Natl Lab, Earth & Environm Sci EES 6, Los Alamos, NM 87545 USA. RP Wigand, M (reprint author), Chevron Energy Technol Co, Prod Engn & Well Product PEWP, Houston, TX 77002 USA. EM MWJM@chevron.com RI Carey, James/B-4421-2011 NR 24 TC 70 Z9 72 U1 1 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD JUL 15 PY 2009 VL 265 IS 1-2 SI SI BP 122 EP 133 DI 10.1016/j.chemgeo.2009.04.008 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 476HI UT WOS:000268429500013 ER PT J AU Drewell, RA Ho, MC Goetz, SE Schiller, BJ Bae, E Allen, JM Bender, W Fisher, W Celniker, SE Drewell, RA AF Drewell, Robert A. Ho, Margaret C. Goetz, Sara E. Schiller, Benjamin J. Bae, Esther Allen, John M. Bender, Welcome Fisher, William Celniker, Susan E. Drewell, Robert A. TI Decoding embryonic cis-regulatory modules at Drosophila Hox genes SO DEVELOPMENTAL BIOLOGY LA English DT Meeting Abstract CT 68th Annual Meeting of the Society-for-Developmental-Biology CY JUL 23-27, 2009 CL San Francisco, CA SP Soc Dev Biol C1 [Drewell, Robert A.; Ho, Margaret C.; Goetz, Sara E.; Schiller, Benjamin J.; Allen, John M.; Drewell, Robert A.] Harvey Mudd Coll, Dept Biol, Claremont, CA 91711 USA. [Bae, Esther] Western Univ Hlth Sci, Pomona, CA USA. [Bender, Welcome] Harvard Univ, Sch Med, Boston, MA USA. [Fisher, William; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0012-1606 J9 DEV BIOL JI Dev. Biol. PD JUL 15 PY 2009 VL 331 IS 2 MA 48 BP 400 EP 400 DI 10.1016/j.ydbio.2009.05.059 PG 1 WC Developmental Biology SC Developmental Biology GA 467XW UT WOS:000267777900071 ER PT J AU Roberts, PM Abdel-Fattah, AI AF Roberts, Peter M. Abdel-Fattah, Amr I. TI Seismic stress stimulation mobilizes colloids trapped in a porous rock SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE seismic and acoustic stimulation; porous flow and mass transport; colloid mobilization and release kinetics; dynamic stress effects in rocks; electrokinetics ID SATURATED PACKED-COLUMNS; PARTICLES; TRANSPORT; REMOVAL; MEDIA AB Low-frequency (1-500 Hz) stress (seismic) waves can alter flow and mass transport behavior in saturated subsurface porous formations. Numerous physical mechanisms have been proposed to explain this phenomenon. Coupling of dynamic stress to in-situ particle (colloid) mobilization is one such mechanism that can produce changes in pore matrix permeability. This phenomenon has broad-ranging impacts on colloid dynamics and mass transport problems over a scale range of microns to kilometers. Porous-flow experiments in sandstone cores demonstrated that in-situ colloidal particles can be released from pores by applying dynamic mechanical stress stimulation at frequencies below 100 Hz. Due to the lower attenuation at these frequencies, relative to ultrasonic, significant dynamic stress in the Earth can penetrate to distances of a kilometer or more. Thus, seismic waves could affect particle mobility in distant oil formations, aquifers and fault systems. Laboratory results are shown for release of in-situ particles from Fontainebleau sandstone induced by applying stress stimulation at 26 Hz. Although enhanced particle release relative to that induced by flowing de-ionized water alone was observed, the permeability of the core was unchanged, indicating that pore throat fouling was insignificant. The behavior of the post-stimulation particle release was distinctly different than the pre-stimulation behavior in that a cyclical pattern with uniform periodicity was observed. This cyclical behavior was observed to be independent of particle size over the range of 50 to 800 nm and is attributed to stimulation causing a long-term change in the distribution of the rate coefficients for release of particles from the pore space. The rate change is likely not due to alteration of particle-wall interactions which are sensitive to particle size. Size-independent release mechanisms that can explain the stimulated rate change are 1) enhanced flushing or squeezing out of particles trapped in dead-end pores, and 2) forced particle detachment and exposing of new detachment sites on the pore walls. The observations presented here are unique in that they indicate sub-pore-scale particle mobility and transport can be influenced by long-wavelength seismic-band stress. Implications on possible field-scale effects and micro-scale physical mechanisms are discussed. Published by Elsevier B.V. C1 [Roberts, Peter M.] Los Alamos Natl Lab, Div Earth & Environm Sci, Geophys Grp, Los Alamos, NM 87545 USA. [Abdel-Fattah, Amr I.] Los Alamos Natl Lab, Div Earth & Environm Sci, Earth Syst Observat Grp, Los Alamos, NM 87545 USA. RP Roberts, PM (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Geophys Grp, EES 17,MS D443, Los Alamos, NM 87545 USA. EM proberts@lanl.gov; amr2450@lanl.gov FU US Department of Energy; Office of Science; Basic Energy Sciences Program; Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was funded by the US Department of Energy, Office of Science, Basic Energy Sciences Program under the Los Alamos National Laboratory contract no. DE-AC52-06NA25396. The authors are grateful to Florie Caporuscio of Los Alamos National Laboratory for his visual petrographic analysis of the Fontainebleau thin section in Fig. 2. NR 16 TC 14 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2009 VL 284 IS 3-4 BP 538 EP 543 DI 10.1016/j.epsl.2009.05.017 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 487NY UT WOS:000269282700026 ER PT J AU Nguyen, QAS Bhargava, YV Radmilovic, VR Devine, TM AF Nguyen, Que Anh S. Bhargava, Yash V. Radmilovic, Velimir R. Devine, Thomas M. TI Structural study of electrochemically synthesized TiO2 nanotubes via cross-sectional and high-resolution TEM SO ELECTROCHIMICA ACTA LA English DT Article DE Titania nanotubes; Barrier layer; Cross-sectional TEM ID ORGANIZED NANOPORE/NANOTUBE ARRAYS; TITANIUM-OXIDE; MECHANISTIC ASPECTS; SELF-ORGANIZATION; ANODIC-OXIDATION; FABRICATION; INITIATION; GROWTH; ELECTROLYTES; ANODIZATION AB The as-grown structure of electrochemically synthesized titania nanotubes is investigated by a combination of cross-sectional and high-resolution transmission electron microscopy (TEM). The analysis reveals a preferred growth direction of the nanotubes relative to the substrate surface and the presence of a thin barrier oxide layer that exists between the metal substrate and the nanotubes. High-resolution TEM images also provide information about the morphology of the metal/oxide and oxide/nanotube interfaces, and the crystallinity of the different layers. In addition, compositional analysis performed via energy dispersive X-ray spectroscopy (EDS) indicates that there are differences in oxygen and titanium concentrations between nanotubes and barrier oxide. The experimental observations obtained from these analysis techniques provide additional insights about the tube formation process. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Nguyen, Que Anh S.; Bhargava, Yash V.; Devine, Thomas M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Radmilovic, Velimir R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Devine, TM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM Devine@berkeley.edu FU National Center for Electron Microscopy; Lawrence Berkeley Lab; U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship FX The authors acknowledge support the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. In addition, Que Anh Nguyen is grateful for support by the National Science Foundation Graduate Research Fellowship. NR 28 TC 18 Z9 18 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JUL 15 PY 2009 VL 54 IS 18 BP 4340 EP 4344 DI 10.1016/j.electacta.2009.03.034 PG 5 WC Electrochemistry SC Electrochemistry GA 456FE UT WOS:000266826200010 ER PT J AU Englert, A Hubbard, SS Williams, KH Li, L Steefel, CI AF Englert, A. Hubbard, S. S. Williams, K. H. Li, L. Steefel, C. I. TI Feedbacks Between Hydrological Heterogeneity and Bioremediation Induced Biogeochemical Transformations SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOLUTE FLUX APPROACH; POROUS-MEDIA; CONTAMINATED AQUIFER; TRANSPORT; URANIUM; GROUNDWATER; FIELD; GROWTH; CR(VI); FLOW AB For guiding optimal design and interpretation of in situ treatments that strongly perturb subsurface systems, knowledge about the spatial and temporal patterns of mass transport and reaction intensities are important Here, a procedure was developed and applied to time-lapse concentrations of a conservative tracer (bromide), an injected amendment (acetate) and reactive species (iron(II), uranium(VI) and sulfate) associated with two field scale biostimulation experiments, which were conducted successively at the same,field location over two years. The procedure is based on a temporal moment analysis approach that relies on a streamtube approximation. The study shows that biostimulated reactions can be considerably influenced by subsurface hydrological and geochemical heterogeneities: the delivery of bromide and acetate and the intensity of the sulfate reduction is interpreted to be predominantly driven by the hydrological heterogeneity, while the intensity of the iron reduction is interpreted to be primarily controlled by the geochemical heterogeneity. The intensity of the uranium(VI) reduction appears to be impacted by both the hydrological and geochemical heterogeneity. Finally, the study documents the existence of feedbacks between hydrological heterogeneity and remediation-induced biogeochemical transformations at the field scale, particularly the development of precipitates that may cause clogging and flow rerouting. C1 [Englert, A.; Hubbard, S. S.; Williams, K. H.; Li, L.; Steefel, C. I.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Englert, A (reprint author), Ruhr Univ Bochum, Dept Appl Geol, Bochum, Germany. EM Andreas.Englert@rub.de RI Steefel, Carl/B-7758-2010; Hubbard, Susan/E-9508-2010; Williams, Kenneth/O-5181-2014; Li, Li/A-6077-2008 OI Williams, Kenneth/0000-0002-3568-1155; Li, Li/0000-0002-1641-3710 FU Office of Biological and Environmental Research, U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX Funding for this study was provided by the Environmental Remediation Science Program, Office of Biological and Environmental Research, U.S. Department of Energy (DOE Grant DE-AC02-05CH11231) as part of the LBNL Sustainable Systems Science Focus Area. We sincerely thank Dr. Philip Long (PNNL) and the DOE Rifle, CO Integrated Field Research Center team for allowing us to work with their historical data set. We thank Dr. Steven Yabusaki (PNNL) for many fruitful discussions about hydrological gradients and data set nuances associated with the study site. We thank the three anonymous reviewers. NR 23 TC 27 Z9 27 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5197 EP 5204 DI 10.1021/es803367n PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000008 PM 19708341 ER PT J AU Lee, SS Nagy, KL Park, C Fenter, P AF Lee, Sang Soo Nagy, Kathryn L. Park, Changyong Fenter, Paul TI Enhanced Uptake and Modified Distribution of Mercury(II) by Fulvic Acid on the Muscovite (001) Surface SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID X-RAY REFLECTIVITY; DISSOLVED ORGANIC-MATTER; HUMIC SUBSTANCES; MINERAL SURFACES; REDUCED SULFUR; PROTON-BINDING; SORPTION; ADSORPTION; INTERFACES; COMPLEXES AB Evidence is increasing for the mobility and bioavailability of aqueous mercury(II) species being related to the interactions of mercury with dissolved organic matter(DOM). Here, we assess the relative roles of the mineral surface and DOM in controlling mercury(II) uptake at the muscovite (001)-solution interface using interface-specific X-ray reflectivity combined with element-specific resonant anomalous X-ray reflectivity. Experiments were performed with single crystals of muscovite and solutions of 100 mg/kg Elliott. Soil Fulvic Acid II and 0.5-1 x 10(-3) mol/kg Hg(NO(3))(2) at pH 2-12. Mercury(II) adsorbed from a 1 x 10(-3) mol/kg Hg(II) solution at pH 2 without fulvic acid (FA) as inner- and outer-sphere complexes that compensated 55(4)% of the permanent negative charge of the muscovite surface. The remaining charge presumably was compensated by hydronium. The enhanced uptake of Hg(II) (compensating 128% of the muscovite surface charge) and FA (43% more adsorbed compared to the amount from a similar solution without Hg), along with a broader distribution of Hg(II) at the interface, occurred by adsorption from a premixed solution of 1 x 10(-3) mol/kg Hg(NO(3))(2) and 100 mg/kg FA at pH 2. Adsorption of Hg(II) and FA, likely as complexes, decreased significantly as pH increased from 3.7 to 12 in solutions of 0.5 x 10(-3) mol/kg Hg(NO(3))(2) and 100 mg/kg FA. Preadsorbed FA molecules provide different binding environments and stability for Hg(II) than dissolved FA, which may be attributed to conformational differences, fractionation, or kinetic effects in the presence of the mineral surface, at least at these relatively high concentrations of aqueous Hg(II). C1 [Lee, Sang Soo; Nagy, Kathryn L.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. [Park, Changyong; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Lee, SS (reprint author), Univ Illinois, Dept Earth & Environm Sci, 845 W Taylor St,MC-186, Chicago, IL 60607 USA. EM sslee@anl.gov RI Lee, Sang Soo/B-9046-2012; Park, Changyong/A-8544-2008 OI Park, Changyong/0000-0002-3363-5788 NR 39 TC 24 Z9 24 U1 6 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5295 EP 5300 DI 10.1021/es900214e PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000023 PM 19708356 ER PT J AU Wiatrowski, HA Das, S Kukkadapu, R Ilton, ES Barkay, T Yee, N AF Wiatrowski, Heather A. Das, Soumya Kukkadapu, Ravi Ilton, Eugene S. Barkay, Tamar Yee, Nathan TI Reduction of Hg(II) to Hg(O) by Magnetite SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; NEW-JERSEY; GREEN RUST; MERCURY II; ADSORPTION; SORPTION; SURFACE; SYSTEM; SOILS; WATER AB Mercury (Hg) is a highly toxic element and its contamination of groundwater presents a significant threat to terrestrial ecosystems. Understanding the geochemical processes that mediate mercury transformations in the subsurface is necessary to predict its fate and transport. In this study, we investigated the redox transformation of mercuric Hg (Hg[II]) in the presence of the Fe(II)/Fe(III) mixed valence iron oxide mineral magnetite. Kinetic and spectroscopic experiments were performed to elucidate reaction rates and mechanisms. The experimental data demonstrated that reaction of Hg(II) with magnetite resulted in the loss of Hg(II) and the formation of volatile elemental Hg (Hg[O]). Kinetic experiments showed that Hg(II) reduction occurred within minutes, with reaction rates increasing with increasing magnetite surface area (0.5 to 2 m(2)/L) and solution pH (4.8 to 6.7), and decreasing with increasing chloride concentration (10(-6) to 10(-2) mol/L). Mossbauer spectroscopic analysis of reacted magnetite samples revealed a decrease in Fe(II) content corresponding to the oxidation of Fe(II) to Fe(III) in the magnetite structure. X-ray photoelectron spectroscopy detected the presence of Hg(II) on magnetite surfaces, implying that adsorption is involved in the electron transfer process. These results suggest that Hg(II) reaction with solid-phase Fe(II) is a kinetically favorable pathway for Hg(II) reduction in magnetite-bearing environmental systems. C1 [Das, Soumya; Yee, Nathan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Wiatrowski, Heather A.; Barkay, Tamar] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08903 USA. [Kukkadapu, Ravi; Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yee, N (reprint author), Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. EM nyee@envsci.rutgers.edu NR 47 TC 60 Z9 61 U1 5 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5307 EP 5313 DI 10.1021/es9003608 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000025 PM 19708358 ER PT J AU Yan, NQ Qu, Z Chi, Y Qiao, SH Dod, RL Chang, SG Miller, C AF Yan, Nai-Qiang Qu, Zan Chi, Yao Qiao, Shao-Hua Dod, Ray L. Chang, Shih-Ger Miller, Charles TI Enhanced Elemental Mercury Removal from Coal-Fired Flue Gas by Sulfur-Chlorine Compounds SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID OXIDATION AB Oxidation of Hg(0) with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl(2)) and sulfur monochloride (S(2)Cl(2)), were investigated as oxidants for Hg(0) by gas-phase reaction and by surf ace-involved reactions in the presence of flyash or activated carbon. The gas-phase reaction between Hg(0) and SCl(2) is shown to be more rapid than the gas-phase reaction with chlorine, and the second order rate constant was 9.1(+/- 0.5) x 10(-18) mL-molecules(-1).s(-1) at 373 K. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg(0) removal is about 90% with 5 ppm SCl(2) or S(2)Cl(2) and 40 g/m(3) of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm Of SCl(2) (or S(2)Cl(2)) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90% of Hg(0) can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3% Of SCl(2) or S(2)Cl(2) is used. Mercuric sulfide was identified as one of the principal products of the Hg(0)/SCl(2) or Hg(0)/S(2)Cl(2) reactions. Additionally, about 8% Of SCl(2) or S(2)Cl(2) in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution. C1 [Yan, Nai-Qiang; Qu, Zan; Dod, Ray L.; Chang, Shih-Ger] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Miller, Charles] Natl Energy Technol Lab, Pittsburgh, PA 15326 USA. RP Chang, SG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM sgchang@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231]; National Energy Technology Laboratory; National High Technology Research and Development Program of China [2007AA06Z340] FX This work was supported by the Assistant Secretary for Fossil Energy, U.S. Department of Energy, under contract DE-AC02-05CH11231 through the National Energy Technology Laboratory, and was partially supported by the National High Technology Research and Development Program of China (2007AA06Z340) through international cooperation. NR 14 TC 20 Z9 25 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5410 EP 5415 DI 10.1021/es801910w PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000041 PM 19708374 ER PT J AU Stewart, TA Trudell, DE Alam, TM Ohlin, CA Lawler, C Casey, WH Jett, S Nyman, M AF Stewart, Tom A. Trudell, Daniel E. Alam, Todd M. Ohlin, C. Andre Lawler, Christian Casey, William H. Jett, Stephen Nyman, May TI Enhanced Water Purification: A Single Atom Makes a Difference SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID COAGULATION; ALUMINUM; CHEMISTRY; REMOVAL; AL-13; POLYOXOCATION; TECHNOLOGY; SPECIATION; POLYMERS; KINETICS AB The aluminum Keggin polycation (Al(13)) has been identified as an effective specie for neutralization and coagulation of anionic contaminants in water. In this study, we compare efficacy of the aluminum Keggin-ion to the analogues containing a single Ga-atom or single Ge-atom (GaAl(12) and GeAl(12), respectively) substituted into the center of the polycation in water-treatment studies. We investigated removal of bacteriophage (model viruses), Cryptosporidium, dissolved organic carbon (DOC), and turbidity. In every study, the order of contaminant removal efficacy trends GaAl(12) > Al(13) > GeAl(12). By ESI MS (electrospray ionization mass spectrometry), we noted the GaAl(12) deprotonates least of the three aluminum polycations, and thus probably carries the highest charge, and also optimal contaminant-neutralization ability. The ESI MS studies of the aluminum polycation solutions, as well as solid-state characterization of their resulting precipitates both reveal some conversion of Al(13) to larger polycations, Al(30) for instance. The GaAl(12) does not show any evidence for this alteration that is responsible for poor shelf life of commercial prehydrolyzed aluminum coagulants such as polyaluminum chloride. Based on these studies, we conclude that substitution of a single Ga-atom in the center of the aluminum Keggin polycation produces an optimal water-treatment product due to enhanced shelf life and efficacy in neutralization of anionic contaminants. C1 [Stewart, Tom A.; Trudell, Daniel E.; Alam, Todd M.; Nyman, May] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ohlin, C. Andre; Lawler, Christian; Casey, William H.] Univ Calif Davis, Dept Chem, Dept Geol, Davis, CA 95616 USA. [Jett, Stephen] Univ New Mexico, Dept Cell Biol & Physiol, Electron Microscope Facil, Albuquerque, NM 87131 USA. RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800,MS 0750, Albuquerque, NM 87185 USA. EM mdnyman@sandia.gov RI Ohlin, C. Andre/B-3567-2008 OI Ohlin, C. Andre/0000-0002-3804-6421 FU United States Department of Energy [DE-AC04-94AL85000]; DOE OBES [DEFG02-05ER15693]; NSF [0814242] FX The Sandia authors gratefully thank the Laboratory Directed Research and Development (LDRD) program for funding. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. U.C. Davis authors acknowledge DOE OBES DEFG02-05ER15693 and NSF EAR 0814242 for funding. NR 30 TC 33 Z9 33 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5416 EP 5422 DI 10.1021/es803683t PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000042 PM 19708375 ER PT J AU Li, L Steefel, CI Williams, KH Wilkins, MJ Hubbard, SS AF Li, Li Steefel, Carl I. Williams, Kenneth H. Wilkins, Michael J. Hubbard, Susan S. TI Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle, Colorado SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POROUS-MEDIA; MICROBIAL REDUCTION; SULFATE REDUCTION; AQUIFER MATERIALS; SATURATED SOILS; SAND COLUMNS; GROUNDWATER; GROWTH; TRANSPORT; AVAILABILITY AB Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies. C1 [Li, Li; Steefel, Carl I.; Williams, Kenneth H.; Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wilkins, Michael J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Li, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM lili@lbl.gov RI Steefel, Carl/B-7758-2010; Wilkins, Michael/A-9358-2013; Williams, Kenneth/O-5181-2014; Hubbard, Susan/E-9508-2010; Li, Li/A-6077-2008 OI Williams, Kenneth/0000-0002-3568-1155; Li, Li/0000-0002-1641-3710 FU U.S. Department of Energy, Biological and Environmental Research Program [AC0205CH11231] FX Funding for this study was provided by the U.S. Department of Energy, Biological and Environmental Research Program Contract DE-AC0205CH11231 to the LBNL Sustainable Systems Scientific Focus Area. We also acknowledge Phil Long (PNNL) and the Rifle IFRC research team for facilitating NR 34 TC 55 Z9 55 U1 0 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5429 EP 5435 DI 10.1021/es900016v PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000044 PM 19708377 ER PT J AU Chrysochoou, M Fakra, SC Marcus, MA Moon, DH Dermatas, D AF Chrysochoou, Maria Fakra, Sirine C. Marcus, Matthew A. Moon, Deok Hyun Dermatas, Dimitris TI Microstructural Analyses of Cr(VI) Speciation in Chromite Ore Processing Residue (COPR) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LAYERED DOUBLE HYDROXIDES; CALCIUM POLYSULFIDE; HEXAVALENT CHROMIUM; FERROUS SULFATE; REMEDIATION; SPECTROSCOPY; OXIDES; ACID AB The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses: GB CON contained 30% of its total Cr(VI) (6000 mg/kg) as large crystals (>20 mu m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50% of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmillerite was also likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment of HB COPR is challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to similar to 50% of Cr(VI) in GB COPR. C1 [Chrysochoou, Maria] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. [Fakra, Sirine C.; Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Moon, Deok Hyun; Dermatas, Dimitris] Stevens Inst Technol, Hoboken, NJ 07030 USA. RP Chrysochoou, M (reprint author), Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. EM maria.chrysochoou@uconn.edu FU University of Connecticut Research Foundation; U.S. Department of Energy [DEAC02-05CH11231] FX This work was supported by the University of Connecticut Research Foundation. We thank M. Kunz and N. Tamura for support at ALS BL12.3.2. ALS-LBNL operations are supported by the Director, Office of Science, Office of. Basic Energy Sciences, U.S. Department of Energy under contract DEAC02-05CH11231. NR 23 TC 24 Z9 24 U1 10 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5461 EP 5466 DI 10.1021/es9005338 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000049 PM 19708382 ER PT J AU Tokunaga, TK Kim, Y Wan, JM AF Tokunaga, Tetsu K. Kim, Yongman Wan, Jiamin TI Potential Remediation Approach for Uranium-Contaminated Groundwaters Through Potassium Uranyl Vanadate Precipitation SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SODIUM META-AUTUNITE; IMMOBILIZATION; DISSOLUTION; SEDIMENTS; SOLUBILITY; CARNOTITE; REDUCTION AB Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 mu M for U) at any pH and pCO(2), unless phosphate is maintained at much higher concentrations than the sub-mu M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K(2)(UO(2))(2)V(2)O(8). The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-mu M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below the MCL within 1-5 days of contact with oxidizing solutions containing 0.2-10 mM K, and 0.1-20 mu M V(V), This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations. C1 [Tokunaga, Tetsu K.; Kim, Yongman; Wan, Jiamin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Tokunaga, TK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RI Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Kim, Yongman/D-1130-2015 OI Tokunaga, Tetsu/0000-0003-0861-6128; Kim, Yongman/0000-0002-8857-1291 FU Environmental Remediation Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX Funding was provided through the Environmental Remediation Sciences Program of the Office of Biological and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231. We thank the anonymous reviewers for their helpful comments, NR 34 TC 13 Z9 13 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5467 EP 5471 DI 10.1021/es900619g PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000050 PM 19708383 ER PT J AU Gurney, KR Mendoza, DL Zhou, YY Fischer, ML Miller, CC Geethakumar, S Du Can, SD AF Gurney, Kevin R. Mendoza, Daniel L. Zhou, Yuyu Fischer, Marc L. Miller, Chris C. Geethakumar, Sarath Du Can, Stephane De La Rue TI High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CARBON-DIOXIDE EMISSIONS; ATMOSPHERIC CO2; CONSUMPTION; SINKS; CYCLE AB Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spabal scales of similar to 100 km(2) and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are bed to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km(2) and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1 degrees x 1 degrees fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. C1 [Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Miller, Chris C.; Geethakumar, Sarath] Purdue Univ, Dept Earth & Atmospher Sci, Dept Agron, W Lafayette, IN 47907 USA. [Fischer, Marc L.; Du Can, Stephane De La Rue] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Gurney, KR (reprint author), Purdue Univ, Dept Earth & Atmospher Sci, Dept Agron, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM kgurney@purdue.edu RI zhou, yuyu/A-1215-2012 FU NASA [Carbon/04-0325-0167]; DOE [DE-AC02-05CH11231] FX Support for the Vulcan research provided by grant NASA, grant Carbon/04-0325-0167 and DOE grant. DE-AC02-05CH11231. Computational support provided by the Rosen Center for Advanced Computing (Broc Seib and William Ansley) and the Envision Center (Bedrich Belies and Nathan Andrysco). Thanks to Simon Ilyushchenko of Google Inc., Dennis Ojima and Steve Knox of Colorado State University, and the CO2FFEE group (16) for helpful discussion and input. NR 37 TC 171 Z9 174 U1 6 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2009 VL 43 IS 14 BP 5535 EP 5541 DI 10.1021/es900806c PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 472NE UT WOS:000268138000060 PM 19708393 ER PT J AU Spagnoli, D Gilbert, B Waychunas, GA Banfield, JF AF Spagnoli, Dino Gilbert, Benjamin Waychunas, Glenn A. Banfield, Jillian F. TI Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; ATOMISTIC SIMULATION; STATICS CALCULATIONS; GOETHITE SURFACES; INORGANIC SOLIDS; CALCITE SURFACE; PROTON BINDING; FREE-ENERGY; INTERFACES; IONS AB Compared with macroscopic surfaces, the structure of water around nanoparticles is difficult to probe directly. We used molecular dynamics simulations to investigate the effects of particle size and morphology on the time-averaged structure and the dynamics of water molecules around two sizes of hematite (alpha-Fe(2)O(3)) nanoparticles. Interrogation of the simulations via atomic density maps, radial distribution functions and bound water residence times provide insight into the relationships between particle size and morphology and the behavior of interfacial water. Both 1.6 and 2.7 nm particles are predicted to cause the formation of ordered water regions close to the nanoparticle surface, but the extent of localization and ordering, the connectivity between regions of bound water, and the rates of molecular exchange between inner and outer regions are all affected by particle size and morphology. These findings are anticipated to be relevant to understanding the rates of interfacial processes involving water exchange and the transport of aqueous ions to surface sites. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Spagnoli, Dino; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Spagnoli, Dino; Gilbert, Benjamin; Waychunas, Glenn A.; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Spagnoli, D (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM dspagnoli@berkeley.edu RI Gilbert, Benjamin/E-3182-2010; Spagnoli, Dino/F-8641-2011 OI Spagnoli, Dino/0000-0001-6367-4748 FU U.S. Department of Energy [DE-FG02-01ER15218, DE-AC02-05CH1123] FX We thank Prof. Stephen C. Parker for provision of the METADISE code and for useful discussions. We thank Dr. Sebastien Kerisit, Dr. David J. Cooke, Dr. Paolo Raiteri and Prof. William H. Casey for useful discussions. This work was supported with the computer resources provided by the Geochemistry Computer Cluster run by the Scientific Cluster Support group at the Lawrence Berkeley National Laboratory. Funding for this research was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy under Contract Nos. DE-FG02-01ER15218 and DE-AC02-05CH1123 NR 56 TC 30 Z9 30 U1 0 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2009 VL 73 IS 14 BP 4023 EP 4033 DI 10.1016/j.gca.2009.04.005 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 461OH UT WOS:000267276800003 ER PT J AU Yanes, Y Romanek, CS Delgado, A Brant, HA Noakes, JE Alonso, MR Ibanez, M AF Yanes, Yurena Romanek, Christopher S. Delgado, Antonio Brant, Heather A. Noakes, John E. Alonso, Maria R. Ibanez, Miguel TI Oxygen and carbon stable isotopes of modern land snail shells as environmental indicators from a low-latitude oceanic island SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EASTERN CANARY-ISLANDS; SOUTHERN GREAT-PLAINS; HELIX-ASPERSA; DELTA-C-13; PLANTS; DISCRIMINATION; ALTITUDE; PHOTOSYNTHESIS; TENERIFE; RECORD AB Land snails provide a unique opportunity to study terrestrial paleoenvironments because their shells, which are generally highly abundant and well-preserved in the fossil record, contain a temporal record of environmental change in the form of isotope codes. To evaluate the utility of this approach for a low-latitude oceanic setting, 207 modern shells of 18 species of land snail were analyzed for their oxygen and carbon isotope composition along a north and south facing altitudinal gradient (10-2160 m a.s.l.) in Tenerife Island (similar to 28 degrees N) of the Canary Archipelago. Shells collected at each locality showed a relatively large range in isotope composition which was greater along the south facing transect (drier and hotter), suggesting that the variance in shell isotope values may be related to water-stress. Although pooled isotope values did not generally show strong relationships with environmental variables (i.e., altitude, temperature and precipitation), mean isotope values were strongly associated with some climatic factors when grouped by site. The mean delta(18)O value of the shell (delta(18)O(shell)) by site displayed a negative correlation with elevation, which is consistent with the positive relationship observed between temperature and the delta(18)O value of rain (delta(18)O(rain)). Calculated delta(18)O values of the snail body water (delta(18)O(body)) derived from observed temperatures and delta(18)O(shell) values (using the equation of Grossman and Ku [Grossman E. L. and Ku T. L. (1986) Oxygen and carbon isotope fractionation in biogenic aragonite. Chen?. Geol. (Isotope Geosci. Sec.) 59, 59-74]) displayed a trend with respect to altitude that was similar to measured and hypothetical delta(18)O values for local rain water. The calculated delta(18)O(body) values from the shell declined 0.17 parts per thousand (VSMOW) per 100 m, which is consistent with the "altitude effect" observed for tropical rains in Western Africa, and it correlated negatively with rainfall amount. Accordingly, lower delta(18)O(shell) values indicate lower temperatures, lower delta(18)O(rain) values and possibly, higher rainfall totals. A positive correlation between the mean delta(13)C values of shells (delta(13)C(shell)) and plants by site suggests that shells potentially record information about the surrounding vegetation. The delta(13)C(shell) values varied between -15.7 and -0.67 parts per thousand (VPDB), indicating that snails consumed C(3) and C(4)/CAM plants, where more negative delta(13)C(shell) values probably reflects the preferential consumption of C(3) plants which are favored under wetter conditions. Individuals with more positive delta(13)O(shell) values consumed a larger percentage of C(4) plants (other potential factors such as carbonate ingestion or atmospheric CO(2) contribution were unlikely) that were more common at lower elevations of the hotter and drier south facing transect. The relatively wide range of shell isotope values within a single site requires the analysis of numerous shells for meaningful paleoclimatic studies. Although small differences were observed in isotope composition among snail species collected at a single sampling site, they were not significant, suggesting that isotope signatures extracted from multi-taxa snail data sets may be used to infer environmental conditions over a broad range of habitats. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Yanes, Yurena; Romanek, Christopher S.; Brant, Heather A.] Univ Georgia, Dept Geol, Aiken, SC 29802 USA. [Yanes, Yurena; Romanek, Christopher S.; Brant, Heather A.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Delgado, Antonio] CSIC, Lab Biogeoquim Isotopes Estables, Estac Expt Zaidin, E-18008 Granada, Spain. [Noakes, John E.] Univ Georgia, Ctr Appl Isotopes Studies, Athens, GA 30602 USA. [Alonso, Maria R.; Ibanez, Miguel] Univ La Laguna, Dept Anim Biol, Fac Biol, E-38206 Tenerife, Canary Islands, Spain. RP Yanes, Y (reprint author), Univ Georgia, Dept Geol, Aiken, SC 29802 USA. EM yanes@uga.edu RI Ibanez, Miguel/A-2126-2008; Yanes, Yurena/F-3218-2010; Delgado, Antonio/F-6866-2011 OI Delgado, Antonio/0000-0002-7240-1570 NR 52 TC 31 Z9 31 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2009 VL 73 IS 14 BP 4077 EP 4099 DI 10.1016/j.gca.2009.04.021 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 461OH UT WOS:000267276800007 ER PT J AU Kwon, KD Refson, K Sposito, G AF Kwon, Kideok D. Refson, Keith Sposito, Garrison TI On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID VISIBLE-LIGHT PHOTOCATALYSIS; BIOGENIC MANGANESE OXIDES; TOTAL-ENERGY CALCULATIONS; NA-RICH BIRNESSITE; ELECTRONIC-STRUCTURE; PSEUDOMONAS-PUTIDA; 1ST PRINCIPLES; SEAWATER; WATERS; 1ST-PRINCIPLES AB Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO2 and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II). (c) 2009 Elsevier Ltd. All rights reserved. C1 [Kwon, Kideok D.; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. [Refson, Keith] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Kwon, KD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, 140 Mulford Hall 3114, Berkeley, CA 94720 USA. EM kkwon@nature.berkeley.edu RI Refson, Keith/G-1407-2013; OI Refson, Keith/0000-0002-8715-5835 FU Director, Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231] FX This research reported in this paper was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Our computations used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the use of the SCARF computing facilities at STFC Rutherford Appleton Laboratory. NR 58 TC 26 Z9 30 U1 11 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2009 VL 73 IS 14 BP 4142 EP 4150 DI 10.1016/j.gca.2009.04.031 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 461OH UT WOS:000267276800011 ER PT J AU Obst, M Dynes, JJ Lawrence, JR Swerhone, GDW Benzerara, K Karunakaran, C Kaznatcheev, K Tyliszczak, T Hitchcock, AP AF Obst, M. Dynes, J. J. Lawrence, J. R. Swerhone, G. D. W. Benzerara, K. Karunakaran, C. Kaznatcheev, K. Tyliszczak, T. Hitchcock, A. P. TI Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY MICROSCOPY; ADVANCED LIGHT-SOURCE; CALCIUM-CARBONATE; STRUCTURAL-CHARACTERIZATION; MICROBIAL BIOFILMS; FRESH-WATER; S-LAYER; KINETICS; BIOMINERALIZATION; TRANSMISSION AB An amorphous or nanocrystalline calcium carbonate (ACC) phase with aragonite-like short-range order was found to be a transient precursor phase of calcite precipitation mediated by cyanobacteria of the strain Synechococcus leopoliensis PCC 7942. Using scanning transmission X-ray microscopy (STXM), different Ca-species such as calcite, aragonite-like CaCO3, and Ca adsorbed on extracellular polymers were discriminated and mapped, together with various organic compounds, at the 30 nm-scale. The nucleation of the amorphous aragonite-like CaCO3 was found to take place within the tightly bound extracellular polymeric substances (EPS) produced by the cyanobacteria very close to the cell wall. The aragonite-like CaCO3 is a type of ACC since it did not show either X-ray or electron diffraction peaks. The amount of aragonite-like CaCO3 precipitated in the EPS was dependent on the nutrient supply during bacterial growth. Higher nutrient concentrations (both N and P) during the cultivation of the cyanobacteria resulted in higher amounts of precipitation of the aragonite-like CaCO3, whereas the amount of Ca2+ adsorbed per volume of EPS was almost independent of the nutrient level. After the onset of the precipitation of the thermodynamically stable calcite and loss of supersaturation the aragonite-like CaCO3 dissolved whereas Ca2+ remained sorbed to the EPS albeit at lower concentrations. Based on these observations a model describing the temporal and spatial evolution of calcite nucleation on the surface of S. leopoliensis was developed. In another set of STXM experiments the amount of aragonite-like CaCO3 precipitated on the cell surface was found to depend on the culture growth phase: cells in the exponential growth phase adsorbed large amounts of Ca within the EPS and mediated nucleation of ACC, while cells at the stationary/death phase neither adsorbed large amounts of Ca2+ nor mediated the formation of aragonite-like CaCO3. It is suggested that precipitation of an X-ray amorphous CaCO3 layer by cyanobacteria could serve as a protection mechanism against uncontrolled precipitation of a thermodynamically stable phase calcite on their surface. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Obst, M.; Karunakaran, C.; Kaznatcheev, K.] Canadian Light Source, Saskatoon, SK S7H 0X4, Canada. [Obst, M.; Dynes, J. J.; Hitchcock, A. P.] McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. [Dynes, J. J.; Lawrence, J. R.; Swerhone, G. D. W.] Environm Canada, Saskatoon, SK S7N 3H5, Canada. [Benzerara, K.] CNRS & IPGP, IMPMC, ULR 7590, Paris, France. [Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Obst, M (reprint author), Univ Tubingen, Ctr Appl Geosci, Sigwartstr 10, D-72076 Tubingen, Germany. EM obst@gmx.ch RI Lawrence, John/D-5758-2011; Benzerara, Karim/J-1532-2016; IMPMC, Geobio/F-8819-2016 OI Lawrence, John/0000-0001-5872-1212; Benzerara, Karim/0000-0002-0553-0137; FU Swiss National Science Foundation [PBEZ2-115172]; NSERC; Canada Research Chair; CIHR; NRC; University of Saskatchewan; Office of Basic Energy Sciences of the US Department of Energy FX We thank P. Gasser (EMEZ, ETHZ), and L. Holzer (3D-Mat, EMPA) for expert sample preparation by focused ion beam milling. We furthermore thank Mary Liang, University of Alberta, Edmonton, Physics Department for her help with the electron diffraction experiments and Tom Bonli, University of Saskatchewan, Saskatoon, Geology Department for his help on the XRD measurements. We also thank Drs. H.P. Schwarz and J. Rink (School of Geography and Earth Sciences, McMaster) for providing samples of calcite and aragonite. We thank Drew Bertwistle (CLS) and David Kilcoyne (ALS) for their support of the respective beamlines and STXMs. Finally, we would like to thank Kurt Konhauser and two anonymous reviewers for their detailed comments that were of great help for improving the quality of this manuscript. This study was supported by the Swiss National Science Foundation (PBEZ2-115172), NSERC, Canada Research Chair. The CLS is supported by NSERC, CIHR, NRC and the University of Saskatchewan. The ALS is supported by the Office of Basic Energy Sciences of the US Department of Energy. NR 75 TC 89 Z9 95 U1 5 U2 83 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2009 VL 73 IS 14 BP 4180 EP 4198 DI 10.1016/j.gca.2009.04.013 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 461OH UT WOS:000267276800014 ER PT J AU Nyquist, LE Bogard, DD Shih, CY Park, J Reese, YD Irving, AJ AF Nyquist, L. E. Bogard, D. D. Shih, C. -Y. Park, J. Reese, Y. D. Irving, A. J. TI Concordant Rb-Sr, Sm-Nd, and Ar-Ar ages for Northwest Africa 1460: A 346 Ma old basaltic shergottite related to "lherzolitic" shergottites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Review ID INNER SOLAR-SYSTEM; MARTIAN METEORITES; NOBLE-GASES; SNC METEORITES; PARENT BODY; ISOTOPIC SYSTEMATICS; AR-39-AR-40 AGE; EARLY EVOLUTION; EJECTION TIMES; SM/ND RATIOS AB Multiple lines of evidence show that the Rb-Sr, Sm-Nd, and Ar-Ar isotopic systems individually give robust crystallization ages for basaltic (or diabasic) shergottite Northwest Africa (NWA) 1460. In contrast to other shergottites, NWA 1460 exhibits minimal evidence of excess (40)Ar, thus allowing an unambiguous determination of its Ar-Ar age. The concordant Rb-Sr, Sm-Nd, and Ar-Ar results for NWA 1460 define its crystallization age to be 346 +/- 17 Ma (2 sigma). In combination with petrographic and trace element data for this specimen and paired meteorite NWA 480, these results strongly refute the suggestion by others that the shergottites are similar to 4.1 Ga old. Current crystallization and cosmic-ray exposure (CRE) age data permit identification of a maximum of nine ejection events for Martian meteorites (numbering more than 50 unpaired specimens as of 2008) and plausibly as few as five such events. Although recent high resolution imaging of the Martian surface has identified limited areas of sparsely cratered terrains, the meteorite data suggest that either these areas are representative of larger areas from which the meteorites might come, or that the cratering chronology needs recalibration. Time-averaged (87)Rb/(86)Sr = 0.16 for the mantle source of the parent magma of NWA 1460/480 over the similar to 4.56 Ga age of the planet is consistent with previously estimated values for bulk silicate Mars in the range 0.13-0.16, and similar to values of similar to 0.18 for the "lherzolitic" shergottites. Initial epsilon(Nd) for NWA 1460/480 at 350 +/- 16 Ma ago was +10.6 +/- 0.5, which implies a time-averaged (147)Sm/(144)Nd of 0.217 in the Martian mantle prior to mafic melt extraction, similar to values of 0.211-0.216 for the "lherzolitic" shergottites. These time-averaged values do not imply a simple two-stage mantle/melt evolution, but must result from multiple episodes of melt extractions from the source regions. Much higher "late-stage" epsilon(Nd) values for the depleted shergottites imply similar processes carried to a greater degree. Thus, NWA 1460/480, the "lherzolitic" shergottites and perhaps EET 79001 give the best (albeit imperfect) estimate of the Sr- and Nd-isotopic characteristics of bulk silicate Mars. Published by Elsevier Ltd. C1 [Nyquist, L. E.; Bogard, D. D.; Park, J.] KRIARES NASA Johnson Space Ctr, Houston, TX 77058 USA. [Shih, C. -Y.] ESCG, JE23 Jacobs Technol, Houston, TX 77258 USA. [Park, J.] Oak Ridge Associated Univ, NASA Postdoctoral Program, Oak Ridge, TN 37831 USA. [Reese, Y. D.] ESCG, JE23 Muniz Engn, Houston, TX 77258 USA. [Irving, A. J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. RP Nyquist, LE (reprint author), KRIARES NASA Johnson Space Ctr, Houston, TX 77058 USA. EM laurence.e.nyquist@nasa.gov FU NASA FX The specimens used for this study were generously provided by Nelson Oakes. Constructive comments by Dimitri Papanastassiou and two anonymous reviewers as well as by Associate Editor Greg Herzog hopefully resulted in significant improvement of an earlier version of the manuscript. Financial support was provided by the NASA Cosmochemistry Program. J.P. was supported by a NASA Postdoctoral Program fellowship. NR 117 TC 35 Z9 35 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2009 VL 73 IS 14 BP 4288 EP 4309 DI 10.1016/j.gca.2009.04.008 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 461OH UT WOS:000267276800020 ER PT J AU Tokar, RL Johnson, RE Thomsen, MF Wilson, RJ Young, DT Crary, FJ Coates, AJ Jones, GH Paty, CS AF Tokar, R. L. Johnson, R. E. Thomsen, M. F. Wilson, R. J. Young, D. T. Crary, F. J. Coates, A. J. Jones, G. H. Paty, C. S. TI Cassini detection of Enceladus' cold water-group plume ionosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COMET HALLEY; PLASMA; IDENTIFICATION; MAGNETOSPHERE; ATMOSPHERE; IONS AB This study reports direct detection by the Cassini plasma spectrometer of freshly-produced water-group ions (O+, OH+, H2O+, H3O+) and heavier water dimer ions (HxO(2))(+) very close to Enceladus where the plasma begins to emerge from the plume. The data were obtained during two close ( 52 and 25 km) flybys of Enceladus in 2008 and are similar to ion data in cometary comas. The ions are observed in detectors looking in the Cassini ram direction exhibiting energies consistent with the Cassini speed, indicative of a nearly stagnant plasma flow in the plume. North of Enceladus the plasma slowing commences about 4 to 6 Enceladus radii away, while south of Enceladus signatures of the plasma interaction with the plume are detected 22 Enceladus radii away. Citation: Tokar, R. L., R. E. Johnson, M. F. Thomsen, R. J. Wilson, D. T. Young, F. J. Crary, A. J. Coates, G. H. Jones, and C. S. Paty ( 2009), Cassini detection of Enceladus' cold water-group plume ionosphere, Geophys. Res. Lett., 36, L13203, doi:10.1029/2009GL038923. C1 [Tokar, R. L.; Thomsen, M. F.; Wilson, R. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Coates, A. J.; Jones, G. H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Young, D. T.; Crary, F. J.] SW Res Inst, San Antonio, TX 78228 USA. [Johnson, R. E.] Univ Virginia, Charlottesville, VA 22903 USA. [Paty, C. S.