FN Thomson Reuters Web of Science™ VR 1.0 PT J AU St Clair, SB Sudderth, EA Castanha, C Torn, MS Ackerly, DD AF St Clair, Samuel B. Sudderth, Erika A. Castanha, Cristina Torn, Margaret S. Ackerly, David D. TI Plant responsiveness to variation in precipitation and nitrogen is consistent across the compositional diversity of a California annual grassland SO JOURNAL OF VEGETATION SCIENCE LA English DT Article DE Annual grassland; Avena; Climate change; Drought; Fecundity; Soil moisture; Water deficit ID WESTERN UNITED-STATES; TERRESTRIAL ECOSYSTEMS; ETHANOL SENSITIVITY; FUNCTIONAL-GROUPS; OAT COLEOPTILES; CLIMATE-CHANGE; ELEVATED CO2; RESPONSES; DEPOSITION; WATER AB Question: How does responsiveness to water and Nitrogen (N) availability vary across the compositional and functional diversity that exists in a mesic California annual grassland plant community? Location: Northern California annual grassland. Methods: A mesocosm system was used to simulate average annual precipitation totals and dry and wet year extremes observed in northern California mesic grasslands. The effects of precipitation and N availability on biomass and fecundity were measured on three different vegetation types, a mixed grass forb community, and a forb and a grass monoculture. The treatment effects on plant community composition were examined in the mixed species community. Results: While growth and seed production of the three vegetation types was inherently different, their responses to variation in precipitation and N were statistically similar. Plant density, shoot biomass, and seed production tended to increase with greater water availability in all vegetation types, with the exception of a consistent growth reduction in high precipitation (1245 mm) plots in the first year of the study. Shoot biomass responded positively to N addition, an effect that increased with greater water availability. Nitrogen addition had little effect on plant density or seed production. In the mixed grass-forb community, biomass responsiveness to water and N treatments were consistently driven by the shoot growth of A vena barbata, the dominant grass species. Conclusions: Vegetation responses to changes in precipitation and N availability were consistent across a range of composition and structural diversity in this study. Plant growth and seed production were sensitive to both increased and decreased precipitation totals, and the magnitude of these responses to N availability varied depending on soil moisture conditions. Our results suggest the impacts of changing precipitation regimes and N deposition on annual productivity of California grasslands may be predictable under different climate scenarios across a range of plant communities. C1 [St Clair, Samuel B.] Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA. [Sudderth, Erika A.; Ackerly, David D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Castanha, Cristina; Torn, Margaret S.; Ackerly, David D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP St Clair, SB (reprint author), Brigham Young Univ, Dept Plant & Wildlife Sci, Provo, UT 84602 USA. EM stclair@byu.edu; sudderth@berkeley.edu; castanha@nature.berkeley.edu; mstorn@lbl.gov; dackerley@berkeley.edu RI Ackerly, David/A-1247-2009; Torn, Margaret/D-2305-2015; Castanha, Cristina/D-3247-2015 OI Ackerly, David/0000-0002-1847-7398; Castanha, Cristina/0000-0001-7327-5169 FU U.S. Department of Energy [DE-AC02-05CH 1123] FX We gratefully acknowledge the assistance of Markus Kleber and Alex Morales in soil collection and reconstruction, and Melissa Crago, Tara Macomber, Julia Shams, Stephanie Bernard, Paul Cook, and Kallista Bley in maintenance of the watering system and data collection. This study was supported by the Program for Ecosystem Research, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH 1123 NR 49 TC 14 Z9 14 U1 5 U2 56 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1100-9233 J9 J VEG SCI JI J. Veg. Sci. PD OCT PY 2009 VL 20 IS 5 BP 860 EP 870 PG 11 WC Plant Sciences; Ecology; Forestry SC Plant Sciences; Environmental Sciences & Ecology; Forestry GA 497CF UT WOS:000270031300008 ER PT J AU Cort, JR Cho, H AF Cort, John R. Cho, Herman TI H-1 and C-13 NMR chemical shift assignments and conformational analysis for the two diastereomers of the vitamin K epoxide reductase inhibitor brodifacoum SO MAGNETIC RESONANCE IN CHEMISTRY LA English DT Article DE NMR; H-1; C-13; brodifacoum; coumarin; vitamin K ID DIPHENACOUM; RATS AB Proton and C-13 NMR chemical shifts and H-1-H-1 scalar couplings for the two diastereomers of the potent vitamin K epoxide M reductase (VKOR) inhibitor brodifacoum have been determined at 293 K from acetone solutions containing both diastereomers. To facilitate difficult assignments, homo- and heteronuclear correlation spectra were acquired at 750 and 900 MHz over 268-303 K temperature range. Conformations of both diastereomers inferred from the scalar couplings and 1-D NOE measurements reveal that one diastereomer (SS/RR) adopts a strained geometry in the cyclohexene ring system of the tetralin group. The NMR spectra also show evidence of line broadening due to conformational exchange at room temperature for the SR/RS diastereomer. These assignments and conformational analyses may be useful in studies of biomolecular interactions of brodifacoum with target proteins such as VKOR and in source determination of brodifacoum. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Cort, John R.; Cho, Herman] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Cho, H (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, MS K2-57,POB 999, Richland, WA 99352 USA. EM hm.cho@pnl.gov FU U.S. Department of Homeland Security; Battelle Memorial Institute [DE-AC06-76RLO-1830] FX Funding for this project was provided by the Science and Technology Directorate of the U.S. Department of Homeland Security under a contract with the Pacific Northwest National Laboratory. Part of the research was performed at the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DE-AC06-76RLO-1830. NR 12 TC 5 Z9 5 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-1581 J9 MAGN RESON CHEM JI Magn. Reson. Chem. PD OCT PY 2009 VL 47 IS 10 BP 897 EP 901 DI 10.1002/mrc.2475 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 502GE UT WOS:000270443000013 PM 19569076 ER PT J AU Somerday, BP Dadfarnia, M Balch, DK Nibur, KA Cadden, CH Sofronis, P AF Somerday, B. P. Dadfarnia, M. Balch, D. K. Nibur, K. A. Cadden, C. H. Sofronis, P. TI Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ALLOYS; METALS; FRACTURE; EMBRITTLEMENT; DISLOCATIONS; DIFFUSION; TRANSPORT AB The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress. C1 [Nibur, K. A.; Cadden, C. H.] Sandia Natl Labs, Livermore, CA 94550 USA. [Dadfarnia, M.; Sofronis, P.] Univ Illinois, Dept Mech Engn, Urbana, IL 61801 USA. EM bpsomer@sandia.gov OI Dadfarnia, Mohsen/0000-0002-5218-971X FU United States Department of Energy [DE AC04-94AL85000] FX Weld was fabricated by G. Gibbs and electron microscopy was conducted by J. Chames and R. Nishimoto. The authors gratefully acknowledge support from the United States Department of Energy (Contract No. DE AC04-94AL85000). NR 38 TC 16 Z9 16 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2009 VL 40A IS 10 BP 2350 EP 2362 DI 10.1007/s11661-009-9922-1 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 487XT UT WOS:000269312500009 ER PT J AU Shannon, GN Fruehan, RJ Sridhar, S AF Shannon, George N. Fruehan, R. J. Sridhar, Seetharaman TI Removal of Metallic Iron on Oxide Slags SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID LIQUID-IRON; KINETICS; DECARBURIZATION AB It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (p(O2) of approximately 10(-4) atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 degrees C and in 160 seconds at 1600 degrees C. C1 [Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Sridhar, Seetharaman] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Shannon, GN (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. EM sridhars@andrew.cmu.edu FU RDS [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research into coal gasification reactions, under the RDS contract DE-AC26-04NT41817. Gratitude is extended toward the Department of Energy, Office of Fossil Energy, Metso Minerals, and Sarma Pisupati of the Pennsylvania State University. NR 11 TC 2 Z9 2 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD OCT PY 2009 VL 40 IS 5 BP 727 EP 737 DI 10.1007/s11663-009-9278-3 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 489NB UT WOS:000269425700011 ER PT J AU Bradley, JP Jones, AP Brownlee, DE AF Bradley, John P. Jones, Anthony P. Brownlee, Donald E. TI Insight from the unexpected SO METEORITICS & PLANETARY SCIENCE LA English DT Editorial Material ID COMET 81P/WILD-2; SAMPLES C1 [Bradley, John P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Jones, Anthony P.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Jones, Anthony P.] CNRS, F-91405 Orsay, France. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. RP Bradley, JP (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. EM bradley33@llnl.gov NR 5 TC 1 Z9 1 U1 2 U2 2 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2009 VL 44 IS 10 BP 1403 EP 1405 PG 3 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 537PG UT WOS:000273124800001 ER PT J AU Kearsley, AT Burchell, MJ Price, MC Graham, GA Wozniakiewicz, PJ Cole, MJ Foster, NJ Teslich, N AF Kearsley, A. T. Burchell, M. J. Price, M. C. Graham, G. A. Wozniakiewicz, P. J. Cole, M. J. Foster, N. J. Teslich, N. TI Interpretation of Wild 2 dust fine structure: Comparison of Stardust aluminum foil craters to the three-dimensional shape of experimental impacts by artificial aggregate particles and meteorite powders SO METEORITICS & PLANETARY SCIENCE LA English DT Article; Proceedings Paper CT Conference on Multiscale Geo-Forensic Examination of Comet 81P/Wild 2 CY OCT 26-28, 2008 CL Timber Cove, CA SP Inst Geophys & Planetary Phys ID TRANSMISSION ELECTRON-MICROSCOPY; COMET 81P/WILD-2 DUST; TOF-SIMS ANALYSIS; HYPERVELOCITY CAPTURE; ISOTOPIC COMPOSITIONS; PROTOPLANETARY DISKS; INTERPLANETARY DUST; OPTICAL-PROPERTIES; INTERNAL STRUCTURE; INTERSTELLAR DUST AB New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm(-3) (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by mu m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential Survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions. C1 [Kearsley, A. T.; Graham, G. A.; Wozniakiewicz, P. J.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Burchell, M. J.; Price, M. C.; Cole, M. J.; Foster, N. J.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Wozniakiewicz, P. J.; Teslich, N.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Kearsley, AT (reprint author), Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. EM antk@nhm.ac.uk OI Burchell, Mark/0000-0002-2680-8943 NR 87 TC 18 Z9 18 U1 0 U2 4 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2009 VL 44 IS 10 BP 1489 EP 1509 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 537PG UT WOS:000273124800008 ER PT J AU Wozniakiewicz, PJ Kearsley, AT Burchell, MJ Foster, NJ Cole, MJ Bland, PA Russell, SS AF Wozniakiewicz, P. J. Kearsley, A. T. Burchell, M. J. Foster, N. J. Cole, M. J. Bland, P. A. Russell, S. S. TI In situ analysis of residues resulting from laboratory impacts into aluminum 1100 foil: Implications for Stardust crater analyses SO METEORITICS & PLANETARY SCIENCE LA English DT Article; Proceedings Paper CT Conference on Multiscale Geo-Forensic Examination of Comet 81P/Wild 2 CY OCT 26-28, 2008 CL Timber Cove, CA SP Inst Geophys & Planetary Phys ID TRANSMISSION ELECTRON-MICROSCOPY; HUBBLE-SPACE-TELESCOPE; X-RAY-DIFFRACTION; COMET 81P/WILD-2; MOSSBAUER-SPECTROSCOPY; HYPERVELOCITY IMPACTS; RAMAN-SPECTROSCOPY; MODAL MINERALOGY; PARTICLE-SIZE; SOLAR-ARRAYS AB The encounter between the Stardust spacecraft and particles from cornet 81P/Wild 2 gave impacts at a relative velocity of 6.1 km s(-1) and near perpendicular incidence to the collector surface. Such conditions are well within the performance limits of light gas gun laboratory simulations. For this Study, two series of shots were conducted at the University of Kent, firing magnesium silicates (Mg end-member forsterite, enstatite, diopside and lizardite), followed by a Suite of increasingly Fe-rich olivines (through to Fe end-member fayalite) into Stardust flight-spare foils. Preserved residues were analysed using scanning electron microscopy combined with energy dispersive X-ray analyses (SEM/EDX). X-ray Count integrals show that mineral compositions remain distinct from one another after impact, although they do show increased scatter. However, there is a small but systematic increase in Mg relative to Si for all residues when compared to projectile compositions. While some changes in Mg:Si may be due to complex analytical geometries in craters, there appears to be some preferential loss of Si. In practice, EDX analyses in craters on Stardust A I 100 foil inevitably include contributions from Fe- and Si-rich alloy inclusions, leading to further scattering of element ratios. Such inclusions have complicated Mg:Fe data interpretation. Compositional heterogeneity in the synthetic olivine projectiles also introduces data spread. Nevertheless, even with the preceding caveats, we find that the main groups Of mafic silicates can be easily and reliably distinguished in EDX analyses performed in rapid Surveys of foil craters, enabling access to a valuable additional collection of cometary materials. C1 [Wozniakiewicz, P. J.; Bland, P. A.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, IARC, London SW11 2AZ, England. [Burchell, M. J.; Foster, N. J.; Cole, M. J.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Wozniakiewicz, P. J.; Kearsley, A. T.; Russell, S. S.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. RP Wozniakiewicz, PJ (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, 7000 East Ave, Livermore, CA 94550 USA. EM wozniakiewic1@llnl.gov OI Burchell, Mark/0000-0002-2680-8943 NR 47 TC 13 Z9 13 U1 0 U2 4 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2009 VL 44 IS 10 BP 1541 EP 1559 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 537PG UT WOS:000273124800011 ER PT J AU Bradley, JP Dai, ZR AF Bradley, John P. Dai, Zu Rong TI Analytical SuperSTEM for extraterrestrial materials research SO METEORITICS & PLANETARY SCIENCE LA English DT Article; Proceedings Paper CT Conference on Multiscale Geo-Forensic Examination of Comet 81P/Wild 2 CY OCT 26-28, 2008 CL Timber Cove, CA SP Inst Geophys & Planetary Phys ID INTERPLANETARY DUST PARTICLES; TRANSMISSION ELECTRON-MICROSCOPY; INTERSTELLAR SILICATE GRAINS; ENERGY-LOSS SPECTROSCOPY; EARLY SOLAR-SYSTEM; COMET 81P/WILD-2; SAMPLES; EVOLUTION; ELEMENTS; IRRADIATION AB Electron-beam Studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution, and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope (STEM) with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids, and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved Such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried Out With 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive X-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications Of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), X-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H2O in vesicles and implanted H-2 and He in irradiated mineral and glass grains. C1 [Bradley, John P.; Dai, Zu Rong] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. RP Bradley, JP (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. EM bradley33@llnl.gov RI Dai, Zurong/E-6732-2010 NR 73 TC 5 Z9 6 U1 3 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2009 VL 44 IS 10 BP 1627 EP 1642 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 537PG UT WOS:000273124800015 ER PT J AU Ogliore, RC Westphal, AJ Gainsforth, Z Butterworth, AL Fakra, SC Marcus, MA AF Ogliore, R. C. Westphal, A. J. Gainsforth, Z. Butterworth, A. L. Fakra, S. C. Marcus, M. A. TI Nebular mixing constrained by the Stardust samples SO METEORITICS & PLANETARY SCIENCE LA English DT Article; Proceedings Paper CT Conference on Multiscale Geo-Forensic Examination of Comet 81P/Wild 2 CY OCT 26-28, 2008 CL Timber Cove, CA SP Inst Geophys & Planetary Phys ID SOLAR NEBULA; PROTOPLANETARY DISKS; CRYSTALLINE SILICATES; CHONDRULE FORMATION; ACCRETION DISK; DUST; EVOLUTION; DIFFUSION; AEROGEL; GRAINS AB Using X-ray microprobe analysis of samples from cornet Wild 2 returned by the Stardust mission, we determine that the crystalline Fe-bearing silicate fraction in this Jupiter-family cot-net is greater than 0.5. Assuming this Mixture is a composite of crystalline inner solar system material and amorphous cold molecular Cloud material, we deduce that more than half of Wild 2 has been processed in the inner solar system. Several models exist that explain the presence of crystalline materials in comets. We explore some of these models in light of our results. C1 [Ogliore, R. C.; Westphal, A. J.; Gainsforth, Z.; Butterworth, A. L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Fakra, S. C.; Marcus, M. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ogliore, RC (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM ogliore@ssl.berkeley.edu NR 37 TC 9 Z9 9 U1 0 U2 3 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT PY 2009 VL 44 IS 10 BP 1675 EP 1681 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 537PG UT WOS:000273124800018 ER PT J AU Keskin, S Liu, JC Johnson, JK Sholl, DS AF Keskin, Seda Liu, Jinchen Johnson, J. Karl Sholl, David S. TI Atomically detailed models of gas mixture diffusion through CuBTC membranes SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE CuBTC; Molecular simulation; Membrane; Adsorption; Diffusion ID METAL-ORGANIC FRAMEWORK; MOLECULAR-DYNAMICS SIMULATIONS; CU-BTC; ATOMISTIC SIMULATIONS; BINARY-MIXTURES; CARBON-DIOXIDE; ADSORPTION; SEPARATION; TRANSPORT; ALKANES AB Metal-organic frameworks are intriguing crystalline nanoporous materials that have potential applications in adsorption-based and membrane-based gas separations. We describe atomically detailed simulations of gas adsorption and diffusion in CuBTC that have been used to predict the performance of CuBTC membranes for separation of H(2)/CH(4), CO(2)/CH(4) and CO(2)/H(2) mixtures. CuBTC membranes are predicted to have higher selectivities for all three mixtures than MOF-5 membranes, the only other metal-organic framework material for which detailed predictions of membrane selectivities have been made. Our results give insight into the physical properties that will be desirable in tuning the pore structure of MOFs for specific membrane-based separations. (C) 2009 Elsevier Inc. All rights reserved. C1 [Keskin, Seda; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Liu, Jinchen; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM david.sholl@chbe.gatech.edu RI Johnson, Karl/E-9733-2013; keskin, seda/H-3196-2016 OI Johnson, Karl/0000-0002-3608-8003; keskin, seda/0000-0001-5968-0336 FU National Science Foundation [CTS-0413027, CTS-0556831]; US Department of Energy through National Energy Technology Laboratory [41817M203841817M2000] FX S.K. and D.S.S. acknowledge partial support from the National Science Foundation through grants CTS-0413027 and CTS-0556831. J.L. and J.K.J. acknowledge funding from the US Department of Energy through the National Energy Technology Laboratory under Grant No. 41817M203841817M2000. NR 40 TC 60 Z9 63 U1 5 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD OCT 1 PY 2009 VL 125 IS 1-2 BP 101 EP 106 DI 10.1016/j.micromeso.2009.01.016 PG 6 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 487AI UT WOS:000269242200015 ER PT J AU Lupini, AR Borisevich, AY Idrobo, JC Christen, HM Biegalski, M Pennycook, SJ AF Lupini, A. R. Borisevich, A. Y. Idrobo, J. C. Christen, H. M. Biegalski, M. Pennycook, S. J. TI Characterizing the Two- and Three-Dimensional Resolution of an Improved Aberration-Corrected STEM SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE STEM; aberration; spherical; resolution; 3D ID TRANSMISSION ELECTRON-MICROSCOPY; SPHERICAL-ABERRATION; ATOMS; PROGRESS; SYSTEM AB The Successful development of third-order aberration correctors in transmission electron microscopy has seen aberration-corrected electron microscopes evolve from specialist projects, Custom built at a small number of sites to common instruments in many modern laboratories. Here we describe sonic initial results illustrating the two- and three-dimensional (3D) performance of an aberration-corrected scanning transmission electron microscope with a prototype unproved aberration corrector designed to also minimize fifth-order aberrations and a new, higher brightness gun. We show that atomic columns separated by 0.63 angstrom can be resolved and demonstrate detection of single dopant atoms with 3D sensitivity. C1 [Lupini, A. R.; Borisevich, A. Y.; Idrobo, J. C.; Christen, H. M.; Biegalski, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lupini, AR (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM 9az@ornl.gov RI Christen, Hans/H-6551-2013; Borisevich, Albina/B-1624-2009; Idrobo, Juan/H-4896-2015 OI Christen, Hans/0000-0001-8187-7469; Borisevich, Albina/0000-0002-3953-8460; Idrobo, Juan/0000-0001-7483-9034 FU Division of Materials Science and Engineering of the U.S. Department of Energy (DOE) at Oak Ridge National Laboratory; DOE Office of Science. FX The research was supported by the Division of Materials Science and Engineering of the U.S. Department of Energy (DOE) at Oak Ridge National Laboratory, managed by UT-Battelle. The instrumentation used in this research was provided as part of the TEAM project, funded by the DOE Office of Science. The authors are grateful to Dr. J.G. Wen and Dr. I. Petrov for preparing the high quality GaN sample. Critical reading of this manuscript by Drs. E.A. Kenik, M. Watanabe, Q.M. Ramasse, and R. Erni, and instrumentation development by FEI Co. and CEOS GmbH are gratefully acknowledged. NR 38 TC 23 Z9 23 U1 0 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD OCT PY 2009 VL 15 IS 5 BP 441 EP 453 DI 10.1017/S1431927609990389 PG 13 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 499ZM UT WOS:000270265600008 PM 19754980 ER PT J AU Stukowski, A Sadigh, B Erhart, P Caro, A AF Stukowski, Alexander Sadigh, Babak Erhart, Paul Caro, Alfredo TI Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID INTERATOMIC POTENTIALS; ALLOYS AB The concentration-dependent embedded atom method (CD-EAM) is a powerful model for atomistic simulation of concentrated alloys with arbitrarily complex mixing enthalpy curves. In this paper, we show that in spite of explicit three-body forces, this model can be implemented quite simply with a computational efficiency comparable to the standard EAM for molecular-dynamics (MD) simulations. Ready-to-use subroutines for the parallel MD code LAMMPS can be provided by the authors upon request. We further propose an improved version of this potential that allows for very efficient calculations of single-particle displacement/transmutation energies, while retaining the complexity implicit in the three-body interactions. This enables large-scale Monte-Carlo simulations of alloys with the interatomic interactions described by the CD-EAM model. C1 [Stukowski, Alexander] Tech Univ Darmstadt, Inst Mat Wissensch, Darmstadt, Germany. [Sadigh, Babak; Erhart, Paul; Caro, Alfredo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Stukowski, A (reprint author), Tech Univ Darmstadt, Inst Mat Wissensch, Darmstadt, Germany. EM stukowski@mm.tu-darmstadt.de RI Erhart, Paul/G-6260-2011; Albe, Karsten/F-1139-2011; OI Erhart, Paul/0000-0002-2516-6061; Stukowski, Alexander/0000-0001-6750-3401 FU Deutsche Forschungsgemeinschaft [FOR714]; German Academic Exchange Service; US DOE-NNSA [DE-AC52-07NA27344] FX This work was performed with the financial support of the Deutsche Forschungsgemeinschaft (FOR714) and the German Academic Exchange Service. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US DOE-NNSA under Contract DE-AC52-07NA27344. NR 12 TC 25 Z9 25 U1 3 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD OCT PY 2009 VL 17 IS 7 AR 075005 DI 10.1088/0965-0393/17/7/075005 PG 13 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 497JJ UT WOS:000270055000006 ER PT J AU Munsky, B Trinh, B Khammash, M AF Munsky, Brian Trinh, Brooke Khammash, Mustafa TI Listening to the noise: random fluctuations reveal gene network parameters SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE gene regulatory networks; stochastic biological processes; system identification ID ESCHERICHIA-COLI; TOGGLE SWITCH; EXPRESSION; CONSTRUCTION AB The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations show cell-to-cell variability that can manifest significant phenotypic differences. Noise-induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We show that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks. Molecular Systems Biology 5: 318; published online 13 October 2009; doi:10.1038/msb.2009.75 C1 [Munsky, Brian] Los Alamos Natl Lab, Comp Computat & Stat Sci Div CCS, Los Alamos, NM 87545 USA. [Munsky, Brian] Los Alamos Natl Lab, Theoret T Div, Los Alamos, NM 87545 USA. [Trinh, Brooke] Univ Calif Santa Barbara, Dept Mol Cellular & Dev Biol, Santa Barbara, CA 93106 USA. [Khammash, Mustafa] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Khammash, Mustafa] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA. RP Munsky, B (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div CCS, CCS 3, Los Alamos, NM 87545 USA. EM brian.munsky@gmail.com; khammash@engr.ucsb.edu RI Munsky, Brian/A-1947-2016 OI Munsky, Brian/0000-0001-6147-7329 FU LANL LDRD; NSF [ECCS-0835847, ECCS-0802008]; US Army Research Office [DAAD19-03-D-0004] FX The authors thank John Little and Hana El-Samad for thoughtful discussions and David Low for advice, assistance, and materials required in the experimental aspects of this study. This study is funded by the LANL LDRD program and NSF through Grants ECCS-0835847 and ECCS-0802008, and by ICB Grant DAAD19-03-D-0004 from the US Army Research Office. NR 20 TC 71 Z9 71 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD OCT PY 2009 VL 5 AR 318 DI 10.1038/msb.2009.75 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 513UJ UT WOS:000271349000008 PM 19888213 ER PT J AU Raskin, C Timmes, FX Scannapieco, E Diehl, S Fryer, C AF Raskin, Cody Timmes, F. X. Scannapieco, Evan Diehl, Steven Fryer, Chris TI On Type Ia supernovae from the collisions of two white dwarfs SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID GLOBULAR-CLUSTERS; STELLAR HYDRODYNAMICS; EVOLUTION; METALLICITY; PROGENITORS; CONSISTENCY; ACCURACY; BINARIES; UNIVERSE; ENERGY AB We explore collisions between two white dwarfs as a pathway for making Type Ia supernovae (SNIa). White dwarf number densities in globular clusters allow 10-100, redshift less than or similar to 1 collisions per year, and observations by Chomiuk et al. of globular clusters in the nearby S0 galaxy NGC 7457 have detected what is likely to be a SNIa remnant. We carry out simulations of the collision between two 0.6M(circle dot) white dwarfs at various impact parameters and mass resolutions. For impact parameters less than half the radius of the white dwarf, we find such collisions produce approximate to 0.4M(circle dot) of(56)Ni, making such events potential candidates for underluminous SNIa or a new class of transients between Novae and SNIa. C1 [Raskin, Cody; Timmes, F. X.; Scannapieco, Evan] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Timmes, F. X.] Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Diehl, Steven; Fryer, Chris] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Raskin, C (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. EM cody.raskin@asu.edu FU National Science Foundation [AST 08-06720] FX This work was supported by the National Science Foundation under grant AST 08-06720. All simulations were conducted using the Ira A. Fulton High Performance Computing Center, Arizona State University. We thank our referees for their suggestions and comments. NR 32 TC 52 Z9 52 U1 1 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2009 VL 399 IS 1 BP L156 EP L159 DI 10.1111/j.1745-3933.2009.00743.x PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678WM UT WOS:000284113800033 ER PT J AU Kelly, TF Nishikawa, O Panitz, JA Prosa, TJ AF Kelly, Thomas F. Nishikawa, Osamu Panitz, J. A. Prosa, Ty J. TI Prospects for Nanobiology with Atom-Probe Tomography SO MRS BULLETIN LA English DT Article ID FIELD-ION MICROSCOPE; EMISSION MICROSCOPE; ORGANIC-MOLECULES; DEPOSITION; TUNGSTEN; METAL; EMITTER AB The merits of atom-probe tomography (APT) of inorganic materials are well established, as described in this volume. However, one of the long-held aspirations of atom-probe scientists, structural and chemical characterization of organic and biological materials at near-atomic resolution, has yet to be fully realized. A few proof-of-concept type investigations have shown that APT of organic materials is feasible, but a number of challenges still exist with regard to specimen preparation and conversion of raw time-of-flight mass spectrometry data into a three-dimensional map of ions containing structural and chemical information at an acceptable resolution. Recent research aided by hardware improvements and specimen preparation advances has made some progress toward this goal. This article reviews the historical developments in this field, presents some recent results, and considers what life science researchers might expect from this technology. C1 [Kelly, Thomas F.; Prosa, Ty J.] Imago Sci Instruments Corp, Madison, WI 53711 USA. [Kelly, Thomas F.] Univ Wisconsin Madison, Dept Mat Sci & Engn, Madison, WI USA. [Nishikawa, Osamu] Kanazawa Inst Technol, Dept Mat Sci & Engn, Nonoichi, Ishikawa 9218501, Japan. [Panitz, J. A.] Univ New Mexico, Dept Phys & Astron, Sch Med, Albuquerque, NM 87131 USA. [Panitz, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Prosa, Ty J.] Kutztown Univ Penn, St Paul, MN USA. [Prosa, Ty J.] Hamline Univ, St Paul, MN USA. RP Kelly, TF (reprint author), Imago Sci Instruments Corp, 5500 Nobel Dr, Madison, WI 53711 USA. EM tkelly@imago.com; nisikawa@neptune.kanazawa-it.ac.jp; panitz@HighFieldconsultants.com; tprosa@imago.com FU National Science Foundation [0216620]; U.S. Defense Advanced Research Projects FX The authors would like to acknowledge much of the prior work performed at Imago by Steven Goodman and Stephanie Kostrna-Kenney. Funding for much of that work was provided by the National Science Foundation under grant #0216620. Support from the U.S. Defense Advanced Research Projects Agency for TFK and TJP is also gratefully acknowledged. NR 60 TC 14 Z9 14 U1 1 U2 12 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD OCT PY 2009 VL 34 IS 10 BP 744 EP 749 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 506TD UT WOS:000270798200016 ER PT J AU Malen, JA Doak, P Baheti, K Tilley, TD Majumdar, A Segalman, RA AF Malen, Jonathan A. Doak, Peter Baheti, Kanhayalal Tilley, T. Don Majumdar, Arun Segalman, Rachel A. TI The Nature of Transport Variations in Molecular Heterojunction Electronics SO NANO LETTERS LA English DT Article ID JUNCTION CONDUCTANCE; AU(111); THERMOELECTRICITY; FLUCTUATION; DEPENDENCE; MONOLAYERS; CHEMISTRY; MECHANISM; FORMALISM; CIRCUITS AB Transport fluctuations and variations in a series of metal-molecule metal junctions were quantified through measurements of their thermopower. Thiol bound aromatic molecules of various lengths and degrees of freedom were chosen to understand the magnitude and origins of the variations. Junction thermopower was determined by measuring the voltage difference across molecules trapped between two gold contacts hold at different temperatures. While any given measurement was remarkably stable, the breadth of distributions from repeated measurements Implies variations in the offset of the highest occupied molecular orbital (HOMO) relative to the Fermi Energy of the contacts, similar In magnitude to the nominal offset Itself. Statistical analysis of data shows that these variations are born at the Junction formation, Increase with molecular length, and are dominated by variations in contact geometry and orbital hybridization, as well as intermolecular interactions. C1 [Malen, Jonathan A.; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Doak, Peter; Baheti, Kanhayalal; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Majumdar, Arun; Segalman, Rachel A.] Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Malen, Jonathan A.; Doak, Peter; Baheti, Kanhayalal; Majumdar, Arun; Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. [Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Majumdar, A (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM majumdar@me.berkeley.edu; segalman@berkeley.edu RI Malen, Jonathan/D-5954-2013; Doak, Peter/A-1910-2016; OI Malen, Jonathan/0000-0003-4560-4476; Doak, Peter/0000-0001-6039-9752; Segalman, Rachel/0000-0002-4292-5103 FU Division of Materials Sciences and Engineering in the Department of Energy Basic Energy Sciences (DOEBES) FX We gratefully acknowledge support from the Division of Materials Sciences and Engineering in the Department of Energy Basic Energy Sciences (DOEBES) through the Thermoelectrics Program at, Lawrence Berkeley National Laboratory (LBNL). We also gratefully acknowledge support in the form of instrumentation from the. NSF-NSEC COINS at UC Berkeley. We thank J. B. Neaton and Su Ying Quek from LBNL for insightful conversations that benefited this work. NR 44 TC 65 Z9 65 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3406 EP 3412 DI 10.1021/nl9013875 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500005 PM 19711966 ER PT J AU Houk, RJT Jacobs, BW El Gabaly, F Chang, NN Talin, AA Graham, DD House, SD Robertson, IM Allendorf, MD AF Houk, Ronald J. T. Jacobs, Benjamin W. El Gabaly, Farid Chang, Noel N. Talin, A. Alec Graham, Dennis D. House, Stephen D. Robertson, Ian M. Allendorf, Mark D. TI Silver Cluster Formation, Dynamics, and Chemistry in Metal-Organic Frameworks SO NANO LETTERS LA English DT Article ID NANOPARTICLES; COORDINATION; IONS; SPECTROSCOPY; TEMPERATURE; SURFACE; AGNO3; MOF-5 AB Synthetic methods used to produce metal nanoparticles typically lead to 6 distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with the potential for both steric and chemical stabilization. We report a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions <= 1 nm, with a significant fraction existing as Ag(3) clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. C1 [Houk, Ronald J. T.; Jacobs, Benjamin W.; El Gabaly, Farid; Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Chang, Noel N.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Talin, A. Alec] NIST, Ctr Nanosci & Technol, Gaithersburg, MD 20899 USA. [Graham, Dennis D.; House, Stephen D.; Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM mdallen@sandia.gov OI House, Stephen/0000-0003-2035-6373 FU U.S. Department of Energy [DE-FC36-05GO15064] FX The authors thank Drs. Raghunandan Bliakm and Nathan Ockwig for their technical assistance with various aspects of this project, Prof. Roya Maboudian and Dr. Nicola Ferralis of the University of California at Berkeley for initial XPS measurements, and Prof. Edward Solomon and David Heppner of Stanford University for their assistance with the EPR spectroscopy. This work was funded by the Sandia Laboratory Directed Research and Development program. The work at Illinois was supported by the U.S. Department of Energy under Grant No. DE-FC36-05GO15064. NR 33 TC 125 Z9 126 U1 18 U2 168 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3413 EP 3418 DI 10.1021/nl901397k PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500006 PM 19757817 ER PT J AU Garcia-Santamaria, F Chen, YF Vela, J Schaller, RD Hollingsworth, JA Klimov, VI AF Garcia-Santamaria, Florencio Chen, Yongfen Vela, Javier Schaller, Richard D. Hollingsworth, Jennifer A. Klimov, Victor I. TI Suppressed Auger Recombination in "Giant" Nanocrystals Boosts Optical Gain Performance SO NANO LETTERS LA English DT Article ID QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; LIGHT AMPLIFICATION; BLINKING AB Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ("blinking") of emission from single nanocrystals. The development of nanostructures in which Auger recombination Is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called "giant" nanocrystals consisting of a small CdSe core and a thick US shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multi-excitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an Important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles. C1 [Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Vela, Javier/I-4724-2014; OI Vela, Javier/0000-0001-5124-6893; Klimov, Victor/0000-0003-1158-3179 FU NIH NIGMS [1R01GM084702-01] FX This work was supported by the Chemical Science, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE) and Los Alamos LDRD funds. V.I.K. and J.A.H acknowledge partial support from the Center for Integrated Nanotechnologies jointly operated for DOE by Los Alamos and Sandia National Laboratories. J.A.H, also acknowledges partial support from NIH NIGMS Grant 1R01GM084702-01. F.G.-S. and J.V. are Los Alamos National Laboratory Director's Fellows. NR 30 TC 229 Z9 230 U1 9 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3482 EP 3488 DI 10.1021/nl901681d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500018 PM 19505082 ER PT J AU Sorger, VJ Oulton, RF Yao, J Bartal, G Zhang, X AF Sorger, Volker J. Oulton, Rupert F. Yao, Jie Bartal, Guy Zhang, Xiang TI Plasmonic Fabry-Perot Nanocavity SO NANO LETTERS LA English DT Article ID WAVE-GUIDE; MICROCAVITY; GENERATION; CAVITIES; OPTICS; FILMS AB We experimentally demonstrate a novel, all-plasmonic nanoscopic cavity exhibiting Q-factors up to 200 at visible frequencies. The Fabry-Perot type resonator uses tall metallic fins that reflect up to 98% of incident surface plasmon to concentrate light within a subwavelength cavity mode. High aspect ratio metal fins, constructed using lithography and electroplating, reduce surface plasmon scattering out of the surface, while a short cavity length reduces the propagation loss. A simple Fabry-Perot cavity model adapted for surface plasmon dispersion and reflection describes the underlying physics of the nanocavities and the results agree well with Johnson's and Christie's permittivity data. The occurrence of an optimum wavelength for plasmon storage In these cavities allows us to clearly visualize the fundamental trade-off between propagation loss and the spatial extent of surface plasmon polaritons. The subwavelength optical mode area within these cavities enables the enhancement of weak optical processes such as spontaneous emission and nonlinear optics at nanoscale dimensions. C1 [Sorger, Volker J.; Oulton, Rupert F.; Yao, Jie; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011 NR 30 TC 84 Z9 84 U1 10 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3489 EP 3493 DI 10.1021/nl901682n PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500019 PM 19673532 ER PT J AU Choi, CL Koski, KJ Sivasankar, S Alivisatos, AP AF Choi, Charina L. Koski, Kristie J. Sivasankar, Sanjeevi Alivisatos, A. Paul TI Strain-Dependent Photoluminescence Behavior of CdSe/CdS Nanocrystals with Spherical, Linear, and Branched Topologies SO NANO LETTERS LA English DT Article ID HIGH-PRESSURE; COLLOIDAL NANOCRYSTALS; SEEDED GROWTH; CORE/SHELL NANOCRYSTALS; DEFORMATION POTENTIALS; SEMICONDUCTORS; SPECTROSCOPY; DIAMOND AB The photoluminescence of CdSe/Cds core/shall quantum dots, nanorods, and tetrapods is investigated as a function of applied hydorstatic and non-hydrostatic pressure. The optoelectronic properties of all three nanocrystal morphologies are affected by strain. Further more, it is demonstrated that the unique morphology of seeded tetrapods is highly sensitive to non-isotropic stress environments. Seeded tetrapods can thereby serve as an optical strain gauge, capable of measuring forces on the order of nanonewtons. We anticipate that a nanocrystal strain gauge with optical readout will be useful for applications including sensitive optomechanical devices and biological force investigations. C1 [Choi, Charina L.; Koski, Kristie J.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Choi, Charina L.; Koski, Kristie J.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. [Sivasankar, Sanjeevi] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM apalivisatos@lbl.gov RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU NIH [PN2EY016546]; United States Department of Energy [DE-AC02-05CH11231] FX The high-pressure fluorescence experiments were performed at supporting laboratories of beamline 12.2.2 of the Advanced Light Source (ALS) tit Lawrence Berkeley National Laboratory. The authors thank James H. Nelson for CdSe/CdS rod samples, Simon Clark for instrument support, Katie Lutker for gasket preparation, and Jonathan Chou, Young-wook Jun, and Tze-Leung Lai for helpful discussions. The paper is dedicated to David Godfrey, who lends inspiration to our research. This work was supported in part by the NIH Roadmap Initiative in Nanomedicine, through a Nanomedicine Development Centre award (PN2EY016546) and also by grants from the Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract DE-AC02-05CH11231. NR 30 TC 68 Z9 69 U1 11 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3544 EP 3549 DI 10.1021/nl9017572 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500029 PM 19678687 ER PT J AU Hochbaum, AI Gargas, D Hwang, YJ Yang, PD AF Hochbaum, Allon I. Gargas, Daniel Hwang, Yun Jeong Yang, Peidong TI Single Crystalline Mesoporous Silicon Nanowires SO NANO LETTERS LA English DT Article ID POROUS SILICON; QUANTUM DOTS; DEPOSITION; GERMANIUM; CLUSTERS; AEROGELS; SURFACE; AREA AB Herein we demonstrate a novel electroless etching synthesis of monolithic single-crystalline mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the water from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores Is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatelytic substrates or active components of nanoscale optoelectronic devices. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy Under Contract No, DE-AC02-05CH11231. The authors thank Dr. Daniel Ruddy for helpful discussions and assistance with the gas adsorption measurements, Professor T. Don Tilley for the use of the Quantachrome Autosorb-1, and Dr. Tevye Kuykendall for phase contrast TEM. imaging. A.I.H. also thanks the staff of the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory for the use of their facilities. NR 24 TC 202 Z9 209 U1 11 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3550 EP 3554 DI 10.1021/nl9017594 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500030 PM 19824705 ER PT J AU Dani, KM Ku, ZY Upadhya, PC Prasankumar, RP Brueck, SRJ Taylor, AJ AF Dani, Keshav M. Ku, Zahyun Upadhya, Prashanth C. Prasankumar, Rohit P. Brueck, S. R. J. Taylor, Antoinette J. TI Subpicosecond Optical Switching with a Negative Index Metamaterial SO NANO LETTERS LA English DT Article ID AMORPHOUS-SILICON; MODULATION; RECOMBINATION; ELECTRON; DEVICES; CHIP AB We demonstrate a nanoscale subpicosecond (ps) matamaterial device capable of terabit/second all-optical communication in the near-IR. The 600 fs response, 2 orders of magnitude faster than previously reported is achieved by accessing a previously unused regime of light-injection level, subpicosecond carrier dynamics In the alpha-Si dielectric layer of the metamaterial. Further, we utilize a previously unrecognized, higher-order, shorter-wavelength negative-index resonance in the fishnet structure, thereby extending device functionality (via structural tuning of device dimensions) over 1.0-2.0 mu m. The pump energy required to modulate a single bit is only 3 nJ over our current 700 mu m(2) area device and can be easily scaled into the picoJoule regime with smaller cross sectional areas. C1 [Dani, Keshav M.] Los Alamos Natl Lab, MPA, CINT, Los Alamos, NM 87545 USA. [Ku, Zahyun; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Ku, Zahyun; Brueck, S. R. J.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. RP Dani, KM (reprint author), Los Alamos Natl Lab, MPA, CINT, MS K771, Los Alamos, NM 87545 USA. EM KMDani@lanl.gov RI Dani, Keshav/B-7490-2015; OI Dani, Keshav/0000-0003-3917-6305; Brueck, Steven/0000-0001-8754-5633 FU DARPA; NSF; NNSA's Laboratory Directed Research and Development Program; U.S. Department, of Energy [DE-AC52-06NA25396] FX The UNM portion of this work was supported by DARPA under the University Photonics Research Center program. Facilities of the NSF-sponsored NNIN node at the University of New Mexico were used for the fabrication. The LANL portion of this work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility and also partially supported by the NNSA's Laboratory Directed Research and Development Program. Los Alamos National Laboratory, all affirmative action equal Opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department, of Energy under Contract No. DE-AC52-06NA25396, We thank Aaron Gin, Scan Hearne, and John Nogan for their help in the fabrication process. NR 29 TC 43 Z9 45 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3565 EP 3569 DI 10.1021/nl9017644 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500032 PM 19737005 ER PT J AU Cybart, SA Anton, SM Wu, SM Clarke, J Dynes, RC AF Cybart, Shane A. Anton, Steven M. Wu, Stephen M. Clarke, John Dynes, Robert C. TI Very Large Scale Integration of Nanopatterned YBa2Cu3O7-delta Josephson Junctions in a Two-Dimensional Array SO NANO LETTERS LA English DT Article ID QUANTUM INTERFERENCE DEVICES; HTS SFQ CIRCUITS; ION DAMAGE; DC SQUIDS; VOLTAGE; NANOLITHOGRAPHY; SUPERCONDUCTORS; IMPLANTATION; MULTILAYER; TRANSITION AB Very large scale integration of Josephson functions in a two-dimensional series-parallel array has been achieved by Ion irradiating a YBa(2)cu(3)O(7-delta) film through slits in a nanofabricated mask created with electron beam lithography and reactive ion etching. The mask consisted of 15820 high aspect ratio (20:1), 36 nm wide slits that restricted the irradiation in the film below to form Josephson Junctions. Characterizing each parallel segment k, containing 28 junctions, with a single critical current I-ck we found a standard deviation in I-ck Of about 16%. C1 [Cybart, Shane A.; Anton, Steven M.; Wu, Stephen M.; Clarke, John; Dynes, Robert C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cybart, Shane A.; Anton, Steven M.; Wu, Stephen M.; Clarke, John; Dynes, Robert C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cybart, SA (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM scybart@berkeley.edu RI Cybart, Shane/E-3518-2013 FU AFOSR [FA9550-05-1-0436]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Bruce Harteneck for the electron-beam lithography and RIE performed at the LBNL Molecular Foundry and Yen-Hao Chen for circuit board layout. This work was supported by AFOSR Grant No. FA9550-05-1-0436. The work at the Molecular Foundry and electrical transport measurements were supported by the Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 21 Z9 21 U1 4 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2009 VL 9 IS 10 BP 3581 EP 3585 DI 10.1021/nl901785j PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 505DY UT WOS:000270670500035 PM 19751069 ER PT J AU Lin, G Li, DY de Carvalho, LPS Deng, HT Tao, H Vogt, G Wu, KY Schneider, J Chidawanyika, T Warren, JD Li, HL Nathan, C AF Lin, Gang Li, Dongyang de Carvalho, Luiz Pedro Sorio Deng, Haiteng Tao, Hui Vogt, Guillaume Wu, Kangyun Schneider, Jean Chidawanyika, Tamutenda Warren, J. David Li, Huilin Nathan, Carl TI Inhibitors selective for mycobacterial versus human proteasomes SO NATURE LA English DT Article ID UBIQUITIN-LIKE PROTEIN; TUBERCULOSIS PROTEASOME; NITRIC-OXIDE; SOFTWARE; IDENTIFICATION; TOOLS AB Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M. tuberculosis and act as selective suicide-substrate inhibitors of the M. tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue. C1 [Lin, Gang; de Carvalho, Luiz Pedro Sorio; Vogt, Guillaume; Wu, Kangyun; Schneider, Jean; Chidawanyika, Tamutenda; Nathan, Carl] Weill Cornell Med Coll, Dept Microbiol & Immunol, New York, NY 10065 USA. [Tao, Hui; Warren, J. David] Weill Cornell Med Coll, Milstein Chem Core Facil, New York, NY 10065 USA. [Tao, Hui; Warren, J. David] Weill Cornell Med Coll, Dept Biochem & Struct Biol, New York, NY 10065 USA. [Li, Dongyang; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Deng, Haiteng] Rockefeller Univ, Prote Resource Ctr, New York, NY 10065 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Nathan, C (reprint author), Weill Cornell Med Coll, Dept Microbiol & Immunol, New York, NY 10065 USA. EM gal2005@med.cornell.edu; hli@bnl.gov; cnathan@med.cornell.edu RI Warren, J David/B-5625-2008; Vogt, Guillaume/L-6046-2015 OI Warren, J David/0000-0002-2833-2248; Vogt, Guillaume/0000-0001-8192-1247 FU NIH [PO1-AI056293, R01AI070285]; Milstein Program in Chemical Biology of Infectious Diseases; US DOE; William Randolph Hearst Foundation FX S. Eswaramoorthy helped with crystallography software, C. Lipinski, C. Walsh and M. Fischbach proposed reaction mechanisms, and C. Karan assisted with screening. S. Ehrt and S. Gandotra performed some bactericidal assays, C. Tsu and L. Dick donated a fluorimeter and J. Blanchard provided BlaC. Supported by NIH PO1-AI056293, NIH R01AI070285 and the Milstein Program in Chemical Biology of Infectious Diseases. X-ray diffraction data were collected at beamline X6A, X25 and X29 in the National Synchrotron Light Source, a facility supported by the US DOE and NIH. The Department of Microbiology and Immunology is supported by the William Randolph Hearst Foundation. NR 30 TC 104 Z9 111 U1 3 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 1 PY 2009 VL 461 IS 7264 BP 621 EP U63 DI 10.1038/nature08357 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 500LH UT WOS:000270302600033 PM 19759536 ER PT J AU Oulton, RF Sorger, VJ Zentgraf, T Ma, RM Gladden, C Dai, L Bartal, G Zhang, X AF Oulton, Rupert F. Sorger, Volker J. Zentgraf, Thomas Ma, Ren-Min Gladden, Christopher Dai, Lun Bartal, Guy Zhang, Xiang TI Plasmon lasers at deep subwavelength scale SO NATURE LA English DT Article ID WAVE-GUIDE AB Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources(1-9). Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals(3), metal-clad cavities(4) and nanowires(5-7). However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit(10,11). A way of addressing this issue is to make use of surface plasmons(12,13), which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches(14,15). A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide(16). Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire's exciton spontaneous emission rate by up to six times owing to the strong mode confinement(17) and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits(18), bio-sensing(19) and quantum information technology(20). C1 [Oulton, Rupert F.; Sorger, Volker J.; Zentgraf, Thomas; Gladden, Christopher; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ma, Ren-Min; Dai, Lun] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ma, Ren-Min; Dai, Lun] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Ma, Ren-Min/H-9621-2012; Zentgraf, Thomas/G-8848-2013 OI Zentgraf, Thomas/0000-0002-8662-1101 FU US Air Force Office of Scientific Research (AFOSR) MURI programme [FA9550-04-1-0434]; National Science Foundation Nano-scale Science and Engineering Center (NSF-NSEC) [CMMI-0751621]; Alexander von Humboldt Foundation; Intel Corporation; National Natural Science Foundation of China [60576037, 10774007]; National Basic Research Program of China [2006CB921607, 2007CB613402] FX We thank M. Ambati and D. Genov for discussions and the Lawrence Berkeley National Laboratory's Molecular Foundry for technical support. We acknowledge financial support from the US Air Force Office of Scientific Research (AFOSR) MURI programme under grant number FA9550-04-1-0434 and from the National Science Foundation Nano-scale Science and Engineering Center (NSF-NSEC) under award number CMMI-0751621. T. Z. acknowledges a fellowship from the Alexander von Humboldt Foundation. V. J. S. acknowledges a fellowship from the Intel Corporation. L. D. and R.-M. M. acknowledge the National Natural Science Foundation of China ( award numbers 60576037 and 10774007) and the National Basic Research Program of China ( grant numbers 2006CB921607 and 2007CB613402). NR 30 TC 1217 Z9 1240 U1 76 U2 821 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 1 PY 2009 VL 461 IS 7264 BP 629 EP 632 DI 10.1038/nature08364 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 500LH UT WOS:000270302600035 PM 19718019 ER PT J AU Hattori, D Chen, Y Matthews, BJ Salwinski, L Sabatti, C Grueber, WB Zipursky, SL AF Hattori, Daisuke Chen, Yi Matthews, Benjamin J. Salwinski, Lukasz Sabatti, Chiara Grueber, Wesley B. Zipursky, S. Lawrence TI Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms SO NATURE LA English DT Article ID DROSOPHILA MUSHROOM BODIES; SENSORY NEURONS; AXON GUIDANCE; MOLECULAR DIVERSITY; STRUCTURAL BASIS; SPECIFICITY; BINDING; MORPHOGENESIS; ORGANIZATION; RECOGNITION AB Down Syndrome cell adhesion molecule (Dscam) genes encode neuronal cell recognition proteins of the immunoglobulin superfamily(1,2). In Drosophila, Dscam1 generates 19,008 different ectodomains by alternative splicing of three exon clusters, each encoding half or a complete variable immunoglobulin domain(3). Identical isoforms bind to each other, but rarely to isoforms differing at any one of the variable immunoglobulin domains(4,5). Binding between isoforms on opposing membranes promotes repulsion(6). Isoform diversity provides the molecular basis for neurite self-avoidance(6-11). Self-avoidance refers to the tendency of branches from the same neuron (self-branches) to selectively avoid one another(12). To ensure that repulsion is restricted to self-branches, different neurons express different sets of isoforms in a biased stochastic fashion(7,13). Genetic studies demonstrated that Dscam1 diversity has a profound role in wiring the fly brain(11). Here we show how many isoforms are required to provide an identification system that prevents non-self branches from inappropriately recognizing each other. Using homologous recombination, we generated mutant animals encoding 12, 24, 576 and 1,152 potential isoforms. Mutant animals with deletions encoding 4,752 and 14,256 isoforms(14) were also analysed. Branching phenotypes were assessed in three classes of neurons. Branching patterns improved as the potential number of isoforms increased, and this was independent of the identity of the isoforms. Although branching defects in animals with 1,152 potential isoforms remained substantial, animals with 4,752 isoforms were indistinguishable from wild-type controls. Mathematical modelling studies were consistent with the experimental results that thousands of isoforms are necessary to ensure acquisition of unique Dscam1 identities in many neurons. We conclude that thousands of isoforms are essential to provide neurons with a robust discrimination mechanism to distinguish between self and non-self during self-avoidance. C1 [Hattori, Daisuke; Chen, Yi; Zipursky, S. Lawrence] Univ Calif Los Angeles, David Geffen Sch Med, Howard Hughes Med Inst, Dept Biol Chem, Los Angeles, CA 90095 USA. [Matthews, Benjamin J.] Columbia Univ, Med Ctr, Ctr Neurobiol & Behav, New York, NY 10032 USA. [Salwinski, Lukasz] Univ Calif Los Angeles, Inst Mol Biol, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Sabatti, Chiara] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA. [Grueber, Wesley B.] Columbia Univ, Med Ctr, Dept Physiol & Cellular Biophys, New York, NY 10032 USA. [Grueber, Wesley B.] Columbia Univ, Med Ctr, Dept Neurosci, New York, NY 10032 USA. RP Zipursky, SL (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Howard Hughes Med Inst, Dept Biol Chem, Los Angeles, CA 90095 USA. EM lzipursky@mednet.ucla.edu OI Matthews, Benjamin/0000-0002-8697-699X FU NIH; NRSA; NIH/NINDS; Howard Hughes Medical Institute FX We thank T. Lee and B. Dickson for fly stocks, B. Dickson and E. Demir for advice on homologous recombination procedures, S. Miura for staining of embryos, and N. Nocera and other members of the Zipursky laboratory for help in screening homologous recombinants. We thank D. Eisenberg for helpful discussion on mathematical modelling. We thank R. Axel, A. Nern, W. Wojtowicz and other members of the Zipursky and Grueber laboratories for discussion and comments on the manuscript. This work was supported by a grant from the NIH ( S.L.Z.), and NRSA from NIH/NINDS (B.J.M.). W. B. G. is a Searle Scholar, McKnight Scholar and Klingenstein Fellow. S. L. Z. is an investigator of the Howard Hughes Medical Institute. NR 26 TC 72 Z9 72 U1 1 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 1 PY 2009 VL 461 IS 7264 BP 644 EP U87 DI 10.1038/nature08431 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 500LH UT WOS:000270302600039 PM 19794492 ER PT J AU Yang, SH Pappas, KM Hauser, LJ Land, ML Chen, GL Hurst, GB Pan, CL Kouvelis, VN Typas, MA Pelletier, DA Klingeman, DM Chang, YJ Samatova, NF Brown, SD AF Yang, Shihui Pappas, Katherine M. Hauser, Loren J. Land, Miriam L. Chen, Gwo-Liang Hurst, Gregory B. Pan, Chongle Kouvelis, Vassili N. Typas, Milton A. Pelletier, Dale A. Klingeman, Dawn M. Chang, Yun-Juan Samatova, Nagiza F. Brown, Steven D. TI Improved genome annotation for Zymomonas mobilis SO NATURE BIOTECHNOLOGY LA English DT Letter ID ETHANOL; ZM4 C1 [Yang, Shihui; Hauser, Loren J.; Land, Miriam L.; Chen, Gwo-Liang; Pelletier, Dale A.; Klingeman, Dawn M.; Chang, Yun-Juan; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Shihui; Hauser, Loren J.; Land, Miriam L.; Pan, Chongle; Klingeman, Dawn M.; Brown, Steven D.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Pappas, Katherine M.; Kouvelis, Vassili N.; Typas, Milton A.] Univ Athens, Dept Genet & Biotechnol, Athens, Greece. [Hurst, Gregory B.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Pan, Chongle; Samatova, Nagiza F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Yang, SH (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM kmpappas@biol.uoa.gr; brownsd@ornl.gov RI Land, Miriam/A-6200-2011; YANG, SHIHUI/A-6526-2008; Pelletier, Dale/F-4154-2011; Klingeman, Dawn/B-9415-2012; Hauser, Loren/H-3881-2012; Brown, Steven/A-6792-2011; OI Land, Miriam/0000-0001-7102-0031; YANG, SHIHUI/0000-0002-9394-9148; Klingeman, Dawn/0000-0002-4307-2560; Brown, Steven/0000-0002-9281-3898; Hurst, Gregory/0000-0002-7650-8009 NR 9 TC 42 Z9 57 U1 1 U2 13 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD OCT PY 2009 VL 27 IS 10 BP 893 EP 894 DI 10.1038/nbt1009-893 PG 3 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 515LO UT WOS:000271472500014 PM 19816441 ER PT J AU Greeley, J Stephens, IEL Bondarenko, AS Johansson, TP Hansen, HA Jaramillo, TF Rossmeisl, J Chorkendorff, I Norskov, JK AF Greeley, J. Stephens, I. E. L. Bondarenko, A. S. Johansson, T. P. Hansen, H. A. Jaramillo, T. F. Rossmeisl, J. Chorkendorff, I. Norskov, J. K. TI Alloys of platinum and early transition metals as oxygen reduction electrocatalysts SO NATURE CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ACTIVITY-STABILITY RELATIONSHIPS; ELECTRONIC-STRUCTURE; SURFACE-COMPOSITION; REACTION ORR; CATALYSTS; ELECTROREDUCTION; ELECTROLYSIS; PT(111); CATHODE AB The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V. C1 [Greeley, J.; Hansen, H. A.; Rossmeisl, J.; Norskov, J. K.] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark. [Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Jaramillo, T. F.; Chorkendorff, I.] Tech Univ Denmark, Dept Phys, Ctr Individual Nanoparticle Funct, DK-2800 Lyngby, Denmark. RP Greeley, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM norskov@fysik.dtu.dk RI Rossmeisl, Jan/A-5714-2011; Hansen, Heine/G-3044-2013; Bandarenka, Aliaksandr/C-3958-2011; Stephens, Ifan/B-7191-2013; Chorkendorff, Ib/C-7282-2008; Jaramillo, Thomas/C-4174-2014; Norskov, Jens/D-2539-2017 OI Bandarenka, Aliaksandr/0000-0002-5970-4315; Rossmeisl, Jan/0000-0001-7749-6567; Hansen, Heine/0000-0001-7551-9470; Stephens, Ifan/0000-0003-2157-492X; Chorkendorff, Ib/0000-0003-2738-0325; Jaramillo, Thomas/0000-0001-9900-0622; Norskov, Jens/0000-0002-4427-7728 FU Danish Council for Technology and Innovation's FTP; Danish Strategic Research Council's HyCycle; Lundbeck Foundation; Danish National Research Foundation FX J.G. and T.F.J. are both recipients of H. C. Orsted Postdoctoral Fellowships from the Technical University of Denmark. Funding by the Danish Council for Technology and Innovation's FTP program and by the Danish Strategic Research Council's HyCycle program is gratefully acknowledged. The Center for Atomic-scale Materials Design is supported by the Lundbeck Foundation. The Center for Individual Nanoparticle Functionality is supported by the Danish National Research Foundation. NR 36 TC 980 Z9 991 U1 146 U2 1022 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD OCT PY 2009 VL 1 IS 7 BP 552 EP 556 DI 10.1038/NCHEM.367 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 497RB UT WOS:000270077200014 PM 21378936 ER PT J AU Joy, DC AF Joy, David C. TI SCANNING ELECTRON MICROSCOPY Second best no more SO NATURE MATERIALS LA English DT News Item ID CONTRAST AB Secondary electron imaging in electron microscopy can achieve resolutions that compete with transmission electron microscopy, and allows imaging of both surface and bulk atoms simultaneously. C1 [Joy, David C.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Joy, David C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Joy, DC (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM djoy@utk.edu NR 5 TC 7 Z9 7 U1 2 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2009 VL 8 IS 10 BP 776 EP 777 DI 10.1038/nmat2538 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 497QL UT WOS:000270075600009 PM 19773787 ER PT J AU Weber, F Aliouane, N Zheng, H Mitchell, JF Argyriou, DN Reznik, D AF Weber, F. Aliouane, N. Zheng, H. Mitchell, J. F. Argyriou, D. N. Reznik, D. TI Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7 SO NATURE MATERIALS LA English DT Article ID MAGNETORESISTIVE OXIDE; ELECTRONIC-STRUCTURE; FERMI-SURFACE; CHARGE; SUPERCONDUCTORS; LA0.7CA0.3MNO3; LA1-XSRXMNO3; TRANSITION; INSULATOR; FEATURES AB Charge carriers in low-doped semiconductors may distort the atomic lattice around them and through this interaction form so-called small polarons(1,2). High carrier concentrations on the other hand can lead to short-range ordered polarons (large polarons)(3,4) and even to a long-range charge and orbital order(5). These ordered systems should be insulating with a large electrical resistivity(6). However, recently a polaronic pseudogap was found in a metallic phase of La2-2xSr1+ 2xMn2O7 (ref. 7). This layered manganite is famous for colossal magnetoresistance associated with a phase transition from this low-temperature metallic phase to a high-temperature insulating phase(7-9). Broad charge-order peaks due to large polarons in the insulating phase disappear when La2-2xSr1-2xMn2O7 becomes metallic(10). Investigating how polaronic features survive in the metallic phase, here we report the results of inelastic neutron scattering measurements showing that inside the metallic phase polarons remain as fluctuations that strongly broaden and soften certain phonons near the wavevectors where the charge-order peaks appeared in the insulating phase. Our findings imply that polaronic signatures in metals may generally come from a competing insulating charge-ordered phase. Our findings are highly relevant to cuprate superconductors with both a pseudogap(11,12) and a similar phonon effect associated with a competing stripe order(13). C1 [Aliouane, N.; Argyriou, D. N.] Helmholtz Zentrum Berlin Mat & Energy, D-14109 Berlin, Germany. [Weber, F.; Reznik, D.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Weber, F.] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Reznik, D.] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. RP Argyriou, DN (reprint author), Helmholtz Zentrum Berlin Mat & Energy, Glienicker Str 100, D-14109 Berlin, Germany. EM argyriou@helmholtz-berlin.de; dmitri.reznik@cea.fr FU Argonne National Laboratory [DE-AC02-06CH11357]; Hytrain Project of the Marie Curie Research Training Network FX The authors would like to thank M. Braden and L. Pintschovius for helpful discussions and suggestions, and M. Braden and W. Reichardt for allowing us to use shell model parameters for La2-2xSr1+2xMn2O7 that they found in a separate investigation. D. N. A. and D. R. thank Dan Dessau and Jan Zaanen for discussions. Work at Argonne National Laboratory was supported under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC, Operator of Argonne National Laboratory, a US Department of Energy Office of Science Laboratory. N.A, was supported in part by the Hytrain Project of the Marie Curie Research Training Network funded under the EC's 6th Framework Human Resources and Mobility Program. NR 28 TC 22 Z9 22 U1 4 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2009 VL 8 IS 10 BP 798 EP 802 DI 10.1038/NMAT2513 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 497QL UT WOS:000270075600013 PM 19684586 ER PT J AU Zhu, Y Inada, H Nakamura, K Wall, J AF Zhu, Y. Inada, H. Nakamura, K. Wall, J. TI Imaging single atoms using secondary electrons with an aberration-corrected electron microscope SO NATURE MATERIALS LA English DT Article ID RESOLUTION; COINCIDENCE; SPECTROSCOPY; CONTRAST AB Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes(1-8). However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale(9), have been stagnant, despite several recent efforts(10,11). Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy. C1 [Zhu, Y.; Wall, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Inada, H.; Nakamura, K.] Hitachi High Technol Corp, Ibaraki 3128504, Japan. RP Zhu, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhu@bnl.gov FU US Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX We thank R. F. Egerton for stimulating discussions. We also thank L. Wu, D.Su, V. V. Volkov, J. Liu and M. Sato for discussions and assistance. Work at Brookhaven was supported by the US Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. NR 19 TC 50 Z9 50 U1 6 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD OCT PY 2009 VL 8 IS 10 BP 808 EP 812 DI 10.1038/NMAT2532 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 497QL UT WOS:000270075600015 PM 19767737 ER PT J AU Bhattacharya, T Stanton, J Kim, EY Kunstman, KJ Phair, JP Jacobson, LP Wolinsky, SM AF Bhattacharya, Tanmoy Stanton, Jennifer Kim, Eun-Young Kunstman, Kevin J. Phair, John P. Jacobson, Lisa P. Wolinsky, Steven M. TI CCL3L1 and HIV/AIDS susceptibility SO NATURE MEDICINE LA English DT Letter ID HUMAN GENOME; COPY-NUMBER; ANTIRETROVIRAL THERAPY; PATHOGENESIS; CCR5 C1 [Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. [Bhattacharya, Tanmoy] Los Alamos Natl Lab, Los Alamos, NM USA. [Stanton, Jennifer; Kim, Eun-Young; Kunstman, Kevin J.; Phair, John P.; Wolinsky, Steven M.] Northwestern Univ, Feinberg Sch Med, Div Infect Dis, Chicago, IL 60611 USA. [Jacobson, Lisa P.] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA. RP Bhattacharya, T (reprint author), Santa Fe Inst, Santa Fe, NM 87501 USA. EM s-wolinsky@northwestern.edu RI Wolinsky, Steven/B-2893-2012; Bhattacharya, Tanmoy/J-8956-2013 OI Bhattacharya, Tanmoy/0000-0002-1060-652X FU NIAID NIH HHS [AI-35039] NR 12 TC 44 Z9 44 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1078-8956 J9 NAT MED JI Nat. Med. PD OCT PY 2009 VL 15 IS 10 BP 1112 EP 1115 DI 10.1038/nm1009-1112 PG 5 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA 504EC UT WOS:000270596400013 PM 19812561 ER PT J AU Yan, RX Gargas, D Yang, PD AF Yan, Ruoxue Gargas, Daniel Yang, Peidong TI Nanowire photonics SO NATURE PHOTONICS LA English DT Review ID INDIUM-PHOSPHIDE NANOWIRES; ONE-DIMENSIONAL NANOSTRUCTURES; SENSITIZED SOLAR-CELLS; LIQUID-SOLID MECHANISM; III-V NANOWIRES; SEMICONDUCTOR NANOWIRES; EPITAXIAL-GROWTH; CORE-SHELL; OPTOELECTRONIC DEVICES; AVALANCHE PHOTODIODES AB Semiconductor nanowires, by definition, typically have cross-sectional dimensions that can be tuned from 2-200 nm, with lengths spanning from hundreds of nanometres to millimetres. These subwavelength structures represent a new class of semiconductor materials for investigating light generation, propagation, detection, amplification and modulation. After more than a decade of research, nanowires can now be synthesized and assembled with specific compositions, heterojunctions and architectures. This has led to a host of nanowire photonic devices including photodetectors, chemical and gas sensors, waveguides, LEDs, microcavity lasers, solar cells and nonlinear optical converters. A fully integrated photonic platform using nanowire building blocks promises advanced functionalities at dimensions compatible with on-chip technologies. C1 [Yan, Ruoxue; Gargas, Daniel; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yan, Ruoxue; Gargas, Daniel; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yan, RX (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU Office of Basic Science, US Department of Energy; Defense Advanced Research Projects Agency; National Science Foundation FX The authors would like to acknowledge here contributions of members of our research group and collaborators on this nanowire photonics programme. This work was supported by the Office of Basic Science, US Department of Energy and the Defense Advanced Research Projects Agency. P. Y. would like to thank the National Science Foundation for the A. T. Waterman Award. NR 100 TC 803 Z9 813 U1 81 U2 733 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD OCT PY 2009 VL 3 IS 10 BP 569 EP 576 DI 10.1038/NPHOTON.2009.184 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA 505WZ UT WOS:000270733300012 ER PT J AU Zhang, YB Brar, VW Girit, C Zettl, A Crommie, MF AF Zhang, Yuanbo Brar, Victor W. Girit, Caglar Zettl, Alex Crommie, Michael F. TI Origin of spatial charge inhomogeneity in graphene SO NATURE PHYSICS LA English DT Article ID SCANNING TUNNELING SPECTROSCOPY; SUSPENDED GRAPHENE; CARBON NANOTUBES; SCATTERING; SURFACE; SHEETS; GAS AB In an ideal graphene sheet, charge carriers behave as two-dimensional Dirac fermions(1). This has been confirmed by the discovery of a half-integer quantum Hall effect in graphene flakes placed on a SiO(2) substrate. The Dirac fermions in graphene, however, are subject to microscopic perturbations that include topographic corrugations and electron-density inhomogeneities (that is, charge puddles). Such perturbations profoundly alter Dirac-fermion behaviour, with implications for their fundamental physics as well as for future graphene device applications. Here we report a new technique of Dirac-point mapping that we have used to determine the origin of charge inhomogeneities in graphene. We find that fluctuations in graphene charge density are caused not by topographical corrugations, but rather by charge-donating impurities below the graphene. These impurities induce surprising standing wave patterns due to unexpected backscattering of Dirac fermions. Such wave patterns can be continuously modulated by electric gating. Our observations provide new insight into impurity scattering of Dirac fermions and the microscopic mechanisms limiting electronic mobility in graphene. C1 [Zhang, Yuanbo; Brar, Victor W.; Girit, Caglar; Zettl, Alex; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Brar, Victor W.; Girit, Caglar; Zettl, Alex; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, YB (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM zhyb@berkeley.edu; crommie@berkeley.edu RI Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016 OI Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X FU DOE [DE-AC03-76SF0098]; Miller Institute, UC Berkeley FX We thank D.-H. Lee, H. Zhai, S. Louie, A. Balatsky, J. Moore, A. Vishwanath, F. Wang, C.-H. Park and Y. Zhang for helpful discussions. This work was supported by the DOE under contract No. DE-AC03-76SF0098. Y. Z. acknowledges a postdoctoral fellowship from the Miller Institute, UC Berkeley. NR 29 TC 392 Z9 395 U1 8 U2 138 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD OCT PY 2009 VL 5 IS 10 BP 722 EP 726 DI 10.1038/NPHYS1365 PG 5 WC Physics, Multidisciplinary SC Physics GA 511RW UT WOS:000271185400011 ER PT J AU Vogel, TM Hirsch, PR Simonet, P Jansson, JK Tiedje, JM van Elsas, JD Nalin, R Philippot, L Bailey, MJ AF Vogel, Timothy M. Hirsch, Penny R. Simonet, Pascal Jansson, Janet K. Tiedje, James M. van Elsas, Jan Dirk Nalin, Renaud Philippot, Laurent Bailey, Mark J. TI Advantages of the metagenomic approach for soil exploration: reply from Vogel et al. SO NATURE REVIEWS MICROBIOLOGY LA English DT Letter ID MICROBIAL DIVERSITY; GENE C1 [Vogel, Timothy M.; Simonet, Pascal] Univ Lyon, Ecole Cent Lyon, Lab AMPERE, Environm Microbial Genom Grp, F-69134 Ecully, France. [Hirsch, Penny R.] Rothamsted Res, Harpenden AL5 2JQ, Herts, England. [Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [van Elsas, Jan Dirk] Univ Groningen, Dept Microbial Ecol, Ctr Ecol & Evolutionary Studies, NL-9750 AA Haren, Netherlands. [Nalin, Renaud] LibraGen, F-31400 Toulouse, France. [Philippot, Laurent] Univ Bourgogne, INRA, UMR Microbiol Sol & Environm, CMSE, F-21065 Dijon, France. [Bailey, Mark J.] CEH Wallingford, Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England. RP Vogel, TM (reprint author), Univ Lyon, Ecole Cent Lyon, Lab AMPERE, Environm Microbial Genom Grp, 36 Ave Guy Collongue, F-69134 Ecully, France. EM timothy.vogel@ec-lyon.fr RI Hirsch, Penny/B-5135-2008; Philippot, Laurent/G-5598-2011; bailey, mark/I-7149-2012; OI Hirsch, Penny/0000-0002-5909-1934; bailey, mark/0000-0002-0147-7316; Vogel, Timothy/0000-0002-9542-3246; Philippot, laurent/0000-0003-3461-4492 NR 12 TC 4 Z9 4 U1 0 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1740-1526 J9 NAT REV MICROBIOL JI Nat. Rev. Microbiol. PD OCT PY 2009 VL 7 IS 10 DI 10.1038/nrmicro2119-c3 PG 2 WC Microbiology SC Microbiology GA 494QU UT WOS:000269831000023 ER PT J AU Lu, M Chai, J Fu, D AF Lu, Min Chai, Jin Fu, Dax TI Structural basis for autoregulation of the zinc transporter YiiP SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID GENOME-WIDE ASSOCIATION; MAXIMUM-LIKELIHOOD; CRYSTAL-STRUCTURE; FUNCTIONAL-CHARACTERIZATION; MG2+ TRANSPORTER; MENKES-DISEASE; METAL-BINDING; RISK LOCI; HOMEOSTASIS; MECHANISM AB Zinc transporters have crucial roles in cellular zinc homeostatic control. The 2.9-angstrom resolution structure of the zinc transporter YiiP from Escherichia coli reveals a richly charged dimer interface stabilized by zinc binding. Site-directed fluorescence resonance energy transfer ( FRET) measurements and mutation-activity analysis suggest that zinc binding triggers hinge movements of two electrically repulsive cytoplasmic domains pivoting around four salt bridges situated at the juncture of the cytoplasmic and transmembrane domains. These highly conserved salt bridges interlock transmembrane helices at the dimer interface, where they are well positioned to transmit zinc-induced interdomain movements to reorient transmembrane helices, thereby modulating coordination geometry of the active site for zinc transport. The cytoplasmic domain of YiiP is a structural mimic of metal-trafficking proteins and the metal-binding domains of metal-transporting P-type ATPases. The use of this common structural module to regulate metal coordination chemistry may enable a tunable transport activity in response to cytoplasmic metal fluctuations. C1 [Lu, Min; Chai, Jin; Fu, Dax] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Fu, D (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM dax@bnl.gov OI chai, jin/0000-0002-4760-5811 FU US National Institutes of Health; US Office of Basic Energy Sciences, Department of Energy; Biology Department of Brookhaven National Laboratory FX We thank the staff at beamline X25 of National Synchrotron Light Source of Brookhaven Nation Laboratory for technical assistance during data collection. We also thank J. Shanklin, P. Freimuth, B. P. Rosen, C. Anderson, C. Correll, R. Kaplan and D. Mueller for critically reading the manuscript. This work was supported by the US National Institutes of Health ( to D. F.), the US Office of Basic Energy Sciences, Department of Energy ( to D. F.) and the Biology Department of Brookhaven National Laboratory. NR 49 TC 95 Z9 95 U1 3 U2 20 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD OCT PY 2009 VL 16 IS 10 BP 1063 EP U81 DI 10.1038/nsmb.1662 PG 6 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 503EA UT WOS:000270514200013 PM 19749753 ER PT J AU Hodgson, JG Yeh, RF Ray, A Wang, NJ Smirnov, I Yu, M Hariono, S Silber, J Feiler, HS Gray, JW Spellman, PT Vandenberg, SR Berger, MS James, CD AF Hodgson, J. Graeme Yeh, Ru-Fang Ray, Amrita Wang, Nicholas J. Smirnov, Ivan Yu, Mamie Hariono, Sujatmi Silber, Joachim Feiler, Heidi S. Gray, Joe W. Spellman, Paul T. Vandenberg, Scott R. Berger, Mitchel S. James, C. David TI Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts SO NEURO-ONCOLOGY LA English DT Article DE comparative genomics; GBM; xenograft ID COMPARATIVE GENOMIC HYBRIDIZATION; EPIDERMAL-GROWTH-FACTOR; CONVECTION-ENHANCED DELIVERY; FOXM1 TRANSCRIPTION FACTOR; PANCREATIC-CANCER CELLS; DOWN-REGULATION; FACTOR RECEPTOR; IN-VIVO; MOLECULAR SUBTYPES; MALIGNANT GLIOMAS AB Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment. Neuro-Oncology 11, 477 487, 2009 ( Posted to Neuro-Oncology [serial online], Doc. D08-00284, January 12, 2009. URL http://neuro -oncology. dukejournals. org; DOI: 10.1215/152285172008-113) C1 [Hodgson, J. Graeme; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA. [Yeh, Ru-Fang] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA. [Vandenberg, Scott R.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA. [Ray, Amrita; Wang, Nicholas J.; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Hodgson, JG (reprint author), Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA. EM ghodgson@cc.ucsf.edu RI James, Charles/E-2721-2012 OI James, Charles/0000-0002-1027-203X FU NCI NIH HHS [U54 CA112970, CA097257, CA101777, K01 CA101777, P50 CA097257, U54 CA 112970]; PHS HHS [NSO49720] NR 58 TC 60 Z9 60 U1 0 U2 14 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1522-8517 J9 NEURO-ONCOLOGY JI Neuro-Oncology PD OCT PY 2009 VL 11 IS 5 BP 477 EP 487 DI 10.1215/15228517-2008-113 PG 11 WC Oncology; Clinical Neurology SC Oncology; Neurosciences & Neurology GA 502XT UT WOS:000270494800003 PM 19139420 ER PT J AU Leskovjan, AC Lanzirotti, A Miller, LM AF Leskovjan, Andreana C. Lanzirotti, Antonio Miller, Lisa M. TI Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer's disease SO NEUROIMAGE LA English DT Article DE Alzheimer's disease; Transgenic mice; Neurodegeneration; Amyloid plaques; Metal; Zinc; Copper; Iron; Calcium; X-ray fluorescence; Infrared microspectroscopy; Synchrotron ID A-BETA PEPTIDE; HISTOCHEMICALLY-REACTIVE ZINC; TRANSGENIC MICE; PRECURSOR PROTEIN; SENILE PLAQUES; MUTANT PRESENILIN-1; SWEDISH MUTANT; COPPER-BINDING; BRAIN; AGGREGATION AB Amyloid beta (A beta) is the primary component of Alzheimer's disease (AD) plaques, a key pathological feature of the disease. Metal ions of zinc (Zn), copper (Cu), iron (Fe), and calcium (Ca) are elevated in human amyloid plaques and are thought to be involved in neurodegeneration. Transgenic mouse models of AD also exhibit amyloid plaques, but fail to exhibit the high degree of neurodegeneration observed in humans. In this study, we imaged the Zn, Cu, Fe, and Ca ion distribution in the PSAPP transgenic mouse model representing end-stage AD (N=6) using synchrotron X-ray fluorescence (XRF) microprobe. In order to account for differences in density in the plaques, the relative protein content was imaged with synchrotron Fourier transform infrared microspectroscopy (FTIRM) on the same samples. FTIRM results revealed a 61% increase in protein content in the plaques compared to the surrounding tissue. After normalizing to protein density, we found that the PSAPP plaques contained only a 29% increase in Zn and there was actually less Cu, Fe, and Ca in the plaque compared to the Surrounding tissue. Since metal binding to A beta is thought to induce redox chemistry that is toxic to neurons, the reduced metal binding in PSAPP mice is consistent with the lack of neurodegeneration in these animals. These findings were in stark contrast to the high metal ion content observed in human AD plaques, further implicating the role of metal ions in human AD pathology. (C) 2009 Elsevier Inc. All rights reserved. C1 [Leskovjan, Andreana C.; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Leskovjan, Andreana C.; Miller, Lisa M.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11790 USA. [Lanzirotti, Antonio] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. RP Miller, LM (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Bldg 725D,75 Brookhaven Ave, Upton, NY 11973 USA. EM lmiller@bnl.gov FU National Institutes of Health [R01-GM66873]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank Ariane Kretlow and Janelle Collins for their skillful technical assistance with the animal dissection and tissue preparation. We are also grateful to Bill Rao at beamline X26A for his support with beamline operation and data collection. This work is funded by the National Institutes of Health Grant R01-GM66873. The National Synchrotron Light Source is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 48 TC 58 Z9 58 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD OCT 1 PY 2009 VL 47 IS 4 BP 1215 EP 1220 DI 10.1016/j.neuroimage.2009.05.063 PG 6 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 484HN UT WOS:000269035100010 PM 19481608 ER PT J AU Okhuysen, BS Riahi, DN AF Okhuysen, B. S. Riahi, D. N. TI Perturbation and stability analyses of flow in a mushy layer with permeable interface SO NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS LA English DT Article DE Convective flow; Flow stability; Buoyant flow; Mushy layer; Buoyant convection; Dendrite layer; Convective stability; Flow bifurcation ID COMPOSITIONAL CONVECTION; NONLINEAR-ANALYSIS; BINARY-ALLOYS; SOLIDIFICATION AB We consider the problem of weakly nonlinear convective flow stability in a horizontal mushy layer with permeable interface. No assumption is made on the thickness of the Mushy layer, and a number of simplifying assumptions made in previous related nonlinear analyses are lifted here in order to determine the results based on a more realistic model. Using perturbation and stability analyses and some numerical calculations, we determine the steady stable solutions to the weakly nonlinear problem under certain range of the parameter values where such analyses are valid. We find, in particular, that depending on the range of values of the parameters, the convective flow in the form of down-hexagons, with down-flow at the cells' centers and up-flow at the cells' boundaries, up-hexagons, with up-flow at the cells' centers and down-flow at the cells' boundaries, rectangles. squares and rolls can be possible. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Riahi, D. N.] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA. [Okhuysen, B. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Riahi, DN (reprint author), Univ Texas Pan Amer, Dept Math, 1201 W Univ Dr, Edinburg, TX 78541 USA. EM driahi@utpa.edu NR 10 TC 3 Z9 3 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1468-1218 J9 NONLINEAR ANAL-REAL JI Nonlinear Anal.