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Tokar, RL (reprint author), Los Alamos Natl Lab, Mail Stop D466, Los Alamos, NM 87545 USA. EM rlt@lanl.gov RI Coates, Andrew/C-2396-2008; Jones, Geraint/C-1682-2008; Paty, Carol/B-4751-2013; Wilson, Rob/C-2689-2009 OI Coates, Andrew/0000-0002-6185-3125; Jones, Geraint/0000-0002-5859-1136; Wilson, Rob/0000-0001-9276-2368 FU JPL [1243218]; Particle Physics and Astronomy Research Council FX The work of U.S. co-authors was supported by JPL contracts 1243218 with Southwest Research Institute. Work in the UK was supported by the Particle Physics and Astronomy Research Council. Cassini is managed by the Jet Propulsion Laboratory for NASA. NR 18 TC 42 Z9 42 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 15 PY 2009 VL 36 AR L13203 DI 10.1029/2009GL038923 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 500HN UT WOS:000270289700006 ER PT J AU Tauke-Pedretti, A Ongstad, AP Tilton, ML Chavez, JC Kaspi, R AF Tauke-Pedretti, Anna Ongstad, Andrew P. Tilton, Michael L. Chavez, Joseph C. Kaspi, Ron TI Power Sharing in Dual-Wavelength Optically Pumped Midinfrared Laser SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Article DE Dual-wavelength laser; midinfrared (mid-IR) laser; semiconductor lasers; two-color laser; type-II quantum-well laser AB We present a study of dual-wavelength optically pumped midinfrared semiconductor lasers, in which the effects of several design parameters are analyzed. We observe that when the short wavelength waveguide mode overlaps the long wavelength gain region, photon re-absorption occurs, favoring long wavelength emission. We demonstrate high power output from a laser emitting at two wavelength bands. C1 [Tauke-Pedretti, Anna; Ongstad, Andrew P.; Tilton, Michael L.; Chavez, Joseph C.; Kaspi, Ron] USAF, Res Lab, Kirtland AFB, NM 87117 USA. RP Tauke-Pedretti, A (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. FU Air Force Research Laboratory (AFRL); Air Force Office of Scientific Research (AFSOR); NRC FX This work was performed at the Air Force Research Laboratory (AFRL) and was supported in part by the Air Force Office of Scientific Research (AFSOR). The work of A. Tauke-Pedretti was supported by an NRC Associateship at AFRL. NR 3 TC 5 Z9 5 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1041-1135 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD JUL 15 PY 2009 VL 21 IS 14 BP 1011 EP 1013 DI 10.1109/LPT.2009.2021955 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 470YY UT WOS:000268019600019 ER PT J AU Wang, HY Liu, S Zhang, PY Zhang, SM Naidu, M Wang, HC Wang, Y AF Wang, Hongyan Liu, Shuang Zhang, Piyan Zhang, Shimeng Naidu, Mamta Wang, Huichen Wang, Ya TI S-PHASE CELLS ARE MORE SENSITIVE TO HIGH-LINEAR ENERGY TRANSFER RADIATION SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS LA English DT Article DE Ionizing radiation (IR); DNA repair; Linear energy transfer (LET); Ku; Synchronizing cells; Nonhomologous end joining (NHEJ); Homologous recombination repair (HRR) ID STRAND BREAK REPAIR; HOMOLOGOUS RECOMBINATION REPAIR; IONIZING-RADIATION; MAMMALIAN-CELLS; CYCLE; PATHWAY; KU; DEFICIENT AB Purpose: S-phase cells are more resistant to low-linear energy transfer (LET) ionizing radiation (IR) than non-synchronized and G(1)-phase cells, because both nonhomologous end-joining (NHEJ) and homologous recombination repair can repair DNA double-strand breaks (DSBs) in the S phase. Although it was reported 3 decades ago that S-phase cells did not show more resistance to high-LET IR than cells in other phases, the mechanism remains unclear. We therefore attempted to study the phenotypes and elucidate the mechanism involved. Methods and Materials: Wild-type and NHEJ-deficient cell lines were synchronized using the double-thymidine approach. A clonogenic assay was used to detect the sensitivity of nonsynchronized, synchronized S-phase, and G(2)-phase cells to high- and low-LET IR. The amounts of Ku bound to DSBs in the high- and low-LET-irradiated cells were also examined. Results: S-phase wild-type cells (but not NREJ-deficient cells) were more sensitive to high-LET IR than nonsynchronized and G(2)-phase cells. In addition, S-phase wild-type cells showed less efficient Ku protein binding to DSBs than nonsynchronized and G(2)-phase cells in response to high-LET IR, although all cells at all phases showed similarly efficient levels of Ku protein binding to DSBs in response to low-LET IR. Conclusions: S-phase cells are more sensitive to high-LET IR than nonsynchronized and G(2)-phase cells, because of the following mechanism: it is more difficult for Ku protein to bind to high-LET IR-induced DNA DSBs in S-phase cells than in cells at other phases, which results in less efficient NHEJ. (C) 2009 Elsevier Inc. C1 [Wang, Hongyan; Liu, Shuang; Zhang, Piyan; Zhang, Shimeng; Wang, Ya] Thomas Jefferson Univ, Jefferson Med Coll, Dept Radiat Oncol, Philadelphia, PA 19107 USA. [Wang, Hongyan; Liu, Shuang; Zhang, Piyan; Zhang, Shimeng; Wang, Ya] Thomas Jefferson Univ, Jefferson Med Coll, Kimmel Canc Ctr, Philadelphia, PA 19107 USA. [Naidu, Mamta] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Wang, Huichen] Temple Univ, Sch Med, Ctr Neurovirol, Philadelphia, PA 19122 USA. RP Wang, Y (reprint author), Emory Univ, Sch Med, 1365 Clifton Rd NE,Suite C5090, Atlanta, GA 30322 USA. EM yawang@radonc.emory.org OI Naidu, Mamta/0000-0002-2754-2470 NR 18 TC 14 Z9 15 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0360-3016 J9 INT J RADIAT ONCOL JI Int. J. Radiat. Oncol. Biol. Phys. PD JUL 15 PY 2009 VL 74 IS 4 BP 1236 EP 1241 DI 10.1016/j.ijrobp.2008.12.089 PG 6 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 464KY UT WOS:000267505000037 PM 19545789 ER PT J AU Anderoglu, O Misra, A Ronning, F Wang, H Zhang, X AF Anderoglu, O. Misra, A. Ronning, F. Wang, H. Zhang, X. TI Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HIGH ELECTRICAL-CONDUCTIVITY; STRAIN-RATE SENSITIVITY; NANOCRYSTALLINE CU; NANOSCALE TWINS; ULTRAHIGH STRENGTH; TENSILE PROPERTIES; GRAIN-BOUNDARIES; PURE COPPER; ALLOY WIRES; NB ALLOYS AB Epitaxial nanotwinned Cu films, with an average twin spacing ranging from 7 to 16 nm, exhibit a high ratio of strength-to-electrical resistivity, similar to 400 MPa (mu Omega cm)(-1). The hardness of these Cu films approaches 2.8 GPa, and their electrical resistivities are comparable to that of oxygen-free high-conductivity Cu. Compared to high-angle grain boundaries, coherent twin interfaces possess inherently high resistance to the transmission of single dislocations, and yet an order of magnitude lower electron scattering coefficient, determined to be 1.5-5 X 10(-7) mu Omega cm(2) at room temperature. Analytical studies as well as experimental results show that, in polycrystalline Cu, grain refinement leads to a maximum of the strength-to-resistivity ratio, similar to 250 MPa (mu Omega cm)(-1), when grain size is comparable to the mean-free path of electrons. However, in twinned Cu, such a ratio increases continuously with decreasing twin spacing down to a few nanometers. Hence nanoscale growth twins are more effective to achieve a higher strength-to-resistivity ratio than high-angle grain boundaries. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3176483] C1 [Anderoglu, O.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Misra, A.; Ronning, F.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Misra, Amit/H-1087-2012; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Ronning, Filip/0000-0002-2679-7957 FU NSF-DMR [0644835]; DOE, Office of Basic Energy Sciences FX X.Z. acknowledges financial support by NSF-DMR metallic materials and nanostructures program, under Grant No. 0644835, and access to the Center for Integrated Nanotechnologies at Los Alamos National Laboratory through user program. A. M. acknowledges support from DOE, Office of Basic Energy Sciences. Discussions with R. G. Hoagland, J.D. Embury, and J.P. Hirth are acknowledged. Authors also acknowledge technical support by J.K. Baldwin and V. Jain's help with the experiments. NR 56 TC 26 Z9 27 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 024313 DI 10.1063/1.3176483 PG 9 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000132 ER PT J AU Anders, A Oks, E AF Anders, Andre Oks, Efim TI Broad, intense, quiescent beam of singly charged metal ions obtained by extraction from self-sputtering plasma far above the runaway threshold SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHYSICAL VAPOR-DEPOSITION; VACUUM-ARC PLASMAS; STATE DISTRIBUTIONS; ELECTRON-EMISSION; MAGNETIC-FIELD; CROSS-SECTIONS AB Dense metal plasmas obtained by self-sputtering far above the runway threshold are well suited to generate intense quiescent ion beams. The dilemma of high current density and charge state purity can be solved when using target materials of low surface binding energy by utilizing nonresonant exchange reactions before ion extraction. Space-charge-limited quiescent beams of Cu+, Zn+, and Bi+ with similar to 10 mA/cm(2) have been obtained through multiaperture gridded ion extraction up to 45 kV from self-sputtering plasmas. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3177336] C1 [Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Oks, Efim] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy, Initiatives for Proliferation Prevention [DE-AC02-05CH11231] FX Discussions with J. Andersson are gratefully acknowledged. This work was supported by the U.S. Department of Energy, Initiatives for Proliferation Prevention, under Contract No. DE-AC02-05CH11231. NR 33 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 023306 DI 10.1063/1.3177336 PG 5 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000021 ER PT J AU Chen, K Tamura, N Kunz, M Tu, KN Lai, YS AF Chen, Kai Tamura, N. Kunz, M. Tu, K. N. Lai, Yi-Shao TI In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based x-ray polychromatic microdiffraction SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LARGE-SCALE-INTEGRATION; CONFINED METAL LINES; TIN; EVOLUTION; INTERCONNECTS; DIFFRACTION; DIFFUSION; FILMS AB Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron x-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was builtup as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of beta-Sn derived from the electromigration data is in good agreement with the calculated value. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3157196] C1 [Chen, Kai; Tamura, N.; Kunz, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chen, Kai; Tu, K. N.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Lai, Yi-Shao] Adv Semicond Engn, Kaohsiung 811, Taiwan. RP Chen, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM kchen@lbl.gov RI Lai, Yi-Shao/B-2905-2008; Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU SRC [KJ-1772]; Seoul Techno-park; Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; NSF [0416243] FX The authors at UCLA would like to acknowledge the support from SRC Contract No. KJ-1772 and Seoul Techno-park. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The microdiffraction program at the ALS on beamline 12.3.2 was made possible by NSF Grant No. 0416243. One of the authors (K.C.) thanks Dr. J. O. Suh at JPL for helpful discussions. NR 30 TC 18 Z9 19 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 023502 DI 10.1063/1.3157196 PG 4 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000028 ER PT J AU Devine, RAB Mee, JK Hjalmarson, HP Quevedo-Lopez, MA Alshareef, HN AF Devine, R. A. B. Mee, J. K. Hjalmarson, H. P. Quevedo-Lopez, M. A. Alshareef, H. N. TI A simplified approach to estimating total trap contributions in negative bias temperature instability SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID INVERSION AB A simplified approach is used to determine the relative importance of slow (>3 s) and fast (<3 s) charged trap contributions to threshold voltage shifts (Delta V-th) induced by negative bias temperature instability in HfSiON gate dielectric p-channel field effect transistors. For the devices under study the relative importance of the two components is approximately the same. Total trap density induced threshold voltage shifts from measurements at 368, 398, and 428 K can be fitted to a simplified law of the form Delta V-th=Ae(-EA/kT)t alpha with E-A = 0.085 +/- 0.012 eV and alpha = 0.186 +/- 0.003. The importance of ignoring fast trap effects in overestimating reliability lifetimes is discussed. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3160330] C1 [Devine, R. A. B.] EMRTC NMT, Socorro, NM 87801 USA. [Devine, R. A. B.; Mee, J. K.] AFRL RSVE, Kirtland AFB, NM 87117 USA. [Hjalmarson, H. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Quevedo-Lopez, M. A.; Alshareef, H. N.] Univ Texas Richardson, Dept Mat Sci & Engn, Richardson, TX 75080 USA. RP Devine, RAB (reprint author), EMRTC NMT, 1001 S Rd, Socorro, NM 87801 USA. EM devine@chtm.unm.edu RI Alshareef, Husam Niman/A-2000-2015 OI Alshareef, Husam Niman/0000-0001-5029-2142 FU Air Force Research Laboratory, Kirtland AFB [FA9453-06-C-0367]; United States National Nuclear Security Administration, Department of Energy [DEAC04-94AL85000] FX We gratefully acknowledge Dr. Gennadi Bersuker of SEMATECH for permitting us to represent his data in the format shown in Fig. 1. This work was partially supported by the Air Force Research Laboratory, Kirtland AFB under Contract No. FA9453-06-C-0367. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States National Nuclear Security Administration, Department of Energy under Contract No. DEAC04-94AL85000. NR 8 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 024508 DI 10.1063/1.3160330 PG 5 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000144 ER PT J AU Grivickas, P McCluskey, MD Gupta, YM Zhang, Y Geisz, JF AF Grivickas, P. McCluskey, M. D. Gupta, Y. M. Zhang, Y. Geisz, J. F. TI Bound exciton luminescence in shock compressed GaP:S and GaP:N SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID R-LINE SHIFTS; GALLIUM-PHOSPHIDE; HYDROSTATIC-PRESSURE; ISOELECTRONIC TRAPS; ELASTIC PROPERTIES; REFRACTIVE-INDEX; BAND-GAP; NITROGEN; SEMICONDUCTORS; IMPURITIES AB Photoluminescence (PL) spectra of bound excitons were measured in uniaxially strained GaP by performing shock-wave experiments at liquid nitrogen temperatures. GaP samples doped with sulfur or nitrogen were compressed up to 3 GPa when subjected to uniaxial strains along the [100] crystallographic orientation. PL lines from shallow sulfur donors redshifted upon compression, tracking the reduction in the indirect band gap. PL lines related to the isoelectronic NN(1) pairs, in contrast, exhibited splitting and nonlinear blueshift. An empirical approach was used to model the NN(1) behavior. It was shown that the splitting pattern is consistent with the previously proposed symmetry of NN(1) defects and nonlinearities resulting from the reduction in the exciton binding energy. At high stresses, the NN(1) lines disappeared due to the ionization of bound excitons. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3159641] C1 [Grivickas, P.; McCluskey, M. D.; Gupta, Y. M.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Grivickas, P.; McCluskey, M. D.; Gupta, Y. M.] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. [Zhang, Y.; Geisz, J. F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Grivickas, P (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM pgrivickas@wsu.edu FU DOE [DE-FG03-97SF21388]; NSF FX The authors thank K. Zimmerman and K. Perkins for their help in performing the experiments. This work was supported by DOE Grant DE-FG03-97SF21388. M. D. M. acknowledges partial support from NSF. NR 37 TC 1 Z9 1 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 023710 DI 10.1063/1.3159641 PG 7 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000073 ER PT J AU Kim, KH Bolotnikov, AE Camarda, GS Yang, G Hossain, A Cui, Y James, RB Hong, J Kim, SU AF Kim, K. H. Bolotnikov, A. E. Camarda, G. S. Yang, G. Hossain, A. Cui, Y. James, R. B. Hong, J. Kim, S. U. TI Energy-gap dependence on the Mn mole fraction and temperature in CdMnTe crystal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAMMA-RAY DETECTORS; BAND-GAP; CD1-XMNXTE; GROWTH AB We measured the dependence of the energy gap in Bridgman-grown Cd(1-x)Mn(x)Te crystals, 0 <= x <= 0.25, on the Mn mole fraction and temperatures from 40 to 300 K. We determined the Mn mole fraction and energy gap, respectively, from electron probe microanalysis and near-infrared Fourier-transform infrared transmission spectra. The energy gap increased linearly with an increase in the Mn content in the crystal and with a decrease in temperature. We formulated new equations from these experimental results, wherein we expressed the energy gap as a function of Mn mole fraction and temperature. Also, we compare our findings with published results. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3176955] C1 [Kim, K. H.; Bolotnikov, A. E.; Camarda, G. S.; Yang, G.; Hossain, A.; Cui, Y.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hong, J.; Kim, S. U.] Korea Univ, Dept Phys, Chungnam 339800, South Korea. RP Kim, KH (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM khkim@bnl.gov; rjames@bnl.gov; ksu45112@chol.com RI Yang, Ge/G-1354-2011 FU U. S. Department of Energy, Office of Nonproliferation Research and Development, [NA-22, DE-AC02-98CH1-886] FX This work was supported by the U. S. Department of Energy, Office of Nonproliferation Research and Development, Grant No. NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U. S. Department of Energy. NR 15 TC 10 Z9 11 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 023706 DI 10.1063/1.3176955 PG 3 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000069 ER PT J AU Lee, D Kim, S Jung, N Thundat, T Jeon, S AF Lee, Dongkyu Kim, Seonghwan Jung, Namchul Thundat, Thomas Jeon, Sangmin TI Effects of gold patterning on the bending profile and frequency response of a microcantilever SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE STRESS; SENSORS; NANOMECHANICS; CANTILEVER AB We have systematically investigated the effect of various gold patterns on the bending profile and frequency response of a microcantilever. The gold patterns were deposited on the cantilever arrays using four types of shadow mask. The local bending profile, slope, and curvature varied depending on the area and position of the gold pattern. Also, the variations in the first three modes of the flexural resonance frequencies of the gold patterned cantilevers were measured to understand the opposing effects of mass loading and flexural rigidity; both of these parameters are dependent on the position and area of the gold pattern. The experimental results validated the theoretical one-dimensional model introduced by Tamayo et al. [Appl. Phys. Lett. 89, 224104 (2006)] and our calculations using the finite element method. The gold patterns giving the maximum response of the mass loading and flexural rigidity change were determined by examining how the relative resonance frequency shifts as a function of the distance of the gold coating from the free end or clamping region. The results of this study can potentially be applied in the design of a microcantilever sensor in which pattern analysis is utilized to determine the presence of adsorbed biological and chemical molecules. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3177326] C1 [Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, Kyungpook, South Korea. [Kim, Seonghwan; Thundat, Thomas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Lee, D (reprint author), Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, Kyungpook, South Korea. EM jeons@postech.ac.kr RI Kim, Seonghwan/J-6884-2012; Lee, Dongkyu/A-1635-2013 OI Kim, Seonghwan/0000-0001-7735-3582; FU Korea Science and Engineering Foundation (KOSEF) [R01-2007-000-10882-0]; ORNL Bioenergy Science Center; U. S. Department of Energy [DEAC05-00OR22725] FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (R01-2007-000-10882-0). S. K. and T. T. would like to acknowledge the partial support from the ORNL Bioenergy Science Center. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DEAC05-00OR22725. D. L. and S. K. equally contributed to this work. NR 20 TC 21 Z9 21 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 024310 DI 10.1063/1.3177326 PG 7 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000129 ER PT J AU Nelson, AJ Conway, AM Sturm, BW Behymer, EM Reinhardt, CE Nikolic, RJ Payne, SA Pabst, G Mandal, KC AF Nelson, A. J. Conway, A. M. Sturm, B. W. Behymer, E. M. Reinhardt, C. E. Nikolic, R. J. Payne, S. A. Pabst, G. Mandal, K. C. TI X-ray photoemission analysis of chemically treated GaTe semiconductor surfaces for radiation detector applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TELLURIDE AB The surface of the layered III-VI chalcogenide semiconductor GaTe was subjected to various chemical treatments commonly used in device fabrication to determine the effect of the resulting microscopic surface composition on transport properties. Various mixtures of H(3)PO(4):H(2)O(2):H(2)O were accessed and the treated surfaces were allowed to oxidize in air at ambient temperature. High-resolution core-level photoemission measurements were used to evaluate the subsequent chemistry of the chemically treated surfaces. Metal electrodes were created on laminar (cleaved) and nonlaminar (cut and polished) GaTe surfaces followed by chemical surface treatment and the current versus voltage characteristics were measured. The measurements were correlated to understand the effect of surface chemistry on the electronic structure at these surfaces with the goal of minimizing the surface leakage currents for radiation detector devices. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3176478] C1 [Nelson, A. J.; Conway, A. M.; Sturm, B. W.; Behymer, E. M.; Reinhardt, C. E.; Nikolic, R. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pabst, G.; Mandal, K. C.] EIC Labs Inc, Norwood, MA 02062 USA. RP Nelson, AJ (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM nelson63@llnl.gov RI Conway, Adam/C-3624-2009 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-07-C-00034] FX The authors would like to thank J. Go and E. Sedillo for metallographic sample preparation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and by the Department of Homeland Security, Domestic Nuclear Detection Office under Contract HSHQDC-07-C-00034. NR 11 TC 9 Z9 10 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 023717 DI 10.1063/1.3176478 PG 5 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000080 ER PT J AU Sabau, AS Wright, IG AF Sabau, Adrian S. Wright, Ian G. TI On the estimation of thermal strains developed during oxide growth SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID POWER-PLANT REHEATER; OXIDATION; STRESSES; BEHAVIOR; TUBE; TEMPERATURE; CYLINDERS; SCALES; MODEL AB This paper presents results for the strains and stresses in oxide scales under the conditions of temperature and pressure expected in typical steam boiler operation. These conditions are radically different from those typically encountered in laboratory testing and include features such as a thermal gradient across the tube wall, significant internal (steam) pressure, and cycling of both steam temperature and pressure. Critical examination of the assumptions of flat-plate geometry, which is usually made in calculating stresses and strains in oxide scales, indicated that only the component of the hoop strain that generates stress must be reported for the cylindrical case, and that the use of simple plane-strain is adequate for the system studied. Calculations were made for alloy T22 with a hypothetical, single-layered oxide with appropriate properties. Typical conditions associated with transition of the boiler from full to partial load involve a decrease in both steam temperature and pressure, and these two sources of stress generation were found to exert opposite effects. The relative magnitudes of the resulting strains were used to explain the trends in strain levels calculated when the effects of thermal expansion, temperature loading, and pressure loading were superimposed. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3157199] C1 [Sabau, Adrian S.; Wright, Ian G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Bldg 4508,MS 6083, Oak Ridge, TN 37831 USA. EM sabaua@ornl.gov RI Sabau, Adrian/B-9571-2008 OI Sabau, Adrian/0000-0003-3088-6474 FU Electric Power Research Institute [P18842/C9306]; United States Government [DE-AC05-00OR22725] FX This research was sponsored by the Electric Power Research Institute under a Work for Others program (Agreement No. EP-P18842/C9306) with the U. S. Department of Energy, Office of Fossil Energy (DOE-FE). The authors would like to express their gratitude to Chun-Hway Hsueh and Tom Watkins for their insightful comments during the course of this project and to TRW for reviewing the manuscript. This submission was sponsored by a contractor of the United States Government under Contract No. DE-AC05-00OR22725 with the United States Department of Energy. NR 21 TC 7 Z9 8 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2009 VL 106 IS 2 AR 023503 DI 10.1063/1.3157199 PG 8 WC Physics, Applied SC Physics GA 478UE UT WOS:000268613000029 ER PT J AU Setubal, JC dos Santos, P Goldman, BS Ertesvag, H Espin, G Rubio, LM Valla, S Almeida, NF Balasubramanian, D Cromes, L Curatti, L Du, ZJ Godsy, E Goodner, B Hellner-Burris, K Hernandez, JA Houmiel, K Imperial, J Kennedy, C Larson, TJ Latreille, P Ligon, LS Lu, J Maerk, M Miller, NM Norton, S O'Carroll, IP Paulsen, I Raulfs, EC Roemer, R Rosser, J Segura, D Slater, S Stricklin, SL Studholme, DJ Sun, J Viana, CJ Wallin, E Wang, BM Wheeler, C Zhu, HJ Dean, DR Dixon, R Wood, D AF Setubal, Joao C. dos Santos, Patricia Goldman, Barry S. Ertesvag, Helga Espin, Guadelupe Rubio, Luis M. Valla, Svein Almeida, Nalvo F. Balasubramanian, Divya Cromes, Lindsey Curatti, Leonardo Du, Zijin Godsy, Eric Goodner, Brad Hellner-Burris, Kaitlyn Hernandez, Jose A. Houmiel, Katherine Imperial, Juan Kennedy, Christina Larson, Timothy J. Latreille, Phil Ligon, Lauren S. Lu, Jing Maerk, Mali Miller, Nancy M. Norton, Stacie O'Carroll, Ina P. Paulsen, Ian Raulfs, Estella C. Roemer, Rebecca Rosser, James Segura, Daniel Slater, Steve Stricklin, Shawn L. Studholme, David J. Sun, Jian Viana, Carlos J. Wallin, Erik Wang, Baomin Wheeler, Cathy Zhu, Huijun Dean, Dennis R. Dixon, Ray Wood, Derek TI Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes SO JOURNAL OF BACTERIOLOGY LA English DT Article ID POLY-BETA-HYDROXYBUTYRATE; CARBON-MONOXIDE DEHYDROGENASE; CYTOCHROME BD EXPRESSION; RALSTONIA-EUTROPHA H16; NITROGEN-FIXATION; CYST FORMATION; MANNURONAN C-5-EPIMERASE; RESPIRATORY PROTECTION; RHODOSPIRILLUM-RUBRUM; IN-VIVO AB Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins. C1 [Setubal, Joao C.; Almeida, Nalvo F.; Sun, Jian] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. [Setubal, Joao C.] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA. [dos Santos, Patricia] Wake Forest Univ, Dept Chem, Winston Salem, NC 27109 USA. [Goldman, Barry S.; Du, Zijin; Godsy, Eric; Latreille, Phil; Lu, Jing; Miller, Nancy M.; Norton, Stacie; Stricklin, Shawn L.; Zhu, Huijun] Monsanto Co, St Louis, MO USA. [Ertesvag, Helga; Valla, Svein; Maerk, Mali] Norwegian Univ Sci & Technol, Dept Biotechnol, N-7491 Trondheim, Norway. [Espin, Guadelupe; Segura, Daniel] Univ Nacl Autonoma Mexico, Inst Biotecnol, Cuernavaca 62191, Morelos, Mexico. [Rubio, Luis M.] Ctr Biotecnol & Genom Plantas, IMDEA Energia, Madrid 28223, Spain. [Almeida, Nalvo F.; Viana, Carlos J.] Univ Fed Mato Grosso do Sul, Dept Computacao & Estat, Campo Grande, Brazil. [Balasubramanian, Divya; Cromes, Lindsey; Goodner, Brad; Hellner-Burris, Kaitlyn; Roemer, Rebecca; Wallin, Erik; Wheeler, Cathy] Hiram Coll, Dept Biol, Hiram, OH USA. [Curatti, Leonardo] Ctr Estudios Biodiversidad & Biotecnol, CONICET FIBA, RA-7600 Mar Del Plata, Argentina. [Hernandez, Jose A.] Midwestern Univ, Dept Biochem, Glendale, AZ 85308 USA. [Houmiel, Katherine; Rosser, James; Wood, Derek] Seattle Pacific Univ, Seattle, WA 98026 USA. [Kennedy, Christina; Wang, Baomin] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA. [Larson, Timothy J.; Ligon, Lauren S.; O'Carroll, Ina P.; Raulfs, Estella C.; Dean, Dennis R.] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA. [Paulsen, Ian] Macquarie Univ, Sydney, NSW 2109, Australia. [Slater, Steve] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Studholme, David J.] Sainsbury Lab, Norwich NR4 7UH, Norfolk, England. [Dixon, Ray] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England. [Wood, Derek] Univ Washington, Dept Microbiol, Seattle, WA 98119 USA. [Imperial, Juan] UPM INIA, CBGP, Madrid 28223, Spain. RP Setubal, JC (reprint author), Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. EM setubal@vbi.vt.edu RI Almeida, Nalvo/B-5856-2012; Setubal, Joao/C-7305-2012; Paulsen, Ian/K-3832-2012; Oncogenomica, Inct/H-9999-2013; Rubio, Luis/B-5827-2009; imperial, Juan/G-3925-2015; Wang, Baomin/M-7820-2015; OI Studholme, David/0000-0002-3010-6637; Dos Santos, Patricia/0000-0002-3364-0931; Ertesvag, helga/0000-0001-9437-9469; Setubal, Joao/0000-0001-9174-2816; Almeida, Nalvo/0000-0001-5615-1746; Paulsen, Ian/0000-0001-9015-9418; Rubio, Luis/0000-0003-1596-2475; imperial, Juan/0000-0002-5002-6458; Maerk, Mali/0000-0001-7447-0687 FU National Science Foundation [0523357]; Murdock Charitable Trust Life Sciences Program [2004262, 2006245] FX This work was supported by National Science Foundation grant 0523357 to D. W. W. and by M. J. Murdock Charitable Trust Life Sciences Program grants (2004262: JVZ and 2006245: JVZ) to D. W. W.; We thank Paul Rudnick, Nirav Merchant, and other contributors at the University of Arizona, the Joint Genome Institute, and the Oak Ridge National Laboratory who developed the first draft version of the A. vinelandii genome. We also thank the students at Hiram College (50 students), Virginia Tech (9 students), and Seattle Pacific University (94 students) who participated in the deep annotation of this genome as part of their undergraduate coursework.; This report is dedicated to the memory of Christina Kennedy (1945-2009). Christina made numerous contributions to our understanding of nitrogen fixation and Azotobacter biology over her nearly 4-decadelong career, culminating in the publication of its genome. NR 98 TC 88 Z9 452 U1 7 U2 41 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD JUL 15 PY 2009 VL 191 IS 14 BP 4534 EP 4545 DI 10.1128/JB.00504-09 PG 12 WC Microbiology SC Microbiology GA 462RH UT WOS:000267372900006 PM 19429624 ER PT J AU Soule, T Garcia-Pichel, F Stout, V AF Soule, Tanya Garcia-Pichel, Ferran Stout, Valerie TI Gene Expression Patterns Associated with the Biosynthesis of the Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133 in Response to UVA Radiation SO JOURNAL OF BACTERIOLOGY LA English DT Article ID TRANSCRIPTION TERMINATION; BORRELIA-BURGDORFERI; NITROGEN-FIXATION; ESCHERICHIA-COLI; MOTILITY OPERON; MESSENGER-RNA; CYANOBACTERIA; ANABAENA; PIGMENT; PHOTOSYNTHESIS AB Under exposure to UV radiation, some cyanobacteria synthesize sunscreen compounds. Scytonemin is a heterocyclic indole-alkaloid sunscreen, the synthesis of which is induced upon exposure to UVA (long-wavelength UV) radiation. We previously identified and characterized an 18-gene cluster associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133; we now report on the expression response of these genes to a step-up shift in UVA exposure. Using quantitative PCR on cDNAs from the N. punctiforme transcriptome and primers targeting each of the 18 genes in the cluster, we followed their differential expression in parallel subcultures incubated with and without UVA. All 18 genes are induced by UVA irradiation, with relative transcription levels that generally peak after 48 h of continuous UVA exposure. A five-gene cluster implicated in the process of scytonemin biosynthesis solely on the basis of comparative genomics was also upregulated. Furthermore, we demonstrate that all of the genes in the 18-gene region are cotranscribed as part of a single transcriptional unit. C1 [Soule, Tanya; Garcia-Pichel, Ferran; Stout, Valerie] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Soule, Tanya] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Stout, V (reprint author), Arizona State Univ, Sch Life Sci, POB 874501, Tempe, AZ 85287 USA. EM vstout@asu.edu FU Arizona State University Graduate and Professional Student Association FX We thank the Arizona State University Graduate and Professional Student Association for funding. NR 40 TC 41 Z9 41 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL 15 PY 2009 VL 191 IS 14 BP 4639 EP 4646 DI 10.1128/JB.00134-09 PG 8 WC Microbiology SC Microbiology GA 462RH UT WOS:000267372900017 PM 19429608 ER PT J AU Woods, J Pellegrino, J Kozubal, E Slayzak, S Burch, J AF Woods, Jason Pellegrino, John Kozubal, Eric Slayzak, Steve Burch, Jay TI Modeling of a membrane-based absorption heat pump SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Heat pump; Energy storage; Heat and mass transfer modeling; Desiccant; Membrane distillation ID OSMOTIC DISTILLATION; MASS-TRANSFER; TRANSPORT; GAS; EVAPORATION AB In this paper, a membrane heat pump is proposed and analyzed. Fundamentally, the proposed heat pump consists of an aqueous CaCl(2) solution flow separated from a water flow by a vapor-permeable membrane. The low activity of the solution results in a net flux of water vapor across the membrane, which heats the solution stream and cools the water stream. This mechanism upgrades water-side low-temperature heat to solution-side high-temperature heat, creating a "temperature lift." The modeling results show that using two membranes and an air gap instead of a single membrane increases the temperature lift by 185%. The model predicts temperature lifts for the air-gap design of 24,16, and 6 degrees C for inlet temperatures of 55, 35, and 15 degrees C, respectively. Membranes with lower thermal conductivities and higher porosities improve the performance of single-membrane designs while thinner membranes improve the performance of air-gap designs. This device can be used with a solar heating system which already uses concentrated salt solutions for liquid-desiccant cooling. (C) 2009 Elsevier B.V. All rights reserved. C1 [Woods, Jason; Pellegrino, John] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Kozubal, Eric; Slayzak, Steve; Burch, Jay] Natl Renewable Energy Lab, Golden, CO USA. RP Woods, J (reprint author), Univ Colorado, Dept Mech Engn, 427 UCB, Boulder, CO 80309 USA. EM jason.d.woods@colorado.edu OI PELLEGRINO, JOHN/0000-0001-7749-5003; Woods, Jason/0000-0002-7661-2658 NR 28 TC 14 Z9 15 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JUL 15 PY 2009 VL 337 IS 1-2 BP 113 EP 124 DI 10.1016/j.memsci.2009.03.039 PG 12 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 458LS UT WOS:000267025500014 ER PT J AU Snead, L Wiffen, B Allen, T AF Snead, Lance Wiffen, Bill Allen, Todd TI Proceedings of the Second Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM-2) Preface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 [Snead, Lance; Wiffen, Bill] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Allen, Todd] Univ Wisconsin, Madison, WI USA. RP Snead, L (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM wiffenfw@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP VII EP VII DI 10.1016/j.jnucmat.2009.03.033 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100001 ER PT J AU Carmack, WJ Porter, DL Chang, YI Hayes, SL Meyer, MK Burkes, DE Lee, CB Mizuno, T Delage, F Somers, J AF Carmack, W. J. Porter, D. L. Chang, Y. I. Hayes, S. L. Meyer, M. K. Burkes, D. E. Lee, C. B. Mizuno, T. Delage, F. Somers, J. TI Metallic fuels for advanced reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID PU-ZR FUEL; EBR-II; CONSTITUENT REDISTRIBUTION; IRRADIATION BEHAVIOR; TRANSIENT; ELEMENTS; TESTS; PINS AB In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs. (C) 2009 Elsevier B.V. All rights reserved. C1 [Carmack, W. J.; Porter, D. L.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Chang, Y. I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Lee, C. B.] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Mizuno, T.] Japan Atom Energy Agcy, Oarai Res & Dev Ctr, Tokai, Ibaraki, Japan. [Delage, F.] CEA Cadarache, CEA, F-13108 St Paul Les Durance, France. [Somers, J.] Directorate Gen JRC, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. RP Carmack, WJ (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. EM Jon.Carmack@inl.gov RI Hayes, Steven/D-8373-2017; OI Hayes, Steven/0000-0002-7583-2069; Meyer, Mitchell/0000-0002-1980-7862 NR 48 TC 46 Z9 47 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 139 EP 150 DI 10.1016/j.jnucmat.2009.03.007 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100003 ER PT J AU Burkes, DE Fielding, RS Porter, DL AF Burkes, Douglas E. Fielding, Randall S. Porter, Douglas L. TI Metallic fast reactor fuel fabrication for the global nuclear energy partnership SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID VAPOR PRESSURE; EBR-II; PLUTONIUM; NEPTUNIUM AB Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt. (C) 2009 Elsevier B.V. All rights reserved. C1 [Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP Burkes, DE (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Douglas.Burkes@inl.gov NR 30 TC 13 Z9 13 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 158 EP 163 DI 10.1016/j.jnucmat.2009.03.009 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100005 ER PT J AU Kim, YS Hofman, GL Yacout, AM AF Kim, Yeon Soo Hofman, G. L. Yacout, A. M. TI Migration of minor actinides and lanthanides in fast reactor metallic fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID CONSTITUENT REDISTRIBUTION AB Minor actinides (MA) and lanthanides (LA) migration to the cladding in fast reactor metallic fuel is a concern because of their reaction with the cladding material. MA and LA migration test results are analyzed and reactions with the cladding are characterized. Remedies for reducing MA and LA migration and reaction with cladding are reviewed. A possible method is proposed that includes the addition of a compound forming element such as indium or thallium in fuel. These elements preferentially form stable compounds with MA and LA and should therefore reduce migration of MA and LA. As an intrinsic solution to the issue, the feasibility of the use of U-Pu-Mo alloy as fuel is studied. Unlike U-Pu-Zr, U-Pu-Mo consists of a single phase at typical fuel operation temperatures, and should have negligible fuel constituent redistribution and reduce MA and LA migration. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Hofman, G. L.; Yacout, A. M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov NR 22 TC 29 Z9 29 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 164 EP 170 DI 10.1016/j.jnucmat.2009.03.043 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100006 ER PT J AU Meyer, MK Hayes, SL Carmack, WJ Tsai, H AF Meyer, M. K. Hayes, S. L. Carmack, W. J. Tsai, H. TI The EBR-II X501 minor actinide burning experiment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA AB The X501 experiment was conducted in EBR-II as part of the integral fast reactor (IFR) program to demonstrate minor actinide (MA) burning through the use of a homogeneous recycle scheme. Renewed interest in the behavior of MA's during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the US waste transmutation effort. The X501 experiment is one of the few MA-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA's. Of primary interest are the affect of the MA's on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. This paper provides a summary of the X501 fabrication, characterization, irradiation, and postirradiation examination. (C) 2009 Elsevier B.V. All rights reserved. C1 [Meyer, M. K.; Hayes, S. L.; Carmack, W. J.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Tsai, H.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Carmack, WJ (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Jon.Carmack@inl.gov RI Hayes, Steven/D-8373-2017; OI Hayes, Steven/0000-0002-7583-2069; Meyer, Mitchell/0000-0002-1980-7862 NR 9 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 176 EP 183 DI 10.1016/j.jnucmat.2009.03.041 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100008 ER PT J AU Natesan, K Li, MM Chopra, OK Majumdar, S AF Natesan, K. Li, Meimei Chopra, O. K. Majumdar, S. TI Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID 316 STAINLESS-STEEL; LOW-CYCLE FATIGUE; MO STEEL; BEHAVIOR; ENVIRONMENT; CARBON AB Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure oil mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Natesan, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM natesan@anl.gov NR 46 TC 14 Z9 14 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 243 EP 248 DI 10.1016/j.jnucmat.2009.03.039 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100018 ER PT J AU Hu, SY Henager, CH Heinisch, HL Stan, M Baskes, MI Valone, SM AF Hu, Shenyang Henager, Charles H., Jr. Heinisch, Howard L. Stan, Marius Baskes, Michael I. Valone, Steven M. TI Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID IRRADIATED UO2 FUEL; HELIUM BUBBLES; MICROSTRUCTURAL EVOLUTION; HIGH-TEMPERATURE; METALS; GROWTH; PERFORMANCE; SIMULATION; CRYSTALS; KINETICS AB A phase-field model was developed to simulate the accumulation and transport of fission products and the evolution of gas bubble microstructures in nuclear fuels. The model takes into account the generation of gas atoms and vacancies, and the elastic interaction between diffusive species and defects as well as the inhomogeneity of elasticity and diffusivity. The simulations show that gas bubble nucleation is much easier at grain boundaries than inside grains due to the trapping of gas atoms and the high mobility of vacancies and gas atoms in grain boundaries. Helium bubble formation at unstable vacancy clusters generated by irradiation depends on the mobilities of the vacancies and He, and the continuing supply of vacancies and He. The formation volume of the vacancy and He has a strong effect on the gas bubble nucleation at dislocations. The effective thermal conductivity strongly depends on the bubble volume fraction, but weakly on the morphology of the bubbles. Published by Elsevier B.V. C1 [Hu, Shenyang; Henager, Charles H., Jr.; Heinisch, Howard L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stan, Marius; Baskes, Michael I.; Valone, Steven M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Hu, SY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Shenyang.hu@pnl.gov OI HU, Shenyang/0000-0002-7187-3082; Henager, Chuck/0000-0002-8600-6803 NR 46 TC 43 Z9 43 U1 1 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 292 EP 300 DI 10.1016/j.jnucmat.2009.03.017 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100026 ER PT J AU Busby, JT AF Busby, J. T. TI Economic benefits of advanced materials in nuclear power systems SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID AUSTENITIC STAINLESS-STEELS; TENSILE AB A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Busby, JT (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM busbyjt@ornl.gov NR 16 TC 10 Z9 10 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 301 EP 306 DI 10.1016/j.jnucmat.2009.03.018 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100027 ER PT J AU Natesan, K Moisseytsev, A Majumdar, S AF Natesan, K. Moisseytsev, A. Majumdar, S. TI Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA AB The Next Generation Nuclear Plant, with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 850-950 degrees C. In this concept, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, a nitrogen/helium mixture, or a molten salt. This paper assesses the issues pertaining to shell-and-tube and compact heat exchangers. A detailed thermal-hydraulic analysis was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in heat exchanger designs, and material properties of structural alloys. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt heat exchangers. (C) 2009 Elsevier B.V. All rights reserved. C1 [Natesan, K.; Moisseytsev, A.; Majumdar, S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Natesan, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM natesan@anl.gov NR 6 TC 7 Z9 7 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 307 EP 315 DI 10.1016/j.jnucmat.2009.03.019 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100028 ER PT J AU Cheon, JS Lee, CB Lee, BO Raison, JP Mizuno, T Delage, F Carmack, J AF Cheon, Jin Sik Lee, Chan Bock Lee, Byoung Oon Raison, J. P. Mizuno, T. Delage, F. Carmack, J. TI Sodium fast reactor evaluation: Core materials SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID FERRITIC/MARTENSITIC STEELS; MARTENSITIC STEELS; IRRADIATION CREEP; NEUTRON EXPOSURE; FUEL; ALLOYS AB In the framework of the Generation IV Sodium Fast Reactor (SFR) Program the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. In this paper the status of available and developmental materials for SFR core cladding and duct applications is reviewed. To satisfy the Generation IV SFR fuel requirements, an advanced cladding needs to be developed. The candidate cladding materials are austenitic steels, ferritic/martensitic (F/M) steels, and oxide dispersion strengthened (ODS) steels. A large amount of irradiation testing is required, and the compatibility of cladding with TRU-loaded fuel at high temperatures and high burnup must be investigated. The more promising F/M steels (compared to HT9) might be able to meet the dose requirements of over 200 dpa for ducts in the GEN-IV SFR systems. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cheon, Jin Sik; Lee, Chan Bock; Lee, Byoung Oon] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Raison, J. P.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-7500 Karlsruhe, Germany. [Mizuno, T.] Japan Atom Energy Agcy, Oarai, Ibaraki, Japan. [Delage, F.] Commiss Energie Atom, Cadarache, France. [Carmack, J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cheon, JS (reprint author), Korea Atom Energy Res Inst, 1045 Daedeok Daero, Taejon 305353, South Korea. EM jscheon@kaeri.re.kr NR 32 TC 33 Z9 34 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 324 EP 330 DI 10.1016/j.jnucmat.2009.03.021 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100030 ER PT J AU Nanstad, RK McClintock, DA Hoelzer, DT Tan, L Allen, TR AF Nanstad, R. K. McClintock, D. A. Hoelzer, D. T. Tan, L. Allen, T. R. TI High temperature irradiation effects in selected Generation IV structural alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA AB In the Generation IV Materials Program cross-cutting task, irradiation and testing were carried out to address the issue of high temperature irradiation effects with selected current and potential candidate metallic alloys. The materials tested were (I) a high-nickel iron-base alloy (Alloy 800H); (2) a nickel-base alloy (Alloy 617): (3) two advanced nano-structured ferritic alloys (designated 14YWT and 14WT); and (4) a commercial ferritic-martensitic steel (annealed 9Cr-1MoV). Small tensile specimens were irradiated in rabbit capsules in the High-Flux Isotope Reactor at temperatures from about 550 to 700 degrees C and to irradiation doses in the range 1.2-1.6 dpa. The Alloy 800H and Alloy 617 exhibited significant hardening after irradiation at 580 degrees C; some hardening occurred at 660 degrees C as well, but the 800H showed extremely low tensile elongations when tested at 700 degrees C. Notably, the grain boundary engineered 800H exhibited even greater hardening at 580 degrees C and retained a high amount of ductility. Irradiation effects on the two nano-structured ferritic alloys and the annealed 9Cr-1MoV were relatively slight at this low dose. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nanstad, R. K.; Hoelzer, D. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [McClintock, D. A.] Univ Texas Austin, Austin, TX 78712 USA. [Tan, L.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Nanstad, RK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM nanstadrk@ornl.gov RI Tan, Lizhen/A-7886-2009; Hoelzer, David/L-1558-2016; OI Tan, Lizhen/0000-0002-3418-2450; McClintock, David/0000-0002-9292-8951; Allen, Todd/0000-0002-2372-7259 NR 13 TC 25 Z9 25 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 331 EP 340 DI 10.1016/j.jnucmat.2009.03.022 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100031 ER PT J AU Rowcliffe, AF Mansur, LK Hoelzer, DT Nanstad, RK AF Rowcliffe, A. F. Mansur, L. K. Hoelzer, D. T. Nanstad, R. K. TI Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID AUSTENITIC STAINLESS-STEELS; ODS FERRITIC ALLOYS; MIXED-OXIDE FUEL; CR-NI ALLOYS; NEUTRON-IRRADIATION; HASTELLOY-X; MECHANICAL-PROPERTIES; POST-IRRADIATION; CREEP-PROPERTIES; PHASE-STABILITY AB Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mansur, LK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mansurlk@ornl.gov RI Hoelzer, David/L-1558-2016 NR 92 TC 40 Z9 41 U1 1 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 341 EP 352 DI 10.1016/j.jnucmat.2009.03.023 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100032 ER PT J AU McClintock, DA Sokolov, MA Hoelzer, DT Nanstad, RK AF McClintock, D. A. Sokolov, M. A. Hoelzer, D. T. Nanstad, R. K. TI Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID FERRITIC ALLOYS; FRACTURE-TOUGHNESS; STEEL; STABILITY; TENSILE; BEHAVIOR; MA957 AB Irradiations to 1.5 dpa at 300-750 degrees C were conducted to investigate the changes in mechanical properties of an advanced nanocluster strengthened ferritic alloy, designated 14YWT, and an oxide dispersion strengthened ferritic alloy ODS-EUROFER. Two non-dispersion strengthened variants, 14WT and EUROFER 97, were also irradiated and tested. Tensile results show 14YWT has very high tensile strengths and experienced some radiation-induced hardening, with an increase in room temperature yield strength of 125 MPa after irradiation, while results for ODS-EUROFER show a 275 MPa increase following irradiation. Master curve fracture toughness analysis show 14YWT has a cryogenic T(o) reference temperatures before and after irradiation of about -188 and -176 degrees C, respectively, and upper-shelf K(Jk) values between 175 and 225 MPa root m. The favorable fracture toughness properties and resistance to radiation-induced changes in mechanical properties observed for 14YWT are attributed to a fine grain structure and high number density of Y-Ti-O nanoclusters. (C) 2009 Elsevier B.V. All rights reserved. C1 [McClintock, D. A.; Sokolov, M. A.; Hoelzer, D. T.; Nanstad, R. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [McClintock, D. A.] Univ Texas Austin, Austin, TX 78712 USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mcclintockda@ornl.gov RI Hoelzer, David/L-1558-2016; OI McClintock, David/0000-0002-9292-8951 NR 21 TC 78 Z9 78 U1 11 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 353 EP 359 DI 10.1016/j.jnucmat.2009.03.024 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100033 ER PT J AU Li, MM Hoelzer, DT Grossbeck, ML AF Li, Meimei Hoelzer, D. T. Grossbeck, M. L. TI The Influence of lithium environment on tensile behavior and microstructure of V-4Cr-4Ti SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA ID ACTIVATION VANADIUM ALLOY; LIQUID LITHIUM; MECHANICAL-PROPERTIES; FUSION; PRECIPITATION; IMPURITIES; NITROGEN; OXYGEN AB Thermal tests exposed V-4Cr-4Ti in static liquid lithium at 700 and 800 degrees C for 250, 500, and 1000 h. Post-exposure examination included chemical analysis of interstitial impurities in V-4Cr-4Ti to monitor impurity transfer, and tensile tests at room temperature and 500 degrees C. Microstructures were characterized by room-temperature electrical resistivity measurements and transmission electron microscopy. Oxygen was not depleted from V-4Cr-4Ti when nitrogen pickup occurred during lithium exposures. In spite of a significant increase in interstitial impurity concentration, the matrix interstitial solute content was reduced due to precipitation. Plate-shaped precipitates in the matrix and globular precipitates at grain boundaries were formed during lithium exposures at 700 degrees C, while only globular precipitates were observed at grain boundaries at 800 degrees C. Increases in strength, decreases in ductility, and reduced dynamic strain aging resulted. Ductility remained high after 1000 h exposures at both 700 and 800 degrees C. (C) 2009 Elsevier B.V. All rights reserved. C1 [Li, Meimei] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Li, Meimei; Hoelzer, D. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Grossbeck, M. L.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. RP Li, MM (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mli@anl.gov RI Hoelzer, David/L-1558-2016 NR 31 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 364 EP 370 DI 10.1016/j.jnucmat.2009.03.026 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100035 ER PT J AU Hoffman, EN Skidmore, TE AF Hoffman, E. N. Skidmore, T. E. TI Radiation effects on epoxy/carbon-fiber composite SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 2nd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors CY JUN 10-12, 2008 CL Anaheim, CA AB Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 0.5, 1.0, and 2.0 MGy. Irradiated and baseline samples were tested for tensile strength. hardness and evaluated using Fourier transform infra-red spectroscopy and differential scanning calorimetry for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and spectroscopy results with increasing gamma irradiation. The results quantify the changes in the epoxy within the composite as a result of exposure to gamma radiation at doses relevant to service. Published by Elsevier B.V. C1 [Hoffman, E. N.; Skidmore, T. E.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hoffman, EN (reprint author), Savannah River Natl Lab, 773-A Savannah River Site, Aiken, SC 29808 USA. EM Elizabeth.Hoffman@srnl.doe.gov NR 9 TC 6 Z9 6 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2009 VL 392 IS 2 BP 371 EP 378 DI 10.1016/j.jnucmat.2009.03.027 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 471RX UT WOS:000268077100036 ER PT J AU Lu, XC Zhu, JH Yang, ZG Xia, GG Stevenson, JW AF Lu, X. C. Zhu, J. H. Yang, Zhenguo Xia, Guanguang Stevenson, Jeffry W. TI Pd-impregnated SYT/LDC composite as sulfur-tolerant anode for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; Sulfur-tolerant anode; SYT/LDC composite; Impregnation ID DOPED STRONTIUM-TITANATE; METHANE OXIDATION; SOFC; HYDROCARBONS; TEMPERATURE; PERFORMANCE; PEROVSKITES; PROPERTY; GAS AB An Sr(0.88)Y(0.08)TiO(3-delta) (SYT)/La(0.4)Ce(0.6)O(1.8) (LDC) composite impregnated with Pd was evaluated as a sulfur-tolerant anode for the La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-delta) (LSGM)-supported cells. The impregnation of Pd into the porous SYT/LDC anode was found to significantly enhance the anode performance. With the addition of 1.5 wt.% Pd into the anode, the anodic overpotential was reduced to about half of the original value. The single cell with the Pd-impregnated SYT/LDC anode showed a maximum power density of 1006 and 577 MW cm(-2) at 850 and 800 degrees C in city H(2), respectively, which was more than twice of that prior to impregnation. The Pd-impregnated composite anode exhibited good tolerance to sulfur, with essentially no decay in performance in H(2) containing up to 50 ppm H(2)S. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lu, X. C.; Yang, Zhenguo; Xia, Guanguang; Stevenson, Jeffry W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhu, J. H.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. RP Lu, XC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Xiaochuan.Lu@pnl.gov RI Zhu, Jiahong/C-1230-2017 FU US Army CECOM-LCMC Acquisition Center - Washington [W909MY-08-C-0033]; Tennessee Technological University; U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology FX The author would like to thank the US Army CECOM-LCMC Acquisition Center - Washington (Contract No. W909MY-08-C-0033), Tennessee Technological University, and the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program for financial support. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. NR 27 TC 29 Z9 30 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2009 VL 192 IS 2 BP 381 EP 384 DI 10.1016/j.jpowsour.2009.03.009 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 461MB UT WOS:000267270000021 ER PT J AU Liu, WN Sun, X Khaleel, MA Qu, JM AF Liu, W. N. Sun, X. Khaleel, M. A. Qu, J. M. TI Global failure criteria for positive/electrolyte/negative structure of planar solid oxide fuel cell SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC PEN; Ceramics; Fracture mechanism; Global fracture criteria; Energy release rate; Critical curvature ID INTERFACIAL FRACTURE-TOUGHNESS; THIN-FILM; CHANNEL CRACKING; SUBSTRATE; BEHAVIOR AB Due to mismatch of the coefficients of thermal expansion of various layers in the positive/electrolyte/negative (PEN) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly. In this paper, the global relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liu, W. N.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Qu, J. M.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Liu, WN (reprint author), Pacific NW Natl Lab, POB 999,906 Battelle Blvd, Richland, WA 99354 USA. EM wenning.liu@pnl.gov RI Qu, Jianmin/E-3521-2010; OI khaleel, mohammad/0000-0001-7048-0749 FU U.S. Department of Energy's National Energy Technology Laboratory (NETL); U.S. Department of Energy [DE-AC05-76RL01830] FX This paper was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 28 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2009 VL 192 IS 2 BP 486 EP 493 DI 10.1016/j.jpowsour.2009.03.012 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 461MB UT WOS:000267270000036 ER PT J AU Yang, ZG Choi, D Kerisit, S Rosso, KM Wang, DH Zhang, J Graff, G Liu, J AF Yang, Zhenguo Choi, Daiwon Kerisit, Sebastien Rosso, Kevin M. Wang, Donghai Zhang, Jason Graff, Gordon Liu, Jun TI Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review SO JOURNAL OF POWER SOURCES LA English DT Review DE Li-ion batteries; Anode; Nanostructured materials; Titanium oxides; Titanite ID ANATASE TIO2 NANOTUBES; HIGH-PRESSURE PHASE; ION BATTERIES; ROOM-TEMPERATURE; RUTILE TIO2; POLYMER ELECTROLYTE; INSERTION REACTIONS; ENERGY-CONVERSION; ANODE MATERIAL; LI AB Being inherently safe and chemically compatible with the electrolyte, titanium oxide-based materials, including both Li-titanites and various TiO(2) Polymorphs, are considered alternatives to carbonaceous anodes in Li-ion batteries. Given the commercial success of the spinel lithium titanites, TiO(2) Polymorphs, in particular in nanostructured forms, have been fabricated and investigated for the applications. Nanostructuring leads to increased reaction areas, shortened Li(+) diffusion and potentially enhanced solubility/capacity. Integration with an electron-conductive second phase into the TiO(2)-based nanostructures eases the electron transport, resulting in further improved lithium electrochemical activity and the overall electrochemical performance. This paper reviews structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites and TiO(2) polymorphs that include rutile, anatase, bronze and brookite. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yang, Zhenguo; Choi, Daiwon; Kerisit, Sebastien; Rosso, Kevin M.; Wang, Donghai; Zhang, Jason; Graff, Gordon; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Zgary.yang@pnl.gov RI Choi, Daiwon/B-6593-2008; Wang, Donghai/L-1150-2013 OI Wang, Donghai/0000-0001-7261-8510 NR 85 TC 455 Z9 459 U1 40 U2 468 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2009 VL 192 IS 2 BP 588 EP 598 DI 10.1016/j.jpowsour.2009.02.038 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 461MB UT WOS:000267270000048 ER PT J AU Nam, KW Yoon, WS Shin, H Chung, KY Choi, S Yang, XQ AF Nam, Kyung-Wan Yoon, Won-Sub Shin, Hyunjung Chung, Kyung Yoon Choi, Seungdon Yang, Xiao-Qing TI In situ X-ray diffraction studies of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge-discharge cycling SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium battery; In situ XRD; Composite cathode; LiMn2O4; LiNi1/3Co1/3Mn1/3O2 ID ELECTROCHEMICAL EVALUATION; STRUCTURAL-CHANGES; PHASE-TRANSITIONS; BATTERIES; LINI0.8CO0.2O2; LIMN2O4; LI(NI1/3CO1/3MN1/3)O-2; LINI0.8CO0.15AL0.05O2; LICO1/3NI1/3MN1/3O2 AB The structural changes of the composite cathode made by mixing spinel LiMn2O4 and layered LiNi1/3Co1/3Mn1/3O2 in 1:1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to similar to 5.2 V vs. Li/Li+, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the LiNi1/3Co1/3Mn1/3O2 component only. When the cell voltage reaches at similar to 4.0 V vs. Li/Li+, lithium extraction from the spinel LiMn2O4 component starts and becomes the major contributor for the cell capacity due to the higher rate capability of LiMn2O4. When the voltage passed 4.3 V, the major structural changes are from the LiNi1/3Co1/3Mn1/3O2 component, while the LiMn2O4 component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel LiMn2O4 component, with much less changes in the layered LiNi1/3Co1/3Mn1/3O2 Component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yoon, Won-Sub; Shin, Hyunjung] Sch Adv Mat Eng, Seoul 136702, South Korea. [Nam, Kyung-Wan; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Chung, Kyung Yoon] Korea Inst Sci & Technol, Battery Res Ctr, Seoul 136791, South Korea. [Choi, Seungdon] LG Chem, Battery Res & Dev, Taejon 305380, South Korea. RP Yoon, WS (reprint author), Sch Adv Mat Eng, Seoul 136702, South Korea. EM wsyoon@kookmin.ac.kr RI Shin, Hyunjung/D-5107-2009; Chung, Kyung Yoon/E-4646-2011; Nam, Kyung-Wan Nam/G-9271-2011; Yoon, Won-Sub/H-2343-2011; Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015 OI Shin, Hyunjung/0000-0003-1284-9098; Chung, Kyung Yoon/0000-0002-1273-746X; Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369 FU Assistant Secretary for Energy Efficiency; Renewable Energy, Office of Vehicle Technologies; U.S. Department of Energy [DEAC0298CH10886]; Kookmin University in Korea; Korean Government [KRF-2008-331-D00248]; NRL [R0A-2007-000-20105-0]; CMPS of MEST/KOSEF [R11-2005-048-00000-0] FX The work at BNL was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems", of the U.S. Department of Energy under Contract Number DEAC0298CH10886. This work was supported by the new faculty research program 2008 of Kookmin University in Korea. This work was also supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-331-D00248). We acknowledge financial supports from the NRL Programs (R0A-2007-000-20105-0), and the CMPS (R11-2005-048-00000-0) of MEST/KOSEF. NR 18 TC 53 Z9 55 U1 5 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 15 PY 2009 VL 192 IS 2 SI SI BP 652 EP 659 DI 10.1016/j.jpowsour.2009.02.088 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 461MB UT WOS:000267270000056 ER PT J AU Gao, Y Huang, W Woodford, J Wang, LS Zeng, XC AF Gao, Yi Huang, Wei Woodford, Jeffrey Wang, Lai-Sheng Zeng, Xiao Cheng TI Detecting Weak Interactions between Au- and Gas Molecules: A Photoelectron Spectroscopic and Ab Initio Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID THEORETICAL CHEMISTRY; GOLD CLUSTERS; BASIS-SETS; OXYGEN; CO; CATALYSIS; OXIDATION; BOND; CHEMISORPTION; TRANSITION AB We show that anion photoelectron spectroscopy can be a very sensitive probe for weak intermolecular interactions between gold anion and a noble-gas atom or other nonreactive molecule. High-level ab initio calculations support the measured trend of relatively weak intermolecular interactions among various gold anion-atom complexes. The interaction between Au- and H2O is much stronger, comparable to a strong hydrogen bond. The interaction between Au- and O-2 is weaker than that between Au- and a noble-gas atom (Ar, Kr, or Xe). C1 [Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Woodford, Jeffrey] Eastern Oregon Univ, Dept Chem, La Grande, OR 97850 USA. [Gao, Yi; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov; xczeng@phase2.unl.edu RI Gao, Yi/A-8888-2009 OI Gao, Yi/0000-0001-6015-5694 FU NSF [CHE-0749496, CHE-0427746, DMR-0820521]; EMSL; DOE Office of Biological and Environmental Research; Nebraska Research Initiative FX The experimental work was supported by NSF (CHE-0749496) and performed at the EMSL. it national scientific user facility sponsored by the DOE Office of Biological and Environmental Research. The theoretical work was Supported by grants from NSF (CHE-0427746, DMR-0820521) and the Nebraska Research Initiative. NR 35 TC 27 Z9 27 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 15 PY 2009 VL 131 IS 27 BP 9484 EP + DI 10.1021/ja903043d PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 473VT UT WOS:000268239400008 PM 19537810 ER PT J AU Lee, HY Topham, DJ Park, SY Hollenbaugh, J Treanor, J Mosmann, TR Jin, X Ward, BM Miao, HY Holden-Wiltse, J Perelson, AS Zand, M Wu, HL AF Lee, Ha Youn Topham, David J. Park, Sung Yong Hollenbaugh, Joseph Treanor, John Mosmann, Tim R. Jin, Xia Ward, Brian M. Miao, Hongyu Holden-Wiltse, Jeanne Perelson, Alan S. Zand, Martin Wu, Hulin TI Simulation and Prediction of the Adaptive Immune Response to Influenza A Virus Infection SO JOURNAL OF VIROLOGY LA English DT Article ID CD8(+) T-CELLS; LYMPHOCYTIC CHORIOMENINGITIS VIRUS; NEURAMINIDASE INHIBITOR ZANAMIVIR; PLASMACYTOID DENDRITIC CELLS; DYNAMICS IN-VIVO; MATHEMATICAL-MODEL; LYMPH-NODE; SENSITIVITY-ANALYSIS; CUTTING EDGE; B-CELLS AB The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells. C1 [Lee, Ha Youn; Park, Sung Yong; Miao, Hongyu; Holden-Wiltse, Jeanne; Wu, Hulin] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA. [Topham, David J.; Hollenbaugh, Joseph; Mosmann, Tim R.] Univ Rochester, David H Smith Ctr Vaccine Biol & Immunol, Dept Microbiol & Immunol, Rochester, NY 14642 USA. [Treanor, John; Jin, Xia] Univ Rochester, Dept Med, Div Infect Dis, Rochester, NY 14642 USA. [Zand, Martin] Univ Rochester, Dept Med, Div Nephrol, Rochester, NY 14642 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wu, HL (reprint author), 601 Elmwood Ave,Box 630, Rochester, NY 14642 USA. EM hwu@bst.rochester.edu RI Zand, Martin/A-8612-2015 FU National Institute of Allergy and Infectious Diseases [N01-AI-50020]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was funded by National Institute of Allergy and Infectious Diseases contract N01-AI-50020. Portions of this work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 84 TC 72 Z9 73 U1 1 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JUL 15 PY 2009 VL 83 IS 14 BP 7151 EP 7165 DI 10.1128/JVI.00098-09 PG 15 WC Virology SC Virology GA 462LO UT WOS:000267354300018 PM 19439465 ER PT J AU Baker, CG Lehoucq, RB AF Baker, C. G. Lehoucq, R. B. TI Preconditioning constrained eigenvalue problems SO LINEAR ALGEBRA AND ITS APPLICATIONS LA English DT Article DE Eigenvalues; Eigenvectors; Preconditioning; Projection; Linear equality constraints ID EIGENPROBLEMS; TRANSFORMATION; EIGENSOLVERS; ALGORITHM; MATRICES AB The purpose of our paper is to introduce a robust preconditioning scheme for the numerical solution of the leftmost eigenvalues and corresponding eigenvectors of a constrained eigenvalue problem. This constrained eigenvalue problem is congruent to a nonsymmetric eigenvalue problem with nontrivial Jordan blocks associated with infinite eigenvalues. The proposed preconditioning scheme is relevant to the application of Krylov subspace methods and preconditioned eigensolvers. The two key results are a semi-orthogonal decomposition and a transformation process that implicitly combines a preconditioning step followed by abstract projection onto the subspace associated with the finite eigenvalues. Numerical results demonstrate the effectiveness of the preconditioning scheme. (C) 2009 Elsevier Inc. All rights reserved. C1 [Lehoucq, R. B.] Sandia Natl Labs, Appl Math & Applicat Dept, Albuquerque, NM 87185 USA. [Baker, C. G.] Sandia Natl Labs, Scalable Algorithms Dept, Albuquerque, NM 87185 USA. RP Lehoucq, RB (reprint author), Sandia Natl Labs, Appl Math & Applicat Dept, MS 1320, Albuquerque, NM 87185 USA. EM cgbaker@sandia.gov; rblehou@sandia.gov FU Sandia Corporation; United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy: Contract/Grant Number: DE-AC04-94AL85000. NR 21 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0024-3795 J9 LINEAR ALGEBRA APPL JI Linear Alg. Appl. PD JUL 15 PY 2009 VL 431 IS 3-4 BP 396 EP 408 DI 10.1016/j.laa.2009.02.018 PG 13 WC Mathematics, Applied; Mathematics SC Mathematics GA 456ER UT WOS:000266824400008 ER PT J AU Capolungo, L Beyerlein, IJ Kaschner, GC Tome, CN AF Capolungo, L. Beyerlein, I. J. Kaschner, G. C. Tome, C. N. TI On the interaction between slip dislocations and twins in HCP Zr SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Zirconium; Strain path change; Twinning; Temperature effects; Polycrystal modeling ID HIGH-RATE DEFORMATION; MECHANICAL RESPONSE; CONSTITUTIVE LAW; STORED ENERGY; METALS; ZIRCONIUM; TEMPERATURE; TEXTURE; STRESS; STRAIN AB We investigate the effect of stored prismatic dislocations on the onset and growth of {10 (1) over bar2} and {11 (2) over bar2} twins in pure Zr. A set of temperature jump tests, some combined with a strain path changes, are performed here to exploit the fact that slip-dominated plastic behavior occurs at room temperature and twin-dominated plastic behavior at lower temperatures. In some of the tests the material is pre-strained to various levels at room temperature to introduce prismatic slip dislocations, and then reloaded at liquid nitrogen. In other tests the material is pre-strained at liquid nitrogen, to different levels and in different directions, to generate either {10 (1) over bar2} tensile or {11 (2) over bar2} compressive twins, and then reloaded at room temperature. These tests are interpreted with a recently developed dislocation-density based single crystal model in order to elucidate slip-twin interactions operating at the nanometer scale. Our analysis suggests that (1) stored dislocations increase the resistance for further slip and for {11 (2) over bar2} twin propagation, but not for {10 (1) over bar2} twin propagation; (2) the onset of {11 (2) over bar2} twinning is insensitive to the amount of stored dislocations; (3) substantial slip occurs within the twin oriented domains, which can either increase or decrease the hardening rate by comparison to the one without twins. Published by Elsevier B.V. C1 [Capolungo, L.; Kaschner, G. C.; Tome, C. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Capolungo, L (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Mail Stop G755, Los Alamos, NM 87545 USA. EM laurentc@lanl.gov RI Zhang, Jing/B-1421-2012; Tome, Carlos/D-5058-2013; Kaschner, George/H-4445-2013; Beyerlein, Irene/A-4676-2011 FU U.S. DOE [FWP06SCPE401, W-7405-ENG-36] FX The authors would like to acknowledge support from Office of Basic Energy Sciences, Project FWP06SCPE401, under U.S. DOE Contract No. W-7405-ENG-36. NR 33 TC 53 Z9 54 U1 1 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2009 VL 513-14 BP 42 EP 51 DI 10.1016/j.msea.2009.01.035 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 452YP UT WOS:000266577400006 ER PT J AU Newton, TR Melkote, SN Watkins, TR Trejo, RM Reister, L AF Newton, Thomas R. Melkote, Shreyes N. Watkins, Thomas R. Trejo, Rosa M. Reister, Laura TI Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Wire-EDM; Recast layer; Nickel-base superalloy; Inconel 718 ID ELECTRICAL-DISCHARGE MACHINE; SURFACE CHARACTERISTICS; RESIDUAL-STRESS; TOOL STEEL; WEDM; INTEGRITY; CUT; OPTIMIZATION; BEHAVIOR; ENERGY AB Inconel 718 is a high nickel content superalloy possessing high strength at elevated temperatures and resistance to oxidation and corrosion. The non-traditional manufacturing process of wire-electrical discharge machining (EDM) possesses many advantages over traditional machining during the manufacture of Inconel 718 parts. However, certain detrimental effects are also present and are due in large part to the formation of the recast layer. An experimental investigation was conducted to determine the main EDM parameters which contribute to recast layer formation in Inconel 718. It was found that average recast layer thickness increased primarily with energy per spark, peak discharge current, and current pulse duration. Over the range of parameters tested, the recast layer was observed to be between 5 and 9 mu m in average thickness, although highly variable in nature. The recast material was found to possess in-plane tensile residual stresses, as well as lower hardness and elastic modulus than the bulk material. (c) 2009 Elsevier B.V. All rights reserved. C1 [Newton, Thomas R.; Melkote, Shreyes N.