-Real World Appl. PD OCT PY 2009 VL 10 IS 5 BP 3230 EP 3239 DI 10.1016/j.nonrwa.2008.10.031 PG 10 WC Mathematics, Applied SC Mathematics GA 447KR UT WOS:000266190500059 ER PT J AU Reich, CW AF Reich, C. W. TI Nuclear Data Sheets for A=154 SO NUCLEAR DATA SHEETS LA English DT Review ID RARE-EARTH NUCLEI; HIGH-SPIN STATES; EVEN SAMARIUM ISOTOPES; HEAVY DEFORMED-NUCLEI; INELASTIC ELECTRON-SCATTERING; GAMMA DIRECTIONAL CORRELATION; NEUTRON-DEFICIENT ISOTOPES; INTERACTING-BOSON-MODEL; HALF-LIFE MEASUREMENTS; REDUCED TRANSITION-PROBABILITIES AB The experimental results from the various reaction and decay studies leading to nuclides in the A=154 mass chain have been reviewed. These data are summarized and presented, together with adopted level schemes and properties, for the nuclides from Ce(Z=58) through Hf(Z=72). This evaluation replaces that of 1998Re22, which appeared in Nuclear Data Sheets 85, 171 (1998). C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Reich, CW (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU U. S. Department of Energy FX Research sponsored by the U. S. Department of Energy. NR 587 TC 31 Z9 31 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD OCT PY 2009 VL 110 IS 10 BP 2257 EP + DI 10.1016/j.nds.2009.09.001 PG 275 WC Physics, Nuclear SC Physics GA 537PX UT WOS:000273126700001 ER PT J AU Koo, GH Sienicki, JJ Tzanos, CP Moisseytsev, A AF Koo, Gyeong-Hoi Sienicki, James J. Tzanos, Constantine P. Moisseytsev, Anton TI Creep-fatigue design evaluations including daily load following operations for the advanced burner test reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB In this paper, creep-fatigue design evaluations are carried out with representative duty cycle events for the advanced burner test reactor (ABTR), the sodium-cooled fast reactor (SFR), and the advanced recycling reactor (ARR) pre-conceptual design. Especially, the creep-fatigue damage by the duty cycle daily load follow operations are investigated with the detailed evaluations by the ASME-NH procedures. The main targeted component is the reactor vessel which has hot and cold pool free surface regions inducing significant thermal gradients at elevated temperatures. To reserve the creep-fatigue design margins, appropriate design modifications are investigated and proposed based upon the results of sensitivity studies. For the creep-fatigue evaluations, the SIE ASME-NH computer program, which implements the ASME-NH rules, is used with the results of the ANSYS elastic finite element analysis. From the results of the evaluations, the proposed modified design conditions satisfy the ASME-NH creep-fatigue limits with sufficient design margins. Especially, it was found that the daily load follow operations have an impact on the fatigue damages when compared with the other duty cycle events that were investigated but that the calculated values are so small as to be negligible, and the creep damages are slightly enhanced but they are also negligible. (C) 2009 Elsevier B.V. All rights reserved. C1 [Koo, Gyeong-Hoi] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Sienicki, James J.; Tzanos, Constantine P.; Moisseytsev, Anton] Argonne Natl Lab, Argonne, IL 60439 USA. RP Koo, GH (reprint author), Korea Atom Energy Res Inst, 1045 Daedeok Daero, Taejon 305353, South Korea. EM ghkoo@kaeri.re.kr FU Korea MEST; U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative and Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership FX Korea Atomic Energy Research Institute's work was carried out through the I-NERI Project under the Nuclear R&D Program by the Korea MEST.; Argonne National Laboratory's work was supported by the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative and Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership. The authors are indebted to Rob Versluis, Sal Golub, Robert Price, and Bhupinder Singh of the U.S. DOE. The authors are also grateful to Christopher Grandy, Lubomir Krajtl, and Stanley Wiedmeyer of ANL/NE for preparing the ABTR Computer Aided Design drawings. NR 9 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2009 VL 239 IS 10 BP 1750 EP 1759 DI 10.1016/j.nucengdes.2009.05.010 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501VO UT WOS:000270411500004 ER PT J AU Gaston, D Newman, C Hansen, G Lebrun-Grandie, D AF Gaston, Derek Newman, Chris Hansen, Glen Lebrun-Grandie, Damien TI MOOSE: A parallel computational framework for coupled systems of nonlinear equations SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID NONEQUILIBRIUM RADIATION DIFFUSION; NEWTON-KRYLOV METHOD; SIMULATIONS; ACCURACY; SOLVER AB Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics expressions are modularized into "Kernels," allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics-based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure Of MOOSE, and several representative solutions from applications built on the framework are presented. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gaston, Derek; Newman, Chris; Hansen, Glen] Idaho Natl Lab, Multiphys Methods Grp, Idaho Falls, ID 83415 USA. [Lebrun-Grandie, Damien] Grenoble Inst Technol, Sch Appl Phys & Nucl Engn, Grenoble, France. RP Gaston, D (reprint author), Idaho Natl Lab, Multiphys Methods Grp, POB 1625, Idaho Falls, ID 83415 USA. EM Derek.Gaston@inl.gov; Christopher.Newman@inl.gov; Glen.Hansen@inl.gov; Damien.Lebrun-Grandie@enspg.inpg.fr OI Hansen, Glen/0000-0002-1786-9285 FU U.S. Government [DE-AC07-05ID14517 (INL/JOU-08-15120)] FX The authors wish to thank Robert Nourgaliev of the Multiphysics Methods Group for his development of the convection diffusion verification problem for MOOSE presented in Section 7. Further, we thank Ryosuke Park of the Multiphysics Methods Group for his contributions to PRONGHORN that are highlighted in Section 6.2. The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC07-05ID14517 (INL/JOU-08-15120). Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 33 TC 91 Z9 91 U1 4 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2009 VL 239 IS 10 BP 1768 EP 1778 DI 10.1016/j.nucengdes.2009.05.021 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501VO UT WOS:000270411500006 ER PT J AU Salvatores, M Chabert, C Fazio, C Hill, R Peneliau, Y Slessarev, I Yang, WS AF Salvatores, Massimo Chabert, Christine Fazio, Concetta Hill, Robert Peneliau, Yannick Slessarev, Igor Yang, Won Sik TI Fuel cycle analysis of TRU or MA burner fast reactors with variable conversion ratio using a new algorithm at equilibrium SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Partitioning and Transmutation (P&T) strategies assessment and implementation play a key role in the definition of advanced fuel cycles. in order to insure both sustainability and waste minimization. Several options are under study worldwide, and their impact on core design and associated fuel cycles are under investigation, to offer a rationale to down selection and to streamline efforts and resources. Interconnected issues like fuel type, minor actinide content, conversion ratio values, etc. need to be understood and their impact quantified. Then, from a practical point of view, studies related to advanced fuel cycles require a considerable amount of analysis to assess performances both of the reactor cores and of the associated fuel cycles. A physics analysis should provide a sound understanding of major trends and features, in order to provide guidelines for more detailed studies. In this paper, it is presented an improved version of a generalization of the Bateman equation that allows performing analysis at equilibrium for a large number of systems. It is shown that the method reproduces very well the results obtained with full depletion calculations. The method is applied to explore the specific issue of the features of the fuel cycle parameters related to fast reactors with different fuel types, different conversion ratios (CR) and different ratios of Pu over minor actinide (Pu/MA) in the fuel feed. As an example of the potential impact of such analysis, it is shown that for cores with CR below similar to 0.8, the increase of neutron doses and decay heat can represent a significant drawback to implement the corresponding reactors and associated fuel cycles. (C) 2009 Elsevier B.V. All rights reserved. C1 [Salvatores, Massimo; Chabert, Christine; Peneliau, Yannick; Slessarev, Igor] CEN Cadarache, F-13108 St Paul Les Durance, France. [Salvatores, Massimo; Hill, Robert; Yang, Won Sik] Argonne Natl Lab, NE Div, Argonne, IL 60439 USA. [Fazio, Concetta] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany. RP Salvatores, M (reprint author), CEN Cadarache, F-13108 St Paul Les Durance, France. EM massimo.salvatores@cea.fr OI Yang, Won Sik/0000-0003-0734-6023 NR 14 TC 13 Z9 13 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2009 VL 239 IS 10 BP 2160 EP 2168 DI 10.1016/j.nucengdes.2009.05.025 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501VO UT WOS:000270411500045 ER PT J AU Shadday, MA AF Shadday, Martin A., Jr. TI A thermal model of the immobilization of low-level radioactive waste as grout in concrete vaults SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Salt solution, from radioactive waste generated by the production of plutonium and tritium in nuclear reactors at the Savannah River Site, will be mixed with cement and flyash/slag to form a grout which will be poured into above ground concrete vaults. The curing process is exothermic, and a transient thermal model of the pouring and curing process is herein described. A peak temperature limit of 85 degrees C for the curing grout restricts the rate at which it can be poured into a vault. The model is used to optimize the pouring. (C) 2009 Elsevier B.V. All rights reserved. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Shadday, MA (reprint author), Savannah River Natl Lab, Bldg 773-42A, Aiken, SC 29808 USA. EM martin.shadday@srnl.doe.gov FU US Department of Energy [DE-AC09-08SR22470] FX The information contained in this paper was developed during the course of work done under Contract no. DE-AC09-08SR22470 with the US Department of Energy. NR 6 TC 1 Z9 1 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD OCT PY 2009 VL 239 IS 10 BP 2185 EP 2195 DI 10.1016/j.nucengdes.2009.06.007 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501VO UT WOS:000270411500047 ER PT J AU Chapman, BE Ahn, JW Almagri, AF Anderson, JK Bonomo, F Brower, DL Burke, DR Caspary, K Clayton, DJ Combs, SK Cox, WA Craig, D Deng, BH Den Hartog, DJ Ding, WX Ebrahimi, F Ennis, DA Fiksel, G Forest, CB Foust, CR Franz, P Gangadhara, S Goetz, JA Kaufman, MC Kulpin, JG Kuritsyn, A Magee, RM Miller, MC Mirnov, VV Nonn, PD O'Connell, R Oliva, SP Prager, SC Reusch, JA Sarff, JS Stephens, HD Wyman, MD Yates, T AF Chapman, B. E. Ahn, J. W. Almagri, A. F. Anderson, J. K. Bonomo, F. Brower, D. L. Burke, D. R. Caspary, K. Clayton, D. J. Combs, S. K. Cox, W. A. Craig, D. Deng, B. H. Den Hartog, D. J. Ding, W. X. Ebrahimi, F. Ennis, D. A. Fiksel, G. Forest, C. B. Foust, C. R. Franz, P. Gangadhara, S. Goetz, J. A. Kaufman, M. C. Kulpin, J. G. Kuritsyn, A. Magee, R. M. Miller, M. C. Mirnov, V. V. Nonn, P. D. O'Connell, R. Oliva, S. P. Prager, S. C. Reusch, J. A. Sarff, J. S. Stephens, H. D. Wyman, M. D. Yates, T. TI Improved-confinement plasmas at high temperature and high beta in the MST RFP SO NUCLEAR FUSION LA English DT Article ID REVERSED-FIELD PINCH; POLOIDAL CURRENT DRIVE; MOMENTUM TRANSPORT; ION TEMPERATURE; FLUCTUATIONS; TORUS AB We have increased substantially the electron and ion temperatures, the electron density, and the total beta in plasmas with improved energy confinement in the Madison Symmetric Torus (MST). The improved confinement is achieved with a well-established current profile control technique for reduction of magnetic tearing and reconnection. A sustained ion temperature > 1 keV is achieved with intensified reconnection-based ion heating followed immediately by current profile control. In the same plasmas, the electron temperature reaches 2 keV, and the electron thermal diffusivity drops to about 2 m(2) s(-1). The global energy confinement time is 12 ms. This and the reported temperatures are the largest values yet achieved in the reversed-field pinch (RFP). These results were attained at a density similar to 10(19) m(-3). By combining pellet injection with current profile control, the density has been quadrupled, and total beta has nearly doubled to a record value of about 26%. The Mercier criterion is exceeded in the plasma core, and both pressure-driven interchange and pressure-driven tearing modes are calculated to be linearly unstable, yet energy confinement is still improved. Transient momentum injection with biased probes reveals that global momentum transport is reduced with current profile control. Magnetic reconnection events drive rapid momentum transport related to large Maxwell and Reynolds stresses. Ion heating during reconnection events occurs globally, locally, or not at all, depending on which tearing modes are involved in the reconnection. To potentially augment inductive current profile control, we are conducting initial tests of current drive with lower-hybrid and electron-Bernstein waves. C1 [Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Burke, D. R.; Caspary, K.; Clayton, D. J.; Cox, W. A.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Forest, C. B.; Gangadhara, S.; Goetz, J. A.; Kaufman, M. C.; Kulpin, J. G.; Kuritsyn, A.; Magee, R. M.; Miller, M. C.; Mirnov, V. V.; Nonn, P. D.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Wyman, M. D.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bonomo, F.; Franz, P.] Consorzio RFX, I-35127 Padua, Italy. [Brower, D. L.; Deng, B. H.; Ding, W. X.; Yates, T.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Combs, S. K.; Foust, C. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Craig, D.] Wheaton Coll, Wheaton, IL 60187 USA. RP Chapman, BE (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM bchapman@wisc.edu OI Ebrahimi, Fatima/0000-0003-3109-5367 FU MST; US Department of Energy; National Science Foundation FX This work was made possible by the unwavering support of the entire MST team and by the US Department of Energy and the National Science Foundation. NR 45 TC 19 Z9 19 U1 1 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104020 DI 10.1088/0029-5515/49/10/104020 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300021 ER PT J AU Gates, DA Ahn, J Allain, J Andre, R Bastasz, R Bell, M Bell, R Belova, E Berkery, J Betti, R Bialek, J Biewer, T Bigelow, T Bitter, M Boedo, J Bonoli, P Boozer, A Brennan, D Breslau, J Brower, D Bush, C Canik, J Caravelli, G Carter, M Caughman, J Chang, C Choe, W Crocker, N Darrow, D Delgado-Aparicio, L Diem, S D'Ippolito, D Domier, C Dorland, W Efthimion, P Ejiri, A Ershov, N Evans, T Feibush, E Fenstermacher, M Ferron, J Finkenthal, M Foley, J Frazin, R Fredrickson, E Fu, G Funaba, H Gerhardt, S Glasser, A Gorelenkov, N Grisham, L Hahm, T Harvey, R Hassanein, A Heidbrink, W Hill, K Hillesheim, J Hillis, D Hirooka, Y Hosea, J Hu, B Humphreys, D Idehara, T Indireshkumar, K Ishida, A Jaeger, F Jarboe, T Jardin, S Jaworski, M Ji, H Jung, H Kaita, R Kallman, J Katsuro-Hopkins, O Kawahata, K Kawamori, E Kaye, S Kessel, C Kim, J Kimura, H Kolemen, E Krasheninnikov, S Krstic, P Ku, S Kubota, S Kugel, H La Haye, R Lao, L LeBlanc, B Lee, W Lee, K Leuer, J Levinton, F Liang, Y Liu, D Luhmann, N Maingi, R Majeski, R Manickam, J Mansfield, D Maqueda, R Mazzucato, E McCune, D McGeehan, B McKee, G Medley, S Menard, J Menon, M Meyer, H Mikkelsen, D Miloshevsky, G Mitarai, O Mueller, D Mueller, S Munsat, T Myra, J Nagayama, Y Nelson, B Nguyen, X Nishino, N Nishiura, M Nygren, R Ono, M Osborne, T Pacella, D Park, H Park, J Paul, S Peebles, W Penaflor, B Peng, M Phillips, C Pigarov, A Podesta, M Preinhaelter, J Ram, A Raman, R Rasmussen, D Redd, A Reimerdes, H Rewoldt, G Ross, P Rowley, C Ruskov, E Russell, D Ruzic, D Ryan, P Sabbagh, S Schaffer, M Schuster, E Scott, S Shaing, K Sharpe, P Shevchenko, V Shinohara, K Sizyuk, V Skinner, C Smirnov, A Smith, D Smith, S Snyder, P Solomon, W Sontag, A Soukhanovskii, V Stoltzfus-Dueck, T Stotler, D Strait, T Stratton, B Stutman, D Takahashi, R Takase, Y Tamura, N Tang, X Taylor, G Taylor, C Ticos, C Tritz, K Tsarouhas, D Turrnbull, A Tynan, G Ulrickson, M Umansky, M Urban, J Utergberg, E Walker, M Wampler, W Wang, J Wang, W Welander, A Whaley, J White, R Wilgen, J Wilson, R Wong, K Wright, J Xia, Z Xu, X Youchison, D Yu, G Yuh, H Zakharov, L Zemlyanov, D Zweben, S AF Gates, D. A. Ahn, J. Allain, J. Andre, R. Bastasz, R. Bell, M. Bell, R. Belova, E. Berkery, J. Betti, R. Bialek, J. Biewer, T. Bigelow, T. Bitter, M. Boedo, J. Bonoli, P. Boozer, A. Brennan, D. Breslau, J. Brower, D. Bush, C. Canik, J. Caravelli, G. Carter, M. Caughman, J. Chang, C. Choe, W. Crocker, N. Darrow, D. Delgado-Aparicio, L. Diem, S. D'Ippolito, D. Domier, C. Dorland, W. Efthimion, P. Ejiri, A. Ershov, N. Evans, T. Feibush, E. Fenstermacher, M. Ferron, J. Finkenthal, M. Foley, J. Frazin, R. Fredrickson, E. Fu, G. Funaba, H. Gerhardt, S. Glasser, A. Gorelenkov, N. Grisham, L. Hahm, T. Harvey, R. Hassanein, A. Heidbrink, W. Hill, K. Hillesheim, J. Hillis, D. Hirooka, Y. Hosea, J. Hu, B. Humphreys, D. Idehara, T. Indireshkumar, K. Ishida, A. Jaeger, F. Jarboe, T. Jardin, S. Jaworski, M. Ji, H. Jung, H. Kaita, R. Kallman, J. Katsuro-Hopkins, O. Kawahata, K. Kawamori, E. Kaye, S. Kessel, C. Kim, J. Kimura, H. Kolemen, E. Krasheninnikov, S. Krstic, P. Ku, S. Kubota, S. Kugel, H. La Haye, R. Lao, L. LeBlanc, B. Lee, W. Lee, K. Leuer, J. Levinton, F. Liang, Y. Liu, D. Luhmann, N., Jr. Maingi, R. Majeski, R. Manickam, J. Mansfield, D. Maqueda, R. Mazzucato, E. McCune, D. McGeehan, B. McKee, G. Medley, S. Menard, J. Menon, M. Meyer, H. Mikkelsen, D. Miloshevsky, G. Mitarai, O. Mueller, D. Mueller, S. Munsat, T. Myra, J. Nagayama, Y. Nelson, B. Nguyen, X. Nishino, N. Nishiura, M. Nygren, R. Ono, M. Osborne, T. Pacella, D. Park, H. Park, J. Paul, S. Peebles, W. Penaflor, B. Peng, M. Phillips, C. Pigarov, A. Podesta, M. Preinhaelter, J. Ram, A. Raman, R. Rasmussen, D. Redd, A. Reimerdes, H. Rewoldt, G. Ross, P. Rowley, C. Ruskov, E. Russell, D. Ruzic, D. Ryan, P. Sabbagh, S. Schaffer, M. Schuster, E. Scott, S. Shaing, K. Sharpe, P. Shevchenko, V. Shinohara, K. Sizyuk, V. Skinner, C. Smirnov, A. Smith, D. Smith, S. Snyder, P. Solomon, W. Sontag, A. Soukhanovskii, V. Stoltzfus-Dueck, T. Stotler, D. Strait, T. Stratton, B. Stutman, D. Takahashi, R. Takase, Y. Tamura, N. Tang, X. Taylor, G. Taylor, C. Ticos, C. Tritz, K. Tsarouhas, D. Turrnbull, A. Tynan, G. Ulrickson, M. Umansky, M. Urban, J. Utergberg, E. Walker, M. Wampler, W. Wang, J. Wang, W. Welander, A. Whaley, J. White, R. Wilgen, J. Wilson, R. Wong, K. Wright, J. Xia, Z. Xu, X. Youchison, D. Yu, G. Yuh, H. Zakharov, L. Zemlyanov, D. Zweben, S. TI Overview of results from the National Spherical Torus Experiment (NSTX) SO NUCLEAR FUSION LA English DT Article ID COAXIAL HELICITY INJECTION; NEOCLASSICAL TRANSPORT; PLASMAS; PHYSICS; SIMULATION; TOKAMAK; WAVES; POWER AB The mission of the National Spherical Torus Experiment (NSTX) is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high beta operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of high harmonic fast-waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l(i) similar to 0.4 with strong shaping (kappa similar to 2.7, delta similar to 0.8) with beta(N) approaching the with-wall beta-limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f(NI) similar to 71%. Instabilities driven by super-Alfvenic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear toroidal Alfven eigenmode thresholds and appreciable fast ion loss during multi-mode bursts are measured and these results are compared with theory. The impact of n > 1 error fields on stability is an important result for ITER. Resistive wall mode/resonant field amplification feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with beta above the no-wall limit. Other highlights are results of lithium coating experiments, momentum confinement studies, scrape-off layer width scaling, demonstration of divertor heat load mitigation in strongly shaped plasmas and coupling of coaxial helicity injection plasmas to ohmic heating ramp-up. These results advance the ST towards next step fusion energy devices such as NHTX and ST-CTF. C1 [Gates, D. A.; Andre, R.; Bell, M.; Bell, R.; Belova, E.; Bitter, M.; Breslau, J.; Darrow, D.; Diem, S.; Efthimion, P.; Feibush, E.; Fredrickson, E.; Fu, G.; Gerhardt, S.; Gorelenkov, N.; Grisham, L.; Hahm, T.; Hill, K.; Hosea, J.; Indireshkumar, K.; Jardin, S.; Ji, H.; Kaita, R.; Kallman, J.; Kaye, S.; Kessel, C.; Kolemen, E.; Kugel, H.; LeBlanc, B.; Majeski, R.; Manickam, J.; Mansfield, D.; Mazzucato, E.; McCune, D.; Medley, S.; Menard, J.; Mikkelsen, D.; Mueller, D.; Ono, M.; Park, J.; Paul, S.; Phillips, C.; Rewoldt, G.; Ross, P.; Rowley, C.; Scott, S.; Skinner, C.; Smith, D.; Smith, S.; Solomon, W.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Taylor, G.; Wang, W.; White, R.; Wilson, R.; Wong, K.; Zakharov, L.; Zweben, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ahn, J.; Boedo, J.; Krasheninnikov, S.; Mueller, S.; Pigarov, A.; Tynan, G.; Yu, G.] Univ Calif San Diego, San Diego, CA 92103 USA. [Allain, J.; Hassanein, A.; Miloshevsky, G.; Sizyuk, V.; Taylor, C.; Tsarouhas, D.; Zemlyanov, D.] Purdue Univ, Purdue, IA USA. [Bastasz, R.; Nygren, R.; Ulrickson, M.; Wampler, W.; Whaley, J.; Youchison, D.] Sandia Natl Labs, Albuquerque, NM USA. [Berkery, J.; Bialek, J.; Boozer, A.; Katsuro-Hopkins, O.; Reimerdes, H.; Sabbagh, S.] Columbia Univ, New York, NY USA. [Betti, R.; Hu, B.] Univ Rochester, Rochester, NY USA. [Biewer, T.; Bonoli, P.; Ram, A.; Wright, J.] MIT, Cambridge, MA 02139 USA. [Bigelow, T.; Bush, C.; Canik, J.; Carter, M.; Caughman, J.; Hillis, D.; Jaeger, F.; Krstic, P.; Maingi, R.; Peng, M.; Rasmussen, D.; Ryan, P.; Sontag, A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Brennan, D.; Takahashi, R.] Univ Tulsa, Tulsa, OK 74104 USA. [Brower, D.; Crocker, N.; Hillesheim, J.; Kubota, S.; Nguyen, X.; Peebles, W.] Univ Calif Los Angeles, Los Angeles, CA USA. [Caravelli, G.; Delgado-Aparicio, L.; Finkenthal, M.; Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD USA. [Boozer, A.; Chang, C.; Ku, S.] NYU, New York, NY USA. [Choe, W.; Jung, H.] Korea Adv Inst Sci & Technol, Taejon, South Korea. [D'Ippolito, D.; Myra, J.; Russell, D.] Lodestar Res Corp, Boulder, CO USA. [Domier, C.; Lee, K.; Liang, Y.; Luhmann, N., Jr.; Xia, Z.] Univ Calif Davis, Davis, CA 95616 USA. [Dorland, W.] Univ Maryland, College Pk, MD 20742 USA. [Ejiri, A.; Kawamori, E.; Takase, Y.] Univ Tokyo, Tokyo, Japan. [Ershov, N.; Harvey, R.; Smirnov, A.] CompX, Del Mar, CA USA. [Evans, T.; Ferron, J.; Humphreys, D.; La Haye, R.; Lao, L.; Leuer, J.; Osborne, T.; Penaflor, B.; Schaffer, M.; Snyder, P.; Strait, T.; Turrnbull, A.; Utergberg, E.; Walker, M.; Welander, A.] Gen Atom Co, San Diego, CA USA. [Fenstermacher, M.; Soukhanovskii, V.; Umansky, M.; Xu, X.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Foley, J.; Levinton, F.; Maqueda, R.; Yuh, H.] Nova Photon Inc, Princeton, NJ USA. [Frazin, R.; Jaworski, M.; Ruzic, D.] Univ Illinois, Urbana, IL USA. [Funaba, H.; Hirooka, Y.; Kawahata, K.; Nagayama, Y.; Nishiura, M.; Tamura, N.] NIFS, Gifu, Japan. [Glasser, A.; Tang, X.; Ticos, C.; Wang, J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Heidbrink, W.; Liu, D.; Podesta, M.; Ruskov, E.] Univ Calif Irvine, Irvine, CA USA. [Idehara, T.] Univ Fukui, Fukui 910, Japan. [Ishida, A.] Niigata Univ, Niigata, Japan. [Jarboe, T.; Nelson, B.; Raman, R.; Redd, A.] Univ Washington, Seattle, WA 98195 USA. [Kim, J.; Lee, W.; Park, H.] POSTECH, Pohang, South Korea. [Kimura, H.; Shinohara, K.] JAEA, Naka, Ibaraki, Japan. [McGeehan, B.] Dickinson Coll, Carlisle, PA 17013 USA. [McKee, G.; Shaing, K.] Univ Wisconsin, Madison, WI USA. [Menon, M.] Think Tank Inc, Silver Spring, MD USA. [Meyer, H.; Shevchenko, V.] UKAEA Culham Sci Ctr, Abingdon, Oxon, England. [Mitarai, O.] Kyushu Tokai Univ, Kumamoto, Japan. [Munsat, T.] Univ Colorado, Boulder, CO 80309 USA. [Nishino, N.] Hiroshima Univ, Hiroshima, Japan. [Pacella, D.] ENEA, Frascati, Italy. [Preinhaelter, J.; Urban, J.] Acad Sci Czech Republic, Inst Plasma Phys, Prague, Czech Republic. [Schuster, E.] Lehigh Univ, Bethlehem, PA 18015 USA. [Sharpe, P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Gates, DA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015; Liu, Deyong/Q-2797-2015; White, Roscoe/D-1773-2013; Jardin, Stephen/E-9392-2010; Berkery, John/B-7930-2011; Sabbagh, Steven/C-7142-2011; Nishino, Nobuhiro/D-6390-2011; Choe, Wonho/C-1556-2011; Ticos, Catalin/F-1677-2011; Ku, Seung-Hoe/D-2315-2009; Frazin, Richard/J-2625-2012; Ershov, Nikolay/E-4162-2013; Dorland, William/B-4403-2009; Rowley, Clarence/F-9068-2013; Smirnov, Alexander /A-4886-2014 OI Urban, Jakub/0000-0002-1796-3597; Stotler, Daren/0000-0001-5521-8718; Liu, Deyong/0000-0001-9174-7078; Allain, Jean Paul/0000-0003-1348-262X; Canik, John/0000-0001-6934-6681; Youchison, Dennis/0000-0002-7366-1710; Menard, Jonathan/0000-0003-1292-3286; Jung, Heesoo/0000-0002-8996-9007; Solomon, Wayne/0000-0002-0902-9876; Walker, Michael/0000-0002-4341-994X; White, Roscoe/0000-0002-4239-2685; Ku, Seung-Hoe/0000-0002-9964-1208; Dorland, William/0000-0003-2915-724X; FU US Department of Energy [DE-AC02-76CH03073] FX This work was supported by the US Department of Energy Grant under contract number DE-AC02-76CH03073. NR 55 TC 24 Z9 25 U1 2 U2 24 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104016 DI 10.1088/0029-5515/49/10/104016 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300017 ER PT J AU Marmar, E Bader, A Bakhtiari, M Barnard, H Beck, W Bespamyatnov, I Binus, A Bonoli, P Bose, B Bitter, M Cziegler, I Dekow, G Dominguez, A Duval, B Edlund, E Ernst, D Ferrara, M Fiore, C Fredian, T Graf, A Granetz, R Greenwald, M Grulke, O Gwinn, D Harrison, S Harvey, R Hender, TC Hosea, J Hill, K Howard, N Howell, DF Hubbard, A Hughes, JW Hutchinson, I Ince-Cushman, A Irby, J Izzo, V Kanojia, A Kessel, C Ko, JS Koert, P LaBombard, B Lau, C Lin, L Lin, Y Lipschultz, B Liptac, J Ma, Y Marr, K May, M McDermott, R Meneghini, O Mikkelsen, D Ochoukov, R Parker, R Phillips, CK Phillips, P Podpaly, Y Porkolab, M Reinke, M Rice, J Rowan, W Scott, S Schmidt, A Sears, J Shiraiwa, S Sips, A Smick, N Snipes, J Stillerman, J Takase, Y Terry, D Terry, J Tsujii, N Valeo, E Vieira, R Wallace, G Whyte, D Wilson, JR Wolfe, S Wright, G Wright, J Wukitch, S Wurden, G Xu, P Zhurovich, K Zaks, J Zweben, S AF Marmar, E. Bader, A. Bakhtiari, M. Barnard, H. Beck, W. Bespamyatnov, I. Binus, A. Bonoli, P. Bose, B. Bitter, M. Cziegler, I. Dekow, G. Dominguez, A. Duval, B. Edlund, E. Ernst, D. Ferrara, M. Fiore, C. Fredian, T. Graf, A. Granetz, R. Greenwald, M. Grulke, O. Gwinn, D. Harrison, S. Harvey, R. Hender, T. C. Hosea, J. Hill, K. Howard, N. Howell, D. F. Hubbard, A. Hughes, J. W. Hutchinson, I. Ince-Cushman, A. Irby, J. Izzo, V. Kanojia, A. Kessel, C. Ko, J. S. Koert, P. LaBombard, B. Lau, C. Lin, L. Lin, Y. Lipschultz, B. Liptac, J. Ma, Y. Marr, K. May, M. McDermott, R. Meneghini, O. Mikkelsen, D. Ochoukov, R. Parker, R. Phillips, C. K. Phillips, P. Podpaly, Y. Porkolab, M. Reinke, M. Rice, J. Rowan, W. Scott, S. Schmidt, A. Sears, J. Shiraiwa, S. Sips, A. Smick, N. Snipes, J. Stillerman, J. Takase, Y. Terry, D. Terry, J. Tsujii, N. Valeo, E. Vieira, R. Wallace, G. Whyte, D. Wilson, J. R. Wolfe, S. Wright, G. Wright, J. Wukitch, S. Wurden, G. Xu, P. Zhurovich, K. Zaks, J. Zweben, S. TI Overview of the Alcator C-Mod Research Program SO NUCLEAR FUSION LA English DT Article ID JET DISRUPTION MITIGATION; PLASMA-FACING COMPONENTS; TOROIDAL ROTATION; ION-CYCLOTRON; ASDEX UPGRADE; TRANSPORT; TOKAMAKS; TRANSITION; OPERATION; ELECTRONS AB This paper summarizes highlights of research results from the Alcator C-Mod tokamak covering the period 2006-2008. Active flow drive, using mode converted ion cyclotron waves, has been observed for the first time in a tokamak plasma, using a mix of D and (3)He ion species; toroidal and poloidal flows are driven near the location of the mode conversion layer. ICRF induced edge sheaths are implicated in both the erosion of thin boron coatings and the generation of metallic impurities. Lower hybrid range of frequencies (LHRF) microwaves have been used for efficient current drive, current profile modification and toroidal flow drive. In addition, LHRF has been used to modify the H-mode pedestal, increasing temperature, decreasing density and lowering the pedestal collisionality. Studies of hydrogen isotope retention in solid metallic plasma facing components reveal significantly higher retention than expected from ex situ laboratory studies; a model to explain the results, based on plasma/neutral induced lattice damage, has been developed and tested. During gas-puff mitigation of disruptions, induced MHD instabilities cause the magnetic field to become stochastic, resulting in reduction of halo currents, spreading of plasma power loading and loss of runaway electrons before they cause damage. Detailed pedestal rotation profile measurements have been used to infer E(r) profiles, and correlation with global H-mode confinement. An improved L-mode regime, obtained at q(95) <= 3 with ion drift away from the active X-point, shows very good energy confinement with a strong temperature pedestal, a weak density pedestal, and no evidence of particle or impurity accumulation, without the need for ELMs or any additional edge density regulation mechanism. C1 [Marmar, E.; Bader, A.; Barnard, H.; Beck, W.; Binus, A.; Bonoli, P.; Bose, B.; Cziegler, I.; Dekow, G.; Dominguez, A.; Edlund, E.; Ernst, D.; Ferrara, M.; Fiore, C.; Fredian, T.; Granetz, R.; Greenwald, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Hutchinson, I.; Ince-Cushman, A.; Irby, J.; Kanojia, A.; Ko, J. S.; Koert, P.; LaBombard, B.; Lau, C.; Lin, L.; Lin, Y.; Lipschultz, B.; Ma, Y.; Marr, K.; McDermott, R.; Meneghini, O.; Ochoukov, R.; Parker, R.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Schmidt, A.; Sears, J.; Shiraiwa, S.; Smick, N.; Stillerman, J.; Terry, D.; Terry, J.; Tsujii, N.; Vieira, R.; Wallace, G.; Whyte, D.; Wolfe, S.; Wright, J.; Wukitch, S.; Xu, P.; Zhurovich, K.; Zaks, J.] MIT, Cambridge, MA 02139 USA. MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Bakhtiari, M.; Harrison, S.; Wright, G.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. [Bespamyatnov, I.; Phillips, P.; Rowan, W.] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA. [Bitter, M.; Hosea, J.; Hill, K.; Kessel, C.; Mikkelsen, D.; Phillips, C. K.; Scott, S.; Valeo, E.; Wilson, J. R.; Zweben, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Duval, B.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Graf, A.; Liptac, J.; May, M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Grulke, O.] Inst Plasma Phys, Greifswald, Germany. [Gwinn, D.] Bagley Associates, Lowell, MA USA. [Harvey, R.] CompX Corp, Del Mar, CA USA. [Hender, T. C.; Howell, D. F.] EURATOM, Culham Sci Ctr, Abingdon, Oxon, England. [Izzo, V.] Univ Calif San Diego, Energy Res Ctr, San Diego, CA 92103 USA. [Sips, A.] Inst Plasma Phys, Garching, Germany. [Snipes, J.] ITER Int Org, Cadarache, France. [Takase, Y.] Univ Tokyo, Grad Sch Frontier Sci, Tokyo, Japan. [Wurden, G.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Marmar, E (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM marmar@psfc.mit.edu RI Hutchinson, Ian/D-1136-2009; Ernst, Darin/A-1487-2010; Lin, Liang/H-2255-2011; Lipschultz, Bruce/J-7726-2012; Bespamyatnov, Igor/C-1200-2013; Wurden, Glen/A-1921-2017; OI Hutchinson, Ian/0000-0003-4276-6576; Ernst, Darin/0000-0002-9577-2809; Lipschultz, Bruce/0000-0001-5968-3684; Wurden, Glen/0000-0003-2991-1484; Greenwald, Martin/0000-0002-4438-729X; , Cornwall/0000-0002-8576-5867 FU US Department of Energy FX This research was supported by the US Department of Energy. NR 41 TC 21 Z9 22 U1 1 U2 13 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104014 DI 10.1088/0029-5515/49/10/104014 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300015 ER PT J AU Martin, P Apolloni, L Puiatti, ME Adamek, J Agostini, M Alfier, A Annibaldi, SV Antoni, V Auriemma, F Barana, O Baruzzo, M Bettini, P Bolzonella, T Bonfiglio, D Bonomo, F Brombin, M Brotankova, J Buffa, A Buratti, P Canton, A Cappello, S Carraro, L Cavazzana, R Cavinato, M Chapman, BE Chitarin, G Dal Bello, S De Lorenzi, A De Masi, G Escande, DF Fassina, A Ferro, A Franz, P Gaio, E Gazza, E Giudicotti, L Gnesotto, F Gobbin, M Grando, L Guazzotto, L Guo, SC Igochine, V Innocente, P Liu, YQ Lorenzini, R Luchetta, A Manduchi, G Marchiori, G Marcuzzi, D Marrelli, L Martini, S Martines, E McCollam, K Menmuir, S Milani, F Moresco, M Novello, L Ortolani, S Paccagnella, R Pasqualotto, R Peruzzo, S Piovan, R Piovesan, P Piron, L Pizzimenti, A Pomaro, N Predebon, I Reusch, JA Rostagni, G Rubinacci, G Sarff, JS Sattin, F Scarin, P Serianni, G Sonato, P Spada, E Soppelsa, A Spagnolo, S Spolaore, M Spizzo, G Taliercio, C Terranova, D Toigo, V Valisa, M Vianello, N Villone, F White, RB Yadikin, D Zaccaria, P Zamengo, A Zanca, P Zaniol, B Zanotto, L Zilli, E Zohm, H Zuin, M AF Martin, P. Apolloni, L. Puiatti, M. E. Adamek, J. Agostini, M. Alfier, A. Annibaldi, S. V. Antoni, V. Auriemma, F. Barana, O. Baruzzo, M. Bettini, P. Bolzonella, T. Bonfiglio, D. Bonomo, F. Brombin, M. Brotankova, J. Buffa, A. Buratti, P. Canton, A. Cappello, S. Carraro, L. Cavazzana, R. Cavinato, M. Chapman, B. E. Chitarin, G. Dal Bello, S. De Lorenzi, A. De Masi, G. Escande, D. F. Fassina, A. Ferro, A. Franz, P. Gaio, E. Gazza, E. Giudicotti, L. Gnesotto, F. Gobbin, M. Grando, L. Guazzotto, L. Guo, S. C. Igochine, V. Innocente, P. Liu, Y. Q. Lorenzini, R. Luchetta, A. Manduchi, G. Marchiori, G. Marcuzzi, D. Marrelli, L. Martini, S. Martines, E. McCollam, K. Menmuir, S. Milani, F. Moresco, M. Novello, L. Ortolani, S. Paccagnella, R. Pasqualotto, R. Peruzzo, S. Piovan, R. Piovesan, P. Piron, L. Pizzimenti, A. Pomaro, N. Predebon, I. Reusch, J. A. Rostagni, G. Rubinacci, G. Sarff, J. S. Sattin, F. Scarin, P. Serianni, G. Sonato, P. Spada, E. Soppelsa, A. Spagnolo, S. Spolaore, M. Spizzo, G. Taliercio, C. Terranova, D. Toigo, V. Valisa, M. Vianello, N. Villone, F. White, R. B. Yadikin, D. Zaccaria, P. Zamengo, A. Zanca, P. Zaniol, B. Zanotto, L. Zilli, E. Zohm, H. Zuin, M. TI Overview of RFX-mod results SO NUCLEAR FUSION LA English DT Article ID REVERSED-FIELD-PINCH; INTELLIGENT SHELL; LUNDQUIST NUMBER; TRANSPORT; PLASMAS; EDGE; MHD; FLUCTUATIONS; CONFINEMENT; SHEAR AB With the exploration of the MA plasma current regime in up to 0.5 s long discharges, RFX-mod has opened new and very promising perspectives for the reversed field pinch (RFP) magnetic configuration, and has made significant progress in understanding and improving confinement and in controlling plasma stability. A big leap with respect to previous knowledge and expectations on RFP physics and performance has been made by RFX-mod since the last 2006 IAEA Fusion Energy Conference. A new self-organized helical equilibrium has been experimentally achieved ( the Single Helical Axis-SHAx-state), which is the preferred state at high current. Strong core electron transport barriers characterize this regime, with electron temperature gradients comparable to those achieved in tokamaks, and by a factor of 4 improvement in confinement time with respect to the standard RFP. RFX-mod is also providing leading edge results on real-time feedback control of MHD instabilities, of general interest for the fusion community. C1 [Martin, P.; Apolloni, L.; Puiatti, M. E.; Agostini, M.; Alfier, A.; Antoni, V.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chitarin, G.; Dal Bello, S.; De Lorenzi, A.; De Masi, G.; Escande, D. F.; Fassina, A.; Ferro, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guazzotto, L.; Guo, S. C.; Igochine, V.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; Menmuir, S.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Rostagni, G.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Vianello, N.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. [Adamek, J.; Brotankova, J.] Assoc EURATOM IPP CR, Inst Plasma Phys, Prague, Czech Republic. [Annibaldi, S. V.; Buratti, P.] EE KTH, SE-10044 Stockholm, Sweden. CR Frascati, Assoc Euratom ENEA Fus, I-00044 Rome, Italy. [Chapman, B. E.; McCollam, K.; Reusch, J. A.; Sarff, J. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France. [Yadikin, D.; Zohm, H.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Liu, Y. Q.] Culham Sci Ctr, EURATOM UKAEA Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Rubinacci, G.] Univ Naples Federico 2, DIEL, Ass Euratom ENEA CREATE, Naples, Italy. [Villone, F.] Univ Cassino, DAEIMI, Ass Euratom ENEA CREATE, I-03043 Cassino, Italy. [White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Martin, P (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. EM piero.martin@igi.cnr.it RI Spizzo, Gianluca/B-7075-2009; Vianello, Nicola/B-6323-2008; Adamek, Jiri/G-7421-2014; Chitarin, Giuseppe/H-6133-2012; spagnolo, silvia/E-9384-2017; White, Roscoe/D-1773-2013; Brotankova, Jana/M-6318-2014; Martines, Emilio/B-1418-2009; Soppelsa, Anton/G-6971-2011; Pasqualotto, Roberto/B-6676-2011; Bonfiglio, Daniele/I-9398-2012; bettini, paolo/J-4062-2012; Sattin, Fabio/B-5620-2013; Marrelli, Lionello/G-4451-2013; Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; Luchetta, Adriano/I-8004-2013; zaniol, barbara/L-7745-2013; Cappello, Susanna/H-9968-2013 OI antoni, vanni/0000-0002-4588-8168; , Vanni/0000-0002-4925-4752; Spizzo, Gianluca/0000-0001-8586-2168; Vianello, Nicola/0000-0003-4401-5346; Chitarin, Giuseppe/0000-0003-3060-8466; Igochine, Valentin/0000-0003-2045-2998; BETTINI, PAOLO/0000-0001-7084-4071; Escande, Dominique/0000-0002-0460-8385; AGOSTINI, MATTEO/0000-0002-3823-1002; POMARO, NICOLA/0000-0002-5024-1457; White, Roscoe/0000-0002-4239-2685; Martines, Emilio/0000-0002-4181-2959; Bonfiglio, Daniele/0000-0003-2638-317X; Marrelli, Lionello/0000-0001-5370-080X; zaniol, barbara/0000-0001-9934-8370; Cappello, Susanna/0000-0002-2022-1113 FU EURATOM/ENEA FX The authors would like to acknowledge the continuous, competent and generous support of the technical and administrative Consorzio RFX staff. This work was supported by the European Communities under the contract of Associations between EURATOM/ENEA. NR 52 TC 28 Z9 28 U1 4 U2 20 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104019 DI 10.1088/0029-5515/49/10/104019 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300020 ER PT J AU Meyer, H Akers, RJ Alladio, F Appel, LC Axon, KB Ben Ayed, N Boerner, P Buttery, RJ Carolan, PG Ciric, D Challis, CD Chapman, IT Coyler, G Connor, JW Conway, NJ Cowley, S Cox, M Counsell, GF Cunningham, G Darke, A deBock, M deTemmerman, G Dendy, RO Dowling, J Dnestrovskij, AY Dnestrovskij, YN Dudson, B Dunai, D Dunstan, M Field, AR Foster, A Garzotti, L Gibson, K Gryaznevich, MP Guttenfelder, W Hawkes, NC Harrison, J Helander, P Hender, TC Hnat, B Hole, MJ Howell, DF Hua, MD Hubbard, A Istenic, M Joiner, N Keeling, D Kirk, A Koslowski, HR Liang, Y Lilley, M Lisgo, S Lloyd, B Maddison, GP Maingi, R Mancuso, A Manhood, SJ Martin, R McArdle, GJ McCone, J Michael, C Micozzi, P Morgan, T Morris, AW Muir, DG Nardon, E Naylor, G O'Brien, MR O'Gorman, T Patel, A Pinches, SD Preinhaelter, J Price, MN Rachlew, E Reiter, D Roach, CM Rozhansky, V Saarelma, S Saveliev, A Scannell, R Sharapov, SE Shevchenko, V Shibaev, S Smith, H Staebler, GE Stork, D Storrs, J Sykes, A Tallents, S Tamain, P Taylor, D Temple, D Thomas-Davies, N Thornton, A Thyagaraja, A Turnyanskiy, MR Urban, J Valovic, M Vann, RGL Volpe, F Voss, G Walsh, MJ Warder, SEV Watkins, R Wilson, HR Windridge, M Wisse, M Zabolotski, A Zoletnik, S Zolotukhin, O AF Meyer, H. Akers, R. J. Alladio, F. Appel, L. C. Axon, K. B. Ben Ayed, N. Boerner, P. Buttery, R. J. Carolan, P. G. Ciric, D. Challis, C. D. Chapman, I. T. Coyler, G. Connor, J. W. Conway, N. J. Cowley, S. Cox, M. Counsell, G. F. Cunningham, G. Darke, A. deBock, M. deTemmerman, G. Dendy, R. O. Dowling, J. Dnestrovskij, A. Yu Dnestrovskij, Yu. N. Dudson, B. Dunai, D. Dunstan, M. Field, A. R. Foster, A. Garzotti, L. Gibson, K. Gryaznevich, M. P. Guttenfelder, W. Hawkes, N. C. Harrison, J. Helander, P. Hender, T. C. Hnat, B. Hole, M. J. Howell, D. F. Hua, M. Duc Hubbard, A. Istenic, M. Joiner, N. Keeling, D. Kirk, A. Koslowski, H. R. Liang, Y. Lilley, M. Lisgo, S. Lloyd, B. Maddison, G. P. Maingi, R. Mancuso, A. Manhood, S. J. Martin, R. McArdle, G. J. McCone, J. Michael, C. Micozzi, P. Morgan, T. Morris, A. W. Muir, D. G. Nardon, E. Naylor, G. O'Brien, M. R. O'Gorman, T. Patel, A. Pinches, S. D. Preinhaelter, J. Price, M. N. Rachlew, E. Reiter, D. Roach, C. M. Rozhansky, V. Saarelma, S. Saveliev, A. Scannell, R. Sharapov, S. E. Shevchenko, V. Shibaev, S. Smith, H. Staebler, G. E. Stork, D. Storrs, J. Sykes, A. Tallents, S. Tamain, P. Taylor, D. Temple, D. Thomas-Davies, N. Thornton, A. Thyagaraja, A. Turnyanskiy, M. R. Urban, J. Valovic, M. Vann, R. G. L. Volpe, F. Voss, G. Walsh, M. J. Warder, S. E. V. Watkins, R. Wilson, H. R. Windridge, M. Wisse, M. Zabolotski, A. Zoletnik, S. Zolotukhin, O. CA MAST Team NBI Team TI Overview of physics results from MAST SO NUCLEAR FUSION LA English DT Article ID H-MODE PEDESTAL; SPHERICAL TOKAMAK; PLASMAS; TRANSPORT; CONFINEMENT; INSTABILITIES; TURBULENCE; NSTX; ELM; STABILITY AB Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks (STs). Using the increased heating capabilities P(NBI) <= 3.8 MW H-mode at I(P) = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I(P) and more strongly with B(t) than in the ITER IPB98(y, 2) scaling. Measurements of the fuel retention of shallow pellets extrapolate to an ITER particle throughput of 70% of its original designed total throughput capacity. The anomalous momentum diffusion, chi(phi), is linked to the ion diffusion, chi(i), with a Prandtl number close to P(phi) approximate to chi(phi)/chi(i) approximate to 1, although chi(i) approaches neoclassical values. New high spatial resolution measurements of the edge radial electric field, E(r), show that the position of steepest gradients in electron pressure and E(r) (i.e. shearing rate) are coincident, but their magnitudes are not linked. The T(e) pedestal width on MAST scales with root beta(ped)(pol) rather than rho(pol). The edge localized mode (ELM) frequency for type-IV ELMs, new in MAST, was almost doubled using n = 2 resonant magnetic perturbations from a set of four external coils (n = 1, 2). A new internal 12 coil set (n <= 3) has been commissioned. The filaments in the inter-ELM and L-mode phase are different from ELM filaments, and the characteristics in L-mode agree well with turbulence calculations. A variety of fast particle driven instabilities were studied from 10 kHz saturated fishbone like activity up to 3.8 MHz compressional Alfven eigenmodes. Fast particle instabilities also affect the off-axis NBI current drive, leading to fast ion diffusion of the order of 0.5 m(2) s(-1) and a reduction in the driven current fraction from 40% to 30%. EBW current drive start-up is demonstrated for the first time in a ST generating plasma currents up to 55 kA. Many of these studies contributed to the physics basis of a planned upgrade to MAST. C1 [Meyer, H.; Akers, R. J.; Appel, L. C.; Axon, K. B.; Buttery, R. J.; Carolan, P. G.; Ciric, D.; Challis, C. D.; Chapman, I. T.; Coyler, G.; Connor, J. W.; Conway, N. J.; Cowley, S.; Cox, M.; Counsell, G. F.; Cunningham, G.; Darke, A.; deBock, M.; deTemmerman, G.; Dendy, R. O.; Dowling, J.; Dunstan, M.; Field, A. R.; Garzotti, L.; Gryaznevich, M. P.; Hawkes, N. C.; Hender, T. C.; Howell, D. F.; Istenic, M.; Keeling, D.; Kirk, A.; Lisgo, S.; Lloyd, B.; Maddison, G. P.; Manhood, S. J.; Martin, R.; McArdle, G. J.; Michael, C.; Morris, A. W.; Muir, D. G.; Nardon, E.; Naylor, G.; O'Brien, M. R.; Patel, A.; Pinches, S. D.; Price, M. N.; Roach, C. M.; Saarelma, S.; Scannell, R.; Sharapov, S. E.; Shevchenko, V.; Shibaev, S.; Stork, D.; Storrs, J.; Sykes, A.; Tamain, P.; Taylor, D.; Thomas-Davies, N.; Thyagaraja, A.; Turnyanskiy, M. R.; Valovic, M.; Volpe, F.; Voss, G.; Walsh, M. J.; Warder, S. E. V.; Watkins, R.; Wisse, M.; Zabolotski, A.; Zolotukhin, O.] EURATOM, Culham Sci Ctr, Abingdon, Oxon, England. [Alladio, F.; Mancuso, A.; Micozzi, P.] Assoc EURATOM ENEA Fus, Rome, Italy. [Ben Ayed, N.; Dudson, B.; Gibson, K.; Harrison, J.; Morgan, T.; Thornton, A.; Vann, R. G. L.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Dnestrovskij, A. Yu; Dnestrovskij, Yu. N.; Zoletnik, S.] Russian Res Ctr, Kurchatov Inst, Inst Nucl Fus, Moscow, Russia. [Dunai, D.] EURATOM, KFKI RMKI, H-1525 Budapest, Hungary. [Foster, A.] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. [Guttenfelder, W.; Hnat, B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Helander, P.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Hole, M. J.] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. [Hua, M. Duc; Joiner, N.; Lilley, M.; Smith, H.; Tallents, S.; Temple, D.; Windridge, M.] Univ London Imperial Coll Sci Technol & Med, London, England. [Boerner, P.; Hubbard, A.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Koslowski, H. R.; Liang, Y.; Reiter, D.] Forschungszentrum Julich, Assoc EURATOM FZ Julich, Trilateral Euregio Cluster,Inst Plasmaphys, D-52425 Julich, Germany. EURATOM VR Assoc, KTH, Dept Phys, Stockholm, Sweden. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Preinhaelter, J.; Rachlew, E.; Urban, J.] EURATOM IPP CR Fus Assoc, Prague, Czech Republic. [Rozhansky, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Saveliev, A.] Ioffe Inst, St Petersburg 194021, Russia. [Staebler, G. E.] Gen Atom Co, San Diego, CA 92186 USA. RP Meyer, H (reprint author), EURATOM, Culham Sci Ctr, Abingdon, Oxon, England. EM Hendrik.Meyer@ukaea.org.uk RI Volpe, Francesco/D-2994-2009; Roach, Colin/C-4839-2011; Dendy, Richard/A-4533-2009; Lilley, Matthew/I-1173-2013; Michael, Clive /M-1327-2013; Saveliev, Alexander/C-1095-2014; Dnestrovskij, Alexei/F-2202-2014; Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Morgan, Thomas/B-3789-2017 OI Michael, Clive/0000-0003-1804-870X; Volpe, Francesco/0000-0002-7193-7090; Dnestrovskij, Alexei/0000-0002-4827-9421; Urban, Jakub/0000-0002-1796-3597; Morgan, Thomas/0000-0002-5066-015X FU UK Engineering and Physical Sciences Research Council; EURATOM; UKAEA FX This work was jointly funded by the UK Engineering and Physical Sciences Research Council and by the European communities under the Contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NBI equipment is on loan from ORNL, the NPA from PPPL and the pellet injector was provided by FOM. Plasma control software was provided by GA. NR 75 TC 25 Z9 27 U1 0 U2 15 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104017 DI 10.1088/0029-5515/49/10/104017 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300018 ER PT J AU Moses, EI AF Moses, Edward I. TI Ignition on the National Ignition Facility: a path towards inertial fusion energy SO NUCLEAR FUSION LA English DT Article AB The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626-34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion-fission energy (LIFE) as a path to achieve carbon-free sustainable energy. C1 Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Moses, EI (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94450 USA. EM moses1@llnl.gov FU US Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by LLNL under Contract DE-AC52-07NA27344. NR 15 TC 68 Z9 75 U1 4 U2 44 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104022 DI 10.1088/0029-5515/49/10/104022 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300023 ER PT J AU Norreys, PA Scott, RHH Lancaster, KL Green, JS Robinson, APL Sherlock, M Evans, RG Haines, MG Kar, S Zepf, M Key, MH King, J Ma, T Yabuuchi, T Wei, MS Beg, FN Nilson, P Theobald, W Stephens, RB Valente, J Davies, JR Takeda, K Azechi, H Nakatsutsumi, M Tanimoto, T Kodama, R Tanaka, KA AF Norreys, P. A. Scott, R. H. H. Lancaster, K. L. Green, J. S. Robinson, A. P. L. Sherlock, M. Evans, R. G. Haines, M. G. Kar, S. Zepf, M. Key, M. H. King, J. Ma, T. Yabuuchi, T. Wei, M. S. Beg, F. N. Nilson, P. Theobald, W. Stephens, R. B. Valente, J. Davies, J. R. Takeda, K. Azechi, H. Nakatsutsumi, M. Tanimoto, T. Kodama, R. Tanaka, K. A. TI Recent fast electron energy transport experiments relevant to fast ignition inertial fusion SO NUCLEAR FUSION LA English DT Article ID LASER-SOLID INTERACTIONS; PLASMA INTERACTIONS; VULCAN PETAWATT; HIGH-GAIN; FACILITY; TARGETS; ACCELERATION; CHANNELS; DENSITY; PULSES AB A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model. C1 [Norreys, P. A.; Scott, R. H. H.; Lancaster, K. L.; Green, J. S.; Robinson, A. P. L.; Sherlock, M.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Norreys, P. A.; Scott, R. H. H.; Green, J. S.; Evans, R. G.; Haines, M. G.] Univ London Imperial Coll Sci Technol & Med, London SW7 2BZ, England. [Zepf, M.] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. [Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA USA. [King, J.; Ma, T.; Yabuuchi, T.; Wei, M. S.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Nilson, P.; Theobald, W.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Stephens, R. B.] Gen Atom Corp, San Diego, CA 92186 USA. [Valente, J.; Davies, J. R.] Inst Plasmas, Grp Lasers & Plasmas, P-1049001 Lisbon, Portugal. [Takeda, K.; Azechi, H.; Kodama, R.] Osaka Univ, Inst Laser Engn, Suita, Osaka 565, Japan. [Nakatsutsumi, M.; Tanimoto, T.; Kodama, R.; Tanaka, K. A.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. RP Norreys, PA (reprint author), STFC Rutherford Appleton Lab, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England. RI Nilson, Philip/A-2493-2011; Kar, Satyabrata/E-5220-2010; Davies, Jonathan/J-2611-2012; Ma, Tammy/F-3133-2013; Zepf, Matt/M-1232-2014; Azechi, Hiroshi/H-5876-2015; Kodama, Ryosuke/G-2627-2016 OI Ma, Tammy/0000-0002-6657-9604; Valente, Joao/0000-0002-5917-8917; Stephens, Richard/0000-0002-7034-6141; FU UK EPSRC; STFC; CREST; Japan Science and Technology Agency; global center of excellence (GCOE) at the Department of Electrical, Electric, and Information; Graduate School of Engineering, Osaka University, Osaka Japan; Japan-UK collaboration program of the international collaboration for high energy density science (ICHEDS) of JSPS at Osaka University, Osaka, Japan; FCT [POCI/FIS/59563/2004]; US Department of Energy [W-7405-Eng-48, DE-FC52-08NA28302, DE-FC52-92SF19460, DE-FC02-ER54789]; University of Rochester; New York State Energy Research and Development Authority FX The authors gratefully acknowledge the support of the staff of the Central Laser Facility in the execution of this work. This work was supported by the UK EPSRC and STFC.; MN and RK were supported by the CREST, Japan Science and Technology Agency. KAT, TT, HA and KT are grateful to the support from the project: global center of excellence (GCOE) at the Department of Electrical, Electric, and Information, the Graduate School of Engineering, Osaka University, Osaka Japan and Japan-UK collaboration program of the international collaboration for high energy density science (ICHEDS) of JSPS at Osaka University, Osaka, Japan.; JRD and JV were supported by the FCT, grant POCI/FIS/59563/2004.; US colleagues were supported by the US Department of Energy under contract No.'s W-7405-Eng-48, DE-FC52-08NA28302, DE-FC52-92SF19460 (Office of Inertial Confinement Fusion) and DE-FC02-ER54789 (Fusion Science Center, Office of Inertial Fusion Energy Science), the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. NR 48 TC 21 Z9 21 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2009 VL 49 IS 10 AR 104023 DI 10.1088/0029-5515/49/10/104023 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 501NJ UT WOS:000270388300024 ER PT J AU Bowden, NS Marleau, P Steele, JT Mrowka, S Aigeldinger, G Mengesha, W AF Bowden, N. S. Marleau, P. Steele, J. T. Mrowka, S. Aigeldinger, G. Mengesha, W. TI Improved fast neutron spectroscopy via detector segmentation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron spectrometry; Capture-gated neutron spectrometry; Scintillator non-proportionality ID SPECTROMETER; RESOLUTION AB Organic scintillators are widely used for fast neutron detection and spectroscopy. Several effects complicate the interpretation of results from detectors based upon these materials. First, fast neutrons will often leave a detector before depositing all of their energy within it. Second, fast neutrons will typically scatter several times within a detector, and there is a non-proportional relationship between the energy of, and the scintillation light produced by, each individual scatter; therefore, there is not a deterministic relationship between the scintillation light observed and the neutron energy deposited. Here we demonstrate a hardware technique for reducing both of these effects. Use of a segmented detector allows for the event-by-event correction of the light yield non-proportionality and for the preferential selection of events with near-complete energy deposition, since these will typically have high segment multiplicities. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bowden, N. S.; Marleau, P.; Steele, J. T.; Mrowka, S.; Aigeldinger, G.; Mengesha, W.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Marleau, P (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM pmarlea@sandia.gov OI Bowden, Nathaniel/0000-0002-6115-0956 FU Laboratory Directed Research and Development (LDRD); Sandia Corporation, a Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 11 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2009 VL 609 IS 1 BP 32 EP 37 DI 10.1016/j.nima.2009.07.061 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513ZE UT WOS:000271362000004 ER PT J AU Yang, LY Robin, D Sannibale, F Steier, C Wan, WS AF Yang, Lingyun Robin, David Sannibale, Fernando Steier, Christoph Wan, Weishi TI Global optimization of an accelerator lattice using multiobjective genetic algorithms SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Optimization; Lattice design; Emittance; Brightness; Multiobjective genetic algorithm AB Storage ring lattice design is a highly constrained multiobjective optimization problem. The objectives can include lattice functions or derived quantities like emittance, brightness, or luminosity while simultaneously fulfilling constraints such as linear stability of the lattice. In this paper we explore the use of multiobjective genetic algorithms (MOGA) to find globally optimized lattice settings in a storage ring. Using the Advanced Light Source (ALS) for illustration, three examples of MOGA are shown and analyzed-(i) using three fit parameters to optimize the straight section betatron function and the natural emittance, (ii) using three fit parameters to optimize the photon brightness of bending magnet and insertion device source points in the lattice and (iii) a six parameter fit creating alternating high and low horizontal betatron functions in subsequent straight sections while still minimizing the natural emittance. Making use of one of the main benefits. of MOGA, we also study the trade-offs in the optimization objectives between sets of optimal solutions. Published by Elsevier B.V. C1 [Yang, Lingyun; Robin, David; Sannibale, Fernando; Steier, Christoph; Wan, Weishi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Yang, LY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM lyyang@lbl.gov NR 17 TC 21 Z9 21 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 1 PY 2009 VL 609 IS 1 BP 50 EP 57 DI 10.1016/j.nima.2009.08.027 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513ZE UT WOS:000271362000006 ER PT J AU Migliaccio, M Natoli, P De Troia, G Hikage, C Komatsu, E Ade, PAR Bock, JJ Bond, JR Borrill, J Boscaleri, A Contaldi, CR Crill, BP de Bernardis, P de Gasperis, G de Oliveira-Costa, A Di Stefano, G Hivon, E Kisner, TS Jones, WC Lange, AE Masi, S Mauskopf, PD MacTavish, CJ Melchiorri, A Montroy, TE Netterfield, CB Pascale, E Piacentini, F Polenta, G Ricciardi, S Romeo, G Ruhl, JE Tegmark, M Veneziani, M Vittorio, N AF Migliaccio, M. Natoli, P. De Troia, G. Hikage, C. Komatsu, E. Ade, P. A. R. Bock, J. J. Bond, J. R. Borrill, J. Boscaleri, A. Contaldi, C. R. Crill, B. P. de Bernardis, P. de Gasperis, G. de Oliveira-Costa, A. Di Stefano, G. Hivon, E. Kisner, T. S. Jones, W. C. Lange, A. E. Masi, S. Mauskopf, P. D. MacTavish, C. J. Melchiorri, A. Montroy, T. E. Netterfield, C. B. Pascale, E. Piacentini, F. Polenta, G. Ricciardi, S. Romeo, G. Ruhl, J. E. Tegmark, M. Veneziani, M. Vittorio, N. TI Probing primordial non Gaussianity in the BOOMERanG CMB maps: an analysis based on analytical Minkowski functionals SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Galileo-Galilei-Institute Conference on Dark Matter and Dark Energy CY JAN 19-MAR 12, 2009 CL Florence, ITALY SP Galileo Galilei Inst ID ANGULAR POWER SPECTRUM; LARGE-SCALE STRUCTURE; 2003 FLIGHT; WMAP OBSERVATIONS; COSMOLOGICAL PARAMETERS; TEMPERATURE ANISOTROPY; INFLATIONARY MODELS; MAKING ALGORITHM; MICROWAVE; BISPECTRUM AB Minkowski functionals are a powerful tool to constrain the Gaussianity of the Cosmic Microwave Background (CMB). In the limit of a weakly non Gaussian field, a perturbative approach can be derived [14] that is completely based on analytical formulae without requiring computationally intensive, dedicated Monte Carlo non Gaussian simulations of the CMB anisotropy. We apply this machinery to an intensity map derived from the 1998 and 2003 flights of BOOMERanG, analyzed here together for the first time. We set limits on the non-linear coupling parameter f(NL) as -1020 < f(NL) < 390 at 95% CL, markedly improving the previous constraints set by 191 whose analysis was limited to the BOOMERanG 2003 dataset. These limits are the most stringent ever set among suborbital experiments. C1 [Migliaccio, M.; Natoli, P.; De Troia, G.; de Gasperis, G.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Hikage, C.; Ade, P. A. R.; Mauskopf, P. D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Komatsu, E.] Univ Texas Austin, Texas Cosmol Ctr, Univ Stn 1, Austin, TX 78712 USA. [Bock, J. J.; Crill, B. P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bond, J. R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. [Borrill, J.; Kisner, T. S.; Ricciardi, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Boscaleri, A.] CNR, IFAC, Florence, Italy. [Contaldi, C. R.] Univ London Imperial Coll Sci Technol & Med, Theoret Phys Grp, London SW7 2AZ, England. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.; Polenta, G.; Veneziani, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [de Oliveira-Costa, A.; Tegmark, M.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Di Stefano, G.; Romeo, G.] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy. [Hivon, E.] Inst Astrophys, F-75014 Paris, France. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ USA. [Lange, A. E.] CALTECH, Observ Cosmol, Pasadena, CA 91125 USA. [MacTavish, C. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2AZ, England. [Montroy, T. E.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Netterfield, C. B.; Pascale, E.] Univ Toronto, Dept Phys, Toronto, ON, Canada. RP Migliaccio, M (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. RI Piacentini, Francesco/E-7234-2010; OI ROMEO, Giovanni/0000-0002-5535-7803; Polenta, Gianluca/0000-0003-4067-9196; Ricciardi, Sara/0000-0002-3807-4043; Melchiorri, Alessandro/0000-0001-5326-6003; Hivon, Eric/0000-0003-1880-2733; Piacentini, Francesco/0000-0002-5444-9327; de Bernardis, Paolo/0000-0001-6547-6446; Masi, Silvia/0000-0001-5105-1439 NR 41 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD OCT PY 2009 VL 194 BP 278 EP 286 DI 10.1016/j.nuclphysbps.2009.07.092 PG 9 WC Physics, Particles & Fields SC Physics GA 525WJ UT WOS:000272247800048 ER PT J AU Sarkar, D Sullivan, S Joudaki, S Amblard, A Cooray, A Holz, DE AF Sarkar, D. Sullivan, S. Joudaki, S. Amblard, A. Cooray, A. Holz, D. E. TI Running After w(z): Some Stumbling Blocks SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Galileo-Galilei-Institute Conference on Dark Matter and Dark Energy CY JAN 19-MAR 12, 2009 CL Florence, ITALY SP Galileo Galilei Inst ID HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; LIGHT-CURVE SHAPES; IA SUPERNOVAE; DARK ENERGY; COSMOLOGICAL PARAMETERS; ACCELERATING UNIVERSE; CONSTRAINTS; PROGENITORS; GALAXIES AB One of the most viable explanations for the accelerated expansion of the universe at the present epoch entails a mysterious dark energy component ill the energy budget of the universe. Although the existence of dark energy has been corroborated by several independent studies over the past decade, there is no compelling theoretical explanation for its existence. In order to learn more about this mysterious dark energy, a number of current and future observational Studies are aimed at constraining its equation of state (EOS; w(z)) with unprecedented precision. Here we address the heart of some of these projects. We first try to motivate a model-independent; approach to constrain the E OS. We then concentrate on two potential sources of uncertain ties in the EOS: systematics incorporated due to the lensing of supernova, (SN), and systematics based oil the the existence of two different SN populations. C1 [Sarkar, D.; Joudaki, S.; Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Sullivan, S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Holz, D. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sarkar, D (reprint author), Univ Calif Irvine, Dept Phys & Astron, 4129 Frederick Reines Hall, Irvine, CA 92697 USA. EM dsarkar@uci.edu RI amblard, alexandre/L-7694-2014 OI amblard, alexandre/0000-0002-2212-5395 NR 51 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD OCT PY 2009 VL 194 BP 307 EP 319 DI 10.1016/j.nuclphysbps.2009.07.031 PG 13 WC Physics, Particles & Fields SC Physics GA 525WJ UT WOS:000272247800052 ER PT J AU Kadioglu, SY Knoll, DA de Oliveira, C AF Kadioglu, Samet Y. Knoll, Dana A. de Oliveira, Cassiano TI Multiphysics Analysis of Spherical Fast Burst Reactors SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DYNAMICS AB Coupling neutronics to thermomechanics is important for the analysis of fast burst reactors because the criticality and safety study of fast burst reactors depends on the thermomechanical behavior of fuel materials. For instance, the shutdown mechanism or the transition between supercritical and subcritical states is driven by the fuel material expansion or contraction. The material expansion is due to the temperature gradient that results from fission power. In this paper, we introduce a numerical model for coupling of neutron diffusion and thermomechanics in fast burst reactors. The goal is to have a better understanding of the relation between the reactivity insertion and the thermomechanical response of fuel materials. We perform a nondimensional analysis of the coupled system that provides insight into the behavior of the transient. We also provide a semianalytical solution model to the coupled system for partial verification of our numerical solutions. We studied material behavior corresponding to different levels of reactivity insertion. C1 [Kadioglu, Samet Y.; Knoll, Dana A.] Idaho Natl Lab, Reactor Phys Anal & Design Multiphys Methods Grp, Idaho Falls, ID 83415 USA. [de Oliveira, Cassiano] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Kadioglu, SY (reprint author), Idaho Natl Lab, Reactor Phys Anal & Design Multiphys Methods Grp, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM samet.kadioglu@inl.gov FU U.S. Government [DEAC07-051D14517, INL/JOU-09-15304] FX The submitted manuscript has been authored by a contractor of the U.S. Government under contract DEAC07-051D14517 (INL/JOU-09-15304). NR 17 TC 1 Z9 2 U1 2 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD OCT PY 2009 VL 163 IS 2 BP 132 EP 143 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 503XU UT WOS:000270576300003 ER PT J AU Vincke, H Forkel-Wirth, D Menzel, HG Roesler, S Theis, C Widorski, M Hatanaka, K Yashima, H Nakamura, T Taniguchi, S Nakao, N Tamii, A AF Vincke, H. Forkel-Wirth, D. Menzel, H. G. Roesler, S. Theis, C. Widorski, M. Hatanaka, K. Yashima, H. Nakamura, T. Taniguchi, S. Nakao, N. Tamii, A. TI RESPONSE OF IONIZATION CHAMBERS TO HIGH-ENERGY MONOENERGETIC NEUTRONS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE ionization chamber response calculation; high-energy neutron fields; FLUKA Monte Carlo simulations ID RADIATION-FIELD AB Radiation monitoring during operation of CERN's high-energy accelerators in general, and the Large Hadron Collider and its experiments in particular, poses a major challenge due to the stray radiation fields, which are characterized by a complex particle composition and a wide range of energies. In order to monitor ambient doses around workplaces and inside the machine tunnel, high-pressure ionization chambers (so-called IG5) and air-filled ionization chambers under atmospheric pressure (PMI) will be used. Because of the complexity of the radiation field, standard gamma or neutron radiation sources are not applicable to accurately calibrate monitors used in such environments. Hence, the use of Monte Carlo simulation programs like FLUKA is indispensable to obtain an appropriate monitor calibration. Following this idea the response of the aforementioned monitors to mixed particle fields ranging from thermal energies to several giga-electron-volts was simulated. Because neutrons are the main contributor to total dose at many locations around the accelerators, dedicated neutron experiments were carried out at the Research Center for Nuclear Physics, Osaka University, utilizing quasi-monoenergetic beams of 250 and 392 MeV to benchmark the simulated detector responses. Good agreement was found at 392 Me V, whereas at 250 Me V the calculations predicted considerably higher readings of the detector than the ones observed experimentally. C1 [Nakao, N.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Taniguchi, S.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. [Yashima, H.] Kyoto Univ, Inst Res Reactor, Kumatori, Osaka 5900494, Japan. [Nakamura, T.] Tohoku Univ, Ctr Cyclotron & Radioisotope, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Hatanaka, K.; Tamii, A.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Vincke, H.; Forkel-Wirth, D.; Menzel, H. G.; Roesler, S.; Theis, C.; Widorski, M.] CERN, CH-1211 Geneva 23, Switzerland. RP Vincke, H (reprint author), Centronic Ltd, Centron House, Croydon CR9 0BG, Australia. EM Helmut.Vincke@cern.ch NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 5 EP 10 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700002 ER PT J AU Veinot, KG Gose, BT Davis, TG Bogard, JS AF Veinot, K. G. Gose, B. T. Davis, T. G. Bogard, J. S. TI USE OF PORTABLE GAMMA SPECTROMETERS FOR IDENTIFYING PERSONS EXPOSED IN A NUCLEAR CRITICALITY EVENT SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE criticality; sodium activation; gamma spectroscopy AB At the Y-12 National Security Complex, triage-style assessments are used to identify persons potentially exposed to high doses from criticality accident radiations using portable instruments by assessing the presence of activated sodium atoms in a person's blood. Historically, simple handheld Geiger-Mueller (G-M) probes were used for these purposes although it was recognized that since these instruments contain no information on incident photon energy, it was impossible to differentiate between photons emitted by contamination on the potentially exposed worker from activation of sodium in the person's blood. This work examines the use of a portable gamma spectrometer for assessing blood sodium activation. Irradiations of a representative phantom were performed using two neutron source configurations (unmoderated and polyethylene-moderated (252)Cf), and measurements were made using the spectrometer and a G-M detector following irradiation. Detection limits in terms of personnel neutron dose are given for two neutron fields representing metal and solution criticality spectra. Both G-M and spectrometer results indicate a low minimum detectable neutron dose indicating that both instruments are useful as an emergency response instrument. The spectrometer has the added benefit of discriminating between surface contamination and blood sodium activation. C1 [Bogard, J. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Veinot, KG (reprint author), Y-12 Natl Secur Complex,POB 2009, Oak Ridge, TN 37831 USA. EM veinotkg@y12.doe.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 17 EP 20 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700004 ER PT J AU Hayes, RB AF Hayes, Robert B. TI CONTINUOUS AIR MONITOR ALGORITHM DEVELOPMENT SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE airborne contamination; continuous air monitor; algorithm AB This paper describes an algorithm intended for use in the U.S. Navy's next-generation air particle detector designed for measuring (60)Co air contamination. The algorithm measures both alpha and beta activity from an air filter utilizing passivated implanted planar silicon detectors for spectrometry of both particle types and is designed to compensate for radon progeny to discriminate this from the beta emissions of (60)Co. This is done by correlating the specific alpha emissions with their beta emission parents, or their beta emission progeny, as appropriate. In addition, the algorithm is unique in that by using region of interest (ROI) windows, it is less sensitive to spectral smearing due to dust or humidity effects on the particle depositions or more specifically to variable energy loss of alpha particles to the detector from deposited material on the filter. A weakness of this approach is that thoron B ((212)Pb) does not have a detectable alpha parent and the next alpha progeny must decay through an isotope ((212)Bi) with a half-life of 60.6 min. This causes predictions of the (212)Pb activity to lag in time to some extent. Mitigation of this effect is realized by using a first-order correction utilizing appropriate mathematical equations to account for the physics of this buildup and decay. This paper concludes by demonstrating that the beta assay value is a linear superposition of the alpha ROI values from the three dominant alpha peaks. Initial estimates on the coefficients of the alpha ROI values are derived with final values recommended to be determined from operational measurements. C1 [Hayes, Robert B.] Remote Sensing Lab, Las Vegas, NV 89193 USA. RP Hayes, RB (reprint author), Waste Isolat Pilot Plant, US Dept Energy, POB 2078, Carlsbad, NM 88221 USA. EM Robert.Hayes@wipp.ws NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 35 EP 40 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700007 ER PT J AU Vilim, R Klann, R AF Vilim, R. Klann, R. TI RADTRAC: A SYSTEM FOR DETECTING, LOCALIZING, AND TRACKING RADIOACTIVE SOURCES IN REAL TIME SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE radioactive source; detection and tracking; signal analysis AB Within the homeland security and emergency response communities, there is a need for a low-profile system to detect and locate radioactive sources. RadTrac has been developed at Argonne National Laboratory as an integrated system for the detection, localization, identification, and tracking of radioactive sources in real time. The system is based on a network of radiation detectors and advanced signal-processing algorithms. Features include video surveillance, automated tracking, easy setup, and logging of all data and images. This paper describes the advanced algorithms that were developed and implemented for source detection, localization, and tracking in real time. In the physiospatial integration approach to source localization, counts from multiple detectors are processed according to the underlying physics linking these counts to obtain the probability that a source is present at any point in space. This information is depicted in a probability density function map. This type of depiction allows the results to be presented in a simple, easy-to-understand manner. It also allows for many different complicated factors to be accounted for in a single image as each factor is computed as a probability density in space. These factors include spatial limitations, variable shielding, directional detectors, moving detectors, and different detector sizes and orientations. The utility and versatility of this approach is described in further detail. Advanced signal-processing algorithms have also been incorporated to improve real-time tracking and to increase signal-to-noise ratios including temporal linking and energy binning. Measurements aimed at demonstrating the sensitivity improvements through the use of advanced signal-processing techniques were performed and are presented. Results of tracking weak sources (<100 mu Ci (137)Cs) using four fixed-position detectors are presented. C1 [Vilim, R.; Klann, R.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Vilim, R (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rvilim@anl.gov NR 3 TC 10 Z9 10 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 61 EP 73 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700012 ER PT J AU Klann, RT Shergur, J Mattesich, G AF Klann, Raymond T. Shergur, Jason Mattesich, Gary TI CURRENT STATE OF COMMERCIAL RADIATION DETECTION EQUIPMENT FOR HOMELAND SECURITY APPLICATIONS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE radiation detector; radioisotope identifier; radiation portal monitor AB With the creation of the U.S. Department of Homeland Security (DHS) came the increased concern that terrorist groups would attempt to manufacture and use an improvised nuclear device or radiological dispersal device. As such, a primary mission of DHS is to protect the public against the use of these devices and to assist state and local responders in finding, locating, and identifying these types of devices and materials used to manufacture these devices. This assistance from, DHS to state and local responders comes in the form of grant money to procure radiation detection equipment. In addition to this grant program, DHS has supported the development of American National Standards Institute standards for radiation detection equipment and has conducted testing of commercially available instruments. This paper identifies the types and kinds of commercially available equipment that can be used to detect and identify radiological material-for use in traditional search applications as well as primary and secondary screening of personnel, vehicles, and cargo containers. In doing so, key considerations for the conduct of operations are described as well as critical features of the instruments for specific applications. The current state of commercial instruments is described for different categories of detection equipment including personal radiation detectors, radioisotope identifiers, man-portable detection equipment, and radiation portal monitors. In addition, emerging technologies are also discussed, such as spectroscopic detectors and advanced spectroscopic portal monitors. C1 [Klann, Raymond T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Shergur, Jason] Los Alamos Natl Lab, Los Alamos, NM USA. [Mattesich, Gary] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Klann, RT (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM klann@anl.gov NR 11 TC 4 Z9 4 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 79 EP 88 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700014 ER PT J AU Shaver, MW Smith, LE Pagh, RT Miller, EA Wittman, RS AF Shaver, Mark W. Smith, L. Eric Pagh, Richard T. Miller, Erin A. Wittman, Richard S. TI THE COUPLING OF A DETERMINISTIC TRANSPORT FIELD SOLUTION TO A MONTE CARLO BOUNDARY CONDITION FOR THE SIMULATION OF LARGE GAMMA-RAY SPECTROMETERS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE Monte Carlo; deterministic transport; simulation AB Monte Carlo methods are typically used for simulating radiation fields around gamma-ray spectrometers and pulse-height tallies within those spectrometers. Deterministic codes that discretize the linear Boltzmann transport equation can offer significant advantages in computational efficiency for calculating radiation fields, but stochastic codes remain the most dependable tools for calculating the response within spectrometers. For a deterministic field solution to become useful to radiation detection analysts, it must be coupled to a method for calculating spectrometer response functions. This coupling is done in the RADSAT toolbox. Previous work has been successful using a Monte Carlo boundary sphere around a handheld detector. It is desirable to extend this coupling to larger detector systems such as the portal monitors now being used to screen vehicles crossing borders. Challenges to providing an accurate Monte Carlo boundary condition from the deterministic field solution include the greater possibility of large radiation gradients along the detector and the detector itself perturbing the field solution, unlike smaller detector systems. The method of coupling the deterministic results to a stochastic code for large detector systems can be described as spatially defined rectangular patches that minimize gradients. The coupled method was compared to purely stochastic simulation data of identical problems, showing the methods produce consistent detector responses while the purely stochastic run times are substantially longer in some cases, such as highly shielded geometries. For certain cases, this method has the ability to faithfully emulate large sensors in a more reasonable amount of time than other methods. C1 [Shaver, Mark W.; Smith, L. Eric; Pagh, Richard T.; Miller, Erin A.; Wittman, Richard S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shaver, MW (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM mark.shaver@pnl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 95 EP 100 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700016 ER PT J AU Ilas, D Eckerman, K Sherbini, S Karagiannis, H AF Ilas, Dan Eckerman, Keith Sherbini, Sami Karagiannis, Harriet TI MONTE CARLO ASSESSMENTS OF ABSORBED DOSES TO THE HANDS OF RADIOPHARMACEUTICAL WORKERS DUE TO PHOTON EMITTERS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mt, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE extremity monitoring; radiopharmacy; Monte Carlo ID NUCLEAR-MEDICINE; RADIATION AB This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin. C1 [Ilas, Dan; Eckerman, Keith] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sherbini, Sami; Karagiannis, Harriet] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Ilas, D (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700, Oak Ridge, TN 37831 USA. EM ilasd@ornl.gov OI Ilas, Dan/0000-0002-4971-9476 NR 13 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 SI SI BP 164 EP 168 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700029 ER PT J AU McKinley, MS von Wittenau, AES AF McKinley, M. Scott von Wittenau, Alexis E. Schach TI RADIOGRAPHIC CAPABILITIES OF THE MERCURY MONTE CARLO CODE SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding/15th Topical Meeting of the Radiation-Protection-and-Shielding-Division CY APR 13-18, 2008 CL Pine Mt, GA SP Radiat Protect & Shielding Div DE MERCURY; HADES; radiography AB MERCURY is a modem, parallel, general-purpose Monte Carlo code being developed at the Lawrence Livermore National Laboratory. Recently, a radiographic capability has been added. MERCURY can create a source of diagnostic, virtual particles that are aimed at pixels in an image tally. This new feature is compared to the radiography code HADES for verification and timing. Comparisons for accuracy were made using the French Test Object and for timing were made by tracking through an unstructured mesh. In addition, self-consistency tests were run in MERCURY for the British Test Object and scattering test problem. MERCURY and HADES were found to agree to the precision of the input data. HADES appears to run around eight times faster than MERCURY in the timing study. Profiling the MERCURY code has turned up several differences in the algorithms that account for this. These differences will be addressed in a future release of MERCURY. C1 [McKinley, M. Scott; von Wittenau, Alexis E. Schach] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP McKinley, MS (reprint author), Lawrence Livermore Natl Lab, L-95,POB 808, Livermore, CA 94551 USA. EM mckinley9@llnl.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD OCT PY 2009 VL 168 IS 1 BP 245 EP 248 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 501XL UT WOS:000270417700044 ER PT J AU Bernstein, NK Hammel, M Mani, RS Weinfeld, M Pelikan, M Tainer, JA Glover, JNM AF Bernstein, N. K. Hammel, M. Mani, R. S. Weinfeld, M. Pelikan, M. Tainer, J. A. Glover, J. N. M. TI Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase SO NUCLEIC ACIDS RESEARCH LA English DT Article ID X-RAY-SCATTERING; STRAND-BREAK REPAIR; DEPENDENT PROTEIN-KINASE; BIOLOGICAL MACROMOLECULES; FLEXIBLE PROTEINS; STRUCTURAL BASIS; DAMAGED DNA; HUMAN-CELLS; TERMINI; XRCC1 AB Mammalian polynucleotide kinase (mPNK) is a critical DNA repair enzyme whose 5'-kinase and 3'-phoshatase activities function with poorly understood but striking specificity to restore 5'phosphate/3'-hydroxyl termini at sites of DNA damage. Here we integrated site-directed mutagenesis and small-angle X-ray scattering (SAXS) combined with advanced computational approaches to characterize the conformational variability and DNA-binding properties of mPNK. The flexible attachment of the FHA domain to the catalytic segment, elucidated by SAXS, enables the interactions of mPNK with diverse DNA substrates and protein partners required for effective orchestration of DNA end repair. Point mutations surrounding the kinase active site identified two substrate recognition surfaces positioned to contact distinct regions on either side of the phosphorylated 5'-hydroxyl. DNA substrates bind across the kinase active site cleft to position the double-stranded portion upstream of the 5'-hydroxyl on one side, and the 3'-overhang on the opposite side. The bipartite DNA-binding surface of the mPNK kinase domain explains its preference for recessed 5'-termini, structures that would be encountered in the course of DNA strand break repair. C1 [Bernstein, N. K.; Glover, J. N. M.] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada. [Hammel, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Mani, R. S.; Weinfeld, M.] Cross Canc Inst, Dept Expt Oncol, Edmonton, AB T6G 1Z2, Canada. [Pelikan, M.] Univ Missouri, Dept Math & Comp Sci, St Louis, MO 63121 USA. [Tainer, J. A.] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Mol Biol, La Jolla, CA 92037 USA. [Tainer, J. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA. RP Glover, JNM (reprint author), Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada. EM mark.glover@ualberta.ca RI Pelikan, Martin/A-8547-2012 FU National Cancer Institute of Canada; Canadian Institutes of Health Research; National Institutes of Health (NIH) Structural Cell Biology [CA92584]; Office of Science; Office of Biological and Environmental Research; U. S. Department of Energy [DE-AC02-05CH11231]; Howard Hughes International Scholar; NSF [ECS-0547013]; USAF [FA9550-06-1-0096]; NERSC [m870]; National Institutes of Health [CA92584] FX Grants from the National Cancer Institute of Canada (NCIC, to J.N.M.G.), the Canadian Institutes of Health Research (CIHR, to M. W.) and the National Institutes of Health (NIH) Structural Cell Biology of DNA Repair Machines P01 grant CA92584 (to J.N.M.G./J.A.T.) and in part by the Office of Science, Office of Biological and Environmental Research, U. S. Department of Energy, under Contract DE-AC02-05CH11231 for SIBLYS beam-line efforts. J.N.M.G. acknowledges the support of the Howard Hughes International Scholar program. M. P. was supported by the NSF under grant ECS-0547013 and the USAF, under grant FA9550-06-1-0096. The computational part of this work was supported by the NERSC start up project (m870). Funding for open access charge: National Institutes of Health grant CA92584. NR 44 TC 30 Z9 31 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD OCT PY 2009 VL 37 IS 18 BP 6161 EP 6173 DI 10.1093/nar/gkp597 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 510RR UT WOS:000271109300026 PM 19671525 ER PT J AU Gardner, SN Hiddessen, AL Williams, PL Hara, C Wagner, MC Colston, BW AF Gardner, Shea N. Hiddessen, Amy L. Williams, Peter L. Hara, Christine Wagner, Mark C. Colston, Bill W., Jr. TI Multiplex primer prediction software for divergent targets SO NUCLEIC ACIDS RESEARCH LA English DT Article ID POLYMERASE-CHAIN-REACTION; REAL-TIME PCR; DIFFERENTIAL DETECTION; RESPIRATORY PATHOGENS; SEQUENCE ALIGNMENT; HIGH-THROUGHPUT; SMALLPOX-VIRUS; ASSAY DESIGN; DNA; IDENTIFICATION AB We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets to amplify all members of large, diverse and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers (similar to 3700 18- mersor similar to 2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus (FMDV), hemagglutinin (HA) and neuraminidase (NA) segments of influenza A virus, Norwalk virus, and HIV-1. We empirically demonstrated the application of the software with a multiplex set of 16 short (10 nt) primers designed to amplify the Poxviridae family to produce a specific amplicon from vaccinia virus. C1 [Gardner, Shea N.; Hiddessen, Amy L.; Williams, Peter L.; Hara, Christine; Wagner, Mark C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Colston, Bill W., Jr.] QuantaLife Inc, Livermore, CA USA. RP Gardner, SN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM gardner26@llnl.gov; hiddessen1@llnl.gov FU Laboratory Directed Research and Development (LDRD); Lawrence Livermore National Laboratory FX Laboratory Directed Research and Development (LDRD) and Computations TechBase awards from the Lawrence Livermore National Laboratory. Funding for open access charge: Lawrence Livermore National Laboratory. NR 46 TC 9 Z9 9 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD OCT PY 2009 VL 37 IS 19 BP 6291 EP 6304 DI 10.1093/nar/gkp659 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 514JH UT WOS:000271389900001 PM 19759213 ER PT J AU Artyukov, I Bugayev, Y Devizenko, O Gullikson, E Kondratenko, V Vinogradov, A AF Artyukov, Igor Bugayev, Yegor Devizenko, Olexander Gullikson, Eric Kondratenko, Valeriy Vinogradov, Alexander TI X-ray Schwarzschild objective for the carbon window, (lambda similar to 4.5 nm) SO OPTICS LETTERS LA English DT Article ID MICROSCOPE; RADIATION; REGION AB We deal with the recent progress in the fabrication of the graded Co/C multilayer mirrors to be used in a 21 x Schwarzschild objective (SO) operating at the wavelengths near 4.5 nm ("carbon window" region). The peak reflectivity of flat Co/C mirrors was measured to be 14.8% (wavelength of 4.48 nm, incidence angle of 5). The reflectivity curves of the spherical mirrors achieved 3%-6%, with the spectral matching accuracy being Delta d similar to 0.008 nm (Delta d/d similar to 0.3%). As a result the SO demonstrates a full working aperture (N(A) similar to 0.2) operation with the total throughput of 0.25%. (C) 2009 Optical Society of America C1 [Artyukov, Igor; Vinogradov, Alexander] PN Lebedev Phys Inst, Xray Opt Lab, Moscow 119991, Russia. [Gullikson, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bugayev, Yegor; Devizenko, Olexander; Kondratenko, Valeriy] Natl State Univ, Kharkov Polytech Inst, UA-61002 Kharkov, Ukraine. RP Artyukov, I (reprint author), PN Lebedev Phys Inst, Xray Opt Lab, 53 Leninsky Prospekt, Moscow 119991, Russia. EM iart@sci.lebedev.ru RI Artyukov, Igor/B-3105-2009; Vinogradov, Alexander/M-5331-2015 OI Artyukov, Igor/0000-0001-7915-697X; FU U.S. Civilian Research and Development Foundation (CRDF) [RP2-2845-MO-02] FX The authors wish to thank Franz Sch fers and Torsten Feigl for soft x-ray measurements on the BESSY beamline. This work was supported in part by the U.S. Civilian Research and Development Foundation (CRDF), RP2-2845-MO-02. NR 10 TC 12 Z9 12 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD OCT 1 PY 2009 VL 34 IS 19 BP 2930 EP 2932 PG 3 WC Optics SC Optics GA 501FT UT WOS:000270366800017 PM 19794771 ER PT J AU Khosropanah, P Baryshev, A Zhang, W Jellema, W Hovenier, JN Gao, JR Klapwijk, TM Paveliev, DG Williams, BS Kumar, S Hu, Q Reno, JL Klein, B Hesler, JL AF Khosropanah, P. Baryshev, A. Zhang, W. Jellema, W. Hovenier, J. N. Gao, J. R. Klapwijk, T. M. Paveliev, D. G. Williams, B. S. Kumar, S. Hu, Q. Reno, J. L. Klein, B. Hesler, J. L. TI Phase locking of a 2.7 THz quantum cascade laser to a microwave reference SO OPTICS LETTERS LA English DT Article ID LOCAL OSCILLATOR; FREQUENCY; RECEIVER AB We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x12) from a microwave synthesizer at similar to 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range. (C) 2009 Optical Society of America C1 [Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Gao, J. R.] Univ Groningen, Netherlands Inst Space Res, SRON, NL-9747 AD Groningen, Netherlands. [Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.] Delft Univ Technol, Kavli Inst NanoSci, Fac Sci Appl, NL-2628 CJ Delft, Netherlands. [Paveliev, D. G.] State Univ Nizhny Novgorod, Radiophys Fac, Lab Semicond Devices, Nizhnii Novgorod, Russia. [Williams, B. S.; Kumar, S.; Hu, Q.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Williams, B. S.; Kumar, S.; Hu, Q.] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klein, B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hesler, J. L.] Virginia Diodes Inc, Charlottesville, VA 22902 USA. [Zhang, W.] Chinese Acad Sci, NAOC, PMO, Nanjing 210008, JiangSu, Peoples R China. RP Gao, JR (reprint author), Univ Groningen, Netherlands Inst Space Res, SRON, Landleven 12, NL-9747 AD Groningen, Netherlands. EM j.r.gao@tudelft.nl RI Williams, Benjamin/B-4494-2013 OI Williams, Benjamin/0000-0002-6241-8336 FU U. S. Air Force Office of Scientific Research (AFOSR); NASA; National Science Foundation (NSF); U. S. Department of Energy (DOE) [DE-AC04-94AL85000] FX The authors acknowledge NASA-Jet Propulsion Laboratory (JPL) for the use of a W-band power amplifier chain. The work at Delft University of Technology and SRON is partially supported by the AMSTAR+ of RadioNet under FP7. The work at MIT is supported by the U. S. Air Force Office of Scientific Research (AFOSR), NASA, and the National Science Foundation (NSF). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy (DOE) under contract DE-AC04-94AL85000. NR 17 TC 53 Z9 53 U1 1 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD OCT 1 PY 2009 VL 34 IS 19 BP 2958 EP 2960 PG 3 WC Optics SC Optics GA 501FT UT WOS:000270366800027 PM 19794781 ER PT J AU Le Pape, S Tsui, YY Macphee, A Hey, D Patel, P Mackinnon, A Key, M Wei, MS Ma, T Beg, FN Stephens, R Akli, K Link, T Van-Woerkom, L Freeman, RR AF Le Pape, Sebastien Tsui, Ying Yin Macphee, Andrew Hey, Daniel Patel, Pravesh Mackinnon, Andrew Key, Mike Wei, Mingsheng Ma, Tammy Beg, Farhat N. Stephens, Rich Akli, Kramer Link, Tony Van-Woerkom, Linn Freeman, Rick R. TI Characterization of the preformed plasma for high-intensity laser-plasma interaction SO OPTICS LETTERS LA English DT Article ID IGNITION; TARGETS AB The interaction of a very intense, very short laser pulse is modified by the presence of a preformed plasma prior to the main short pulse. The preformed plasma is created by a small prepulse interacting with the target prior to the main pulse. The prepulse has been monitored using a water-cell-protected fast photodiode allowing on every shot a high dynamic measurement of the pulse profile. Simultaneously we have used time-resolved interferometry to look at the preformed plasma on a 300 TW, 700 fs laser. The two-dimensional density maps obtained have been compared with two-dimensional hydrodynamic simulations. (C) 2009 Optical Society of America C1 [Le Pape, Sebastien; Macphee, Andrew; Hey, Daniel; Patel, Pravesh; Mackinnon, Andrew; Key, Mike] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tsui, Ying Yin] Univ Alberta, Edmonton, AB T6G 2V4, Canada. [Wei, Mingsheng; Ma, Tammy; Beg, Farhat N.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Stephens, Rich; Akli, Kramer] Gen Atom Co, San Diego, CA 92121 USA. [Link, Tony; Van-Woerkom, Linn; Freeman, Rick R.] Ohio State Univ, Columbus, OH 43210 USA. RP Le Pape, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lepape2@llnl.gov RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 FU U. S. Department of Energy [DE-FC02-04ER54789, DE-FG02-05ER54834, W-7405-Eng-48]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institute for Photonic Innovations (CIPI) FX This work was performed under the auspices of the U. S. Department of Energy under contracts DE-FC02-04ER54789 (Fusion Science Center), DE-FG02-05ER54834, and W-7405-Eng-48. The work and vital assistance of the technical, scientific, and administrative staff connected with the Jupiter Laser Facility at LLNL are gratefully acknowledged. Y. Y. Tsui is also grateful to financial support from Natural Sciences and Engineering Research Council of Canada (NSERC) and Canadian Institute for Photonic Innovations (CIPI). NR 14 TC 11 Z9 11 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD OCT 1 PY 2009 VL 34 IS 19 BP 2997 EP 2999 PG 3 WC Optics SC Optics GA 501FT UT WOS:000270366800040 PM 19794794 ER PT J AU Deshpande, R Jiang, L Schmidt, G Rakovan, J Wang, XP Wheeler, K Wang, H AF Deshpande, Rohit Jiang, Lin Schmidt, Gregory Rakovan, John Wang, Xiaoping Wheeler, Kraig Wang, Hong TI A Concise Approach to the Synthesis of opp-Dibenzoporphyrins through the Heck Reaction SO ORGANIC LETTERS LA English DT Article ID SENSITIZED SOLAR-CELLS; TETRABENZPORPHYRIN SYSTEM; NATURAL TETRAPYRROLES; VERSATILE SYNTHESIS; PORPHYRINS; ROUTE; TETRABENZOPORPHYRINS; BENZOPORPHYRINS; RINGS; PORPHYRINOLIGOMERS AB A concise approach to the synthesis of functionalized opp-dibenzoporphyrins is described. In this method, introduction of alkenyl groups to the porphyrin periphery through the vicinal 2-fold Heck reaction, 6-pi electrocyclization, and subsequent aromatization occur in one pot. C1 [Deshpande, Rohit; Jiang, Lin; Wang, Hong] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. [Schmidt, Gregory; Rakovan, John] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Wheeler, Kraig] Eastern Illinois Univ, Dept Chem, Charleston, IL 61920 USA. RP Wang, H (reprint author), Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. EM wangh3@muohio.edu RI Wang, Xiaoping/E-8050-2012 OI Wang, Xiaoping/0000-0001-7143-8112 FU NSF [0722547]; Miami University FX We thank Professor Mike Novak at the Department of Chemistry of Miami University and Dr. Laurent Jaquinod at Ctgen for useful discussions. K. W. acknowledges NSF grant (0722547). Financial support was provided by Miami University. NR 37 TC 35 Z9 35 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD OCT 1 PY 2009 VL 11 IS 19 BP 4251 EP 4253 DI 10.1021/ol901615f PG 3 WC Chemistry, Organic SC Chemistry GA 496QC UT WOS:000269989100001 PM 19775180 ER PT J AU Li, Y Lampkins, AJ Baker, MB Sumpter, BG Huang, JS Abboud, KA Castellano, RK AF Li, Yan Lampkins, Andrew J. Baker, Matthew B. Sumpter, Bobby G. Huang, Jingsong Abboud, Khalil A. Castellano, Ronald K. TI Benzotrifuranone: Synthesis, Structure, and Access to Polycyclic Heteroaromatics SO ORGANIC LETTERS LA English DT Article ID CARBONYL-CARBONYL INTERACTIONS; AROMATICITY; RINGS; HETEROACENES; DERIVATIVES; INHIBITOR; CRYSTALS AB Functionalized benzotrifurans can be accessed in one efficient acylation step from previously unreported benzotrifuranone. DFT calculations have confirmed the aromaticity of the heteroaromatic system and determined its electronic structure that is relevant to applications in materials and supramolecular chemistry. C1 [Li, Yan; Lampkins, Andrew J.; Baker, Matthew B.; Abboud, Khalil A.; Castellano, Ronald K.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Sumpter, Bobby G.; Huang, Jingsong] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.; Huang, Jingsong] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Castellano, RK (reprint author), Univ Florida, Dept Chem, POB 117200, Gainesville, FL 32611 USA. EM castellano@chem.ufl.edu RI Huang, Jingsong/A-2789-2008; Li, Yan/B-7310-2012; Castellano, Ronald/C-5082-2012; Sumpter, Bobby/C-9459-2013; Baker, Matthew /O-9418-2014; OI Huang, Jingsong/0000-0001-8993-2506; Sumpter, Bobby/0000-0001-6341-0355; Baker, Matthew /0000-0003-1731-3858; Castellano, Ronald/0000-0003-4322-9932 FU National Science Foundation CAREER [CHE-0548003]; University of Florida; U.S. Department of Energy [CNMS2007-029]; University of Florida Alumni FX This work was financially supported by the National Science Foundation CAREER program (CHE-0548003) and the University of Florida. B.G.S. and R.K.C. thank the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy, for resources (user grant CNMS2007-029 to R.K.C.). AJ.L. and M.B.B. were supported by University of Florida Alumni Graduate Fellowships. K.A.A. thanks the National Science Foundation and University of Florida for funding the X-ray crystallography equipment. NR 47 TC 14 Z9 14 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD OCT 1 PY 2009 VL 11 IS 19 BP 4314 EP 4317 DI 10.1021/ol901631n PG 4 WC Chemistry, Organic SC Chemistry GA 496QC UT WOS:000269989100017 PM 19715287 ER PT J AU Dubey, A Antypas, K Ganapathy, MK Reid, LB Riley, K Sheeler, D Siegel, A Weide, K AF Dubey, Anshu Antypas, Katie Ganapathy, Murali K. Reid, Lynn B. Riley, Katherine Sheeler, Dan Siegel, Andrew Weide, Klaus TI Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code SO PARALLEL COMPUTING LA English DT Article DE Software architecture; Portability; Extensibility; Massively parallel; FLASH ID FRAMEWORK; SYSTEM AB FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dubey, Anshu; Reid, Lynn B.; Weide, Klaus] Univ Chicago, ASC, Flash Ctr, Chicago, IL 60637 USA. [Antypas, Katie] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ganapathy, Murali K.] Google Inc, Mountain View, CA 94043 USA. [Riley, Katherine; Sheeler, Dan; Siegel, Andrew] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dubey, A (reprint author), Univ Chicago, ASC, Flash Ctr, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM dubey@flash.uchicago.edu RI Reid, Lynn/A-7364-2011; OI Weide, Klaus/0000-0001-9869-9750 NR 25 TC 93 Z9 93 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD OCT-NOV PY 2009 VL 35 IS 10-11 BP 512 EP 522 DI 10.1016/j.parco.2009.08.001 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA 526JA UT WOS:000272283000002 ER PT J AU Hargrove, WW Spruce, JP Gasser, GE Hoffman, FM AF Hargrove, William W. Spruce, Joseph P. Gasser, Gerald E. Hoffman, Forrest M. TI Toward a National Early Warning System for Forest Disturbances Using Remotely Sensed Canopy Phenology SO PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING LA English DT Editorial Material C1 [Hargrove, William W.] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, So Res Stn, Asheville, NC 28804 USA. [Spruce, Joseph P.] Sci Syst & Applicat Inc, Stennis Space Ctr, MS 39522 USA. [Gasser, Gerald E.] Lockheed Martin Civil Programs, Stennis Space Ctr, MS 39522 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. RP Hargrove, WW (reprint author), US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, So Res Stn, 200 WT Weaver Blvd, Asheville, NC 28804 USA. EM hnw@geobabble.org; joseph.p.spruce@nasa.gov; gerald.e.gasser@lmco.com; forrest@climatemodeling.org RI Hoffman, Forrest/B-8667-2012 OI Hoffman, Forrest/0000-0001-5802-4134 NR 8 TC 33 Z9 33 U1 3 U2 11 PU AMER SOC PHOTOGRAMMETRY PI BETHESDA PA 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160 USA SN 0099-1112 J9 PHOTOGRAMM ENG REM S JI Photogramm. Eng. Remote Sens. PD OCT PY 2009 VL 75 IS 10 BP 1150 EP 1156 PG 7 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 506TM UT WOS:000270799200001 ER PT J AU Anda, EV Chiappe, G Busser, CA Davidovich, MA Martins, GB Heidrich-Meisner, F Dagotto, E AF Anda, E. V. Chiappe, G. Buesser, C. A. Davidovich, M. A. Martins, G. B. Heidrich-Meisner, F. Dagotto, E. TI The logarithmic discretization embedded cluster approximation SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 4th Workshop on At the Frontiers of Condensed Matter CY DEC 09-12, 2008 CL Buenos Aires, ARGENTINA SP CNEA, Dept Centro Atomico Constituyentes, Univ San Martin DE Kondo effect; Nanostructures; Charge transport ID DENSITY-MATRIX RENORMALIZATION; CORRELATED SYSTEMS; HUBBARD-MODEL; QUANTUM-DOT; KONDO; TRANSPORT; OSCILLATIONS; LIMIT AB This work proposes a new approach to study transport properties of highly correlated local structures. The method, dubbed the logarithmic discretization embedded cluster approximation (LDECA), consists of diagonalizing a finite cluster containing the many-body terms of the Hamiltonian and embedding it into the rest of the system, combined with Wilson's idea of a logarithmic discretization of the representation of the band. A many-body formalism provides a solid theoretical foundation to the method. (C) 2009 Elsevier B.V. All rights reserved. C1 [Buesser, C. A.; Martins, G. B.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Anda, E. V.; Davidovich, M. A.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22453900 Rio De Janeiro, Brazil. [Chiappe, G.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Heidrich-Meisner, F.] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. [Dagotto, E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Knoxville, TN 37996 USA. RP Martins, GB (reprint author), Oakland Univ, Dept Phys, Rochester, MI 48309 USA. EM martins@oakland.edu RI Heidrich-Meisner, Fabian/B-6228-2009; Busser, Carlos/K-1017-2014; Chiappe, Guillermo/P-8460-2014; Martins, George/C-9756-2012 OI Busser, Carlos/0000-0002-0353-7490; Chiappe, Guillermo/0000-0001-8077-1873; Martins, George/0000-0001-7846-708X NR 46 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD OCT 1 PY 2009 VL 404 IS 18 BP 2689 EP 2693 DI 10.1016/j.physb.2009.06.068 PG 5 WC Physics, Condensed Matter SC Physics GA 500SU UT WOS:000270325900005 ER PT J AU Aggarwal, KM Keenan, FP Heeter, RF AF Aggarwal, K. M. Keenan, F. P. Heeter, R. F. TI Energy levels, radiative rates and electron impact excitation rates for transitions in He-like N VI, F VIII and Na X SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 17th European Conference on Dynamics of Molecular Systems (MOLEC XVII) CY AUG 23-29, 2008 CL St Petersburg, RUSSIA ID HELIUM-LIKE IONS; PLASMA DIAGNOSTICS; O VII; SPECTRA; REGION; LINES; IRON; MG; AR AB In this paper, we report calculations for energy levels, radiative rates and electron impact excitation rates for transitions in He-like N VI, F VIII and Na X. The general-purpose relativistic atomic structure package (grasp) is adopted for calculating energy levels and radiative rates, and for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of N VI, F VIII and Na X. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 107 K. Additionally, lifetimes are also reported for all calculated levels of the above three ions. C1 [Aggarwal, K. M.; Keenan, F. P.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Heeter, R. F.] Lawrence Livermore Natl Lab, Phys & Adv Technol Directorate, Livermore, CA 94550 USA. RP Aggarwal, KM (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. EM K.Aggarwal@qub.ac.uk NR 22 TC 17 Z9 17 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD OCT PY 2009 VL 80 IS 4 AR 045301 DI 10.1088/0031-8949/80/04/045301 PG 15 WC Physics, Multidisciplinary SC Physics GA 501NI UT WOS:000270388200006 ER PT J AU Young, RM Griffin, GB Ehrler, OT Kammrath, A Bragg, AE Verlet, JRR Cheshnovsky, O Neumark, DM AF Young, Ryan M. Griffin, Graham B. Ehrler, Oli T. Kammrath, Aster Bragg, Arthur E. Verlet, Jan R. R. Cheshnovsky, Ori Neumark, Daniel M. TI Charge carrier dynamics in semiconducting mercury cluster anions SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 17th European Conference on Dynamics of Molecular Systems (MOLEC XVII) CY AUG 23-29, 2008 CL St Petersburg, RUSSIA ID QUANTUM DOTS; PHOTOELECTRON; TRANSITION; ELECTRONS; RELAXATION; EXCITATION; STATES AB We have examined size-dependent electronic relaxation dynamics in isolated semiconducting mercury cluster anions using time-resolved photoelectron imaging. Relaxation following excitation from within the conduction (p-) band occurs on an similar to 3-40 ps timescale and is attributed to non-adiabatic relaxation through the p-band. Exciting an electron from the valence (s-) band into the conduction band creates an electron-hole pair that relaxes prior to Auger emission. The dynamics associated with this feature occur on an similar to 500 fs timescale and are attributed to either a hole-induced contraction of the cluster or electron-electron scattering. C1 [Young, Ryan M.; Griffin, Graham B.; Ehrler, Oli T.; Kammrath, Aster; Bragg, Arthur E.; Verlet, Jan R. R.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kammrath, Aster] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Bragg, Arthur E.; Neumark, Daniel M.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Verlet, Jan R. R.] Univ Durham, Dept Chem, Durham DH1 3LE, England. [Cheshnovsky, Ori] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Young, RM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Ehrler, Oli/B-6215-2008; Verlet, Jan/G-5940-2012; Neumark, Daniel/B-9551-2009; OI Verlet, Jan/0000-0002-9480-432X; Neumark, Daniel/0000-0002-3762-9473; Young, Ryan/0000-0002-5108-0261 NR 34 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD OCT PY 2009 VL 80 IS 4 AR 048102 DI 10.1088/0031-8949/80/04/048102 PG 7 WC Physics, Multidisciplinary SC Physics GA 501NI UT WOS:000270388200018 ER PT J AU Heidrich-Meisner, F Manmana, SR Rigol, M Muramatsu, A Feiguin, AE Dagotto, E AF Heidrich-Meisner, F. Manmana, S. R. Rigol, M. Muramatsu, A. Feiguin, A. E. Dagotto, E. TI Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice SO PHYSICAL REVIEW A LA English DT Article DE fermion systems; optical lattices ID GASES AB Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases. C1 [Heidrich-Meisner, F.] Univ Aachen, Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. [Manmana, S. R.] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland. [Rigol, M.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. [Muramatsu, A.] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany. [Feiguin, A. E.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Feiguin, A. E.] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA. [Feiguin, A. E.] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Heidrich-Meisner, F (reprint author), Univ Aachen, Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. RI Heidrich-Meisner, Fabian/B-6228-2009; Manmana, Salvatore /C-9822-2011; Rigol, Marcos/B-3505-2008 OI Manmana, Salvatore /0000-0002-4070-0576; Rigol, Marcos/0000-0002-5806-5873 FU Georgetown University; U.S. Office of Naval Research; DFG [SFB/TRR21]; NSF [DMR-0706020]; Division of Materials Science and Engineering; U.S. DOE, under contract with UT-Battelle FX We thank L. Hackermuller, G. Refael, A. Rosch, U. Schneider, and D. S. Weiss for fruitful discussions. M. R. was supported by startup funds from Georgetown University and by the U.S. Office of Naval Research. A. M. acknowledges partial support by the DFG through SFB/TRR21. E. D. was supported in part by the NSF Grant No. DMR-0706020 and the Division of Materials Science and Engineering, U.S. DOE, under contract with UT-Battelle, LLC. M. R. and A. M. are grateful to the Aspen Center for Physics for its hospitality. NR 41 TC 61 Z9 61 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 041603 DI 10.1103/PhysRevA.80.041603 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000019 ER PT J AU Kazantseva, EV Maimistov, AI Ozhenko, SS AF Kazantseva, Elena V. Maimistov, Andrei I. Ozhenko, Sergei S. TI Solitary electromagnetic wave propagation in the asymmetric oppositely directed coupler SO PHYSICAL REVIEW A LA English DT Article DE electromagnetic wave propagation; metamaterials; optical couplers; optical losses; optical solitons; optical waveguides; refractive index ID NEGATIVE-INDEX METAMATERIAL; LEFT-HANDED METAMATERIALS; NONLINEAR-OPTICAL FIBERS; 2ND-HARMONIC GENERATION; DIRECTIONAL-COUPLERS; REFRACTIVE-INDEX; SOLITONS; DYNAMICS; TRANSMISSION; PULSES AB We consider electromagnetic waves propagating in the system of coupled waveguides. One of the system components is a standard waveguide fabricated from nonlinear material having positive refraction index and another component is a waveguide produced from an artificial material having negative refraction index. In this waveguide a wave propagates in the direction opposite to direction of energy flux. We suppose that constituting metamaterial has linear properties. It is found that the coupled nonlinear solitary waves propagating both in the same direction are exist in this oppositely directed coupler due to linear coupling between nonlinear positive refractive waveguide and linear negative refractive waveguide. The corresponding analytical solution is found and it is used for numerical simulation to illustrate that the results of the solitary wave collisions are sensible to the relative velocity of the colliding solitary waves. The effect of linear losses in negative refractive waveguide is considered numerically. C1 [Kazantseva, Elena V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Ctr Engn Sci Adv Res, Oak Ridge, TN 37831 USA. [Maimistov, Andrei I.; Ozhenko, Sergei S.] Moscow Engn Phys Inst, Dept Solid State Phys & Nanosyst, Moscow 115409, Russia. RP Kazantseva, EV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Ctr Engn Sci Adv Res, Oak Ridge, TN 37831 USA. EM kazantsevaev@ornl.gov; maimistov@pico.mephi.ru; ozhenko@gmail.com FU Center for Engineering Science Advanced Research, Computer Science and Mathematics Division, Oak Ridge National Laboratory; Oak Ridge Associated Universities; RFBR [09-02-00701-a]; ARO-MURI [N50342-PHMUR]; NSF [DMS-050989]; Grant of Arizona State TRIF FX We are pleased to thank our colleague Professor S. O. Elyutin, and Professor I. R. Gabitov for enlightening discussions. We express acknowledgment to Professor B. Malomed for useful comments in relation to the conventional asymmetric directed coupler. E. V. K. appreciates the hospitality and support of the Center for Engineering Science Advanced Research, Computer Science and Mathematics Division, Oak Ridge National Laboratory, and Oak Ridge Associated Universities. A. I. Maimistov appreciates the support and hospitality of the Department of Mathematics in the University of Arizona during his work under this paper. The research of A. I. Maimistov was partially supported by RFBR (Grant No. 09-02-00701-a), ARO-MURI (Grant No. N50342-PHMUR), NSF (Grant No. DMS-050989), and Grant of Arizona State TRIF, (proposition 301). NR 45 TC 26 Z9 27 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 043833 DI 10.1103/PhysRevA.80.043833 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000189 ER PT J AU Kozlov, MG English, D Budker, D AF Kozlov, M. G. English, D. Budker, D. TI Symmetry-suppressed two-photon transitions induced by hyperfine interactions and magnetic fields SO PHYSICAL REVIEW A LA English DT Article DE barium; boson systems; hyperfine structure; quantum statistical mechanics; two-photon processes; Zeeman effect ID PHOTONS; BARIUM; PROBABILITIES; STATISTICS; DECAY AB Two-photon transitions between atomic states of total electronic angular-momentum J(a)=0 and J(b)=1 are forbidden when the photons are of the same energy. This selection rule is analogous to the Landau-Yang theorem in particle physics that forbids decays of vector particle into two photons. It arises because it is impossible to construct a total angular-momentum J(2 gamma)=1 quantum-mechanical state of two photons that is permutation symmetric, as required by Bose-Einstein statistics. In atoms with nonzero nuclear spin, the selection rule can be violated due to hyperfine interactions. Two distinct mechanisms responsible for the hyperfine-induced two-photon transitions are identified, and the hyperfine structure of the induced transitions is evaluated. The selection rule is also relaxed, even for zero-nuclear-spin atoms, by application of an external magnetic field. Once again, there are two similar mechanisms at play: Zeeman splitting of the intermediate-state sublevels, and off-diagonal mixing of states with different total electronic angular momentum in the final state. The present theoretical treatment is relevant to the ongoing experimental search for a possible Bose-Einstein-statistics violation using two-photon transitions in barium, where the hyperfine-induced transitions have been recently observed, and the magnetic-field-induced transitions are being considered both as a possible systematic effect, and as a way to calibrate the measurement. C1 [Kozlov, M. G.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [English, D.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Kozlov, MG (reprint author), Petersburg Nucl Phys Inst, Gatchina 188300, Russia. EM budker@berkeley.edu RI Kozlov, Mikhail/D-8963-2011; Budker, Dmitry/F-7580-2016 OI Kozlov, Mikhail/0000-0002-7751-6553; Budker, Dmitry/0000-0002-7356-4814 FU NSF; Foundational Questions Institute FX We have benefited from discussions with J.J. Curry, D. P. DeMille, and R. Marrus. This research has been supported by NSF and by the Foundational Questions Institute (FQXi.org). NR 24 TC 4 Z9 4 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 042504 DI 10.1103/PhysRevA.80.042504 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000080 ER PT J AU Porsev, SG Flambaum, VV Torgerson, JR AF Porsev, S. G. Flambaum, V. V. Torgerson, J. R. TI Transition frequency shifts with fine-structure constant variation for Yb II SO PHYSICAL REVIEW A LA English DT Article DE fine structure; metastable states; relativistic corrections; ytterbium ID TIME-VARIATION; SPECTRA; ENERGY AB In this paper we report calculations of the relativistic corrections to transition frequencies (q factors) of Yb II for the transitions from the odd-parity states to the metastable state 4f(13)6s(2) (2)F(7/2)(o). These transitions are of particular interest experimentally since they possess some of the largest q factors calculated to date and the (2)F(7/2)(o) state can be prepared with high efficiency. This makes Yb II a very attractive candidate for the laboratory search for variation in the fine-structure constant alpha. C1 [Porsev, S. G.; Flambaum, V. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Porsev, S. G.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Torgerson, J. R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Porsev, SG (reprint author), Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. FU Australian Research Council; Russian Foundation for Basic Research [07-02-00210-a, 08-02-00460-a]; Laboratory Directed Research and Development FX This work was supported by Australian Research Council and Marsden grant. The work of S. G. P. was supported in part by the Russian Foundation for Basic Research under Grants No. 07-02-00210-a and No. 08-02-00460-a, and the work of J.R.T. was supported at LANL by a Laboratory Directed Research and Development grant. NR 14 TC 7 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 042503 DI 10.1103/PhysRevA.80.042503 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000079 ER PT J AU Rescigno, TN Trevisan, CS Orel, AE AF Rescigno, T. N. Trevisan, C. S. Orel, A. E. TI Comment on "Electron-induced bond breaking at low energies in HCOOH and glycine: The role of very short-lived sigma(*) anion states" SO PHYSICAL REVIEW A LA English DT Letter DE bonds (chemical); dissociation energies; electron attachment; molecule-electron collisions; organic compounds ID SIMPLE ORGANIC-ACIDS; VIBRATIONAL-EXCITATION; ATTACHMENT; COLLISIONS; HF AB Recent model calculations by Gallup [Phys. Rev. A79, 042710 (2009)] suggest that low-energy dissociative electron attachment to formic acid can be explained solely in terms of a very short-lived sigma(*) anion state and that no sigma(*)/pi(*) coupling is required. We argue that this interpretation of the experimental data, which is at odds with our earlier study, is flawed. C1 [Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Trevisan, C. S.] Calif Maritime Acad, Vallejo, CA 94590 USA. [Orel, A. E.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Rescigno, TN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 15 TC 18 Z9 18 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 046701 DI 10.1103/PhysRevA.80.046701 PG 2 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000215 ER PT J AU Schoffler, MS Titze, JN Schmidt, LPH Jahnke, T Jagutzki, O Schmidt-Bocking, H Dorner, R AF Schoeffler, M. S. Titze, J. N. Schmidt, L. Ph. H. Jahnke, T. Jagutzki, O. Schmidt-Boecking, H. Doerner, R. TI Collision dynamics in electron-capture processes with excitation SO PHYSICAL REVIEW A LA English DT Article DE atom-ion collisions; electron capture; excited states; ground states; helium ions; helium neutral atoms ID ION MOMENTUM SPECTROSCOPY; DIFFERENTIAL CROSS-SECTIONS; PROTON-HELIUM COLLISIONS; RECOIL-ION; SINGLE-IONIZATION; IONIZING COLLISIONS; ANGULAR SCATTERING; ATOM COLLISIONS; HE COLLISIONS; FAST H+ AB We have measured the projectile scattering-angle dependency for various electronic final states for single-electron capture in p+He and (3)He(+)+He collisions at incident energies between 60 and 630 keV/u. We find pronounced peak structures in the scattering-angle dependence of some of the ratios of different capture channels. We interpret this as experimental evidence that an excitation process of the target is caused by a transverse momentum transfer that leads to an additional projectile deflection. C1 [Schoeffler, M. S.; Titze, J. N.; Schmidt, L. Ph. H.; Jahnke, T.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Schoeffler, M. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Schoffler, MS (reprint author), Goethe Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM schoeffler@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Schoeffler, Markus/0000-0001-9214-6848 FU DFG; BMBF; Roentdek GmbH FX This work was supported by DFG, the BMBF, and Roentdek GmbH. We thank T. Kirchner and M. Schulz for discussion. Also, we gratefully acknowledge the help of M. H. Prior. NR 42 TC 16 Z9 16 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 042702 DI 10.1103/PhysRevA.80.042702 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000097 ER PT J AU Valone, SM Levy, M AF Valone, Steven M. Levy, Mel TI Stretched hydrogen molecule from a constrained-search density-functional perspective SO PHYSICAL REVIEW A LA English DT Article DE density functional theory; excited states; ground states; hydrogen bonds; hydrogen neutral molecules ID CORRECT ASYMPTOTIC-BEHAVIOR; EXCHANGE-CORRELATION ENERGY; KOHN-SHAM; ELECTRON CORRELATIONS; METALLIC SURFACE; WAVE-FUNCTIONS; PURE-STATE; APPROXIMATION; MATRICES; BANDS AB The constrained-search formulation gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here we engage the constrained-search formulation to explore issues associated with the functional behavior of "stretched bonds" in molecular hydrogen. A constrained search is performed with familiar valence-bond wave functions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is determined. Analysis of the functional suggests the need to construct different functionals for the same density and to allow a competition among these functionals. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals. C1 [Valone, Steven M.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Levy, Mel] Duke Univ, Dept Chem, Durham, NC 27708 USA. [Levy, Mel] N Carolina Agr & Tech State Univ, Dept Phys, Greensboro, NC 27411 USA. RP Valone, SM (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. FU U.S. Department of Energy [DE-AC52-06NA25396]; Institute for Mathematics and Its Applications, University of Minnesota; National Science Foundation; Division of Mathematical Sciences FX The authors would like to thank Professor Andreas Savin for very insightful discussions. The work of S. M. V. was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, under Contract No. DE-AC52-06NA25396, and at the Institute for Mathematics and Its Applications, University of Minnesota. Funding was provided by the U.S. Department of Energy Laboratory-Directed Research and Development Programs, and the National Science Foundation, Division of Mathematical Sciences. NR 57 TC 5 Z9 5 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD OCT PY 2009 VL 80 IS 4 AR 042501 DI 10.1103/PhysRevA.80.042501 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 513VB UT WOS:000271351000077 ER PT J AU Alem, N Erni, R Kisielowski, C Rossell, MD Gannett, W Zettl, A AF Alem, Nasim Erni, Rolf Kisielowski, Christian Rossell, Marta D. Gannett, Will Zettl, A. TI Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy SO PHYSICAL REVIEW B LA English DT Article ID CARBON NANOTUBES; GRAPHENE; MEMBRANES; CRYSTALS; DEFECTS; DAMAGE; FILMS AB We present a method to prepare monolayer and multilayer suspended sheets of hexagonal boron nitride (h-BN), using a combination of mechanical exfoliation and reactive ion etching. Ultrahigh-resolution transmission electron microscope imaging is employed to resolve the atoms, and intensity profiles for reconstructed phase images are used to identify the chemical nature (boron or nitrogen) of every atom throughout the sample. Reconstructed phase images are distinctly different for h-BN multilayers of even or odd number. Unusual triangular defects and zigzag and armchair edge reconstructions are uniquely identified and characterized. C1 [Alem, Nasim; Gannett, Will; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alem, Nasim; Zettl, A.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Erni, Rolf; Kisielowski, Christian; Rossell, Marta D.; Gannett, Will; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Erni, Rolf; Kisielowski, Christian; Rossell, Marta D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Erni, Rolf/P-7435-2014; Zettl, Alex/O-4925-2016; Rossell, Marta/E-9785-2017 OI Erni, Rolf/0000-0003-2391-5943; Zettl, Alex/0000-0001-6330-136X; FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 which provided for preliminary sample characterization and detailed TEAM 0.5 characterization at the National Center for Electron Microscopy. N. A. acknowledges support for sample preparation and data analysis from the National Science Foundation within the Center of Integrated Nanomechanical Systems and W. G. acknowledges sample preparation support from the National Science Foundation under the IGERT program. NR 29 TC 207 Z9 211 U1 7 U2 138 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155425 DI 10.1103/PhysRevB.80.155425 PG 7 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000134 ER PT J AU Antonov, VE Davydov, AI Fedotov, VK Ivanov, AS Kolesnikov, AI Kuzovnikov, MA AF Antonov, V. E. Davydov, A. I. Fedotov, V. K. Ivanov, A. S. Kolesnikov, A. I. Kuzovnikov, M. A. TI Neutron spectroscopy of H impurities in PdD: Covibrations of the H and D atoms SO PHYSICAL REVIEW B LA English DT Article ID DYNAMICS; HYDRIDES; CRYSTAL; VIBRATIONS; SCATTERING AB Three powder samples of solid isotopic solutions PdD(1-x)H(x) with x=0.050, 0.072, and 0.091 are prepared under high pressure, and the spectra of their optical vibrations are studied by inelastic neutron scattering at ambient pressure and 5 K using the high-luminosity IN1-BeF spectrometer at ILL, Grenoble. These spectra are shown to be well represented by a linear combination of a contribution from the undisturbed matrix of stoichiometric PdD and a contribution due to the H impurity. The optical spectrum of PdD consists of a strong peak at 37 meV with a shoulder extending to 65 meV. The spectrum due to the H impurity is composed of a broad peak of defect H modes centered at 68 meV and superimposed on a broad N-shaped feature with a range of negative intensity near 36 meV and a shallow maximum at 45 meV. Simulations using the Born-von Karman model show that this unusual feature is a result of the formation of a band of optical vibrations of the D and H atoms with equal frequencies (covibrations) caused by H-D interactions. C1 [Antonov, V. E.; Fedotov, V. K.; Kuzovnikov, M. A.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow District, Russia. [Davydov, A. I.] Bochvar All Russian Sci Res Inst Inorgan Mat, Moscow 123060, Russia. [Ivanov, A. S.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kuzovnikov, M. A.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow District, Russia. RP Antonov, VE (reprint author), Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow District, Russia. EM kuz@issp.ac.ru RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 FU RFBR [05-02-17733, 08-02-00846]; DOE [DE-AC05-00OR22725] FX This work was supported by Grants No. 05-02-17733 and No. 08-02-00846 from RFBR, and by the Program "Physics of Strongly Compressed Matter" of RAS. A. I. K. wishes to acknowledge ORNL/NSSD that is managed by UT-Battelle, LLC, for DOE under Contract No. DE-AC05-00OR22725. NR 15 TC 6 Z9 6 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134302 DI 10.1103/PhysRevB.80.134302 PG 7 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300046 ER PT J AU Baek, SH Curro, NJ Choi, KY Reyes, AP Kuhns, PL Zhou, HD Wiebe, CR AF Baek, S. -H. Curro, N. J. Choi, K. -Y. Reyes, A. P. Kuhns, P. L. Zhou, H. D. Wiebe, C. R. TI Two inequivalent sublattices and orbital ordering in MnV2O4 studied by V-51 NMR SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR MAGNETIC RESONANCE; TRANSITION; DISTORTION AB We report detailed V-51 NMR spectra in a single crystal of MnV2O4. The vanadium spectrum reveals two peaks in the orbitally ordered state, which arise from different internal hyperfine fields at two different V sublattices. These internal fields evolve smoothly with externally applied field, and show no change in structure that would suggest a change of the orbital ordering. The result is consistent with the orbital ordering model recently proposed by Sarkar et al. [Phys. Rev. Lett. 102, 216405 (2009)] in which the same orbital that is a mixture of t(2g) orbitals rotates by about 45 degrees alternately within and between orbital chains in the I4(1)/a tetragonal space group. C1 [Baek, S. -H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Curro, N. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Choi, K. -Y.] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. [Reyes, A. P.; Kuhns, P. L.; Zhou, H. D.; Wiebe, C. R.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Baek, SH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Baek, Seung-Ho/F-4733-2011; Curro, Nicholas/D-3413-2009; Zhou, Haidong/O-4373-2016 OI Baek, Seung-Ho/0000-0002-0059-8255; Curro, Nicholas/0000-0001-7829-0237; FU NSF [DMR-0084173]; EIEG FX We thank Hironori Sakai and Stuart E. Brown for useful discussions and suggestions. This work was performed at Los Alamos National Laboratory under the auspices of the U. S. Department of Energy Office of Science. Also this work was supported by NSF in-house research program State of Florida under Cooperative Agreement No. DMR-0084173 and by the EIEG program at FSU. NR 22 TC 18 Z9 18 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140406 DI 10.1103/PhysRevB.80.140406 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500010 ER PT J AU Bettinger, JS Piamonteze, C Chopdekar, RV Liberati, M Arenholz, E Suzuki, Y AF Bettinger, J. S. Piamonteze, C. Chopdekar, R. V. Liberati, M. Arenholz, E. Suzuki, Y. TI Room-temperature photomagnetism in the spinel ferrite (Mn, Zn, Fe)(3)O-4 as seen via soft x-ray magnetic circular dichroism SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; TRANSITION; PERMEABILITY; ABSORPTION; SPECTRA AB We have used x-ray magnetic circular dichroism (XMCD) in conjunction with multiplet simulations to directly probe the origin of photomagnetism in nanocrystalline (Mn, Zn, Fe)(3)O-4. A photomagnetic effect at room temperature has been observed in these films with HeNe illumination. We have verified an intervalence charge transfer among octahedral Fe cations to account for the increase in magnetization observed at and above room temperature in small magnetic fields. Using XMCD, we demonstrate that the dichroism of Fe in octahedral sites increases by 18% at room temperature, while the dichroism of Fe in tetrahedral sites does not change. C1 [Bettinger, J. S.; Chopdekar, R. V.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Piamonteze, C.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villifier, Switzerland. [Liberati, M.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Suzuki, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Bettinger, JS (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM joannabettinger@berkeley.edu RI Chopdekar, Rajesh/D-2067-2009; Dom, Rekha/B-7113-2012; Piamonteze, Cinthia/E-9740-2016 OI Chopdekar, Rajesh/0000-0001-6727-6501; FU Office of Naval Research [N00014-06-1-0452]; U. S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank A. Cruz. This work has been funded by the Office of Naval Research Grant No. N00014-06-1-0452. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 16 TC 5 Z9 5 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140413 DI 10.1103/PhysRevB.80.140413 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500017 ER PT J AU Blanc, S Gallais, Y Sacuto, A Cazayous, M Measson, MA Gu, GD Wen, JS Xu, ZJ AF Blanc, S. Gallais, Y. Sacuto, A. Cazayous, M. Measson, M. A. Gu, G. D. Wen, J. S. Xu, Z. J. TI Quantitative Raman measurement of the evolution of the Cooper-pair density with doping in Bi2Sr2CaCu2O8+delta superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; CUPRATE SUPERCONDUCTORS; SCATTERING; PSEUDOGAP; STATE; GAP AB We report Raman measurements on Bi2Sr2CaCu2O8+delta single crystals that allow us to quantitatively evaluate the doping dependence of the density of Cooper pairs in the superconducting state. We show that the drastic loss of Cooper pairs in the antinodal region as the doping level is reduced is concomitant with a deep alteration of the quasiparticles dynamic above T-c and consistent with a pseudogap that competes with superconductivity. Our data also reveal that the overall density of Cooper pairs evolves with doping, distinctly from the superfluid density above the doping level p(c)=0.2. C1 [Blanc, S.; Gallais, Y.; Sacuto, A.; Cazayous, M.; Measson, M. A.] Univ Paris 07, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, F-75205 Paris 13, France. [Gu, G. D.; Wen, J. S.; Xu, Z. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Blanc, S (reprint author), Univ Paris 07, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, Bat Condorcet, F-75205 Paris 13, France. EM alain.sacuto@univ-paris-diderot.fr RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Gu, Genda/D-5410-2013; Gallais, Yann/E-5240-2011; Measson, Marie-aude/E-6388-2015; Sacuto, Alain/L-2620-2016 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Gu, Genda/0000-0002-9886-3255; Gallais, Yann/0000-0002-0589-1522; Measson, Marie-aude/0000-0002-6495-7376; Sacuto, Alain/0000-0002-8351-6154 FU ANR [BLANC07-1-183876] FX We are grateful to A. Georges, J. C. Campuzano, A. Millis, C. Ciuti, G. Blumberg, Y. Sidis, and P. Monod for very helpful discussions. We acknowledge support from the ANR (Grant No. BLANC07-1-183876 GAPSUPRA). Correspondences and requests for materials should be addressed to A. S. NR 34 TC 23 Z9 23 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140502 DI 10.1103/PhysRevB.80.140502 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500022 ER PT J AU Bud'ko, SL Canfield, PC Sefat, AS Sales, BC McGuire, MA Mandrus, D AF Bud'ko, S. L. Canfield, P. C. Sefat, A. S. Sales, B. C. McGuire, M. A. Mandrus, D. TI Anisotropic thermal expansion of Fe1.06Te and FeTe0.5Se0.5 single crystals SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY AB Heat capacity and anisotropic thermal expansion was measured for Fe1.06Te and FeTe0.5Se0.5 single crystals. Previously reported phase transitions are clearly seen in both measurements. In both cases the thermal expansion is anisotropic. The uniaxial pressure derivatives of the superconducting transition temperature in FeTe0.5Se0.5 inferred from the Ehrenfest relation have opposite signs for in-plane and c-axis pressures. The Gruneisen parameters for both materials are similar and only weakly temperature dependent above similar to 80 K. C1 [Bud'ko, S. L.; Canfield, P. C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Sefat, A. S.; Sales, B. C.; McGuire, M. A.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the U.S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Research at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy. We are indebted to George M. Schmiedeshoff for his help in establishing dilatometry technique in Ames Laboratory Novel Materials and Ground States Group and for many propitious advices. M. T. C. Apoo is gratefully acknowledged. NR 16 TC 10 Z9 10 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134523 DI 10.1103/PhysRevB.80.134523 PG 4 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300102 ER PT J AU Chan, JA Zunger, A AF Chan, J. A. Zunger, Alex TI II-VI oxides phase separate whereas the corresponding carbonates order: The stabilizing role of anionic groups SO PHYSICAL REVIEW B LA English DT Article ID AB-INITIO CALCULATION; SOLID-SOLUTIONS; THERMODYNAMIC ANALYSIS; THERMAL-DECOMPOSITION; ENERGY CALCULATIONS; SYSTEM CACO3-MGCO3; MAGNESIAN CALCITES; DOLOMITE FORMATION; MIXING PROPERTIES; CRYSTAL-STRUCTURE AB The formation enthalpies of isovalent, isostructural rocksalt alloys, (A, B), where X=O such as (Ca, Mg)O, are typically unfavorable (positive) for both ordered and random phases. Simple replacement of the single-atom anion, X, by a larger anionic group, such as CO(3) or SO(4), is able to induce a favorable (negative) formation enthalpy, leading to the formation of the ordered alternate monolayer, (CaCO(3))(1)/(MgCO(3))(1), dolomite structure. The underlying cause of this behavior is analyzed by breaking down the formation process in a Born-Haber-like cycle into volume and cell-shape deformation, chemical exchange, and cell-internal relaxation using first-principles density-functional theory calculations in the generalized gradient approximation. It is found that when the anion is a group (CO(3)), rather than a single atom (O), the energy gained from the internal relaxation overcomes the energy required to compensate the volume mismatch. This explains the general experimental trends of phase separation in isovalent, isostructural alloys without internal-anion structure, compared to ordering tendencies when the anionic group removes internal strain. The importance of obtaining structural ideality in the design of stable solid solutions is highlighted. C1 [Chan, J. A.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chan, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Zunger, Alex/A-6733-2013 FU U.S. Department of Energy, Office of Science [DE-AC36-08GO28308] FX We gratefully acknowledge B. Burton, V. L. Vinograd and A. Navrotsky for useful discussions on the current understanding of oxide and carbonate behavior. We also acknowledge J. Z. Liu for structural discussions and X. Zhang for discussions on phase diagrams. This work was funded by the U.S. Department of Energy, Office of Science under NREL Contract No. DE-AC36-08GO28308. NR 49 TC 1 Z9 1 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165201 DI 10.1103/PhysRevB.80.165201 PG 8 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100069 ER PT J AU da Silva, LGGVD Tiago, ML Ulloa, SE Reboredo, FA Dagotto, E AF da Silva, Luis G. G. V. Dias Tiago, Murilo L. Ulloa, Sergio E. Reboredo, Fernando A. Dagotto, Elbio TI Many-body electronic structure and Kondo properties of cobalt-porphyrin molecules SO PHYSICAL REVIEW B LA English DT Article ID IMPURITY; SEMICONDUCTORS; APPROXIMATION; INSULATORS; RESONANCE; ENERGIES AB We use a combination of first-principles many-body methods and the numerical renormalization-group technique to study the Kondo regime of cobalt-porphyrin compounds adsorbed on a Cu(111) surface. We find the Kondo temperature to be highly sensitive to both molecule charging and distance to the surface, which can explain the variations observed in recent scanning-tunneling-spectroscopy measurements. We discuss the importance of many-body effects in the molecular electronic structure controlling this phenomenon and suggest scenarios where enhanced temperatures can be achieved in experiments. C1 [da Silva, Luis G. G. V. Dias; Tiago, Murilo L.; Reboredo, Fernando A.; Dagotto, Elbio] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [da Silva, Luis G. G. V. Dias; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ulloa, Sergio E.] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. RP da Silva, LGGVD (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM diasdasilval@ornl.gov RI Ulloa, Sergio/F-4621-2011; Dias da Silva, Luis/D-8381-2013 OI Ulloa, Sergio/0000-0002-3091-4984; Dias da Silva, Luis/0000-0002-8156-9463 FU Division of Materials Sciences Engineering BES, U.S. DOE; National Energy Research Scientific Computing Center (NERSC); NSF [DMR-0336431, 0304314, 0710581, DMR-0706020] FX We acknowledge enlightening discussions with Violeta Iancu, Saw Hla, Nancy Sandler, Kevin Ingersent, Enrique Anda, and Enrique Louis. Research was performed at the Materials Science and Technology Division, sponsored by the Division of Materials Sciences Engineering BES, U.S. DOE under contract with UT-Battelle, LLC. Computational support was provided by the National Energy Research Scientific Computing Center (NERSC). S. E. U. acknowledges support from NSF under Grants No. DMR-0336431, No. 0304314, and No. 0710581. L. G. G. V. D. S. and E. D. acknowledge support from NSF under Grant No. DMR-0706020. NR 43 TC 27 Z9 27 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155443 DI 10.1103/PhysRevB.80.155443 PG 8 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000152 ER PT J AU Dai, W Soukoulis, CM AF Dai, W. Soukoulis, C. M. TI Theoretical analysis of the surface wave along a metal-dielectric interface SO PHYSICAL REVIEW B LA English DT Article ID TRANSMISSION; SLIT AB The metal-dielectric interface supports surface plasmons. But the metal-dielectric interface with defects has not only surface plasmons but also residual waves. In this paper we calculate the fields along the metal-dielectric interface with defects from Maxwell's equations analytically using the surface impedance approximation and study the asymptotic behavior of the residual waves. These analytic results set up a solid foundation to understand various phenomena such as beaming and extraordinary optical transmission. C1 [Dai, W.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Dai, W.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, C. M.] Univ Crete, Inst Elect Struct & Laser, FORTH, Iraklion 71110, Crete, Greece. [Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Dai, W (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; AFOSR under MURI [FA9550-06-1-0337] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the AFOSR under MURI Grant No. FA9550-06-1-0337. NR 21 TC 33 Z9 33 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155407 DI 10.1103/PhysRevB.80.155407 PG 5 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000116 ER PT J AU Dmitriev, IA Khodas, M Mirlin, AD Polyakov, DG Vavilov, MG AF Dmitriev, I. A. Khodas, M. Mirlin, A. D. Polyakov, D. G. Vavilov, M. G. TI Mechanisms of the microwave photoconductivity in two-dimensional electron systems with mixed disorder SO PHYSICAL REVIEW B LA English DT Article ID ZERO-RESISTANCE STATES; MAGNETIC-FIELD; MAGNETORESISTANCE OSCILLATIONS; CYCLOTRON-RESONANCE; GAS; RADIATION; MOBILITY; MAGNETOTRANSPORT; HETEROSTRUCTURES; PHOTORESISTANCE AB We present a systematic study of the microwave-induced oscillations in the magnetoresistance of a two-dimensional electron gas for mixed disorder including both short-range and long-range components. The obtained photoconductivity tensor contains contributions of four distinct transport mechanisms. We show that the photoresponse depends crucially on the relative weight of the short-range component of disorder. Depending on the properties of disorder, the theory allows one to identify the temperature range within which the photoresponse is dominated by one of the mechanisms analyzed in the paper. C1 [Dmitriev, I. A.; Mirlin, A. D.; Polyakov, D. G.] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Dmitriev, I. A.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Mirlin, A. D.] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia. [Dmitriev, I. A.; Mirlin, A. D.] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany. [Khodas, M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Vavilov, M. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Dmitriev, IA (reprint author), Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. RI Vavilov, Maxim/C-1147-2009; Dmitriev, Ivan/D-7648-2011 OI Dmitriev, Ivan/0000-0003-1370-6355 FU DFG-CFN [02.740.11.5072]; BNL [08002]; (U.S.) Department of Energy [DE-AC02-98CH10886] FX We are thankful to D. N. Aristov, S. I. Dorozhkin, I. V. Gornyi, O. E. Raichev, S. A. Studenikin, S. Vitkalov, and M. A. Zudov for fruitful discussions. This work was supported by the DFG, by the DFG-CFN, by the Rosnauka Grant No. 02.740.11.5072, by the RFBR, by the BNL Grant No. 08002, and under Contract No. DE-AC02-98CH10886 with the (U.S.) Department of Energy. NR 115 TC 60 Z9 60 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165327 DI 10.1103/PhysRevB.80.165327 PG 9 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100102 ER PT J AU Feng, J Qi, L Huang, JY Li, J AF Feng, Ji Qi, Liang Huang, Jian Yu Li, Ju TI Geometric and electronic structure of graphene bilayer edges SO PHYSICAL REVIEW B LA English DT Article ID SIMPLE HEXAGONAL GRAPHITE; AUGMENTED-WAVE METHOD; BERRYS PHASE; NANOTUBES; PSEUDOPOTENTIALS; MODEL AB We present a computational investigation of free-standing graphene bilayer edge (BLE) structures, aka "fractional nanotubes." We demonstrate that these curved carbon nanostructures possess a number of interesting properties, electronic in origin. The BLEs, quite atypical of elemental carbon, have large permanent electric dipoles of 0.87 and 1.14 debye/angstrom for zigzag and armchair inclinations, respectively. An unusual, weak AA interlayer coupling leads to a twinned double-cone dispersion of the electronic states near the Dirac points. This entails a type of quantum Hall behavior markedly different from what has been observed in graphene-based materials, characterized by a magnetic field-dependent resonance in the Hall conductivity. C1 [Feng, Ji; Qi, Liang; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Feng, J (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM liju@seas.upenn.edu RI Feng, Ji/B-6775-2009; Li, Ju/A-2993-2008; Qi, Liang/A-3851-2010; Huang, Jianyu/C-5183-2008 OI Feng, Ji/0000-0003-1944-718X; Li, Ju/0000-0002-7841-8058; Qi, Liang/0000-0002-0201-9333; FU NSF [CMMI-0728069]; Honda Research Institute USA [DOE-DE-FG02-06ER46330]; AFOSR; ONR [N00014-05-1-0504]; U.S. Department of Energy [DE-AC04-94AL85000]; Office of Basic Energy Sciences FX J.F., L.Q., and J.L. would like to acknowledge the support by NSF under Grant No. CMMI-0728069, Honda Research Institute USA, DOE under Grant No. DOE-DE-FG02-06ER46330, AFOSR, and ONR under Grant No. N00014-05-1-0504. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 32 TC 36 Z9 36 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165407 DI 10.1103/PhysRevB.80.165407 PG 7 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100116 ER PT J AU Fishman, RS Okamoto, S Miller, JS AF Fishman, Randy S. Okamoto, Satoshi Miller, Joel S. TI Molecule-based magnets with diruthenium building blocks in two and three dimensions SO PHYSICAL REVIEW B LA English DT Article ID MONOCATION; 3-D AB Several molecule-based magnets can be constructed from diruthenium tetracarboxylate building blocks. We study two such materials with antiferromagnetic interactions between Cr(III) ions and diruthenium paddle-wheel complexes. While collinear magnetic ordering in the three-dimensional compound is frustrated by the easy-plane anisotropy on the diruthenium paddle wheel, the two-dimensional compound has a collinear ferrimagnetic ground state because of the dominant coupling between the Cr ions and the in-plane diruthenium species. C1 [Fishman, Randy S.; Okamoto, Satoshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; FU U. S. Department of Energy; U. S. National Science Foundation [0553573] FX We thank William Shum for helpful discussions and Jack DaSilva for data acquisition. This research was sponsored by the Division of Materials Science and Engineering of the U. S. Department of Energy and by the U. S. National Science Foundation (Grant No. 0553573). NR 14 TC 12 Z9 12 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140416 DI 10.1103/PhysRevB.80.140416 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500020 ER PT J AU Frey, K Idrobo, JC Tiago, ML Reboredo, FA Ogut, S AF Frey, Kimberly Idrobo, Juan C. Tiago, Murilo L. Reboredo, Fernando A. Oeguet, Serdar TI Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: First-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTOR QUANTUM DOTS; OPTICAL-PROPERTIES; EXCHANGE ENERGIES; AB-INITIO; NANOSTRUCTURES; CLUSTERS; NANOPARTICLES AB Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed using first-principles Delta SCF method and selectively comparing to GW computations. We find that the quasiparticle gap of a nanoshell depends on both its inner radius R(1) (weakly) and outer radius R(2) (strongly). These dependences on R(1) and R(2) are mostly consistent with electrostatics of a metallic shell. We also find that the unscreened Coulomb energy E(Coul) in Si nanoshells has a somewhat unexpected size dependence at fixed outer radius R(2): E(Coul) decreases as the nanoshell becomes more confining, contrary to what one would expect from quantum confinement effects. We show that this is a consequence of an increase in the average electron-hole distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the confining nanoshell volume. C1 [Frey, Kimberly; Idrobo, Juan C.; Oeguet, Serdar] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Idrobo, Juan C.; Tiago, Murilo L.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Frey, K (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RI Ogut, Serdar/B-1749-2012; Idrobo, Juan/H-4896-2015 OI Idrobo, Juan/0000-0001-7483-9034 FU U. S. Department of Energy [DE-FG02-03ER15488, DE-AC05-00OR22725]; Division of Materials Sciences and Engineering,; Office of Basic Energy Sciences; Office of Science of the U. S. Department of Energy FX We would like to thank T. Imbo for useful discussions. This work was supported by the U. S. Department of Energy under Grant No. DE-FG02-03ER15488 (K. F., J. C. I., and S.O). Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This research used resources of NERSC, which is supported by the Office of Science of the U. S. Department of Energy. NR 23 TC 3 Z9 3 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 153411 DI 10.1103/PhysRevB.80.153411 PG 4 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000029 ER PT J AU Gai, YQ Li, JB Li, SS Xia, JB Yan, YF Wei, SH AF Gai, Yanqin Li, Jingbo Li, Shu-Shen Xia, Jian-Bai Yan, Yanfa Wei, Su-Huai TI Design of shallow acceptors in ZnO through compensated donor-acceptor complexes: A density functional calculation SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; MG-DOPED GAN; BEAM EPITAXY; SEMICONDUCTORS; METALS AB The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO. C1 [Gai, Yanqin; Li, Jingbo; Li, Shu-Shen; Xia, Jian-Bai] Chinese Acad Sci, State Key Lab Superlattices & Microstruct, Inst Semicond, Beijing 100083, Peoples R China. [Yan, Yanfa; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gai, YQ (reprint author), Chinese Acad Sci, State Key Lab Superlattices & Microstruct, Inst Semicond, POB 912, Beijing 100083, Peoples R China. EM jbli@semi.ac.cn; swei@nrel.gov FU National Basic Research Program of China [G2009CB929300]; National Natural Science foundation of China [60521001, 6077061]; U.S. DOE [DE-AC36-08GO28308] FX J.L. gratefully acknowledges financial support from the "One-Hundred Talent Plan" of the Chinese Academy of Sciences and National Science Fund for Distinguished Young Scholar. This work is supported by the National Basic Research Program of China (973 Program) under Grant No. G2009CB929300 and the National Natural Science foundation of China under Grants No. 60521001 and No. 6077061. The work at NREL is supported by the U.S. DOE under Contract No. DE-AC36-08GO28308. NR 27 TC 18 Z9 19 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 153201 DI 10.1103/PhysRevB.80.153201 PG 4 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000006 ER PT J AU Gapud, AA Moraes, S Khadka, RP Favreau, P Henderson, C Canfield, PC Kogan, VG Reyes, AP Lumata, LL Christen, DK Thompson, JR AF Gapud, A. A. Moraes, S. Khadka, R. P. Favreau, P. Henderson, C. Canfield, P. C. Kogan, V. G. Reyes, A. P. Lumata, L. L. Christen, D. K. Thompson, J. R. TI Flux quanta driven by high-density currents in low-impurity V3Si and LuNi2B2C: Free flux flow and fluxon-core size effect SO PHYSICAL REVIEW B LA English DT Article ID LINE-LATTICE TRANSITION; II SUPERCONDUCTORS; VORTEX LATTICE; MAGNETORESISTANCE; SYMMETRY AB High-density direct currents are used to drive flux quanta via the Lorentz force toward a highly ordered "free flux flow" (FFF) dynamic state, made possible by the weak-pinning environment of high-quality, single-crystal samples of two low-T-c superconducting compounds, V3Si and LuNi2B2C. We report the effect of the magnetic field-dependent fluxon-core size on flux flow resistivity rho(f). Much progress has been made in minimizing the technical challenges associated with the use of high currents. Attainment of a FFF phase is indicated by the saturation at highest currents of flux flow dissipation levels that are well below the normal-state resistance and have field-dependent values. The field dependence of the corresponding rho(f) is shown to be consistent with a prediction based on a model for the decrease of fluxon-core size at higher fields in weak-coupling BCS s-wave materials. C1 [Gapud, A. A.; Moraes, S.; Khadka, R. P.; Favreau, P.; Henderson, C.] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. [Canfield, P. C.; Kogan, V. G.] Ames Lab, Ames, IA 50011 USA. [Reyes, A. P.; Lumata, L. L.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Christen, D. K.; Thompson, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Gapud, AA (reprint author), Univ S Alabama, Dept Phys, 307 Univ Blvd N, Mobile, AL 36688 USA. RI Lumata, Lloyd/C-8813-2011; Canfield, Paul/H-2698-2014; OI Lumata, Lloyd/0000-0002-3647-3753; Gapud, Albert/0000-0001-9048-9230 FU Research Corporation; University of South Alabama; NSF [DMR-0084173]; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; U.S. DOE FX This research was supported by an award from Research Corporation, along with undergraduate summer-research support from the University of South Alabama. Work at NHMFL is performed under the auspices of the State of Florida and the NSF under Cooperative Agreement No. DMR-0084173. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Research at ORNL was supported by the U.S. DOE Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. NR 26 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134524 DI 10.1103/PhysRevB.80.134524 PG 5 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300103 ER PT J AU Garcia, S Andrade, S Jardim, RF Fonseca, FC Torikachvili, MS Lacerda, AH AF Garcia, S. Andrade, S. Jardim, R. F. Fonseca, F. C. Torikachvili, M. S. Lacerda, A. H. TI Logarithmic contribution to the electrical resistivity in (Ru1-xIrx)Sr2GdCu2O8 compounds SO PHYSICAL REVIEW B LA English DT Article ID FERROMAGNETIC SUPERCONDUCTOR RUSR2GDCU2O8; MAGNETORESISTANCE; TRANSITIONS; COEXISTENCE AB A systematic study of magnetoresistance and dc magnetization was conducted in polycrystalline (Ru1-xIrx)Sr2GdCu2O8 [(Ru,Ir)-1212] compounds, for 0 <= x <= 0.15. We found that a deviation from linearity in the normal-state electrical resistivity (rho) curves for temperatures below the magnetic transition temperature T-M < 130 K can be properly described by a logarithmic term. The prefactor C(x, H) of this anomalous ln T contribution to rho(T) increases linearly with the Ir concentration, and diminishes rapidly with increasing applied magnetic field up to H approximate to 4 T, merging with the C(0,H) curve at higher magnetic fields. Correlation with magnetic susceptibility measurements supports a scenario of local perturbations in the orientation of Ru moments induced in the neighborhood of the Ir ions, therefore acting as scattering centers. The linear dependence of the prefactor C(x,H=0) and the superconducting transition temperature T-SC on x points to a common source for the resistivity anomaly and the reduction in T-SC, suggesting that the CuO2 and RuO2 layers are not decoupled. C1 [Garcia, S.; Andrade, S.; Jardim, R. F.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Garcia, S.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Fonseca, F. C.] IPEN CNEN SP, BR-05508000 Sao Paulo, Brazil. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Lacerda, A. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Garcia, S (reprint author), Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo, Brazil. RI Nanotecnologias, Inct/I-2407-2013; Jardim, Renato/J-8068-2014; Fonseca, Fabio/C-8361-2009 OI Jardim, Renato/0000-0002-2000-0257; Fonseca, Fabio/0000-0003-0708-2021 FU FAPESP [05/53241-9, 07/51458-6]; CNPq [473932/2007-5]; US National Science Foundation [DMR-0306165, DMR-0805335]; FAPERJ [E26/100.092/2009] FX This work was supported by the Brazilian Agencies FAPESP under Grants No. 05/53241-9 and No. 07/51458-6, CNPq under Grant No. 473932/2007-5, and by the US National Science Foundation under Grants No. DMR-0306165 and No. DMR-0805335 (M.S.T). S.G. acknowledges financial support from FAPERJ (Grant No. E26/100.092/2009). Work at the NHMFL was performed under the auspices of the NSF, the State of Florida, and the U.S. Department of Energy. NR 28 TC 2 Z9 2 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134520 DI 10.1103/PhysRevB.80.134520 PG 6 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300099 ER PT J AU Halabica, A Pantelides, ST Haglund, RF Magruder, RH Meldrum, A AF Halabica, A. Pantelides, S. T. Haglund, R. F., Jr. Magruder, R. H., III Meldrum, A. TI Excitation and detection of surface acoustic phonon modes in Au/Al2O3 multilayers SO PHYSICAL REVIEW B LA English DT Article ID ELASTIC-WAVES; METAL-FILMS; PICOSECOND; SUPERLATTICES; GENERATION; INFINITE; STRAIN; MEDIA; LIGHT AB A time-resolved pump-probe technique was used to observe the surface acoustic modes of Au/Al2O3 multilayers. As the thickness of the Au layers was increased from 2 to 5 nm, a change in the excitability of particular surface phonon modes with frequencies up to 200 GHz was observed. We compare our results with transfer-matrix theoretical calculations. In addition, we model the superlattice in a finite element simulation environment and use the data to evaluate the excitability of the surface modes. The model predictions correlate well with the experimental data. Simultaneous excitation of the surface and normal (propagating) phonon modes is observed in the Au (5 nm)/Al2O3 (45 nm) superlattice. The normal modes allow us to calculate the effective sound velocity of the superlattice, which agrees well with the theory calculation. C1 [Halabica, A.; Pantelides, S. T.; Haglund, R. F., Jr.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Magruder, R. H., III] Belmont Univ, Dept Chem & Phys, Nashville, TN 37212 USA. [Meldrum, A.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. [Pantelides, S. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Halabica, A (reprint author), Vanderbilt Univ, Dept Phys & Astron, 6301 Stevenson Ctr, Nashville, TN 37235 USA. FU National Science Foundation [DMR-0513048]; Office of Science U. S. Department of Energy [DE-FG02-01ER45916]; Vanderbilt University FX We would like to thank X. X. Liang for doing the TEM analysis and F. Lenz for preparation of the single Al2O3 layer films. This work was supported in part by the National Science Foundation GOALI program (grant No. DMR-0513048), the Office of Science U. S. Department of Energy (grant No. DE-FG02-01ER45916), and the McMinn Endowment at Vanderbilt University. NR 20 TC 1 Z9 1 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165422 DI 10.1103/PhysRevB.80.165422 PG 6 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100131 ER PT J AU Han, Y Liu, DJ AF Han, Yong Liu, Da-Jiang TI Quantum size effects in metal nanofilms: Comparison of an electron-gas model and density functional theory calculations SO PHYSICAL REVIEW B LA English DT Article ID JELLIUM MODEL; WORK FUNCTION; THIN-FILMS; AG ISLANDS; SURFACES; PHYSICS; GROWTH; CLUSTERS; NANOSTRUCTURES; ENERGY AB Effects of quantum confinement of electrons in metal nanofilms are analyzed using a noninteracting electron-gas model. Electrons are confined within a potential well with infinite-height barrier. The positions of the barrier are at a fixed distance away from the geometric boundaries of the film such that the surface-charge neutrality requirement is maintained at the bulk limit. The model predicts oscillations in basic physical properties such as the Fermi energy, electron density, surface free energy, and dipole layer moment as a function of film thickness. We compare predictions of this electron-gas model with first-principles density functional theory (DFT) for ten metal films. For Ag(110), Ag(100), Mg(0001), Al(111), Al(110), and Pb(111) films, the oscillation features obtained from the model are in good quantitative agreement with those from DFT calculations. However, for Al(100), Pb(110), and Pb(100) films, oscillation behavior in the model differs from DFT calculations. For Ag(111), the electron-gas model predicts weak oscillations, in contrast to the DFT calculations, in which no noticeable regular oscillations are observed. C1 [Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Liu, Da-Jiang] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Han, Y (reprint author), Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. EM octavian2009@gmail.com RI Han, Yong/F-5701-2012 OI Han, Yong/0000-0001-5404-0911 NR 67 TC 38 Z9 38 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155404 DI 10.1103/PhysRevB.80.155404 PG 17 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000113 ER PT J AU Hase, T Raanaei, H Lidbaum, H Sanchez-Hanke, C Wilkins, S Leifer, K Hjorvarsson, B AF Hase, Thomas Raanaei, Hossein Lidbaum, Hans Sanchez-Hanke, Cecilia Wilkins, Stuart Leifer, Klaus Hjorvarsson, Bjorgvin TI Spin and orbital moment in amorphous Co68Fe24Zr8 layers SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; THIN-FILMS; INDUCED ANISOTROPY; FE; TB AB The ratio of the orbital to the spin magnetic moment was determined for both Fe and Co in amorphous Co68Fe24Zr8 layers using x-ray circular dichroism. The investigations were performed on both thick Co68Fe24Zr8 layers as well as on amorphous Co68Fe24Zr8/Al70Zr30 multilayers grown by dc sputtering. Structural characterization was performed using x-ray reflectometry, x-ray diffraction, and transmission electron microscopy. X-ray circular dichroism, x-ray magnetic scattering as well as the magneto-optic Kerr effect were used to characterize the magnetic properties of the amorphous materials. The ratio of the orbital to spin moments in the single CoFeZr-layer sample was 0.012 +/- 0.005 for Fe and 0.078 +/- 0.005 for Co. Substantial reduction in the the ratio of the orbital to spin moments was observed with decreasing CoFeZr-layer thickness. C1 [Hase, Thomas] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Raanaei, Hossein; Hjorvarsson, Bjorgvin] Uppsala Univ, Dept Phys & Mat Sci, S-75121 Uppsala, Sweden. [Raanaei, Hossein] Persian Gulf Univ, Dept Phys, Bushehr 75168, Iran. [Lidbaum, Hans; Leifer, Klaus] Uppsala Univ, Inst Electron Microscopy & Nanoengn, SE-75121 Uppsala, Sweden. [Sanchez-Hanke, Cecilia] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Wilkins, Stuart] Brookhaven Natl Lab, Dept CMPMSD, Upton, NY 11973 USA. RP Hase, T (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM bjorgvin.hjorvarsson@fysik.uu.se RI Hjorvarsson, Bjorgvin/B-3022-2011; OI Leifer, Klaus/0000-0002-8360-1877; Hjorvarsson, Bjorgvin/0000-0003-1803-9467 FU Swedish Research Council; Knut and Alice Wallenberg Foundation FX The authors would like to acknowledge the support from the Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW). NR 24 TC 16 Z9 16 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134402 DI 10.1103/PhysRevB.80.134402 PG 8 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300052 ER PT J AU Hin, C Wirth, BD Neaton, JB AF Hin, C. Wirth, B. D. Neaton, J. B. TI Formation of Y2O3 nanoclusters in nanostructured ferritic alloys during isothermal and anisothermal heat treatment: A kinetic Monte Carlo study SO PHYSICAL REVIEW B LA English DT Article ID ALPHA-IRON; PRECIPITATION; IRRADIATION; OXYGEN; STEEL; NBC AB Kinetic Monte Carlo simulations, based on parameters obtained with density-functional theory in the localdensity approximation and experimental data, are used to study bulk precipitation of Y2O3 in alpha iron. The simulation involves realistic diffusion mechanisms, with a rapid diffusion of O atoms by interstitial jumps and a slower diffusion of Fe and Y atoms by vacancy jumps, and a point defect source which drives the vacancy concentration toward its equilibrium value, during isothermal and anisothermal heat treatments. Depending on alloy and thermal history conditions, the Monte Carlo simulations predict different kinetic behavior, including transient precipitation of metastable iron oxides followed by precipitation of Y2O3 nanoclusters. C1 [Hin, C.; Wirth, B. D.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Hin, C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Neaton, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hin, C (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RI Wirth, Brian/O-4878-2015; Neaton, Jeffrey/F-8578-2015 OI Wirth, Brian/0000-0002-0395-0285; Neaton, Jeffrey/0000-0001-7585-6135 FU National Science Foundation [DMR 0548259]; Department of Energy [DE-FG02-04GR54750, DE-AC02-05CH11231] FX We gratefully acknowledge useful and stimulating discussions with Y. Brechet, W. C. Carter, and A. Simar. The authors gratefully acknowledge the financial support of the National Science Foundation under Contract No. NSF DMR 0548259 and the Department of Energy, Office of Fusion Energy Sciences under Grant No. DE-FG02-04GR54750. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 29 Z9 29 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134118 DI 10.1103/PhysRevB.80.134118 PG 11 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300037 ER PT J AU Hong, T Custelcean, R Sales, BC Roessli, B Singh, DK Zheludev, A AF Hong, Tao Custelcean, R. Sales, B. C. Roessli, B. Singh, D. K. Zheludev, A. TI Synthesis and structural characterization of 2Dioxane center dot 2H(2)O center dot CuCl2: Metal-organic compound with Heisenberg antiferromagnetic S=1/2 chains SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM SPIN CHAINS; MAGNETIC-PROPERTIES; EXCITATION CONTINUUM; DYNAMICS; SYSTEM; KCUF3; FIELD AB A metal-organic compound 2Dioxane center dot 2H(2)O center dot CuCl2 has been synthesized and structurally characterized by x-ray crystallography. Magnetic susceptibility and zero-field inelastic neutron scattering have also been used to study its magnetic properties. It turns out that this material is a weakly coupled one-dimensional S=1/2 Heisenberg antiferromagnetic chain system with chain direction along the crystallographic c axis and the nearest-neighbor intrachain exchange constant J=0.85(4) meV. The next-nearest-neighbor interchain exchange constant J' is also estimated to be 0.05 meV. The observed magnetic excitation spectrum from inelastic neutron scattering is in excellent agreement with numerical calculations based on the Muller ansatz. C1 [Hong, Tao; Custelcean, R.; Sales, B. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Roessli, B.; Zheludev, A.] ETHZ, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Roessli, B.; Zheludev, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Singh, D. K.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Singh, D. K.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Hong, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hongt@ornl.gov RI Hong, Tao/F-8166-2010; Custelcean, Radu/C-1037-2009 OI Hong, Tao/0000-0002-0161-8588; Custelcean, Radu/0000-0002-0727-7972 FU DOE BES Division of Scientific User Facilities; National Science Foundation [DMR-9986442, DMR-0086210, DMR-0454672] FX One of the authors T. Hong thanks the helpful discussion with M. B. Stone. Part of this work has been performed at the Paul Scherrer Institut. Research at ORNL was supported by the DOE BES Division of Scientific User Facilities. The work at NIST is supported by the National Science Foundation under Agreements No. DMR-9986442, No. DMR-0086210, and No. DMR-0454672. NR 29 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 132404 DI 10.1103/PhysRevB.80.132404 PG 4 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300010 ER PT J AU Huotari, S Sternemann, C Troparevsky, MC Eguiluz, AG Volmer, M Sternemann, H Muller, H Monaco, G Schulke, W AF Huotari, Simo Sternemann, Christian Troparevsky, M. Claudia Eguiluz, Adolfo G. Volmer, Martin Sternemann, Henning Mueller, Harald Monaco, Giulio Schuelke, Winfried TI Strong deviations from jellium behavior in the valence electron dynamics of potassium SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; DENSITY-FUNCTIONAL THEORY; PLASMON DISPERSION; LITHIUM-AMMONIA; ALKALI-METALS; ENERGY-LOSS; AL METAL; SPECTROMETER; EXCITATIONS; LI AB We present experimental and ab initio theoretical determination of the dynamics of valence electrons in potassium by investigating the dynamical structure factor at nonvanishing momentum transfers. The spectra show large deviations from a jellium-type behavior due to the presence of d-type states above the Fermi level. In particular, we identify two well-defined interband excitations that have a direct correspondence with the density of states above the Fermi level. C1 [Huotari, Simo; Mueller, Harald; Monaco, Giulio] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Sternemann, Christian; Volmer, Martin; Sternemann, Henning; Schuelke, Winfried] Tech Univ Dortmund, Fak Phys, DELTA, D-44221 Dortmund, Germany. [Troparevsky, M. Claudia; Eguiluz, Adolfo G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Troparevsky, M. Claudia; Eguiluz, Adolfo G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Huotari, S (reprint author), European Synchrotron Radiat Facil, Boite Postale 220, F-38043 Grenoble 9, France. OI Huotari, Simo/0000-0003-4506-8722 FU NSF ITR [DMR-0219332]; DOE CMSN-PCSCS network FX A. G. E. acknowledges support from NSF ITR under Grant No. DMR-0219332. M. C. T. was partially supported by the DOE CMSN-PCSCS network. Computations were done at the National Energy Research Scientific Computing Center (NERSC). We are grateful to C. Henriquet for expert technical assistance, and M. Tolan for his support. NR 44 TC 8 Z9 8 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155107 DI 10.1103/PhysRevB.80.155107 PG 5 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000040 ER PT J AU Iddir, H Zapol, P Kolesnikov, AI AF Iddir, H. Zapol, P. Kolesnikov, A. I. TI Theoretical investigation of the vibrational properties of BeH2 and Li2BeH4 SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BERYLLIUM HYDRIDE; AB-INITIO; HYDROGEN; DYNAMICS; CRYSTAL AB First-principles calculations of BeH2 and Li2BeH4 were performed and compared to inelastic neutron scattering. The crystal structure (P2(1)/c space group) of Li2BeH4 contains BeH4 tetrahedral units similar to those in alpha-BeH2 (Ibam space group) but separated from each other by Li atoms. Calculated vibrational density of states revealed the origin of the observed major vibrational modes. Charge-density maps and electronic density of states indicate interplay between covalent and ionic bondings in Li2BeH4 and provide a better understanding of the nature of the bonding in these materials. C1 [Iddir, H.; Zapol, P.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Iddir, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Zapol, Peter/G-1810-2012; Kolesnikov, Alexander/I-9015-2012 OI Zapol, Peter/0000-0003-0570-9169; Kolesnikov, Alexander/0000-0003-1940-4649 FU (U.S.) Department of Energy [DE-AC02-06CH11357]; Oak Ridge National FX The work at Argonne National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, (U.S.) Department of Energy under Contract No. DE-AC02-06CH11357 and the work at Spallation Neutron Source was supported by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the (U.S.) Department of Energy under Contract No. DE-AC05-00OR22725. Use of computer resources from the DOE's Environmental Molecular Sciences Laboratory located at Pacific Northwest National Laboratory is gratefully acknowledged. We thank S. Sampath and J. L. Yarger for helpful discussions. NR 24 TC 1 Z9 2 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134111 DI 10.1103/PhysRevB.80.134111 PG 5 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300030 ER PT J AU Jiang, W Wang, H Kim, I Bae, IT Li, G Nachimuthu, P Zhu, Z Zhang, Y Weber, WJ AF Jiang, W. Wang, H. Kim, I. Bae, I. -T. Li, G. Nachimuthu, P. Zhu, Z. Zhang, Y. Weber, W. J. TI Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation SO PHYSICAL REVIEW B LA English DT Article ID INDUCED AMORPHIZATION; SELF-DIFFUSION; ACCUMULATION AB Nanostructured materials are generally believed to be more radiation resistant. This study reports on Au-ion-induced amorphization in nanocrystalline 3C-SiC, characterized using x-ray diffraction, transmission electron microscopy and Raman spectroscopy. Full amorphization at room temperature occurs at a comparable dose to that for bulk SiC single crystals. The behavior is primarily attributed to a high ion flux and sluggish migration of point defects produced during irradiation. The results may have a significant implication of using nanophased SiC in extremely high radiation environments. C1 [Jiang, W.; Li, G.; Nachimuthu, P.; Zhu, Z.; Zhang, Y.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, H.; Kim, I.] Texas A&M Univ, College Stn, TX 77843 USA. [Bae, I. -T.] SUNY Binghamton, Binghamton, NY 13902 USA. RP Jiang, W (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM weilin.jiang@pnl.gov RI Weber, William/A-4177-2008; Zhu, Zihua/K-7652-2012; Wang, Haiyan/P-3550-2014; OI Weber, William/0000-0002-9017-7365; Wang, Haiyan/0000-0002-7397-1209; Jiang, Weilin/0000-0001-8302-8313 FU U. S. DOE under [DE-AC05-76RL01830]; National Science Foundation [0846504]; Empire State Development Corporation FX This research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. DOE under Contract No. DE-AC05-76RL01830. A major part of the work was performed at EMSL, a DOE user facility located at PNNL. The work at Texas A&M University was supported by the National Science Foundation (Award No. 0846504). Support of S3IP at SUNY Binghamton was provided by Empire State Development Corporation. NR 21 TC 42 Z9 42 U1 1 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 161301 DI 10.1103/PhysRevB.80.161301 PG 4 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100014 ER PT J AU Jiang, Y Bridges, F Sundaram, N Belanger, DP Anderson, IE Mitchell, JF Zheng, H AF Jiang, Y. Bridges, F. Sundaram, N. Belanger, D. P. Anderson, I. E. Mitchell, J. F. Zheng, H. TI Study of the local distortions of the perovskite system La1-xSrxCoO3 (0 <= x <= 0.35) using the extended x-ray absorption fine structure technique SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; METAL-INSULATOR-TRANSITION; JAHN-TELLER DISTORTION; SPIN-STATE TRANSITION; NEAR-EDGE STRUCTURE; CRYSTAL-STRUCTURE; ELECTRONIC-STRUCTURE; NEUTRON-DIFFRACTION; COLOSSAL MAGNETORESISTANCE; LACOO3 AB We present a temperature-dependent extended x-ray absorption fine structure (EXAFS)/x-ray absorption near edge structure (XANES) investigation of La1-xSrxCoO3 (LSCO) over a wide doping concentration range (0 <= x <= 0.35). Five of the samples are nanoparticles (x=0.15, 0.20, 0.25, 0.30, and 0.35) and four are bulk powders (x=0, 0.15, 0.20, and 0.30). From the EXAFS analysis, we find that the Co-O bonds are well ordered for both bulk and nanoparticle materials and there is no clear evidence for a Jahn-Teller (JT) distortion in the LSCO system (either static or dynamic). The distortion of the Co-O bond with increasing T, parameterized by the width of the pair distribution function (PDF), sigma(T), can easily be modeled using a correlated Debye model with a high correlated Debye temperature similar to 800 K. There is also no evidence for a step in plots of sigma(2) vs T. In addition, the very small nonthermal contribution to sigma(2) for the Co-O (PDF), sigma(2)(static), sets an upper limit on the extent of any Jahn-Teller distortion at low T. These experiments are inconsistent with the existence of a significant fraction of Co sites with an intermediate spin (IS) state, for which there is a JT active e(g) electron on the Co atoms. We cannot, however, exclude the possibility of a tiny fraction of sites having a JT distortion or some other (non-JT active) means of producing an IS state. The bulk samples are well ordered out to at least the third neighbors (Co-Co) while the nanoparticles show increased disorder and a reduction in coordination for Co-Co. XANES data are also presented, and, for both bulk and nanoparticle samples, there is essentially no edge shift with increasing Sr concentration. Bond-valence sums also indicate no change in effective Co valence. These results indicate that when holes are introduced via Sr doping, they have little Co(3d) character and the Co configuration remains close to 3d(6); we argue that the holes have mostly O(2p) character and are localized more on the O sites. C1 [Jiang, Y.; Bridges, F.; Sundaram, N.; Belanger, D. P.; Anderson, I. E.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Mitchell, J. F.; Zheng, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Jiang, Y (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. FU DOE [DE-FG02-05ER46181, DE-AC02-06CH11357]; U. S. Department of Energy Office of Science Laboratory; NIH, Biomedical Resource Technology Program FX We would like to thank Gey-Hong Gweon, George Sawatzky, and John Freeland for helpful discussions regarding our experimental results, and Jacob Stanley for help collecting data. Work at UCSC was partly funded by DOE under Grant No. DE-FG02-05ER46181. The work at Argonne (J. F. M. and H. Z.) was supported under Contract No. DE-AC02-06CH11357 by U. Chicago Argonne, LLC, Operator of Argonne National Laboratory, a U. S. Department of Energy Office of Science Laboratory. The EXAFS experiments were performed at SSRL (operated by the DOE, Division of Chemical Sciences, and by the NIH, Biomedical Resource Technology Program, Division of Research Resources). NR 71 TC 28 Z9 28 U1 1 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144423 DI 10.1103/PhysRevB.80.144423 PG 14 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500080 ER PT J AU Joglekar, YN Saxena, A AF Joglekar, Yogesh N. Saxena, Avadh TI Curvature-induced p-n junctions in bent or folded bilayer graphene sheets SO PHYSICAL REVIEW B LA English DT Article ID CARBON NANOTUBES; QUANTUM-MECHANICS; BOUND-STATES; WAVE-GUIDES; NANORIBBONS AB A massive quantum particle on a two-dimensional curved surface experiences a surface-geometry induced attractive potential that is characterized by the radii of curvature at a given point. With bilayer graphene sheets and carbon nanoribbons in mind, we obtain the geometric potential V-G for several surface shapes. Under appropriate conditions that we discuss in detail, this potential suppresses the local Fermi energy. Therefore, we argue that in zero band-gap materials with a quadratic band structure, it will create p- and n-type regions. We discuss the consequences of this result, and suggest that surface curvature can provide an avenue to create p-n junctions and, in general, to control local electronic properties in carbon nanoribbons and bilayer graphene sheets. C1 [Joglekar, Yogesh N.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Joglekar, YN (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. FU KITP, Santa Barbara [NSF PHY05-51164]; U.S. Department of Energy FX Y.J. thanks Sasha Balatsky for the opportunity to visit Los Alamos National Laboratory and acknowledges the hospitality of KITP, Santa Barbara (Grant No. NSF PHY05-51164) during the completion of this work. This work was supported in part by the U.S. Department of Energy. NR 29 TC 16 Z9 16 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 153405 DI 10.1103/PhysRevB.80.153405 PG 4 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000023 ER PT J AU Khalyavin, DD Chapon, LC Radaelli, PG Zheng, H Mitchell, JF AF Khalyavin, D. D. Chapon, L. C. Radaelli, P. G. Zheng, H. Mitchell, J. F. TI Structural behavior of the kagome antiferromagnet TmBaCo4O7: Neutron diffraction study and group-theoretical consideration SO PHYSICAL REVIEW B LA English DT Article ID DISPLACIVE PHASE-TRANSITIONS; RIGID-UNIT MODES; CRYSTAL-STRUCTURES; YBACO4O7; PEROVSKITES; COBALT AB The first-order structural phase transition at T-S similar to 240 K in the extended kagome antiferromagnet TmBaCo4O7 has been studied by neutron powder diffraction. In order to comprehend the microscopic origin of the transition, a detailed symmetry analysis is performed, based on crystallographic parameters obtained by Rietveld analysis of the neutron data. The results are consistent with the P31c -> Pna2(1) symmetry lowering and support a displacive nature of the phase transition. The complex tilting pattern of CoO4 tetrahedra in both triangular and kagome sublattices is described based on symmetry-adapted pseudovector distortion modes of the parent P6(3)mc hexagonal structure. Our analysis reveals that the unusual topology of the crystal structure does not allow CoO4 tetrahedra to rotate as rigid units, resulting in their inevitable distortions, whatever the combination of rotational modes considered. A possible analogy between polyhedral distortions and spin frustration in this system is discussed. C1 [Khalyavin, D. D.; Chapon, L. C.; Radaelli, P. G.] Rutherford Appleton Lab CCLRC, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Khalyavin, DD (reprint author), Rutherford Appleton Lab CCLRC, ISIS Facil, Didcot OX11 0QX, Oxon, England. RI Radaelli, Paolo/C-2952-2011; Khalyavin, Dmitry/E-4335-2017 OI Radaelli, Paolo/0000-0002-6717-035X; Khalyavin, Dmitry/0000-0002-6724-7695 FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX Work at Argonne supported under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC, Operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory. NR 32 TC 27 Z9 27 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144107 DI 10.1103/PhysRevB.80.144107 PG 12 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500043 ER PT J AU Kimura, H Barber, RP Ono, S Ando, Y Dynes, RC AF Kimura, Hikari Barber, R. P., Jr. Ono, S. Ando, Yoichi Dynes, R. C. TI Josephson scanning tunneling microscopy: A local and direct probe of the superconducting order parameter SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; VORTEX CORES; UNDERDOPED BI2212; SINGLE-CRYSTALS; BI2SR2CACU2O8+DELTA; JUNCTIONS; YBA2CU3O7-DELTA; SPECTROSCOPY; PSEUDOGAP; DENSITY AB Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi(2)Sr(2)CaCu(2)O(8+delta) (BSCCO) samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a scanning tunneling microscope (STM) equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wave function of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe(2). The relevant measurement parameter, the Josephson I(C)R(N) product, is discussed within the context of both BCS superconductors and the high transition temperature superconductors. The local relationship between the I(C)R(N) product and the quasiparticle density of states (DOS) gap are presented within the context of phase diagrams for BSCCO. Excessive current densities can be produced with these measurements and have been found to alter the local DOS in the BSCCO. Systematic studies of this effect were performed to determine the practical measurement limits for these experiments. Alternative methods for preparation of the BSCCO surface are also discussed. C1 [Kimura, Hikari; Dynes, R. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kimura, Hikari; Dynes, R. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Barber, R. P., Jr.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Ono, S.] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Ando, Yoichi] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Dynes, R. C.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Kimura, H (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM rdynes@ucsd.edu RI Kimura, Hikari/A-8181-2010; Ando, Yoichi/B-8163-2013; OI Ando, Yoichi/0000-0002-3553-3355; Barber, Richard/0000-0002-5830-5195 FU DOE [DE-FG02-05ER46194]; KAKENHI [20740213, 19674002, 20030004] FX We thank the Berkeley Physics Machine shop for expert technical assistance and Garg Assoc Pvt Ltd. for providing low noise miniature coax cable. The work in Berkeley was supported by DOE Grant No. DE-FG02-05ER46194. S.O. was supported by KAKENHI Grant No. 20740213 and Y.A. by KAKENHI Grants No. 19674002 and No. 20030004. NR 57 TC 7 Z9 7 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144506 DI 10.1103/PhysRevB.80.144506 PG 16 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500090 ER PT J AU Kopnin, NB Galperin, YM Bergli, J Vinokur, VM AF Kopnin, N. B. Galperin, Y. M. Bergli, J. Vinokur, V. M. TI Nonequilibrium electrons in tunnel structures under high-voltage injection SO PHYSICAL REVIEW B LA English DT Article ID QUASI-PARTICLE; METALS; SUPERCONDUCTORS; SCATTERING; TEMPERATURES; LIFETIMES AB We investigate electronic distributions in nonequilibrium mesoscopic tunnel junctions subject to a high-voltage bias V under competing electron-electron and electron-phonon relaxations. We derive conditions for reaching quasiequilibrium and show that, though the distribution can still be thermal for low energies where the rate of the electron-electron relaxation exceeds significantly the electron-phonon relaxation rate, it develops a power-law tail at energies of order of eV. In a general case of comparable electron-electron and electron-phonon relaxation rates, this tail leads to emission of high-energy phonons which carry away most of the energy pumped in by the injected current. C1 [Kopnin, N. B.] Helsinki Univ Technol, Low Temp Lab, Espoo 02015, Tkk, Finland. [Kopnin, N. B.] LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Kopnin, N. B.; Vinokur, V. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Galperin, Y. M.; Bergli, J.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. RP Kopnin, NB (reprint author), Helsinki Univ Technol, Low Temp Lab, POB 5100, Espoo 02015, Tkk, Finland. RI Bergli, Joakim/A-1707-2008; Galperin, Yuri/A-1851-2008 OI Galperin, Yuri/0000-0001-7281-9902 FU Academy of Finland Centers of Excellence program; Russian Foundation for Basic Research [09-02-00573-a]; Deutsche Forschungsgemeinschaft [GK 638]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; Norwegian Research Council FX We thank J. Pekola for many stimulating discussions. This work was supported by the Academy of Finland Centers of Excellence program, by the Russian Foundation for Basic Research under Grant No. 09-02-00573-a, by Deutsche Forschungsgemeinschaft within GK 638, by the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357, and by Norwegian Research Council through STORFORSK program. Y. G. is thankful to the Ben Gurion University of Negev and to the Weizmann Institute of Science for hospitality. NR 30 TC 5 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134502 DI 10.1103/PhysRevB.80.134502 PG 5 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300081 ER PT J AU Kulkarni, M Franchini, F Abanov, AG AF Kulkarni, Manas Franchini, Fabio Abanov, Alexander G. TI Nonlinear dynamics of spin and charge in spin-Calogero model SO PHYSICAL REVIEW B LA English DT Article ID COLLECTIVE FIELD-THEORY; FRACTIONAL EXCLUSION STATISTICS; INVERSE-SQUARE EXCHANGE; LONG-RANGE INTERACTIONS; SUTHERLAND MODEL; HEISENBERG CHAIN; INTEGRABLE SYSTEMS; INTERNAL SYMMETRY; YANGIAN SYMMETRY; QUANTUM-SYSTEMS AB The fully nonlinear dynamics of spin and charge in spin-Calogero model is studied. The latter is an integrable one-dimensional model of quantum spin-1/2 particles interacting through inverse-square interaction and exchange. Classical hydrodynamic equations of motion are written for this model in the regime where gradient corrections to the exact hydrodynamic formulation of the theory may be neglected. In this approximation variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set of decoupled Riemann-Hopf (or inviscid Burgers') equations for the dressed Fermi momenta. We study the dynamics of some nonequilibrium spin-charge configurations for times smaller than the time scale of the gradient catastrophe. We find an interesting interplay between spin and charge degrees of freedom. In the limit of large coupling constant the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry model. C1 [Kulkarni, Manas; Abanov, Alexander G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kulkarni, Manas] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Franchini, Fabio] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. RP Kulkarni, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Franchini, Fabio/C-2193-2015 OI Franchini, Fabio/0000-0002-3429-8189 NR 43 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165105 DI 10.1103/PhysRevB.80.165105 PG 18 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100041 ER PT J AU Laguna-Marco, MA Piquer, C Chaboy, J AF Laguna-Marco, M. A. Piquer, C. Chaboy, J. TI X-ray magnetic circular dichroic spectrum at the K edge of the transition metal in R-T intermetallics and its relationship with the magnetism of the rare earth SO PHYSICAL REVIEW B LA English DT Article ID ITINERANT-ELECTRON METAMAGNETISM; MULTIPLE-SCATTERING THEORY; LAVES PHASES; ABSORPTION; SPIN; IRON; FE; Y(CO1-XALX)2; POLARIZATION; SYSTEMS AB We present here a study of the x-ray magnetic circular dichroism (XMCD) at the K edge of the transition metal on rare-earth (R) transition-metal (T) intermetallics. The analysis of the T K-edge XMCD in the RT(2) compounds (T=Fe, Co) reveals that, when R is magnetic, there is a rare-earth contribution to these spectra which is as intense as to dominate the overall shape and sign of the XMCD signal. As a result, for a given R, the XMCD signal recorded in RFe(2) is very similar to that of RCo(2) despite the magnitude of the Co 3d magnetic moment is quite different from that of Fe in these compounds. The study of XMCD(R) as a function of the rare earth itself suggests that the rare-earth contribution to the T K-edge XMCD has an orbital origin and that its magnitude is related to the orbital component of the magnetic moment, L(4f), instead of the total magnetic moment. Moreover, despite no significant variation in the signals is found when Fe is changed by Co, the amplitude of the signals decreases remarkably as Fe or Co are diluted by nonmagnetic Al. Since aluminum substitution affects only slightly the magnitude of the individual mu T and mu R magnetic moments but strongly reduces the exchange interaction, this points out that XMCD(R) shows also a dependence on the strength of the R-T interaction. Therefore, our results suggest that the behavior of XMCD(R) can be accounted for in terms of a "molecular fieldlike" (with B(RT)proportional to n(RT)L(R)) model. C1 [Laguna-Marco, M. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Piquer, C.; Chaboy, J.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Piquer, C.] Univ Zaragoza, CSIC, Dept Ciencia & Tecnol Mat & Fluidos, E-50009 Zaragoza, Spain. [Chaboy, J.] Univ Zaragoza, CSIC, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain. RP Laguna-Marco, MA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Laguna-Marco, M. A./G-8042-2011 OI Laguna-Marco, M. A./0000-0003-4069-0395 FU Spanish CICYT [MAT2005-06806-C04-04, MAT200806542-C04-01]; SPring-8 [2003B0064, 2004A0020, 2005B0419, 2006A1107] FX This work was partially supported by Spanish CICYT under Grants No. MAT2005-06806-C04-04 and No. MAT200806542-C04-01. M. A. L. M. acknowledges a FPI grant from Spanish MEC. The synchrotron radiation experiments were performed at SPring-8 (Proposals No. 2003B0064, No. 2004A0020, No. 2005B0419, and No. 2006A1107). We are indebted to N. Kawamura and M. Suzuki for their experimental help at SPring8 and to H. Maruyama for many friendly discussions. NR 61 TC 8 Z9 8 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144419 DI 10.1103/PhysRevB.80.144419 PG 12 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500076 ER PT J AU Lee, JY Cho, JH Zhang, ZY AF Lee, Ji Young Cho, Jun-Hyung Zhang, Zhenyu TI Quantum size effects in competing charge and spin orderings of dangling bond wires on Si(001) SO PHYSICAL REVIEW B LA English DT Article ID SCANNING TUNNELING MICROSCOPE; SURFACE AB Using spin-polarized density-functional theory calculations, we investigate the competition between charge and spin orderings in dangling-bond (DB) wires of increasing lengths fabricated on an H-terminated Si(001) surface. For wires containing less than ten DBs as studied in recent experiments, we find antiferromagnetic (AF) ordering to be energetically much more favorable than charge ordering. The energy preference of AF ordering shrinks in an oscillatory way as the wire length increases and preserves its sign even for DB wires of infinite length. The oscillatory behavior can be attributed to quantum size effects as the DB electrons fill discrete quantum levels. The predicted AF ordering is in startling contrast with the prevailing picture of charge ordering due to Jahn-Teller distortion or Peierls instability for wires of finite or infinite lengths, respectively. C1 [Lee, Ji Young; Cho, Jun-Hyung] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. [Lee, Ji Young; Cho, Jun-Hyung] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea. [Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Cho, JH (reprint author), Hanyang Univ, Dept Phys, 17 Haengdang Dong, Seoul 133791, South Korea. EM chojh@hanyang.ac.kr RI Cho, Jun-Hyung/R-7256-2016 OI Cho, Jun-Hyung/0000-0002-1785-1835 NR 17 TC 13 Z9 13 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155329 DI 10.1103/PhysRevB.80.155329 PG 5 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000104 ER PT J AU Levin, EM AF Levin, E. M. TI Antiferromagnet-ferromagnet transitions in Ge-rich Gd-5(SixGe(4-x)) alloys induced by composition, magnetic field, and temperature SO PHYSICAL REVIEW B LA English DT Article ID METAMAGNETISM; SYSTEMS; GD5GE4; MODEL AB Temperature and magnetic-field dependences of zero-field-cooled (ZFC) Ge-rich Gd-5(SixGe4-x) alloys with a distinctly layered crystal structure have been studied. At 4.2 K, alloys with x < 0.1 show an antiferromagnetic state, which can be irreversibly transformed to a ferromagnetic state by a magnetic field. In contrast, ZFC alloys with x >= 0.1 already have a ferromagnetic state. All alloys being in ferromagnetic state then exhibit a temperature-induced first-order ferromagnet -> antiferromagnet transition at T-tr. ZFC Gd-5(SixGe4-x) alloys with either antiferromagnetic or ferromagnetic initial state at 4.2 K also exhibit a second-order reversible antiferromagnet < > paramagnet transition at the Neel temperature T-N approximate to 128 K. Magnetic phase transition induced by a magnetic field at T-tr is determined by the exchange interactions between Gd magnetic moments located in the nearest slabs rather than those located in the same slab and can be described by Landau model of antiferromagnets. Similar magnetic correlations between Gd magnetic moments in the Ge-rich Gd-5(SixGe4-x) alloys can be induced either by the internal (composition) or by the external (magnetic field, temperature, and hydrostatic pressure) effects. It is likely that dipole-dipole interactions between magnetically ordered nearest slabs contribute to magnetic phase transitions. C1 [Levin, E. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Levin, EM (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM levin@iastate.edu FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX The author thanks K. A. Gschneidner, Jr. and V. K. Pecharsky (Iowa State University) for their interest in this work, and P. Tomlinson for help in experiments. Work was partially funded by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 25 TC 8 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144401 DI 10.1103/PhysRevB.80.144401 PG 8 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500058 ER PT J AU Luo, XG Tanatar, MA Reid, JP Shakeripour, H Doiron-Leyraud, N Ni, N Bud'ko, SL Canfield, PC Luo, HQ Wang, ZS Wen, HH Prozorov, R Taillefer, L AF Luo, X. G. Tanatar, M. A. Reid, J. -Ph. Shakeripour, H. Doiron-Leyraud, N. Ni, N. Bud'ko, S. L. Canfield, P. C. Luo, Huiqian Wang, Zhaosheng Wen, Hai-Hu Prozorov, R. Taillefer, Louis TI Quasiparticle heat transport in single-crystalline Ba(1-x)KxFe(2)As(2): Evidence for a k-dependent superconducting gap without nodes SO PHYSICAL REVIEW B LA English DT Article ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; D-WAVE SUPERCONDUCTORS; BA0.6K0.4FE2AS2; STATE AB The thermal conductivity kappa of the iron-arsenide superconductor Ba1-xKxFe2As2 (T-c similar or equal to 30 K) was measured in single crystals at temperatures down to T not similar or equal to 50 mK (similar or equal to T-c/600) and in magnetic fields up to H = 15 T(similar or equal to H-c2/4). A negligible residual linear term in kappa/T as T -> 0 shows that there are no zero-energy quasiparticles in the superconducting state. This rules out the existence of line and in-plane point nodes in the superconducting gap, imposing strong constraints on the symmetry of the order parameter. It excludes d-wave symmetry, drawing a clear distinction between these superconductors and the high-T-c cuprates. However, the fact that a magnetic field much smaller than H-c2 can induce a residual linear term indicates that the gap must be very small on part of the Fermi surface, whether from strong anisotropy or band dependence, or both. C1 [Luo, X. G.; Reid, J. -Ph.; Shakeripour, H.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Luo, X. G.; Reid, J. -Ph.; Shakeripour, H.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Tanatar, M. A.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Luo, Huiqian; Wang, Zhaosheng; Wen, Hai-Hu] Natl Lab Superconduct, Inst Phys, Beijing 100190, Peoples R China. [Luo, Huiqian; Wang, Zhaosheng; Wen, Hai-Hu] Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wen, Hai-Hu; Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Luo, XG (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. EM tanatar@ameslab.gov; louis.taillefer@physique.usherbrooke.ca RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Wang, Zhaosheng/G-5162-2016 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy [DE-AC02-07CH11358]; Alfred P. Sloan Foundation; Canadian Institute for Advanced Research; Canada Research Chair; NSERC; CFI; FQRNT FX M. A. T. acknowledges continuing cross-appointment with the Institute of Surface Chemistry, N. A. S. of Ukraine. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from the Alfred P. Sloan Foundation. L. T. acknowledges support from the Canadian Institute for Advanced Research, a Canada Research Chair, NSERC, CFI, and FQRNT. NR 38 TC 88 Z9 88 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140503 DI 10.1103/PhysRevB.80.140503 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500023 ER PT J AU Maznichenko, IV Ernst, A Bouhassoune, M Henk, J Dane, M Luders, M Bruno, P Hergert, W Mertig, I Szotek, Z Temmerman, WM AF Maznichenko, I. V. Ernst, A. Bouhassoune, M. Henk, J. Daene, M. Lueders, M. Bruno, P. Hergert, W. Mertig, I. Szotek, Z. Temmerman, W. M. TI Structural phase transitions and fundamental band gaps of MgxZn(1-x)O alloys from first principles SO PHYSICAL REVIEW B LA English DT Article ID COHERENT-POTENTIAL-APPROXIMATION; SELF-INTERACTION CORRECTION; MOLECULAR-BEAM EPITAXY; ROCK-SALT PHASE; HIGH-PRESSURE; ELECTRON-GAS; THIN-FILMS; SUBSTITUTIONAL ALLOYS; OPTICAL-PROPERTIES; MGXZN1-XO ALLOYS AB The structural phase transitions and the fundamental band gaps of MgxZn1-xO alloys are investigated by detailed first-principles calculations in the entire range of Mg concentrations x, applying a multiple-scattering theoretical approach (Korringa-Kohn-Rostoker method). Disordered alloys are treated within the coherent-potential approximation. The calculations for various crystal phases have given rise to a phase diagram in good agreement with experiments and other theoretical approaches. The phase transition from the wurtzite to the rock-salt structure is predicted at the Mg concentration of x=0.33, which is close to the experimental value of 0.33-0.40. The size of the fundamental band gap, typically underestimated by the local-density approximation, is considerably improved by the self-interaction correction. The increase in the gap upon alloying ZnO with Mg corroborates experimental trends. Our findings are relevant for applications in optical, electrical, and, in particular, in magnetoelectric devices. C1 [Maznichenko, I. V.; Daene, M.; Hergert, W.; Mertig, I.] Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany. [Ernst, A.; Bouhassoune, M.; Henk, J.; Bruno, P.; Mertig, I.] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany. [Ernst, A.] Donostia Int Phys Ctr, San Sebastian 20018, Basque Country, Spain. [Bouhassoune, M.] Univ Paderborn, Dept Phys, D-33095 Paderborn, Germany. [Daene, M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Lueders, M.; Szotek, Z.; Temmerman, W. M.] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Bruno, P.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Maznichenko, IV (reprint author), Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany. EM aernst@mpi-halle.de RI Lueders, Martin/D-1622-2010; Bruno, Patrick/C-9159-2009; Ernst, Arthur/K-1836-2012; Dane, Markus/H-6731-2013; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Maznichenko, Igor/I-5982-2012 OI Bruno, Patrick/0000-0002-2574-1943; Dane, Markus/0000-0001-9301-8469; FU Sonderforschungsbereich [SFB 762]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX This work is supported by the Sonderforschungsbereich SFB 762, "Functionality of Oxidic Interfaces." Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. We gratefully acknowledge H. L. Meyerheim for many stimulating discussions. Also, many thanks to Axel Svane for useful discussions and communications. The calculations were performed at the John von Neumann Institute in Julich and Rechenzentrum Garching of the Max Planck Society (Germany). NR 94 TC 38 Z9 39 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144101 DI 10.1103/PhysRevB.80.144101 PG 11 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500037 ER PT J AU McFarland, RN Kott, TM Sun, LY Eng, K Kane, BE AF McFarland, Robert N. Kott, Tomasz M. Sun, Luyan Eng, K. Kane, B. E. TI Temperature-dependent transport in a sixfold degenerate two-dimensional electron system on a H-Si(111) surface SO PHYSICAL REVIEW B LA English DT Article AB Low-field magnetotransport measurements on a high-mobility (mu=110,000 cm(2)/Vs) two-dimensional electron system on a H-terminated Si(111) surface reveal a sixfold valley degeneracy with a valley splitting <= 0.1 K. The zero-field resistivity rho(xx) displays strong temperature dependence for 0.07 <= T <= 25 K as predicted for a system with high degeneracy and large mass. We present a method for using the low-field Hall coefficient to probe intervalley momentum transfer (valley drag). The relaxation rate is consistent with Fermi-liquid theory but a small residual drag as T -> 0 remains unexplained. C1 [McFarland, Robert N.; Kott, Tomasz M.; Sun, Luyan; Kane, B. E.] Univ Maryland, Lab Phys Sci, College Pk, MD 20740 USA. [Eng, K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McFarland, RN (reprint author), Univ Maryland, Lab Phys Sci, College Pk, MD 20740 USA. EM robertnm@mailaps.org FU Laboratory for Physical Sciences; Sandia Corporation; Lockheed-Martin Co.; U. S. Department of Energy [DE-AC04-94AL85000] FX This work was funded by the Laboratory for Physical Sciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 0 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 161310 DI 10.1103/PhysRevB.80.161310 PG 4 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100023 ER PT J AU Mendelev, MI Mishin, Y AF Mendelev, Mikhail I. Mishin, Yuri TI Molecular dynamics study of self-diffusion in bcc Fe SO PHYSICAL REVIEW B LA English DT Article ID FREE-ENERGY; AL; POTENTIALS; DEFECTS; ENTROPY; METALS; PHASE; IRON AB A semiempirical interatomic potential for Fe was used to calculate the diffusivity in bcc Fe assuming the vacancy and interstitial mechanisms of self-diffusion. Point-defect concentrations and diffusivities were obtained directly from molecular dynamics (MD) simulations. It was found that self-diffusion in bcc Fe is controlled by the vacancy mechanism at all temperatures. This result is due to the fact that the equilibrium vacancy concentration is always much larger than the equilibrium interstitial concentration. The predominance of the equilibrium vacancy concentration over the interstitial concentration is explained by the lower vacancy-formation energy at low temperatures and high vacancy-formation entropy at high temperatures. The calculated diffusivity is in good agreement with experimental data. The MD simulations were also used to test the quasiharmonic (QH) approximation for point-defect calculations. It was found that the QH approximation can considerably underestimate variations in point-defect characteristics with temperature. C1 [Mendelev, Mikhail I.] Ames Lab, Ames, IA 50011 USA. [Mishin, Yuri] George Mason Univ, Dept Phys, MSN 3F3, Fairfax, VA 22030 USA. RP Mendelev, MI (reprint author), Ames Lab, Ames, IA 50011 USA. EM mendelev@ameslab.gov RI Mishin, Yuri/P-2020-2015 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; NASA [NRA NNX08AC07A] FX Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. Y. M. was supported by NASA through Langley Research Center, NRA NNX08AC07A. Collaboration between the authors has greatly benefited from discussion during coordination meetings of Computational Materials Science Network (CMSN) program sponsored by DOE-BES. NR 18 TC 38 Z9 38 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144111 DI 10.1103/PhysRevB.80.144111 PG 9 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500047 ER PT J AU Mikelsons, K Khatami, E Galanakis, D Macridin, A Moreno, J Jarrell, M AF Mikelsons, K. Khatami, E. Galanakis, D. Macridin, A. Moreno, J. Jarrell, M. TI Thermodynamics of the quantum critical point at finite doping in the two-dimensional Hubbard model studied via the dynamical cluster approximation SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-SYSTEMS; STATE AB We study the thermodynamics of the two-dimensional Hubbard model within the dynamical cluster approximation. We use continuous time quantum Monte Carlo as a cluster solver to avoid the systematic error which complicates the calculation of the entropy and potential energy (double occupancy). We find that at a critical filling, there is a pronounced peak in the entropy divided by temperature, S/T, and in the normalized double occupancy as a function of doping. At this filling, we find that specific heat divided by temperature, C/T, increases strongly with decreasing temperature and kinetic and potential energies vary like T(2) ln T. These are all characteristics of quantum critical behavior. C1 [Mikelsons, K.; Khatami, E.; Galanakis, D.; Moreno, J.; Jarrell, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Mikelsons, K.; Khatami, E.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Macridin, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Mikelsons, K (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RI Moreno, Juana/D-5882-2012; Khatami, Ehsan/G-9565-2012; Mikelsons, Karlis/C-9147-2015 OI Mikelsons, Karlis/0000-0003-2540-0687 FU NSF [DMR-0706379, OISE-0730290]; U. S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank P. Phillips, S. Kivelson, D. J. Scalapino, A. M. Tremblay, and C. Varma for useful conversations. This research was supported by NSF Contract No. DMR-0706379. J. M. and M. J. are also supported by NSF PIRE Project No. OISE-0730290. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 21 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140505 DI 10.1103/PhysRevB.80.140505 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500025 ER PT J AU Mlinar, V Bozkurt, M Ulloa, JM Ediger, M Bester, G Badolato, A Koenraad, PM Warburton, RJ Zunger, A AF Mlinar, V. Bozkurt, M. Ulloa, J. M. Ediger, M. Bester, G. Badolato, A. Koenraad, P. M. Warburton, R. J. Zunger, A. TI Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: Using theory to close the loop SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; NANOSTRUCTURES; PROFILE; GROWTH AB Structure-spectra relationship in semiconductor quantum dots (QDs) is investigated by subjecting the same QD sample to single-dot spectroscopy and cross-sectional scanning tunneling microscopy (XSTM) structural measurements. We find that the conventional approach of using XSTM structure as input to calculate the spectra produces some notable conflicts with the measured spectra. We demonstrate a theoretical "inverse approach" which deciphers structural information from the measured spectra and finds structural models that agree with both XSTM and spectroscopy data. This effectively "closes the loop" between structure and spectroscopy in QDs. C1 [Mlinar, V.; Zunger, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bozkurt, M.; Ulloa, J. M.; Koenraad, P. M.] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. [Ediger, M.; Warburton, R. J.] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Bester, G.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Badolato, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013; Koenraad, Paul/B-8764-2015; Badolato, Antonio/E-9778-2015 OI Bester, Gabriel/0000-0003-2304-0817; Koenraad, Paul/0000-0002-3813-1474; FU U. S. Department of Energy [DE-AC36-08GO28308]; EPSRC FX Work at NREL was funded by the U. S. Department of Energy, Office of Science, under NREL contract No. DE-AC36-08GO28308. Work in UK was funded by EPSRC. NR 25 TC 33 Z9 33 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165425 DI 10.1103/PhysRevB.80.165425 PG 7 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100134 ER PT J AU Ong, QK Wei, A Lin, XM AF Ong, Quy Khac Wei, Alexander Lin, Xiao-Min TI Exchange bias in Fe/Fe3O4 core-shell magnetic nanoparticles mediated by frozen interfacial spins SO PHYSICAL REVIEW B LA English DT Article ID FE NANOPARTICLES; BILAYERS; ANISOTROPY; DISORDER; SYSTEM; GLASS AB The magnetization curves of monodisperse Fe/Fe3O4 core-shell and Fe3O4 hollow-shell nanoparticles reveal an unusual exchange-bias effect. Hysteresis measurements of core-shell particles at 5 K after field cooling exhibit a large loop shift associated with unidirectional anisotropy whereas Fe3O4 hollow-shell nanoparticles support much smaller shifts. Both core-shell and hollow-shell particles exhibit sharp demagnetization jumps at low fields associated with a sudden switching of shell moments. Temperature-dependent magnetization of core-shell particles at high fields shows a deviation between field-cooled and zero-field-cooled curves below 30 K, suggesting the presence of frozen spins at the interface. These frozen interfacial spins play an important role in mediating the exchange coupling between the ferromagnetic core and ferrimagnetic shell. C1 [Ong, Quy Khac; Wei, Alexander] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Lin, Xiao-Min] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ong, QK (reprint author), Purdue Univ, Dept Chem, 560 Oval Dr, W Lafayette, IN 47907 USA. FU U.S. Department of Energy (DOE) [DE-AC0206CH11357]; National Science Foundation FX This work is supported by the U.S. Department of Energy (DOE), BES-Materials Sciences, under Contract No. DE-AC0206CH11357, by DOE Center for Nanoscale Materials, and by the National Science Foundation. X. M. L. thanks M. Bode for fruitful discussions. NR 36 TC 67 Z9 67 U1 7 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134418 DI 10.1103/PhysRevB.80.134418 PG 6 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300068 ER PT J AU Rini, M Zhu, Y Wall, S Tobey, RI Ehrke, H Garl, T Freeland, JW Tomioka, Y Tokura, Y Cavalleri, A Schoenlein, RW AF Rini, M. Zhu, Y. Wall, S. Tobey, R. I. Ehrke, H. Garl, T. Freeland, J. W. Tomioka, Y. Tokura, Y. Cavalleri, A. Schoenlein, R. W. TI Transient electronic structure of the photoinduced phase of Pr0.7Ca0.3MnO3 probed with soft x-ray pulses SO PHYSICAL REVIEW B LA English DT Article ID SPECTROSCOPY; MANGANITE; LA1-XSRXMNO3; TRANSITION; DYNAMICS AB We use time-resolved x-ray absorption near-edge structure spectroscopy to investigate the electronic dynamics associated with the photoinduced insulator-to-metal phase transition in the colossal magnetoresistive manganite Pr0.7Ca0.3MnO3. Absorption changes at the O K and Mn L edges directly monitor the evolution of the density of unoccupied states in the transient photoinduced phase. We show that the electronic structure of the photoinduced phase is remarkably similar to that of the ferromagnetic metallic phase reached in related manganites upon cooling below the Curie temperature. C1 [Rini, M.; Zhu, Y.; Schoenlein, R. W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wall, S.; Tobey, R. I.; Ehrke, H.; Cavalleri, A.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Tobey, R. I.; Ehrke, H.; Garl, T.; Cavalleri, A.] Univ Hamburg, Max Planck Grp Struct Dynam, CFEL, D-22607 Hamburg, Germany. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tomioka, Y.; Tokura, Y.] AIST, Correlated Elect Res Ctr, Tsukuba, Ibaraki 3058562, Japan. RP Rini, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Tokura, Yoshinori/C-7352-2009; Schoenlein, Robert/D-1301-2014; Wall, Simon/E-3771-2012 OI Schoenlein, Robert/0000-0002-6066-7566; Wall, Simon/0000-0002-6136-0224 FU Department of Energy [DE-AC02-05CH11231]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX We thank Norman Mannella for helpful discussions and Nils Huse for experimental contributions. Work at Lawrence Berkeley National Laboratory was supported by the Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357 NR 18 TC 9 Z9 9 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155113 DI 10.1103/PhysRevB.80.155113 PG 5 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000046 ER PT J AU Rotundu, CR Keane, DT Freelon, B Wilson, SD Kim, A Valdivia, PN Bourret-Courchesne, E Birgeneau, RJ AF Rotundu, C. R. Keane, D. T. Freelon, B. Wilson, S. D. Kim, A. Valdivia, P. N. Bourret-Courchesne, E. Birgeneau, R. J. TI Phase diagram of the PrFeAsO(1-x)Fx superconductor SO PHYSICAL REVIEW B LA English DT Article ID ZRCUSIAS TYPE-STRUCTURE; EARTH; METAL; SMFEASO1-XFX AB The electronic phase diagram of PrFeAsO1-xFx (0 < x < 0.225) has been determined using synchrotron x-ray powder-diffraction, magnetization, and resistivity measurements. The structural transition temperature is suppressed from 154 to approximate to 120 K and the magnetic phase transitions of both iron and praseodymium ions are completely suppressed by x approximate to 0.08 fluorine doping, coinciding with the emergence of superconductivity. The optimal doping is x approximate to 0.15 when T-C=47 K while the maximum solubility of fluorine in PrFeAsO1-F-x(x) is reached around x=0.22. The structural, magnetic, and superconducting phase diagram is presented. C1 [Rotundu, C. R.; Wilson, S. D.; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Keane, D. T.] Argonne Natl Lab, Adv Photon Source, DND CAT, Argonne, IL 60439 USA. [Freelon, B.; Kim, A.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Valdivia, P. N.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bourret-Courchesne, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Rotundu, CR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. OI Rotundu, Costel/0000-0002-1571-8352 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DEAC02-05CH11231]; Office of Basic Energy Sciences, U. S. DOE [DE-AC03-76SF008]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank S. M. Hanrahan, C. Ramsey, K. Ross, and J. Wu for technical support. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DEAC02-05CH11231 and Office of Basic Energy Sciences, U. S. DOE under Grant No. DE-AC03-76SF008. Work at Advanced Photon Source (APS) was performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 APS. DND-CAT is supported by E. I. DuPont de Nemours & Co., The Dow Chemical Co., and the State of Illinois. Use of the APS was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 35 TC 42 Z9 42 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144517 DI 10.1103/PhysRevB.80.144517 PG 5 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500101 ER PT J AU Salafranca, J Alvarez, G Dagotto, E AF Salafranca, Juan Alvarez, Gonzalo Dagotto, Elbio TI Electron-lattice coupling and partial nesting as the origin of Fermi arcs in manganites SO PHYSICAL REVIEW B LA English DT Article ID DOUBLE-EXCHANGE; SURFACE; PSEUDOGAP; OXIDES; MODEL AB A tight-binding model for e(g) electrons coupled to Jahn-Teller lattice distortions is studied via Monte Carlo simulations. By focusing on the periodicity of the cooperative Jahn-Teller distortions, and the one-particle spectral function, our results clarify the physical origin of the Fermi-arcs phase observed in layered manganites. In a range of parameters where no broken symmetry phase exists, the nearly nested Fermi surface favors certain correlations between Jahn-Teller distortions. The spectral weight near the Brillouin zone edge is suppressed, leading to the pseudogap in the density of states. We discuss the stability of this phase as a function of temperature and coupling strength for different hole dopings. C1 [Salafranca, Juan; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Salafranca, Juan; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Salafranca, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Salafranca, Juan/H-7494-2013 NR 30 TC 14 Z9 14 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155133 DI 10.1103/PhysRevB.80.155133 PG 14 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000066 ER PT J AU Santos, TS May, SJ Robertson, JL Bhattacharya, A AF Santos, Tiffany S. May, Steven J. Robertson, J. L. Bhattacharya, Anand TI Tuning between the metallic antiferromagnetic and ferromagnetic phases of La1-xSrxMnO3 near x=0.5 by digital synthesis SO PHYSICAL REVIEW B LA English DT Article ID INSULATOR-TRANSITION; STRONTIUM-TITANATE; THIN-FILMS; MANGANITES; STATE; SUPERLATTICES; PEROVSKITES; DISORDER; CRYSTAL AB We investigated cation-ordered La1-xSrxMnO3 about the half-doping level x similar to 0.5 in superlattices of alternating, single-unit-cell layers of LaMnO3 and SrMnO3. The effect of La/Sr cation order was addressed by comparing the structural, magnetic and transport properties of these superlattices with random-alloy films of equivalent composition. The samples were synthesized by ozone-assisted molecular-beam epitaxy onto SrTiO3 substrates. The superlattices could be tuned between ferromagnetic and antiferromagnetic metallic states by inserting extra single-unit-cell layers of LaMnO3 and SrMnO3, respectively. For x < 0.5, a ferromagnetic, metallic phase was observed. For x=0.50 and 0.55, A-type antiferromagnetic order was confirmed by neutron diffraction, with a Neel temperature of 300 K, significantly higher than bulk values. The enhanced Neel temperature was attributed to lattice strain rather than cation order. C1 [Santos, Tiffany S.; Bhattacharya, Anand] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [May, Steven J.; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Robertson, J. L.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Santos, TS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; CNM; Digital Synthesis FWP at MSD, Argonne; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy FX Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. T. S. is supported by the CNM. S. M. and A. B. acknowledge the support of the Digital Synthesis FWP at MSD, Argonne. A portion of this research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. We thank Jerel Zarestky for help with the measurements at HFIR and Suzanne te Velthuis for helpful discussions. NR 31 TC 33 Z9 33 U1 3 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155114 DI 10.1103/PhysRevB.80.155114 PG 7 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000047 ER PT J AU Shi, YG Guo, YF Yu, S Arai, M Belik, AA Sato, A Yamaura, K Takayama-Muromachi, E Tian, HF Yang, HX Li, JQ Varga, T Mitchell, JF Okamoto, S AF Shi, Y. G. Guo, Y. F. Yu, S. Arai, M. Belik, A. A. Sato, A. Yamaura, K. Takayama-Muromachi, E. Tian, H. F. Yang, H. X. Li, J. Q. Varga, T. Mitchell, J. F. Okamoto, S. TI Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO3 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-GAS; ENERGY AB The perovskite NaOsO3 shows a Curie-Weiss metallic nature at high temperature and suddenly goes into an antiferromagnetically insulating state at 410 K on cooling. Electronic specific heat at the low-temperature limit is absent, indicating that the band gap fully opens. In situ observation in electron microscopy undetected any lattice anomalies in the vicinity of the transition temperature. It is most likely that the antiferromagnetic correlation plays an essential role in the gap opening. C1 [Shi, Y. G.; Guo, Y. F.; Belik, A. A.; Takayama-Muromachi, E.] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan. [Shi, Y. G.; Guo, Y. F.; Belik, A. A.; Yamaura, K.; Takayama-Muromachi, E.] JST, Transformat Res Project Iron Pnictides TRIP, Chiyoda Ku, Tokyo 1020075, Japan. [Yu, S.; Yamaura, K.; Takayama-Muromachi, E.] Natl Inst Mat Sci, Superconducting Mat Ctr, Tsukuba, Ibaraki 3050044, Japan. [Arai, M.] Natl Inst Mat Sci, Computat Mat Sci Ctr, Tsukuba, Ibaraki 3050044, Japan. [Sato, A.] Natl Inst Mat Sci, Mat Anal Stn, Tsukuba, Ibaraki 3050044, Japan. [Tian, H. F.; Yang, H. X.; Li, J. Q.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Varga, T.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Okamoto, S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shi, YG (reprint author), Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. EM yamaura.kazunari@nims.go.jp RI Yanfeng, Guo/C-5704-2012; Arai, Masao/F-9098-2011; Belik, Alexei/H-2938-2011; Okamoto, Satoshi/G-5390-2011 OI Arai, Masao/0000-0003-0088-5649; Belik, Alexei/0000-0001-9031-2355; Okamoto, Satoshi/0000-0002-0493-7568 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MEXT, Japan; JSPS [20360012]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy FX We thank D. Mandrus for valuable discussion, T. Kolodiazhnyi for the RH measurement, and K. Kosuda for the EPMA. The use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research was supported in part by the WPI Initiative on Materials Nanoarchitectonics from MEXT, Japan and the Grants-in-Aid for Scientific Research (Grant No. 20360012) from JSPS. S.O. is supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy. NR 21 TC 47 Z9 48 U1 6 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 161104 DI 10.1103/PhysRevB.80.161104 PG 4 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100004 ER PT J AU Shoemaker, DP Rodriguez, EE Seshadri, R Abumohor, IS Proffen, T AF Shoemaker, Daniel P. Rodriguez, Efrain E. Seshadri, Ram Sabaj Abumohor, Ivana Proffen, Thomas TI Intrinsic exchange bias in ZnxMn3-xO4 (x <= 1) solid solutions SO PHYSICAL REVIEW B LA English DT Article ID SPIN-GLASS; MAGNETIC-STRUCTURES; MN3O4; NANOPARTICLES; HAUSMANNITE; MANGANITES; ANISOTROPY; SYSTEMS; ZNMN2O4; STATE AB Bulk specimens of the het rolite solid solution ZnxMn3-xO4 with x=0, 0.25, 0.5, 0.75, and 1 have been prepared as homogeneous, phase-pure polycrystalline samples as ascertained by neutron-diffraction measurements. Samples with x=0.25, 0.5, and 0.75 exhibit shifted magnetic hysteresis loops at low temperature, characteristic of exchange bias typically seen in magnetic composites. We propose that the unusual magnetic behavior arises as a result of a nanoscale mixture of ferrimagnetic and antiferromagnetic regions that are distinct but lack long-range order. While some glassy behavior is seen in ac magnetic measurements, its magnitude is not sufficient to account for the observed dramatic exchange bias. Furthermore, isothermal and thermoremanent magnetization measurements distinguish this material from a pure spin glass. The title system offers insights into the alloying of a ferrimagnet Mn3O4 with an antiferromagnet ZnMn2O4 wherein distinct magnetic clusters grow and percolate to produce a smooth transition between competing orders. C1 [Shoemaker, Daniel P.; Rodriguez, Efrain E.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Shoemaker, Daniel P.; Rodriguez, Efrain E.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Sabaj Abumohor, Ivana] Univ Chile, Ctr Invest Interdisciplinaria Avanzada Ciencia Ma, Dept Ingn Quim & Biotecnol, Santiago 2777, Chile. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Shoemaker, DP (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM dshoe@mrl.ucsb.edu RI Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Rodriguez, Efrain/N-1928-2013; Proffen, Thomas/B-3585-2009 OI Seshadri, Ram/0000-0001-5858-4027; Rodriguez, Efrain/0000-0001-6044-1543; Proffen, Thomas/0000-0002-1408-6031 FU American Chemical Society Petroleum Research Fund; National Science Foundation through a Career Award [DMR 0449354]; MRSEC [DMR 0520415]; DOE Office of Basic Energy Sciences; Los Alamos National Security, LLC [DE-AC5206NA25396] FX We thank B. C. Melot for helpful discussions. This work was supported by the Institute for Multiscale Materials Studies, the donors of the American Chemical Society Petroleum Research Fund, and the National Science Foundation through a Career Award (Grant No. DMR 0449354) to R. S. and for the use of MRSEC facilities (Grant No. DMR 0520415). Neutron scattering was performed on HIPD at the Lujan Center at the Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC under DOE Contract No. DE-AC5206NA25396. NR 50 TC 17 Z9 17 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144422 DI 10.1103/PhysRevB.80.144422 PG 9 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500079 ER PT J AU Shulman, J Xue, YY Tsui, S Chen, F Chu, CW AF Shulman, J. Xue, Y. Y. Tsui, S. Chen, F. Chu, C. W. TI General mechanism for negative capacitance phenomena SO PHYSICAL REVIEW B LA English DT Article ID ELECTRICAL CHARACTERIZATION; ELECTROCHEMICAL IMPEDANCE; SEMICONDUCTOR DIODE; CELLS; NANOPARTICLES; INJECTION; BEHAVIOR; SYSTEMS; WELL; SIGN AB The existence of a negative static dielectric constant has drawn a great deal of theoretical controversy. Experimentally, one has never been observed. However, low-frequency negative capacitance has been widely reported in fields including physics, chemistry, biology, geology, and electronics. This wide variety of systems possesses an extremely diverse set of physical processes that, surprisingly, share similar characteristics. We present a general mechanism that unites the various instances of negative capacitance under a common framework. The mechanism demonstrates that the negative capacitance arises from dc/ac signal mixing across a nonlinear conductor. Verification of the model is performed in physically distinct samples: an electrorheological fluid, a fuel cell, and a solar cell. Furthermore, we argue that the negative capacitance, under appropriate conditions, can be associated with a negative-differential dielectric constant, possibly even in the static limit. C1 [Shulman, J.; Xue, Y. Y.; Tsui, S.; Chen, F.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Shulman, J.; Xue, Y. Y.; Tsui, S.; Chen, F.; Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Tsui, S.] Calif State Univ San Marcos, Dept Phys, San Marcos, CA 92096 USA. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China. RP Shulman, J (reprint author), Univ Houston, Dept Phys, 202 Houston Sci Ctr, Houston, TX 77204 USA. EM jshulman@uh.edu FU NSF [DMR-9804325]; U. S. Air Force Office of Scientific Research; T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; University of Houston; U. S. Department of Energy [DE-AC03-76SF00098] FX The work in Houston is supported in part by NSF under Grant No. DMR-9804325, the U. S. Air Force Office of Scientific Research, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston; and at Lawrence Berkeley Laboratory by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 39 TC 16 Z9 16 U1 4 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134202 DI 10.1103/PhysRevB.80.134202 PG 6 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300044 ER PT J AU Singh, R Plum, E Menzel, C Rockstuhl, C Azad, AK Cheville, RA Lederer, F Zhang, W Zheludev, NI AF Singh, R. Plum, E. Menzel, C. Rockstuhl, C. Azad, A. K. Cheville, R. A. Lederer, F. Zhang, W. Zheludev, N. I. TI Terahertz metamaterial with asymmetric transmission SO PHYSICAL REVIEW B LA English DT Article ID FILM AB We show that a planar metamaterial, an array of coupled metal split-ring resonators with a unit cell lacking mirror symmetry, exhibits asymmetric transmission of terahertz radiation (0.25-2.5 THz) propagating through it in opposite directions. This intriguing effect, that is compatible with Lorentz reciprocity and time reversal, depends on a directional difference in conversion efficiency of the incident circularly polarized wave into one of opposite handedness, that is only possible in lossy low-symmetry planar chiral metamaterials. We show that asymmetric transmission is linked to excitation of enantiomerically sensitive plasmons, these are induced charge-field excitations that depend on the mutual handedness of incident wave and metamaterial pattern. Various bands of positive, negative and zero phase and group velocities have been identified indicating the opportunity to develop polarization sensitive negative index and slow light media based on such metamaterials. C1 [Singh, R.; Cheville, R. A.; Zhang, W.] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Plum, E.; Zheludev, N. I.] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England. [Menzel, C.; Rockstuhl, C.; Lederer, F.] Univ Jena, Inst Condensed Matter Theory & Solid State Opt, D-07743 Jena, Germany. [Azad, A. K.] Los Alamos Natl Lab, MS K771, MPA CINT, Los Alamos, NM 87545 USA. RP Singh, R (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM ranjan.ranjansingh@gmail.com RI Singh, Ranjan/B-4091-2010; Azad, Abul/B-1163-2011; Rockstuhl, Carsten/B-3810-2011; Zheludev, Nikolay/C-2284-2014; Zhang, Weili/C-5416-2011; Menzel, Christoph/N-3581-2015; Rockstuhl, Carsten/S-5832-2016 OI Azad, Abul/0000-0002-7784-7432; Singh, Ranjan/0000-0001-8068-7428; Zheludev, Nikolay/0000-0002-1013-6636; Zhang, Weili/0000-0002-8591-0200; Plum, Eric/0000-0002-1552-1840; FU U.S. National Science Foundation; Engineering and Physical Sciences Research Council, U K.; European Community; German Federal Ministry of Education and Research FX Financial support of the U.S. National Science Foundation, the Engineering and Physical Sciences Research Council, U K., the European Community project ENSEMBLE and the German Federal Ministry of Education and Research project Metamat are acknowledged. NR 26 TC 151 Z9 153 U1 15 U2 84 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 153104 DI 10.1103/PhysRevB.80.153104 PG 4 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000004 ER PT J AU Souza-Neto, NM Haskel, D Lang, JC Chmaissem, O Dabrowski, B Felner, I AF Souza-Neto, N. M. Haskel, D. Lang, J. C. Chmaissem, O. Dabrowski, B. Felner, I. TI Element-specific probe of Ru magnetism and local structure in RuSr2Eu1.5Ce0.5Cu2O10 SO PHYSICAL REVIEW B LA English DT Article ID WEAK FERROMAGNETISM; SUPERCONDUCTIVITY; COEXISTENCE; RUSR2GDCU2O8; RUSR2YCU2O8; SPECTRA AB Element-specific x-ray magnetic circular dichroism measurements at the Ru L-3 absorption edge are used to search for the presence of a net Ru ferromagnetic moment in the superconducting state of RuSr2Eu1.5Ce0.5Cu2O10. A net moment of 0.21 mu(B)/Ru is observed in zero applied field. Together with a homogeneous Ru local structure probed by x-ray absorption fine-structure measurements, the results unequivocally demonstrate the coexistence of a ferromagnetic component in the magnetically ordered RuO2 planes with superconductivity in the CuO2 planes. C1 [Souza-Neto, N. M.; Haskel, D.; Lang, J. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chmaissem, O.; Dabrowski, B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Felner, I.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RP Souza-Neto, NM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM haskel@aps.anl.gov RI Souza-Neto, Narcizo/G-1303-2010 OI Souza-Neto, Narcizo/0000-0002-7474-8017 FU U. S. Department of Energy [DE-AC-02-06CH11357]; NSF [DMR-0706610] FX The authors would like to thank D. Keavney and Y. C. Tseng for help with XMCD measurements, Y. Choi, J. Pearson and D. Hinks for help and discussions about SQUID measurements, and M. Onellion for help in obtaining the sample. Work at Argonne is supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC-02-06CH11357. Work at Jerusalem was supported by the Klachky Foundation for Superconductivity. Work at NIU was supported by the NSF (Grant No. DMR-0706610). NR 19 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 140414 DI 10.1103/PhysRevB.80.140414 PG 4 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500018 ER PT J AU Tian, W Kreyssig, A Zarestky, JL Tan, L Nandi, S Goldman, AI Lograsso, TA Schlagel, DL Gschneidner, KA Pecharsky, VK McQueeney, RJ AF Tian, W. Kreyssig, A. Zarestky, J. L. Tan, L. Nandi, S. Goldman, A. I. Lograsso, T. A. Schlagel, D. L. Gschneidner, K. A. Pecharsky, V. K. McQueeney, R. J. TI Single-crystal neutron diffraction study of short-range magnetic correlations in Tb5Ge4 SO PHYSICAL REVIEW B LA English DT Article ID REFRIGERATION; GD-5(SI2GE2); BEHAVIOR; ALLOYS; SYSTEM AB We present a single-crystal neutron diffraction study of the magnetic short-range correlations in Tb5Ge4 which orders antiferromagnetically below the Neel temperature T-N approximate to 92 K. Strong diffuse scattering arising from magnetic short-range correlations was observed in wide temperature ranges both below and above T-N. The antiferromagnetic ordering in Tb5Ge4 is described to consist of strongly coupled ferromagnetic block layers in the ac plane that stack along the b axis with weak antiferromagnetic interlayer coupling. Diffuse scattering was observed along both a* and b* directions indicating three-dimensional short-range correlations. Moreover, the q dependence of the diffuse scattering is Squared Lorentzian in form suggesting a strongly clustered magnetic state that may be related to the proposed Griffiths-like phase in Gd5Ge4. C1 [Tian, W.; Kreyssig, A.; Zarestky, J. L.; Tan, L.; Nandi, S.; Goldman, A. I.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tian, W.; Kreyssig, A.; Zarestky, J. L.; Tan, L.; Nandi, S.; Goldman, A. I.; Lograsso, T. A.; Schlagel, D. L.; Gschneidner, K. A.; Pecharsky, V. K.; McQueeney, R. J.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Gschneidner, K. A.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Tian, W (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Tian, Wei/C-8604-2013; McQueeney, Robert/A-2864-2016 OI Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602 FU United States Department of Energy, Office of Basic Energy Sciences, Materials Science [DE-AC02-07CH11358, DE-AC05-00OR22725] FX Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The HFIR is a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences, Materials Science, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 30 TC 8 Z9 9 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134422 DI 10.1103/PhysRevB.80.134422 PG 5 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300072 ER PT J AU Tsui, S Xue, YY Das, N Wang, YQ Chu, CW AF Tsui, S. Xue, Y. Y. Das, N. Wang, Y. Q. Chu, C. W. TI Interfacial resistive oxide switch induced by reversible modification of defect structures SO PHYSICAL REVIEW B LA English DT Article ID RESISTANCE; SEMICONDUCTORS; CONDUCTION; FILMS AB We report on electric field induced bipolar resistive switching in metal electrode-Pr(0.7)Ca(0.3)MnO(3) interfaces that exhibit hopping transport. The electrical transport data show that the number of hopping steps needed for a carrier to cross the interfacial layers changes while switching between high and low resistance states. Furthermore, the frequency response of the interfacial ac impedance shows that the layers can be modeled as a percolation network with an effective resistance that is dominated by its bottleneck section. We therefore propose that a reversible creation/annihilation of a few hopping sites within this bottleneck serves as the switching mechanism, which may be of use in the design of future nonvolatile memory devices. C1 [Tsui, S.; Xue, Y. Y.; Das, N.; Wang, Y. Q.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Tsui, S.; Xue, Y. Y.; Das, N.; Wang, Y. Q.; Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Tsui, S.] Calif State Univ San Marcos, Dept Phys, San Marcos, CA 92096 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tsui, S (reprint author), Univ Houston, Dept Phys, 202 Houston Sci Ctr, Houston, TX 77204 USA. FU U. S. Air Force Office of Scientific Research; Lawrence Berkeley Laboratory; U. S. Department of Energy [DE-AC03-76SF00098] FX The authors would like to thank J. Shulman for his insightful comments. This work is supported in part by the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through the Texas Center for Superconductivity, the U. S. Air Force Office of Scientific Research, and at Lawrence Berkeley Laboratory by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 30 TC 5 Z9 5 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 16 AR 165415 DI 10.1103/PhysRevB.80.165415 PG 7 WC Physics, Condensed Matter SC Physics GA 513VL UT WOS:000271352100124 ER PT J AU Wang, W Liu, GK Brik, MG Seijo, L Shi, D AF Wang, W. Liu, G. K. Brik, M. G. Seijo, L. Shi, D. TI 5f-6d orbital hybridization of trivalent uranium in crystals of hexagonal symmetry: Effects on electronic energy levels and transition intensities SO PHYSICAL REVIEW B LA English DT Article ID RARE-EARTH IONS; CONFIGURATION-INTERACTION; ABSORPTION-SPECTRUM; SINGLE-CRYSTALS; SYSTEMATIC ANALYSIS; FIELD ANALYSIS; U3+; SPECTROSCOPY; LACL3; TRICHLORIDE AB Orbital hybridization (mixing of electron configurations of opposite parities) is analyzed in the framework of crystal-field theory with a complete diagonalization of the crystal-field Hamiltonian, including both even and odd terms of crystal-field potential, and with all basis sets of the 5f(3) and 5f(2)6d configurations for the wave functions of open-shell electrons in the U3+ ion. This method provides a fundamental understanding and quantitative analysis of the crystal-field induced 5f-6d mixing in U3+ : LaCl3 and U3+ : CeC(l)3. The odd terms of the crystal-field interaction [B-3(3)(fd) and B-3(5)(fd) in C-3h site symmetry] selectively couple the states of the 5f(3) and 5f(2)6d configurations, inducing a shift of the energy levels and allow electric dipole transitions between the configuration-mixed states. The mixture of the 5f and 6d configurations is evaluated by introducing an index of configuration mixing. The exchange charge model (ECM) of crystal-field theory is used to calculate the crystal-field parameters of the U3+ 5f and 6d electrons in terms of point-charge electrostatic interaction and orbital overlapping and covalent effect. The initial ECM estimations of the crystal-field parameters were optimized along with free-ion parameters of the Hamiltonian in nonlinear least-squares fitting of the calculated U3+ energy levels to the experimental absorption spectra. The configuration-mixed eigenfunctions of the U3+ states are directly used to calculate the electric dipole transition intensities and simulate the absorption spectra where the 5f(3) and 5f(2)6d configurations overlap and the Judd-Ofelt theory fails because of significant configuration mixing. C1 [Wang, W.; Liu, G. K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Brik, M. G.] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia. [Seijo, L.] Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. [Shi, D.] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. RP Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gkliu@anl.gov RI Seijo, Luis/G-3872-2011; Brik, Mikhail/C-4971-2009 OI Seijo, Luis/0000-0002-0621-3694; Brik, Mikhail/0000-0003-2841-2763 FU U. S. Department of Energy [DE-AC02-06CH11357] FX Work performed at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-06CH11357. We would like to thank Hong Zhang of ANL Mathematics and Computer Science Division for her advice and technical assistance in computation. NR 49 TC 9 Z9 9 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155120 DI 10.1103/PhysRevB.80.155120 PG 10 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000053 ER PT J AU Xiang, HJ Kan, EJ Wei, SH Whangbo, MH Yang, JL AF Xiang, H. J. Kan, E. J. Wei, Su-Huai Whangbo, M. -H. Yang, Jinlong TI Origin of the Ising ferrimagnetism and spin-charge coupling in LuFe2O4 SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; POLARIZATION; ANTIFERROMAGNET AB The spin-ordering and spin-charge coupling in LuFe2O4 were investigated on the basis of density functional calculations and Monte Carlo simulations. The 2:1 ferrimagnetism arises from the strong antiferromagnetic intrasheet Fe3+-Fe3+ and Fe3+-Fe2+ as well as some substantial antiferromagnetic Fe2+-Fe3+ intersheet spin exchange interactions. The giant magnetocapacitance at room temperature and the enhanced electric polarization at 240 K of LuFe2O4 are explained by the strong spin-charge coupling. C1 [Xiang, H. J.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kan, E. J.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Yang, Jinlong/D-3465-2009; Kan, Erjun/A-4322-2009; Xiang, Hongjun/I-4305-2016 OI Yang, Jinlong/0000-0002-5651-5340; Kan, Erjun/0000-0003-0433-4190; Xiang, Hongjun/0000-0002-9396-3214 FU U.S. Department of Energy [DE-AC36-08GO28308, DE-FG02-86ER45259] FX Work at NREL was supported by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308, and work at NCSU by the U.S. Department of Energy, under Grant No. DE-FG02-86ER45259. NR 29 TC 23 Z9 23 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 132408 DI 10.1103/PhysRevB.80.132408 PG 4 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300014 ER PT J AU Yuan, CW Yi, DO Sharp, ID Shin, SJ Liao, CY Guzman, J Ager, JW Haller, EE Chrzan, DC AF Yuan, C. W. Yi, D. O. Sharp, I. D. Shin, S. J. Liao, C. Y. Guzman, J. Ager, J. W., III Haller, E. E. Chrzan, D. C. TI Size-distribution evolution of ion-beam-synthesized nanoclusters in silica SO PHYSICAL REVIEW B LA English DT Article ID ENHANCED DIFFUSION; GROWTH; NANOCRYSTALS; IMPLANTATION; CLUSTERS; KINETICS AB A model to describe the growth of nanoclusters in silica via ion-beam synthesis is introduced. Kinetic Monte Carlo simulations indicate that nucleation, growth, coarsening, and fragmentation occur throughout implantation, leading to a steady-state size-distribution shape that agrees with experimental observations. A set of coupled rate equations are derived and solved within a self-consistent mean-field approximation. An intermediate asymptotic scaling analysis helps to identify the important experimentally accessible parameters that control ion-beam-synthesized nanocluster size distributions. The model predicts that the shape of the as-implanted size distribution depends only on a characteristic length governed by the effective diffusivity, effective ion solubility, and the volumetric flux while the average cluster size is determined by the solute/matrix interface energy. C1 [Yuan, C. W.; Yi, D. O.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yuan, C. W.; Yi, D. O.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Ager, J. W., III; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sharp, I. D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. RP Yuan, CW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RI Sharp, Ian/I-6163-2015; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 FU U. S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 8 Z9 8 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134121 DI 10.1103/PhysRevB.80.134121 PG 10 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300040 ER PT J AU Zaki, N Potapenko, D Johnson, PD Osgood, RM AF Zaki, Nader Potapenko, Denis Johnson, Peter D. Osgood, Richard M. TI Atom-wide Co wires on Cu(775) at room temperature SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; GROWTH; CU(111); COBALT; DIFFUSION; STEP; DYNAMICS; SURFACES; MODEL AB We report on a surface phase of the Co-vicinal-Cu(111) system which exhibits self-assembled uniform Co quantum wires that are stable at 300 K. Scanning tunneling microscopy (STM)-imaging measurements show that wires will self-assemble within a narrow range of Co coverage and, within this range, the wires increase in length as coverage is increased. The STM images show that the wires form along the leading edge of the step rise, differentiating it from previously theoretically predicted atomic-wire phases. The formation of relatively long laterally unencapsulated one-and two-atom wires also differentiates it from past experimentally observed step-island formation. Furthermore, our experiments also show directly that the Co wires coexist with another Co phase that had been previously predicted for growth on Cu(111). Our observations allow us to comment on the formation kinetics of the atomic-wire phase and on the fit of our data to a recently developed lattice-gas model. C1 [Zaki, Nader; Potapenko, Denis; Osgood, Richard M.] Columbia Univ, New York, NY 10027 USA. [Johnson, Peter D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zaki, N (reprint author), Columbia Univ, New York, NY 10027 USA. FU Department of Energy [DE-FG02-04-ER-46157, DE-AC02-98CH10886] FX This research was supported by the Department of Energy under Contract No. DE-FG02-04-ER-46157. Work at Brookhaven National Laboratory was supported by the Department of Energy under Contract No. DE-AC02-98CH10886. We thank Mehmet Yilmaz, Jerry Dadap, and Cyrus Hirjibehedin for several useful comments and suggestions. NR 30 TC 11 Z9 11 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 15 AR 155419 DI 10.1103/PhysRevB.80.155419 PG 7 WC Physics, Condensed Matter SC Physics GA 513VK UT WOS:000271352000128 ER PT J AU Zhang, C Yi, W Sun, LL Chen, XJ Hemley, RJ Mao, HK Lu, W Dong, XL Bai, LG Liu, J Dos Santos, AFM Molaison, JJ Tulk, CA Chen, GF Wang, NL Zhao, ZX AF Zhang, Chao Yi, Wei Sun, Liling Chen, Xiao-Jia Hemley, Russell J. Mao, Ho-kwang Lu, Wei Dong, Xiaoli Bai, Ligang Liu, Jing Dos Santos, Antonio F. Moreira Molaison, Jamie J. Tulk, Christopher A. Chen, Genfu Wang, Nanlin Zhao, Zhongxian TI Pressure-induced lattice collapse in the tetragonal phase of single-crystalline Fe1.05Te SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; LIFEAS AB Pressure-induced lattice collapse was discovered in tetragonal (T) phase of single crystal Fe1.05Te at room temperature through x-ray and neutron-diffraction measurements. A remarkable compression along the c axis (similar to 5%) was observed upon increasing pressure from the ambient condition to 4 GPa. Indexed results demonstrate that the crystallographic structure remains unchanged after the collapse, revealing that the collapse does not break symmetry of crystal structure. The Fe-spin state change was proposed to account for the lattice collapse. The equations of state for the T phase and pressure-induced collapsed T phase were determined from the diffraction measurements. C1 [Zhang, Chao; Yi, Wei; Sun, Liling; Lu, Wei; Dong, Xiaoli; Chen, Genfu; Wang, Nanlin; Zhao, Zhongxian] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Zhang, Chao; Yi, Wei; Sun, Liling; Lu, Wei; Dong, Xiaoli; Chen, Genfu; Wang, Nanlin; Zhao, Zhongxian] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Chen, Xiao-Jia; Hemley, Russell J.; Mao, Ho-kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Chen, Xiao-Jia] S China Univ Technol, Dept Phys, Guangzhou 510640, Peoples R China. [Bai, Ligang; Liu, Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Dos Santos, Antonio F. Moreira; Molaison, Jamie J.; Tulk, Christopher A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Sun, LL (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM llsun@aphy.iphy.ac.cn; zhxzhao@aphy.iphy.ac.cn RI Yi, Wei/A-1748-2012; Mao, Hokwang/K-8013-2013; Bai, Ligang/E-9371-2015; dos Santos, Antonio/A-5602-2016; Tulk, Chris/R-6088-2016 OI dos Santos, Antonio/0000-0001-6900-0816; Tulk, Chris/0000-0003-3400-3878 FU NSFC [10874230, 10874211, 10804127, 10874046]; 973 project and Chinese Academy of Sciences; U.S. DOE-NNSA [DEFC03-03NA00144]; U.S. DOE-BES; EU FX We acknowledge useful discussions with P. C. Dai of University of Tennessee and X. Dai of Institute of Physics. This work was supported by the NSFC Grants No. 10874230, No. 10874211, No. 10804127, and No. 10874046, by the 973 project and Chinese Academy of Sciences. The work at Carnegie was supported by the U.S. DOE-NNSA (Grant No. DEFC03-03NA00144). SNAP was supported by the scientific user facilities division of the U.S. DOE-BES at the Spallation Neutron Source. We acknowledge the support from EU under the project CoMePhS. NR 31 TC 25 Z9 25 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 14 AR 144519 DI 10.1103/PhysRevB.80.144519 PG 5 WC Physics, Condensed Matter SC Physics GA 513VG UT WOS:000271351500103 ER PT J AU Zhou, GW Fong, DD Wang, L Fuoss, PH Baldo, PM Thompson, LJ Eastman, JA AF Zhou, Guangwen Fong, Dillon D. Wang, Liang Fuoss, Paul H. Baldo, Peter M. Thompson, Loren J. Eastman, Jeffrey A. TI Nanoscale duplex oxide growth during early stages of oxidation of Cu-Ni(100) SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE OXIDATION; CU-NI ALLOYS; FCC METALS; SURFACE; REDUCTION; DIFFUSION; CRYSTALS; KINETICS; ISLANDS; NICKEL AB A combination of real-time in situ synchrotron x-ray diffraction and ex situ transmission electron microscopy is utilized to investigate the early stages of oxidation of Cu-Ni(100). Sequential formation of NiO and Cu(2)O oxides was observed by increasing oxygen partial pressure, and the Cu(2)O phase was identified to form preferentially on top of NiO nanoislands. The origin of this unexpected phenomenon is attributed to localized enrichment of Cu atoms accompanied with NiO growth, which thermodynamically drives the nanoscale Cu(2)O/NiO duplex oxide growth. C1 [Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. [Fong, Dillon D.; Fuoss, Paul H.; Baldo, Peter M.; Thompson, Loren J.; Eastman, Jeffrey A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wang, Liang] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu RI Eastman, Jeffrey/E-4380-2011; OI Eastman, Jeff/0000-0002-0847-4265 FU National Science Foundation (NSF) [CMMI-0825737]; UChicago Argonne, LLC; Operator of Argonne National Laboratory; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX The authors thank the APS sector 12 (BESSRC) staff for their assistance. Guangwen Zhou gratefully acknowledges support from the National Science Foundation (NSF) under the Grant No. CMMI-0825737. Work performed at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 31 TC 6 Z9 6 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT PY 2009 VL 80 IS 13 AR 134106 DI 10.1103/PhysRevB.80.134106 PG 5 WC Physics, Condensed Matter SC Physics GA 513VE UT WOS:000271351300025 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bnzarov, I Bombara, M Bonner, BE Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCB Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA De Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Konzer, J Kopytine, M Koralt, I Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, N Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM De Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zhu, X Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bnzarov, I. Bombara, M. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. De Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Konzer, J. Kopytine, M. Koralt, I. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, N. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. De Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yip, K. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zhu, X. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Neutral pion production in Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID TRANSVERSE-MOMENTUM DISTRIBUTIONS; NUCLEUS-NUCLEUS COLLISIONS; D+AU COLLISIONS; ENERGY-LOSS; COLLABORATION; SUPPRESSION; P+P AB The results of midrapidity (0 < y < 0.8) neutral pion spectra over an extended transverse momentum range (1 < p(T) < 12 GeV/c) in root s(NN) = 200 GeV Au + Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter or by the Time Projection Chamber via tracking of conversion electron-positron pairs. Our measurements are compared to previously published pi(+/-) and pi(0) results. The nuclear modification factors R-CP and R-AA of pi(0) are also presented as a function of p(T). In the most central Au + Au collisions, the binary collision scaled pi(0) yield at high p(T) is suppressed by a factor of about 5 compared to the expectation from the yield of p + p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at the Relativistic Heavy Ion Collider. C1 [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [de la Barca Sanchez, M. Calderon; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [De Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CZ-11519 Prague, Czech Republic. [Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bnzarov, I.