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Watkins, Thomas R.; Trejo, Rosa M.; Reister, Laura] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Melkote, SN (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM shreyes.melkote@me.gatech.edu RI Watkins, Thomas/D-8750-2016 OI Watkins, Thomas/0000-0002-2646-1329 FU Sandia National Laboratory; UT-Battelle, LLC [DEAC05-00OR22725] FX The authors would like to thank Sandia National Laboratory for their partial support of this research. This research was also sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedornCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DEAC05-00OR22725. NR 51 TC 36 Z9 38 U1 2 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2009 VL 513-14 BP 208 EP 215 DI 10.1016/j.msea.2009.01.061 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 452YP UT WOS:000266577400029 ER PT J AU Connor, DM Benveniste, H Dilmanian, FA Kritzer, MF Miller, LM Zhong, Z AF Connor, Dean M. Benveniste, Helene Dilmanian, F. Avraham Kritzer, Mary F. Miller, Lisa M. Zhong, Zhong TI Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging SO NEUROIMAGE LA English DT Article ID MAGNETIC-RESONANCE MICROSCOPY; IN-VIVO; TRANSGENIC MICE; BRAIN; FUTURE; AD AB Our understanding of early development in Alzheimer's disease (AD) is clouded by the scale at which the disease progresses: amyloid beta (A beta) plaques, a hallmark feature of AD, are small (similar to 50 mu m) and low contrast in diagnostic clinical imaging techniques. Diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique, has greater soft tissue contrast than conventional radiography and generates higher resolution images than magnetic resonance microimaging. Thus, in this proof of principle study, DEI in micro-CT mode was performed on the brains of AD-model mice to determine if DEI can visualize A beta plaques. Results revealed small nodules in the cortex and hippocampus of the brain. Histology confirmed that the features seen in the DEI images of the brain were A beta plaques. Several anatomical structures, including hippocampal subregions and white matter tracks, were also observed. Thus, DEI has strong promise in early diagnosis of AD, as well as general studies of the mouse brain. (C) 2009 Elsevier Inc. All rights reserved. C1 [Connor, Dean M.; Miller, Lisa M.; Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Benveniste, Helene; Dilmanian, F. Avraham] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Benveniste, Helene] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Dilmanian, F. Avraham] SUNY Stony Brook, Dept Radiat Oncol, Stony Brook, NY 11794 USA. [Kritzer, Mary F.] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA. RP Connor, DM (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM connord@bnl.gov FU U.S. Department of Energy; Office of Basic Energy Sciences [DE-AC02-98CH10886]; Brookhaven National Laboratory [LDRD 05-057]; NIH [R01 AR48292]; NIH/NCI [CA111976] FX The authors would like to thank Dr. William Van Nostrand for his contribution to this study. Use of the X15A beamline at the NSLS, BNL, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract number DE-AC02-98CH10886, the Brookhaven National Laboratory LDRD 05-057, NIH grant R01 AR48292, and NIH/NCI grant CA111976. NR 32 TC 24 Z9 24 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD JUL 15 PY 2009 VL 46 IS 4 BP 908 EP 914 DI 10.1016/j.neuroimage.2009.03.019 PG 7 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 457YY UT WOS:000266975600004 PM 19303447 ER PT J AU Gu, JA Chen, CW Chen, PS AF Gu, Je-An Chen, Chien-Wen Chen, Pisin TI A new approach to testing dark energy models by observations SO NEW JOURNAL OF PHYSICS LA English DT Article ID HUBBLE-SPACE-TELESCOPE; EQUATION-OF-STATE; COSMOLOGICAL CONSTANT; POWER-SPECTRUM; SUPERNOVA DATA; IA SUPERNOVAE; DATA SET; QUINTESSENCE; UNIVERSE; MATTER AB We propose a new approach to the consistency test of dark energy models with observations. To test a category of dark energy models, we suggest introducing a characteristic Q(z) that, in general, varies with the redshift z but, in those models, plays the role of a (constant) distinct parameter. Then, by reconstructing dQ(z)/dz from observational data and comparing it with zero, we can assess the consistency between data and the models under consideration. For a category of models that passes the test, we can further constrain the distinct parameter of those models by reconstructing Q(z) from data. For demonstration, in this paper we concentrate on quintessence. In particular, we examine the exponential potential and the power-law potential via a widely used parameterization of the dark energy equation of state, w(z) = w(0) + w(a)(1- a), for data analysis. This method of the consistency test is particularly efficient because for all models we invoke the constraint of only a single parameter space that by choice can be easily accessed. The general principle of our approach is not limited to dark energy. It may also be applied to the testing of various cosmological models and even models in other fields beyond the scope of cosmology. C1 [Gu, Je-An] Natl Ctr Theoret Sci, Div Phys, Hsinchu, Taiwan. [Gu, Je-An; Chen, Pisin] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Chen, Chien-Wen; Chen, Pisin] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Chen, Pisin] Stanford Univ, Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Chen, Pisin] Natl Taiwan Univ, Grad Inst Astrophys, Taipei 10617, Taiwan. RP Gu, JA (reprint author), Natl Ctr Theoret Sci, Div Phys, POB 2-131, Hsinchu, Taiwan. EM jagu@ntu.edu.tw FU National Center for Theoretical Sciences; National Science Council; Taiwan National Science Council [NSC 95-2119-M-002-034, NSC 96-2112-M-002-023-MY3, NSC 97-2112-M-002-026-MY3]; US Department of Energy [DE-AC03-76SF00515] FX JAG is supported by the National Center for Theoretical Sciences (funded by the National Science Council), Taiwan, Republic of China. CWC by the Taiwan National Science Council under Project no. NSC 95-2119-M-002-034 and NSC 96-2112-M-002-023-MY3, and PC by the Taiwan National Science Council under Project no. NSC 97-2112-M-002-026-MY3 and by US Department of Energy under Contract no. DE-AC03-76SF00515. NR 40 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 15 PY 2009 VL 11 AR 073029 DI 10.1088/1367-2630/11/7/073029 PG 13 WC Physics, Multidisciplinary SC Physics GA 470CI UT WOS:000267950200004 ER PT J AU Sridharan, AK Heebner, JE Messerly, MJ Dawson, JW Beach, RJ Barty, CPJ AF Sridharan, Arun Kumar Heebner, John E. Messerly, Michael J. Dawson, Jay W. Beach, Raymond J. Barty, C. P. J. TI Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier SO OPTICS LETTERS LA English DT Article AB We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 mu J, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 mu J (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192-the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge. (C) 2009 Optical Society of America C1 [Sridharan, Arun Kumar] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94551 USA. RP Sridharan, AK (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, 7000 East Ave, Livermore, CA 94551 USA. EM sridharan1@llnl.gov RI Heebner, John/C-2411-2009 NR 5 TC 7 Z9 7 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 15 PY 2009 VL 34 IS 14 BP 2234 EP 2236 PG 3 WC Optics SC Optics GA 481TK UT WOS:000268834500050 PM 19823559 ER PT J AU Jagannadham, K Watkins, TR Lance, MJ Riester, L Lemaster, RL AF Jagannadham, K. Watkins, T. R. Lance, M. J. Riester, L. Lemaster, R. L. TI Laser physical vapor deposition of boron carbide films to enhance cutting tool performance SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Boron carbide; Laser deposition; Tool coating ID THIN-FILMS; TRIBOLOGICAL PROPERTIES; RAMAN-SPECTROSCOPY; COATINGS; FRICTION; WEAR; HUMIDITY; HARDNESS; CVD AB Laser physical vapor deposition was used to deposit thin films of boron carbide on Si (100) and WC-Co substrates at 550 degrees C under different pressures of methane atmosphere. Grazing incidence X-ray diffraction was used to identify a boron carbide phase, which exhibited weak peaks. The presence of particulates in the size range of 50 nm-3 pm embedded in an amorphous matrix was observed by scanning electron microscopy. Raman spectroscopy indicated that as methane partial pressure was increased during deposition, the amount of disorder with the boron carbide structure also increased. Also, the nanoindentation hardness decreased, while the coefficient of friction and scratch adhesion strength increased. These effects are attributed to an increase in amorphous phase/disorder in the films. Wear tests conducted by machining particleboard using boron carbide coated WC-Co tools in the absence of methane showed the same wear rate as tools coated under higher methane pressures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Jagannadham, K.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Watkins, T. R.; Lance, M. J.; Riester, L.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. [Lemaster, R. L.] N Carolina State Univ, Dept Wood & Paper Sci, Raleigh, NC 27695 USA. RP Jagannadham, K (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM jag_kasichainula@ncsu.edu RI Jagannadham, Kasichainula/A-2953-2008; Watkins, Thomas/D-8750-2016; Lance, Michael/I-8417-2016 OI Watkins, Thomas/0000-0002-2646-1329; Lance, Michael/0000-0001-5167-5452 FU National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2003-35103-12944]; NSF; DMR-IMR [0526920]; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of FreedomCAR; Vehicle Technologies; U.S. Department of Energy [DE-AC05-00OR22725] FX The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2003-35103-12944. Partial support for this work was provided by NSF, DMR-IMR instrumentation grant: 0526920. Part of this research is sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. We wish to acknowledge the support from the South Eastern Universities Research Association through the SURA-ORNL summer program and the travel support for the first author through the Oak Ridge Associated Universities Association. The authors wish to thank Dr. Jun Xiao of Center for Tribology, Inc. for performing COF and scratch tests. NR 26 TC 6 Z9 6 U1 0 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUL 15 PY 2009 VL 203 IS 20-21 BP 3151 EP 3156 DI 10.1016/j.surfcoat.2009.03.049 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 466AK UT WOS:000267632400027 ER PT J AU Pina-Guzman, B Sanchez-Gutierrez, M Marchetti, F Hernandez-Ochoa, I Solis-Heredia, MJ Quintanilla-Vega, B AF Pina-Guzman, B. Sanchez-Gutierrez, M. Marchetti, F. Hernandez-Ochoa, I. Solis-Heredia, M. J. Quintanilla-Vega, B. TI Methyl-parathion decreases sperm function and fertilization capacity after targeting spermatocytes and maturing spermatozoa SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Methyl-parathion; Sperm function; Fertilization; Oxidative stress ID MEXICAN AGRICULTURAL-WORKERS; IN-VITRO FERTILIZATION; OXIDATIVE STRESS; PESTICIDE EXPOSURE; LIPID-PEROXIDATION; DNA-DAMAGE; O-4-NITROPHENYL PHOSPHOROTHIOATE; CHROMATIN-STRUCTURE; ACROSOME REACTION; SEMEN QUALITY AB Paternal germline exposure to organophosphorous pesticides (OP) has been associated with reproductive failures and adverse effects in the offspring. Methyl-parathion (Me-Pa), a worldwide-used OP, has reproductive adverse effects and is genotoxic to sperm, possibly via oxidative damage. This study investigated the stages of spermatogenesis susceptible to be targeted by Me-Pa exposure that impact on spermatozoa function and their ability to fertilize. Male mice were exposed to Me-Pa (20 mg/kg bw, i.p.) and spermatozoa from epididymis-vas deferens were collected at 7 or 28 days post-treatment (dpt) to assess the effects on maturing spermatozoa and spermatocytes, respectively. Spermatozoa were examined for DNA damage by nick translation (NT-positive cells) and SCSA (%DFI), lipoperoxidation (LPO) by malondialdehyde production, sperm function by spontaneous- and induced-acrosome reactions (AR), mitochondrial membrane potential (MMP) by using the JC-1 fluorochrome, and fertilization ability by an in vitro assay and in vivo mating. Alterations on DNA integrity (%DFI and NT-positive cells) in spermatozoa collected at 7 and 28 dpt, and decreases in sperm quality and induced-AR were observed; reduced MMP and LPO were observed at 7 dpt only. Negative correlations between LPO and sperm alterations were found. Altered sperm functional parameters evaluated either in vitro or in vivo were associated with reduced fertilization rates at both times. These results show that Me-Pa exposure of maturing spermatozoa and spermatocytes affects many sperm functional parameters that result in a decreased fertilizing capacity. Oxidative stress seems to be a likely mechanism of the detrimental effects of Me-Pa exposure in male germ cells. (C) 2009 Elsevier Inc. All rights reserved. C1 [Pina-Guzman, B.; Solis-Heredia, M. J.; Quintanilla-Vega, B.] CINVESTAV, Secc Externa Toxicol, Mexico City 07360, DF, Mexico. [Sanchez-Gutierrez, M.] Univ Autonoma Estado Hidalgo, Inst Ciencias La Salud, Area Acad Med, Pachuca 42000, Hidalgo, Mexico. [Marchetti, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hernandez-Ochoa, I.] Univ Illinois, Dept Vet Biosci, Urbana, IL 61802 USA. RP Quintanilla-Vega, B (reprint author), CINVESTAV, Secc Externa Toxicol, Av IPN 2508, Mexico City 07360, DF, Mexico. EM mquintan@cinvestav.mx OI Hernandez-Ochoa, Isabel/0000-0002-4427-6282; Marchetti, Francesco/0000-0002-9435-4867 FU Lawrence Berkeley National Laboratory [DE-AC0205CH1123]; CONACyT-Mexico [44643] FX The authors thank Gerardo Martinez Aguilar for his technical assistance and Victor Rosales Garcia in helping with flow cytometry. BPG was a recipient of a scholarship from CONACyT-Mexico. Work performed in part under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under contract DE-AC0205CH1123. This study had financial support from CONACyT-Mexico (Grant #44643 given to BQV). NR 70 TC 17 Z9 19 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUL 15 PY 2009 VL 238 IS 2 BP 141 EP 149 DI 10.1016/j.taap.2009.05.008 PG 9 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 465KV UT WOS:000267584200005 PM 19442678 ER PT J AU Wadia, C Wu, Y Gul, S Volkman, SK Guo, JH Alivisatos, AP AF Wadia, Cyrus Wu, Yue Gul, Sheraz Volkman, Steven K. Guo, Jinghua Alivisatos, A. Paul TI Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS2 Nanocrystals SO CHEMISTRY OF MATERIALS LA English DT Article ID SOURCE MOLECULAR PRECURSORS; SELENIDE QUANTUM DOTS; SOLAR-CELLS; DEPOSITION; FILMS; DEVICES; CDSE C1 [Wadia, Cyrus; Wu, Yue; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wadia, Cyrus] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Volkman, Steven K.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Wei, Zhanhua/D-7544-2013; Alivisatos , Paul /N-8863-2015 OI Wei, Zhanhua/0000-0003-2687-0293; Alivisatos , Paul /0000-0001-6895-9048 FU Environmental Protection Agency; Miller Institute for Basic Research in Science; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Timothy Teague. Wanli Ma, C Jonathan S. Owen, Michael Geier, Elena Schevehenko. and Dmitri Talapin for helpful discussions. CW. thanks the Environmental Protection Agency for the EPA STAR Fellowship. Y.W. thanks the Miller Institute for Basic Research in Science for Miller Research Fellowship. This work was Supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 130 Z9 132 U1 13 U2 153 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 14 PY 2009 VL 21 IS 13 BP 2568 EP 2570 DI 10.1021/cm901273v PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 472NG UT WOS:000268138200003 ER PT J AU Lumpkin, GR Smith, KL Blackford, MG Whittle, KR Harvey, EJ Redfern, SAT Zaluzec, NJ AF Lumpkin, Gregory R. Smith, Katherine L. Blackford, Mark G. Whittle, Karl R. Harvey, Elizabeth J. Redfern, Simon A. T. Zaluzec, Nestor J. TI Ion Irradiation of Ternary Pyrochlore Oxides SO CHEMISTRY OF MATERIALS LA English DT Article ID ALPHA-DECAY DAMAGE; NEUTRON-DIFFRACTION; DEFECT PYROCHLORES; INDUCED AMORPHIZATION; RADIATION TOLERANCE; BEAM IRRADIATION; MINERALS; CARBONATITE; ZIRCONOLITE; TEMPERATURE AB Polycrystalline synthetic samples of Y(2)Ti(2-x)Sn(x)O(7) with x = 0.4, 0.8, 1.2, and 1.6, together with Nd(2)Zr(2)O(7), Nd(2)Zr(1.2)Ti(0.8)O(7), and La(1.6)y(0.4)Hf(2)O(7), were irradiated in situ in the intermediate voltage electron microscope (IVEM)-Tandem Facility at Argonne National Laboratory using 1.0 MeV Kr ions at temperatures of 50 to 650 K. Determination of the critical amorphization fluence (F(c)) as a function of temperature has revealed a dramatic increase in radiation tolerance with increasing Sri content oil the pyrochlore B site. Nonlinear least-squares analysis of the fluence-temperature curves gave critical temperatures (T(c)) of 666 +/- 4, 335 +/- 12, and 25 +/- 15 K for the Y(2)Ti(2-x)Sn(x)O(7) samples with v = 0.4, 0.8, and 1.2, respectively, The sample with x = 1.6 appears to disorder to a defect fluorite structure at a fluence below 1.25 x 10(15) ions cm(-2) and remains crystalline to 5 x 10(15) ions cm(-2) at, 50 K. Additionally, the critical fluence-temperature response curves were determined for Nd(2)Zr(1.2)Ti(0.8)O(7) and La(1.6)Y(0.4)Hf(2)O(7), and we obtained T(c) values of 685 +/- 53 K and 473 +/- 52 K, respectively, for these pyrochlores. Nd(2)Zr(2)O(7) did not become amorphous after a fluence of 2.5 x 10(15) ions cm(-2) at 50 K, but there is evidence that it may amorphize at a higher fluence, with an estimated T(c) of similar to 135 K. The observed Tc results are discussed with respect to the predicted Tc values based upon a previously published empirical model (Lumpkin, G. R., Pruneda. M.; Rios, S.: Smith, K. L.; Trachenko, K.; Whittle, K. R.; Zaluzec, N. J. J. Solid State Chem. 2007, 180, 1512). In the Y(2)Ti(2-x)Sn(x)O(7) pyrochlores, T(c) appears to be linear with respect to composition, and is linear with respect to r(A)/r(B) and x(48f) for all samples investigated herein. C1 [Lumpkin, Gregory R.; Smith, Katherine L.; Blackford, Mark G.; Whittle, Karl R.] Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia. [Harvey, Elizabeth J.; Redfern, Simon A. T.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Zaluzec, Nestor J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lumpkin, GR (reprint author), Australian Nucl Sci & Technol Org, Inst Mat Engn, Private Mail Bag 1, Lucas Heights, NSW 2234, Australia. EM grl@ansto.gov.au RI Whittle, Karl/A-7404-2008; Lumpkin, Gregory/A-7558-2008; Redfern, Simon/B-3733-2010 OI Whittle, Karl/0000-0002-8000-0857; Redfern, Simon/0000-0001-9513-0147 FU U.S. DOE, Basic Energy Sciences [W-31-10-ENG-38]; Access to Major Research Facilities Programme (a component of the International Science Linkages Programme established Under the Australian Government's innovation statement, Backing Australia's Ability); Cambridge-MIT institute (CMI); British Nuclear Fuels Limited (BNFL); EPSRC [EP/C510259/1] FX The authors thank the IVEM-Tandem Facility staff at Argonne National Laboratory for assistance during the ion irradiation work, The IVEM-Tandem Facility is supported as a User Facility by the U.S. DOE, Basic Energy Sciences, under contract W-31-10-ENG-38. We acknowledge financial support from the Access to Major Research Facilities Programme (a component of the International Science Linkages Programme established Under the Australian Government's innovation statement, Backing Australia's Ability). Part of this work was supported by the Cambridge-MIT institute (CMI), British Nuclear Fuels Limited (BNFL), and EPSRC Grant (EP/C510259/1) to G.R.L. We are grateful to Huijun Li and Joel Davis for assistance with the SEM and TEM work and maintenance of the facilities at ANSTO. NR 44 TC 19 Z9 19 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 14 PY 2009 VL 21 IS 13 BP 2746 EP 2754 DI 10.1021/cm9003917 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 472NG UT WOS:000268138200032 ER PT J AU Nagata, T Fedorov, DG Kitaura, K Gordon, MS AF Nagata, Takeshi Fedorov, Dmitri G. Kitaura, Kazuo Gordon, Mark S. TI A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; INTERMOLECULAR PAULI REPULSION; POLARIZABLE CONTINUUM MODEL; DISTRIBUTED DATA INTERFACE; CLOSED-SHELL MOLECULES; OVOMUCOID 3RD DOMAIN; METHOD FMO; GEOMETRY OPTIMIZATIONS; ELECTRONIC-STRUCTURE; THEORETICAL-ANALYSIS AB The effective fragment potential (EFP) method, a model potential for treating solvent effects and other intermolecular interactions, is interfaced with an electronic structure method, the fragment molecular orbital (FMO) method, that is able to retain high accuracy for ab initio calculations on large molecular systems. The accuracy of the total energies in this novel combined FMO/EFP method is assessed by comparisons with the conventional quantum mechanics (QM)/EFP method. The test cases are water clusters, a peptide, and a dianionic protein (treated with full QM and FMO combined with water clusters (treated with EFP) at the RHF, B3LYP, and MP2 levels of theory. The basis sets employed range from minimal to augmented double zeta plus polarization. The energy differences between FMO/EFP and the conventional QM/EFP methods are within "chemical accuracy" (1 kcal/mol approximate to 4 kJ/mol). (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3156313] C1 [Nagata, Takeshi; Fedorov, Dmitri G.; Kitaura, Kazuo] Natl Inst Adv Ind Sci & Technol, RICS, Tsukuba, Ibaraki 3058568, Japan. [Nagata, Takeshi; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Nagata, Takeshi; Gordon, Mark S.