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; De Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Bruna, E.; Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Cosentino, Mauro/L-2418-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Cosentino, Mauro/0000-0002-7880-8611; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Lee, Chang-Hwan/0000-0003-3221-1171; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU US DOE; USNSF; Sloan Foundation; DFG; STFC; EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China; Czech Republic; FOM and NOW of the Netherlands; CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; Russian Ministry of Science and Technology; Rosatom of Russia FX We thank the RHIC Operations Group and RCF at BNL and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science; the USNSF; the Sloan Foundation; the DFG cluster of excellence "Origin and Structure of the Universe"; CNRS/IN2P3; STFC and EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NOW of the Netherlands; DAE, DST, and CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; the Russian Ministry of Science and Technology; and Rosatom of Russia. NR 27 TC 13 Z9 13 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044905 DI 10.1103/PhysRevC.80.044905 PG 9 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900070 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, N Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G Van Leeuwen, M Molen, AMV Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, N. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. Van Leeuwen, M. Molen, A. M. Vander Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yip, K. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI J/psi production at high transverse momenta in p plus p and Cu plus Cu collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; INTERSECTING STORAGE-RINGS; QUARK-GLUON PLASMA; ROOT S=1.8 TEV; P(P)OVER-BAR COLLISIONS; NUCLEUS COLLISIONS; D+AU COLLISIONS; AU COLLISIONS; QCD MATTER; J-PSI AB The STAR Collaboration at the Relativistic Heavy Ion Collider presents measurements of J/psi e(+) e(-) at midrapidity and high transverse momentum (pT > 5 GeV/c) in p + p and central Cu + Cu collisions at root s(NN) = 200 GeV. The inclusive J/psi production cross section for Cu + Cu collisions is found to be consistent at high p(T) with the binary collision-scaled cross section for p + p collisions. At a confidence level of 97%, this is in contrast to a suppression of J/psi production observed at lower p(T). Azimuthal correlations of J/psi with charged hadrons in p + p collisions provide an estimate of the contribution of B-hadron decays to J/psi production of 13% +/- 5%. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Lab High Energy JINR, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Particle Phys Lab JINR, Dubna, Russia. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Kouchpil, V.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Bhasin, A.; Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Brandin, A. V.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Tang, Zebo/A-9939-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yang, Yanyun/B-9485-2014; Yip, Kin/D-6860-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013 OI Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Lee, Chang-Hwan/0000-0003-3221-1171; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Barnby, Lee/0000-0001-7357-9904; Tang, Zebo/0000-0002-4247-0081; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yang, Yanyun/0000-0002-5982-1706; Yip, Kin/0000-0002-8576-4311; Pandit, Yadav/0000-0003-2809-7943; FU Offices of NP; HEP within the US DOE Office of Science; US NSF; Sloan Foundation; DFG; CNRS/IN2P3; STFC; EPSRC of the United Kingdom; FAPESP; CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China; GA; MSMT of the Czech Republic; FOM; NOW of the Netherlands; DAE; DST; CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; Russian Ministry of Science and Technology; Rosatom of Russia FX The authors thank G. C. Nayak, J. P. Lansberg, W. A. Horowitz, and I. Vitev for providing calculations and discussion. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science; the US NSF; the Sloan Foundation; the DFG cluster of excellence "Origin and Structure of the Universe"; CNRS/IN2P3; STFC and EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NOW of the Netherlands; DAE, DST, and CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; the Russian Ministry of Science and Technology; and Rosatom of Russia. NR 58 TC 71 Z9 72 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 041902 DI 10.1103/PhysRevC.80.041902 PG 6 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900008 ER PT J AU Baltz, AJ Gorbunov, Y Klein, SR Nystrand, J AF Baltz, Anthony J. Gorbunov, Yuri Klein, Spencer R. Nystrand, Joakim TI Two-photon interactions with nuclear breakup in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID PERIPHERAL COLLISIONS; PARTICLE-PRODUCTION; MESON PRODUCTION; GAMMA-GAMMA; PHOTON; PHYSICS; COLLIDERS; DISSOCIATION; EXCITATION; DEPENDENCE AB Highly charged relativistic heavy ions have high cross sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, because the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass, and transverse momentum (p(T)) distributions for exclusive gamma gamma production of mesons and lepton pairs and for gamma gamma reactions accompanied by mutual Coulomb dissociation. The cross sections for gamma gamma interactions accompanied by multiple neutron emission (XnXn) and single-neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied gamma gamma interactions. We discuss the accuracy with which these cross sections may be calculated. The typical p(T) of gamma gamma final states is several times smaller than for comparable coherent photonuclear interactions, so p(T) may be an effective tool for separating the two classes of interactions. C1 [Baltz, Anthony J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gorbunov, Yuri] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Klein, Spencer R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Nystrand, Joakim] Univ Bergen, Dept Phys & Technol, Bergen, Norway. RP Baltz, AJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU US Department of Energy [DE-AC-03076SF00098, DE-AC0298CH10886] FX This work was supported by the US Department of Energy under Contract Nos. DE-AC-03076SF00098 and DE-AC0298CH10886. NR 47 TC 17 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044902 DI 10.1103/PhysRevC.80.044902 PG 8 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900067 ER PT J AU Bonatsos, D McCutchan, EA Casten, RF Casperson, RJ Werner, V Williams, E AF Bonatsos, Dennis McCutchan, E. A. Casten, R. F. Casperson, R. J. Werner, V. Williams, E. TI Regularities and symmetries of subsets of collective 0(+) states (vol 80, 034311, 2009) SO PHYSICAL REVIEW C LA English DT Correction C1 [Bonatsos, Dennis] Natl Ctr Sci Res Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Bonatsos, D (reprint author), Natl Ctr Sci Res Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. RI Williams, Elizabeth/D-3442-2014; Werner, Volker/C-1181-2017 OI Werner, Volker/0000-0003-4001-0150 NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 049902 DI 10.1103/PhysRevC.80.049902 PG 1 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900107 ER PT J AU Calviani, M Praena, J Abbondanno, U Aerts, G Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthier, B Berthoumieux, E Calvino, F Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fujii, K Furman, W Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kappeler, F Kadi, Y Karadimos, D Karamanis, D Ketlerov, V Kerveno, M Koehler, P Konovalov, V Kossionides, E Krticka, M Lampoudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wiescher, M Wisshak, K AF Calviani, M. Praena, J. Abbondanno, U. Aerts, G. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthier, B. Berthoumieux, E. Calvino, F. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fujii, K. Furman, W. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Ketlerov, V. Kerveno, M. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lampoudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wiescher, M. Wisshak, K. CA N TOF Collaboration TI High-accuracy U-233(n, f) cross-section measurement at the white-neutron source n_TOF from near-thermal to 1 MeV neutron energy SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA LIBRARY; FISSION; URANIUM-233; REGION; CERN; FACILITY; TARGETS AB The U-233(n, f) cross section has been measured at the white neutron source n_TOF in a wide energy range with a dedicated fission ionization chamber. We report here the results from similar to 30 meV to 1 MeV neutron energy. The U-233(n, f) cross section has been determined relative to a reference sample of U-235(n, f) measured simultaneously with the same detector. The very high instantaneous neutron flux and the intrinsically low background of the n_TOF installation result in an accuracy around 3% in the whole energy range, while the energy resolution of the neutron beam allows for an accurate description of the fission cross section by means of R-matrix analysis over a wide energy range. The results are, in general, in good agreement with the most recent high-accuracy measurement of this fission cross section, over the more limited range of the previous measurements, and indicated that even the latest evaluations underestimate the cross section in the epithermal region. The present high-quality data provide the basis for a more precise evaluation of the U-233 fission cross section and for improving the reliability of databases needed for the design of new energy systems based on the Th/U cycle. C1 [Calviani, M.; Praena, J.; Gramegna, F.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Milan, Italy. [Calviani, M.] Univ Padua, Dipartimento Fis, I-35100 Padua, Italy. [Abbondanno, U.; Belloni, F.; Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Carrapico, C.; Dridi, W.; Gunsing, F.; Lampoudis, C.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [Alvarez, H.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; Berthier, B.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.] IPN, IN2P3, CNRS, Orsay, France. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Inst Atom, Osterreich Univ, Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] IReS, IN2P3, CNRS, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic. [Belloni, F.] Univ Trieste, I-34127 Trieste, Italy. [Calvino, F.] Univ Politecn Madrid, E-28040 Madrid, Spain. [Capote, R.; Mengoni, A.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Capote, R.; Lozano, M.; Quesada, J.] Univ Seville, Seville, Spain. [Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Inst Tecnol & Nucl, Lisbon, Portugal. [Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] LIP Coimbra, Coimbra, Portugal. [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.; Heil, M.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe, Inst Kernphys, Karlsruhe, Germany. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Goverdovski, A.; Ketlerov, V.; Konovalov, V.] Obninsk Phys & Power Engn Inst, Obninsk, Russia. [Haas, B.] CENBG, IN2P3, CNRS, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fak Phys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JER IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys, CH-4003 Basel, Switzerland. [Rosetti, M.; Ventura, A.] ENEA, Bologna, Italy. [Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. RP Calviani, M (reprint author), Ist Nazl Fis Nucl, Lab Nazl Legnaro, Milan, Italy. EM marco.calviani@cern.ch RI Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Rauscher, Thomas/D-2086-2009; Jericha, Erwin/A-4094-2011; Becvar, Frantisek/D-3824-2012; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012 OI Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Rauscher, Thomas/0000-0002-1266-0642; Jericha, Erwin/0000-0002-8663-0526; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; FU European Commission [FIKW-CT2000-00107] FX This work was supported by the European Commission's 5th Framework Programme under Contract No. FIKW-CT2000-00107 (nTOF-ND-ADS Project). NR 42 TC 23 Z9 23 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044604 DI 10.1103/PhysRevC.80.044604 PG 11 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900052 ER PT J AU Dedonder, JP Loiseau, B El-Bennich, B Wycech, S AF Dedonder, J. -P. Loiseau, B. El-Bennich, B. Wycech, S. TI Structure of the X(1835) baryonium SO PHYSICAL REVIEW C LA English DT Article ID STRONG INTERACTION PARAMETERS; ANTIPROTONIC HYDROGEN; DEUTERIUM AB The measurement by the BES Collaboration of J/psi -> gamma p (p) over bar decays indicates an enhancement at the p (p) over bar threshold. In another experiment, BES finds a peak in the invariant mass of pi mesons produced in the possibly related decay J/psi -> gamma pi(+)pi(-)eta'. Using a semiphenomenological potential model that describes all the N (N) over bar scattering data, we show that the explanation of both effects may be given by a broad quasibound state in the spin and isospin singlet S wave. The structure of the observed peak is due to an interference of this quasibound state with a background amplitude and depends on the annihilation mechanism. C1 [Dedonder, J. -P.; Loiseau, B.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Wycech, S.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. RP Dedonder, JP (reprint author), Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies,Grp Theorie, 4 Pl Jussieu, F-75252 Paris, France. EM dedonder@univ-paris-diderot.fr; loiseau@lpnhe.in2p3.fr; bennich@anl.gov; wycech@fuw.edu.pl FU EC [MRTN-CT-206-03502]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank M. Lacombe for useful discussions. This research was performed in the framework of the IN2P3-Polish Laboratory Convention (Collaboration No. 05-115). S. W. was supported by the EC 6-Th Program MRTN-CT-206-03502 (FLAVIA network). This work was also supported in part by the US Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 22 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 045207 DI 10.1103/PhysRevC.80.045207 PG 6 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900080 ER PT J AU Fotiades, N Nelson, RO Devlin, M Holloway, S Kawano, T Talou, P Chadwick, MB Becker, JA Garrett, PE AF Fotiades, N. Nelson, R. O. Devlin, M. Holloway, S. Kawano, T. Talou, P. Chadwick, M. B. Becker, J. A. Garrett, P. E. TI Feeding of the 11/2(-) isomers in stable Ir and Au isotopes SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY PRODUCTION; NUCLEAR-DATA SHEETS; PRODUCTION CROSS-SECTIONS; LEVEL DENSITY; NEUTRON ENERGIES; MODEL; MASS; FORMULA; RANGE AB Excited states in Ir-191, Ir-193, and Au-197 were studied and absolute partial gamma-ray cross sections were measured using the (n, n'gamma) reaction. A Compton-suppressed germanium-detector array (GEANIE) for gamma-ray spectroscopy was used for the measurement and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility provided energetic neutrons. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial gamma-ray cross sections were measured up to incident neutron energy of 20 MeV for several transitions feeding directly the 11/2(-) isomers and ground states in Ir-191, Ir-193, and Au-197. The feeding of the 11/2(-) isomers, which originate from the odd proton occupying the h(11/2) orbital, was found for the three targets to be very similar and increasing relative to the feeding of the corresponding ground state with increasing neutron energy up to E-n similar to 10 MeV. Above this neutron energy the opening of the (n, 2n) reaction channel strongly affects the population of the isomers and leads to a decrease of their relative population compared to the population of the ground states. The experimental results are compared with theoretical predictions from the GNASH reaction model calculation implementing a version of the spin distribution for the pre-equilibrium reaction piece with either a compound nucleus spin distribution (CN-GNASH) or a Feshbach-Kerman-Koonin (FKK-GNASH) quantum mechanical spin distribution. The effects of the spin cutoff parameter values on the population of states are examined. Evidence is presented that FKK-GNASH provides a description of the experimental data that mitigates the need for adjustment of the level density parameter to fit the data. C1 [Fotiades, N.; Nelson, R. O.; Devlin, M.; Holloway, S.; Kawano, T.; Talou, P.; Chadwick, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Becker, J. A.; Garrett, P. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fotiades, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fotia@lanl.gov RI Devlin, Matthew/B-5089-2013; OI Devlin, Matthew/0000-0002-6948-2154; Fotiadis, Nikolaos/0000-0003-1410-3871 FU Los Alamos National Laboratory [W-7405-ENG-36]; Los Alamos National Security, LLC, Los Alamos National Laboratory [DE-AC52-06NA25396]; University of California, Lawrence Livermore National Laboratory [W-7405-ENG-48]; Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE [DE-AC52-06NA25396] FX This work was performed under the auspices of the US Department of Energy (DOE) in part by the University of California, Los Alamos National Laboratory under Contract No. W-7405-ENG-36, and in part by Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and in part by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-ENG-48 and in part by Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work has benefited from the use of the LANSCE accelerator facility supported under DOE Contract No. DE-AC52-06NA25396. NR 53 TC 4 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044612 DI 10.1103/PhysRevC.80.044612 PG 9 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900060 ER PT J AU Gledenov, YM Sedysheva, MV Stolupin, VA Zhang, GH Zhang, JG Wu, H Liu, JM Chen, JX Khuukhenkhuu, G Koehler, PE Szalanski, PJ AF Gledenov, Yu M. Sedysheva, M. V. Stolupin, V. A. Zhang, Guohui Zhang, Jiaguo Wu, Hao Liu, Jiaming Chen, Jinxiang Khuukhenkhuu, G. Koehler, P. E. Szalanski, P. J. TI Cross sections of the Nd-143(n,alpha)Ce-140 and Sm-147(n,alpha)Nd-144 reactions in the MeV neutron energy region SO PHYSICAL REVIEW C LA English DT Article ID NEODYMIUM ISOTOPES; N,ALPHA REACTIONS; SM-147; SAMARIUM; ND-143 AB Cross sections and forward/backward ratios in the laboratory reference system were measured for the Nd-143(n,alpha)Ce-140 reaction at 4.0, 5.0, and 6.0 MeV and for the Sm-147(n,alpha)Nd-144 reaction at 5.0 and 6.0 MeV. A twin-gridded ionization chamber and large-area back-to-back (Nd2O3)-Nd-143 samples and (Sm2O3)-Sm-147 samples were employed. Experiments were performed at the 4.5 MV Van de Graaff accelerator of Peking University, China. Fast neutrons were produced through the H-2(d,n)He-3 reaction by using a deuterium gas target. A small U-238 fission chamber was employed for absolute neutron flux determination, and a BF3 long counter was used as the neutron flux monitor. Present experimental data are compared with previous measurements, evaluations, and model calculations. C1 [Zhang, Guohui; Zhang, Jiaguo; Wu, Hao; Liu, Jiaming; Chen, Jinxiang] Peking Univ, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Gledenov, Yu M.; Sedysheva, M. V.; Stolupin, V. A.] Joint Inst Nucl Res Dubna, Frank Lab Neutron Phys, Dubna 141980, Russia. [Khuukhenkhuu, G.] Natl Univ Mongolia, Nucl Res Ctr, Ulaanbaatar, Mongol Peo Rep. [Koehler, P. E.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Szalanski, P. J.] Univ Lodz, Inst Phys, Lodz, Poland. RP Zhang, GH (reprint author), Peking Univ, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM guohuizhang@pku.edu.cn RI Szalanski, Pawel/F-9428-2011 OI Szalanski, Pawel/0000-0002-2047-7792 FU Russian Foundation for Basic Research (RFBR) [NSFC 07-02-92104]; National Natural Science Foundation of China [10875006, 10811120014]; China Nuclear Data Center FX The crew members of the 4.5 MV Van de Graaff accelerator of Peking University are acknowledged for their kind cooperation and support. This work was financially supported by the Russian Foundation for Basic Research (RFBR-NSFC 07-02-92104) and the National Natural Science Foundation of China ( 10875006, 10811120014) and China Nuclear Data Center. NR 20 TC 8 Z9 8 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044602 DI 10.1103/PhysRevC.80.044602 PG 5 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900050 ER PT J AU Goldblum, BL Stroberg, SR Allmond, JM Angell, C Bernstein, LA Bleuel, DL Burke, JT Gibelin, J Phair, L Scielzo, ND Swanberg, E Wiedeking, M Norman, EB AF Goldblum, B. L. Stroberg, S. R. Allmond, J. M. Angell, C. Bernstein, L. A. Bleuel, D. L. Burke, J. T. Gibelin, J. Phair, L. Scielzo, N. D. Swanberg, E. Wiedeking, M. Norman, E. B. TI Indirect determination of the Th-230(n, f) and Th-231(n, f) cross sections for thorium-based nuclear energy systems SO PHYSICAL REVIEW C LA English DT Article ID U-235 AB The surrogate ratio method (SRM) was employed in the first experimental determination of the Th-231(n, f) cross section, relative to the U-235(n, f) cross section, over an equivalent neutron energy range of 360 keV to 10 MeV. The Th-230(n, f) cross section was also deduced using the SRM, relative to the U-234(n, f) cross section, over an equivalent neutron energy range of 220 keV to 25 MeV. The desired compound nuclei were populated using (He-3, He-3') and (He-3, alpha) reactions on targets of Th-232 and U-236 and relative fission decay probabilities were measured. The surrogate Th-230,Th-231(n, f) cross sections were compared to cross section evaluations and directly-measured experimental data, where available. C1 [Goldblum, B. L.; Stroberg, S. R.; Angell, C.; Swanberg, E.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Scielzo, N. D.; Wiedeking, M.; Norman, E. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gibelin, J.] CNRS, IN2P3, CEA, DSM,GANIL, F-14076 Caen 5, France. [Phair, L.; Norman, E. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Goldblum, BL (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RI Burke, Jason/I-4580-2012 FU US Department of Energy [DE-FG52-06NA26206, DE-FG02-05ER41379]; Lawrence Livermore National Laboratory [DE-AC5207NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank the 88-Inch Cyclotron operations and facilities staff for their help in performing these experiments. We gratefully acknowledge the contributions of K. E. Evans and S. R. Lesher, as well as J. A. Caggiano and J. J. Ressler for their help in obtaining the 232Th target. Susan James of the Information Technology Division at Lawrence Berkeley National Laboratory is particularly recognized for her excellence in computing services and technical support. The University of California, Berkeley group was supported, in part, by the US National Science Foundation and the US Department of Homeland Security. This work was also performed under the auspices of the US Department of Energy by the University of Richmond under Grant Nos. DE-FG52-06NA26206 and DE-FG02-05ER41379, Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344, and Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 20 TC 18 Z9 18 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044610 DI 10.1103/PhysRevC.80.044610 PG 6 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900058 ER PT J AU Hartley, DJ Janssens, RVF Riedinger, LL Riley, MA Aguilar, A Carpenter, MP Chiara, CJ Chowdhury, P Darby, IG Garg, U Ijaz, QA Kondev, FG Lakshmi, S Lauritsen, T Ludington, A Ma, WC McCutchan, EA Mukhopadhyay, S Pifer, R Seyfried, EP Stefanescu, I Tandel, SK Tandel, U Vanhoy, JR Wang, X Zhu, S Hamamoto, I Frauendorf, S AF Hartley, D. J. Janssens, R. V. F. Riedinger, L. L. Riley, M. A. Aguilar, A. Carpenter, M. P. Chiara, C. J. Chowdhury, P. Darby, I. G. Garg, U. Ijaz, Q. A. Kondev, F. G. Lakshmi, S. Lauritsen, T. Ludington, A. Ma, W. C. McCutchan, E. A. Mukhopadhyay, S. Pifer, R. Seyfried, E. P. Stefanescu, I. Tandel, S. K. Tandel, U. Vanhoy, J. R. Wang, X. Zhu, S. Hamamoto, I. Frauendorf, S. TI Wobbling mode in Ta-167 SO PHYSICAL REVIEW C LA English DT Article ID COINCIDENCE DATA; EXCITATIONS; NUCLEI AB The collective wobbling mode, the strongest signature for the rotation of a triaxial nucleus, has previously been seen only in a few Lu isotopes in spite of extensive searches in nearby isotopes. A sequence of transitions in the N = 94 Ta-167 nucleus exhibiting features similar to those attributed to the wobbling bands in the Lu nuclei has now been found. This band feeds into the pi i(13/2) band at a relative energy similar to that seen in the established wobbling bands and its dynamic moment of inertia and alignment properties are nearly identical to the i(13/2) structure over a significant frequency range. Given these characteristics, it is likely that the wobbling mode has been observed for the first time in a nucleus other than Lu, making this collective motion a more general phenomenon. C1 [Hartley, D. J.; Ludington, A.; Pifer, R.; Seyfried, E. P.; Vanhoy, J. R.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Lauritsen, T.; McCutchan, E. A.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Riedinger, L. L.; Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Riley, M. A.; Aguilar, A.; Wang, X.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.; Lakshmi, S.; Tandel, S. K.; Tandel, U.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Garg, U.; Mukhopadhyay, S.; Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Ijaz, Q. A.; Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Hamamoto, I.] Lund Univ, LTH, Dept Math Phys, Lund, Sweden. RP Hartley, DJ (reprint author), USN Acad, Dept Phys, Annapolis, MD 21402 USA. RI Soundara Pandian, Lakshmi/C-8107-2013; Carpenter, Michael/E-4287-2015 OI Soundara Pandian, Lakshmi/0000-0003-3099-1039; Carpenter, Michael/0000-0002-3237-5734 FU National Science Foundation [PHY-0554762, PHY-0456463, PHY-0754674]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11257, DE-FG02-94ER40848, DE-FG02-96ER40983] FX The authors thank the ANL operations staff at Gammasphere and gratefully acknowledge the efforts of J. P. Greene for target preparation. We also thank D. C. Radford and H. Q. Jin for their software support. This work is funded by the National Science Foundation under Grant Nos. PHY-0554762 (USNA), PHY-0456463 (FSU), and PHY-0754674 (UND), as well as by the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11257 (ANL), DE-FG02-94ER40848 (UML), and DE-FG02-96ER40983 (UT). NR 19 TC 39 Z9 40 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 041304 DI 10.1103/PhysRevC.80.041304 PG 5 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900004 ER PT J AU Hebeler, K Duguet, T Lesinski, T Schwenk, A AF Hebeler, K. Duguet, T. Lesinski, T. Schwenk, A. TI Non-empirical pairing energy functional in nuclear matter and finite nuclei SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE INTERACTIONS; LOW-MOMENTUM INTERACTIONS; NEUTRON MATTER; SUPERFLUIDITY; EQUATION; STARS; PHASE AB We study S-1(0) pairing gaps in neutron and nuclear matter as well as T = 1 pairing in finite nuclei on the basis of microscopic two-nucleon interactions. Special attention is paid to the consistency of the pairing interaction and normal self-energy contributions. We find that pairing gaps obtained from low-momentum interactions depend only weakly on approximation schemes for the normal self-energy, required in present energy-density functional calculations, while pairing gaps from hard potentials are very sensitive to the effective-mass approximation scheme. C1 [Hebeler, K.; Duguet, T.] CEA, Ctr Saclay, IRFU, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Hebeler, K.; Schwenk, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hebeler, K.] ECT, I-38050 Trento, Italy. [Duguet, T.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Duguet, T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lesinski, T.] Univ Lyon, F-69003 Lyon, France. [Lesinski, T.] Univ Lyon 1, F-69622 Villeurbanne, France. [Lesinski, T.] CNRS, IN2P3, Inst Phys Nucl Lyon, F-75700 Paris, France. [Lesinski, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lesinski, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Hebeler, K (reprint author), CEA, Ctr Saclay, IRFU, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. EM hebeler@triumf.ca; thomas.duguet@cea.fr; tlesinsk@utk.edu; schwenk@triumf.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); US Department of Energy [DE-FG02-96ER40963, DE-FG02-07ER41529, DE-AC05-00OR22725] FX We thank S. Baroni, F. Barranco, P. F. Bortignon, R. A. Broglia, A. Pastore, and E. Vigezzi for useful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), the US Department of Energy under Contract Nos. DE-FG02-96ER40963, DE-FG02-07ER41529 ( University of Tennessee), and DE-AC05-00OR22725 with UT-Battelle, LLC ( Oak Ridge National Laboratory). TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. NR 47 TC 37 Z9 38 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044321 DI 10.1103/PhysRevC.80.044321 PG 13 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900034 ER PT J AU Hyldegaard, S Diget, CA Borge, MJG Boutami, R Dendooven, P Eronen, T Fox, SP Fraile, LM Fulton, BR Fynbo, HOU Huikari, J Jeppesen, HB Jokinen, AS Jonson, B Kankainen, A Moore, I Nyman, G Penttila, H Perajarvi, K Riisager, K Rinta-Antila, S Tengblad, O Wang, Y Wilhelmsen, K Aysto, J AF Hyldegaard, S. Diget, C. Aa. Borge, M. J. G. Boutami, R. Dendooven, P. Eronen, T. Fox, S. P. Fraile, L. M. Fulton, B. R. Fynbo, H. O. U. Huikari, J. Jeppesen, H. B. Jokinen, A. S. Jonson, B. Kankainen, A. Moore, I. Nyman, G. Penttila, H. Perajarvi, K. Riisager, K. Rinta-Antila, S. Tengblad, O. Wang, Y. Wilhelmsen, K. Aysto, J. TI Branching ratios in the beta decays of N-12 and B-12 SO PHYSICAL REVIEW C LA English DT Article ID ALPHA-PARTICLES; C-12; B12; N12; STATE AB Absolute branching ratios to unbound states in C-12 populated in the beta decays of N-12 and B-12 are reported. Clean sources of N-12 and B-12 were obtained using the isotope separation on-line (ISOL) method. The relative branching ratios to the different populated states were extracted using single-alpha as well as complete kinematics triple-alpha spectra. These two largely independent methods give consistent results. Absolute normalization is achieved via the precisely known absolute branching ratio to the bound 4.44 MeV state in C-12. The extracted branching ratios to the unbound states are a factor of three more precise than previous measurements. Branching ratios in the decay of Na-20 are also extracted and used to check the results. C1 [Hyldegaard, S.; Fynbo, H. O. U.; Riisager, K.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Diget, C. Aa.; Fox, S. P.; Fulton, B. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Borge, M. J. G.; Boutami, R.; Tengblad, O.] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain. [Dendooven, P.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. [Eronen, T.; Huikari, J.; Jokinen, A. S.; Kankainen, A.; Moore, I.; Penttila, H.; Perajarvi, K.; Rinta-Antila, S.; Wang, Y.; Aysto, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Fraile, L. M.] Univ Complutense, Grp Fis Nucl, E-28040 Madrid, Spain. [Jeppesen, H. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Jonson, B.; Nyman, G.; Wilhelmsen, K.] Chalmers, S-41296 Gothenburg, Sweden. RP Hyldegaard, S (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RI Fraile, Luis/B-8668-2011; Penttila, Heikki/A-4420-2013; Jonson, Bjorn/B-2816-2014; Kankainen, Anu/K-3448-2014; Moore, Iain/D-7255-2014; Tengblad, Olof/O-5852-2015; Diget, Christian Aaen/D-8063-2016; Jokinen, Ari/C-2477-2017 OI Fraile, Luis/0000-0002-6281-3635; Kankainen, Anu/0000-0003-1082-7602; Moore, Iain/0000-0003-0934-8727; Diget, Christian Aaen/0000-0002-9778-8759; Jokinen, Ari/0000-0002-0451-125X FU Academy of Finland [44875]; Spanish Agency CICYT [FPA2007-62170, FPA2007-62216]; European Union Sixth Framework Programme [506065]; Swedish Research Council; Knut and Alice Wallenberg foundation FX This research was supported by the Academy of Finland (Project No. 44875), by the Spanish Agency CICYT (Nos. FPA2007-62170 and FPA2007-62216), by the European Union Sixth Framework Programme "EURONS" (No. 506065), by the Swedish Research Council, and the Knut and Alice Wallenberg foundation. NR 21 TC 11 Z9 11 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044304 DI 10.1103/PhysRevC.80.044304 PG 7 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900017 ER PT J AU Jiang, CL Rehm, KE Ackermann, D Ahmad, I Greene, JP Harss, B Henderson, D Henning, WF Janssens, RVF Nolen, J Pardo, RC Reiter, P Schiffer, JP Seweryniak, D Sonzogni, A Uusitalo, J Wiedenhover, I Wuosmaa, AH Brumwell, F McMichael, G Paul, M Segel, RE AF Jiang, C. L. Rehm, K. E. Ackermann, D. Ahmad, I. Greene, J. P. Harss, B. Henderson, D. Henning, W. F. Janssens, R. V. F. Nolen, J. Pardo, R. C. Reiter, P. Schiffer, J. P. Seweryniak, D. Sonzogni, A. Uusitalo, J. Wiedenhoever, I. Wuosmaa, A. H. Brumwell, F. McMichael, G. Paul, M. Segel, R. E. TI Experimental study of the Ni-56(He-3,d)Cu-57 reaction in inverse kinematics SO PHYSICAL REVIEW C LA English DT Article ID RADIATIVE-CAPTURE REACTIONS; REACTION CROSS-SECTION; RP-PROCESS; ASTROPHYSICS; NUCLEI; BEAM AB Measurements of (He-3,d) reactions can provide information on the proton widths of states that play a role in astrophysically important (p,gamma) reactions. We report on the first study of the (He-3, d) reaction in inverse kinematics with a Ni-56 (T-1/2 = 6.1 d) ion beam. The Q-value resolution of similar to 700 keV achieved in this experiment was sufficient to separate the transitions populating the ground state and the 1/2(-)-5/2(-) doublet at E-x similar to 1.1 MeV in Cu-57. Prospects for similar (He-3,d) experiments with improved energy resolution are also discussed. C1 [Jiang, C. L.; Rehm, K. E.; Ackermann, D.; Ahmad, I.; Greene, J. P.; Harss, B.; Henderson, D.; Henning, W. F.; Janssens, R. V. F.; Nolen, J.; Pardo, R. C.; Reiter, P.; Schiffer, J. P.; Seweryniak, D.; Sonzogni, A.; Uusitalo, J.; Wiedenhoever, I.; Wuosmaa, A. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Brumwell, F.; McMichael, G.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Paul, M.] Hebrew Univ Jerusalem, IL-90914 Jerusalem, Israel. [Segel, R. E.] Northwestern Univ, Dept Phys, Evanston, IL 60201 USA. RP Jiang, CL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU US Department of Energy [DE-AC0206CH11357, DE-FG02-98ER-41086] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC0206CH11357 (ANL) and DE-FG02-98ER-41086 (NWU). NR 27 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044613 DI 10.1103/PhysRevC.80.044613 PG 6 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900061 ER PT J AU Liu, SH Hamilton, JH Ramayya, AV Covello, A Gargano, A Itaco, N Luo, YX Rasmussen, JO Hwang, JK Daniel, AV Ter-Akopian, GM Zhu, SJ Ma, WC AF Liu, S. H. Hamilton, J. H. Ramayya, A. V. Covello, A. Gargano, A. Itaco, N. Luo, Y. X. Rasmussen, J. O. Hwang, J. K. Daniel, A. V. Ter-Akopian, G. M. Zhu, S. J. Ma, W. C. TI High spin structure of the neutron-rich nuclei I-137 and Cs-139 SO PHYSICAL REVIEW C LA English DT Article ID SPONTANEOUS FISSION; ISOTOPES; CF-252; EXCITATIONS; ARRAYS AB High spin excited states in the neutron-rich nuclei I-137 and Cs-139 were investigated from a study of the prompt gamma rays emitted in the spontaneous fission of Cf-252 with the Gammasphere detector array. Ten new excited levels with 18 new deexciting transitions were observed in Cs-139 and the level scheme of Cs-139 was extended up to 4670 keV. Spins and parities of levels in Cs-139 were firmly assigned up to 25/2(+). Three new levels were found in I-137. Shell model calculations were performed to interpret the experimental results. A good agreement between theory and experiment in both nuclei was found. C1 [Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Luo, Y. X.; Hwang, J. K.; Daniel, A. V.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Covello, A.; Itaco, N.] Dipartimento Sci Fis, I-80126 Naples, Italy. [Covello, A.; Gargano, A.; Itaco, N.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Luo, Y. X.; Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Daniel, A. V.; Ter-Akopian, G. M.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Ma, W. C.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. RP Liu, SH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RI Itaco, Nunzio/C-3838-2009 OI Itaco, Nunzio/0000-0002-9508-2613 FU US Department of Energy [DE-FG05-88ER40407, DE-FG02-95ER40939, DE-AC03-76SF00098]; National Natural Science Foundation of China [10775078]; Major State Basic Research Development Program [2007CB815005] FX The work at Vanderbilt University, Mississippi State University, and Lawrence Berkeley National Laboratory is supported by the US Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, DE-FG02-95ER40939, and DE-AC03-76SF00098. The work at Tsinghua University is supported by the National Natural Science Foundation of China under Grant No. 10775078 and by the Major State Basic Research Development Program under Grant No. 2007CB815005. NR 34 TC 10 Z9 12 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044314 DI 10.1103/PhysRevC.80.044314 PG 10 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900027 ER PT J AU Mokeev, VI Burkert, VD Lee, TSH Elouadrhiri, L Fedotov, GV Ishkhanov, BS AF Mokeev, V. I. Burkert, V. D. Lee, T. -S. H. Elouadrhiri, L. Fedotov, G. V. Ishkhanov, B. S. TI Model analysis of the ep -> e ' p pi(+)pi(-) electroproduction reaction on the proton SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; DOUBLE-PION-PHOTOPRODUCTION; VIRTUAL PHOTONS; BARYON RESONANCE; MESON PRODUCTION; ISOBAR CHANNELS; FORM-FACTORS; EXCITATION; PHYSICS AB Recent CLAS data on the p pi(+)pi(-) electroproduction off protons at 1.3 < W < 1.57 GeV and 0.25 < Q(2) < 0.6 GeV2 have been analyzed using a meson-baryon phenomenological model. By fitting nine onefold differential cross-section data for each W and Q(2) bin, the charged double-pion electroproduction mechanisms are identified from their manifestations in the observables. We have extracted the cross sections from amplitudes of each of the considered isobar channels as well as from their coherent sum. We also obtained nonresonant partial wave amplitudes of all contributing isobar channels that could be useful for advancing a complete coupled-channels analysis of all meson electroproduction C1 [Mokeev, V. I.; Lee, T. -S. H.] Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 23606 USA. [Mokeev, V. I.; Fedotov, G. V.; Ishkhanov, B. S.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, RU-119899 Moscow, Russia. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Ishkhanov, B. S.] Moscow MV Lomonosov State Univ, Dept Phys, RU-119899 Moscow, Russia. RP Mokeev, VI (reprint author), Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 23606 USA. RI Ishkhanov, Boris/E-1431-2012 NR 73 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 045212 DI 10.1103/PhysRevC.80.045212 PG 23 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900085 ER PT J AU Nasseripour, R Berman, BL Benmouna, N Ilieva, Y Laget, JM Adhikari, KP Amaryan, MJ Ambrozewicz, P Anghinolfi, M Baghdasaryan, H Ball, J Battaglieri, M Bedlinskiy, I Biselli, AS Bookwalter, C Branford, D Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Cole, PL Collins, P Corvisiero, P D'Angelo, A Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dhamija, S Dickson, R Djalali, C Dodge, GE Doughty, D Dupre, R Fedotov, G Fegan, S Fersch, R Fradi, A Gabrielyan, MY Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gothe, RW Griffioen, KA Guidal, M Guo, L Hakobyan, H Hanretty, C Hassall, N Heddle, D Hicks, K Hyde, CE Ireland, DG Isupov, EL Jawalkar, SS Johnstone, JR Joo, K Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kubarovsky, V Kuhn, SE Kuleshov, SV Kuznetsov, V Livingston, K Lu, HY Mayer, M McCracken, ME McKinnon, B Mineeva, T Mirazita, M Mokeev, V Moriya, K Morrison, B Munevar, E Nadel-Turonski, P Nepali, CS Niccolai, S Niculescu, G Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Pereira, SA Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Schumacher, RA Seraydaryan, H Sharabian, YG Sober, DI Sokhan, D Stepanyan, S Stepanyan, SS Stoler, P Strauch, S Suleiman, R Taiuti, M Tedeschi, DJ Tkachenko, S Ungaro, M Vineyard, MF Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Zhang, J Zhao, B Zhao, ZW AF Nasseripour, R. Berman, B. L. Benmouna, N. Ilieva, Y. Laget, J. M. Adhikari, K. P. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Baghdasaryan, H. Ball, J. Battaglieri, M. Bedlinskiy, I. Biselli, A. S. Bookwalter, C. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Cole, P. L. Collins, P. Corvisiero, P. D'Angelo, A. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dhamija, S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dupre, R. Fedotov, G. Fegan, S. Fersch, R. Fradi, A. Gabrielyan, M. Y. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Griffioen, K. A. Guidal, M. Guo, L. Hakobyan, H. Hanretty, C. Hassall, N. Heddle, D. Hicks, K. Hyde, C. E. Ireland, D. G. Isupov, E. L. Jawalkar, S. S. Johnstone, J. R. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Lu, H. Y. Mayer, M. McCracken, M. E. McKinnon, B. Mineeva, T. Mirazita, M. Mokeev, V. Moriya, K. Morrison, B. Munevar, E. Nadel-Turonski, P. Nepali, C. S. Niccolai, S. Niculescu, G. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Sober, D. I. Sokhan, D. Stepanyan, S. Stepanyan, S. S. Stoler, P. Strauch, S. Suleiman, R. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vineyard, M. F. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Photodisintegration of He-4 into p plus t SO PHYSICAL REVIEW C LA English DT Article ID 2-BODY PHOTODISINTEGRATION; CLAS; MECHANISMS; REGION; HE-4(GAMMA,P)H-3; NUCLEI; SYSTEM AB The two-body photodisintegration of He-4 into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid He-4 target. This is the first measurement of the photodisintegration of He-4 above 0.4 GeV. The differential cross sections for the gamma He-4 -> pt reaction were measured as a function of photon-beam energy and proton-scattering angle and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of He-3 that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV. C1 [Nasseripour, R.; Berman, B. L.; Benmouna, N.; Ilieva, Y.; Briscoe, W. J.; Munevar, E.; Niccolai, S.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA. [Laget, J. M.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Guo, L.; Heddle, D.; Joo, K.; Klein, F. J.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Sharabian, Y. G.; Stepanyan, S.; Weygand, D. P.; Wolin, E.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Dupre, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Collins, P.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Dey, B.; Dickson, R.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Girod, F. X.; Kuznetsov, V.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Dhamija, S.; Gabrielyan, M. Y.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Golovatch, E.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Fradi, A.; Guidal, M.; Niccolai, S.; Pisano, S.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Suleiman, R.] MIT, Cambridge, MA 02139 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Amaryan, M. J.; Careccia, S. L.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Biselli, A. S.; Khetarpal, P.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Fedotov, G.; Golovatch, E.; Isupov, E. L.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. [Djalali, C.; Gothe, R. W.; Lu, H. Y.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Baghdasaryan, H.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Fersch, R.; Griffioen, K. A.; Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Hakobyan, H.; Sharabian, Y. G.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Nasseripour, R (reprint author), George Washington Univ, Washington, DC 20052 USA. RI Ireland, David/E-8618-2010; Schumacher, Reinhard/K-6455-2013; Lu, Haiyun/B-4083-2012; D'Angelo, Annalisa/A-2439-2012; Sabatie, Franck/K-9066-2015; Protopopescu, Dan/D-5645-2012; Isupov, Evgeny/J-2976-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Kuleshov, Sergey/D-9940-2013 OI Ireland, David/0000-0001-7713-7011; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Sabatie, Franck/0000-0001-7031-3975; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Osipenko, Mikhail/0000-0001-9618-3013; Kuleshov, Sergey/0000-0002-3065-326X FU US Department of Energy [DE-FG02-95ER40901, DE-AC0584ER40150]; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; Korean Science and Engineering Foundation; UK Science and Technology Facilities Council (STFC) FX We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at Jefferson Lab that made this experiment possible. This work was supported by the US Department of Energy under Grant No. DE-FG02-95ER40901, the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the Korean Science and Engineering Foundation, and the UK Science and Technology Facilities Council (STFC). The Southeastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facility for the US Department of Energy under Contract No. DE-AC0584ER40150. NR 22 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044603 DI 10.1103/PhysRevC.80.044603 PG 11 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900051 ER PT J AU Schumaker, MA Cline, D Hackman, G Pearson, CJ Svensson, CE Wu, CY Andreyev, A Austin, RAE Ball, GC Bandyopadhyay, D Becker, JA Boston, AJ Boston, HC Buchmann, L Churchman, R Cifarelli, F Cooper, RJ Cross, DS Dashdorj, D Demand, GA Dimmock, MR Drake, TE Finlay, P Gallant, AT Garrett, PE Green, KL Grint, AN Grinyer, GF Harkness, LJ Hayes, AB Kanungo, R Lisetskiy, AF Leach, KG Lee, G Maharaj, R Martin, JP Moisan, F Morton, AC Mythili, S Nelson, L Newman, O Nolan, PJ Orce, JN Padilla-Rodal, E Phillips, AA Porter-Peden, M Ressler, JJ Roy, R Ruiz, C Sarazin, F Scraggs, DP Waddington, JC Wan, JM Whitbeck, A Williams, SJ Wong, J AF Schumaker, M. A. Cline, D. Hackman, G. Pearson, C. J. Svensson, C. E. Wu, C. Y. Andreyev, A. Austin, R. A. E. Ball, G. C. Bandyopadhyay, D. Becker, J. A. Boston, A. J. Boston, H. C. Buchmann, L. Churchman, R. Cifarelli, F. Cooper, R. J. Cross, D. S. Dashdorj, D. Demand, G. A. Dimmock, M. R. Drake, T. E. Finlay, P. Gallant, A. T. Garrett, P. E. Green, K. L. Grint, A. N. Grinyer, G. F. Harkness, L. J. Hayes, A. B. Kanungo, R. Lisetskiy, A. F. Leach, K. G. Lee, G. Maharaj, R. Martin, J. -P. Moisan, F. Morton, A. C. Mythili, S. Nelson, L. Newman, O. Nolan, P. J. Orce, J. N. Padilla-Rodal, E. Phillips, A. A. Porter-Peden, M. Ressler, J. J. Roy, R. Ruiz, C. Sarazin, F. Scraggs, D. P. Waddington, J. C. Wan, J. M. Whitbeck, A. Williams, S. J. Wong, J. TI Coulomb excitation of the proton-dripline nucleus Na-20 SO PHYSICAL REVIEW C LA English DT Article ID NE-19(P,GAMMA)NA-20 REACTION-RATE; STELLAR REACTION-RATE; HPGE CLOVER DETECTOR; HOT CNO CYCLE; DATA SHEETS; RP-PROCESS; TIGRESS; LEVEL; ISAC AB The low-energy structure of the proton dripline nucleus Na-20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na-20 beam of similar to 5 x 10(6) ions/s was Coulomb excited by a 0.5-mg/cm(2) Ti-nat target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while. rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2(+) ground state to the first excited 3(+) and 4(+) states was observed, and B(lambda L) values were determined using the 2(+) -> 0(+) de-excitation in Ti-48 as a reference. The resulting B(lambda L) down arrow values are B(E2; 3(+) -> 2(+)) = 55 +/- 6 e(2) fm(4) (17.0 +/- 1.9 W.u.), B(E2; 4(+) -> 2(+)) = 35.7 +/- 5.7 e(2) fm(4) (11.1 +/- 1.8 W.u.), and B(M1; 4(+) -> 3(+)) = 0.154 +/- 0.030 mu(2)(N) (0.086 +/- 0.017 W.u.). These measurements provide the first experimental determination of B(lambda L) values for this proton dripline nucleus of astrophysical interest. C1 [Schumaker, M. A.; Svensson, C. E.; Bandyopadhyay, D.; Demand, G. A.; Finlay, P.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Wong, J.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Cline, D.; Hayes, A. B.; Whitbeck, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Hackman, G.; Pearson, C. J.; Andreyev, A.; Ball, G. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Harkness, L. J.; Kanungo, R.; Lee, G.; Maharaj, R.; Morton, A. C.; Mythili, S.; Newman, O.; Padilla-Rodal, E.; Ruiz, C.; Williams, S. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Wu, C. Y.; Becker, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Austin, R. A. E.; Gallant, A. T.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Boston, A. J.; Boston, H. C.; Cooper, R. J.; Dimmock, M. R.; Grint, A. N.; Harkness, L. J.; Nelson, L.; Nolan, P. J.; Scraggs, D. P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Cross, D. S.; Ressler, J. J.; Wan, J. M.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Dashdorj, D.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Drake, T. E.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Lisetskiy, A. F.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Martin, J. -P.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Moisan, F.; Roy, R.] Univ Laval, Dept Phys, Quebec City, PQ G1K 7P4, Canada. [Mythili, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Newman, O.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. [Orce, J. N.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Porter-Peden, M.; Sarazin, F.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Waddington, J. C.] McMaster Univ, Dept Phys, Hamilton, ON L8S 4L8, Canada. RP Schumaker, MA (reprint author), Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. RI Ressler, Jennifer Jo/F-2279-2010; Morton, Colin/K-1561-2015 OI Morton, Colin/0000-0003-0214-7551 FU Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; Ontario Innovation Trust; US Department of Energy [DE-AC52-07-NA27344, DE-FG52-06-NA26194, DE-FG02-97-ER41042]; US National Science Foundation; Science and Technology Facilities Council of the United Kingdom FX This work has been partially supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Ontario Innovation Trust, and by the US Department of Energy by Lawrence Livermore National Laboratory under Contract Number DE-AC52-07-NA27344. The authors also acknowledge the support offered by the US Department of Energy under Grants DE-FG52-06-NA26194 and DE-FG02-97-ER41042, the US National Science Foundation, and the Science and Technology Facilities Council of the United Kingdom. TRIUMF receives federal funding via a contribution agreement from the National Research Council of Canada. NR 45 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044325 DI 10.1103/PhysRevC.80.044325 PG 14 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900038 ER PT J AU Trivedi, T Palit, R Negi, D Naik, Z Yang, YC Sun, Y Sheikh, JA Dhal, A Raju, MK Appannababu, S Kumar, S Choudhury, D Maurya, K Mahanto, G Kumar, R Singh, RP Muralithar, S Jain, AK Jain, HC Pancholi, SC Bhowmik, RK Mehrotra, I AF Trivedi, T. Palit, R. Negi, D. Naik, Z. Yang, Y. -C. Sun, Y. Sheikh, J. A. Dhal, A. Raju, M. K. Appannababu, S. Kumar, S. Choudhury, D. Maurya, K. Mahanto, G. Kumar, R. Singh, R. P. Muralithar, S. Jain, A. K. Jain, H. C. Pancholi, S. C. Bhowmik, R. K. Mehrotra, I. TI Shape evolution of the highly deformed Kr-75 nucleus examined with the Doppler-shift attenuation method SO PHYSICAL REVIEW C LA English DT Article ID PROJECTED SHELL-MODEL; HIGH-SPIN; SPECTROSCOPY; DEFORMATION; ISOTOPES AB High-spin states of the Kr-75 nucleus have been populated via the Cr-50(Si-28, 2pn)Kr-75 reaction at an incident beam energy of 90 MeV. Lifetimes of nine states up to spin I = 33/2 for the positive-parity band and seven states up to I = 27/2 for the negative-parity band have been measured using the Doppler-shift attenuation method. The deduced transition quadrupole moments Q(t) of these bands have been compared to the projected shell-model calculations to gain insight into the evolution of collectivity for the two experimentally studied bands in Kr-75. C1 [Trivedi, T.; Maurya, K.; Mehrotra, I.] Univ Allahabad, Dept Phys, Allahabad 211001, Uttar Pradesh, India. [Palit, R.; Naik, Z.; Jain, H. C.] Tata Inst Fundamental Res, Dept Nucl & Atom Phys, Mumbai 400005, Maharashtra, India. [Negi, D.; Mahanto, G.; Kumar, R.; Singh, R. P.; Muralithar, S.; Pancholi, S. C.; Bhowmik, R. K.] Inter Univ Accelerator Ctr, New Delhi 110067, India. [Yang, Y. -C.; Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Sun, Y.; Sheikh, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sheikh, J. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Sheikh, J. A.] Univ Kashmir, Dept Phys, Srinagar 190006, Jammu & Kashmir, India. [Dhal, A.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Raju, M. K.] Andhra Univ, Dept Nucl Phys, Visakhapatnam 530003, Andhra Pradesh, India. [Appannababu, S.] Maharaja Sayajirao Univ Baroda, Dept Phys, Baroda 390002, Gujarat, India. [Kumar, S.] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. [Choudhury, D.; Jain, A. K.] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, Uttar Pradesh, India. RP Trivedi, T (reprint author), Univ Allahabad, Dept Phys, Allahabad 211001, Uttar Pradesh, India. RI Mukhi, Kumar Raju/C-8099-2016; Sun, Yang/P-2417-2015; Palit, Rudrajyoti/F-5185-2012; Selaboina, Appannababu/J-8732-2014 OI Mukhi, Kumar Raju/0000-0002-2717-281X; Selaboina, Appannababu/0000-0002-8121-8743 FU IUAC [UFUP-41311]; National Natural Science Foundation of China [10875077] FX We thank the staff members of the Pelletron facility and target laboratory of IUAC. Financial support by IUAC (UFUP-41311) is gratefully acknowledged. Research at SJTU (Y.-C.Y. and Y.S.) was supported by the National Natural Science Foundation of China under Contract No. 10875077. NR 21 TC 6 Z9 6 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 047302 DI 10.1103/PhysRevC.80.047302 PG 4 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900100 ER PT J AU Vogt, R Randrup, J Pruet, J Younes, W AF Vogt, R. Randrup, J. Pruet, J. Younes, W. TI Event-by-event study of prompt neutrons from Pu-239(n, f) SO PHYSICAL REVIEW C LA English DT Article ID FISSION FRAGMENTS; NUCLEAR-FISSION; ENERGY; MULTIPLICITY; FLUCTUATIONS; EMISSION; SPECTRA; CF252; PU239; U-233 AB Employing a recently developed Monte Carlo model, we study the fission of Pu-240 induced by neutrons with energies from thermal to just below the threshold for second-chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV. C1 [Vogt, R.; Pruet, J.; Younes, W.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Randrup, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. FU US Department of Energy [DE-AC52-07NA27344, DE-AC02-05CH11231]; National Science Foundation [NSF PHY-0555660] FX We acknowledge many helpful discussions with D. A. Brown, M.-A. Descalle, D. Gogny, E. Ormand, P. Moller, E. B. Norman, W. J. Swiatecki, and P. Talou. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (R. V., J. P., and W. Y.) and by the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 (J. R.) and was also supported in part by the National Science Foundation Grant NSF PHY-0555660 (R. V.). NR 48 TC 36 Z9 36 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 044611 DI 10.1103/PhysRevC.80.044611 PG 16 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900059 ER PT J AU Williams, M Krahn, Z Applegate, D Bellis, M Meyer, CA Adhikari, KP Anghinolfi, M Baghdasaryan, H Ball, J Battaglieri, M Bedlinskiy, I Berman, BL Biselli, AS Bookwalter, C Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Cole, PL Collins, P Crede, V D'Angelo, A Daniel, A De Vita, R De Sanctis, E Deur, A Dey, B Dhamija, S Dickson, R Djalali, C Dodge, GE Doughty, D Dugger, M Dupre, R El Alaoui, A Elouadrhiri, L Eugenio, P Fegan, S Fradi, A Gabrielyan, MY Garcon, M Gilfoyle, GP Giovanetti, KL Girod, FX Gohn, W Golovatch, E Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Hafidi, K Hakobyan, H Hanretty, C Hassall, N Hicks, K Holtrop, M Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Jawalkar, SS Jo, HS Johnstone, JR Joo, K Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kubarovsky, V Kuleshov, SV Kuznetsov, V Livingston, K Lu, HY Mayer, M McAndrew, J McCracken, ME McKinnon, B Mikhailov, K Mineeva, T Mirazita, M Mokeev, V Moriya, K Morrison, B Munevar, E Nadel-Turonski, P Nepali, CS Niccolai, S Niculescu, G Niculescu, I Niroula, MR Niyazov, RA Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Pereira, SA Perrin, Y Pieschacon, D Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Schott, D Schumacher, RA Seraydaryan, H Sharabian, YG Smith, ES Sober, DI Sokhan, D Stepanyan, SS Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Tkachenko, S Ungaro, M Vineyard, MF Voutier, E Watts, DP Weinstein, LB Weygand, DP Wood, MH Zhang, J Zhao, B AF Williams, M. Krahn, Z. Applegate, D. Bellis, M. Meyer, C. A. Adhikari, K. P. Anghinolfi, M. Baghdasaryan, H. Ball, J. Battaglieri, M. Bedlinskiy, I. Berman, B. L. Biselli, A. S. Bookwalter, C. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Cole, P. L. Collins, P. Crede, V. D'Angelo, A. Daniel, A. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dhamija, S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dugger, M. Dupre, R. El Alaoui, A. Elouadrhiri, L. Eugenio, P. Fegan, S. Fradi, A. Gabrielyan, M. Y. Garcon, M. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Gohn, W. Golovatch, E. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Jawalkar, S. S. Jo, H. S. Johnstone, J. R. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Lu, H. Y. Mayer, M. McAndrew, J. McCracken, M. E. McKinnon, B. Mikhailov, K. Mineeva, T. Mirazita, M. Mokeev, V. Moriya, K. Morrison, B. Munevar, E. Nadel-Turonski, P. Nepali, C. S. Niccolai, S. Niculescu, G. Niculescu, I. Niroula, M. R. Niyazov, R. A. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Perrin, Y. Pieschacon, D. Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Schott, D. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Smith, E. S. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vineyard, M. F. Voutier, E. Watts, D. P. Weinstein, L. B. Weygand, D. P. Wood, M. H. Zhang, J. Zhao, B. CA CLAS Collaboration TI Differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta ' SO PHYSICAL REVIEW C LA English DT Article ID PHOTOPRODUCTION AB High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta' have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta' results are the most precise to date and provide the largest energy and angular coverage. The. measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta' measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states. C1 [Williams, M.; Krahn, Z.; Applegate, D.; Bellis, M.; Meyer, C. A.; Biselli, A. S.; Dey, B.; Dickson, R.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Dupre, R.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Collins, P.; Dugger, M.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Garcon, M.; Girod, F. X.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [McAndrew, J.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Gabrielyan, M. Y.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Berman, B. L.; Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA. [Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Pieschacon, D.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [El Alaoui, A.; Fradi, A.; Guidal, M.; Jo, H. S.; Niccolai, S.; Perrin, Y.; Pisano, S.; Voutier, E.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Mikhailov, K.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Baghdasaryan, H.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Khetarpal, P.; Kubarovsky, V.; Niyazov, R. A.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Elouadrhiri, L.; Guo, L.; Kubarovsky, V.; Mokeev, V.; Niyazov, R. A.; Raue, B. A.; Sharabian, Y. G.; Smith, E. S.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Baghdasaryan, H.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Griffioen, K. A.; Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Williams, M (reprint author), Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; D'Angelo, Annalisa/A-2439-2012; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015 OI Osipenko, Mikhail/0000-0001-9618-3013; D'Angelo, Annalisa/0000-0003-3050-4907; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975 FU US Department of Energy [DE-FG0287ER40315]; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; Science and Technology Facilities Council (STFC); Korean Science and Engineering Foundation; United States DOE [AC05-84ER40150] FX We thank Megan Friend for her valuable work on background subtraction studies for these reactions. We also thank the staff of the Accelerator and the Physics Divisions at the Thomas Jefferson National Accelerator Facility who made this experiment possible. This work was supported in part by the US Department of Energy (under Grant DE-FG0287ER40315), the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the Science and Technology Facilities Council (STFC), and the Korean Science and Engineering Foundation. The Southeastern Universities Research Association (SURA) operated Jefferson Lab under United States DOE Contract AC05-84ER40150 during this work. NR 19 TC 77 Z9 77 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT PY 2009 VL 80 IS 4 AR 045213 DI 10.1103/PhysRevC.80.045213 PG 13 WC Physics, Nuclear SC Physics GA 513VT UT WOS:000271352900086 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Tesarek, R Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P-H Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B-Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S-C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C-S Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Tesarek, R. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S-Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of the Omega(-)(b) baryon and measurement of the properties of the Xi(-)(b) and Omega(-)(b) baryons SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC COLLISIONS; QUARK PRODUCTION; CROSS-SECTION AB We report the observation of the bottom, doubly-strange baryon Omega(-)(b) through the decay chain Omega(-)(b)-> j/psi Omega(-), where J/psi ->mu(+)mu(-), Omega(-)->Lambda K-, and Lambda -> p pi(-), using 4.2 fb(-1) of data from p (p) over bar collisions at root s = 1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose The Omega(-)(b) mass is measured to be 6054.4 +/- 6.8(stat) +/- 0.9(syst) MeV/c(2). The lifetime of the Omega(-)(b) baryon is measured to be 1.13(-0.40)(+0.53)(stat) +/- 0.02(syst) ps. In addition, for the Xi(-)(b) baryon we measure a mass of 5790.9 +/- 2.6(stat) +/- 0.8(syst) MeV/c(2) and a lifetime of 1.56(-0.25)(+0.27)(stat) +/- 0.02(syst) ps. Under the assumption that the Xi(-)(b) and Omega(-)(b) are produced with similar kinematic distributions to the Lambda(0)(b) baryon, we find sigma(Xi(-)(b))B(Xi(-)(b)-> J/psi Xi(-)/sigma(Lambda(0)(b))B(Lambda(0)(b)-> J/psi Lambda) = 0.167(-0.025)(+0.037)(stat) +/- 0.012(syst) and sigma(Omega(-)(b))B(Omega(-)(b)-> J/psi Omega(-)/sigma(Lambda(0)(b))B(Lambda(0)(b)-> J/psi Lambda) = 0.045(-0.012)(+0.017)(stat) +/- 0.004(syst) for baryons produced with transverse momentum in the range of 6-20 GeV/c. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S-Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giokaris, N.; Hou, S.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Mussini, M.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Tesarek, R.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S-C.; Lin, C-S; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P-H; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P-H; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P-H; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P-H; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, IN2P3, CNRS, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Udine, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Punzi, Giovanni/J-4947-2012; Moon, Chang-Seong/J-3619-2014 OI Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Punzi, Giovanni/0000-0002-8346-9052; Moon, Chang-Seong/0000-0001-8229-7829 NR 21 TC 47 Z9 47 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 072003 DI 10.1103/PhysRevD.80.072003 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shekhar, R Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shekhar, R. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Higgs boson produced in association with Z -> l(+)l(-) using the matrix element method at CDF II SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; TOP-QUARK AB We present a search for associated production of the standard model Higgs boson and a Z boson where the Z boson decays to two leptons and the Higgs decays to a pair of b quarks in p (p) over bar collisions at the Fermilab Tevatron. We use event probabilities based on standard model matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2: 7 fb(-1) we see no evidence of a Higgs boson with a mass between 100 GeV=c(2) and 150 GeV/c(2). We set 95% confidence level upper limits on the cross section for ZH production as a function of the Higgs boson mass m(H); the limit is 8.2 times the standard model prediction at m(H) 115 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Temp Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Shekhar, R.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Temp Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 23 TC 7 Z9 7 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 071101 DI 10.1103/PhysRevD.80.071101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400001 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Potter, C. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Combination of t(t)over-bar cross section measurements and constraints on the mass of the top quark and its decays into charged Higgs bosons SO PHYSICAL REVIEW D LA English DT Article ID QCD CORRECTIONS; COLLISIONS; PHYSICS; EVENTS AB We combine measurements of the top quark pair production cross section in p (p) over bar collisions in the l + jets, ll, and tau l final states ( where l is an electron or muon) at a center of mass energy of root s = 1.96 TeV in 1 fb(-1) of data collected with the D0 detector. For a top quark mass of 170 GeV/c(2), we obtain sigma(t (t) over bar) = 8.18(-0.87)(+0.98) pb in agreement with the theoretical prediction. Based on predictions from higher order quantum chromodynamics, we extract a mass for the top quark from the combined t (t) over bar cross section, consistent with the world average of the top quark mass. In addition, the ratios of t (t) over bar cross sections in different final states are used to set upper limits on the branching fractions B(t -> H(+)b -> tau(+) vb) and B(t -> H(+)b -> c (s) over barb) as a function of the charged Higgs boson mass. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] USAUniv Joseph Fourier Grenoble 1, LPSC, CNRS, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] USAUniv Paris Sud, LAL, IN2P3, CNRS, Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] USAUniv Paris 6, LPNHE, IN2P3, CNRS, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] USAUniv Paris 7, LPNHE, IN2P3, CNRS, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Georg August Univ G Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Ancu, Lucian Stefan/F-1812-2010; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013 OI Belanger-Champagne, Camille/0000-0003-2368-2617; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Li, Liang/0000-0001-6411-6107; Christoudias, Theodoros/0000-0001-9050-3880; Williams, Mark/0000-0001-5448-4213; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489 NR 23 TC 53 Z9 53 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 071102 DI 10.1103/PhysRevD.80.071102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400002 ER PT J AU Acharya, BS Kane, G Watson, S Kumar, P AF Acharya, Bobby Samir Kane, Gordon Watson, Scott Kumar, Piyush TI Nonthermal "WIMP miracle'' SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL GRAVITINO REGENERATION; DARK-MATTER; MODULI PROBLEM; DECAY; SUPERSYMMETRY; SUPERGRAVITY; DILATION; BREAKING; POLONYI AB Light scalar fields with only gravitational strength couplings are typically present in UV complete theories of physics beyond the standard model. In the early universe it is natural for these fields to dominate the energy density, and their subsequent decay-if prior to big bang nucleosynthesis-will typically yield some dark matter particles in their decay products. In this paper we make the observation that a Nonthermal "WIMP Miracle'' may result: that is, in the simplest solution to the cosmological moduli problem, nonthermally produced WIMPs can naturally account for the observed dark matter relic density. C1 [Acharya, Bobby Samir] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy. [Acharya, Bobby Samir] Ist Nazl Fis Nucl, Sez Trieste, Milan, Italy. [Kane, Gordon; Watson, Scott] Michigan Ctr Theoret Phys, Ann Arbor, MI USA. [Kumar, Piyush] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Kumar, Piyush] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Acharya, BS (reprint author), Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, Trieste, Italy. EM bacharya@cern.ch; gkane@umich.edu; watsongs@umich.edu; kpiyush@berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF [PHY-04-57315, PHY-0455649] FX We would like to thank Paolo Creminelli, Guido D'Amico, Dan Grin, Jonathan Heckman, Shuntaro Nakamura, and Jorge Norena for useful discussions. The work of P. K. is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and NSF Grant No. PHY-04-57315. The research of G. K. and S. W. is supported in part by the Department of Energy and the Michigan Center for Theoretical Physics. S. W. would also like to thank U of T-Austin for financial support under National Science Foundation Grant No. PHY-0455649. NR 60 TC 82 Z9 82 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 8 AR 083529 DI 10.1103/PhysRevD.80.083529 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513WB UT WOS:000271353700044 ER PT J AU Agashe, K Gopalakrishna, S Han, T Huang, GY Soni, A AF Agashe, Kaustubh Gopalakrishna, Shrihari Han, Tao Huang, Gui-Yu Soni, Amarjit TI LHC signals for warped electroweak charged gauge bosons SO PHYSICAL REVIEW D LA English DT Review ID RANDALL-SUNDRUM MODEL; COMPOSITE HIGGS-MODEL; FLAVOR VIOLATION; EXTRA DIMENSIONS; BULK FIELDS; HIERARCHY; SYMMETRY; GEOMETRY; MIXINGS; DECAYS AB We study signals at the LHC for the Kaluza-Klein (KK) excitations of electroweak charged gauge bosons in the framework of the standard model (SM) fields propagating in the bulk of a warped extra dimension. Such a scenario can solve both the Planck-weak and flavor hierarchy problems of the SM. There are two such charged states in this scenario with couplings to light quarks and leptons being suppressed relative to those in the SM, whereas the couplings to top/bottom quarks are enhanced, similar to the case of electroweak neutral gauge bosons previously studied. However, unlike the case of electroweak neutral gauge bosons, there is no irreducible QCD background (including pollution from possibly degenerate KK gluons) for decays to top + bottom final states so that this channel is useful for the discovery of the charged states. Moreover, decays of electroweak charged gauge bosons to longitudinal W, Z and Higgs are enhanced just as for the neutral bosons. However, unlike for the neutral gauge bosons, the purely leptonic (and hence clean) decay mode of the WZ is fully reconstructible so that the ratio of the signal to the SM (electroweak) background can potentially be enhanced by restricting to the resonance region more efficiently. We show that such final states can give sensitivity to 2(3) TeV masses with an integrated luminosity of 100(300) fb(-1). We emphasize that improvements in discriminating a QCD jet from a highly boosted hadronically decaying W, and a highly boosted top jet from a bottom jet will enhance the reach for these KK particles, and that the signals we study for the warped extra dimensional model might actually be applicable also to a wider class of nonsupersymmetric models of electroweak symmetry breaking. C1 [Agashe, Kaustubh] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Gopalakrishna, Shrihari; Soni, Amarjit] Brookhaven Natl Lab, Upton, NY 11973 USA. [Han, Tao; Huang, Gui-Yu] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Huang, Gui-Yu] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Agashe, K (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. OI Han, Tao/0000-0002-5543-0716; Gopalakrishna, Shrihari/0000-0002-3476-0011 FU NSF [PHY-0652363]; DOE [DE-AC02-98CH10886, DE-FG02-95ER40896, DE-FG02-91ER40674]; Wisconsin Alumni Research Foundation; U.C. Davis HEFTI program FX We would like to thank H. Davoudiasl, D. E. Kaplan, W. Kilgore, F. Paige, G. Perez, Z. Si, C. Sturm, M. Strassler, and R. Sundrum for discussions; A. Belyaev for help with CALCHEP; and S. Mrenna and P. Skands for help with PYTHIA. K. A. is supported in part by NSF Grant No. PHY-0652363. S. G. and A. S. are supported in part by the DOE Grant No. DE-AC02-98CH10886 (BNL). T. H and G.-Y. H. are supported in part by DOE Grant No. DE-FG02-95ER40896 and in part by the Wisconsin Alumni Research Foundation, and G.-Y. H. is also supported by DOE Grant No. DE-FG02-91ER40674 and by the U.C. Davis HEFTI program. NR 130 TC 59 Z9 59 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 075007 DI 10.1103/PhysRevD.80.075007 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400082 ER PT J AU Almeida, LG Sterman, G Vogelsang, W AF Almeida, Leandro G. Sterman, George Vogelsang, Werner TI Threshold resummation for dihadron production in hadronic collisions SO PHYSICAL REVIEW D LA English DT Article ID HIGGS-BOSON PRODUCTION; QCD HARD SCATTERING; TO-LEADING-ORDER; CROSS-SECTIONS; PAIR PRODUCTION; PP COLLISIONS; DRELL-YAN; LARGE-X; ANNIHILATION; DIS AB We study the resummation of large logarithmic perturbative corrections to the partonic cross sections relevant for dihadron production in hadronic collisions, H1H2 -> h(1)h(2)X, at high invariant mass of the produced hadron pair. These corrections arise near the threshold for the partonic reaction and are associated with soft-gluon emission. We perform the resummation to next-to-leading logarithmic accuracy, and show how to incorporate consistently cuts in rapidity and transverse momentum of the observed particles. We present numerical results for fixed-target and ISR regimes and find enhancements over the next-to-leading order cross section, which significantly improve the agreement between theoretical predictions and data. C1 [Almeida, Leandro G.; Sterman, George] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Almeida, LG (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. NR 64 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074016 DI 10.1103/PhysRevD.80.074016 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400046 ER PT J AU Anderson, PR Molina-Paris, C Mottola, E AF Anderson, Paul R. Molina-Paris, Carmen Mottola, Emil TI Cosmological horizon modes and linear response in de Sitter spacetime SO PHYSICAL REVIEW D LA English DT Article ID WEAKLY INHOMOGENEOUS COSMOLOGIES; CONFORMALLY FLAT SPACETIMES; QUANTUM STRESS ENERGY; SEMICLASSICAL EQUATIONS; PARTICLE-PRODUCTION; GENERAL-RELATIVITY; DESITTER SPACE; EARLY UNIVERSE; DARK ENERGY; GRAVITY AB Linearized fluctuations of quantized matter fields and the spacetime geometry around de Sitter space are considered in the case that the matter fields are conformally invariant. Taking the unperturbed state of the matter to be the de Sitter invariant Bunch-Davies state, the linear variation of the stress tensor about its self-consistent mean value serves as a source for fluctuations in the geometry through the semiclassical Einstein equations. This linear response framework is used to investigate both the importance of quantum backreaction and the validity of the semiclassical approximation in cosmology. The full variation of the stress tensor delta < T(b)(a)> bi contains two kinds of terms: (1) those that depend explicitly upon the linearized metric variation delta g(cd) through the <[T(b)(a);T(c)(d)]> causal response function; and (2) state dependent variations, independent of delta g(cd). For perturbations of the first kind, the criterion for the validity of the semiclassical approximation in de Sitter space is satisfied for fluctuations on all scales well below the Planck scale. The perturbations of the second kind contain additional massless scalar degrees of freedom associated with changes of state of the fields on the cosmological horizon scale. These scalar degrees of freedom arise necessarily from the local auxiliary field form of the effective action associated with the trace anomaly, are potentially large on the horizon scale, and therefore can lead to substantial nonlinear quantum backreaction effects in cosmology. C1 [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Anderson, Paul R.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain. [Anderson, Paul R.] Univ Valencia, IFIC, CSIC, E-46100 Valencia, Spain. [Molina-Paris, Carmen] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England. [Mottola, Emil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Anderson, PR (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM anderson@wfu.edu; carmen@maths.leeds.ac.uk; emil@lanl.gov OI Mottola, Emil/0000-0003-1067-1388 NR 53 TC 22 Z9 22 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 8 AR 084005 DI 10.1103/PhysRevD.80.084005 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513WB UT WOS:000271353700054 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Lueck, T Volk, A Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolkul, P. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Lueck, T. Volk, A. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of D-0-(D)over-bar(0) mixing using the ratio of lifetimes for the decays D-0 -> K-pi(+) and K+K- SO PHYSICAL REVIEW D LA English DT Article AB We measure the rate of D-0-(D) over bar0 mixing with the observable y(CP) = (tau(K pi)/tau(KK)) - 1, where tau(KK) and tau(K pi) are, respectively, the mean lifetimes of CP-even D-0 -> K+K- and CP-mixed D-0 -> K-pi(+) decays, using a data sample of 384 fb(-1) collected by the BABAR detector at the SLAC PEP-II asymmetric-energy B Factory. From a sample of D-0 and (D) over bar0 decays where the initial flavor of the decaying meson is not determined, we obtain y(CP) = [1.12 +/- 0.26(stat) +/- 0.22(syst)]%, which excludes the no-mixing hypothesis at 3.3 sigma, including both statistical and systematic uncertainties. This result is in good agreement with a previous BABAR measurement of y(CP) obtained from a sample of D*(+) -> D-0 pi(+) events, where the D-0 rho decays to K-pi(+), K+K-, and pi(+)pi(-), which is disjoint with the untagged D-0 events used here. Combining the two results taking into account statistical and systematic uncertainties, where the systematic uncertainties are assumed to be 100% correlated, we find y(CP) = [1.16 +/- 0.22(stat) +/- 0.18(syst)]%, which excludes the no-mixing hypothesis at 4.1 sigma. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fac Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, IN2P3, Univ Paris 06,CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195 NR 21 TC 33 Z9 33 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 071103 DI 10.1103/PhysRevD.80.071103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400003 ER PT J AU Battaglieri, M De Vita, R Szczepaniak, AP Adhikari, KP Amaryan, MJ Anghinolfi, M Baghdasaryan, H Bedlinskiy, I Bellis, M Bibrzycki, L Biselli, AS Bookwalter, C Branford, D Briscoe, WJ Burkert, VD Careccia, SL Carman, DS Clinton, E Cole, PL Collins, P Crede, V Dale, D D'Angelo, A Daniel, A Dashyan, N De Sanctis, E Deur, A Dhamija, S Djalali, C Dodge, GE Doughty, D Drozdov, V Egiyan, H Eugenio, P Fedotov, G Fegan, S Fradi, A Gabrielyan, MY Gan, L Garcon, M Gasparian, A Gilfoyle, GP Giovanetti, KL Girod, FX Glamazdin, O Goett, J Goetz, JT Gohn, W Golovatch, E Gothe, RW Griffioen, KA Guidal, M Guo, L Hafidi, K Hakobyan, H Hanretty, C Hassall, N Hicks, K Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Isupov, EL Johnstone, JR Joo, K Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kossov, M Kubarovsky, A Kubarovsky, V Kuleshov, SV Kuznetsov, V Laget, JM Lesniak, L Livingston, K Lu, HY Mayer, M McCracken, ME McKinnon, B Meyer, CA Mikhailov, K Mineeva, T Mirazita, M Mochalov, V Mokeev, V Moriya, K Munevar, E Nadel-Turonski, P Nakagawa, I Nepali, CS Niccolai, S Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Park, K Park, S Paris, M Pasyuk, E Pereira, SA Pisano, S Pivnyuk, N Pogorelko, O Pozdniakov, S Price, JW Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salgado, C Schott, D Schumacher, RA Seraydaryan, H Sharabian, YG Sober, DI Sokhan, D Stavinsky, A Stepanyan, S Stepanyan, SS Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Teymurazyan, A Tkachenko, S Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Zana, L Zhang, J Zhao, B Zhao, ZW AF Battaglieri, M. De Vita, R. Szczepaniak, A. P. Adhikari, K. P. Amaryan, M. J. Anghinolfi, M. Baghdasaryan, H. Bedlinskiy, I. Bellis, M. Bibrzycki, L. Biselli, A. S. Bookwalter, C. Branford, D. Briscoe, W. J. Burkert, V. D. Careccia, S. L. Carman, D. S. Clinton, E. Cole, P. L. Collins, P. Crede, V. Dale, D. D'Angelo, A. Daniel, A. Dashyan, N. De Sanctis, E. Deur, A. Dhamija, S. Djalali, C. Dodge, G. E. Doughty, D. Drozdov, V. Egiyan, H. Eugenio, P. Fedotov, G. Fegan, S. Fradi, A. Gabrielyan, M. Y. Gan, L. Garcon, M. Gasparian, A. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Glamazdin, O. Goett, J. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Griffioen, K. A. Guidal, M. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Hicks, K. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Isupov, E. L. Johnstone, J. R. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kossov, M. Kubarovsky, A. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Laget, J. M. Lesniak, L. Livingston, K. Lu, H. Y. Mayer, M. McCracken, M. E. McKinnon, B. Meyer, C. A. Mikhailov, K. Mineeva, T. Mirazita, M. Mochalov, V. Mokeev, V. Moriya, K. Munevar, E. Nadel-Turonski, P. Nakagawa, I. Nepali, C. S. Niccolai, S. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Paris, M. Pasyuk, E. Pereira, S. Anefalos Pisano, S. Pivnyuk, N. Pogorelko, O. Pozdniakov, S. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salgado, C. Schott, D. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. Stepanyan, S. S. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Teymurazyan, A. Tkachenko, S. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Photoproduction of pi(+)pi(-) meson pairs on the proton SO PHYSICAL REVIEW D LA English DT Article ID PI-PI-DYNAMICS; COUPLED-CHANNEL; DIFFRACTION DISSOCIATION; POLARIZED PHOTONS; HIGH-STATISTICS; GEV-C; SYSTEM; MODEL; CLAS; CHAMBER AB The exclusive reaction gamma p -> pp(+)pi(-) was studied in the photon energy range 3.0-3.8 GeV and the momentum transfer range 0.4 < -t < 1.0 GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range, the integrated luminosity was about 20 pb(-1). The reaction was isolated by detecting the pi(+) and proton in CLAS, and reconstructing the pi(-) via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the S, P, and D-waves, in the M pi+pi- mass range 0.4-1.4 GeV, were derived performing a partial wave expansion of the extracted moments. Beside the dominant contribution of the rho(770) meson in the P-wave, evidence for the f(0)(980) and the f(2)(1270) mesons was found in the S and D-waves, respectively. The differential production cross sections d sigma/dt for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the f(0)(980) has been measured in a photoproduction experiment. C1 [Battaglieri, M.; De Vita, R.; Anghinolfi, M.; Drozdov, V.; Golovatch, E.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Szczepaniak, A. P.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA. [Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Collins, P.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Garcon, M.; Girod, F. X.; Laget, J. M.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Gabrielyan, M. Y.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Paris, M.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA. [Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Fradi, A.; Guidal, M.; Niccolai, S.; Pisano, S.] ORSAY, Inst Phys Nucl, Orsay, France. [Bedlinskiy, I.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Mochalov, V.] Inst High Energy Phys, Protvino 142281, Russia. [Giovanetti, K. L.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Teymurazyan, A.] Univ Kentucky, Lexington, KY 40506 USA. [Glamazdin, O.] Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Clinton, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Bibrzycki, L.; Lesniak, L.] PAN, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Egiyan, H.; Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA. [Gasparian, A.] N Carolina Agr & Tech State Univ, Greensboro, NC 27455 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Amaryan, M. J.; Careccia, S. L.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Kubarovsky, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Biselli, A. S.; Goett, J.; Khetarpal, P.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Nakagawa, I.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Fedotov, G.; Golovatch, E.; Isupov, E. L.; Mokeev, V.; Osipenko, M.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Egiyan, H.; Guo, L.; Kubarovsky, V.; Laget, J. M.; Mokeev, V.; Paris, M.; Raue, B. A.; Sharabian, Y. G.; Stepanyan, S.; Weygand, D. P.; Wolin, E.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Baghdasaryan, H.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Battaglieri, M (reprint author), Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Drozdov, Vadim/E-5456-2012; Zhao, Bo/J-6819-2012; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Goett, Johnny/D-1277-2012; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012 OI Osipenko, Mikhail/0000-0001-9618-3013; Glamazdin, Alexander/0000-0002-4172-7324; Hyde, Charles/0000-0001-7282-8120; Bellis, Matthew/0000-0002-6353-6043; Zhao, Bo/0000-0003-3171-5335; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011; NR 50 TC 17 Z9 17 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 072005 DI 10.1103/PhysRevD.80.072005 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400013 ER PT J AU Beane, SR Detmold, W Luu, TC Orginos, K Parreno, A Savage, MJ Torok, A Walker-Loud, A AF Beane, Silas R. Detmold, William Luu, Thomas C. Orginos, Kostas Parreno, Assumpta Savage, Martin J. Torok, Aaron Walker-Loud, Andre CA NPLQCD Collaboration TI High statistics analysis using anisotropic clover lattices. II. Three-baryon systems SO PHYSICAL REVIEW D LA English DT Article ID EXPONENTIAL ERROR REDUCTION; QUANTUM-FIELD THEORIES; SCATTERING MATRIX; QCD; SYMMETRIES; STATES AB We present the results of an exploratory lattice QCD calculation of three-baryon systems through a high statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m(pi) similar to 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating operators with the quantum numbers of the Xi(0)Xi(0)n system, one of the least demanding three-baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E(Xi 0 Xi 0n) = 3877.9 +/- 6.9 +/- 9.2 +/- 3.3 MeV corresponding to an energy shift due to interactions of delta E(Xi 0 Xi 0n) = E(Xi 0 Xi 0n) - 2M(Xi 0) - M(n) = 4.6 +/- 5.0 +/- 7.9 +/- 4.2 MeV. There are a significant number of time slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multibaryon systems, and shows that lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight. C1 [Beane, Silas R.; Torok, Aaron] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Detmold, William; Orginos, Kostas; Walker-Loud, Andre] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Detmold, William; Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Luu, Thomas C.] Lawrence Livermore Natl Lab, Div N, Livermore, CA 94551 USA. [Parreno, Assumpta] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Parreno, Assumpta] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Savage, Martin J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. OI Detmold, William/0000-0002-0400-8363 FU NSF [CCF-0728915]; NERSC [DE-AC02-05CH11231]; Institute for Nuclear Theory, Centro Nacional de Supercomputacion ( Barcelona, Spain); Lawrence Livermore National Laboratory; U. S. Department of Energy [DE-FG03-97ER4014, DE-AC0506OR23177, DE-FG0204ER41302, DE-FG02-07ER41527]; Jeffress Memorial Trust [J-813]; National Science Foundation CAREER [PHY-0645570]; U. S. DOE by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; Spanish Consolider-Ingenio 2010 Programme CPAN [CSD200700042]; MICINN ( Spain) [FIS2008-01661]; FEDER [2005SGR-00343]; Generalitat de Catalunya; EU [MRTN-CT-2006-035482] FX We thank R. Edwards and B. Joo for help with the QDP++/CHROMA programming environment [ 32] and D. B. Kaplan for discussions. K.O. would like to thank A. Stathopoulos for useful discussions on numerical linear algebra issues and for his contribution in the development of the EigCG algorithm [ 31]. EigCG development was supported in part by NSF Grant No. CCF-0728915. We also thank the Hadron Spectrum Collaboration for permitting us to use the anisotropic gauge-field configurations and extending the particular ensemble used herein. We gratefully acknowledge the computational time provided by NERSC ( Office of Science of the U. S. Department of Energy, No. DE-AC02-05CH11231), the Institute for Nuclear Theory, Centro Nacional de Supercomputacion ( Barcelona, Spain), Lawrence Livermore National Laboratory, and the National Science Foundation through Teragrid resources provided by the National Center for Supercomputing Applications and the Texas Advanced Computing Center. Computational support at Thomas Jefferson National Accelerator Facility and Fermi National Accelerator Laboratory was provided by the USQCD Collaboration under The Secret Life of a Quark, a U. S. Department of Energy SciDAC project (http://www.scidac.gov/physics/quarks.html). The work of M. J. S. was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-97ER4014. The work of K. O. and W. D. was supported in part by the U. S. Department of Energy Contract No. DE-AC0506OR23177 (JSA) and DOE Grant No. DE-FG0204ER41302. K. O. and A. W. L. were supported in part by the Jeffress Memorial Trust, Grant No. J-813 and DOE OJI Grant No. DE-FG02-07ER41527. The work of S. R. B. and A. T. was supported in part by the Grant No. PHY-0645570. Part of this work was performed under theNational Science Foundation CAREER auspices of the U. S. DOE by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. The work of A. P. is partly supported by the Spanish Consolider-Ingenio 2010 Programme CPAN CSD200700042, by Grants No. FIS2008-01661 from MICINN ( Spain) and FEDER and No. 2005SGR-00343 from Generalitat de Catalunya, and by the EU Contract FLAVIAnet No. MRTN-CT-2006-035482. NR 33 TC 49 Z9 49 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074501 DI 10.1103/PhysRevD.80.074501 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400068 ER PT J AU Berger, EL Cao, QH Low, I AF Berger, Edmond L. Cao, Qing-Hong Low, Ian TI Model independent constraints among the Wtb, Zb(b)over-bar, and Zt(t)over-bar couplings SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; QUARK PAIR PRODUCTION; TOP-QUARK; STANDARD-MODEL; GAUGE BOSONS; DECAY; HIERARCHY; COLLIDERS; HIGGS; TESTS AB Using an effective Lagrangian approach, we perform a model-independent analysis of the interactions among electroweak gauge bosons and the third generation quarks, i.e. the Wtb, Zt (t) over tilde, and Zb (b) over bar couplings. After one imposes the known experimental constraint on the Zb(L)b(L) coupling, we show that the electroweak SU(2)(L) X U(1)(Y) symmetry of the standard model specifies the pattern of deviations of the Zt(L)t(L) and Wt(L)b(L) couplings, independent of underlying new physics scenarios. We study implications of the predicted pattern with data on the single top quark and Zt (t) over bar associated production processes at the Large Hadron Collider. Such an analysis could in principle allow for a determination of the Wtb coupling without prior knowledge of vertical bar V-tb vertical bar, which is otherwise difficult to achieve. C1 [Berger, Edmond L.; Cao, Qing-Hong; Low, Ian] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM berger@anl.gov; caoq@hep.anl.gov; ilow@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-90ER40560]; Argonne National Laboratory; University of Chicago Joint Theory Institute (JTI) [03921-07-137] FX Q. H. C. is grateful to C.-P. Yuan for interesting and useful discussions. E. L. B. and I. L. are supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. Q. H. C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant No. 03921-07-137, and by the U. S. Department of Energy under Grants No. DE-AC02-06CH11357 and No. DE-FG02-90ER40560. I. L. also acknowledges the hospitality of the Aspen Center for Physics where part of this work was completed. NR 75 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074020 DI 10.1103/PhysRevD.80.074020 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400050 ER PT J AU Beuf, G Marquet, C Xiao, BW AF Beuf, Guillaume Marquet, Cyrille Xiao, Bo-Wen TI Heavy-quark energy loss and thermalization in a strongly coupled supersymmetric Yang-Mills plasma SO PHYSICAL REVIEW D LA English DT Article ID GLUON PLASMA; COLLISIONS; HARD; QCD; COLLABORATION; PERSPECTIVE; DUALITY; OPACITY; MATTER AB Using the AdS/CFT correspondence, we compute the radiative energy loss of a slowly decelerating heavy quark with mass M moving through a supersymmetric Yang-Mills plasma at temperature T and large 't Hooft coupling lambda. The calculation is carried out in terms of perturbations in root lambda T/M, and the rate of the energy loss is computed up to second order. We explain the physical meaning of each correction and estimate the thermalization time of a heavy quark moving in a strongly-coupled plasma. C1 [Beuf, Guillaume; Marquet, Cyrille] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Beuf, Guillaume] CNRS, URA 2306, F-75700 Paris, France. [Marquet, Cyrille; Xiao, Bo-Wen] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Xiao, Bo-Wen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Beuf, G (reprint author), CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. EM guillaume.beuf@cea.fr; cyrille@phys.columbia.edu; bowen@phys.columbia.edu RI Beuf, Guillaume/B-3186-2017 OI Beuf, Guillaume/0000-0002-5894-7657 FU European Commission [MOIF-CT-2006-039860]; US Department of Energy FX We would like to thank Professor A. H. Mueller for numerous discussions and helpful comments. G. B. acknowledges helpful discussions with Edmond Iancu, Robi Peschanski, and Francois Gelis. G. B. would like to thank Professor A. H. Mueller and other members of the Department of Physics of Columbia University for hospitality and support during the early stage of this work. B. X. would like to thank Professor Bo-Qiang Ma for hospitality and support during his visit to the Physics Department of Peking University when this work was finalized. C. M. is supported by the European Commission under the FP6 program, Contract No. MOIF-CT-2006-039860. B. X. is supported by the US Department of Energy. NR 54 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 8 AR 085001 DI 10.1103/PhysRevD.80.085001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513WB UT WOS:000271353700096 ER PT J AU Cheng, HY Chua, CK AF Cheng, Hai-Yang Chua, Chun-Khiang TI Resolving B-CP puzzles in QCD factorization SO PHYSICAL REVIEW D LA English DT Article ID SUM-RULE; PI-PI; DECAYS; ASYMMETRY; AMPLITUDES; PHYSICS; PHASES; QUARK AB Within the framework of QCD factorization (QCDF), power corrections due to penguin annihilation can account for the observed rates of penguin-dominated two-body decays of B mesons and direct CP asymmetries A(CP)(K-pi(+)), A(CP)(K*(-)pi(+)), A(CP)(K-rho(0)) and A(CP)(pi(+)pi(-)). However, the predicted direct CP-violating effects in QCDF for B- -> K-pi(0), K-eta, pi(-)eta and (B) over bar (0) -> pi(0)pi(0) are wrong in signs when confronted with experiment. We show that subleading 1/m(b) power corrections to the color-suppressed tree amplitude due to spectator scattering or final-state interactions will yield correct signs for aforementioned CP asymmetries and accommodate the observed pi(0)pi(0) and pi(0)pi(0) rates simultaneously. Implications are discussed. C1 [Cheng, Hai-Yang] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Cheng, Hai-Yang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chua, Chun-Khiang] Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan. RP Cheng, HY (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. FU National Science Council of R.O.C [NSC97-2112-M-001-004-MY3, NSC97-2112-M033-002-MY3] FX We are grateful to Chuan-Hung Chen, Cheng-Wei Chiang, Hsiang-nan Li, Tri-Nang Pham and Amarjit Soni for useful discussions. One of us ( H. Y. C.) wishes to thank the hospitality of the Physics Department, Brookhaven National Laboratory. This research was supported in part by the National Science Council of R.O.C. under Grant Nos. NSC97-2112-M-001-004-MY3 and NSC97-2112-M033-002-MY3. NR 71 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074031 DI 10.1103/PhysRevD.80.074031 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400061 ER PT J AU Chetyrkin, KG Kuhn, JH Maier, A Maierhofer, P Marquard, P Steinhauser, M Sturm, C AF Chetyrkin, K. G. Kuehn, J. H. Maier, A. Maierhoefer, P. Marquard, P. Steinhauser, M. Sturm, C. TI Charm and bottom quark masses: An update SO PHYSICAL REVIEW D LA English DT Article ID VACUUM POLARIZATION FUNCTION; CURRENT CORRELATORS; SUM-RULES; QCD; O(ALPHA(2)(S)); O(ALPHA(3)(S)); ALPHA(S); MOMENTS; PROGRAM AB Using new four-loop results for the heavy quark vacuum polarization and new data for bottom quark production in electron-positron annihilation, an update on the determination of charm-and bottom-quark masses through sum rules has been performed. The previous result for the charm-quark mass, m(c)(3 GeV) = 0.986(13) GeV, based on the lowest moment, is supported by the new results from higher moments which lead to consistent values with comparable errors. The new value for the bottom quark, mb(10 GeV) = 3.610(16) GeV, corresponding to m(b)(m(b)) = 4.163(16) GeV, makes use of both the new data and the new perturbative results and is consistent with the earlier determination. C1 [Chetyrkin, K. G.; Kuehn, J. H.; Maier, A.; Maierhoefer, P.; Marquard, P.; Steinhauser, M.] Univ Karlsruhe, KIT, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany. [Sturm, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Chetyrkin, KG (reprint author), Univ Karlsruhe, KIT, Inst Theoret Teilchenphys, Kaiserstr 12, D-76128 Karlsruhe, Germany. RI Sturm, Christian/Q-2713-2015 OI Sturm, Christian/0000-0002-3137-4940 NR 27 TC 142 Z9 144 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074010 DI 10.1103/PhysRevD.80.074010 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400040 ER PT J AU Cortes, M Liddle, AR AF Cortes, Marina Liddle, Andrew R. TI Viable inflationary models ending with a first-order phase transition SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-RADIATION; EXTENDED INFLATION; VACUUM BUBBLES; FALSE VACUUM; CONSTRAINTS; COSMOLOGY; VOIDS AB We investigate the parameter space of two-field inflation models where inflation terminates via a first-order phase transition causing nucleation of bubbles. Such models experience a tension from the need to ensure nearly scale-invariant density perturbations, while avoiding a near scale-invariant bubble size distribution which would conflict observations. We perform an exact analysis of the different regimes of the models, where the energy density of the inflaton field ranges from being negligible as compared to the vacuum energy to providing most of the energy for inflation. Despite recent microwave anisotropy results favoring a spectral index less than 1, we find that there are still viable models that end with bubble production and can match all available observations. As a by-product of our analysis, we also provide an up-to-date assessment of the viable parameter space of Linde's original second-order hybrid model across its full parameter range. C1 [Cortes, Marina; Liddle, Andrew R.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Cortes, Marina] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cortes, M (reprint author), Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. OI Cortes, Marina/0000-0003-0485-3767 FU FCT (Portugal); U.S. Department of Energy [DE-AC02-05CH11231]; STFC (UK) FX M. C. was supported by FCT (Portugal) and by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A. R. L. was supported by STFC (UK). We thank Andy Albrecht, Katie Freese, Andrei Linde, and Eric Linder for discussions and comments. NR 21 TC 4 Z9 4 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 8 AR 083524 DI 10.1103/PhysRevD.80.083524 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513WB UT WOS:000271353700039 ER PT J AU de Gouvea, A Huang, WC Jenkins, J AF de Gouvea, Andre Huang, Wei-Chih Jenkins, James TI Pseudo-Dirac neutrinos in the new standard model SO PHYSICAL REVIEW D LA English DT Article ID EXPONENTIALLY VARYING DENSITY; LARGE OSCILLATION LENGTH; DOUBLE-BETA-DECAY; MAJORANA NEUTRINOS; STERILE NEUTRINOS; SOLAR NEUTRINOS; MATTER; MASS; PHENOMENOLOGY; SPECTROSCOPY AB The addition of gauge-singlet fermions to the standard model Lagrangian renders the neutrinos massive and allows one to explain all that is experimentally known about neutrino masses and lepton mixing by varying the values of the Majorana mass parameters M for the gauge singlets and the neutrino Yukawa couplings lambda. Here we explore the region of parameter space where M values are much smaller than the neutrino Dirac masses lambda v. In this region, neutrinos are pseudo-Dirac fermions. We find that current solar data constrain M values to be less than at least 10(-9) eV, and discuss the sensitivity of future experiments to tiny gauge-singlet fermion masses. We also discuss a useful basis for analyzing pseudo-Dirac neutrino mixing effects. In particular, we identify a simple relationship between elements of M and the induced enlarged mixing matrix and new mass-squared differences. These allow one to directly relate bounds on the new mass-squared differences to bounds on the singlet fermion Majorana masses. C1 [de Gouvea, Andre; Huang, Wei-Chih; Jenkins, James] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Jenkins, James] Los Alamos Natl Lab, Elementary Particles & Field Theory Grp, MS B285, Los Alamos, NM 87545 USA. RP de Gouvea, A (reprint author), Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. NR 82 TC 30 Z9 30 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 073007 DI 10.1103/PhysRevD.80.073007 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400020 ER PT J AU Dodelson, S Belikov, AV Hooper, D Serpico, P AF Dodelson, Scott Belikov, Alexander V. Hooper, Dan Serpico, Pasquale TI Constraining cosmological dark matter annihilation with gamma ray observations SO PHYSICAL REVIEW D LA English DT Article ID EGRET OBSERVATIONS; MILKY-WAY; BLAZARS; EMISSION; FUTURE; GLAST; SUBSTRUCTURE; TELESCOPE AB Annihilation of cosmologically distributed dark matter is predicted to produce a potentially observable flux of high energy photons. This signal is predicted to be virtually uniform on the sky but, in order to be identified, must be extracted from various galactic and extragalactic backgrounds. We consider three techniques for extracting this signal from the backgrounds: spectral discrimination, angular discrimination, and distribution discrimination. We analyze the first two of these with the Fisher matrix formalism to obtain projections for constraints from the Fermi satellite. The third technique exploits the fact that the number of photons from extragalactic blazars is drawn from a distribution which is far from Poisson. Using a toy model, we show that knowledge of this distribution enhances one's ability to extract the dark matter signal, while ignorance of it can lead to the introduction of a large systematic error. C1 [Dodelson, Scott; Hooper, Dan; Serpico, Pasquale] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott; Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Belikov, Alexander V.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Serpico, Pasquale] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. OI Belikov, Alexander/0000-0002-5649-0913 FU U.S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX This work has been supported by the U.S. Department of Energy, including Grant No. DE-FG02-95ER40896 and by NASA Grant No. NAG5-10842. We thank Gianfranco Bertone, Savvas Koushiappas, and Louie Strigari for helpful comments. NR 44 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 8 AR 083504 DI 10.1103/PhysRevD.80.083504 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513WB UT WOS:000271353700019 ER PT J AU Fleming, GT Cohen, SD Lin, HW Pereyra, V AF Fleming, George T. Cohen, Saul D. Lin, Huey-Wen Pereyra, Victor TI Excited-state effective masses in lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID WILSON FERMIONS; CHIRAL FERMIONS; ROPER RESONANCE; SERIES AB We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective-mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques. C1 [Fleming, George T.] Yale Univ, Sloane Phys Lab, New Haven, CT 06520 USA. [Cohen, Saul D.; Lin, Huey-Wen] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Pereyra, Victor] Weidlinger Associates Inc, Mountain View, CA 94040 USA. RP Fleming, GT (reprint author), Yale Univ, Sloane Phys Lab, New Haven, CT 06520 USA. EM George.Fleming@Yale.du; sdcohen@jlab.org; hwlin@jlab.org; victor@wai.com RI Fleming, George/L-6614-2013; OI Fleming, George/0000-0002-4987-7167; Cohen, Saul/0000-0001-6804-3320 NR 48 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074506 DI 10.1103/PhysRevD.80.074506 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400073 ER PT J AU Goity, JL Jayalath, C Scoccola, NN AF Goity, J. L. Jayalath, C. Scoccola, N. N. TI Analysis of 56-plet positive parity baryon decays in the 1/Nc expansion SO PHYSICAL REVIEW D LA English DT Article ID LARGE-N-C; EXCITED BARYONS; MASS SPLITTINGS; QCD; BREAKING AB The partial decay widths of positive parity baryons belonging to 56-plets of SU(6) are analyzed in the framework of the 1/N(c) expansion. The channels considered are those with emission of a single pi, K, or (K) over bar meson, and the analysis is carried out to subleading order in 1/N(c) and to first order in SU(3) symmetry breaking. The results for the multiplet [56, 0(+)], to which the Roper resonance belongs, indicate a poor description of the widths at leading order, requiring important next to leading order corrections. For the multiplet [56, 2(+)], the P wave decays in the nonstrange sector are well described at leading order, while the F wave decays require the next to leading order corrections, which turn out to be of natural magnitude. SU(3) breaking effects are poorly determined, because only few decays with a K meson in the final state are established, and their widths are not known with sufficient accuracy. C1 [Goity, J. L.; Jayalath, C.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Goity, J. L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Scoccola, N. N.] Comis Nacl Energia Atom, Dept Phys, RA-1429 Buenos Aires, DF, Argentina. [Scoccola, N. N.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Scoccola, N. N.] Univ Favaloro, RA-1078 Buenos Aires, DF, Argentina. [Goity, J. L.] Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Argentina. RP Goity, JL (reprint author), Hampton Univ, Dept Phys, Hampton, VA 23668 USA. EM goity@jlab.org; jayalath@jlab.org; scoccola@tandar.cnea.gov.ar FU DOE [DE-AC050-6OR23177]; National Accelerator Facility; National Science Foundation (U.S.) [PHY-0555559]; Subprogram Cesar Milstein of SECYT (Argentina); CONICET (Argentina) [PIP 02368]; ANPCyT (Argentina) [PICT 04-03-25374, 07-03-00818] FX This work was supported by DOE Contract No. DE-AC050-6OR23177 under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility, by the National Science Foundation ( U. S.) through Grant No. PHY-0555559 ( J. L. G. and Ch. J.) and by the Subprogram Cesar Milstein of SECYT ( Argentina) ( J. L. G.), by CONICET (Argentina) Grant No. PIP 02368 and by ANPCyT (Argentina) Grants No. PICT 04-03-25374 and No. 07-03-00818 (N.N.S.). J. L. G. thanks the Grupo de Particulas y Campos, Centro Atomico Bariloche, and, in particular, Professor Roberto Trinchero, for the hospitality extended to him during the completion of this work. NR 34 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074027 DI 10.1103/PhysRevD.80.074027 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400057 ER PT J AU Harnik, R Wizansky, T AF Harnik, Roni Wizansky, Tommer TI Signals of new physics in the underlying event SO PHYSICAL REVIEW D LA English DT Article ID HEAVY QUARKS; DISTRIBUTIONS AB LHC searches for new physics focus on combinations of hard physics objects. In this work we propose a qualitatively different soft signal for new physics at the LHC-the "anomalous underlying event.'' Every hard LHC event will be accompanied by a soft underlying event due to QCD and pileup effects. Though it is often used for QCD and Monte Carlo studies, here we propose the incorporation of an underlying event analysis in some searches for new physics. An excess of anomalous underlying events may be a smoking-gun signal for particular new physics scenarios such as "quirks'' or "hidden valleys'' in which large amounts of energy may be emitted by a large multiplicity of soft particles. We discuss possible search strategies for such soft diffuse signals in the tracking system and calorimetry of the LHC experiments. We present a detailed study of the calorimetric signal in a concrete example, a simple quirk model motivated by folded supersymmetry. In these models the production and radiative decay of highly excited quirk bound states leads to an "antenna pattern'' of soft unclustered energy. Using a dedicated simulation of a toy detector and a multipole analysis familiar in cosmic microwave background studies, we compare the signal to the expected backgrounds. C1 [Harnik, Roni] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94309 USA. [Harnik, Roni; Wizansky, Tommer] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Harnik, R (reprint author), Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94309 USA. EM roni@slac.stanford.edu; twizansk@slac.stanford.edu FU DOE [DE-AC02-76SF00515] FX We would like to thank Claudio Campagnieri, Zackaria Chacko, Tami Harnik, Markus Luty, Shmuel Nussinov, Michael Peskin, Matt Strassler, and Jay Wacker for valuable discussions. We would like to especially thank Elliott Cheu of the ATLAS group in Arizona for helpful communication and sharing early results of his simulations. R. H. would like to thank the Aspen Center for Physics for hospitality during various stages of this work. This work was supported in part by DOE Grant No. DE-AC02-76SF00515. NR 32 TC 15 Z9 15 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 075015 DI 10.1103/PhysRevD.80.075015 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400090 ER PT J AU Hidaka, Y Pisarski, RD AF Hidaka, Yoshimasa Pisarski, Robert D. TI Zero point energy of renormalized Wilson loops SO PHYSICAL REVIEW D LA English DT Article ID SU(N) GAUGE-THEORIES; CONFINING STRINGS; 2+1 DIMENSIONS; CONTINUUM-LIMIT; SMOOTH STRINGS; POLYAKOV LOOP; TEMPERATURE; TRANSITION; SYMMETRY; SPECTRUM AB The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term. C1 [Hidaka, Yoshimasa] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Hidaka, Y (reprint author), Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. FU U. S. Department of Energy [DE-AC02-98CH10886]; Alexander von Humboldt Foundation; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan FX The research of R. D. P. was supported by the U. S. Department of Energy under cooperative research agreement No. DE-AC02-98CH10886. R. D. P. also thanks the Alexander von Humboldt Foundation for their support. The research of Y.H. was supported by a Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence'' from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. We thank D. Antonov, M. Creutz, Z. Fodor, S. Gupta, K. Hu r bner, O. Kaczmarek, F. Karsch, C. P. Korthals Altes, J. Kuti, M. Laine, P. Orland, P. Petreczky, C. Pica, E. Shuryak, R. Venugopalan, and especially L. Yaffe for discussions and comments. NR 96 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074504 DI 10.1103/PhysRevD.80.074504 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400071 ER PT J AU Ito, T Bentz, W Cloet, IC Thomas, AW Yazaki, K AF Ito, T. Bentz, W. Cloet, I. C. Thomas, A. W. Yazaki, K. TI NJL-jet model for quark fragmentation functions SO PHYSICAL REVIEW D LA English DT Article ID PAIR ANNIHILATION PROCESSES; LEPTON-NUCLEON SCATTERING; PARTON DISTRIBUTIONS; DIQUARK MODEL; DYNAMICAL MODEL; SPECTATOR MODEL; LEADING ORDER; SINGLE-SPIN; DRELL-YAN; PION AB A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q -> q pi is completely inadequate to describe the empirical data, although the crossed process pi -> q (q) over bar describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory. C1 [Ito, T.; Bentz, W.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. [Yazaki, K.] RIKEN, Nishina Accelerator Res Ctr, Radiat Lab, Wako, Saitama 3510198, Japan. RP Ito, T (reprint author), Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. EM 8atad002@mail.tokai-u.jp; bentz@keyaki.cc.u-tokai.ac.jp; icloet@phys.washington.edu; awthomas@jlab.org; yazaki@phys.s.u-tokyo.ac.jp RI Thomas, Anthony/G-4194-2012; OI Thomas, Anthony/0000-0003-0026-499X; Ito, Takuya/0000-0003-2688-2462 NR 50 TC 35 Z9 35 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 074008 DI 10.1103/PhysRevD.80.074008 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400038 ER PT J AU Mueller, G Sikivie, P Tanner, DB van Bibber, K AF Mueller, Guido Sikivie, Pierre Tanner, D. B. van Bibber, Karl TI Detailed design of a resonantly enhanced axion-photon regeneration experiment SO PHYSICAL REVIEW D LA English DT Article ID INVISIBLE AXION; FREQUENCY STABILIZATION; ANALYTICAL MODELS; CP CONSERVATION; HARMLESS AXION; LASER-BEAMS; INVARIANCE; PARTICLES; SEARCHES AB A resonantly enhanced photon-regeneration experiment to search for the axion or axionlike particles is described. This experiment is a shining light through walls study, where photons traveling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry- Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon- regeneration magnet. Compared to simple single- pass photon regeneration, this technique would result in a gain of (F/pi)(2), where F is the finesse of each cavity. This gain could feasibly be as high as 1010, corresponding to an improvement in the sensitivity to the axionphoton coupling, g(a gamma gamma), of order (F/pi)(1/2)similar to 300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry- Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise. C1 [Mueller, Guido; Sikivie, Pierre; Tanner, D. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [van Bibber, Karl] USN, Postgrad Sch, Monterey, CA 93943 USA. [van Bibber, Karl] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mueller, G (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM mueller@phys.ufl.edu NR 41 TC 30 Z9 30 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 7 AR 072004 DI 10.1103/PhysRevD.80.072004 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513VY UT WOS:000271353400012 ER PT J AU Stevens, T Johnson, MB AF Stevens, Trevor Johnson, Mikkel B. TI Magnetic seed field generation from electroweak bubble collisions with bubble walls of finite thickness SO PHYSICAL REVIEW D LA English DT Article ID PHASE-TRANSITION; BARYOGENESIS; TEMPERATURE; MSSM AB Building on earlier work, we develop an equation-of-motion method for calculating magnetic seed fields generated from currents arising from charged W(+/-) fields in bubble collisions during a first-order primordial electroweak phase transition allowed in some proposed extensions of the standard model. The novel feature of our work is that it takes into account, for the first time, the dynamics of the bubble walls in such collisions. We conclude that for bubbles with sufficiently thin surfaces the magnetic seed fields may be comparable to, or larger than, those found in earlier work. Thus, our results strengthen the conclusions of previous studies that cosmic magnetic fields observed today may originate from seeds created during the electroweak phase transition, and consequently that these fields may offer a clue relevant to extensions of the standard model. C1 [Stevens, Trevor] W Virginia Wesleyan Coll, Dept Phys, Buckhannon, WV 26201 USA. [Johnson, Mikkel B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stevens, T (reprint author), W Virginia Wesleyan Coll, Dept Phys, Buckhannon, WV 26201 USA. FU NASA; Los Alamos National Laboratory FX Dr. Stevens would like to acknowledge the NASA West Virginia Space Grant Consortium for partial support of this research through a Research Initiation Grant. M.B.J. and T.S. thank Los Alamos National Laboratory for its support. NR 17 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT PY 2009 VL 80 IS 8 AR 083011 DI 10.1103/PhysRevD.80.083011 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 513WB UT WOS:000271353700015 ER PT J AU Booth, TE Gubernatis, JE AF Booth, T. E. Gubernatis, J. E. TI Monte Carlo determination of multiple extremal eigenpairs SO PHYSICAL REVIEW E LA English DT Article DE eigenvalues and eigenfunctions; Ising model; Monte Carlo methods; transfer function matrices ID 2D ISING-MODEL; FRUSTRATED XY MODEL; TRANSFER-MATRIX; POWER ITERATION; SYSTEMS; EIGENFUNCTIONS; COMPUTATION; EIGENVALUE; SQUARE; ORDER AB We present a Monte Carlo algorithm that allows the simultaneous determination of a few extremal eigenpairs of a very large matrix without the need to compute the inner product of two vectors or store all the components of any one vector. The algorithm, a Monte Carlo implementation of a deterministic one we recently benchmarked, is an extension of the power method. In the implementation presented, we used a basic Monte Carlo splitting and termination method called the comb, incorporated the weight cancellation method of Arnow , and exploited a sampling method, the sewing method, that does a large state space sampling as a succession of small state space samplings. We illustrate the effectiveness of the algorithm by its determination of the two largest eigenvalues of the transfer matrices for variously sized two-dimensional, zero-field Ising models. While very likely useful for other transfer-matrix problems, the algorithm is however quite general and should find application to a larger variety of problems requiring a few dominant eigenvalues of a matrix. C1 [Booth, T. E.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Gubernatis, J. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Booth, TE (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. FU U.S. Department of Energy through the LANL/LDRD program FX We thank M. E. Fisher for a helpful conversation. We gratefully acknowledge support of the U.S. Department of Energy through the LANL/LDRD program. NR 44 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 046704 DI 10.1103/PhysRevE.80.046704 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UY UT WOS:000271350700102 PM 19905479 ER PT J AU Haines, BM Sokolov, A Aranson, IS Berlyand, L Karpeev, DA AF Haines, Brian M. Sokolov, Andrey Aranson, Igor S. Berlyand, Leonid Karpeev, Dmitry A. TI Three-dimensional model for the effective viscosity of bacterial suspensions SO PHYSICAL REVIEW E LA English DT Article DE cell motility; microorganisms; suspensions; viscosity ID PARTICLES; TRACKING; MOTION AB We derive the effective viscosity of dilute suspensions of swimming bacteria from the microscopic details of the interaction of an elongated body with the background flow. An individual bacterium propels itself forward by rotating its flagella and reorients itself randomly by tumbling. Due to the bacterium's asymmetric shape, interactions with a prescribed generic (such as planar shear or straining) background flow cause the bacteria to preferentially align in directions in which self-propulsion produces a significant reduction in the effective viscosity, in agreement with recent experiments on suspensions of Bacillus subtilis. C1 [Haines, Brian M.; Berlyand, Leonid] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Sokolov, Andrey] IIT, Chicago, IL 60616 USA. [Sokolov, Andrey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Karpeev, Dmitry A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Haines, BM (reprint author), Penn State Univ, Dept Math, McAllister Bldg, University Pk, PA 16802 USA. RI Aranson, Igor/I-4060-2013 FU DOE [DE-AC02-06CH11357, DE-FG02-08ER25862]; NSF [DMS-0708324] FX The work of I. S. Aranson, A. Sokolov, and D. Karpeev was supported by the DOE (Grant No. DE-AC02-06CH11357). The work of B. Haines and L. Berlyand was supported by the DOE Grant No. DE-FG02-08ER25862 and NSF (Grant No. DMS-0708324). NR 24 TC 39 Z9 39 U1 3 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 041922 DI 10.1103/PhysRevE.80.041922 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UV UT WOS:000271350400101 PM 19905357 ER PT J AU Lancaster, KL Sherlock, M Green, JS Gregory, CD Hakel, P Akli, KU Beg, FN Chen, SN Freeman, RR Habara, H Heathcote, R Hey, DS Highbarger, K Key, MH Kodama, R Krushelnick, K Nakamura, H Nakatsutsumi, M Pasley, J Stephens, RB Storm, M Tampo, M Theobald, W Van Woerkom, L Weber, RL Wei, MS Woolsey, NC Yabuuchi, T Norreys, PA AF Lancaster, K. L. Sherlock, M. Green, J. S. Gregory, C. D. Hakel, P. Akli, K. U. Beg, F. N. Chen, S. N. Freeman, R. R. Habara, H. Heathcote, R. Hey, D. S. Highbarger, K. Key, M. H. Kodama, R. Krushelnick, K. Nakamura, H. Nakatsutsumi, M. Pasley, J. Stephens, R. B. Storm, M. Tampo, M. Theobald, W. Van Woerkom, L. Weber, R. L. Wei, M. S. Woolsey, N. C. Yabuuchi, T. Norreys, P. A. TI Effect of reentrant cone geometry on energy transport in intense laser-plasma interactions SO PHYSICAL REVIEW E LA English DT Article DE plasma light propagation ID VULCAN PETAWATT; HIGH-DENSITY; FACILITY; TARGETS AB The energy transport in cone-guided low-Z targets has been studied for laser intensities on target of 2.5x10(20) W cm(-2). Extreme ultraviolet (XUV) imaging and transverse optical shadowgraphy of the rear surfaces of slab and cone-slab targets show that the cone geometry strongly influences the observed transport patterns. The XUV intensity showed an average spot size of 65 +/- 10 mu m for slab targets. The cone slabs showed a reduced spot size of 44 +/- 10 mu m. The shadowgraphy for the aforementioned shots demonstrate the same behavior. The transverse size of the expansion pattern was 357 +/- 32 mu m for the slabs and reduced to 210 +/- 30 mu m. A transport model was constructed which showed that the change in transport pattern is due to suppression of refluxing electrons in the material surrounding the cone. C1 [Lancaster, K. L.; Sherlock, M.; Green, J. S.; Heathcote, R.; Pasley, J.; Norreys, P. A.] STFC Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. [Green, J. S.; Norreys, P. A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Gregory, C. D.] Ecole Polytech, LULI, F-91128 Palaiseau, France. [Hakel, P.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Akli, K. U.; Hey, D. S.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA. [Beg, F. N.; Chen, S. N.; Wei, M. S.; Yabuuchi, T.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Freeman, R. R.; Highbarger, K.; Van Woerkom, L.; Weber, R. L.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Habara, H.; Kodama, R.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kodama, R.; Nakamura, H.; Nakatsutsumi, M.; Tampo, M.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Krushelnick, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Pasley, J.; Woolsey, N. C.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Storm, M.; Theobald, W.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Lancaster, KL (reprint author), STFC Rutherford Appleton Lab, Chilton OX11 0QX, Oxon, England. RI Tampo, Motonobu/I-2897-2012; Kodama, Ryosuke/G-2627-2016; Brennan, Patricia/N-3922-2015; OI chen, sophia n./0000-0002-3372-7666; Stephens, Richard/0000-0002-7034-6141 FU UK Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; (U.S.) Department of Energy [W-7405-Eng-48, DE-FC52-08NA28302]; Central Laser Facility; AWE plc FX This work was supported by the UK Engineering and Physical Sciences Research Council and the Science and Technology Facilities Council. American colleagues acknowledge support from the (U.S.) Department of Energy Contracts No. W-7405-Eng-48 and No. DE-FC52-08NA28302. Japanese colleagues acknowledge the Japan Society for the Promotion of Science. The authors gratefully acknowledge the support of the staff of the Central Laser Facility and Dr. David Hoarty (AWE plc) for his assistance with this work. NR 17 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 045401 DI 10.1103/PhysRevE.80.045401 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UY UT WOS:000271350700006 PM 19905383 ER PT J AU Mandadapu, KK Jones, RE Papadopoulos, P AF Mandadapu, Kranthi K. Jones, Reese E. Papadopoulos, Panayiotis TI Generalization of the homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity to multibody potentials SO PHYSICAL REVIEW E LA English DT Article DE molecular dynamics method; thermal conductivity ID BUTANE; SIMULATION; PROTEINS; SILICON; SYSTEMS; MODELS AB This work provides a generalization of Evans' homogeneous nonequilibrium method for estimating thermal conductivity to molecular systems that are described by general multibody potentials. A perturbed form of the usual Nose-Hoover equations of motion is formally constructed and is shown to satisfy the requirements of Evans' original method. These include adiabatic incompressibility of phase space, equivalence of the dissipative and heat fluxes, and momentum preservation. C1 [Mandadapu, Kranthi K.; Papadopoulos, Panayiotis] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Jones, Reese E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Mandadapu, KK (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. FU United States Department of Energy [DE-ACO4-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-ACO4-94AL85000. NR 21 TC 8 Z9 8 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 047702 DI 10.1103/PhysRevE.80.047702 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UY UT WOS:000271350700114 PM 19905491 ER PT J AU Melhus, MF Aranson, IS Volfson, D Tsimring, LS AF Melhus, Martin F. Aranson, Igor S. Volfson, Dmitri Tsimring, Lev S. TI Effect of noise on solid-to-liquid transition in small granular systems under shear SO PHYSICAL REVIEW E LA English DT Article DE fluctuations; fluidisation; granular flow; liquid theory; molecular dynamics method; random noise; shear strength; solid-liquid transformations; statistics; stress effects ID FLOWS; ROUGH AB The effect of noise on the solid-to-liquid transition of a dense granular assembly under planar shear is studied numerically using soft-particle molecular dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise, and determine statistics of the shear required for fluidization. In the absence of noise, the threshold value of the shear stress depends on the preparation of the system and has a broad distribution. However, adding force fluctuations both lowers the mean threshold value of the shear stress and decreases its variability. This behavior is interpreted as thermoactivated escape through a fluctuating barrier. C1 [Melhus, Martin F.] Northwestern Univ, Dept Phys, Evanston, IL 60208 USA. [Melhus, Martin F.; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Volfson, Dmitri; Tsimring, Lev S.] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA. RP Melhus, MF (reprint author), Northwestern Univ, Dept Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA. RI Aranson, Igor/I-4060-2013; OI Volfson, Dmitri/0000-0002-5167-7834 FU U.S. Department of Energy [DE-AC02-06CH11357, DE-FG03-95ER14516] FX This research was supported by U.S. Department of Energy, Grants No. DE-AC02-06CH11357 (M. F. M. and I. S. A.) and No. DE-FG03-95ER14516 (D. V. and L. S. T.). NR 31 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 041305 DI 10.1103/PhysRevE.80.041305 PN 1 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UV UT WOS:000271350400050 PM 19905306 ER PT J AU Potekhin, AY Chabrier, G Chugunov, AI DeWitt, HE Rogers, FJ AF Potekhin, A. Y. Chabrier, G. Chugunov, A. I. DeWitt, H. E. Rogers, F. J. TI Addendum to "Equation of state of classical Coulomb plasma mixtures" SO PHYSICAL REVIEW E LA English DT Article DE equations of state; Monte Carlo methods; plasma thermodynamics ID BINARY IONIC MIXTURES; LINEAR MIXING RULE; PHASE-SEPARATION; ELECTRON GAS AB Recently developed analytic approximation for the equation of state of fully ionized nonideal electron-ion plasma mixtures [A. Y. Potekhin, G. Chabrier, and F. J. Rogers, Phys. Rev. E 79, 016411 (2009)], which covers the transition between the weak and strong Coulomb coupling regimes and reproduces numerical results obtained in the hypernetted-chain (HNC) approximation, is modified in order to fit the small deviations from the linear mixing in the strong-coupling regime, revealed by recent Monte Carlo simulations. In addition, a mixing rule is proposed for the regime of weak coupling, which generalizes post-Debye density corrections to the case of mixtures and numerically agrees with the HNC approximation in that regime. C1 [Potekhin, A. Y.; Chugunov, A. I.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Potekhin, A. Y.; Chabrier, G.] Ecole Normale Super Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon 07, France. [DeWitt, H. E.; Rogers, F. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Potekhin, AY (reprint author), AF Ioffe Phys Tech Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia. EM palex@astro.ioffe.ru; chabrier@ens-lyon.fr RI Potekhin, Alexander/B-9747-2014; Chugunov, Andrey/E-2061-2014 OI Potekhin, Alexander/0000-0001-9955-4684; FU Rosnauka [NSh-2600.2008.2]; RFBR [08-02-00837]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work of A. I. C. and A.Y.P. was partially supported by the Rosnauka Grant No. NSh-2600.2008.2 and the RFBR Grant No. 08-02-00837. The work of H. E. D. and F.J.R. was partially performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 12 TC 21 Z9 21 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 047401 DI 10.1103/PhysRevE.80.047401 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UY UT WOS:000271350700111 PM 19905488 ER PT J AU Yang, SX Fotso, H Liu, J Maier, TA Tomko, K D'Azevedo, EF Scalettar, RT Pruschke, T Jarrell, M AF Yang, S. X. Fotso, H. Liu, J. Maier, T. A. Tomko, K. D'Azevedo, E. F. Scalettar, R. T. Pruschke, T. Jarrell, M. TI Parquet approximation for the 4x4 Hubbard cluster SO PHYSICAL REVIEW E LA English DT Article DE fluctuations; Hubbard model; Monte Carlo methods; strongly correlated electron systems ID FLUCTUATING ELECTRON-SYSTEMS; CONSERVING APPROXIMATIONS; MODEL AB We present a numerical solution of the parquet approximation, a conserving diagrammatic approach which is self-consistent at both the single-particle and the two-particle levels. The fully irreducible vertex is approximated by the bare interaction thus producing the simplest approximation that one can perform with the set of equations involved in the formalism. The method is applied to the Hubbard model on a half-filled 4x4 cluster. Results are compared to those obtained from determinant quantum Monte Carlo (DQMC), FLuctuation EXchange (FLEX), and self-consistent second-order approximation methods. This comparison shows a satisfactory agreement with DQMC and a significant improvement over the FLEX or the self-consistent second-order approximation. C1 [Yang, S. X.; Fotso, H.; Liu, J.; Jarrell, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Maier, T. A.; D'Azevedo, E. F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Tomko, K.] Ohio Supercomp Ctr, Columbus, OH 43212 USA. [Scalettar, R. T.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Pruschke, T.] Univ Gottingen, Dept Phys, D-37077 Gottingen, Germany. RP Yang, SX (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RI Pruschke, Thomas/H-5046-2011; Pruschke, Thomas/H-5065-2011; Liu, Jun/F-1240-2014; Fotso, Herbert/I-4978-2014; Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU DOE [DE-FC02-06ER25792, DE-AC05-00OR22725]; DAAD through the PPP exchange program; NSF PIRE [OISE-0730290]; National Center for Computational Sciences at Oak Ridge National Laboratory FX We would like to acknowledge the very useful discussion with Gene Bickers and John Deisz. S.Y. also acknowledges the hospitality and support of the Institute for Theoretical Physics at the University of Gottingen, where part of this work has been performed. This work is supported by DOE SciDAC Project No. DE-FC02-06ER25792 which supports the development of Multi-Scale Many Body formalism and codes [18] and the DAAD through the PPP exchange program (T.P.). S.Y., H. F., K. T., and M.J. are also supported by the NSF PIRE Project No. OISE-0730290. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 17 TC 24 Z9 24 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 046706 DI 10.1103/PhysRevE.80.046706 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UY UT WOS:000271350700104 PM 19905481 ER PT J AU Zdeborova, L Decelle, A Chertkov, M AF Zdeborova, Lenka Decelle, Aurelien Chertkov, Michael TI Message passing for optimization and control of a power grid: Model of a distribution system with redundancy SO PHYSICAL REVIEW E LA English DT Article DE electric generators; fluctuations; load (electric); message passing; optimisation; power grids; power system control; trees (electrical) AB We use a power grid model with M generators and N consumption units to optimize the grid and its control. Each consumer demand is drawn from a predefined finite-size-support distribution, thus simulating the instantaneous load fluctuations. Each generator has a maximum power capability. A generator is not overloaded if the sum of the loads of consumers connected to a generator does not exceed its maximum production. In the standard grid each consumer is connected only to its designated generator, while we consider a more general organization of the grid allowing each consumer to select one generator depending on the load from a predefined consumer dependent and sufficiently small set of generators which can all serve the load. The model grid is interconnected in a graph with loops, drawn from an ensemble of random bipartite graphs, while each allowed configuration of loaded links represent a set of graph covering trees. Losses, the reactive character of the grid and the transmission-level connections between generators (and many other details relevant to realistic power grid) are ignored in this proof-of-principles study. We focus on the asymptotic limit, N ->infinity and N/M -> D=O(1)>1, and we show that the interconnects allow significant expansion of the parameter domains for which the probability of a generator overload is asymptotically zero. Our construction explores the formal relation between the problem of grid optimization and the modern theory of sparse graphical models. We also design heuristic algorithms that achieve the asymptotically optimal selection of loaded links. We conclude discussing the ability of this approach to include other effects such as a more realistic modeling of the power grid and related optimization and control algorithms. C1 [Zdeborova, Lenka; Decelle, Aurelien; Chertkov, Michael] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Zdeborova, Lenka; Decelle, Aurelien; Chertkov, Michael] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Decelle, Aurelien] Univ Paris 11, LPTMS, CNRS, UMR 8626, F-91405 Orsay, France. RP Zdeborova, L (reprint author), LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RI Zdeborova, Lenka/B-9999-2014; Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank Florent Krzakala, David Gamarnik, and Scott Backhaus for very stimulating and critical comments, and all members of LANL study group on "Optimization and Control Theory for Smart Grids" for many discussions. The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 39 TC 6 Z9 6 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD OCT PY 2009 VL 80 IS 4 AR 046112 DI 10.1103/PhysRevE.80.046112 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 513UY UT WOS:000271350700018 PM 19905395 ER PT J AU Chao, AW AF Chao, Alexander W. TI Gravitational instability of a nonrotating galaxy SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in astrophysics. This report is an attempt to analyze this phenomenon by applying standard tools developed in accelerator physics. It is found that a nonrotating galaxy would become unstable if its size exceeds a certain limit that depends on its mass density and its temperature. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. RP Chao, AW (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. FU Department of Energy [DE-AC02-76SF00515] FX This work was supported by Department of Energy Contract No. DE-AC02-76SF00515. NR 12 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2009 VL 12 IS 10 AR 104201 DI 10.1103/PhysRevSTAB.12.104201 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 521OU UT WOS:000271932200011 ER PT J AU Qiang, J Ryne, RD Venturini, M Zholents, AA Pogorelov, IV AF Qiang, J. Ryne, R. D. Venturini, M. Zholents, A. A. Pogorelov, I. V. TI High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BUNCH COMPRESSORS; RADIATION AB In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs). We describe key features of a parallel macro-particle simulation code including three-dimensional (3D) space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR) wakefields, and treatment of radio-frequency (rf) accelerating cavities using maps obtained from axial field profiles. We present a study of the micro-bunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac. C1 [Qiang, J.; Ryne, R. D.; Venturini, M.; Zholents, A. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pogorelov, I. V.] Tech X Corp, Boulder, CO 80303 USA. RP Qiang, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 25 TC 18 Z9 18 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2009 VL 12 IS 10 AR 100702 DI 10.1103/PhysRevSTAB.12.100702 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 521OU UT WOS:000271932200002 ER PT J AU Sun, YP Assmann, R Barranco, J Tomas, R Weiler, T Zimmermann, F Calaga, R Morita, A AF Sun, Yi-Peng Assmann, Ralph Barranco, Javier Tomas, Rogelio Weiler, Thomas Zimmermann, Frank Calaga, Rama Morita, Akio TI Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e. g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit, also degrade the collimation cleaning efficiency, and so on. In this paper, we explore the principal feasibility of LHC crab cavities from a beam dynamics point of view. The implications of the crab cavities for the LHC optics, analytical and numerical luminosity studies, dynamic aperture, aperture and beta beating, emittance growth, beam-beam tune shift, long-range collisions, and synchrobetatron resonances, crab dispersion, and collimation efficiency will be discussed. C1 [Sun, Yi-Peng; Assmann, Ralph; Barranco, Javier; Tomas, Rogelio; Weiler, Thomas; Zimmermann, Frank] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Calaga, Rama] Brookhaven Natl Lab, Upton, NY 11973 USA. [Morita, Akio] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. RP Sun, YP (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. EM Yipeng.SUN@cern.ch RI Assmann, Ralph/L-8457-2016 FU European Community [RII3-CT-2003-506395, 227579] FX The authors would like to thank Dr. D. Schulte for providing the simulation code GUINEA-PIG, and Dr. C. Bracco for providing a MATLAB script for collimation studies. The authors would also like to thank Mr. S. White and Dr. J.-P. Koutchouk for helpful discussions, and Dr. M. Giovannozzi, Dr. F. Schmidt, and Dr. U. Dorda for helpful comments and discussions. This work was supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area'' program (CARE, Contract No. RII3-CT-2003-506395), and under the FP7 "Capacities Specific Programme'' (EuCARD, under Grant Agreement No. 227579). NR 30 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2009 VL 12 IS 10 AR 101002 DI 10.1103/PhysRevSTAB.12.101002 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 521OU UT WOS:000271932200004 ER PT J AU Wang, SH Dooling, JC Harkay, KC Kustom, RL McMichael, GE AF Wang, Shaoheng Dooling, J. C. Harkay, K. C. Kustom, R. L. McMichael, G. E. TI Investigation of the vertical instability at the Argonne Intense Pulsed Neutron Source SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The rapid cycling synchrotron of the intense pulsed neutron source at Argonne National Laboratory normally operates at an average beam current of 14 to 15 mu A, accelerating protons from 50 to 450 MeV 30 times per second. The beam current is limited by a single-bunch vertical instability that occurs in the later part of the 14 ms acceleration cycle. By analyzing turn-by-turn beam position monitor data, two cases of vertical beam centroid oscillations were discovered. The oscillations start from the tail of the bunch, build up, and develop toward the head of the bunch. The development stops near the bunch center and oscillations remain localized in the tail for a relatively long time (2-4 ms, 1-2 x 10(4) turns). This vertical instability is identified as the cause of the beam loss. We compared this instability with a head-tail instability that was purposely induced by switching off sextupole magnets. It appears that the observed vertical instability is different from the classical head-tail instability. C1 [Wang, Shaoheng] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Peoples R China. [Dooling, J. C.; Harkay, K. C.; Kustom, R. L.; McMichael, G. E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, SH (reprint author), China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Peoples R China. EM wangshaoheng@yahoo.com NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT PY 2009 VL 12 IS 10 AR 102802 DI 10.1103/PhysRevSTAB.12.102802 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 521OU UT WOS:000271932200010 ER PT J AU Honrubia, JJ Fernandez, JC Temporal, M Hegelich, BM Meyer-ter-Vehn, J AF Honrubia, J. J. Fernandez, J. C. Temporal, M. Hegelich, B. M. Meyer-ter-Vehn, J. TI Fast ignition of inertial fusion targets by laser-driven carbon beams SO PHYSICS OF PLASMAS LA English DT Article ID PROTON-BEAMS AB Two-dimensional simulations of ion beam driven fast ignition are presented. Ignition energies of protons with Maxwellian spectrum and carbon ions with quasimonoenergetic and Maxwellian energy distributions are evaluated. The effect of the coronal plasma surrounding the compressed deuterium-tritium is studied for three different fuel density distributions. It is found that quasimonoenergetic ions have better coupling with the compressed deuterium-tritium and substantially lower ignition energies. Comparison of quasimonoenergetic carbon ions and relativistic electrons as ignitor beams shows similar laser energy requirements, provided that a laser to quasimonoenergetic carbon ion conversion efficiency around 10% can be achieved. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234248] C1 [Honrubia, J. J.; Temporal, M.] Univ Politecn Madrid, ETSI Aeronut, E-28040 Madrid, Spain. [Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hegelich, B. M.] LMU Munchen, Fak Phys, D-85748 Garching, Germany. [Meyer-ter-Vehn, J.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. RP Honrubia, JJ (reprint author), Univ Politecn Madrid, ETSI Aeronut, E-28040 Madrid, Spain. EM javier.honrubia@upm.es RI Temporal, Mauro/A-7569-2012; Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; Honrubia, Javier/L-6337-2014 OI Temporal, Mauro/0000-0002-7290-4602; Fernandez, Juan/0000-0002-1438-1815; Honrubia, Javier/0000-0002-3024-4431 FU Spanish Ministry of Education (Ramon y Cajal) [2007-0447, ENE2006-06339, CAC-2007-013]; EURATOM FX One of the authors (J.J.H.) would like to thank the fruitful discussions and the hospitality of the P-24 group of LANL. M.T. has been supported by a contract of the Spanish Ministry of Education (Ramon y Cajal 2007-0447). This work was partially supported by the Research Grant Nos. ENE2006-06339 and CAC-2007-013 of the Spanish Ministry of Education and by the IFE Keep-in-touch Activities of EURATOM. NR 39 TC 65 Z9 65 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2009 VL 16 IS 10 AR 102701 DI 10.1063/1.3234248 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 513YK UT WOS:000271359900029 ER PT J AU Lang, JY Chen, Y Parker, SE Fu, GY AF Lang, Jianying Chen, Yang Parker, Scott E. Fu, Guo-Yong TI Gyrokinetic delta f particle simulations of toroidicity-induced Alfven eigenmode SO PHYSICS OF PLASMAS LA English DT Article ID ENERGETIC PARTICLES; ASPECT RATIO; TOKAMAKS; MODES; TURBULENCE; DESTABILIZATION; PLASMAS AB Gyrokinetic delta f particle simulation is used to investigate toroidicity-induced Alfven eigenmodes (TAEs). Both thermal ions and energetic particles are fully kinetic, but a reduced fluid model is used for the electrons. Simulation of a single n=2 global TAE is carefully analyzed and benchmarked with an eigenmode analysis, and a very good agreement is achieved in both mode structure and mode frequency. The instability of the mode in the presence of energetic particles is demonstrated. In particular, gyrokinetic simulations demonstrate the kinetic damping effect of thermal ions, where the finite radial structure of kinetic Alfven waves is well resolved and the damping rate is compared to and found to agree well with analytical theory. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3243493] C1 [Lang, Jianying; Fu, Guo-Yong] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lang, Jianying; Chen, Yang; Parker, Scott E.] Univ Colorado, Boulder, CO 80309 USA. RP Lang, JY (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 36 TC 22 Z9 22 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2009 VL 16 IS 10 AR 102101 DI 10.1063/1.3243493 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 513YK UT WOS:000271359900003 ER PT J AU Rose, DV Genoni, TC Welch, DR Clark, RE Campbell, RB Mehlhorn, TA Flicker, DG AF Rose, D. V. Genoni, T. C. Welch, D. R. Clark, R. E. Campbell, R. B. Mehlhorn, T. A. Flicker, D. G. TI Particle-in-cell and hypernetted chain models of two-component, two-temperature coupled classical plasmas SO PHYSICS OF PLASMAS LA English DT Article ID DENSE-PLASMAS; MOLECULAR-DYNAMICS; MONTE-CARLO; SIMULATIONS AB Three-dimensional simulations of moderately to strongly coupled electron-ion and multicomponent classical plasmas using the particle-in-cell method are presented. The simulations resolve sub-Debye-length interparticle spacing to accurately model the dynamics of these systems. We consider realistic mass ratios and quasiequilibrium conditions with different component temperatures which are relevant on short time scales. The simulation results are in very good agreement with classical hypernetted chain calculations for dense electron-ion and ion-ion plasmas. Our results demonstrate the feasibility and utility of large-scale particle-in-cell simulations for the modeling and analysis of multicomponent moderately and strongly coupled plasmas. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3247826] C1 [Rose, D. V.; Genoni, T. C.; Welch, D. R.; Clark, R. E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Campbell, R. B.; Mehlhorn, T. A.; Flicker, D. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rose, DV (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. EM david.rose@vosssci.com FU U. S. DOE; Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX This work is supported by the U. S. DOE and Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy's National Nuclear Security Administration, under Contract No. DEAC04-94AL85000. The authors thank C. Mostrom at Voss Scientific for assistance with numerical simulations and graphical analysis. The PIC simulations presented here were carried out on high performance parallel computer systems at Sandia and Voss Scientific. We thank the technical support staff at these facilities for their expert assistance. NR 43 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2009 VL 16 IS 10 AR 102105 DI 10.1063/1.3247826 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 513YK UT WOS:000271359900007 ER PT J AU Zier, JC Douglass, JD Blesener, IC Blesener, KS Chalenski, DA Gilgenbach, RM Greenly, JB Hammer, DA Knapp, PF Kusse, BR Lau, YY McBride, RD Syed, W Yu, EP AF Zier, J. C. Douglass, J. D. Blesener, I. C. Blesener, K. S. Chalenski, D. A. Gilgenbach, R. M. Greenly, J. B. Hammer, D. A. Knapp, P. F. Kusse, B. R. Lau, Y. Y. McBride, R. D. Syed, W. Yu, E. P. TI Azimuthally correlated ablation between z-pinch wire cores SO PHYSICS OF PLASMAS LA English DT Article ID ARRAY Z-PINCHES; INERTIAL CONFINEMENT FUSION; X-RAY POWER; IMPLOSION DYNAMICS; TUNGSTEN WIRES; PLASMA; NUMBER; ENHANCEMENT; INSTABILITY; PHYSICS AB Azimuthally correlated wire core ablation was compared for closely spaced versus widely spaced wires in a 1 MA Z-pinch. X-ray point-projection diagnostics revealed that 240 mu m spaced wires exhibited a correlation coefficient approaching unity in both real space and in k-space. This correlated ablation between wires at a fixed axial location is believed to occur due to an enhanced, localized Joule heating. Wires separated by 2.47 mm or greater were uncorrelated in real space, but correlated in k-space, indicating the ablation structure between wires was shifted in phase. (C) 2009 American Institute of Physics. [doi:10.1063/1.3243917] C1 [Zier, J. C.; Gilgenbach, R. M.; Lau, Y. Y.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Douglass, J. D.; Blesener, I. C.; Blesener, K. S.; Chalenski, D. A.; Greenly, J. B.; Hammer, D. A.; Knapp, P. F.; Kusse, B. R.; McBride, R. D.; Syed, W.] Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. [Yu, E. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zier, JC (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. FU National Physical Science Consortium; Sandia National Laboratories; United States Department of Energy through Sandia National Laboratories [240985, 768225]; National Nuclear Security Administration under Department of Energy Cooperative Agreement [DE-FC03-02NA00057, DE-AC04-94AL85000] FX We thank D. M. French, M. R. Gomez, B. W. Hoff, C. McGuffey, and Dr. M. E. Cuneo for the numerous discussions and feedback. This research was performed in part by fellowship support from the National Physical Science Consortium and Sandia National Laboratories, from the United States Department of Energy through Sandia National Laboratories Award Nos. 240985 and 768225 to the University of Michigan, and by the Stewardship Science Academic Alliance program of the National Nuclear Security Administration under Department of Energy Cooperative Agreement No. DE-FC03-02NA00057. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 42 TC 1 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2009 VL 16 IS 10 AR 102702 DI 10.1063/1.3243917 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 513YK UT WOS:000271359900030 ER PT J AU Crabtree, G Sarrao, J AF Crabtree, George Sarrao, John TI The road to sustainability SO PHYSICS WORLD LA English DT Article ID ENERGY C1 [Sarrao, John] Los Alamos Natl Lab, Off Sci Programs, Los Alamos, NM 87545 USA. EM crabtree@anl.gov; sarrao@lanl.gov NR 7 TC 10 Z9 10 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD OCT PY 2009 VL 22 IS 10 BP 24 EP 30 PG 7 WC Physics, Multidisciplinary SC Physics GA 517NH UT WOS:000271621100038 ER PT J AU Kotler, JM Hinman, NW Richardson, CD Conly, AG Scott, JR AF Kotler, J. Michelle Hinman, Nancy W. Richardson, C. Doc Conly, Andrew G. Scott, Jill R. TI Laboratory simulations of prebiotic molecule stability in the jarosite mineral group; end member evaluation of detection and decomposition behavior related to Mars sample return SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Jarosite; Glycine; Thermodynamic stability; Prebiotic; Mars; Sample return ID MERIDIANI-PLANUM; COMET 81P/WILD-2; THERMAL-DECOMPOSITION; STARDUST SPACECRAFT; MASS-SPECTROMETRY; MISSION; DUST; PERSPECTIVE; POTASSIUM; OXIDATION AB Recently, the prebiotic amino acid glycine has been found associated with natural jarosite samples from locations around the world. Since the discovery of jarosite on Mars, extensive research focuses on linking this mineral group with possible detection of biosignatures in the geologic record on Earth and Mars. Multiple analytical methods, including extraction and mass spectrometry techniques, have identified glycine and other biomolecules in jarosite samples. The jarosite end members jarosite (sensu stricto-potassium jarosite), natrojarosite (sodium jarosite), and ammoniojarosite (ammonium jarosite) have different thermodynamic stabilities, decompose at different rates, and have potentially different susceptibilities to substitution. The relationship between the thermodynamic stability of the jarosite end members and the effect that glycine has on the thermal decomposition behavior of each end member was investigated using thermal gravimetric analysis. Introducing glycine into the synthesis procedure (75 ppm) of the potassium, sodium, and ammonium jarosite end member has elucidated the effects that glycine has on the thermal stability of the mineral group. Potassium jarosite appears to be the least susceptible to the effects of glycine, with the sodium and ammonium end members showing marked changes in thermal decomposition behavior and decomposition rates. These results suggest that the sodium and ammonium jarosites are more suitable targets for identifying signs of prebiotic or biotic activity on Mars and Earth than the potassium jarosites. These results have implications for current in situ investigations of the martian surface and future sample return missions. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Kotler, J. Michelle; Hinman, Nancy W.; Richardson, C. Doc] Univ Montana, Dept Geosci, Missoula, MT 59812 USA. [Conly, Andrew G.] Lakehead Univ, Dept Geol, Thunder Bay, ON P7B 5E1, Canada. [Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hinman, NW (reprint author), Univ Montana, Dept Geosci, 32 Campus Dr, Missoula, MT 59812 USA. EM nancy.hinman@umontana.edu RI Scott, Jill/G-7275-2012 FU NASA exobiology program [EXB03-0000-0054]; DOE/NE Idaho Operations Office [DE-AC07-05ID14517] FX Funding for this research at the University of Montana and the Idaho National Laboratory (INL) comes from the NASA exobiology program (EXB03-0000-0054). We would like to thank Christopher Orme of the INL for assistance with thermal analysis and Timothy R. McJunkin of the INL for technical support on this project. JMK would also like to thank the Inland Northwest Research Alliance (INRA) for graduate support during this project. Research performed at the INL under DOE/NE Idaho Operations Office Contract DE-AC07-05ID14517. NR 60 TC 6 Z9 6 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT PY 2009 VL 57 IS 12 BP 1381 EP 1388 DI 10.1016/j.pss.2009.06.019 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 514AH UT WOS:000271365200007 ER PT J AU Mikkelsen, MD Thomashow, MF AF Mikkelsen, Michael D. Thomashow, Michael F. TI A role for circadian evening elements in cold-regulated gene expression in Arabidopsis SO PLANT JOURNAL LA English DT Article DE gene regulation; low temperature; circadian clock; evening element; ABA-responsive element; Arabidopsis ID PLANT TRANSCRIPTION FACTORS; LOW-TEMPERATURE; FREEZING TOLERANCE; ABSCISIC-ACID; STRESS RESPONSES; THALIANA; PATHWAYS; FAMILY; CLOCK; DROUGHT AB The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold-and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome. C1 [Mikkelsen, Michael D.; Thomashow, Michael F.] Michigan State Univ, Plant Res Lab, MSU DOE, E Lansing, MI 48824 USA. [Thomashow, Michael F.] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. RP Thomashow, MF (reprint author), Michigan State Univ, Plant Res Lab, MSU DOE, E Lansing, MI 48824 USA. EM thomash6@msu.edu FU FP6 Marie Curie Outgoing International Fellowship [514432]; NSF Plant Genome Project [DBI 0110124, DBI 0701709]; Department of Energy [DE-FG02-91ER20021]; Michigan Agricultural Experiment Station FX The authors would like to thank Sarah Gilmour, Marlene Cameron and Karen Bird for their help in preparing the manuscript; Amanda Erica Harris and Justyne Eliza Matheny for excellent technical assistance; and Eva Farre for a critical read of the manuscript. The authors would also like to thank Diane Constan for the vector used to make the promoter constructs. This work was supported by an FP6 Marie Curie Outgoing International Fellowship (514432) to MDM and grant support to MFT from the NSF Plant Genome Project (DBI 0110124 and DBI 0701709), the Department of Energy (DE-FG02-91ER20021) and the Michigan Agricultural Experiment Station. NR 41 TC 64 Z9 69 U1 1 U2 38 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD OCT PY 2009 VL 60 IS 2 BP 328 EP 339 DI 10.1111/j.1365-313X.2009.03957.x PG 12 WC Plant Sciences SC Plant Sciences GA 505CD UT WOS:000270664900012 PM 19566593 ER PT J AU Loch, SD Ballance, CP Pindzola, MS Stotler, DP AF Loch, S. D. Ballance, C. P. Pindzola, M. S. Stotler, D. P. TI The role of excited state ionization data on H and He generalized collisional-radiative coefficients SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ELECTRON-IMPACT IONIZATION; FINITE-DENSITY PLASMAS; CLOSE-COUPLING METHOD; ATOMIC-HYDROGEN; LIGHT-ELEMENTS; CROSS-SECTION; ISONUCLEAR SEQUENCE; RECOMBINATION DATA; LEVEL POPULATIONS; R-MATRIX AB We present results of collisional-radiative modelling of H, He and He(+) for use in plasma transport studies. Generalized collisional-radiative (GCR) coefficients are generated for each ion using the most recent atomic data available. The data generated cover electron densities up to 1 x 10(15) cm(-3) and electron temperatures up to about 200 eV. These data are archived online for use by modelling codes. We then present a study on the role of excited state ionization data on GCR coefficients. For most ions, excited state ionization cross sections are not well known. We use the high quality data that are available for H, He and He(+) to test two commonly used methods for excited state ionization data, namely, semi-classical methods or perturbative methods. It is found that for neutral H and He, the exchange classical impact parameter (ECIP) method provides accurate data for derived GCR coefficients, while the perturbative distorted-wave methods lead to significant overestimates of the effective ionization rate coefficient. For He(+), using perturbative distorted-wave data for the excited state ionization processes gives reasonably accurate results for the GCR coefficients, while the ECIP results significantly underestimate the effective ionization rate coefficient. Thus, for neutral H and He the semi-classical method is to be preferred over the distorted-wave method, and the situation is reversed for He(+). C1 [Loch, S. D.; Ballance, C. P.; Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Loch, SD (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. EM loch@physics.auburn.edu RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 FU US DOE SciDAC FX This research was supported through a US DOE SciDAC grant to the Center for Plasma Edge Simulation. The R-matrix with pseudo-states calculations in this paper were performed on the National Energy Research Scientific Computing Center in Oakland, California. NR 43 TC 11 Z9 11 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2009 VL 51 IS 10 AR 105006 DI 10.1088/0741-3335/51/10/105006 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 501NH UT WOS:000270388100007 ER PT J AU Zweben, SJ Maqueda, RJ Roquemore, AL Bush, CE Kaita, R Marsala, RJ Raitses, Y Cohen, RH Ryutov, DD AF Zweben, S. J. Maqueda, R. J. Roquemore, A. L. Bush, C. E. Kaita, R. Marsala, R. J. Raitses, Y. Cohen, R. H. Ryutov, D. D. TI Local scrape-off layer control using biased electrodes in NSTX SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID FLUSH-MOUNTED PROBE; PLASMA CONVECTION; EDGE TURBULENCE; DIVERTOR; TOKAMAK; TRANSPORT; LIMITER; PHYSICS; FIELDS AB An experiment on the National Spherical Torus Experiment (NSTX) was designed to test the theory that biased electrodes can affect the local scrape-off layer (SOL) by creating a strong radial E x B flow (Cohen and Ryutov 1997 Nucl. Fusion 37 621). These electrodes were located near the outer midplane and were biased at up to +/-90V with respect to the local vacuum vessel ground. This biasing caused large changes in the local SOL profiles as measured by an array of Langmuir probes between the electrodes. A theory is presented which at least partially describes the experimental results. C1 [Zweben, S. J.; Roquemore, A. L.; Kaita, R.; Marsala, R. J.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Maqueda, R. J.] Nova Photon Inc, Princeton, NJ 08540 USA. [Bush, C. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Cohen, R. H.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Zweben, SJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. FU US DOE [DE-AC02-76CH03073] FX The authors thank the NSTX team for their support for this project, and in particular J A Boedo, D D'Ippolito, E D Fredrickson, H E Kugel, R Maingi, B D Scott and V Soukhanovskii for helpful discussions. This work was supported by US DOE Contract # DE-AC02-76CH03073. NR 29 TC 10 Z9 10 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD OCT PY 2009 VL 51 IS 10 AR 105012 DI 10.1088/0741-3335/51/10/105012 PG 24 WC Physics, Fluids & Plasmas SC Physics GA 501NH UT WOS:000270388100013 ER PT J AU Rong, LB Perelson, AS AF Rong, Libin Perelson, Alan S. TI Modeling Latently Infected Cell Activation: Viral and Latent Reservoir Persistence, and Viral Blips in HIV-infected Patients on Potent Therapy SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; ACTIVE ANTIRETROVIRAL THERAPY; CD4(+) T-CELLS; LYMPHOCYTIC CHORIOMENINGITIS VIRUS; LOW-LEVEL VIREMIA; DRUG-RESISTANCE; COMBINATION THERAPY; IN-VIVO; INTERMITTENT VIREMIA; LIFELONG PERSISTENCE AB Although potent combination therapy is usually able to suppress plasma viral loads in HIV-1 patients to below the detection limit of conventional clinical assays, a low level of viremia frequently can be detected in plasma by more sensitive assays. Additionally, many patients experience transient episodes of viremia above the detection limit, termed viral blips, even after being on highly suppressive therapy for many years. An obstacle to viral eradication is the persistence of a latent reservoir for HIV-1 in resting memory CD4(+) T cells. The mechanisms underlying low viral load persistence, slow decay of the latent reservoir, and intermittent viral blips are not fully characterized. The quantitative contributions of residual viral replication to viral and the latent reservoir persistence remain unclear. In this paper, we probe these issues by developing a mathematical model that considers latently infected cell activation in response to stochastic antigenic stimulation. We demonstrate that programmed expansion and contraction of latently infected cells upon immune activation can generate both low-level persistent viremia and intermittent viral blips. Also, a small fraction of activated T cells revert to latency, providing a potential to replenish the latent reservoir. By this means, occasional activation of latently infected cells can explain the variable decay characteristics of the latent reservoir observed in different clinical studies. Finally, we propose a phenomenological model that includes a logistic term representing homeostatic proliferation of latently infected cells. The model is simple but can robustly generate the multiphasic viral decline seen after initiation of therapy, as well as low-level persistent viremia and intermittent HIV-1 blips. Using these models, we provide a quantitative and integrated prospective into the long-term dynamics of HIV-1 and the latent reservoir in the setting of potent antiretroviral therapy. C1 [Rong, Libin; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rong, LB (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM asp@lanl.gov FU US Department of Energy (DOE) [DE-AC52-06NA25396]; NIH [AI28433, RR06555] FX Portions of this work were done under the auspices of the US Department of Energy (DOE) under contract DE-AC52-06NA25396. This work was supported by NIH grants AI28433 and RR06555. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 92 TC 71 Z9 71 U1 2 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2009 VL 5 IS 10 AR e1000533 DI 10.1371/journal.pcbi.1000533 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 522XI UT WOS:000272033100013 PM 19834532 ER PT J AU Gutenkunst, RN Hernandez, RD Williamson, SH Bustamante, CD AF Gutenkunst, Ryan N. Hernandez, Ryan D. Williamson, Scott H. Bustamante, Carlos D. TI Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data SO PLOS GENETICS LA English DT Article ID GENOME-WIDE PATTERNS; NUCLEOTIDE POLYMORPHISM; DIRECTIONAL SELECTION; COMPOSITE-LIKELIHOOD; SEQUENCE VARIATION; RESEQUENCING DATA; X-CHROMOSOME; GENE FLOW; SPECTRUM; DIVERGENCE AB Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand years ago (95% confidence interval: 40-270 kya). This is earlier than other genetic studies, in part because we incorporate migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17-43 kya), long after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB) and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3-26.9 kya), and our analysis yields no evidence for subsequent migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations accurately predicts the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU). C1 [Gutenkunst, Ryan N.