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Kitaura, Kazuo] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan. RP Nagata, T (reprint author), Natl Inst Adv Ind Sci & Technol, RICS, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan. EM mark@si.msg.chem.iastate.edu NR 91 TC 29 Z9 29 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2009 VL 131 IS 2 AR 024101 DI 10.1063/1.3156313 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 470NU UT WOS:000267983100003 PM 19603964 ER PT J AU Quenneville, J Germann, TC AF Quenneville, Jason Germann, Timothy C. TI A quantum chemistry study of Diels-Alder dimerizations in benzene and anthracene SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PI-PI INTERACTIONS; QUADRATIC CONFIGURATION-INTERACTION; GENERALIZED GRADIENT APPROXIMATION; POLYCYCLIC AROMATIC-HYDROCARBONS; TRANSITION-STATE GEOMETRIES; DENSITY-FUNCTIONAL METHODS; MOLECULAR-ORBITAL METHODS; TRANSIENT HIGH-PRESSURE; SHOCK WAVE COMPRESSION; GAUSSIAN-BASIS SETS AB There is considerable experimental evidence of covalent dimerization of aromatic compounds occurring under shock conditions. Because of their endothermicity, these reactions could play a large role in the shock initiation process of aromatic molecular explosives such as 2,4,6-trinitrotoluene and 1,3,5-triamino-2,4,6-trinitrobenzene by withdrawing energy from the shock compression. Very little is known about the energetics, however, and this knowledge is crucial for the design of empirical force fields that can treat shock-induced chemistry. We have employed ab initio electronic structure and density functional methods to study the Diels-Alder (DA) dimerizations of benzene and anthracene. The enthalpy of reaction for DA benzene dimerization is predicted to be +35.9 kcal/mol. The stepwise pathway to this dimer involves formation of a stable triplet intermediate that requires 71.8 kcal/mol of energy. Transition states along both the concerted and stepwise pathways were optimized and the energetics of the reaction pathways are detailed. The former is found to be the energetically preferred mechanism. Nine DA dimers of anthracene were found, with six predicted to have dimerization Delta H(rxn)'s of 24-55 kcal/mol, two with dimerization energies near zero and one that is formed through an exothermic reaction. Twelve triplet dimers of anthracene, with Delta H(rxn)'s ranging from 33-50 kcal/mol, are also described. Finally, the potential importance of these reactions in the context of shock compression of these materials is discussed. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3159542] C1 [Quenneville, Jason] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Quenneville, J (reprint author), Spectral Sci Inc, Burlington, MA 01803 USA. EM jasonq@spectral.com OI Germann, Timothy/0000-0002-6813-238X FU Los Alamos National Laboratory (LANL) [W-7405-ENG-36, DE-AC52-06NA25396]; Agnew National Security Postdoctoral Fellowship FX This work was performed at Los Alamos National Laboratory (LANL) under U. S. Department of Energy Contract Nos. W-7405-ENG-36 and DE-AC52-06NA25396. The authors are grateful to Ray Engelke and Normand C. Blais for fruitful discussions of this work, and to Joshua Coe for a careful reading of the manuscript. J. Q. thanks LANL for funding through an Agnew National Security Postdoctoral Fellowship. NR 80 TC 9 Z9 9 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2009 VL 131 IS 2 AR 024313 DI 10.1063/1.3159542 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 470NU UT WOS:000267983100036 PM 19603997 ER PT J AU Feist, J Pazourek, R Nagele, S Persson, E Schneider, BI Collins, LA Burgdorfer, J AF Feist, J. Pazourek, R. Nagele, S. Persson, E. Schneider, B. I. Collins, L. A. Burgdoerfer, J. TI Electron correlation in two-photon double ionization of helium from attosecond to XFEL pulses SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Multi-Photon Processes CY 2008 CL Max Planck Inst Nucl Phys, Heidelberg, GERMANY HO Max Planck Inst Nucl Phys ID DIFFERENTIAL CROSS-SECTIONS; DEPENDENT SCHRODINGER-EQUATION; PHOTO-DOUBLE-IONIZATION; HIGH-HARMONIC-GENERATION; SINGLE; LASER; HE; PHOTOIONIZATION; COLLISIONS; STATES AB We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort pulses in the extreme ultraviolet (XUV) regime with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for pulses with mean frequencies in the so-called 'sequential' regime ((h) over bar omega > 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct ('nonsequential') and indirect ('sequential') double photoionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route towards measuring the pulse duration of x-ray free-electron laser (XFEL) pulses. C1 [Feist, J.; Pazourek, R.; Nagele, S.; Persson, E.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Schneider, B. I.] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. [Schneider, B. I.] Natl Inst Stand & Technol, Elect & Atom Phys Div, Gaithersburg, MD 20899 USA. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Feist, J (reprint author), Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. EM johannes.feist@tuwien.ac.at RI Nagele, Stefan/E-6938-2011; Feist, Johannes/J-7394-2012 OI Nagele, Stefan/0000-0003-1213-0294; Feist, Johannes/0000-0002-7972-0646 NR 59 TC 21 Z9 21 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2009 VL 42 IS 13 AR 134014 DI 10.1088/0953-4075/42/13/134014 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 470AG UT WOS:000267943300015 ER PT J AU Morales, F Martin, F Horner, DA Rescigno, TN McCurdy, CW AF Morales, F. Martin, F. Horner, D. A. Rescigno, T. N. McCurdy, C. W. TI Two-photon double ionization of H-2 at 30 eV using exterior complex scaling SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Multi-Photon Processes CY 2008 CL Max Planck Inst Nucl Phys, Heidelberg, GERMANY HO Max Planck Inst Nucl Phys ID ELECTRON CORRELATION; HYDROGEN MOLECULE; PHOTOIONIZATION; HELIUM; DISSOCIATION; BREAKUP; SINGLE; HE AB Calculations of fully differential cross sections for two-photon double ionization of the hydrogen molecule with photons of 30 eV are reported. The results have been obtained by using the method of exterior complex scaling, which allows one to construct essentially exact wavefunctions that describe the double continuum on a large, but finite, volume. The calculated cross sections are compared with those previously obtained by Colgan et al (J.Phys. B: At. Mol. Opt. Phys. 41 121002), and discrepancies are found for specific molecular orientations and electron ejection directions. C1 [Morales, F.; Martin, F.] Univ Autonoma Madrid, Dept Quim C 9, E-28049 Madrid, Spain. [Horner, D. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rescigno, T. N.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Morales, F (reprint author), Univ Autonoma Madrid, Dept Quim C 9, E-28049 Madrid, Spain. EM felipe.morales@uam.es RI Martin, Fernando/C-3972-2014; Morales, Felipe/F-8089-2016 OI Martin, Fernando/0000-0002-7529-925X; NR 38 TC 26 Z9 26 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2009 VL 42 IS 13 AR 134013 DI 10.1088/0953-4075/42/13/134013 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 470AG UT WOS:000267943300014 ER PT J AU Virgili, JM Hexemer, A Pople, JA Balsara, NP Segalman, RA AF Virgili, Justin M. Hexemer, Alexander Pople, John A. Balsara, Nitash P. Segalman, Racbel A. TI Phase Behavior of Polystyrene-block-poly(2-vinylpyridine) Copolymers in a Selective Ionic Liquid Solvent SO MACROMOLECULES LA English DT Article ID POLYMER ELECTROLYTE MEMBRANES; ORDER-DISORDER TRANSITION; BRONSTED ACID-BASE; OXIDE) TRIBLOCK COPOLYMERS; SENSITIZED SOLAR-CELLS; SELF-CONSISTENT THEORY; BLOCK-COPOLYMER; DIBLOCK COPOLYMERS; AQUEOUS-SOLUTIONS; FUEL-CELLS AB The phase behavior of poly(styrene-block-2-vinylpyridine) copolymer solutions in an imidazolium bis(trifluoromethane), sulfonamide ([Im][TFSI]) ionic liquid has been studied using small-angle X-ray scattering (SAXS) and optical transmission characterization. Through scaling analysis of SAXS data, we demonstrate that the [Im][TFSI] ionic liquid behaves as a selective solvent toward one of the blocks. We observe lyotropic and thermotropic phase transitions that correspond qualitatively to the phase behavior observed in block copolymer melts and block copolymer solutions in Molecular solvents. In addition, we have studied the thermal properties of block copolymer solutions in the ionic liquid using differential scanning calorimetry and wide-angle X-ray scattering. We observe distinct composition regimes corresponding to the change in the block copolymer's glass transition temperature, T(g) with respect to the concentration of polymer in ionic liquid. At high block copolymer concentrations, a.. salt-like" regime corresponding to an increase in the block copolymer T(g) is observed, while at intermediate block copolymer concentrations, a "solvent-like" regime corresponding to a decrease in the block copolymer T(g). is observed. An unusual thermal transition consisting of crystallization and subsequent melting of the ionic liquid is observed at the lowest block copolymer concentration characterized. C1 [Virgili, Justin M.; Balsara, Nitash P.; Segalman, Racbel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Virgili, Justin M.; Balsara, Nitash P.; Segalman, Racbel A.] Univ Calif Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. [Hexemer, Alexander] Univ Calif Berkeley, Adv Light Source Div, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Energy & Environm Technol Div, Berkeley, CA 94720 USA. [Pople, John A.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu; segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 FU Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge support from the Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-05CH11231. The authors thank Dr. John Kerr and Dr. Leanne Beer for experimental assistance and use or a glovebox for sample preparation and Professor Alex Katz and Jai-red Ghilarducci for use of a TGA instrument. SAXS and WAXS experiments were performed at the Advanced Light Source and the Stanford Synchrotron Radiation Laboratory. Both are national user facilities supported by the Department of Energy, Office of Basic Energy Sciences. We gratefully acknowledge Eliot Gann for experimental assistance at the ALS and Tom Hostetler for experimental assistance al the SSRL. NR 57 TC 45 Z9 45 U1 2 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 14 PY 2009 VL 42 IS 13 BP 4604 EP 4613 DI 10.1021/ma900483n PG 10 WC Polymer Science SC Polymer Science GA 472NJ UT WOS:000268138500041 ER PT J AU Panday, A Mullin, S Gomez, ED Wanakule, N Chen, VL Hexemer, A Pople, J Balsara, NP AF Panday, Ashoutosh Mullin, Scott Gomez, Enrique D. Wanakule, Nisita Chen, Vincent L. Hexemer, Alexander Pople, John Balsara, Nitash P. TI Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes SO MACROMOLECULES LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; POLYMER ELECTROLYTES; SOLID-STATE; IONIC-CONDUCTIVITY; LITHIUM/POLYMER CELLS; DENDRITIC GROWTH; TRIBLOCK COPOLYMERS; GRAFT COPOLYMER; PHASE-BEHAVIOR; OXIDE) AB The ionic conductivity, sigma, of mixtures of nearly symmetric polystyrene-block-poly(ethylene oxide) copolymers and Li[N(SO2CF3)(2)] (LiTFSI) salt was measured as it function of molecular weight, salt concentration, and temperature. The molecular weight of the poly(ethylene oxide) block, M-PEO, was varied from 7 to 98 kg/mol. The molar ratio of lithium to ethylene oxide, r, was varied from 0.02 to 0.10. In general, sigma increases with increasing M-PEO for all values of r. The data can be summarized by plots of normalized conductivity, sigma(n), versus M-PEO. where sigma(n) = sigma/(f phi(PEO)sigma(PEO)), phi(PEO) is the PEO volume Fraction in the copolymer, sigma(PEO) is the conductivity of PEO homopolymer, and f is a morphology-dependent factor set equal to 2/3 for our lamellar samples. The temperature-dependent conductivity data at a given salt concentration collapse onto a single curve when plotted in this formal. At r = 0.085 sigma(n) values reach a plateau in the vicinity of it unity in the high M-PEO limit. At other values of r, sigma(n) continues to increase with M-PEO within the experimental range and reaches a value of around 0.5 in the high M-PEO limit. C1 [Panday, Ashoutosh; Mullin, Scott; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Panday, Ashoutosh; Mullin, Scott; Gomez, Enrique D.; Wanakule, Nisita; Chen, Vincent L.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Gomez, Enrique D.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. [Pople, John] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. RI Gomez, Enrique/E-5887-2013 NR 55 TC 123 Z9 123 U1 9 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JUL 14 PY 2009 VL 42 IS 13 BP 4632 EP 4637 DI 10.1021/ma900451e PG 6 WC Polymer Science SC Polymer Science GA 472NJ UT WOS:000268138500044 ER PT J AU Maximoff, SN Head-Gordon, MP AF Maximoff, Sergey N. Head-Gordon, Martin P. TI Chemistry of fast electrons SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE heterogeneous catalysis; hot electrons; metal surfaces; surface science; transition metals ID METAL-SURFACES; CO OXIDATION; CARBON-MONOXIDE; REACTION-RATES; HOT-ELECTRONS; PLATINUM; EXCITATIONS; ADSORPTION; EMISSION; DYNAMICS AB A chemicurrent is a flux of fast (kinetic energy greater than or similar to 0.5 - 1.3 eV) metal electrons caused by moderately exothermic (1 - 3 eV) chemical reactions over high work function (4 - 6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of some conduction electrons to the surface via a reduction reaction, 0.5 O-2 + delta e(-) -> O delta- (Red); the delocalization of some surface electrons into a conduction band in an oxidation reaction, O delta- + CO -> CO2 delta- -> CO2 + delta e(-) (Ox); and relaxation without charge transfer (Rel). Juxtaposition of Red, Ox, and Rel produces a daunting variety of metal electronic excitations, but only those that originate from CO2 reactive desorption are long-range and fast enough to dominate the chemicurrent. The chemicurrent yield depends on the universality class of the desorption process and the distribution of the desorption thresholds. This analysis implies a power-law relation with exponent 2.66 between the chemicurrent and the heat of adsorption, which is consistent with experimental findings for a range of systems. This picture also applies to other oxidation-reduction reactions over high work function metal surfaces. C1 [Maximoff, Sergey N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Maximoff, SN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM maximoff@berkeley.edu; mhg@cchem.berkeley.edu RI Maximoff, Sergey/A-4855-2014 FU Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX Thanks to Gabor Somorjai, Russ Renzas, Jeong Park, Yimin Li, and Antoine Hervier for numerous stimulating discussions; Konstandin Kudin for his help with QuantumEspresso code; and John Tully for stimulating conversations. The calculations in this work were done on high-performance computer clusters at the Department of Energy's National Energy Research Scientific Computing Center under a grant of computer time. This work was funded by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 41 TC 25 Z9 25 U1 3 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 14 PY 2009 VL 106 IS 28 BP 11460 EP 11465 DI 10.1073/pnas.0902030106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 470KD UT WOS:000267972700008 PM 19561296 ER PT J AU Yu, Y Ulbrich, MH Li, MH Buraei, Z Chen, XZ Ong, ACM Tong, L Isacoff, EY Yang, J AF Yu, Yong Ulbrich, Maximilian H. Li, Ming-Hui Buraei, Zafir Chen, Xing-Zhen Ong, Albert C. M. Tong, Liang Isacoff, Ehud Y. Yang, Jian TI Structural and molecular basis of the assembly of the TRPP2/PKD1 complex SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE autosomal dominant polycystic kidney disease; single-molecule imaging; stoichiometry; transient receptor potential channel; X-ray crystallography ID POLYCYSTIC KIDNEY-DISEASE; NUCLEOTIDE-GATED CHANNELS; CATION CHANNEL; COILED-COIL; DOMAIN; CELLS; TRPC1; GENE; PKD2; STOICHIOMETRY AB Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations. C1 [Yu, Yong; Li, Ming-Hui; Buraei, Zafir; Tong, Liang; Yang, Jian] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. [Ulbrich, Maximilian H.; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chen, Xing-Zhen] Univ Alberta, Fac Med & Dent, Dept Physiol, Membrane Prot Res Grp, Edmonton, AB T6G 2H7, Canada. [Ong, Albert C. M.] Univ Sheffield, Sch Med, Sheffield Kidney Inst, Acad Unit Nephrol,Kidney Genet Grp, Sheffield S10 2RX, S Yorkshire, England. RP Yang, J (reprint author), Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. EM jy160@columbia.edu OI , Zafir/0000-0001-6485-8987; Tong, Liang/0000-0002-0563-6468 FU National Institutes of Health [NS045383, GM085234]; National Institutes of Health; American Heart Association; Canadian Institutes of Health; Wellcome Trust [GR071201] FX Wethank Dr. Yiqiang Cai (Yale University, NewHaven, CT) for human TRPP2 cDNA; Dr. Hiroaki Matsunami (Duke University, Durham, NC) for HEK 293T cells; Dr. Farhad Forouhar (Columbia University) for suggestions on structural determination; and Dr. Ioannis Michailidis (Columbia University) for reading the manuscript. This work was supported by National Institutes of Health Grants NS045383 and GM085234 (to J. Y.) and NS035549 (to E. Y. I.), National Institutes of Health grants (to L. T.), the Established Investigator Award from the American Heart Association (to J. Y.), a Postdoctoral Fellowship from the American Heart Association (to M. H. U.), Canadian Institutes of Health Research grants (to X.- Z. C.), and Wellcome Trust Research Leave Award GR071201 (to A. C. M. O.). NR 42 TC 91 Z9 94 U1 0 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 14 PY 2009 VL 106 IS 28 BP 11558 EP 11563 DI 10.1073/pnas.0903684106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 470KD UT WOS:000267972700026 PM 19556541 ER PT J AU Hodak, M Chisnell, R Lu, WC Bernholc, J AF Hodak, Miroslav Chisnell, Robin Lu, Wenchang Bernholc, J. TI Functional implications of multistage copper binding to the prion protein SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE copper attachment; hybrid DFT; misfolding; neurodegenerative diseases; metalloprotein ID MOLECULAR-DYNAMICS SIMULATION; C-TERMINAL DOMAIN; OCTAREPEAT DOMAIN; CU(II) BINDING; SECONDARY STRUCTURE; CONSTANT-PRESSURE; FULL-LENGTH; SITES; DISEASE; MODES AB The prion protein (PrP) is responsible for a group of neurodegenerative diseases called the transmissible spongiform encephalopathies. The normal function of PrP has not yet been discovered, but indirect evidence suggests a linkage to its ability to bind copper. In this article, low-copper-concentration bindings of Cu(2+) to PrP are investigated by using a recently developed hybrid density functional theory (DFT)/DFT method. It is found that at the lowest copper concentrations, the binding site consists of 4 histidine residues coordinating the copper through epsilon imidazole nitrogens. At higher concentrations, 2 histidines are involved in the binding, one of them in the axial position. These results are in good agreement with existing experimental data. Comparison of free energies for all modes of coordination shows that when enough copper is available, the binding sites will spontaneously rearrange to accommodate more copper ions, despite the fact that binding energy per copper ion decreases with concentration. These findings support the hypothesis that PrP acts as a copper buffer in vivo, protecting other proteins from the attachment of copper ions. Using large-scale classical molecular dynamics, we also probe the structure of full-length copper-bound PrP, including its unfolded N-terminal domain. The results show that copper attachment leads to rearrangement of the structure of the Cu-bonded octarepeat region and to development of turns in areas separating copper-bound residues. These turns make the flexible N-terminal domain more rigid and thus more resistant to misfolding. The last result suggests that copper binding plays a beneficial role in the initial stages of prion diseases. C1 [Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, J.] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, J.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Lu, Wenchang; Bernholc, J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Hodak, M (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. EM bernholc@ncsu.edu NR 62 TC 21 Z9 21 U1 1 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 14 PY 2009 VL 106 IS 28 BP 11576 EP 11581 DI 10.1073/pnas.0903807106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 470KD UT WOS:000267972700029 PM 19561303 ER PT J AU Meakin, P Tartakovsky, AM AF Meakin, Paul Tartakovsky, Alexandre M. TI MODELING AND SIMULATION OF PORE-SCALE MULTIPHASE FLUID FLOW AND REACTIVE TRANSPORT IN FRACTURED AND POROUS MEDIA SO REVIEWS OF GEOPHYSICS LA English DT Review ID SMOOTHED PARTICLE HYDRODYNAMICS; LATTICE-BOLTZMANN MODEL; MOVING CONTACT LINES; DIFFUSION-LIMITED AGGREGATION; INCOMPRESSIBLE 2-PHASE FLOWS; ADAPTIVE LEVEL SET; PHASE-FIELD MODELS; INVASION PERCOLATION; MOLECULAR-DYNAMICS; NETWORK MODEL AB In the subsurface, fluids play a critical role by transporting dissolved minerals, colloids, and contaminants ( sometimes over long distances); by mediating dissolution and precipitation processes; and by enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks, and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well-developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone; water/oil, water/gas, gas/oil, and water/oil/gas in hydrocarbon reservoirs; water/air/nonaqueous phase liquids ( nonaqueous phase liquids/dense nonaqueous phase liquids) in contaminated vadose zone systems; and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines and their impact on dynamic contact angles must also be taken into account and coupled with the fluid flow. Here we review the methods that are currently being used to simulate pore-scale multiphase fluid flow and reactive transport in fractured and porous media. After the introduction, the review begins with an overview of the fundamental physics of multiphase fluids flow followed by a more detailed discussion of the complex dynamic behavior of contact lines and contact angles, an important barrier to accurate pore-scale modeling and simulation. The main part of the review focuses on five different approaches: pore network models, lattice gas and lattice Boltzmann methods, Monte Carlo methods, particle methods ( molecular dynamics, dissipative particle dynamics, and smoothed particle hydrodynamics), and traditional grid-based computational fluid dynamics coupled with interface tracking and a contact angle model. Finally, the review closes with a discussion of future trends and challenges. C1 [Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, Oslo, Norway. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2007 Kjeller, Norway. [Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Computat & Informat Sci Directorate, Computat Math Tech Grp, Richland, WA 99352 USA. RP Meakin, P (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM paul.meakin@inl.gov FU Office of Science of the U. S. Department of Energy [DE-AC067-6RL01830, DE-AC07-05ID14517] FX We would like to thank Peter Coveney ( Figure 7), Scott Fogler ( Figure 4), Qinjun Kang ( Figure 6), Hai Huang ( Figures 16 - 18), Xiaoyi Li ( Figure 19), Peter Lichtner ( Figure 6), Alex Prevost ( Figure 2), and Mark Robbins ( Figure 9) for permission to reproduce figures from their publications. Hai Huang, Xiaoyi Li, Robert Nourgaliev, Bruce Palmer, and Zhijie Xu made valuable suggestions that substantially improved the manuscript. This research was supported by the Office of Science of the U. S. Department of Energy under the Scientific Discovery through Advanced Computing program. The Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle under contract DE-AC067-6RL01830, and the Idaho National Laboratory is operated for the U. S. Department of Energy by the Battelle Energy Alliance under contract DE-AC07-05ID14517. NR 241 TC 76 Z9 76 U1 27 U2 165 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD JUL 14 PY 2009 VL 47 AR RG3002 DI 10.1029/2008RG000263 PG 47 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 512OM UT WOS:000271259500001 ER PT J AU Ahn, KS Yan, YF Kang, MS Kim, JY Shet, S Wang, HL Turner, J Al-Jassim, M AF Ahn, Kwang-Soon Yan, Yanfa Kang, Moon-Sung Kim, Jin-Young Shet, Sudhakar Wang, Heli Turner, John Al-Jassim, Mowafak TI CoAl2O4-Fe2O3 p-n nanocomposite electrodes for photoelectrochemical cells SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; cobalt compounds; electrochemical electrodes; electron-hole recombination; iron compounds; nanocomposites; photoelectrochemical cells; photoelectrochemistry ID WATER; PHOTOELECTROLYSIS; TIO2; PHOTOCATALYSIS; FILMS; ZNO AB CoAl2O4-Fe2O3 p-n nanocomposite electrodes were deposited on Ag-coated stainless-steel substrates and annealed at 800 degrees C. Their photoelectrochemical (PEC) properties were investigated and compared with that of p-type CoAl2O4 films. We found that the nanocomposite electrodes exhibit much improved PEC photoresponse as compared to the reference p-type CoAl2O4 electrodes. We speculate that the enhancement is due to the formation of a three-dimensional junction between p-type CoAl2O4 and n-type Fe2O3 nanoparticles, which improves electron-hole separation, thus reducing charge recombination upon light illumination. C1 [Ahn, Kwang-Soon; Yan, Yanfa; Kim, Jin-Young; Shet, Sudhakar; Wang, Heli; Turner, John; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kang, Moon-Sung] Samsung Adv Inst Technol, Energy & Environm Lab, Yongin 446712, Gyeonggi Do, South Korea. RP Ahn, KS (reprint author), Yeungnam Univ, Sch Display & Chem Engn, Dae Dong, Kyongsan 712749, South Korea. EM kstheory@ynu.ac.kr; yanfa.yan@nrel.gov RI Kim, Jin Young/B-7077-2012; Dom, Rekha/B-7113-2012 OI Kim, Jin Young/0000-0001-7728-3182; FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308] FX This work is supported by the U.S. Department of Energy (DOE) under Grant No. DE-AC36-08GO28308. NR 16 TC 24 Z9 25 U1 1 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 022116 DI 10.1063/1.3183585 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200044 ER PT J AU Anderson, BE Guyer, RA Ulrich, TJ Le Bas, PY Larmat, C Griffa, M Johnson, PA AF Anderson, Brian E. Guyer, Robert A. Ulrich, Timothy J. Le Bas, Pierre-Yves Larmat, Carene Griffa, Michele Johnson, Paul A. TI Energy current imaging method for time reversal in elastic media SO APPLIED PHYSICS LETTERS LA English DT Article DE elasticity; electromagnetic wave propagation AB An energy current imaging method is presented for use in locating sources of wave energy during the back propagation stage of the time reversal process. During the back propagation phase of an ideal time reversal experiment, wave energy coalesces from all angles of incidence to recreate the source event; after the recreation, wave energy diverges in every direction. An energy current imaging method based on this convergence/divergence behavior has been developed. The energy current imaging method yields a smaller spatial distribution for source reconstruction than is possible with traditional energy imaging methods. C1 [Anderson, Brian E.; Guyer, Robert A.; Ulrich, Timothy J.; Le Bas, Pierre-Yves; Larmat, Carene; Griffa, Michele; Johnson, Paul A.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. [Anderson, Brian E.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Griffa, Michele] Swiss Fed Labs Mat Testing & Res EMPA, Lab Bldg Technol, CH-8600 Dubendorf, Switzerland. RP Anderson, BE (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, POB 1663, Los Alamos, NM 87545 USA. EM bea@byu.edu RI Larmat, Carene/B-4686-2011; OI Larmat, Carene S/0000-0002-3607-7558; Griffa, Michele/0000-0001-8407-9438; Johnson, Paul/0000-0002-0927-4003 FU Institutional Support (LDRD) at the Los Alamos National Laboratory FX This work was supported by Institutional Support (LDRD) at the Los Alamos National Laboratory. NR 16 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 021907 DI 10.1063/1.3180811 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200022 ER PT J AU Braun, A Zhang, X Sun, Y Muller, U Liu, Z Erat, S Ari, M Grimmer, H Mao, SS Graule, T AF Braun, A. Zhang, X. Sun, Y. Mueller, U. Liu, Z. Erat, S. Ari, M. Grimmer, H. Mao, S. S. Graule, T. TI Correlation of high temperature x-ray photoemission valence band spectra and conductivity in strained LaSrFeNi oxide on SrTiO3(110) SO APPLIED PHYSICS LETTERS LA English DT Article DE doping profiles; electrical conductivity; electronic structure; high-temperature effects; lanthanum compounds; multiferroics; nickel compounds; pulsed laser deposition; strongly correlated electron systems; strontium compounds; thin films; valence bands; X-ray absorption spectra; X-ray photoelectron spectra ID THIN-FILMS; SPECTROSCOPY; LA1-XSRXMNO3 AB Reversible and irreversible discontinuities at around 573 and 823 K in the electric conductivity of a strained 175 nm thin film of (La0.8Sr0.2)(0.95)Ni0.2Fe0.8O3-delta grown by pulsed laser deposition on SrTiO3 (110) are reflected by valence band changes as monitored in photoemission and oxygen K-edge x-ray absorption spectra (XAS). The irreversible jump at 823 K is attributed to depletion of doped electron holes concomitant with reduction of Fe3+ toward Fe2+, as evidenced by oxygen and iron core level soft XAS, and possibly of a chemical origin, whereas the reversible jump at 573 K possibly originates from structural changes. C1 [Braun, A.; Erat, S.; Graule, T.] EMPA Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Zhang, X.; Mao, S. S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Zhang, X.; Mao, S. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Sun, Y.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Mueller, U.] EMPA Swiss Fed Labs Mat Testing & Res, Lab Nanoscale Mat Sci, CH-8600 Dubendorf, Switzerland. [Liu, Z.] Ernest Orlando Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Erat, S.] ETH, Swiss Fed Inst Technol, Dept Nonmetall Inorgan Mat, CH-8037 Zurich, Switzerland. [Ari, M.] Erciyes Univ, Dept Phys, TR-38039 Kayseri, Turkey. [Grimmer, H.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. RP Braun, A (reprint author), EMPA Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM artur.braun@alumni.ethz.ch RI Zhang, Xiaojun/H-8539-2013; Liu, Zhi/B-3642-2009; BRAUN, Artur/A-1154-2009 OI Liu, Zhi/0000-0002-8973-6561; BRAUN, Artur/0000-0002-6992-7774 FU E.U. MIRG [2006-042095]; Swiss NSF [200021-116688]; Erciyes University research fund [FBA-07-041]; Office of Science/BES, of the U.S. DoE [DE-AC02-05CH11231] FX Part of this research was carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. Funding by E.U. MIRG (Grant No. CT-2006-042095), Swiss NSF (Grant No. 200021-116688), and Erciyes University research fund, Contract No. FBA-07-041. The ALS is supported by the Director, Office of Science/BES, of the U.S. DoE, Grant No. DE-AC02-05CH11231. NR 17 TC 2 Z9 2 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 022107 DI 10.1063/1.3174916 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200035 ER PT J AU Kerkar, P Jones, KW Kleinberg, R Lindquist, WB Tomov, S Feng, H Mahajan, D AF Kerkar, Prasad Jones, Keith W. Kleinberg, Robert Lindquist, W. Brent Tomov, Stan Feng, Huan Mahajan, Devinder TI Direct observations of three dimensional growth of hydrates hosted in porous media SO APPLIED PHYSICS LETTERS LA English DT Article DE computerised tomography; nucleation; porous materials; surface structure ID GAS-HYDRATE; HYDRAULIC PERMEABILITY; SEDIMENTS; NMR; TOMOGRAPHY; SLOPE; WATER AB The visualization of time-resolved three-dimensional growth of tetrahydrofuran hydrates with glass spheres of uniform size as porous media using synchrotron x-ray computed microtomography is presented. The images of hydrate patches, formed from excess tetrahydrofuran in aqueous solution, show random nucleation and growth concomitant with grain movement but independent of container-wall effect. Away from grain surfaces, hydrate surface curvature was convex showing that liquid, not hydrate, was the wetting phase, similar to ice growth in porous media. The extension of the observed behavior to methane hydrates could have implications in understanding their role in seafloor stability and climate change. C1 [Kerkar, Prasad; Mahajan, Devinder] SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA. [Jones, Keith W.; Mahajan, Devinder] Brookhaven Natl Lab, Upton, NY 11793 USA. [Kleinberg, Robert] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. [Lindquist, W. Brent] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Tomov, Stan] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. [Feng, Huan] Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA. RP Kerkar, P (reprint author), SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA. EM dmahajan@bnl.gov FU U. S. Department of Energy [DE-AC0298CH10886] FX This work was supported by the Office of Fossil Energy, U. S. Department of Energy under Contract No. DE-AC0298CH10886 and BNL under the Laboratory Directed Research and Development (BNL LDRD) program. NR 24 TC 21 Z9 22 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 024102 DI 10.1063/1.3120544 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200115 ER PT J AU Kostas, J Honnery, D Soria, J Kastengren, A Liu, Z Powell, CF Wang, J AF Kostas, J. Honnery, D. Soria, J. Kastengren, A. Liu, Z. Powell, C. F. Wang, J. TI Effect of nozzle transients and compressibility on the penetration of fuel sprays SO APPLIED PHYSICS LETTERS LA English DT Article DE diesel engines; flow visualisation; fuel systems; nozzles; sprays AB A study has been performed using a combination of high speed optical imaging and a synchrotron based technique to obtain a time history of nozzle exit velocity, discharge coefficient, and spray tip velocity of high pressure fuel sprays. The results support a recently proposed theoretical model of spray propagation that suggests a compressible region of flow immediately ahead of the spray has a strong influence on the evolution of the tip velocity profile. Coupled with this is the variation in discharge coefficient due to injector needle movement which largely governs the spray exit velocity immediately after start of injection. C1 [Kostas, J.; Honnery, D.; Soria, J.] Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Clayton, Vic 3800, Australia. [Liu, Z.; Powell, C. F.; Wang, J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kostas, J (reprint author), Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Clayton, Vic 3800, Australia. EM dimitrios.kostas@eng.monash.edu.au RI Honnery, Damon/F-7408-2010; OI Honnery, Damon/0000-0003-2925-3602 NR 10 TC 8 Z9 8 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 024101 DI 10.1063/1.3182821 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200114 ER PT J AU Pershin, YV Sinitsyn, NA Kogan, A Saxena, A Smith, DL AF Pershin, Yu. V. Sinitsyn, N. A. Kogan, A. Saxena, A. Smith, D. L. TI Spin polarization control by electric stirring: Proposal for a spintronic device SO APPLIED PHYSICS LETTERS LA English DT Article DE electron spin polarisation; gallium arsenide; III-V semiconductors; magnetoelectronics; mesoscopic systems; spin Hall effect ID SEMICONDUCTORS AB We propose a spintronic device to generate spin polarization in a mesoscopic region by purely electric means. We show that the spin Hall effect in combination with the stirring effect are sufficient to induce measurable spin polarization in a closed geometry. Our device structure does not require the application of magnetic fields, external radiation or ferromagnetic leads, and can be implemented in standard semiconducting materials. C1 [Pershin, Yu. V.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pershin, Yu. V.] Univ S Carolina, USC Nanoctr, Columbia, SC 29208 USA. [Sinitsyn, N. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies & Comp, Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Kogan, A.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Saxena, A.; Smith, D. L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Pershin, YV (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM pershin@physics.sc.edu RI Sinitsyn, nikolai/B-5617-2009; Pershin, Yuriy/F-4453-2012 FU NSF [DMR 0804199]; U.S. DOE [DE-AC5206NA25396] FX This work was funded in part by NSF Grant No. DMR 0804199 and the U.S. DOE under Grant No. DE-AC5206NA25396. Y.VP. and N.A.S. contributed equally to this work. NR 19 TC 3 Z9 3 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 022114 DI 10.1063/1.3180494 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200042 ER PT J AU Popescu, V Bester, G Zunger, A AF Popescu, Voicu Bester, Gabriel Zunger, Alex TI Strain-induced localized states within the matrix continuum of self-assembled quantum dots SO APPLIED PHYSICS LETTERS LA English DT Article DE conduction bands; gallium arsenide; III-V semiconductors; indium compounds; infrared detectors; localised states; self-assembly; semiconductor quantum dots ID INFRARED PHOTODETECTORS; ELECTRONIC-STRUCTURE; TRANSITIONS; SPECTRUM AB Quantum dot-based infrared detectors often involve transitions from confined states of the dot to states above the minimum of the conduction band continuum of the matrix. We discuss the existence of two types of resonant states within this continuum in self-assembled dots: (i) virtual bound states, which characterize square wells even without strain and (ii) strain-induced localized states. The latter emerge due to the appearance of "potential wings" near the dot, related to the curvature of the dots. While states (i) do couple to the continuum, states (ii) are sheltered by the wings, giving rise to sharp absorption peaks. C1 [Popescu, Voicu; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bester, Gabriel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Popescu, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Popescu, Voicu/A-9130-2010; Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013 OI Bester, Gabriel/0000-0003-2304-0817; FU U.S. Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division [DE-AC36-08GO28308] FX Work at NREL was funded by the U.S. Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division, under Contract No. DE-AC36-08GO28308 to NREL. NR 22 TC 14 Z9 14 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 023108 DI 10.1063/1.3159875 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200084 ER PT J AU Shaughnessy, M Fong, CY Snow, R Liu, K Pask, JE Yang, LH AF Shaughnessy, M. Fong, C. Y. Snow, Ryan Liu, Kai Pask, J. E. Yang, L. H. TI Origin of large moments in MnxSi1-x at small x SO APPLIED PHYSICS LETTERS LA English DT Article DE density functional theory; interstitials; magnetic moments; manganese compounds; semiconductor materials; semimagnetic semiconductors ID FERROMAGNETIC SEMICONDUCTOR; MN; SILICON AB Recently, the magnetic moment/Mn, M, in MnxSi1-x was measured to be 5.0 mu(B)/Mn, at x=0.1%. To understand this observed M, we investigate several MnxSi1-x models of alloys using first-principles density functional methods. The only model giving M=5.0 was a 513-atom cell having the Mn at a substitutional site, and Si at a second-neighbor interstitial site. The observed large moment is a consequence of the weakened d-p hybridization between the Mn and one of its nearest neighbor Si atoms, resulting from the introduction of the second-neighbor interstitial Si. Our result suggests a way to tune the magnetic moments of transition metal doped semiconductors. C1 [Shaughnessy, M.; Fong, C. Y.; Snow, Ryan; Liu, Kai] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Pask, J. E.; Yang, L. H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. RP Shaughnessy, M (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM mickeyshaughnessy@gmail.com RI Liu, Kai/B-1163-2008 OI Liu, Kai/0000-0001-9413-6782 FU NSF [ECCS0725902]; U. S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by the NSF Grant No. ECCS0725902. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U. S. Department of Energy under Contract No. DE-AC52-07NA27344. NR 16 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 022515 DI 10.1063/1.3168512 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200059 ER PT J AU Wang, J Anderoglu, O Hirth, JP Misra, A Zhang, X AF Wang, J. Anderoglu, O. Hirth, J. P. Misra, A. Zhang, X. TI Dislocation structures of Sigma 3 {112} twin boundaries in face centered cubic metals SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium; copper; metallic thin films; nanostructured materials; slip; stacking faults; transmission electron microscopy; twin boundaries ID ULTRAHIGH-STRENGTH; COPPER; INTERFACES; GOLD AB High resolution transmission electron microscopy of nanotwinned Cu films revealed Sigma 3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Sigma 3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Sigma 3 {112} ITBs may migrate through the collective glide of partial dislocations. C1 [Wang, J.; Hirth, J. P.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Anderoglu, O.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences; NSF-DMR Metallic Materials and Nanostructures program [0644835] FX This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences. X. Z. acknowledges financial support by the NSF-DMR Metallic Materials and Nanostructures program under Grant No. 0644835 and access to the Center for Integrated Nanotechnologies at Los Alamos National Laboratory through a user program. NR 20 TC 66 Z9 66 U1 4 U2 56 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 021908 DI 10.1063/1.3176979 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200023 ER PT J AU Wang, XJ Zou, H Ocola, LE Ji, Y AF Wang, X. J. Zou, H. Ocola, L. E. Ji, Y. TI High spin injection polarization at an elevated dc bias in tunnel-junction-based lateral spin valves SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; cobalt; copper; Hanle effect; magnetic tunnelling; spin polarised transport; spin valves ID ROOM-TEMPERATURE; MAGNETIZATION; ACCUMULATION AB Submicron metallic lateral spin valves are fabricated with AlO(x) tunnel junctions as spin injection and detection barriers. The spin polarization is estimated to be similar to 20%, determined by both Hanle effect and variations of device dimensions. The polarization is maintained at a large dc injection current density >2x10(6) A/cm(2). Both the spin polarization and spin diffusion length are weakly temperature dependent. C1 [Wang, X. J.; Zou, H.; Ji, Y.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ocola, L. E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Wang, XJ (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM yji@physics.udel.edu RI Ji, Yi/K-8027-2012 FU DOE [DE-FG0207ER46374, DE-AC02-06CH11357] FX We acknowledge DOE Grant No. DE-FG0207ER46374. The use of Center for Nanoscale Materials is supported by DOE Contract No. DE-AC02-06CH11357. We acknowledge the use of nanofabrication facilities in the NanoCenter at the University of Maryland. NR 18 TC 27 Z9 27 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 13 PY 2009 VL 95 IS 2 AR 022519 DI 10.1063/1.3182785 PG 3 WC Physics, Applied SC Physics GA 471WO UT WOS:000268089200063 ER PT J AU Gintautas, V Bettencourt, LMA Ham, MI AF Gintautas, Vadas Bettencourt, Luis M. A. Ham, Michael I. TI Identification of functional information subgraphs in cultured neural networks SO BMC NEUROSCIENCE LA English DT Article CT 18th Annual Computational Neuroscience Meeting CY JUL 18-23, 2009 CL Berlin, GERMANY C1 [Gintautas, Vadas; Bettencourt, Luis M. A.; Ham, Michael I.] Los Alamos Natl Lab, Ctr Nonlinear Studies & T5, Los Alamos, NM 87545 USA. [Bettencourt, Luis M. A.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Ham, Michael I.] Univ N Texas, Ctr Network Neurosci, Denton, TX 76203 USA. RP Gintautas, V (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies & T5, Los Alamos, NM 87545 USA. EM vadasg@lanl.gov NR 0 TC 0 Z9 0 U1 1 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2202 J9 BMC NEUROSCI JI BMC Neurosci. PD JUL 13 PY 2009 VL 10 AR O12 DI 10.1186/1471-2202-10-S1-O12 PG 1 WC Neurosciences SC Neurosciences & Neurology GA 470OF UT WOS:000267984300016 ER PT J AU Maron, L Eisenstein, O Andersen, RA AF Maron, Laurent Eisenstein, Odile Andersen, Richard A. TI The Bond between CO and Cp ' U-3 in Cp ' U-3(CO) Involves Back-bonding from the Cp ' U-3 Ligand-Based Orbitals of pi-Symmetry, where Cp ' Represents a Substituted Cyclopentadienyl Ligand SO ORGANOMETALLICS LA English DT Article ID DENSITY-FUNCTIONAL INVESTIGATIONS; CARBON-MONOXIDE; AB-INITIO; ORGANOMETALLIC COMPOUNDS; ELECTRONIC-STRUCTURES; ACTINIDE COMPLEXES; RELATIVISTIC DFT; INFRARED-SPECTRA; URANIUM; THERMOCHEMISTRY AB The experimental CO stretching frequencies in the 1:1 adducts between (C5H5-nRn)(3)U and CO range from 1976 cm(-1) in (C5H4SiMe3)(3)U(CO) to 1900 cm(-1) in (C5HMe4)(3)U(CO). The origin of the large difference between the stretching frequencies in free (2143 cm(-1)) and coordinated CO and the large effect the substituents oil the cyclopentadienyl ligands have on the difference is explored by DFT calculations With a small core effective core potential in which 32 electrons on uranium are explicitly treated. The results of these calculations, along with a NBO analysis, show that a sigma-bond is formed between CO and an empty a orbital on the CP'U-3 fragment composed of f(sigma) and d(sigma) parentage orbitals, The back-bonding interaction, Which results in lowering the CO stretching frequency, does not originate from nonbonding metal-based orbitals but from the filled ligand-based orbitals of pi-symmetry that are used for bonding in the Cp'U-3 fragment. This model, which is different from the back-bonding model used in the d-transition metal complexes, rationalizes the large substituent effect in the 5f-metal complexes. C1 [Eisenstein, Odile] Univ Montpellier 2, Inst Charles Gerhardt, CNRS 5253, F-34095 Montpellier, France. [Maron, Laurent] Univ Toulouse, LPCNO, INSA, UPS, F-31077 Toulouse, France. [Maron, Laurent] CNRS, LPCNO, F-31077 Toulouse, France. [Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. [Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Eisenstein, O (reprint author), Univ Montpellier 2, Inst Charles Gerhardt, CNRS 5253, Case Courrier 1501,Pl E Bataillon, F-34095 Montpellier, France. EM odile.eisenstein@univ-montp2.fr RI Eisenstein, Odile/I-1704-2016 OI Eisenstein, Odile/0000-0001-5056-0311 FU U.S. Department of Energy [DE-AC0205CH 1123] FX This work was partially supported by the Director Office of Energy Research Office of Basic Energy Sciences, Chernical Sciences Division of the U.S. Department of Energy, under Conti-act No DE-AC0205CH 1123 1. This research used resources of the National Energy Rest arch Scientific Computing Center, which is Supported by the Office of Science of the U.S. Departrnent of Energy under Conti-act No. DE-AC0205CH 1123 1. L.M. and O.E. thank the Universit6 Paul Sabatier, the Universit6 M ontpellier 2, and the CNRS for funding. L.M. thanks the Institut Universitaire de France for support as a junior mernber. The collaboration between France and Berkeley has been supported by the PICS 3422, financed by the CNRS. The authors thank Wayne Lukens for provocative discussions about what it all means. NR 57 TC 30 Z9 30 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUL 13 PY 2009 VL 28 IS 13 BP 3629 EP 3635 DI 10.1021/om801098b PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 466WH UT WOS:000267694100015 ER PT J AU McBee, JL Tilley, TD AF McBee, Jennifer L. Tilley, T. Don TI Five-Coordinate Dihydridosilyl Platinum(IV) Complexes Supported by a Chelating Monoanionic Nitrogen-Based Ligand SO ORGANOMETALLICS LA English DT Article ID REDUCTIVE ELIMINATION-REACTIONS; H BOND ACTIVATION; PT(IV); ALKYL; CENTERS AB Complexes of Pt(IV) containing the bidentate ligand 3,5-diphenyl-2-(2-pyridyl)pyrrolide (PyPyr) were prepared. The ethylene complex llyPyrPt(C(2)H(4))Cl (1) Was treated with HSiEt(3) or HSiEtMe(2) to produce the Pt(IV) silyl dihydrides PyPyrPt(H)(2)SiEt(3) (3) and PyPyrPt(H)(2)SiEtMe(2) (4), respectively. The solid-state structure of 3, determined by X-ray crystallography, reveals a dimeric structure that forms via pi-stacking between the PyPyr ligands. Addition of Lewis bases to 3 results in either coordination to generate an octahedral Lewis base adduct (with DMAP) or silane elimination to give square-planar Pt(II) Lewis base complexes (with phosphines). Complex 3 was also found to be an active hydrosilylation catalyst for the hydrosilylation of alkynes and terminal olefins with HSiEt(3). C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu NR 29 TC 23 Z9 23 U1 4 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUL 13 PY 2009 VL 28 IS 13 BP 3947 EP 3952 DI 10.1021/om9002686 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 466WH UT WOS:000267694100054 ER EF