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hernandez, Ryan D.] Univ Chicago, Chicago, IL 60637 USA. [Williamson, Scott H.; Bustamante, Carlos D.] Cornell Univ, Ithaca, NY USA. RP Gutenkunst, RN (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM ryang@lanl.gov FU National Science Foundation; PHY05-51164; National Institutes of Health [1R01GM83606, 2R01HG003229]; DOE [DE-AC52-06NA25396] FX This research was supported by National Science Foundation grant PHY05-51164, National Institutes of Health grants 1R01GM83606 and 2R01HG003229, and DOE contract DE-AC52-06NA25396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 394 Z9 400 U1 7 U2 119 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD OCT PY 2009 VL 5 IS 10 AR e1000695 DI 10.1371/journal.pgen.1000695 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 522WZ UT WOS:000272032100033 PM 19851460 ER PT J AU Sabourin, JL Yetter, RA Asay, BW Lloyd, JM Sanders, VE Risha, GA Son, SF AF Sabourin, Justin L. Yetter, Richard A. Asay, Blaine W. Lloyd, Joseph M. Sanders, Victor E. Risha, Grant A. Son, Steven F. TI Effect of Nano-Aluminum and Fumed Silica Particles on Deflagration and Detonation of Nitromethane SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Burning Rate; Deflagration; Detonation; Nanoaluminum; Nitromethane ID CRITICAL DIAMETER; INHOMOGENEITY; COMBUSTION; VELOCITY; SIZE AB The heterogeneous interaction between nitromethane (NM), particles of nanoscale aluminum (38 and 80 nm diameter), and fumed silica is examined in terms of the deflagration and detonation characteristics. Burning rates are quantified as functions Of pressure Using all Optical pressure Vessel Up to 14.2 MPa, while detonation structure is characterized in terms of failure diameter. Nitromethane is gelled using fumed silica (CAB-O-SIL (R)), as well as by the nanoaluminum particles themselves. Use of nanoaluminum particles with fumed silica slightly increases burning rates compared to the Lise of larger diameter Al particles; however distinct increases in burning rates are found when CAB-O-SIL is removed and replaced with more energetic aluminum nanoparticles, whose high surface area allows them to also act as the gellant. Mixtures including fumed silica yield a reduced burning rate pressure exponent compared to neat NM, while mixtures of aluminum particles alone show a significant increase. Failure diameters of mixture detonations are found to vary significantly as a function of 38 nm aluminum particle loading, reducing more than 50% from that of neat nitromethane with 12.5% (by mass) aluminum loading. Failure diameter results indicate a relative minimum with respect to particle separation (% loading) which is not observed in other heterogeneous mixtures. C1 [Sabourin, Justin L.; Yetter, Richard A.] Penn State Univ, University Pk, PA 16802 USA. [Asay, Blaine W.; Lloyd, Joseph M.; Sanders, Victor E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Risha, Grant A.] Penn State Univ, Altoona, PA 16601 USA. [Son, Steven F.] Purdue Univ, W Lafayette, IN 47907 USA. RP Sabourin, JL (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM jls861@psu.edu OI Son, Steven/0000-0001-7498-2922 FU Multi University Research Initiative [W911NF-04-1-0178] FX The research at the Pennsylvania State University and Purdue University was supported by the US. Army Research Office under the Multi University Research Initiative under Contract No. W911NF-04-1-0178. The Support and encouragement provided by Ralph A. Anthenien is gratefully acknowledged. NR 33 TC 31 Z9 33 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD OCT PY 2009 VL 34 IS 5 BP 385 EP 393 DI 10.1002/prep.200800106 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 515TM UT WOS:000271495800002 ER PT J AU Willey, TM Hoffman, DM van Buuren, T Lauderbach, L Gee, RH Maiti, A Overturf, GE Fried, LE Ilavsky, J AF Willey, Trevor M. Hoffman, D. Mark van Buuren, Tony Lauderbach, Lisa Gee, Richard H. Maiti, Amitesh Overturf, George E. Fried, Laurence E. Ilavsky, Jan TI The Microstructure of TATB-Based Explosive Formulations During Temperature Cycling Using Ultra-Small-Angle X-Ray Scattering SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Kel-F 800; LX-17; Ratchet Growth; TATB; Temperature Cycling; UFTATB; USAXS ID PARTICLE-SIZE DISTRIBUTIONS; TG POLYMERIC BINDERS; 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE TATB; ENERGETIC MATERIALS; NEUTRON-SCATTERING; THERMAL-EXPANSION; SOLID EXPLOSIVES; HOT-SPOTS; INSTRUMENT; GROWTH AB TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in polymer-bound explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). Many TATB-based explosives, including LX-17, a mixture of TATB and Kel-F 800 binder, experience an irreversible expansion with temperature cycling known as ratchet growth. Additional voids, with sizes hundreds of nanometers to a few micrometers, account for much of the volume expansion. Measuring these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding mechanisms for ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between -55 and 70 degrees C. These void size distributions are derived from ultrasmall-angle X-ray scattering (USAXS), a technique sensitive to structures from about 2 nm to about 2 mu m. Structures with these sizes do not appreciably change in UFTATB. Compared to TATB/ Kel-F 800, Cytop M and Cytop A show relatively small increases in void Volume from 0.9 to 1.3% and 0.6 to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2-4.6%). Computational mesoscale models combined with experimental results indicate both high glass transition temperature as well as TATB binder adhesion and wetting are important to minimize ratchet growth. C1 [Willey, Trevor M.; Hoffman, D. Mark; van Buuren, Tony; Lauderbach, Lisa; Gee, Richard H.; Maiti, Amitesh; Overturf, George E.; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Willey, TM (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM willey1@llnl.gov RI Willey, Trevor/A-8778-2011; Ilavsky, Jan/D-4521-2013; Fried, Laurence/L-8714-2014; USAXS, APS/D-4198-2013 OI Willey, Trevor/0000-0002-9667-8830; Ilavsky, Jan/0000-0003-1982-8900; Fried, Laurence/0000-0002-9437-7700; FU Laboratory Directed Research and Development Program [06-SI-005]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC520-7NA27344]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC020-6CH11357, LLNL-JRNL-401946] FX We acknowledge assistance from B. J. Cunningham, F. J. Gagliardi, and S. R. Weber, LLNL. We acknowledge funding from project 06-SI-005 of the Laboratory Directed Research and Development Program at LLNL. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC520-7NA27344. Use of The Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC020-6CH11357. LLNL-JRNL-401946. NR 31 TC 13 Z9 14 U1 4 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD OCT PY 2009 VL 34 IS 5 BP 406 EP 414 DI 10.1002/prep.200800031 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 515TM UT WOS:000271495800005 ER PT J AU Ha, SC Pereira, JH Jeong, JH Huh, JH Kim, SH AF Ha, Sung Chul Pereira, Jose Henrique Jeong, Jin Hee Huh, Jin Hoe Kim, Sung-Hou TI Purification of human transcription factors Nanog and Sox2, each in complex with Skp, an Escherichia coli periplasmic chaperone SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE Transcription factor; Stem cell; E. coli Skp; Mammalian gene expression in E. coli; Purification; Nanog; Nanog-Skp complex; Sox2; Sox2-Skp complex; Skp ID EMBRYONIC STEM-CELLS; OUTER-MEMBRANE PROTEINS; PLURIPOTENCY SUSTAINING FACTOR; CRYSTAL-STRUCTURE; EXPRESSION; OCT4; IDENTIFICATION; ENHANCER; NETWORK; DEPENDS AB Nanog and Sox2 are key transcriptional factors involved in self-renewal and pluripotency of stem cells in human and other mammals. Nanog and Sox2 contain homeodomain (HD) and high-mobility group (HMG) DNA-binding domain, respectively, for targeting them to their regulatory regions and the other regions with transactivation function by providing sites for recruiting other transcriptional regulators. To gain insights in the biochemical and biophysical characteristics of the other regions of Nanog and Sox2, we have tried to overproduce and purify full length wild-type human Nanog and Sox2 expressed in Escherichia coli. Interestingly, we found that Nanog and Sox2 were individually stabilized by tight interaction with Skp, an E. coli periplasmic chaperone, thereby enabling stable over-expression and purification of Nanog and Sox2, each in complex with Skp. Purified Skp complexes of Nanog and Sox maintained DNA-binding activity toward its cognate DNA sequence. A similar approach may be applicable for some other mammalian proteins that are unstable or difficult to over-express in E. coli. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ha, Sung Chul; Jeong, Jin Hee; Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pereira, Jose Henrique; Kim, Sung-Hou] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Huh, Jin Hoe] Univ Calif Berkeley, Dept Plant Mol Biol, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu FU Korean Research Foundation [KRF-2006-214-C00080]; Korean Ministry of Science and Technology [KGM1310713, SC-3300]; MOST [M1064102000106N410200110] FX We are grateful to Hisao Yokota and Barbara Gold for cloning, David King and Sharleen Zhou for mass spectroscopy results, Robert Fischer for DNA-binding experiments and Rosalind Kim and Kyeong Kyu Kim for advice and suggestions throughout this project. This work was supported by grants from the Korean Research Foundation (KRF-2006-214-C00080), Korean Ministry of Science and Technology (KGM1310713 and SC-3300 of Stem Cell Research Center), and a Korea Science and Engineering Foundation Grant funded by MOST (M1064102000106N410200110). NR 40 TC 4 Z9 5 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD OCT PY 2009 VL 67 IS 2 BP 164 EP 168 DI 10.1016/j.pep.2009.05.003 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 541LJ UT WOS:000273416900015 PM 19427902 ER PT J AU Tan, KM Sather, A Robertson, JL Moy, S Roux, B Joachimiak, A AF Tan, Kemin Sather, Alicia Robertson, Janice L. Moy, Shiu Roux, Benoit Joachimiak, Andrzej TI Structure and electrostatic property of cytoplasmic domain of ZntB transporter SO PROTEIN SCIENCE LA English DT Article DE ZntB; CorA; transporter; structure; pentamer; electrostatic; Cl(-) ions ID ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; UPTAKE SYSTEM; K+ CHANNEL; PROTEIN; ZINC; CORA; MG2+; CATIONS; FAMILY AB ZntB is the distant homolog of CorA Mg(2+) transporter within the metal ion transporter superfamily. It was early reported that the ZntB from Salmonella typhimurium facilitated efflux of Zn(2+) and Cd(2+), but not Mg(2+). Here, we report the 1.90 angstrom crystal structure of the intracellular domain of ZntB from Vibrio parahemolyticus. The domain forms a funnel-shaped homopentamer that is similar to the full-length CorA from Thermatoga maritima, but differs from two previously reported dimeric structures of truncated CorA intracellular domains. However, no Zn(2+) or Cd(2+) binding sites were identified in the high-resolution structure. Instead, 25 well-defined Cl(-) ions were observed and some of these binding sites are highly conserved within the ZntB family. Continuum electrostatics calculations suggest that the central pore of the funnel is highly attractive for cations, especially divalents. The presence of the bound Cl(-) ions increases the stability of cations along the pore suggesting they could be important in enhancing cation transport. C1 [Tan, Kemin; Sather, Alicia; Moy, Shiu; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA. [Tan, Kemin; Sather, Alicia; Moy, Shiu; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Robertson, Janice L.] Cornell Univ, Dept Physiol Biophys & Syst Biol, Weill Grad Sch Med Sci, New York, NY 10021 USA. [Robertson, Janice L.; Roux, Benoit; Joachimiak, Andrzej] Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM andrzejj@anl.gov FU National Institutes of Health [GM074942, GM-62342]; U. S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; NSERC Canada FX National Institutes of Health; Grant number: GM074942; Grant sponsor: U. S. Department of Energy, Office of Biological and Environmental Research; Grant number: DE-AC02-06CH11357; Grant sponsor: NIH; Grant number: GM-62342; Grant sponsor: PGS-D international fellowship from NSERC Canada. NR 36 TC 9 Z9 9 U1 0 U2 3 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD OCT PY 2009 VL 18 IS 10 BP 2043 EP 2052 DI 10.1002/pro.215 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 503AA UT WOS:000270501400005 PM 19653298 ER PT J AU Xu, Q Minor, DL AF Xu, Qiang Minor, Daniel L., Jr. TI Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif SO PROTEIN SCIENCE LA English DT Article DE Coiled-coil; Kv7 (KCNQ) channel; R-h-x-x-h-E motif; oligomeric assembly ID GCN4 LEUCINE-ZIPPER; ALPHA-FIBROUS PROTEINS; SINGLE AMINO-ACID; LONG-QT SYNDROME; K+ CHANNEL; ELECTROSTATIC INTERACTIONS; POTASSIUM CHANNELS; SALT-BRIDGES; SEQUENCE; DESIGN AB Coiled-coils are widespread protein-protein interaction motifs typified by the heptad repeat (abcdefg)(n) in which "a" and "d" positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583-611), "Q1-short," of the coiled-coil assembly specificity domain from the voltage-gated potassium channel Kv7.1 (KCNQ1) determined at 1.7 angstrom resolution. Q1-short lacks one and half heptads present in a previously studied tetrameric coiled-coil construct, Kv7.1 585-621, "Q1-long." Surprisingly, Q1-short crystallizes as a trimer. In solution, Q1-short self-assembles more poorly than Q1-long and depends on an R-h-x-x-h-E motif common to trimeric coiled-coils. Addition of native sequences that include "a" and "d" positions C-terminal to Q1-short overrides the R-h-x-x-h-E motif influence and changes assembly state from a weakly associated trimer to a strongly associated tetramer. These data provide a striking example of a naturally occurring amino sequence that exhibits context-dependent folding into different oligomerization states, a three-stranded versus a four-stranded coiled-coil. The results emphasize the degenerate nature of coiled-coil energy landscapes in which small changes can have drastic effects on oligomerization. Discovery of these properties in an ion channel assembly domain and prevalence of the R-h-x-x-h-E motif in coiled-coil assembly domains of a number of different channels that are thought to function as tetrameric assemblies raises the possibility that such sequence features may be important for facilitating the assembly of intermediates en route to the final native state. C1 [Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Biochem & Biophys, Dept Cellular & Mol Pharmacol,Calif Inst Quantita, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, Dept Biochem & Biophys, Dept Cellular & Mol Pharmacol,Calif Inst Quantita, San Francisco, CA 94158 USA. EM daniel.minor@ucsf.edu FU NIH-NIDCD; American Heart Association FX Grant sponsors: NIH-NIDCD, American Heart Association. NR 74 TC 16 Z9 17 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD OCT PY 2009 VL 18 IS 10 BP 2100 EP 2114 DI 10.1002/pro.224 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 503AA UT WOS:000270501400011 PM 19693805 ER PT J AU Wang, XQ Yang, PF Zhang, XO Xu, YN Kuang, TY Shen, SH He, YK AF Wang, Xiaoqin Yang, Pingfang Zhang, Xiaofeng Xu, Yinong Kuang, Tingyun Shen, Shihua He, Yikun TI Proteomic analysis of the cold stress response in the moss, Physcomitrella patens SO PROTEOMICS LA English DT Article DE 2-DE; Cold stress; LC-MS/MS; Physcomitrella; Plant proteomics; Proteome ID ARABIDOPSIS-THALIANA; FREEZING TOLERANCE; GENE-EXPRESSION; 14-3-3 PROTEINS; MOLECULAR CHAPERONES; SIGNAL-TRANSDUCTION; ACTIN CYTOSKELETON; MEMBRANE-FLUIDITY; RICE SEEDLINGS; ABSCISIC-ACID AB Cold stress has adverse effects on plant growth and development. Plants respond and acclimate to cold stress through various biochemical and physiological processes, thereby acquiring stress tolerance To better understand the basis for tolerance, we carried out a proteomic study in the model moss, Physcomitrella patens, characterizing gametophore proteins with 2-DE and mass spectroscopy. Following exposure to 0 degrees C for up to 3 days, out of the more than 1000 protein spots reproducibly resolved, only 45 changed in abundance by at least 1.5-fold. Of these, 35 were identified by tryptic digestion and mass spectroscopy Photosynthetic proteins decreased, whereas many catabolic proteins increased. In addition, cold stress up-regulated a variety of signaling, cytoskeleton, and defense proteins and few proteins in these classes were down-regulated. Up-regulated proteins include the 14-3-3-like protein, actin, HSP70s, lipoxygenases, and cytochrome P450 proteins. These results point to pathways that are important for the mechanism of cold stress response in P. patens and by extension to the entire plant kingdom C1 [Wang, Xiaoqin; Zhang, Xiaofeng; Kuang, Tingyun; He, Yikun] Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China. [Wang, Xiaoqin; Xu, Yinong; Kuang, Tingyun; Shen, Shihua] Chinese Acad Sci, Inst Bot, Beijing, Peoples R China. [Yang, Pingfang] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP He, YK (reprint author), Capital Normal Univ, Coll Life Sci, Beijing 100048, Peoples R China. FU National Key Project for Gene Transform in China [2009ZX08009-058B]; Beijing National Science Key Foundation [KZ200610028017, 5021001]; Chinese 863 [2007AA021405]; Institutions of Higher Learning FX The authors thank Professor Tobias I. Baskin (Department of Biology, University of Massachusetts Amherst) for improving the manuscript. This work was supported by grants to Yikum He from National Key Project for Gene Transform in China (2009ZX08009-058B), Beijing National Science Key Foundation (KZ200610028017 and 5021001), Chinese 863 Project (2007AA021405) and Institutions of Higher Learning under the Jurisdiction of Beying Municipality for Academic Human Resources Development. NR 55 TC 32 Z9 35 U1 4 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD OCT PY 2009 VL 9 IS 19 BP 4529 EP 4538 DI 10.1002/pmic.200900062 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 510NL UT WOS:000271095500011 PM 19670371 ER PT J AU Vazquez-Lopez, C Zendejas-Leal, BE Bogard, JS Golzarri, JI Espinosa, G AF Vazquez-Lopez, C. Zendejas-Leal, B. E. Bogard, J. S. Golzarri, J. I. Espinosa, G. TI A measurement of the angular distribution of the diffuse optical transmittance of etched nuclear tracks in CR-39 SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 24th International Conference on Nuclear Tracks in Solids CY SEP 01-05, 2008 CL Bologna, ITALY SP Int Nucl Track Soc, Italian Natl Inst Nucl Phys, Univ Bologna, Dept Phys DE Transmittance; Angular distribution; PADC (CR-39); Nuclear tracks ID DETECTORS; DENSITY AB This paper presents a device to measure the angular distribution of the diffuse optical transmittance produced by etched nuclear tracks in polyallyl diglycol carbonate (PADC) detector. The device makes use of a stepper motor to move an array of four photodetectors around the sample in 1.8 degrees steps. The integrated transmitted light was observed to increase monotonically with the etched track density in a range from zero to 2.8 x 10(5) cm(-2), using a neutron Am-Be source. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Vazquez-Lopez, C.; Zendejas-Leal, B. E.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Mexico City 07360, DF, Mexico. [Bogard, J. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Golzarri, J. I.; Espinosa, G.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. RP Vazquez-Lopez, C (reprint author), Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Ave IPN 2508,Col San Pedro Zacatenco, Mexico City 07360, DF, Mexico. EM cvlopez@fis.cinvestav.mx NR 10 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD OCT-NOV PY 2009 VL 44 IS 9-10 BP 791 EP 794 DI 10.1016/j.radmeas.2009.10.011 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 538CP UT WOS:000273162100021 ER PT J AU Apostolakis, J Asai, M Bogdanov, AG Burkhardt, H Cosmo, G Elles, S Folger, G Grichine, VM Gumplinger, P Heikkinen, A Hrivnacova, I Ivanchenko, VN Jacquemier, J Koi, T Kokoulin, RP Kossov, M Kurashige, H McLaren, I Link, O Maire, M Pokorski, W Sasaki, T Starkov, N Urban, L Wright, DH AF Apostolakis, J. Asai, M. Bogdanov, A. G. Burkhardt, H. Cosmo, G. Elles, S. Folger, G. Grichine, V. M. Gumplinger, P. Heikkinen, A. Hrivnacova, I. Ivanchenko, V. N. Jacquemier, J. Koi, T. Kokoulin, R. P. Kossov, M. Kurashige, H. McLaren, I. Link, O. Maire, M. Pokorski, W. Sasaki, T. Starkov, N. Urban, L. Wright, D. H. TI Geometry and physics of the Geant4 toolkit for high and medium energy applications SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT Workshop on Use of Monte Carlo Techniques for Design and Analysis of Radiation Detectors CY SEP 15-17, 2006 CL Univ Coimbra, Phys Dept, Coimbra, PORTUGAL SP Int Radiat Phys Soc HO Univ Coimbra, Phys Dept DE Simulation; Monte Carlo; Particle interactions; Geometrical modeling; Nuclear interactions; Electromagnetic interactions; Hadronic interactions ID PRODUCTION CROSS-SECTIONS; SIMULATION TOOLKIT; MONTE-CARLO; MEV PROTONS; SPACE; INSTRUMENTATION; IMPLEMENTATION; RADIATION; CASCADE AB The current status of the Geant4 toolkit and the recent developments for the geometry, electromagnetic and hadronic physics for medium and high energy are presented. The focus of many recent improvements of the toolkit are key applications including the simulation of large Hadron collider (LHC) experiments at CERN. These developments and physics model extensions provide new capabilities and improvements for other applications of the toolkit for radiation studies in high energy physics (HEP), space and medical research. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Apostolakis, J.; Burkhardt, H.; Cosmo, G.; Folger, G.; Grichine, V. M.; Ivanchenko, V. N.; Kossov, M.; McLaren, I.; Link, O.; Pokorski, W.] CERN, Geneva, Switzerland. [Ivanchenko, V. N.] EMSU, Moscow, Russia. [Kossov, M.] ITEP, Moscow, Russia. [Hrivnacova, I.] IPN, Orsay, France. [Heikkinen, A.] Helsinki Inst Phys, Helsinki, Finland. [Elles, S.; Jacquemier, J.; Maire, M.] LAPP, Annecy, France. [Grichine, V. M.; Starkov, N.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Sasaki, T.] Natl Lab High Energy Phys, KEK, Tsukuba, Ibaraki 305, Japan. [Kurashige, H.] Kobe Univ, Kobe, Hyogo 657, Japan. [Bogdanov, A. G.; Kokoulin, R. P.] MEPhI, Moscow, Russia. [Urban, L.] RMKI, Budapest, Hungary. [Asai, M.; Koi, T.; Wright, D. H.] SLAC, Stanford, CA USA. [Gumplinger, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Ivanchenko, VN (reprint author), CERN, Geneva, Switzerland. EM Vladimir.Ivantchenko@cern.ch RI Sasaki, Takashi/K-6031-2012; Kokoulin, Rostislav/A-5689-2011; Bogdanov, Alexey/B-7551-2014; Grichine, Vladimir/M-8526-2015; Starkov, Nikolai/D-9293-2014; OI Sasaki, Takashi/0000-0003-1591-7252; Bogdanov, Alexey/0000-0002-6212-5795; Starkov, Nikolai/0000-0001-5735-2451; Heikkinen, Anna Maria /0000-0003-3252-192X NR 63 TC 53 Z9 54 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD OCT PY 2009 VL 78 IS 10 BP 859 EP 873 DI 10.1016/j.radphyschem.2009.04.026 PG 15 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 487NE UT WOS:000269280600005 ER PT J AU Pelka, JB Sobierajski, R Klinger, D Paszkowicz, W Krzywinski, J Jurek, M Zymierska, D Wawro, A Petroutchik, A Juha, L Hajkova, V Cihelka, J Chalupsky, J Burian, T Vysin, L Toleikis, S Sokolowski-Tinten, K Stojanovic, N Zastrau, U London, R Hau-Riege, S Riekel, C Davies, R Burghammer, M Dynowska, E Szuszkiewicz, W Caliebe, W Nietubyc, R AF Pelka, J. B. Sobierajski, R. Klinger, D. Paszkowicz, W. Krzywinski, J. Jurek, M. Zymierska, D. Wawro, A. Petroutchik, A. Juha, L. Hajkova, V. Cihelka, J. Chalupsky, J. Burian, T. Vysin, L. Toleikis, S. Sokolowski-Tinten, K. Stojanovic, N. Zastrau, U. London, R. Hau-Riege, S. Riekel, C. Davies, R. Burghammer, M. Dynowska, E. Szuszkiewicz, W. Caliebe, W. Nietubyc, R. TI Damage in solids irradiated by a single shot of XUV free-electron laser: Irreversible changes investigated using X-ray microdiffraction, atomic force microscopy and Nomarski optical microscopy SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 9th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS-9) CY JUN 15-20, 2008 CL Ameliowka, POLAND SP Polish Synchrotron Radiat Soc, PAS, Inst Phys DE XUV FEL; Radiation damage; Ablation; Structure modifications; X-ray diffraction ID PULSES; RADIATION; VACUUM AB The article presents preliminary investigation results on the near-surface damage produced by single pulses of XUV free-electron laser in the amorphous alpha-SiO(2), the monocrystalline silicon and the epitaxial films of gold. The irradiation was delivered with single pulses of only 25 fs at a wavelength of 32.5 nm and of energy up to 10 mu J. Structural modifications induced by irradiation were characterized by X-ray microdiffraction, as well as by the AFM and optical microscopy. Ablation craters of well-defined edges with smooth interiors and outer embankments surrounding the crater edges were found in the materials. Polycrystalline phases were revealed in Si and Au film samples, in the embankments and in central parts of some craters. In alpha-SiO(2), a diffraction pattern typical of an amorphous material was observed without any traces of irradiation-initiated crystallization. A step-like, complete removal of gold film was evidenced inside craters, with only small gold residues in central part of craters exposed to higher fluences. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Pelka, J. B.; Sobierajski, R.; Klinger, D.; Paszkowicz, W.; Krzywinski, J.; Jurek, M.; Zymierska, D.; Wawro, A.; Petroutchik, A.; Dynowska, E.; Szuszkiewicz, W.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Juha, L.; Hajkova, V.; Cihelka, J.; Chalupsky, J.; Burian, T.; Vysin, L.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Toleikis, S.; Caliebe, W.] HASYLAB DESY, D-2263 Hamburg, Germany. [Sokolowski-Tinten, K.; Stojanovic, N.] Univ Duisburg Essen, Inst Expt Phys, D-4748 Duisburg, Germany. [Zastrau, U.] FSU Jena, Inst Opt & Quantenelekt, D-07743 Jena, Germany. [London, R.; Hau-Riege, S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Riekel, C.; Davies, R.; Burghammer, M.] European Synchrotron Radiat Facil, F-3043 Grenoble, France. [Nietubyc, R.] Andrzej Soltan Inst Nucl Studies, PL-05400 Otwock, Poland. RP Pelka, JB (reprint author), Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland. EM pelkay@ifpan.edu.pl RI Paszkowicz, Wojciech/A-1623-2015; Sobierajski, Ryszard/E-7619-2012; Stojanovic, Nikola/H-6986-2013; Hajkova, Vera/G-9391-2014; Klinger, Dorota/K-8819-2016; Pelka, Jerzy/S-8587-2016; Pietruczik, Aleksiej/K-8849-2016; Chalupsky, Jaromir/H-2079-2014; Burian, Tomas/H-3236-2014; Sokolowski-Tinten, Klaus/A-5415-2015; Wawro, Andrzej/A-9103-2015 OI Paszkowicz, Wojciech/0000-0001-6276-088X; Pelka, Jerzy/0000-0002-1863-8219; Pietruczik, Aleksiej/0000-0001-5710-663X; Burian, Tomas/0000-0003-3982-9978; Wawro, Andrzej/0000-0001-8972-9284 NR 12 TC 5 Z9 5 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD OCT PY 2009 VL 78 BP S46 EP S52 DI 10.1016/j.radphyschem.2009.06.006 PG 7 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 505KJ UT WOS:000270692000011 ER PT J AU Kuhne, WW Gersey, BB Wilkins, R Wu, HL Wender, SA George, V Dynan, WS AF Kuhne, Wendy W. Gersey, Brad B. Wilkins, Richard Wu, Honglu Wender, Stephen A. George, Varghese Dynan, William S. TI Biological Effects of High-Energy Neutrons Measured In Vivo Using a Vertebrate Model SO RADIATION RESEARCH LA English DT Article ID PROPORTIONAL COUNTER MICRODOSIMETER; MEDAKA ORYZIAS-LATIPES; GERM-CELL MUTAGENESIS; IONIZING-RADIATION; BOMB SURVIVORS; FISH; EQUIVALENT; INDUCTION; APOPTOSIS; ORGANISM AB Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0-0.5 Gy of high-energy neutron radiation or 0-15 Gy of reference gamma radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference gamma radiation, indicates an RBE of 24.9 (95% CI 13.6-40.7). A higher RBE of 48.1 (95% CI 30.0-66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure. (C) 2009 by Radiation Research society C1 [Kuhne, Wendy W.] Med Coll Georgia, IMMAG CA 3053, Inst Mol Med & Genet, Augusta, GA 30912 USA. [George, Varghese] Med Coll Georgia, Dept Biostat, Augusta, GA 30912 USA. [Gersey, Brad B.; Wilkins, Richard] Prairie View A&M Univ, Ctr Appl Radiat Res, Prairie View, TX USA. [Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Wender, Stephen A.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM USA. RP Kuhne, WW (reprint author), Med Coll Georgia, IMMAG CA 3053, Inst Mol Med & Genet, Augusta, GA 30912 USA. EM wkuhne@mcg.edu OI Wender, Stephen/0000-0002-2446-5115 FU U.S. Department of Energy Low Dose Radiation Research Program [DOE FG02-03ERG3649]; National Research Service Award [1F32ES015663-01]; National Aeronautics and Space Administration [NCC9-114] FX Funding was provided by a grant award from U.S. Department of Energy Low Dose Radiation Research Program (DOE FG02-03ERG3649), a National Research Service Award to Wendy Kuhne (1F32ES015663-01), and a grant award from the National Aeronautics and Space Administration (NCC9-114) to the Center for Applied Radiation Research, Prairie View A&M University. Neutron beam time was supported by the U.S. Department of Energy. We thank Katsuya Miyake and the Medical College of Georgia Cell Imaging Core Facility for assistance with microscopy and data analysis. We thank Li Fang Zhang in the Biostatistics Group at the Medical College of Georgia for her contributions to data analysis. We extend special thanks to Art Bridge at the LANSCE facility and Lingling Ding at the Medical College of Georgia for their assistance with logistical support in this project. NR 33 TC 11 Z9 11 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD OCT PY 2009 VL 172 IS 4 BP 473 EP 480 DI 10.1667/RR1556.1 PG 8 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 503VI UT WOS:000270568900008 PM 19772468 ER PT J AU Garten, CT Brice, DJ AF Garten, Charles T., Jr. Brice, Deanne J. TI Belowground fate of N-15 injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID ELEVATED CO2; NITROGEN LIMITATION; DECIDUOUS FOREST; CARBON; SOIL; ENRICHMENT; TURNOVER; PRODUCTIVITY; PLANTATION; EFFICIENCY AB Nitrogen (N) cycling can be an important constraint on forest ecosystem response to elevated atmospheric CO2. Our objective was to trace the movement of N-15, injected into tree sap, to labile and stable forms of soil organic matter derived partly from the turnover of tree roots under elevated (545 ppm) and ambient (394 ppm) atmospheric CO2 concentrations at the Oak Ridge National Laboratory (ORNL) FACE (Free-Air Carbon Dioxide Enrichment) Experiment. Twenty-four sweet-gum trees, divided equally between CO2 treatments, were injected with 3.2 g N-15-ammonium sulfate (99 atom %), and soil samples were collected beneath the trees over a period of 89 weeks. For 16 cm deep soil samples collected beneath the study trees, there was 28% more fine root (less than or equal to 2 mm diameter) biomass under elevated CO2 (P = 0.001), but no significant treatment effect on the amounts of necromass, coarse root biomass, or on the N concentrations in tree roots and necromass. Nitrogen-15 moved quickly into roots from the stem injection site and the N-15 content of roots, necromass, and labile organic matter (i.e. particulate organic matter, POM) increased over time. At 89 weeks post-injection, approximately 76% of the necromass N-15 originated from fine root turnover. Nitrogen-15 in POM had a relatively long turnover time (47 weeks) compared with N-15 in roots (16 to 22 weeks). Over the 1.7 year period of the study, N-15 moved from roots into slower cycling POM and the disparity in turnover times between root N and N in POM could impose progressive limitations on soil N availability with stand maturation irrespective of atmospheric CO2, especially if the release of N through the decomposition of POM is essential to sustain forest net primary production. Published in 2009 by John Wiley & Sons, Ltd. C1 [Garten, Charles T., Jr.; Brice, Deanne J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6036, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov RI Brice, Deanne/B-9048-2012 FU U.S. Department of Energy's Office of Science, Biological and Environmental Research; Oak Ridge National Laboratory (ORNL) [DE-AC05-00OR22725] FX We thank Rich Norby (ORNL), Colleen Iversen (ORNL), and Aimee Classen (University of Tennessee, Knoxville) for their helpful reviews of the draft manuscript, and Jeffrey Warren (ORNL) and Joanne Childs for their help in the field. The research was sponsored by the U.S. Department of Energy's Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory (ORNL), managed by UTBattelle, LLC for the United States Department of Energy under contract DE-AC05-00OR22725. The manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 19 TC 7 Z9 7 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD OCT PY 2009 VL 23 IS 19 BP 3094 EP 3100 DI 10.1002/rcm.4227 PG 7 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 503BY UT WOS:000270507900009 PM 19705377 ER PT J AU Bandyopadhyay, A Choubey, S Gandhi, R Goswami, S Roberts, BL Bouchez, J Antoniadis, I Ellis, J Giudice, GF Schwetz, T Umasankar, S Karagiorgi, G Aguilar-Arevalo, A Conrad, JM Shaevitz, MH Pascoli, S Geer, S Campagne, JE Rolinec, M Blondel, A Campanelli, M Kopp, J Lindner, M Peltoniemi, J Dornan, PJ Long, K Matsushita, T Rogers, C Uchida, Y Dracos, M Whisnant, K Casper, D Chen, MC Popov, B Aysto, J Marfatia, D Okada, Y Sugiyama, H Jungmann, K Lesgourgues, J Zisman, M Tortola, MA Friedland, A Davidson, S Antusch, S Biggio, C Donini, A Fernandez-Martinez, E Gavela, B Maltoni, M Lopez-Pavon, J Rigolin, S Mondal, N Palladino, V Filthaut, F Albright, C de Gouvea, A Kuno, Y Nagashima, Y Mezzetto, M Lola, S Langacker, P Baldini, A Nunokawa, H Meloni, D Diaz, M King, SF Zuber, K Akeroyd, AG Grossman, Y Farzan, Y Tobe, K Aoki, M Murayama, H Kitazawa, N Yasuda, O Petcov, S Romanino, A Chimenti, P Vacchi, A Smirnov, AY Couce, E Gomez-Cadenas, JJ Hernandez, P Sorel, M Valle, JWF Harrison, PF Lunardini, C Nelson, JK Barger, V Everett, L Huber, P Winter, W Fetscher, W van der Schaaf, A AF Bandyopadhyay, A. Choubey, S. Gandhi, R. Goswami, S. Roberts, B. L. Bouchez, J. Antoniadis, I. Ellis, J. Giudice, G. F. Schwetz, T. Umasankar, S. Karagiorgi, G. Aguilar-Arevalo, A. Conrad, J. M. Shaevitz, M. H. Pascoli, S. Geer, S. Campagne, J. E. Rolinec, M. Blondel, A. Campanelli, M. Kopp, J. Lindner, M. Peltoniemi, J. Dornan, P. J. Long, K. Matsushita, T. Rogers, C. Uchida, Y. Dracos, M. Whisnant, K. Casper, D. Chen, Mu-Chun Popov, B. Aysto, J. Marfatia, D. Okada, Y. Sugiyama, H. Jungmann, K. Lesgourgues, J. Zisman, M. Tortola, M. A. Friedland, A. Davidson, S. Antusch, S. Biggio, C. Donini, A. Fernandez-Martinez, E. Gavela, B. Maltoni, M. Lopez-Pavon, J. Rigolin, S. Mondal, N. Palladino, V. Filthaut, F. Albright, C. de Gouvea, A. Kuno, Y. Nagashima, Y. Mezzetto, M. Lola, S. Langacker, P. Baldini, A. Nunokawa, H. Meloni, D. Diaz, M. King, S. F. Zuber, K. Akeroyd, A. G. Grossman, Y. Farzan, Y. Tobe, K. Aoki, Mayumi Murayama, H. Kitazawa, N. Yasuda, O. Petcov, S. Romanino, A. Chimenti, P. Vacchi, A. Smirnov, A. Yu Couce, E. Gomez-Cadenas, J. J. Hernandez, P. Sorel, M. Valle, J. W. F. Harrison, P. F. Lunardini, C. Nelson, J. K. Barger, V. Everett, L. Huber, P. Winter, W. Fetscher, W. van der Schaaf, A. CA ISS Phys Working Grp TI Physics at a future Neutrino Factory and super-beam facility SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID DOUBLE-BETA-DECAY; LONG-BASE-LINE; LEPTON-FLAVOR VIOLATION; LARGE EXTRA DIMENSIONS; MU-E CONVERSION; ELECTRIC-DIPOLE MOMENT; SUPERSYMMETRIC STANDARD MODEL; ANOMALOUS MAGNETIC-MOMENT; R-PARITY VIOLATION; WARM DARK-MATTER AB The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report. C1 [Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India. [Roberts, B. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Bouchez, J.] CEA Saclay, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. [Umasankar, S.] Inst Math Sci, Chennai 600113, Tamil Nadu, India. [Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Pascoli, S.] Univ Durham, Dept Phys, Ogen Ctr Fundamental Phys, Durham DH1 3LE, England. [Chen, Mu-Chun] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Campagne, J. E.] Univ Paris 11, LAL, F-91898 Orsay, France. [Rolinec, M.] Tech Univ Munich, Phys Dept T30d, D-85748 Garching, Germany. [Blondel, A.; Campanelli, M.] Univ Geneva, DPNC, Geneva, Switzerland. [Kopp, J.; Lindner, M.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Peltoniemi, J.] Univ Oulu, Ctr Underground Phys Pyhasalmi, Oulu, Finland. [Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Dracos, M.] Univ Strasbourg 1, Inst Natl Phys Nucl & Particules, Ctr Rech Nucl, Paris, France. [Whisnant, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Casper, D.; Chen, Mu-Chun] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Popov, B.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Aysto, J.] Univ Jyvaskyla, Dept Phys, FIN-40351 Jyvaskyla, Finland. [Marfatia, D.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Okada, Y.; Sugiyama, H.] KEK, Theory Grp, Tsukuba, Ibaraki 3050801, Japan. [Jungmann, K.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. [Lesgourgues, J.] LAPTH, Phys Theor Lab, F-74941 Annecy Le Vieux, France. [Zisman, M.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Tortola, M. A.] Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal. [Tortola, M. A.] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal. [Friedland, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Davidson, S.] Univ Lyon 1, IPN Lyon, F-69622 Villeurbanne, France. [Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.; Lopez-Pavon, J.; Rigolin, S.] Univ Autonoma Madrid, Dept Fis Teor, Fac Ciencias C 16, CSIC, E-28049 Madrid, Spain. [Mondal, N.] Tata Inst Fundamental Res, Sch Nat Sci, Mumbai 400005, Maharashtra, India. [Palladino, V.] Univ Naples Federico II, I-80126 Naples, Italy. [Palladino, V.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Filthaut, F.] Katholieke Univ Nijmegen, HEFIN High Energy Phys Inst, NL-6500 GL Nijmegen, Netherlands. [Albright, C.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [de Gouvea, A.] Northwestern Univ, Evanston, IL 60208 USA. [Kuno, Y.; Nagashima, Y.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Mezzetto, M.] Ist Nazl Fis Nucl, Sez Padova, I-35100 Padua, Italy. [Lola, S.] Univ Patras, Dept Phys, GR-26100 Patras, Greece. [Langacker, P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Baldini, A.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Nunokawa, H.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil. [Meloni, D.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Meloni, D.] Univ Roma La Sapienza, Dipto Fis, I-00185 Rome, Italy. [Diaz, M.] Catholic Univ Chile, Dept Fis, Santiago, Chile. [King, S. F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Zuber, K.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Akeroyd, A. G.] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan. [Grossman, Y.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Farzan, Y.] Inst Studies Theoret Phys & Math, Tehran, Iran. [Tobe, K.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Aoki, Mayumi] Univ Tokyo, Inst Cosm Ray Res, Theory Grp, Chiba 2778582, Japan. [Murayama, H.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Murayama, H.] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Murayama, H.] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Kitazawa, N.; Yasuda, O.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Petcov, S.; Romanino, A.] SISSA, Int Sch Adv Studies, I-34100 Trieste, Italy. [Chimenti, P.; Vacchi, A.] Univ Trieste, INFN Presso, Dipartimento Fis, I-34127 Trieste, Italy. [Smirnov, A. Yu] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy. [Couce, E.; Gomez-Cadenas, J. J.; Hernandez, P.; Sorel, M.; Valle, J. W. F.] CSIC, IFIC, Inst Fis Corpuscular, Madrid, Spain. [Couce, E.; Gomez-Cadenas, J. J.; Hernandez, P.; Sorel, M.; Valle, J. W. F.] Univ Valencia, E-46003 Valencia, Spain. [Harrison, P. F.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Lunardini, C.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Lunardini, C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Nelson, J. K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Barger, V.; Everett, L.; Huber, P.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Winter, W.] Univ Wurzburg, Lehrstuhl Theoret Phys 2, D-97074 Wurzburg, Germany. [Fetscher, W.] ETH, CH-8093 Zurich, Switzerland. [van der Schaaf, A.] Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. [Petcov, S.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Smirnov, A. Yu] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. RP Bandyopadhyay, A (reprint author), Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India. RI Vacchi, Andrea/C-1291-2010; Maltoni, Michele/H-9250-2015; Tortola, Mariam/K-2430-2014; Jungmann, Klaus/A-7142-2010; Chimenti, Pietro/F-9898-2012; Lola, Smaragda/L-6442-2014; Romanino, Andrea/I-3480-2012; Hernandez, Pilar/L-6453-2014; Lopez Pavon, Jacobo/J-7090-2012; Dracos, Marcos/K-2335-2012; Murayama, Hitoshi/A-4286-2011; Valle, Jose W.F./F-7573-2013; jungmann, klaus/H-1581-2013; Fernandez-Martinez, Enrique/L-2919-2013; Gomez Cadenas, Juan Jose/L-2003-2014 OI Sorel, Michel/0000-0003-2141-9508; Albright, Carl/0000-0002-2252-6359; Filthaut, Frank/0000-0003-3338-2247; Lindner, Manfred/0000-0002-3704-6016; Vacchi, Andrea/0000-0003-3855-5856; Maltoni, Michele/0000-0001-7444-4542; Tortola, Mariam/0000-0002-5855-2671; Donini, Andrea/0000-0001-6668-5477; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Chen, Mu-Chun/0000-0002-5749-2566; Rigolin, Stefano/0000-0002-7609-8820; Chimenti, Pietro/0000-0002-9755-5066; Lola, Smaragda/0000-0002-1792-1856; Romanino, Andrea/0000-0002-5915-4747; Hernandez, Pilar/0000-0003-3838-5308; Lopez Pavon, Jacobo/0000-0002-9554-5075; Dracos, Marcos/0000-0003-0514-193X; Valle, Jose W.F./0000-0002-1881-5094; jungmann, klaus/0000-0003-0571-4072; Fernandez-Martinez, Enrique/0000-0002-6274-4473; Gomez Cadenas, Juan Jose/0000-0002-8224-7714 FU CARE [CT-2003-506395]; Science and Technology Facilities Council [PPA/G/S2003/00512, PP/B500790/1, PP/B500815/1, PP/B500882/1]; World Premier International Research Center Initiative (WPI Initiative); MEXT, Japan; Office of Science, Office of High Energy Physics, of the US Department of Energy, [DE-AC02-05CH11231, DE-AC02-98CH10886, DE-AC02-07CH11359, DE-AC03-76SF00098]; US National Science Foundation [PHY-0355245, PHY-04-57315] FX We would like to thank the management of Rutherford Appleton Laboratory, CCLRC and PPARC, for their support during the study and to Professor J Wood in particular for initiating the study. During the course of the year, we were welcomed at a number of laboratories across the world and therefore thank the management of the CERN, KEK, RAL laboratories and the University of Irvine for hosting the ISS plenary meetings. The work of the group benefitted greatly from the PhysicsWorking Group meetings at Imperial, Boston, and Valencia; we would like to thank the groups involved for welcoming us to their laboratories. Finally, our warm and sincere thanks go to all those who contributed to the plenary and working group meetings, either through making presentations or by contributing to the discussion, and to those who contributed to the production of this report.; The authors acknowledge the support of CARE, contract number RII3-CT-2003-506395. The work was supported by the Science and Technology Facilities Council under grant numbers PPA/G/S2003/00512, PP/B500790/1, PP/B500815/1, PP/B500882/1, and through SLAs with STFC supported laboratories. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. This research was partially supported by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy, under contract nos DE-AC02-05CH11231, DE-AC02-98CH10886, DE-AC02-07CH11359 and DE-AC03-76SF00098. The work was also supported by the US National Science Foundation under grants PHY-0355245 and PHY-04-57315.; The authors acknowledge the support of Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science. NR 896 TC 148 Z9 148 U1 1 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD OCT PY 2009 VL 72 IS 10 AR 106201 DI 10.1088/0034-4885/72/10/106201 PG 185 WC Physics, Multidisciplinary SC Physics GA 500LL UT WOS:000270303100001 ER PT J AU Hulbert, SL Williams, GP AF Hulbert, S. L. Williams, G. P. TI Calculations of synchrotron radiation emission in the transverse coherent limit SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LASER AB We present approximations for the synchrotron radiation emission for low emittance light sources, which provide a connection between user needs and the electron beam parameters. The results and calculations are a consequence of the phase coherence in the emission from the electrons. We derive the remarkable result that if the electron beam is energetic enough, the emitted flux is independent of the photon energy, electron beam energy, or bending radius in the transverse coherent limit. Similarly the brightness is identical for all machines at a given current. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234262] C1 [Hulbert, S. L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Williams, G. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Hulbert, SL (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. FU Office of Naval Research; Army Night Vision Laboratory; Air Force Research Laboratory; Joint Technology Office; Commonwealth of Virginia; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC05-060R23177, DE-AC02-98CH10886] FX This work was inspired by conversations with Steve Benson, George Neil, and Dave Douglas at JLab, Larry Carr and Jim Murphy at Brookhaven, Kwang-Je Kim at Argonne, and Albert Hofmann of CERN. This work was supported by the Office of Naval Research, the Army Night Vision Laboratory, the Air Force Research Laboratory, the Joint Technology Office, the Commonwealth of Virginia, and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract Nos. DE-AC05-060R23177 and DE-AC02-98CH10886. NR 12 TC 5 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2009 VL 80 IS 10 AR 106103 DI 10.1063/1.3234262 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 513YE UT WOS:000271359300046 PM 19895092 ER PT J AU Liermann, HP Merkel, S Miyagi, L Wenk, HR Shen, GY Cynn, H Evans, WJ AF Liermann, Hanns-Peter Merkel, Sebastien Miyagi, Lowell Wenk, Hans-Rudolf Shen, Guoyin Cynn, Hyunchae Evans, William J. TI Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID X-RAY-DIFFRACTION; POLYCRYSTALLINE DIAMOND; PLASTIC-DEFORMATION; POST-PEROVSKITE; LOWER MANTLE; 15 GPA; IRON; APPARATUS; CALIBRATION; WINDOWS AB We introduce the design and capabilities of a resistive heated diamond anvil cell that can be used for side diffraction at simultaneous high pressure and high temperature. The device can be used to study lattice-preferred orientations in polycrystalline samples up to temperatures of 1100 K and pressures of 36 GPa. Capabilities of the instrument are demonstrated with preliminary results on the development of textures in the bcc, fcc, and hcp polymorphs of iron during a nonhydrostatic compression experiment at simultaneous high pressure and high temperature. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236365] C1 [Liermann, Hanns-Peter; Shen, Guoyin] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Liermann, Hanns-Peter] DESY, D-22607 Hamburg, Germany. [Merkel, Sebastien] Univ Lille 1, CNRS, Lab Struct & Proprietes Etat Solide, F-59655 Villeneuve Dascq, France. [Miyagi, Lowell; Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Cynn, Hyunchae; Evans, William J.] Lawrence Livermore Natl Lab, High Pressure Phys Grp, Livermore, CA 94550 USA. RP Liermann, HP (reprint author), Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. RI Shen, Guoyin/D-6527-2011; Merkel, Sebastien/E-5501-2011 OI Merkel, Sebastien/0000-0003-2767-581X FU DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; NSF [EAR-0836402]; W.M. Keck Foundation; CDAC; ANR FX The authors like to thank W. Yang and E. Rod for their technical support at the beamline and during the experiment. We also thank L. Dubrovinsky for helpful suggestions regarding the resistive heated DAC and the anonymous reviewer for critical comments that improved the quality of the manuscript. This work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. W.J.E. and H. C. gratefully acknowledge the support from DOE/NNSA Science Campaign-2 (Program Manager-Dr. Kimberly Budil). Their contribution was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. L. M. and H.-R.W. acknowledge the support from CDAC and NSF (Grant No. EAR-0836402). S. M. acknowledges support from the ANR program DiUP. NR 44 TC 16 Z9 16 U1 3 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2009 VL 80 IS 10 AR 104501 DI 10.1063/1.3236365 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 513YE UT WOS:000271359300031 PM 19895077 ER PT J AU Glenzer, SH Redmer, R AF Glenzer, Siegfried H. Redmer, Ronald TI X-ray Thomson scattering in high energy density plasmas SO REVIEWS OF MODERN PHYSICS LA English DT Review DE Compton effect; dielectric function; plasma density; plasma inertial confinement; plasma oscillations; plasma probes; plasma temperature; plasmons; spectral line breadth; X-ray scattering ID LASER-PRODUCED PLASMAS; EQUATION-OF-STATE; NATIONAL-IGNITION-FACILITY; RELAXATION-TIME APPROXIMATION; LINDHARD DIELECTRIC FUNCTION; ELECTRON-HOLE PLASMA; THETA-PINCH PLASMA; CONVERSION EFFICIENCY; EXTREME-ULTRAVIOLET; 2-COMPONENT PLASMA AB Accurate x-ray scattering techniques to measure the physical properties of dense plasmas have been developed for applications in high energy density physics. This class of experiments produces short-lived hot dense states of matter with electron densities in the range of solid density and higher where powerful penetrating x-ray sources have become available for probing. Experiments have employed laser-based x-ray sources that provide sufficient photon numbers in narrow bandwidth spectral lines, allowing spectrally resolved x-ray scattering measurements from these plasmas. The backscattering spectrum accesses the noncollective Compton scattering regime which provides accurate diagnostic information on the temperature, density, and ionization state. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions and quantum effects. Dense matter theory relates scattering spectra with the dielectric function and structure factors that determine the physical properties of matter. Applications to radiation-heated and shock-compressed matter have demonstrated accurate measurements of compression and heating with up to picosecond temporal resolution. The ongoing development of suitable x-ray sources and facilities will enable experiments in a wide range of research areas including inertial confinement fusion, radiation hydrodynamics, material science, or laboratory astrophysics. C1 [Glenzer, Siegfried H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Redmer, Ronald] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RP Glenzer, SH (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. RI Redmer, Ronald/F-3046-2013 NR 228 TC 301 Z9 303 U1 11 U2 82 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD OCT-DEC PY 2009 VL 81 IS 4 BP 1625 EP 1663 DI 10.1103/RevModPhys.81.1625 PG 39 WC Physics, Multidisciplinary SC Physics GA 539BX UT WOS:000273229500006 ER PT J AU Browder, TE Gershon, T Pirjol, D Soni, A Zupan, J AF Browder, Thomas E. Gershon, Tim Pirjol, Dan Soni, Amarjit Zupan, Jure TI New physics at a Super Flavor Factory SO REVIEWS OF MODERN PHYSICS LA English DT Review DE B mesons; CP invariance; electromagnetic decays; flavour model; heavy tau leptons; lepton decay; meson leptonic decay; semileptonic decays; unified gauge models ID SUPERSYMMETRIC STANDARD MODEL; LEADING QCD CORRECTIONS; SEMILEPTONIC-B-DECAYS; UB-VERTICAL-BAR; TRANSVERSE TAU-POLARIZATION; FORWARD-BACKWARD ASYMMETRY; COLLINEAR EFFECTIVE THEORY; ELECTRIC-DIPOLE-MOMENT; DEPENDENT CP ASYMMETRY; 2-HIGGS DOUBLET MODEL AB The potential of a Super Flavor Factory (SFF) for searches of new physics is reviewed. While very high luminosity B physics is assumed to be at the core of the program, its scope for extensive charm and tau studies are also emphasized. The possibility to run at the Upsilon(5S) is also discussed; in principle, this could provide very clean measurements of B-s decays. The strength and reach of a SFF are most notably due to the possibility of examining an impressive array of very clean observables. The angles and the sides of the unitarity triangle can be determined with unprecedented accuracy. These serve as a reference for new physics (NP) sensitive decays such as B+->tau(+)nu(tau) and penguin dominated hadronic decay modes, providing tests of generic NP scenarios with an accuracy of a few percent. Besides very precise studies of direct and time dependent CP asymmetries in radiative B decays and forward-backward asymmetry studies in B -> X(s)l(+)l(-) and numerous null tests using B, charm, and tau decays are also likely to provide powerful insights into NP. The dramatic increase in luminosity at a SFF will also open up entirely new avenues for probing NP observables, e.g., by allowing sensitive studies using theoretically clean processes such as B -> X-s nu nu. The SFF is envisioned to be a crucial tool for essential studies of flavor in the CERN Large Hadron Collider era and will extend the reach of the Large Hadron Collider in many important ways. C1 [Browder, Thomas E.] Univ Hawaii, Dept Phys, Honolulu, HI 96822 USA. [Gershon, Tim] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Pirjol, Dan] Natl Inst Phys & Nucl Engn, Dept Particle Phys, Bucharest 077125, Romania. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zupan, Jure] CERN, Dept Phys, Div Theory, CH-1211 Geneva 23, Switzerland. [Zupan, Jure] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Zupan, Jure] J Stefan Inst, Ljubljana, Slovenia. RP Browder, TE (reprint author), Univ Hawaii, Dept Phys, Honolulu, HI 96822 USA. EM teb@phys.hawaii.edu; T.J.Gershon@warwick.ac.uk; pirjol@mac.com; soni@quark.phy.bnl.gov; jure.zupan@ijs.si FU U.S. Department of Energy [DE-FG02-04ER41291, DE-AC02-98CH10886]; European Commission [MRTN-CT-2006-035482]; Slovenian Research Agency FX We thank Rafael Porto for useful discussions and Sebastian Jaeger and Tobias Hurth for comments on the paper. Research was supported in part by the U.S. Department of Energy under Contracts No. DE-FG02-04ER41291 (Hawaii) and No. DE-AC02-98CH10886 (BNL). The work of J. Z. was supported in part by the European Commission RTN network under Contract No. MRTN-CT-2006-035482 (FLAVIAnet) and by the Slovenian Research Agency. NR 598 TC 32 Z9 32 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD OCT-DEC PY 2009 VL 81 IS 4 BP 1887 EP 1941 DI 10.1103/RevModPhys.81.1887 PG 55 WC Physics, Multidisciplinary SC Physics GA 539BX UT WOS:000273229500013 ER PT J AU Schneibel, JH Liu, CT Miller, MK Mills, MJ Sarosi, P Heilmaier, M Sturm, D AF Schneibel, J. H. Liu, C. T. Miller, M. K. Mills, M. J. Sarosi, P. Heilmaier, M. Sturm, D. TI Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength SO SCRIPTA MATERIALIA LA English DT Article DE Mechanical alloying; Oxide dispersion-strengthened (ODS) alloy; Nanocluster (NC); Atom probe tomography; Creep test ID HIGH-TEMPERATURE STRENGTH; NICKEL; DEFORMATION; STEELS AB The microstructure and mechanical properties of ultrafine-grained ferritic alloys containing nanoclusters (NCs) are investigated. The NCs (diameter similar to 3 nm) as well as the grain size (similar to 200 nm) remain stable at 1000 degrees C. Substantial Hall-Petch strengthening occurs at room temperature. Surprisingly, the creep rate at 800 degrees C is up to a factor of 10(8) slower than that predicted for diffusional creep. Possible reasons are the high NC coverage as well as Cr and W enrichment at the grain boundaries, and inhibition of self-diffusion. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Schneibel, J. H.; Heilmaier, M.; Sturm, D.] Univ Magdeburg, Dept Mat & Joining Technol, D-39106 Magdeburg, Germany. [Schneibel, J. H.; Liu, C. T.; Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mills, M. J.; Sarosi, P.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. RP Schneibel, JH (reprint author), Univ Magdeburg, Dept Mat & Joining Technol, D-39106 Magdeburg, Germany. EM Joachim.schneibel@gmail.com RI Mills, Michael/I-6413-2013 FU Division of Materials Sciences and Engineering, US Department of Energy [DE-AC05-00OR22725]; Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy FX This research was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. A portion of this research was conducted at the SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy. The authors thank Dr. D.T. Hoelzer of Oak Ridge National Laboratory for providing the 14YWT material. NR 20 TC 51 Z9 53 U1 3 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD OCT PY 2009 VL 61 IS 8 BP 793 EP 796 DI 10.1016/j.scriptamat.2009.06.034 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 493EH UT WOS:000269716000006 ER PT J AU Lo, CC Persaud, A Dhuey, S Olynick, D Borondics, F Martin, MC Bechtel, HA Bokor, J Schenkel, T AF Lo, Cheuk Chi Persaud, Arun Dhuey, Scott Olynick, Deirdre Borondics, Ferenc Martin, Michael C. Bechtel, Hans A. Bokor, Jeffrey Schenkel, Thomas TI Device fabrication and transport measurements of FinFETs built with Si-28 SOI wafers toward donor qubits in silicon SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID SINGLE-ION IMPLANTATION; NUCLEAR-SPIN; ELECTRON AB We report on the fabrication of transistors in a FinFET geometry using isotopically purified silicon-28-on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual Si-29 nuclear spin bath, making isotopically enriched nuclear spin-free Si-28 substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K. C1 [Lo, Cheuk Chi; Bokor, Jeffrey] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Lo, Cheuk Chi; Persaud, Arun; Schenkel, Thomas] EO Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. [Borondics, Ferenc; Martin, Michael C.; Bechtel, Hans A.] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lo, CC (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM cclo@eecs.berkeley.edu RI Borondics, Ferenc/A-7616-2008; OI Borondics, Ferenc/0000-0001-9975-4301 FU National Security Agency [MOD 713106A]; Department of Energy [DE-AC02-05CH11231]; National Science Foundation [0404208]; Nanoelectronics Research Initiative-Western Institute of Nanoelectronics; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; UC Berkeley Microlab FX We thank A M Tyryshkin and S A Lyon for the ESR measurements of the 28-SOI substrates. This work was supported by the National Security Agency under MOD 713106A, the Department of Energy under contract no DE-AC02-05CH11231, the National Science Foundation under grant no 0404208, and the Nanoelectronics Research Initiative-Western Institute of Nanoelectronics. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no DE-AC02-05CH11231. The advanced light source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no DE-AC02-05CH11231. Support in device fabrication by the UC Berkeley Microlab staff is gratefully acknowledged. NR 29 TC 6 Z9 6 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD OCT PY 2009 VL 24 IS 10 AR 105022 DI 10.1088/0268-1242/24/10/105022 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 499KS UT WOS:000270219600022 ER PT J AU Loomis, E AF Loomis, Eric TI Determination of the minimum entropy configuration and velocity surfaces for elastic-plastic wave scattering at grain boundaries SO SHOCK WAVES LA English DT Article DE Crystal plasticity; Grain boundary; Plastic wave; Anisotropic elasticity ID SINGLE-CRYSTALS; LOCALIZED DEFORMATION; ACCELERATION-WAVES; NIAL BICRYSTALS; DISSIPATION; NONUNIFORM; PRINCIPLE; SOLIDS; MODEL AB A recent model based on full elastic anisotropy and crystal plasticity predicted the existence of multiple wave configurations during the interaction of stress waves with grain boundaries. Since the multiple wave configuration scenario cannot exist in nature, the principle of minimum entropy production is applied in the current work to find the most probable configuration. A large amplitude transmitted quasi-longitudinal wave is predicted for the given bicrystal orientation studied due to the wave propagating near a [001] direction and thus requiring large stress given the very low Schmid factor in this direction (for nickel aluminide (NiAl) as a model material). Anisotropic elastic-plastic velocity surfaces for quasi-longitudinal and quasi-shear waves in NiAl have also been constructed to gain an understanding of the general nature of plastic waves as a function of crystallographic direction. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. RP Loomis, E (reprint author), Los Alamos Natl Lab, Div Phys, MS E526, Los Alamos, NM 87544 USA. EM loomis@lanl.gov FU US Department of Energy [W-7405-ENG-36, DE-AC52-06NA25396] FX This work has been performed under the auspices of the US Department of Energy contract numbers W-7405-ENG-36 and DE-AC52-06NA25396 for NNSA Campaign 10 (Inertial Confinement Fusion) with Steve Batha as program manager. NR 29 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-1287 J9 SHOCK WAVES JI Shock Waves PD OCT PY 2009 VL 19 IS 5 BP 423 EP 432 DI 10.1007/s00193-009-0219-5 PG 10 WC Mechanics SC Mechanics GA 499BP UT WOS:000270191800006 ER PT J AU Soule, T Anderson, IJ Johnson, SL Bates, ST Garcia-Pichel, F AF Soule, Tanya Anderson, Ian J. Johnson, Shannon L. Bates, Scott T. Garcia-Pichel, Ferran TI Archaeal populations in biological soil crusts from arid lands in North America SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Archaea; Biological soil crust; Desert; Mixed community; 16S rRNA ID 16S RIBOSOMAL-RNA; POLYMERASE-CHAIN-REACTION; COLORADO PLATEAU; COMMUNITY STRUCTURE; QUANTITATIVE PCR; CHIHUAHUAN DESERT; DIVERSITY; ABUNDANCE; CRENARCHAEOTA; GRADIENT AB Archaea are common and abundant members of biological soil crust communities across large-scale biogeographic provinces of and North America. Regardless of microbial community development, archaeal populations averaged 2 x 10(7) 16S rRNA gene copies per gram of soil, representing around 5% of the prokaryotic (total calculated bacterial and archaeal) numbers assessed by quantitative-PCR. In contrast, archaeal diversity, determined by denaturing gradient gel electrophoresis fingerprinting and clone libraries of 16S rRNA genes, was very restricted. Only six different phylotypes (all Crenarchaea) were detected, three of which were very dominant. Some phylotypes were widespread, while others were typical of Southern desert areas. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Soule, Tanya; Anderson, Ian J.; Bates, Scott T.; Garcia-Pichel, Ferran] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Soule, Tanya] Savannah River Natl Lab, Environm Biotechnol, Aiken, SC 29808 USA. [Johnson, Shannon L.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Bates, Scott T.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Garcia-Pichel, F (reprint author), Arizona State Univ, Sch Life Sci, POB 874501, Tempe, AZ 85287 USA. EM ferran@asu.edu OI Johnson, Shannon/0000-0002-3972-9208 FU NSF; USDA FX We thank Moria Nagy and S.N.G. Reddy for sharing their initial experiences with crust Archaea. The staff of the Sevilleta and Jornada LTER sites, as well as the National Park Service (Canyonlands, N.P. and Organ Pipe N.M.), are gratefully acknowledged for providing sampling permits, guidance, and hospitality. Finally, we thank Dr. Scott Bingham for assistance with qPCR and for facilitating sequencing. This research was funded by an NSF grant from the Biodiversity Surveys and Inventories Program and by a USDA grant from the Soil Processes Program. NR 45 TC 31 Z9 33 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD OCT PY 2009 VL 41 IS 10 BP 2069 EP 2074 DI 10.1016/j.soilbio.2009.07.023 PG 6 WC Soil Science SC Agriculture GA 509VT UT WOS:000271047800007 ER PT J AU Kim, K Siegel, N Kolb, G Rangaswamy, V Moujaes, SF AF Kim, Kibum Siegel, Nathan Kolb, Greg Rangaswamy, Vijayarangan Moujaes, Samir F. TI A study of solid particle flow characterization in solar particle receiver SO SOLAR ENERGY LA English DT Article DE Solid particle receiver (SPR); Terminal velocity; Opacity AB The solid particle receiver (SPR) is a direct absorption receiver in which solar energy heats a curtain of falling ceramic particle to a temperature in excess of 1000 degrees C. A small scale test platform was built to investigate particle flow properties. The curtain was comprised of approximately 697 mu m ceramic particles that were dropped within the receiver cavity of the test platform. Tests were conducted to experimentally determine the distribution of particles velocity, curtain thickness, and curtain opacity along a drop length of approximately 3 m. Velocity data were measured using a high speed digital camera to obtain images of the particle flow at 1000 frames per second with an exposure time of 100 mu s. Five mass flow rates ranging from 1 kg/s-m to 22 kg/s-m were examined, and it was found that all flows approached a terminal velocity of about 6-7 m/s in a vertical drop distance of 3 m. The experimental results were validated with computational results and were found in excellent agreement with the simulation results. In addition, a similar study was performed with various sizes of the particles to better understand how the particle flow characteristics were affected by the size of the particles. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Rangaswamy, Vijayarangan; Moujaes, Samir F.] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. [Siegel, Nathan; Kolb, Greg] Sandia Natl Labs, Solar Technol Dept, Albuquerque, NM 87185 USA. [Kim, Kibum] Hanyang Univ, Dept Mech Engn, Ansan 426791, Kyeonggi Do, South Korea. RP Moujaes, SF (reprint author), Univ Nevada, Dept Mech Engn, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM samir@me.unlv.edu FU US Department of Energy (DOE) [DE-AC04-94AL85000]; University of Nevada Las Vegas [DE-FG36-03GO13062]; Solar Hydrogen Generation and Research (SHGR) FX The authors acknowledge the financial support for this joint research project provided by the US Department of Energy (DOE) under contract DE-AC04-94AL85000 (Sandia National Labs) and contract DE-FG36-03GO13062 (University of Nevada Las Vegas). This work was done as part of the DOE sponsored Solar Hydrogen Generation and Research (SHGR) project. NR 14 TC 19 Z9 19 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD OCT PY 2009 VL 83 IS 10 BP 1784 EP 1793 DI 10.1016/j.solener.2009.06.011 PG 10 WC Energy & Fuels SC Energy & Fuels GA 526BX UT WOS:000272263600004 ER PT J AU Tan, TD Chen, YT Chen, ZQ Siegel, N Kolb, GJ AF Tan, Taide Chen, Yitung Chen, Zhuoqi Siegel, Nathan Kolb, Gregory J. TI Wind effect on the performance of solid particle solar receivers with and without the protection of an aerowindow SO SOLAR ENERGY LA English DT Article DE Solid particle; Solar receiver; Radiation; Wind; Air jet; Aerowindow ID HEAT-TRANSFER; MODEL; FLOW AB The wind conditions affect the performance of a solid particle solar receiver (SPSR) by convection heat transfer through the existing open aperture. Aerowindows have the potential of increasing the efficiency of an SPSR. In the present paper, the wind effect on the performance of an SPSR is investigated numerically with and without the protection of an aerowindow. The independence of the calculating domain in a wind field has been studied in order to select a proper domain for the numerical simulation. The cavity thermal efficiencies and the exiting temperature of the solid particles have been calculated and analyzed for different wind conditions. The numerical investigation of the SPSRs' performance can provide a guide in optimizing the prototype design, finding out the suitable working condition and proposing efficiency enhancing techniques for SPSRs. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tan, Taide; Chen, Yitung; Chen, Zhuoqi] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. [Siegel, Nathan; Kolb, Gregory J.] Sandia Natl Labs, Solar Syst Dept, Albuquerque, NM 87123 USA. RP Chen, YT (reprint author), Univ Nevada, Dept Mech Engn, 4505 Maryland Pkwy,POB 454027, Las Vegas, NV 89154 USA. EM uuchen@nscee.edu FU U. S. Department of Energy [DE-FG3603GO13062] FX This research is supported by the U. S. Department of Energy, Hydrogen Program (Grant No. DE-FG3603GO13062). NR 19 TC 22 Z9 23 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD OCT PY 2009 VL 83 IS 10 BP 1815 EP 1827 DI 10.1016/j.solener.2009.06.014 PG 13 WC Energy & Fuels SC Energy & Fuels GA 526BX UT WOS:000272263600008 ER PT J AU Mukashev, BN Abdullin, KA Tamendarov, MF Turmagambetov, TS Beketov, BA Page, MR Kline, DM AF Mukashev, B. N. Abdullin, Kh. A. Tamendarov, M. F. Turmagambetov, T. S. Beketov, B. A. Page, M. R. Kline, D. M. TI A metallurgical route to produce upgraded silicon and monosilane SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Metallurgical-grade silicon; Upgraded silicon; Solar-grade silicon; Alumothermic reduction; Acid leaching; Solidification ID SOLAR GRADE SILICON; INDUSTRY; FEEDSTOCK AB We studied alumothermic reduction of silica from silicate slag to obtain silicon-containing Alloy-I and Alloy-II. Phosphorous industry waste and synthetic slag are used as a silicate slag that consists of more than 90% silicon and calcium oxides and less than 10% other elemental oxides. Silicon-containing Alloy-I was upgraded by acid leaching to silicon of a fine powder structure. Using this powder, we grew poly- and mono-crystalline p-type silicon, with resistivity of similar to 0.24 Omega cm, by the Czochralski method. Silicon-containing Alloy-II was used for obtaining monosilane by aqueous treatment with hydrochloric acid under atmospheric conditions and without any catalyst. There was no trace of diborane, which is a common source for boron contamination in crude silane. (C) 2009 Published by Elsevier B.V. C1 [Mukashev, B. N.; Abdullin, Kh. A.; Tamendarov, M. F.; Turmagambetov, T. S.; Beketov, B. A.] Minist Educ & Sci RK, Comm Sci, Inst Phys & Technol, Alma Ata 050032, Kazakhstan. [Page, M. R.; Kline, D. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mukashev, BN (reprint author), Minist Educ & Sci RK, Comm Sci, Inst Phys & Technol, 11 Ibragimov St, Alma Ata 050032, Kazakhstan. EM mukashev@sci.kz RI Khabybulla, Abdullyn/B-7207-2015 FU Alliance for Sustainable Energy [DE-AC36-086028308] FX This work is supported by Grant K-1162p of International Science and Technology Center. This work has been authored by employees of the Alliance for Sustainable Energy under Contract No. DE-AC36-086028308 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 20 TC 23 Z9 27 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD OCT PY 2009 VL 93 IS 10 BP 1785 EP 1791 DI 10.1016/j.solmat.2009.06.011 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 497MR UT WOS:000270064200013 ER PT J AU Foullon, C Lavraud, B Wardle, NC Owen, CJ Kucharek, H Fazakerley, AN Larson, DE Lucek, E Luhmann, JG Opitz, A Sauvaud, JA Skoug, RM AF Foullon, C. Lavraud, B. Wardle, N. C. Owen, C. J. Kucharek, H. Fazakerley, A. N. Larson, D. E. Lucek, E. Luhmann, J. G. Opitz, A. Sauvaud, J. -A. Skoug, R. M. TI The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations SO SOLAR PHYSICS LA English DT Article DE Heliospheric current sheet; Slow solar wind ID EARTHS BOW SHOCK; PLANETARY SECTOR BOUNDARIES; HEAT-FLUX DROPOUTS; SOLAR-WIND; TANGENTIAL DISCONTINUITIES; PLASMA-EXPERIMENT; MAGNETIC-FIELDS; ALFVEN WAVES; ELECTRON; VELOCITY AB Multiple current sheet crossings are ubiquitous features of the solar wind associated with high-beta plasma sheets, notably during the passage of the heliospheric current sheet (HCS). As the HCS is being convected past near-Earth, we attempt to resolve spatial scales and temporal variations of the apparent layered structure of the HCS, including adjacent large scale field reversals. We use several spacecraft for good spatial and cross-scale coverage, spanning 550 R(E) across and 900 R(E) along the Sun -aEuro parts per thousand Earth line: STEREO, ACE and Cluster. The multi-spacecraft magnetic and plasma observations within the leading edge of the sector boundary are consistent with i) a broad multi-layered structure; ii) occasional non-planar structures and Alfv,nic fluctuations; iii) various stages of transient outflowing loops formed by interchange reconnection. By comparison of the observations at each spacecraft, we obtain a synthesis of the evolution between the patterns of loops, and hence of the transient outflow evolution along the sector boundary. In particular, we present circumstantial evidence that a heat flux dropout, traditionally signalling disconnection, can arise from interchange reconnection and scattering. Moreover, the inter-spacecraft comparison eliminates ambiguities between interpretations of electron counterstreaming. Overall, the sector boundary layer remains, locally, a steady structure as it is convected in the solar wind across a radial heliospheric distance of 560 -aEuro parts per thousand 580 R(E). However, non-planar structures on the Cluster spatial scale, as well as the variations in angular changes and transition durations on the broader scale, indicate that we are not following the evolution of single loops but more likely a bunch of loops with variable properties. C1 [Foullon, C.; Wardle, N. C.] Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Foullon, C.; Wardle, N. C.; Owen, C. J.; Fazakerley, A. N.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Lavraud, B.; Opitz, A.; Sauvaud, J. -A.] Univ Toulouse UPS, CESR, Toulouse, France. [Lavraud, B.; Opitz, A.; Sauvaud, J. -A.] CNRS, UMR 5187, Toulouse, France. [Kucharek, H.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Kucharek, H.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Larson, D. E.; Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lucek, E.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Skoug, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Foullon, C (reprint author), Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM claire.foullon@warwick.ac.uk RI Foullon, Claire/A-3539-2009; Owen, Christopher/C-2999-2008 OI Foullon, Claire/0000-0002-2532-9684; Owen, Christopher/0000-0002-5982-4667 FU UK Science and Technology Facilities Council (STFC); Nuffield Foundation FX C. F. acknowledges financial support from the UK Science and Technology Facilities Council (STFC) on the MSSL Rolling Grant and an undergraduate bursary for N.C.W. from the Nuffield Foundation. Data analysis was done with the QSAS science analysis system provided by the UK Cluster Science Centre (Imperial College London and Queen Mary, University of London) supported by STFC. We thank the STEREO, ACE and Cluster instrument teams and the NASA's Space Physics Data Facility (SPDF) for making available data used in this paper. NR 64 TC 16 Z9 16 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD OCT PY 2009 VL 259 IS 1-2 BP 389 EP 416 DI 10.1007/s11207-009-9452-4 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 508AJ UT WOS:000270898200023 ER PT J AU Lin, Y Li, QM Armstrong, A Wang, GT AF Lin, Yong Li, Qiming Armstrong, Andrew Wang, George T. TI In situ scanning electron microscope electrical characterization of GaN nanowire nanodiodes using tungsten and tungsten/gallium nanoprobes SO SOLID STATE COMMUNICATIONS LA English DT Article DE Semiconductors; Nanostructures; Scanning and transmission electron microscopy; Electronic transport ID LIGHT-EMITTING-DIODES; SCHOTTKY DIODES; NANOROD ARRAYS; HETEROSTRUCTURES; DEPOSITION; CONTACTS; NITRIDE; GROWTH AB A lithography-free technique for measuring the electrical properties of n-type GaN nanowires has been investigated using nanoprobes mounted in a scanning electron microscope (SEM). Schottky contacts were made to the nanowires using tungsten nanoprobes, while gallium droplets placed in situ at the end of tungsten nanoprobes were found to be capable of providing Ohmic contacts to GaN nanowires. Schottky nanodiodes were fabricated based on single n-type nanowires, and measured current-voltage (I-V) results suggest that the Schottky nanodiodes deviate from ideal diodes mainly due to their nanoscopic contact area. Additionally the effect of the SEM electron beam on the I-V characteristics was investigated and was found to impact the transport properties of the Schottky nanodiodes, possibly due to an increase in carrier density in the nanodiodes. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Lin, Yong; Li, Qiming; Armstrong, Andrew; Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 FU DOE Basic Energy Sciences [DE-AC04-94A185000]; Sandia's Laboratory Directed Research and Development program FX We thank A.R. Arehart (The Ohio State University) for valuable discussions. This work is supported by DOE Basic Energy Sciences and Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94A185000. NR 23 TC 4 Z9 4 U1 4 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD OCT PY 2009 VL 149 IS 39-40 BP 1608 EP 1610 DI 10.1016/j.ssc.2009.06.035 PG 3 WC Physics, Condensed Matter SC Physics GA 498HQ UT WOS:000270128700007 ER PT J AU Kumar, RS Rekhi, S Prabhakaran, D Somayazulu, M Kim, E Cook, JD Stemmler, T Boothroyd, AT Chance, MR Cornelius, AL AF Kumar, Ravhi S. Rekhi, Sandeep Prabhakaran, D. Somayazulu, M. Kim, Eunja Cook, Jeremy D. Stemmler, Timothy Boothroyd, A. T. Chance, Mark R. Cornelius, Andrew L. TI Structural studies on Na0.75CoO2 thermoelectric material at high pressures SO SOLID STATE COMMUNICATIONS LA English DT Article DE Inorganic compounds; High-pressure effect; Equation of state; X-ray diffraction ID NAXCOO2; CRYSTAL; SUPERCONDUCTIVITY AB The crystal structure of Na0.75CoO2 was studied at ambient and low temperatures down to 10 K at pressures up to 40 GPa using synchrotron x-rays and a diamond cell in angle dispersion geometry. A reduction in the c/a ratio was observed at both conditions with the application of pressure. An increase in Co-O bond lengths and a decrease in Na-O bond lengths were observed above 10 GPa. The results of the density functional calculations performed agree well with the pressure induced bond length changes. The anomalous change in the c/a ratio and bond lengths indicate a pressure induced isostructural phase transition above 10 GPa. Bulk modulus calculations show this compound is less compressible than its hydrated analogues. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Kumar, Ravhi S.; Kim, Eunja; Cornelius, Andrew L.] Univ Nevada, HiPSEC & Dept Phys & Astron, Las Vegas, NV 89154 USA. [Rekhi, Sandeep; Chance, Mark R.] Case Western Reserve Univ, Case Ctr Synchrotron Biosci, NSLS, Brookhaven Natl Lab, Upton, NY 11973 USA. [Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Somayazulu, M.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Cook, Jeremy D.; Stemmler, Timothy] Wayne State Univ, Sch Med, Dept Biochem & Mol Biol, Detroit, MI USA. RP Kumar, RS (reprint author), Univ Nevada, HiPSEC & Dept Phys & Astron, Las Vegas, NV 89154 USA. EM ravhi@physics.unlv.edu RI Cornelius, Andrew/A-9837-2008; Kumar, Ravhi/B-8427-2012; OI Kumar, Ravhi/0000-0002-1967-1619 FU DOE EPSCoR-State/National Laboratory Partnership Award [DE-FG02-00ER45835]; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; NSF; W.M. Keck Foundation; UNLV president's research award; National Institute for Biomedical Imaging and Bioengineering [P41-EB-01979] FX Work at UNLV is supported by DOE EPSCoR-State/National Laboratory Partnership Award DE-FG02-00ER45835. This work was or portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Support from UNLV president's research award is acknowledged. The Case Center for Synchrotron Biosciences is supported by the National Institute for Biomedical Imaging and Bioengineering under contract number P41-EB-01979. NR 30 TC 2 Z9 2 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD OCT PY 2009 VL 149 IS 39-40 BP 1712 EP 1716 DI 10.1016/j.ssc.2009.06.012 PG 5 WC Physics, Condensed Matter SC Physics GA 498HQ UT WOS:000270128700031 ER PT J AU Endrino, JL Horwat, D Gago, R Andersson, J Liu, YS Guo, J Anders, A AF Endrino, J. L. Horwat, D. Gago, R. Andersson, J. Liu, Y. S. Guo, J. Anders, A. TI Electronic structure and conductivity of nanocomposite metal (Au, Ag, Cu, Mo)-containing amorphous carbon films SO SOLID STATE SCIENCES LA English DT Article DE Amorphous carbon; Metal incorporation; Conductivity; XANES ID PULSED-LASER DEPOSITION; VACUUM-ARC; DIAMOND; COATINGS; SILVER AB In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C: Me) films. The films were produced at room temperature using a species selective bias pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band-gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by X-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the line shape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral line shape are discussed in terms of nanocomposite formation. (C) 2008 Elsevier Masson SAS. All rights reserved. C1 [Endrino, J. L.; Gago, R.] CSIC, Inst Ciencias Mat Madrid, E-28049 Madrid, Spain. [Endrino, J. L.; Andersson, J.; Anders, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. [Horwat, D.] Nancy Univ, CNRS, Lab Sci & Genie Surfaces, F-54042 Nancy, France. [Liu, Y. S.; Guo, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gago, R (reprint author), CSIC, Inst Ciencias Mat Madrid, Campus Cantoblanco, E-28049 Madrid, Spain. EM rgago@icmm.csic.es RI Andersson, Joakim/A-3017-2009; Endrino, Jose/G-1103-2011; Gago, Raul/C-6762-2008; Horwat, David/I-8740-2012; Anders, Andre/B-8580-2009; OI Andersson, Joakim/0000-0003-2991-1927; Gago, Raul/0000-0003-4388-8241; Anders, Andre/0000-0002-5313-6505; Horwat, David/0000-0001-7938-7647; Endrino, Jose/0000-0002-3084-7910 FU Marie Curie Outgoing Fellowship [MOIF-CT-2005-02195]; US. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge helpful conversations with Prof Jose M. Albella and Dr. jean-Fran ois Pierson, they are also grateful to Sylvain Weber for his help with the SNMS measurements. Financial support from the Marie Curie Outgoing Fellowship Grant MOIF-CT-2005-02195 is also gratefully acknowledged as well as the WennerGren Foundation. Work at Lawrence Berkeley National Laboratory was supported by the US. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 24 Z9 24 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD OCT PY 2009 VL 11 IS 10 BP 1742 EP 1746 DI 10.1016/j.solidstatesciences.2008.08.007 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 513OI UT WOS:000271331900003 ER PT J AU Moridis, GJ Collett, TS Boswell, R Kurihara, M Reagan, MT Koh, C Sloan, ED AF Moridis, George J. Collett, Timothy S. Boswell, Ray Kurihara, M. Reagan, Matthew T. Koh, Carolyn Sloan, E. Dendy TI Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential SO SPE RESERVOIR EVALUATION & ENGINEERING LA English DT Review ID GULF-OF-MEXICO; METHANE HYDRATE; THERMAL-CONDUCTIVITY; NANKAI TROUGH; MACKENZIE DELTA; BLAKE RIDGE; DEPRESSURIZATION; CANADA; WATER; CONSTRAINTS AB Gas hydrates (GHS) are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural GH accumulations, the status of the primary international research and development (R&D) programs, and the remaining science and technological challenges facing the commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate-production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical-simulation capabilities are quite advanced and that the related gaps either are not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of GH deposits and determine that there are consistent indications of a large production potential at high rates across long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets; (b) methods to maximize production; and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production. C1 [Moridis, George J.; Reagan, Matthew T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Hydrogeol, Berkeley, CA 94720 USA. [Boswell, Ray] US DOE, GH Res Program, Natl Energy Technol Lab, Morgantown, WV USA. [Koh, Carolyn] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Sloan, E. Dendy] Colorado Sch Mines, Ctr Hydrate Res, Golden, CO 80401 USA. RP Moridis, GJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Hydrogeol, Berkeley, CA 94720 USA. EM GJMoridis@lbl.gov; tcollett@usgs.gov; Ray.Boswell@NETL.DOE.GOV; KURIHARA@joe.co.jp; MTReagan@lbl.gov; ckoh@mines.edu; esloan@mines.edu RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US DOE [DE-AC02-05CH11231]; Ministry of Economy, Trade and Industry (METI) FX G.J. Moridis wants to express his gratitude to Scott Dallimore of the Geological Survey of Canada for his generosity, understanding and forgiving nature, and for his assistance in securing permission to include material front the Mallik 2002 Gas Hydrate Production Research Well Program. The contribution of G.J. Moridis and M.T. Reagan was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US DOE Contract No. DE-AC02-05CH11231. M. Kurihara wishes to acknowledge the support of the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) on the National Methane Hydrate Exploitation Program by the Ministry of Economy, Trade and Industry (METI). The authors are indebted to Stefan Finsterle, John Apps, and Dan Hawkes for their insightful comments. NR 124 TC 106 Z9 115 U1 4 U2 80 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1094-6470 EI 1930-0212 J9 SPE RESERV EVAL ENG JI SPE Reserv. Eval. Eng. PD OCT PY 2009 VL 12 IS 5 BP 745 EP 771 PG 27 WC Energy & Fuels; Engineering, Petroleum; Geosciences, Multidisciplinary SC Energy & Fuels; Engineering; Geology GA 514QP UT WOS:000271410300009 ER PT J AU Cortis, A Puente, CE Sivakumar, B AF Cortis, Andrea Puente, Carlos E. Sivakumar, Bellie TI Nonlinear extensions of a fractal-multifractal approach for environmental modeling SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Modeling; Fractals; Multifractals; Iterated maps ID DETERMINISTIC GEOMETRIC REPRESENTATION; GROUNDWATER CONTAMINATION; GAUSSIAN DISTRIBUTION; CONSERVATIVE TRACERS; TEMPORAL RAINFALL; BORDEN SITE; PROJECTIONS; COMPLEXITY; TURBULENCE; BOSTON AB We present the extension of a deterministic fractal geometric procedure aimed at representing the complexity of patterns encountered in environmental applications. The procedure, which is based on transformations of multifractal distributions via fractal functions, is extended through the introduction of nonlinear perturbations in the generating iterated linear maps. We demonstrate, by means of various simulations based on changes in parameters, that the nonlinear perturbations generate yet a richer collection of interesting patterns, as reflected by their overall shapes and their statistical and multifractal properties. It is shown that the nonlinear extensions yield structures that closely resemble complex hydrologic spatio-temporal datasets, such as rainfall and runoff time series, and width-functions of river networks. The implications of this nonlinear approach for environmental modeling and prediction are discussed. C1 [Cortis, Andrea] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Puente, Carlos E.; Sivakumar, Bellie] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. RP Cortis, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM acortis@lbl.gov; cepuente@ucdavis.edu; sbellie@ucdavis.edu FU Director, Office of Science, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 10 Z9 11 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD OCT PY 2009 VL 23 IS 7 BP 897 EP 906 DI 10.1007/s00477-008-0272-0 PG 10 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 500IH UT WOS:000270291800004 ER PT J AU Vrugt, JA ter Braak, CJF Gupta, HV Robinson, BA AF Vrugt, Jasper A. ter Braak, Cajo J. F. Gupta, Hoshin V. Robinson, Bruce A. TI Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article ID RAINFALL-RUNOFF MODELS; UNCERTAINTY ASSESSMENT; METROPOLIS ALGORITHM; PARAMETER-ESTIMATION; SENSITIVITY; CALIBRATION; OPTIMIZATION; ZONE; METHODOLOGY; PREDICTIONS AB In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments. C1 [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [ter Braak, Cajo J. F.] Univ Wageningen & Res Ctr, NL-6700 AC Wageningen, Netherlands. [Gupta, Hoshin V.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85737 USA. [Robinson, Bruce A.] Los Alamos Natl Lab, Civilian Nucl Program Off SPO CNP, Los Alamos, NM 87545 USA. RP Vrugt, JA (reprint author), Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. EM vrugt@lanl.gov RI ter Braak, Cajo/G-7006-2011; Robinson, Bruce/F-6031-2010; Gupta, Hoshin/D-1642-2010; Vrugt, Jasper/C-3660-2008 OI ter Braak, Cajo/0000-0002-0414-8745; Gupta, Hoshin/0000-0001-9855-2839; FU LANL postdoctoral program FX The first author is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. We would like to thank Sander Huisman, Jan Mertens, Benedikt Scharnagl and Jan Vanderborght for stimulating discussions. The authors gratefully acknowledge the many comments and suggestions of Alberto Montanari, Keith Beven and an anonymous reviewer that have greatly enhanced the quality of this manuscript. NR 45 TC 163 Z9 166 U1 7 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD OCT PY 2009 VL 23 IS 7 SI SI BP 1011 EP 1026 DI 10.1007/s00477-008-0274-y PG 16 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 500IH UT WOS:000270291800013 ER PT J AU Vrugt, JA ter Braak, CJF Gupta, HV Robinson, BA AF Vrugt, Jasper A. ter Braak, Cajo J. F. Gupta, Hoshin V. Robinson, Bruce A. TI Response to comment by Keith Beven on "Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?" SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Letter C1 [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Vrugt, Jasper A.] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [ter Braak, Cajo J. F.] Univ Wageningen & Res Ctr, NL-6700 AC Wageningen, Netherlands. [Gupta, Hoshin V.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85737 USA. [Robinson, Bruce A.] Los Alamos Natl Lab, Civilian Nucl Program Off SPO CNP, Los Alamos, NM 87545 USA. RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Mail Stop B258, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov RI Vrugt, Jasper/C-3660-2008; Robinson, Bruce/F-6031-2010; Gupta, Hoshin/D-1642-2010; ter Braak, Cajo/G-7006-2011 OI Gupta, Hoshin/0000-0001-9855-2839; ter Braak, Cajo/0000-0002-0414-8745 NR 2 TC 5 Z9 5 U1 0 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD OCT PY 2009 VL 23 IS 7 SI SI BP 1061 EP 1062 DI 10.1007/s00477-008-0284-9 PG 2 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 500IH UT WOS:000270291800017 ER PT J AU Roy, SB Myneni, GR Sahni, VC AF Roy, S. B. Myneni, G. R. Sahni, V. C. TI The influence of chemical treatments on the superconducting properties of technical niobium materials and their effect on the performance of superconducting radio frequency cavities SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID OXYGEN AB We present the results of a study of superconducting response in the niobium materials used in the fabrication of high accelerating gradient (>25 MV m(-1)) superconducting radio frequency (SC-RF) cavities. These results clearly show that the typical surface chemical treatment deployed during the fabrication of SC-RF cavities affects the superconducting properties of pure niobium materials. Such SC-RF cavities operating at 2 K are often found to show anomalous RF losses, causing either a strong degradation of the quality factor or a thermal breakdown for cavity magnetic fields between 1 and 1.5 kOe. The results of our study suggest a correlation between the field for the first flux-line penetration in these chemically treated technical niobium materials and the reported onset field of anomalous losses in the SC-RF cavities. C1 [Roy, S. B.; Sahni, V. C.] Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. [Myneni, G. R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Roy, SB (reprint author), Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. FU US DOE [DE-AC05-84ER40150]; Reference Metals Company Inc [2004-S002-Mod 2] FX The authors would like to thank the referees for valuable comments, particularly pointing to the studies reported in [12-14]. One of us (GRM) is supported in part by US DOE contract DE-AC05-84ER40150 and Reference Metals Company Inc. CRADA 2004-S002-Mod 2. NR 19 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD OCT PY 2009 VL 22 IS 10 AR 105014 DI 10.1088/0953-2048/22/10/105014 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 498BC UT WOS:000270109200014 ER PT J AU Bickel, JE Modine, NA Millunchick, JM AF Bickel, Jessica E. Modine, Normand A. Millunchick, Joanna Mirecki TI Determining the GaSb/GaAs-(2 x 8) reconstruction SO SURFACE SCIENCE LA English DT Article DE Surface relaxation and reconstruction; Density functional calculations; Molecular beam epitaxy ID SURFACE RECONSTRUCTION; GAAS(001) SURFACES; GROWTH; SEGREGATION; ALLOYS; GASB; GAAS AB Highly strained thin layers of GaSb/GaAs possess a (2 x 4) reconstruction at low Sb overpressures, and a (2 x 8) reconstruction at high Sb overpressures. While the atomic details of the Sb/GaAs-(2 x 4) are well known, the details of the (2 x 8) are not understood. In this paper, we use density functional theory to analyze possible (2 x 8) structures. Comparing scanning tunneling microscope images from both simulation and experiment and examining the relative energies of possible (2 x 8) structures, we show the alpha(2 x 8) and beta(2 x 8) are the thermodynamically stable surface reconstructions for high Sb content films strained to the GaAs lattice parameter. The alpha and beta(2 x 8) reconstructions are related to the GaAs-alpha 2(2 x 4) and GaAs-beta 2(2 x 4) through the addition of 2 cations and 8 anions into the trench between adjacent (2 x 4) unit cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bickel, Jessica E.; Millunchick, Joanna Mirecki] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Modine, Normand A.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Millunchick, JM (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM joannamm@umich.edu RI Bickel, Jessica/A-6833-2016 OI Bickel, Jessica/0000-0002-7506-1831 FU US Department of Energy, Center for Integrated Nanotechnologies [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors would like to thank Diana Huffaker for insight into the GaSb/GaAs system, and Chris Pearson for his expertise in STM data analysis. This work was performed in part at the US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 31 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD OCT 1 PY 2009 VL 603 IS 19 BP 2945 EP 2949 DI 10.1016/j.susc.2009.07.044 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 513QU UT WOS:000271339100005 ER PT J AU Bettencourt, LMA AF Bettencourt, Luis M. A. TI The Rules of Information Aggregation and Emergence of Collective Intelligent Behavior SO TOPICS IN COGNITIVE SCIENCE LA English DT Article DE Collective behavior; Information theory; Cognition; Cooperation; Coordination; Natural language ID COOPERATION; EVOLUTION AB Information is a peculiar quantity. Unlike matter and energy, which are conserved by the laws of physics, the aggregation of knowledge from many sources can in fact produce more information (synergy) or less (redundancy) than the sum of its parts. This feature can endow groups with problem-solving strategies that are superior to those possible among noninteracting individuals and, in turn, may provide a selection drive toward collective cooperation and coordination. Here we explore the formal properties of information aggregation as a general principle for explaining features of social organization. We quantify information in terms of the general formalism of information theory, which also prescribes the rules of how different pieces of evidence inform the solution of a given problem. We then show how several canonical examples of collective cognition and coordination can be understood through principles of minimization of uncertainty (maximization of predictability) under information pooling over many individuals. We discuss in some detail how collective coordination in swarms, markets, natural language processing, and collaborative filtering may be guided by the optimal aggregation of information in social collectives. We also identify circumstances when these processes fail, leading, for example, to inefficient markets. The contrast to approaches to understand coordination and collaboration via decision and game theory is also briefly discussed. C1 [Bettencourt, Luis M. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bettencourt, Luis M. A.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Bettencourt, LMA (reprint author), Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM lmbett@lanl.gov NR 54 TC 14 Z9 14 U1 9 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1756-8757 EI 1756-8765 J9 TOP COGN SCI JI Top. Cogn. Sci. PD OCT PY 2009 VL 1 IS 4 BP 598 EP 620 DI 10.1111/j.1756-8765.2009.01047.x PG 23 WC Psychology, Experimental SC Psychology GA 675UX UT WOS:000283865800002 PM 25163449 ER PT J AU Weyens, N van der Lelie, D Taghavi, S Newman, L Vangronsveld, J AF Weyens, Nele van der Lelie, Daniel Taghavi, Safiyh Newman, Lee Vangronsveld, Jaco TI Exploiting plant-microbe partnerships to improve biomass production and remediation SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID GROWTH-PROMOTING RHIZOBACTERIA; PHOSPHATE-SOLUBILIZING BACTERIA; PSEUDOMONAS-FLUORESCENS DR54; ENDOPHYTIC BACTERIA; NITROGEN-FIXATION; BRASSICA-JUNCEA; CYTOKININ PRODUCTION; SYSTEMIC RESISTANCE; ORGANIC POLLUTANTS; BACILLUS-SUBTILIS AB Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial processes. Such plant growth-promoting mechanisms might facilitate higher production of energy crops in a more sustainable manner, even on marginal land, and thus contribute to avoiding conflicts between food and energy production. Furthermore, because many bacteria show a natural capacity to cope with contaminants, they could be exploited to improve the efficiency of phytoremediation or to protect the food chain by reducing levels of agro-chemicals in food crops. C1 [Weyens, Nele; Vangronsveld, Jaco] Hasselt Univ, Dept Environm Biol, CMK, B-3590 Diepenbeek, Belgium. [van der Lelie, Daniel; Taghavi, Safiyh; Newman, Lee] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Vangronsveld, J (reprint author), Hasselt Univ, Dept Environm Biol, CMK, Univ Campus Bldg D, B-3590 Diepenbeek, Belgium. EM jaco.vangronsveld@uhasselt.be FU Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen); UHasselt Methusalem project [08M03VGRJ]; US Department of Energy, Office of Science, BER [DE-AC02-98CH10886]; Laboratory Directed Research and Development funds [LDRD09-005]; US Department of Energy FX N.W. and J.V. acknowledge the support of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) and the UHasselt Methusalem project 08M03VGRJ for financial support. D.v.d.L, S.T. and L.N. are funded by the US Department of Energy, Office of Science, BER, Project Number KP1102010 under contract DE-AC02-98CH10886, and by Laboratory Directed Research and Development funds (LDRD09-005) at the Brookhaven National Laboratory under contract with the US Department of Energy. NR 75 TC 155 Z9 171 U1 7 U2 80 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD OCT PY 2009 VL 27 IS 10 BP 591 EP 598 DI 10.1016/j.tibtech.2009.07.006 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 503KO UT WOS:000270533300006 PM 19683353 ER PT J AU Asquith, B Borghans, JAM Ganusov, VV Macallan, DC AF Asquith, Becca Borghans, Jose A. M. Ganusov, Vitaly V. Macallan, Derek C. TI Lymphocyte kinetics in health and disease (vol 30, pg 182, 2009) SO TRENDS IN IMMUNOLOGY LA English DT Correction C1 [Asquith, Becca] Univ London Imperial Coll Sci Technol & Med, Dept Immunol, London, England. [Borghans, Jose A. M.] Univ Med Ctr Utrecht, Dept Immunol, Utrecht, Netherlands. [Borghans, Jose A. M.; Ganusov, Vitaly V.] Univ Utrecht, NL-3508 TC Utrecht, Netherlands. [Ganusov, Vitaly V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Macallan, Derek C.] St Georges Univ London, Ctr Infect, London, England. RP Asquith, B (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Immunol, London, England. OI Asquith, Becca/0000-0002-5911-3160 NR 1 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1471-4906 J9 TRENDS IMMUNOL JI Trends Immunol. PD OCT PY 2009 VL 30 IS 10 BP 467 EP 467 DI 10.1016/j.it.2009.07.013 PG 1 WC Immunology SC Immunology GA 511NB UT WOS:000271171100002 ER PT J AU Martini, A Dong, YL Perez, D Voter, AF AF Martini, Ashlie Dong, Yalin Perez, Danny Voter, Arthur F. TI Low-Speed Atomistic Simulation of Stick-Slip Friction using Parallel Replica Dynamics SO TRIBOLOGY LETTERS LA English DT Article DE Nanotribology; Stick-slip; Friction mechanisms ID SCALE SLIDING FRICTION; DIAMOND SURFACES AB Atomic stick-slip friction has been predicted by molecular dynamics simulation and observed in experiments. However, direct quantitative comparison of the two has thus far not been possible because of the large difference between scanning velocities accessible to simulations and experiments. In general, the slowest sliding speeds in MD simulations are at least five orders of magnitude larger than the upper limit available to experimentalists. To take a step toward bridging this gap, we have applied parallel replica dynamics, an accelerated molecular dynamics method, to the simulation of atomic stick-slip. The method allows molecular simulations to run parallel in time in order to extend their duration, thereby enabling lower scanning velocities. We show here that this method is able to predict atomic stick-slip friction accurately and efficiently at scanning speeds several orders of magnitude slower than standard molecular dynamics simulations. The accuracy and usefulness of this method is illustrated by correct prediction of the logarithmic dependence of friction on velocity. C1 [Martini, Ashlie; Dong, Yalin] Purdue Univ, W Lafayette, IN 47907 USA. [Perez, Danny; Voter, Arthur F.] Los Alamos Natl Lab, Theoret Div T1, Los Alamos, NM 87545 USA. RP Martini, A (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM a-martini@purdue.edu RI Dong, Yalin/C-9525-2011; Martini, Ashlie/F-9320-2012 OI Martini, Ashlie/0000-0003-2017-6081 FU National Science Foundation [CMMI-0758604]; United States Department of Energy (U. S. DOE) Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC52-06NA25396]; LANL Laboratory FX We are grateful for the contributions of Drs. Robert Carpick, Yuri Mishin, and Vladimir Ivanov and to the National Science Foundation for its support via award CMMI-0758604. Work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (U. S. DOE) Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the LANL Laboratory Directed Research and Development Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. DOE under Contract No. DE-AC52-06NA25396. NR 17 TC 24 Z9 24 U1 0 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD OCT PY 2009 VL 36 IS 1 BP 63 EP 68 DI 10.1007/s11249-009-9460-4 PG 6 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 486QG UT WOS:000269212000006 ER PT J AU Li, CP Duric, N Littrup, P Huang, LJ AF Li, Cuiping Duric, Nebojsa Littrup, Peter Huang, Lianjie TI IN VIVO BREAST SOUND-SPEED IMAGING WITH ULTRASOUND TOMOGRAPHY SO ULTRASOUND IN MEDICINE AND BIOLOGY LA English DT Article DE Ultrasound tomography; Total-variation; Sound-speed; Breast imaging ID NEOADJUVANT CHEMOTHERAPY; INVERSE-SCATTERING; MAMMOGRAPHIC DENSITIES; COMPUTED-TOMOGRAPHY; CANCER-RISK; RECONSTRUCTION; APPROXIMATION; SONOGRAPHY; ARRAYS; IMAGES AB We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1 through 4. Our analysis showed that the improvements for average sharpness (in the unit of (m . s)(-1)) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4-fold compared with the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 +/- 9 m/s (mean +/- SD) and1487 +/- 21 m/s, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548 +/- 17 m/s) was higher, on average, than that of benign ones (1513 +/- 27 m/s) (one-sided p< 0.001). These results suggest that, clinically, sound-speed tomograms can be used to assess breast density (and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor the clinical response of breast cancer patients to neo-adjuvant chemotherapy. (E- mail: lic@karmanos.org) (C) 2009 World Federation for Ultrasound in Medicine & Biology. C1 [Li, Cuiping] Hudson Webber Canc Res Ctr, Karmanos Canc Inst, Detroit, MI 48201 USA. [Huang, Lianjie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, CP (reprint author), Hudson Webber Canc Res Ctr, Karmanos Canc Inst, 110 E Warren, Detroit, MI 48201 USA. EM lic@karmanos.org FU Michigan Economic Development Corporation (MEDC); Susan G. Komen Breast Cancer Foundation; U.S. DOE Laboratory-Directed Research and Development program at Los Alamos National Laboratory FX The authors wish to thank Lisa Bey-Knight for her help in recruiting patients and data collection. C. Li also wants to acknowledge Jason Shen for his assistance for the ROI segmentation of our images. This work was supported in part by research grant from the Michigan Economic Development Corporation (MEDC) and Susan G. Komen Breast Cancer Foundation. L. Huang also acknowledges the support of the U.S. DOE Laboratory-Directed Research and Development program at Los Alamos National Laboratory. NR 46 TC 82 Z9 82 U1 2 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0301-5629 J9 ULTRASOUND MED BIOL JI Ultrasound Med. Biol. PD OCT PY 2009 VL 35 IS 10 BP 1615 EP 1628 DI 10.1016/j.ultrasmedbio.2009.05.011 PG 14 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 600TN UT WOS:000278011900005 PM 19647920 ER PT J AU Beck, KM Joly, AG Hess, WP AF Beck, Kenneth M. Joly, Alan G. Hess, Wayne P. TI Two-color laser desorption of nanostructured MgO thin films SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 6th International Conference on Photo-Excited Processes and Applications CY SEP 09-12, 2008 CL Sapporo, JAPAN DE Nanostructured MgO; Nanosecond laser pulse; Excitation; Desorption ID POSITIVE-ION EMISSION; GAP SINGLE-CRYSTALS; SURFACE; EXCITATION; ENERGIES; ELECTRON; DYNAMICS AB Neutral magnesium atom emission from nanostructured MgO thin films is induced using two-color nanosecond laser excitation. We find that combined vis/UV excitation, for single-color pulse energies below the desorption threshold, induces neutral Mg-atom emission with hyperthermal kinetic energies in the range of 0.1-0.2 eV. The observed metal atom emission is consistent with a mechanism involving rapid electron transfer to three-coordinated Mg surface sites. The two-color Mg-atom signal is significant only for parallel laser polarizations and temporally overlapped laser pulses indicating that intermediate excited states are short-lived compared to the 5 ns laser pulse duration. (C) 2009 Elsevier B.V. All rights reserved. C1 [Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.] Pacific NW Natl Lab, Div Chem & Mat Sci, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hess, WP (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnl.gov NR 22 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 30 PY 2009 VL 255 IS 24 BP 9562 EP 9565 DI 10.1016/j.apsusc.2009.04.089 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 501YO UT WOS:000270420700003 ER PT J AU Boueri, M Baudelet, M Yu, J Mao, XL Mao, SS Russo, R AF Boueri, Myriam Baudelet, Matthieu Yu, Jin Mao, Xianglei Mao, Samuel S. Russo, Richard TI Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 6th International Conference on Photo-Excited Processes and Applications CY SEP 09-12, 2008 CL Sapporo, JAPAN DE Laser ablation of polymer; Early stage plasma expansion; Plasma spectral emission ID INDUCED BREAKDOWN SPECTROSCOPY; ABLATION; NITROGEN; CN; GRAPHITE AB In the nanosecond laser ablation regime, absorption of laser energy by the plasma during its early stage expansion critically influences the properties of the plasma and thus its interaction with ambient air. These influences can significantly alter spectral emission of the plasma. For organic samples especially, recombination of the plasma with the ambient air leads to interfering emissions with respect to emissions due to native species evaporated from the sample. Distinguishing interfering emissions due to ambient air represents a critical issue for the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of organic materials. In this paper, we report observations of early stage expansion and interaction with ambient air of the plasma induced on a typical organic sample (nylon) using time-resolved shadowgraph. We compare, in the nanosecond ablation regime, plasmas induced by infrared (IR) laser pulses (1064 nm) and ultraviolet (UV) laser pulses (266 nm). Nanosecond ablation is compared with femtosecond ablation where the post-ablation interaction is absent. Subsequent to the early stage expansion, we observe for each studied ablation regime, spectral emission from CN, a typical radical for organic and biological samples. Time-resolved LIBS allows identifying emissions from native molecular species and those due to recombination with ambient air through their different time evolution behaviors. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yu, Jin] Univ Lyon 1, CNRS, Spectrometrie Ion & Mol Lab, UMR 5579, F-69622 Villeurbanne, France. [Boueri, Myriam; Baudelet, Matthieu; Yu, Jin] Univ Lyon, F-69622 Lyon, France. [Mao, Xianglei; Mao, Samuel S.; Russo, Richard] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yu, J (reprint author), Univ Lyon 1, CNRS, Spectrometrie Ion & Mol Lab, UMR 5579, 1 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France. EM jin.yu@lasim.univ-lyon1.fr NR 26 TC 43 Z9 43 U1 3 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 30 PY 2009 VL 255 IS 24 BP 9566 EP 9571 DI 10.1016/j.apsusc.2009.04.088 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 501YO UT WOS:000270420700004 ER PT J AU Beck, KM Wiley, WR Venkatasubramanian, E Ohuchi, F AF Beck, Kenneth M. Wiley, William R. Venkatasubramanian, Eswaranand Ohuchi, Fumio TI Vacancies ordered in screw form (VOSF) and layered indium selenide thin film deposition by laser back ablation SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 6th International Conference on Photo-Excited Processes and Applications CY SEP 09-12, 2008 CL Sapporo, JAPAN DE Chalcogenides; Phase change; LIFT; Pulse laser ablation; Indium selenide; VOSF ID PHASE-CHANGE MEMORY; IN2SE3; OPTIMIZATION AB Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In(2)Se(3). In vacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Beck, Kenneth M.; Wiley, William R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Venkatasubramanian, Eswaranand] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Ohuchi, Fumio] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Beck, KM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999,K8-8, Richland, WA 99352 USA. EM kenneth.beck@pnl.gov NR 24 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 30 PY 2009 VL 255 IS 24 BP 9707 EP 9711 DI 10.1016/j.apsusc.2009.04.054 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 501YO UT WOS:000270420700036 ER PT J AU Petkovic, LM Rashkeev, SN Ginosar, DM AF Petkovic, L. M. Rashkeev, Sergey N. Ginosar, D. M. TI Ethanol oxidation on metal oxide-supported platinum catalysts SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Symposium on Catalytic Synthesis and Utilization of Alcohols held at the 236th ACS National Meeting CY AUG 17-21, 2008 CL Philadelphia, PA SP Amer Chem Soc DE Ethanol combustion; Ethanol oxidation; DFT; DRIFTS ID TOTAL-ENERGY CALCULATIONS; INFRARED-SPECTROSCOPY; CARBON-MONOXIDE; MOLECULAR-DYNAMICS; NOBLE-METAL; ACETIC-ACID; PD METAL; SURFACE; ALUMINA; ADSORPTION AB Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT)-based calculations and in situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt-containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., gamma-Al(2)O(3) or SiO(2)) substrate on the ethanol oxidation activity. The results suggest that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of sites that burn ethanol molecules and their partially oxidized derivatives to the final products. The gamma-Al(2)O(3) surfaces provided higher mobility of the fragments of ethanol molecules than the SiO(2) surface and hence increased the supply rate of these species to the Pt particles. This in turn produces a higher conversion rate of unburned ethanol. (C) 2009 Elsevier B.V. All rights reserved. C1 [Petkovic, L. M.; Rashkeev, Sergey N.; Ginosar, D. M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Petkovic, LM (reprint author), Idaho Natl Lab, 2351 Blvd, Idaho Falls, ID 83415 USA. EM Lucia.Petkovic@inl.gov RI Petkovic, Lucia/E-9092-2011; Ginosar, Daniel/C-2357-2017 OI Petkovic, Lucia/0000-0002-0870-3355; Ginosar, Daniel/0000-0002-8522-1659 NR 50 TC 19 Z9 20 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD SEP 30 PY 2009 VL 147 IS 2 BP 107 EP 114 DI 10.1016/j.cattod.2009.02.015 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 493VA UT WOS:000269765200008 ER PT J AU Xomeritakis, G Tsai, CY Jiang, YB Brinker, CJ AF Xomeritakis, G. Tsai, C. Y. Jiang, Y. B. Brinker, C. J. TI Tubular ceramic-supported sol-gel silica-based membranes for flue gas carbon dioxide capture and sequestration SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Sol-gel; Silica membrane; Carbon dioxide separation; Flue gas; Amine functionalization; Nickel doping ID MOLECULAR-SIEVE MEMBRANES; ATOMIC LAYER DEPOSITION; MICROPOROUS SILICA; HIGH-TEMPERATURE; SEPARATION MEMBRANES; COMPOSITE MEMBRANE; ZEOLITE MEMBRANES; PERMEATION; STABILITY; PERFORMANCE AB Pure, amine-derivatized and nickel-doped sol-gel silica membranes have been developed on tubular Membralox-type commercial ceramic supports for the purpose of carbon dioxide separation from nitrogen under coal-fired power plant flue gas conditions. An extensive synthetic and permeation test study was carried out in order to optimize membrane CO(2) permeance, CO(2):N(2) separation factor and resistance against densification. Pure silica membranes prepared under optimized conditions exhibited an attractive combination of CO(2) permeance of 2.0 MPU (1 MPU = 1 cm(3)(STP) cm(-2) min(-1) atm(-1)) and CO(2):N(2) separation factor of 80 with a dry 10:90 (V/V) CO(2): N(2) feed at 25 degrees C. However, these membranes exhibited flux decline phenomena under prolonged exposure to humidified feeds, especially in the presence of trace SO(2) gas in the feed. Doping the membranes with nickel (11) nitrate salt was effective in retarding densification, as manifested by combined higher permeance and higher separation factor of the doped membrane compared to the pure (undoped) silica membrane after 168 h exposure to simulated flue gas conditions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xomeritakis, G.; Brinker, C. J.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Xomeritakis, G.; Brinker, C. J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Tsai, C. Y.] T3 Sci LLC, Blaine, MN 55449 USA. [Jiang, Y. B.; Brinker, C. J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Xomeritakis, G (reprint author), UOP LLC, 25 E Algonquin Rd, Des Plaines, IL 60017 USA. EM george.xomeritakis@uop.com; cjbrink@sandia.gov FU Department of Energy's National Energy Technology Laboratory [DE-FG26-04NT42120]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Department of Energy's National Energy Technology Laboratory (www.netl.doe.gov) under grant #DE-FG26-04NT42120. We are grateful to Mr. Jose Figueroa and other members of NETL's staff for useful technical discussions during the course of this project. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 33 TC 40 Z9 40 U1 5 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD SEP 30 PY 2009 VL 341 IS 1-2 BP 30 EP 36 DI 10.1016/j.memsci.2009.05.024 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 481AD UT WOS:000268777800006 ER PT J AU Loos, J Koch, T Alvermann, A Bishop, AR Fehske, H AF Loos, J. Koch, T. Alvermann, A. Bishop, A. R. Fehske, H. TI Phonon affected transport through molecular quantum dots SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID HOLSTEIN POLARON; MODEL; SYSTEMS; MOTION AB To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to metallic leads, we extend an analytical approach that we previously developed for the many-polaron problem. Our scheme is based on an incomplete variational Lang-Firsov transformation, combined with a perturbative calculation of the electron-phonon self-energy in the framework of generalized Matsubara functions. This allows us to describe the system at weak-to-strong coupling and intermediate-to-large phonon frequencies. We present results for the quantum dot spectral function and for the kinetic coefficient that characterizes the electron transport through the dot. With these results we critically examine the strengths and limitations of our approach, and discuss the properties of the molecular quantum dot in the context of polaron physics. We place particular emphasis on the importance of corrections to the concept of an anti-adiabatic dot polaron suggested by the complete Lang-Firsov transformation. C1 [Loos, J.] Acad Sci Czech Republic, Inst Phys, Prague 16200, Czech Republic. [Koch, T.; Alvermann, A.; Fehske, H.] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany. [Bishop, A. R.] Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. RP Loos, J (reprint author), Acad Sci Czech Republic, Inst Phys, Prague 16200, Czech Republic. EM loos@fzu.cz FU Academy of Sciences Czech Republic; Deutsche Forschungsgemeinschaft [SFB 652]; US Department of Energy (ARB) FX This work was supported by Academy of Sciences Czech Republic (JL), Deutsche Forschungsgemeinschaft through SFB 652 (AA), and US Department of Energy (ARB). HF acknowledges the hospitality at the Institute of Physics ASCR and Los Alamos National Laboratory. The authors would like to thankMHohenadler and GWellein for valuable discussions. NR 40 TC 12 Z9 12 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 30 PY 2009 VL 21 IS 39 AR 395601 DI 10.1088/0953-8984/21/39/395601 PG 18 WC Physics, Condensed Matter SC Physics GA 492AP UT WOS:000269626500011 PM 21832393 ER PT J AU Pastine, SJ Okawa, D Zettl, A Frechet, JMJ AF Pastine, Stefan J. Okawa, David Zettl, Alex Frechet, Jean M. J. TI Chemicals On Demand with Phototriggerable Microcapsules SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POLYAMIDE MICROCAPSULES; CONTROLLED RELEASE AB We report the development of phototriggerable microcapsules and demonstrate the concept of protection and remote release of chemical species. Light-rupturable, liquid-filled microcapsules were prepared by coencapsulation of carbon nanotubes using a simple and robust interfacial polymerization technique. The incorporation of carbon nanotubes endows the microcapsules with the ability to respond to an external optical event. The triggered release of the liquid contents for the microcapsules may be achieved either in air or within a liquid medium via irradiation with a near-IR laser. Rupture of the impermeable shell-wall under irradiation is presumed to be due to an increase in internal pressure due to optothermal heating of the CNTs. The storage and triggered release of reactive small molecules and catalysts was demonstrated in the context of remotely initiated "click" reaction and ring-opening metathesis polymerization. C1 [Pastine, Stefan J.; Okawa, David; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Okawa, David; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zettl, Alex; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Frechet, Jean /0000-0001-6419-0163 FU National Science Foundation [DMR-0906638]; U.S. Department of Energy BES [DE-AC02-05CH11231]; NIGMS [F32GM078780]; Miller Institute FX Financial support from the National Science Foundation (DMR-0906638) and the U.S. Department of Energy BES (DE-AC02-05CH11231). Stipends from the NIGMS (F32GM078780 to S.J.P.) and the Miller Institute (for A.Z.) are also acknowledged. We thank Dr. Jeff Leon for helpful discussions. NR 14 TC 56 Z9 56 U1 5 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 30 PY 2009 VL 131 IS 38 BP 13586 EP + DI 10.1021/ja905378v PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZV UT WOS:000270186600011 PM 19736938 ER PT J AU Sun, ZC Bai, F Wu, HM Schmitt, SK Boye, DM Fan, HY AF Sun, Zaicheng Bai, Feng Wu, Huimeng Schmitt, Samantha K. Boye, Daniel M. Fan, Hongyou TI Hydrogen-Bonding-Assisted Self-Assembly: Monodisperse Hollow Nanoparticles Made Easy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPHERE TRANSITION; BLOCK-COPOLYMERS; DRUG-DELIVERY; PARTICLES; MICELLIZATION; CARBON; SILICA AB A facile self-assembly process for synthesizing monodisperse hollow spherical. nanoparticles that are less than 50 nm in diameter has been developed. Preferential hydrogen bonding between an amphiphilic block copolymer (polystyrene-b-polyvinylpyridine, PS-PVP) and a hydrogen-bonding agent (HA) enables formation of monodisperse spherical solid polymer nanoparticles with the HA residing in the particle core surrounded by the polymer. Removal of the HA results in monodisperse hollow nanoparticles with tunable hollow cavity size and internal surface reactivity. Formation of ordered hollow nanoparticle films with controlled index of refraction for antireflective coating applications is demonstrated. C1 [Sun, Zaicheng; Bai, Feng; Schmitt, Samantha K.; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. Univ New Mexico, Dept Chem & Nucl Engn, NSF, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. Davidson Coll, Dept Phys, Davidson, NC 28035 USA. RP Fan, HY (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM hfan@sandia.gov RI Sun, Zaicheng/B-5397-2012 OI Sun, Zaicheng/0000-0001-5277-5308 FU U.S. Department of Energy (DOE) Basic Energy Sciences (BES) Program; Sandia National Laboratory's Laboratory Directed Research and Development (LDRD) Program; National Science Foundation [DMI-0625897]; CRADA; NSF; EPSCOR; NNIN; Sandia Corporation; Lockheed Martin Company; U.S. DOE's National Nuclear Security Administration [DE-AC0494AL85000] FX This work was supported by the U.S. Department of Energy (DOE) Basic Energy Sciences (BES) Program, Sandia National Laboratory's Laboratory Directed Research and Development (LDRD) Program, the National Science Foundation (DMI-0625897), and CRADA. TEM studies were performed at the Department of Earth and Planetary Sciences at the University of New Mexico. We acknowledge the use of the SEM facility supported by the NSF EPSCOR and NNIN grants. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC0494AL85000. NR 23 TC 34 Z9 35 U1 7 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 30 PY 2009 VL 131 IS 38 BP 13594 EP + DI 10.1021/ja905240w PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZV UT WOS:000270186600015 PM 19722519 ER PT J AU Jain, P Ramachandran, V Clark, RJ Zhou, HD Toby, BH Dalal, NS Kroto, HW Cheetham, AK AF Jain, Prashant Ramachandran, Vasanth Clark, Ronald J. Zhou, Hai Dong Toby, Brian H. Dalal, Naresh S. Kroto, Harold W. Cheetham, Anthony K. TI Multiferroic Behavior Associated with an Order-Disorder Hydrogen Bonding Transition in Metal-Organic Frameworks (MOFs) with the Perovskite ABX(3) Architecture SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WEAK FERROMAGNETISM; PHASE-TRANSITION; CRYSTAL; SOLIDS; KH2PO4 AB Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH3)(2)NH2]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding. C1 [Jain, Prashant; Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J.; Dalal, Naresh S.; Kroto, Harold W.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Jain, Prashant; Zhou, Hai Dong; Dalal, Naresh S.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Cheetham, AK (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM akc30@cam.ac.uk RI Jain, Prashant/C-8135-2009; Toby, Brian/F-3176-2013; Zhou, Haidong/O-4373-2016; OI Toby, Brian/0000-0001-8793-8285; Ramachandran, Vasan/0000-0001-7357-5970 FU European Research Council for an Advanced Investigator Award; Argonne National Laboratory; NSF-DMR [0506946]; FSU FX A.K.C. thanks the European Research Council for an Advanced Investigator Award. P.J. thanks Neil Mathur and Casey Israel for useful discussions and experiment support. The authors thank the Argonne National Laboratory for access to the Advanced Photon Source. The work at FSU was partially supported by the NSF-DMR Grant No. 0506946. H.W.K. thanks FSU for financial support. NR 18 TC 324 Z9 328 U1 32 U2 203 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 30 PY 2009 VL 131 IS 38 BP 13625 EP + DI 10.1021/ja904156s PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZV UT WOS:000270186600028 PM 19725496 ER PT J AU Vugmeyster, L Ostrovsky, D Ford, JJ Burton, SD Lipton, AS Hoatson, GL Vold, RL AF Vugmeyster, Liliya Ostrovsky, Dmitry Ford, Joseph J. Burton, Sarah D. Lipton, Andrew S. Hoatson, Gina L. Vold, Robert L. TI Probing the Dynamics of a Protein Hydrophobic Core by Deuteron Solid-State Nuclear Magnetic Resonance Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID VILLIN HEADPIECE SUBDOMAIN; SPIN-LATTICE-RELAXATION; COMPOSITE EXCITATION SEQUENCES; SIDE-CHAIN DYNAMICS; LINE-SHAPE ANALYSIS; NMR-SPECTROSCOPY; MOLECULAR-DYNAMICS; GLASS-TRANSITION; LOW-TEMPERATURE; H-2 NMR AB With the goal of investigating dynamical features of hydrophobic cores of proteins over a wide range of temperatures, the chicken villin headpiece subdomain protein (HP36) was labeled at a "single" site corresponding to any one of the two C(delta)D(3) groups of leucine-69, which is located in a key position of the core. The main techniques employed are deuteron NMR quadrupolar echo line shape analysis, and T(1Z) (Zeeman) and T(1Q) (quadrupolar order) relaxation experiments performed at 11.7 and 17.6 T over the temperature range of 112 to 298 K. The experimental data are compared with computer simulations. The deuteron line shapes give an excellent fit to a three-mode motional model that consists of (a) fast three-site rotational jumps about the pseudo C(3) methyl spinning axis, (b) slower reorientation of the spinning axis, described by diffusion along a restricted arc, and (c) large angle jumps between traces of rotameric conformers. Relaxation behavior is described by a phenomenological distribution of activation energies for three-site hops at high temperatures that collapses to a single, distinctly smaller value for lower temperatures. C1 [Vugmeyster, Liliya; Ostrovsky, Dmitry] Univ Alaska, Anchorage, AK 99508 USA. [Ford, Joseph J.; Burton, Sarah D.; Lipton, Andrew S.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Hoatson, Gina L.; Vold, Robert L.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Vugmeyster, L (reprint author), Univ Alaska, Anchorage, AK 99508 USA. EM aflv@uaa.alaska.edu FU Department of Energy's Office of Biological and Environmental Research; NSF [CHE-0713819]; University of Alaska [104110-1197011470]; Environment and Natural Resources Institute, University of Alaska FX Part of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NMR data at 17.6 T were collected at the College of William and Mary NMR laboratory, which is supported by NSF Grant CHE-0713819 to the College of William and Mary on behalf of R.L.V. and G.L.H. L.V. is supported by the University of Alaska funds 104110-11970&11470 and Environment and Natural Resources Institute, University of Alaska at Anchorage. We are grateful to Jesse Sears, Christopher A. Maher, and Peter J. de Castro for technical assistance and to Dr. Paul Ellis for useful discussions. NR 77 TC 29 Z9 29 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 30 PY 2009 VL 131 IS 38 BP 13651 EP 13658 DI 10.1021/ja902977u PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZV UT WOS:000270186600034 PM 19772361 ER PT J AU Kim, H Karkamkar, A Autrey, T Chupas, P Proffen, T AF Kim, Hyunjeong Karkamkar, Abhi Autrey, Tom Chupas, Peter Proffen, Thomas TI Determination of Structure and Phase Transition of Light Element Nanocomposites in Mesoporous Silica: Case study of NH3BH3 MCM-41 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN STORAGE MATERIAL; AMMONIA BORANE; THERMAL-DECOMPOSITION; NEUTRON-DIFFRACTION; HIGH-RESOLUTION; PRUSSIAN BLUE; NMR; CHEMISTRY; DYNAMICS; DISORDER AB Nanocomposition of molecular crystal ammonia borane (AB) by embedding it in mesoporous silica leads to a remarkable enhancement of the hydrogen storage properties. To investigate the nature of a nanophase AB, we used atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data to follow the structural evolution of AB embedded within MCM-41 at temperatures ranging from 80 to 300 K. We found that the nanophase AB residing within the mesoporous scaffold does not undergo the structural phase transition at 225 K that was observed in the neat molecular crystal. Rather, it stays in the tetragonal phase over a wide temperature range of 110 to 240 K and starts to lose structural correlation above 240 K. This finding strongly suggests that nanoconfinement of AB within mesoporous scaffolds stabilizes the high-temperature disordered tetragonal phase at a much lower temperature. PDF analyses of composite materials composed of excess AB (i.e., AB:MCM-41 > 1:1) indicates that the excess AB forms aggregates outside the mesoporous scaffold and that these aggregates have structural properties similar to neat AB, that is, the orthorhombic-to-tetragonal structural phase transition is observed at 225 K upon warming. These results may provide important insight into the mechanism behind the enhanced hydrogen storage properties of this system. C1 [Kim, Hyunjeong; Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Karkamkar, Abhi; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chupas, Peter] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, H (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM hjkim@lanl.gov; tom.autrey@pnl.gov RI Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences; U.S. Department of Energy, Office of Basic Energy, Division of Chemical Sciences, Biosciences and Geosciences FX We thank Valeri Petkov for the preliminary data collection and Evan Maxey, Julianne Coxe, Katharine Page, and Nadine Rademacher for help with the experiments. Work performed at Argonne National Laboratory and use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357; H.K. and T.P. acknowledge support from the Lujan Neutron Scattering Center funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under Contract DE-AC52-06NA25396. T.A. and A.K. acknowledge support from the U.S. Department of Energy, Office of Basic Energy, Division of Chemical Sciences, Biosciences and Geosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 33 TC 65 Z9 65 U1 2 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 30 PY 2009 VL 131 IS 38 BP 13749 EP 13755 DI 10.1021/ja904901d PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZV UT WOS:000270186600046 PM 19728706 ER PT J AU Minasian, SG Krinsky, JL Rinehart, JD Copping, R Tyliszczak, T Janousch, M Shuh, DK Arnold, J AF Minasian, Stefan G. Krinsky, Jamin L. Rinehart, Jeffrey D. Copping, Roy Tyliszczak, Tolek Janousch, Markus Shuh, David K. Arnold, John TI A Comparison of 4f vs 5f Metal-Metal Bonds in (CpSiMe3)(3)M-ECp* (M = Nd, U; E = Al, Ga; Cp* = C5Me5): Synthesis, Thermodynamics, Magnetism, and Electronic Structure SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID RAY-ABSORPTION-SPECTROSCOPY; TRIS(ETA-5-CYCLOPENTADIENYL) ACTINIDE COMPLEXES; TRIVALENT URANIUM METALLOCENES; SEGMENTED CONTRACTION SCHEME; PSEUDOPOTENTIAL BASIS-SETS; DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; AB-INITIO CALCULATIONS; ADVANCED LIGHT-SOURCE; NEAR-EDGE STRUCTURE AB Reaction of (CpSiMe3)(3)U or (CpSiMe3)(3)Nd with (Cp*Al)(4) or Cp*Ga (Cp* = C5Me5) afforded the isostructural complexes (CpSiMe3)(3)M-ECp* (M = U, E = Al (1); M = U, E = Ga (2); M = Nd, E = Al (3); M = Nd, E = Ga (4)). In the case of 1 and 2 the complexes were isolated in 39 and 90% yields, respectively, as crystalline solids and were characterized by single-crystal X-ray diffraction, variable-temperature H-1 NMR spectroscopy, elemental analysis, variable-temperature magnetic susceptibility, and UV-visible-NIR spectroscopy. In the case of 3 and 4, the complexes were observed by variable-temperature H-1 NMR spectroscopy but were not isolated as pure materials. Comparison of the equilibrium constants and thermodynamic parameters Delta H and Delta S obtained by H-1 NMR titration methods revealed a much stronger U-Ga interaction in 2 than the Nd-Ga interaction in 4. Competition reactions between (CpSiMe3)(3)U and (CpSiMe3)(3)Nd indicate that Cp*Ga selectively binds U over Nd in a 93:7 ratio at 19 degrees C and 96:4 at -33 degrees C. For 1 and 3, comparison of H-1 NMR peak intensities suggests that Cp*Al also achieves excellent U(III)/Nd(III) selectivity at 21 degrees C. The solution electronic spectra and solid-state temperature-dependent magnetic susceptibilities of 1 and 2, in addition to X-ray absorption near-edge structure (XANES) measurements from scanning transmission X-ray microscopy (STXM) of 1, are consistent with those observed for other U(III) coordination complexes. DFT calculations using five different functionals were performed on the model complexes Cp3M-ECp (M = Nd, U; E = Al, Ga), and empirical fitting of the values for Cp3M-ECp allowed the prediction of binding energy estimates for Cp*Al compounds 1 and 3. NBO/NLMO bonding analyses on Cp3U-ECp indicate that the bonding consists predominantly of a E -> U sigma-interaction arising from favorable overlap between the diffuse ligand lone pair and the primarily 7s/6d acceptor orbitals on U(III), with negligible U -> E pi-donation. The overall experimental and computational bonding analysis suggests that Cp*Al and Cp*Ga behave as good sigma-donors in these systems. C1 [Krinsky, Jamin L.] Univ Calif Berkeley, Mol Graph & Computat Facil, Berkeley, CA 94720 USA. [Minasian, Stefan G.; Rinehart, Jeffrey D.; Arnold, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Copping, Roy; Shuh, David K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Tyliszczak, Tolek; Janousch, Markus] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Janousch, Markus] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Krinsky, JL (reprint author), Univ Calif Berkeley, Mol Graph & Computat Facil, Berkeley, CA 94720 USA. EM jamink@berkeley.edu; dkshuh@lbl.gov; arnold@berkeley.edu RI Janousch, Markus/B-3285-2010; Arnold, John/F-3963-2012 OI Arnold, John/0000-0001-9671-227X FU LBNL-LDRD; Director, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program; NSF [CRE-0233882] FX We thank Drs. R. Andersen, R. Bergman, L. Maron, and W. Lukens for helpful discussions, as well as Drs. F. Hollander, A. DiPasquale, and M. Mulvihill for assistance with measurements, and the DOE for financial support of the preliminary aspects of this work through the LBNL-LDRD program. Parts of this work (T.T., D.K.S.) and the ALS were supported by the Director, Office of Science, Office of Basic Energy Sciences and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. R.C. was supported by the Laboratory Directed Research and Development Program at LBNL. Molecular modeling was performed at the UC Berkeley Molecular Graphics and Computation Facility, directed by Dr. K. Durkin and operated with equipment funds from NSF Grant CRE-0233882 and donations from Dell. NR 143 TC 60 Z9 60 U1 7 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 30 PY 2009 VL 131 IS 38 BP 13767 EP 13783 DI 10.1021/ja904565j PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZV UT WOS:000270186600048 PM 19725526 ER PT J AU Nikiforov, MP Jesse, S Morozovska, AN Eliseev, EA Germinario, LT Kalinin, SV AF Nikiforov, M. P. Jesse, S. Morozovska, A. N. Eliseev, E. A. Germinario, L. T. Kalinin, S. V. TI Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy SO NANOTECHNOLOGY LA English DT Article ID SILICON MICROCANTILEVER HEATERS; ATOMIC-FORCE MICROSCOPE; NANOIMPRINT LITHOGRAPHY; EXPANSION MICROSCOPY; COMPOSITES; EVOLUTION; AFM AB Understanding local mechanisms for temperature-induced phase transitions in polymers requires quantitative measurements of the thermomechanical behavior, including glass transition and melting temperatures as well as temperature dependent elastic and loss modulus and thermal expansion coefficients in nanoscale volumes. Here, we demonstrate an approach for probing local thermal phase transitions based on the combination of thermal field confinement by a heated SPM probe and multi-frequency thermomechanical detection. The local measurement of the glass transition temperature is demonstrated and the detection limits are established. C1 [Nikiforov, M. P.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Morozovska, A. N.] Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Germinario, L. T.] Eastman Chem Co, Kingsport, TN 37662 USA. RP Nikiforov, MP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd,PO 2008,MS 6487, Oak Ridge, TN 37831 USA. RI Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research at Oak Ridge National Laboratory's Centre for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The BE-AFAM and BE-SJThEM techniques method is available as a part of the user program at the CNMS (www.cnms.ornl.gov). NR 42 TC 37 Z9 37 U1 2 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD SEP 30 PY 2009 VL 20 IS 39 AR 395709 DI 10.1088/0957-4484/20/39/395709 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 491CC UT WOS:000269553500020 PM 19726838 ER PT J AU Imhof, P Fischer, S Smith, JC AF Imhof, Petra Fischer, Stefan Smith, Jeremy C. TI Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis SO BIOCHEMISTRY LA English DT Article ID DIVALENT METAL-IONS; RAPID-REACTION ANALYSIS; ENDONUCLEASE ECORV; PHOSPHORYL TRANSFER; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; AM1/D PARAMETERS; SITE; RECOGNITION; COMPLEXES AB Endonucleases, Such as the restriction enzyme EcoRV, cleave the DNA backbone at a specific recognition sequence. We have investigated the catalytic mechanism of backbone phosphodiester hydrolysis by the restriction enzyme EcoRV by means of hybrid quantum mechanical/molecular mechanical calculations. An exhaustive computation of different reaction pathways is performed, thus generating a network of pathways. Comparison of the computed (AM1d/MM) enzymatic reaction pathways with an analogous mechanism for small-molecule model systems [AM1/d and B3LYP/6-31 + +G(d,p)] reveals that the transition barriers for associative hydrolysis, which is more probable in the model systems, are not lowered by the enzyme. Instead, a reaction mechanism which has mostly dissociative character is more likely. The protein environment is tuned to significantly electrostatically stabilize the transition state structures, The direct catalytic impact of essential residues is determined: The magnesium metal Ion activates a water molecule, thus facilitating protonation of the leaving group. A reduction of the coordination number of the magnesium metal ion from six to four upon the positioning of the attacking water molecule explains why larger metal ions, such as calcium, are not catalytically active. The nucleophile is generated by the transfer of a proton from the attacking water molecule to a carboxylic oxygen atom of aspartate 90. The catalytic effect of lysine 92 involves proper positioning of the scissile phosphate group and, more importantly, stabilization of the metaphosphate intermediate in an orientation optimal for attack of the nucleophile. C1 [Imhof, Petra; Fischer, Stefan; Smith, Jeremy C.] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fischer, S (reprint author), Univ Heidelberg, IWR, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM stefan.fischer@iwr.uni-heidelberg.de RI smith, jeremy/B-7287-2012; Imhof, Petra/G-5656-2013 OI smith, jeremy/0000-0002-2978-3227; FU SFB623 "Molecular Catalysis"; University of Heidelberg with a Olympia-Morata fellowship; U.S. Department of Energy FX Supported by the DFG as part of the SFB623 "Molecular Catalysis", the University of Heidelberg with a Olympia-Morata fellowship (P.I.), and a Laboratory-Directed Research and Development grant from the U.S. Department of Energy (J.C.S.). NR 48 TC 17 Z9 17 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 29 PY 2009 VL 48 IS 38 BP 9061 EP 9075 DI 10.1021/bi900585m PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 495LE UT WOS:000269892000016 PM 19678693 ER PT J AU Han, BG Dong, M Liu, HC Camp, L Geller, J Singer, M Hazen, TC Choi, M Witkowska, HE Ball, DA Typke, D Downing, KH Shatsky, M Brenner, SE Chandonia, JM Biggin, MD Glaeser, RM AF Han, Bong-Gyoon Dong, Ming Liu, Haichuan Camp, Lauren Geller, Jil Singer, Mary Hazen, Terry C. Choi, Megan Witkowska, H. Ewa Ball, David A. Typke, Dieter Downing, Kenneth H. Shatsky, Maxim Brenner, Steven E. Chandonia, John-Marc Biggin, Mark D. Glaeser, Robert M. TI Survey of large protein complexes in D. vulgaris reveals great structural diversity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE comparative evolutionary analysis; single-particle electron microscopy; structural homology ID PYRUVATE-FERREDOXIN OXIDOREDUCTASE; CRYSTAL-STRUCTURE; PSEUDOMONAS-AERUGINOSA; LUMAZINE SYNTHASE; CRYOELECTRON TOMOGRAPHY; ANGSTROM RESOLUTION; ESCHERICHIA-COLI; IDENTIFICATION; PURIFICATION; DEHYDROGENASE AB An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr approximate to 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate approximate to 10 times greater than that of previous "proteomic'' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions, can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest. C1 [Han, Bong-Gyoon; Ball, David A.; Typke, Dieter; Downing, Kenneth H.; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Dong, Ming; Choi, Megan; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Camp, Lauren; Geller, Jil; Singer, Mary; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Shatsky, Maxim; Brenner, Steven E.; Chandonia, John-Marc; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Liu, Haichuan; Witkowska, H. Ewa] Univ Calif San Francisco, OB GYN Dept, Sandler Moore Mass Spectrometry Core Facil, San Francisco, CA 94143 USA. [Shatsky, Maxim; Brenner, Steven E.; Chandonia, John-Marc] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov RI Han, Bong-Gyoon/J-9120-2012; Brenner, Steven/A-8729-2008; Hazen, Terry/C-1076-2012 OI Brenner, Steven/0000-0001-7559-6185; Hazen, Terry/0000-0002-2536-9993 FU U. S. Department of Energy [DE-AC02-05CH11231] FX We thank all members of the Protein Complex Analysis Project (PCAP) at Lawrence Berkeley National Laboratory, whose contributions have been vital to the conduct of this research. This work was supported in part by U. S. Department of Energy Contract DE-AC02-05CH11231 and has been conducted in affiliation with the Virtual Institute for Microbial Stress and Survival. NR 37 TC 13 Z9 13 U1 0 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 29 PY 2009 VL 106 IS 39 BP 16580 EP 16585 DI 10.1073/pnas.0813068106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 500MH UT WOS:000270305800010 PM 19805340 ER PT J AU Forrester, JB Valentine, NB Su, YF Johnson, TJ AF Forrester, Joel B. Valentine, Nancy B. Su, Yin-Fong Johnson, Timothy J. TI Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: Discrimination to the strain level SO ANALYTICA CHIMICA ACTA LA English DT Article DE Chemometrics; Discrimination; Bacillus; Endospores; Infrared spectroscopy; FTIR ID FT-IR SPECTROSCOPY; MASS-SPECTROMETRY; PHOTOACOUSTIC-SPECTROSCOPY; STATISTICAL-ANALYSIS; RAMAN-SPECTROSCOPY; DIPICOLINIC ACID; TRANSFORM; IDENTIFICATION; SPORES; DIFFERENTIATION AB Previous work using infrared spectroscopy has shown potential for rapid discrimination between bacteria in either their sporulated or vegetative states, as well as between bacteria and other common interferents. For species within one physiological state, however, distinction is far more challenging, and requires chemometrics. In the current study, we have narrowed the field of study by eliminating the confounding issues of vegetative cells as well as growth media and focused on using IR spectra to distinguish only between different species all in the sporulated state. Using principal component analysis (PCA) and a classification method based upon similarity measurements, we demonstrate a successful identification rate to the species level of 85% for Bacillus spores grown and sporulated in a glucose broth medium. (C) 2009 Elsevier B.V. All rights reserved. C1 [Forrester, Joel B.; Valentine, Nancy B.; Su, Yin-Fong; Johnson, Timothy J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Forrester, JB (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM joel.forrester@pnl.gov FU Battelle Memorial Institute [DE-AC06-76RLO 1830] FX We thank Dr. Helen Kreuzer-Martin for helpful discussions. This work was supported under the Department of Energy's NA-22 nuclear non-proliferation program and we are very grateful for their continuing support. PNNL is operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 48 TC 10 Z9 10 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD SEP 28 PY 2009 VL 651 IS 1 BP 24 EP 30 DI 10.1016/j.aca.2009.08.005 PG 7 WC Chemistry, Analytical SC Chemistry GA 497ZQ UT WOS:000270104800003 PM 19733730 ER PT J AU Sutter, E Albrecht, P Sutter, P AF Sutter, E. Albrecht, P. Sutter, P. TI Graphene growth on polycrystalline Ru thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; EPITAXIAL GRAPHENE; LARGE-AREA; RU(0001) AB Monolayer graphene has been grown on polycrystalline Ru thin films on SiO(2)/Si substrates. The Ru films have columnar structure with strongly aligned grains exposing flat (0001) surface facets. Adjacent grains show small relative tilts of their (0001) axes and variations in in-plane orientation. Graphene layers grown on this template cover the entire surface and have uniform monolayer thickness. Analysis of the graphene/Ru moire structure shows that monocrystalline graphene domains are coherent across a large number of substrate grains. Hence, the size of monolayer graphene domains is not limited by grain boundaries in the metal template. (C) 2009 American Institute of Physics. [doi:10.1063/1.3224913] C1 [Sutter, E.; Albrecht, P.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH1-886] FX We thank Kim Kisslinger for technical assistance. Work performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH1-886. NR 16 TC 56 Z9 56 U1 5 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 28 PY 2009 VL 95 IS 13 AR 133109 DI 10.1063/1.3224913 PG 3 WC Physics, Applied SC Physics GA 502KL UT WOS:000270458000055 ER PT J AU Caffall, KH Mohnen, D AF Caffall, Kerry Hosmer Mohnen, Debra TI The structure, function, and biosynthesis of plant cell wall pectic polysaccharides SO CARBOHYDRATE RESEARCH LA English DT Review DE Cell wall polysaccharides; Galacturonan; Glycosyltransferases; Homogalacturonan; Pectin function; Rhamnogalacturonan ID CULTURED SYCAMORE CELLS; HOST-PATHOGEN INTERACTIONS; IN-VITRO BIOSYNTHESIS; BEAN PHASEOLUS-VULGARIS; CELLULOSE SYNTHASE-LIKE; DE-NOVO SYNTHESIS; MEMBRANE-BOUND GALACTOSYLTRANSFERASE; SOYBEAN SOLUBLE POLYSACCHARIDES; STEPWISE ENZYMATIC DEGRADATION; O-ACETYLATED OLIGOSACCHARIDES AB Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up similar to 90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of alpha-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Caffall, Kerry Hosmer; Mohnen, Debra] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Caffall, Kerry Hosmer; Mohnen, Debra] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Mohnen, Debra] DOE BioEnergy Sci Ctr BESC, Athens, GA 30602 USA. RP Mohnen, D (reprint author), Univ Georgia, Dept Biochem & Mol Biol, 315 Riverbend Rd, Athens, GA 30602 USA. EM dmohnen@ccrc.uga.edu FU NSF [0313509, 0646109]; NRI; CSREES; USDA [2003-35318-15377, 2006-35318-17301]; DOE [DE-FG02-93-ER20097.] FX This project was supported in part by NSF MCB awards 0313509 and 0646109, NRI, CSREES, USDA Awards 2003-35318-15377 and 2006-35318-17301 and DOE DE-FG02-93-ER20097. The BioEnergy Science Center is a collaborative effort between Oak Ridge National Laboratory and other research sites, for more information please go to www.bioenergycenter.org. NR 289 TC 399 Z9 417 U1 38 U2 273 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0008-6215 EI 1873-426X J9 CARBOHYD RES JI Carbohydr. Res. PD SEP 28 PY 2009 VL 344 IS 14 SI SI BP 1879 EP 1900 DI 10.1016/j.carres.2009.05.021 PG 22 WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 506IT UT WOS:000270769200015 PM 19616198 ER PT J AU Gallis, MA Bond, RB Torczynski, JR AF Gallis, Michael A. Bond, Ryan B. Torczynski, John R. TI A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MONTE-CARLO METHOD; HIGH-TEMPERATURE; DISSOCIATION; COMBUSTION; EXCHANGE; NITROGEN; MODELS AB Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases. (C) 2009 American Institute of Physics. [doi:10.1063/1.3241133] C1 [Gallis, Michael A.; Torczynski, John R.] Sandia Natl Labs, Dept Microscale Sci & Technol, Albuquerque, NM 87185 USA. [Bond, Ryan B.] Sandia Natl Labs, Dept Aerosci, Albuquerque, NM 87185 USA. RP Gallis, MA (reprint author), Sandia Natl Labs, Dept Microscale Sci & Technol, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors would like to thank Dr. E. S. Piekos and Dr. C. M. Brotherton of the Sandia National Laboratories for their critical reviews of the manuscript. NR 38 TC 16 Z9 16 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2009 VL 131 IS 12 AR 124311 DI 10.1063/1.3241133 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 501KJ UT WOS:000270380300044 PM 19791885 ER PT J AU Qin, W Lu, WC Zhao, LZ Zang, QJ Chen, GJ Wang, CZ Ho, KM AF Qin, Wei Lu, Wen-Cai Zhao, Li-Zhen Zang, Qing-Jun Chen, Guang-Ju Wang, C. Z. Ho, K. M. TI Platelike structures of semiconductor clusters Ge-n (n=40-44) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ION MOBILITY MEASUREMENTS; GERMANIUM CLUSTERS; SILICON; MODEL; INFORMATION; TRANSITION; SPHERES; GROWTH AB The structures of Ge-n (n=40-44) clusters were searched by genetic algorithm combined with a tight-binding method. First-principles calculations based on density functional theory were performed to further optimize the isomer structures. The calculated results show that Ge-n (n=40-44) clusters favor platelike structures, consisted of four small magic clusters (Ge-9 or Ge-10), and a Ge-4 core. The Ge-4 core along with the parts of the four linked small clusters forms a diamond segment. The cluster mobilities of the most stable structures are in good agreement with the experimental data. (C) 2009 American Institute of Physics. [doi:10.1063/1.3230602] C1 [Qin, Wei; Lu, Wen-Cai; Zhao, Li-Zhen] Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China. [Zang, Qing-Jun; Chen, Guang-Ju] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Wang, C. Z.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames, IA 50011 USA. [Lu, Wen-Cai] Qingdao Univ, Growing Base State Key Lab, Qingdao 266071, Peoples R China. RP Qin, W (reprint author), Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 FU National Natural Science Foundation of China [20773047, 20473030, 60028403]; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 20773047, 20473030, and 60028403). Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was also supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. NR 26 TC 18 Z9 18 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2009 VL 131 IS 12 AR 124507 DI 10.1063/1.3230602 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 501KJ UT WOS:000270380300053 PM 19791894 ER PT J AU Thom, AJW Head-Gordon, M AF Thom, Alex J. W. Head-Gordon, Martin TI Hartree-Fock solutions as a quasidiabatic basis for nonorthogonal configuration interaction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-MATRICES; EXCITED-STATES; LIF; INTERSECTION; MOLECULES; SYMMETRY; SYSTEMS AB Using the method of self-consistent field metadynamics, we locate some of the low-energy solutions to the Hartree-Fock (HF) equations on LiF and O-3. The located solutions qualitatively resemble the adiabatic electronic states in these systems. We formulate the method of nonorthogonal Configuration Interaction (CI) to interact these solutions with cubic scaling with system size and quadratic scaling with the number of solutions. The resultant solutions display the avoided crossings and, in O-3, a conical intersection expected of the adiabatic states. In LiF the relevant solutions coalesce and disappear from Unrestricted HF space indicating a more general HF theory is required. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236841] C1 [Thom, Alex J. W.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Thom, AJW (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alex.thom@berkeley.edu FU Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX Calculations were performed in a modified version of Q-CHEM (Ref. 28) (Version 3.2). This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 19 Z9 19 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2009 VL 131 IS 12 AR 124113 DI 10.1063/1.3236841 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 501KJ UT WOS:000270380300017 PM 19791858 ER PT J AU Vajda, S Lee, S Sell, K Barke, I Kleibert, A von Oeynhausen, V Meiwes-Broer, KH Rodriguez, AF Elam, JW Pellin, MM Lee, B Seifert, S Winans, RE AF Vajda, Stefan Lee, Sungsik Sell, Kristian Barke, Ingo Kleibert, Armin von Oeynhausen, Viola Meiwes-Broer, Karl-Heinz Rodriguez, Arantxa Fraile Elam, Jeffrey W. Pellin, Michael M. Lee, Byeongdu Seifert, Soenke Winans, Randall E. TI Combined temperature-programmed reaction and in situ x-ray scattering studies of size-selected silver clusters under realistic reaction conditions in the epoxidation of propene SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID OXYGEN-ADSORPTION; CATALYZED OXIDATION; MOLECULAR-OXYGEN; GOLD CLUSTERS; 0001 SURFACE; OXIDE; PROPYLENE; STABILITY; AG(111); GROWTH AB The catalytic activity and dynamical shape changes in size-selected nanoclusters at work are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed reaction with in situ grazing-incidence small angle x-ray scattering. This approach allows drawing a direct correlation between nanocatalyst size, composition, shape, and its function under realistic reaction conditions for the first time. The approach is illustrated in a chemical industry highly relevant selective partial oxidation of propene on a monodisperse silver nanocatalyst. The shape of the catalyst undergoes rapid change already at room temperature upon the exposure to the reactants, followed by a complex evolution of shape with increasing temperature. Acrolein formation is observed around 50 degrees C while the formation of the propylene oxide exhibits a sharp onset at 80 degrees C and is leveling off at 150 degrees C. At lower temperatures acrolein is produced preferentially to propylene oxide; at temperatures above 100 degrees C propylene oxide is favored. (C) 2009 American Institute of Physics. [doi:10.1063/1.3237158] C1 [Vajda, Stefan; Lee, Sungsik] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Sch Engn & Appl Sci, Dept Chem Engn, New Haven, CT 06520 USA. [Sell, Kristian; Barke, Ingo; Kleibert, Armin; von Oeynhausen, Viola; Meiwes-Broer, Karl-Heinz] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Rodriguez, Arantxa Fraile] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Pellin, Michael M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lee, Byeongdu; Seifert, Soenke; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Vajda, S (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vajda@anl.gov RI Fraile Rodriguez, Arantxa/A-2446-2009; Pellin, Michael/B-5897-2008; Barke, Ingo/H-2097-2013; Kleibert, Armin/P-6775-2014; OI Fraile Rodriguez, Arantxa/0000-0003-2722-0882; Pellin, Michael/0000-0002-8149-9768; Barke, Ingo/0000-0002-1717-570X; Kleibert, Armin/0000-0003-3630-9360; Meiwes-Broer, Karl-Heinz/0000-0002-8516-0470; Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy; BES-Chemical Sciences, Materials Sciences and BES-Scientific User Facilities [DE-AC-02-06CH11357]; (U.S.) Air Force Office of Scientific Research; Deutsche Forschungsgemeinschaft, Schwerpunktprogramm 1153 FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, BES-Chemical Sciences, Materials Sciences and BES-Scientific User Facilities under Contract No. DE-AC-02-06CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. S. V. gratefully acknowledges the support by the (U.S.) Air Force Office of Scientific Research. The work at the Universitat Rostock was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm 1153 "Cluster in Kontakt mit Oberflachen" (German Science Foundation, Priority Program "Clusters at Surfaces"). NR 52 TC 31 Z9 31 U1 1 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2009 VL 131 IS 12 AR 121104 DI 10.1063/1.3237158 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 501KJ UT WOS:000270380300004 PM 19791845 ER PT J AU Whitley, HD DuBois, JL Whaley, KB AF Whitley, Heather D. DuBois, Jonathan L. Whaley, K. Birgitta TI Spectral shifts and helium configurations in He-4(N)-tetracene clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DER-WAALS COMPLEXES; CENTER-DOT-HE; PATH-INTEGRAL METHODS; ELECTRONIC SPECTROSCOPY; AROMATIC MOLECULE; DROPLETS; TETRACENE; PHTHALOCYANINE; NANODROPLETS; PENTACENE AB Spectral shifts of electronic transitions of tetracene in helium droplets are investigated in a theoretical study of He-4(N)-tetracene clusters with 1 <= N <= 150. Utilizing a pairwise interaction for the S-0 state of tetracene with helium that is extended by semiempirical terms to construct a potential for the S-1 state of tetracene with helium, the spectral shift is calculated from path integral Monte Carlo calculations of the helium equilibrium properties with tetracene in the S-0 and S-1 states at T=0 and at T=0.625 K. The calculated spectral shifts are in quantitative agreement with available experimental measurements for small values of N (<= 8) at T similar to 0.4 K and show qualitative agreement for larger N (10-20). The extrapolated value of the spectral shift in large droplets (N similar to 10(4)) is similar to 90% of the experimentally measured value. We find no evidence of multiple configurations of helium for any cluster size for either the S-0 or S-1 state of tetracene. These results suggest that the observed spectral splitting of electronic transitions of tetracene in large helium droplets is not due to the coexistence of static metastable helium densities, unlike the situation previously analyzed for the phthalocyanine molecule. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236386] C1 [Whitley, Heather D.; DuBois, Jonathan L.; Whaley, K. Birgitta] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Whitley, Heather D.; DuBois, Jonathan L.; Whaley, K. Birgitta] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Whitley, Heather D.; DuBois, Jonathan L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Whitley, HD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM whitley3@llnl.gov OI Whitley, Heather/0000-0002-2344-8698 FU U. S. Department of Energy [DE-AC52-07NA27344] FX We are grateful to Professor J.P. Toennies for discussions which inspired us to pursue this project and to A. Slenzcka and R. Lehnig for discussion of their experimental data. H. D. Whitley acknowledges the support of the AFOSR through a NDSEG research fellowship. This work was performed, in part, under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 61 TC 17 Z9 17 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 28 PY 2009 VL 131 IS 12 AR 124514 DI 10.1063/1.3236386 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 501KJ UT WOS:000270380300060 PM 19791901 ER PT J AU Belonoshko, AB Derlet, PM Mikhaylushkin, AS Simak, SI Hellman, O Burakovsky, L Swift, DC Johansson, B AF Belonoshko, A. B. Derlet, P. M. Mikhaylushkin, A. S. Simak, S. I. Hellman, O. Burakovsky, L. Swift, D. C. Johansson, B. TI Quenching of bcc-Fe from high to room temperature at high-pressure conditions: a molecular dynamics simulation SO NEW JOURNAL OF PHYSICS LA English DT Article ID EARTHS INNER-CORE; CENTERED-CUBIC PHASE; X-RAY-DIFFRACTION; IN-SITU; IRON; ANISOTROPY AB The new high-temperature (T), high-pressure (P), body-centered cubic (bcc) phase of iron has probably already been synthesized in recent diamond anvil cell (DAC) experiments (Mikhaylushkin et al 2007 Phys. Rev. Lett. 99 165505). These DAC experiments on iron revealed that the high-PT phase on quenching transforms into a mixture of close-packed phases. Our molecular dynamics simulation and structural analysis allow us to provide a probable interpretation of the experiments. We show that quenching of the high-PT bcc phase simulated with the embedded-atom model also leads to the formation of the mixture of close-packed phases. Therefore, the assumption of the stability of the high-PT bcc iron phase is consistent with experimental observation. C1 [Belonoshko, A. B.; Johansson, B.] Royal Inst Technol, KTH Sch Engn Sci, Dept Theoret Phys, SE-10691 Stockholm, Sweden. [Derlet, P. M.] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. [Mikhaylushkin, A. S.; Simak, S. I.; Hellman, O.] Linkoping Univ, Dept Phys Chem & Biol IFM, Theory & Modeling Div, Linkoping, Sweden. [Burakovsky, L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Swift, D. C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Johansson, B.] Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden. RP Belonoshko, AB (reprint author), Royal Inst Technol, KTH Sch Engn Sci, Dept Theoret Phys, SE-10691 Stockholm, Sweden. EM anatoly@kth.se RI Simak, Sergei/C-3030-2014; OI Simak, Sergei/0000-0002-1320-389X; Belonoshko, Anatoly/0000-0001-7531-3210; Hellman, Olle/0000-0002-3453-2975 FU Swedish National Infrastructure for Computing (SNIC); Swedish Research Council (VR); Swedish Foundation for Strategic Research (SSF) FX Computations were performed using the facilities at the Swedish National Infrastructure for Computing (SNIC) and the LANL Coyote cluster. We also wish to thank the Swedish Research Council (VR) and the Swedish Foundation for Strategic Research (SSF) for financial support. NR 23 TC 15 Z9 15 U1 1 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 28 PY 2009 VL 11 AR 093039 DI 10.1088/1367-2630/11/9/093039 PG 8 WC Physics, Multidisciplinary SC Physics GA 500DJ UT WOS:000270277200005 ER PT J AU Foy, BR Theiler, J Fraser, AM AF Foy, Bernard R. Theiler, James Fraser, Andrew M. TI Decision Boundaries in Two Dimensions for Target Detection in Hyperspectral Imagery SO OPTICS EXPRESS LA English DT Article ID ABSORPTION PATTERN DETECTION; MATCHED-FILTER DETECTION; IMAGING DATA; PLUMES AB We present an approach to the problems of weak plume detection and sub-pixel target detection in hyperspectral imagery that operates in a two-dimensional space. In this space, one axis is a matched-filter projection of the data and the other axis is the magnitude of the residual after matched-filter subtraction. Although it is only two-dimensional, this space is rich enough to include several well-known signal detection algorithms, including the adaptive matched filter, the adaptive coherence estimator, and the finite-target matched filter. Because this space is only two-dimensional, adaptive machine learning methods can produce new plume detectors without being stymied by the curse of dimensionality. We investigate, in particular, the utility of the support vector machine for learning boundaries in this matched-filter-residual space, and compare the performance of the resulting nonlinearly adaptive detector to well-known alternatives. (C) 2009 Optical Society of America C1 [Foy, Bernard R.; Theiler, James; Fraser, Andrew M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Foy, BR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM bfoy@lanl.gov; jt@lanl.gov; afraser@lanl.gov FU Laboratory Directed Research and Development; Los Alamos National Laboratory; Department of Energy Office of Nonproliferation Research and Engineering FX This work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory. Additional support came from the Department of Energy Office of Nonproliferation Research and Engineering. We thank Brian McVey for LWIR simulation software, and Brad Henderson for useful discussions. NR 38 TC 13 Z9 13 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 28 PY 2009 VL 17 IS 20 BP 17391 EP 17411 DI 10.1364/OE.17.017391 PG 21 WC Optics SC Optics GA 500JP UT WOS:000270295300019 PM 19907525 ER PT J AU Jeffries, GDM Milne, G Zhao, YQ Lopez-Mariscal, C Chiu, DT AF Jeffries, Gavin D. M. Milne, Graham Zhao, Yiqiong Lopez-Mariscal, Carlos Chiu, Daniel T. TI Optofluidic generation of Laguerre-Gaussian beams SO OPTICS EXPRESS LA English DT Article ID ORBITAL ANGULAR-MOMENTUM; DISPOSABLE MICROFLUIDIC DEVICES; OPTICAL VORTICES; VORTEX STRUCTURE; LASER MODES; DRIVEN; LIGHT; FABRICATION; PARTICLES; TWEEZERS AB Laguerre-Gaussian (LG) beams have been extensively studied due to their unique structure, characterized by a phase singularity at the center of the beam. Common methods for generating such beams include the use of diffractive optical elements and spatial light modulators, which although offering excellent versatility, suffers from several drawbacks, including in many cases a low power damage threshold as well as complexity and expense. This paper presents a simple, low cost method for the generation of high-fidelity LG beams using rapid prototyping techniques. Our approach is based on a fluidic-hologram concept, whereby the properties of the LG beam can be finely controlled by varying the refractive-index of the fluid that flows through the hologram. This simple approach, while optimized here for LG beam generation, is also expected to find applications in the production of tunable fluidic optical trains. (C) 2009 Optical Society of America C1 [Jeffries, Gavin D. M.; Milne, Graham; Chiu, Daniel T.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Zhao, Yiqiong] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lopez-Mariscal, Carlos] Natl Inst Stand & Technol, Atom Phys Div, Gaithersburg, MD 20899 USA. RP Jeffries, GDM (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM chiu@chem.washington.edu RI Jeffries, Gavin/F-5135-2011 OI Jeffries, Gavin/0000-0001-5533-169X FU NIH [GM085485] FX We gratefully acknowledge NIH GM085485 for support of this work. NR 35 TC 4 Z9 4 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 28 PY 2009 VL 17 IS 20 BP 17555 EP 17562 DI 10.1364/OE.17.017555 PG 8 WC Optics SC Optics GA 500JP UT WOS:000270295300033 PM 19907539 ER PT J AU Cho, DJ Wu, W Ponizovskaya, E Chaturvedi, P Bratkovsky, AM Wang, SY Zhang, X Wang, F Shen, YR AF Cho, David J. Wu, Wei Ponizovskaya, Ekaterina Chaturvedi, Pratik Bratkovsky, Alexander M. Wang, Shih-Yuan Zhang, Xiang Wang, Feng Shen, Y. Ron TI Ultrafast modulation of optical metamaterials SO OPTICS EXPRESS LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; RECOMBINATION AB We show by pump-probe spectroscopy that the optical response of a fishnet metamaterial can be modulated on the femtosecond time scale. The modulation dynamics is dominated by pump-induced changes in the constituting dielectric medium, but the strength of modulation is dramatically enhanced through the plasmon resonance. The pump-induced spectral responses of the metamaterial provide understanding on how the resonance is modified by pump excitation. Our study suggests that metamaterials can be used as high-speed amplitude/phase modulators with terahertz-bandwidth. (C) 2009 Optical Society of America C1 [Cho, David J.; Wang, Feng; Shen, Y. Ron] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wu, Wei; Ponizovskaya, Ekaterina; Chaturvedi, Pratik; Bratkovsky, Alexander M.; Wang, Shih-Yuan] Hewlett Packard Labs, Informat & Quantum Syst Lab, Palo Alto, CA 94304 USA. [Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang; Wang, Feng; Shen, Y. Ron] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cho, DJ (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM yrshen@berkeley.edu RI Chaturvedi, Pratik/A-8922-2010; Wu, Wei/D-1908-2011; Zhang, Xiang/F-6905-2011; wang, Feng/I-5727-2015; OI Wang, Shih-Yuan/0000-0002-1212-3484 FU DARPA; NSF Nanoscale Science and Engineering Center (NSEC) [DMI-0327077] FX This work was supported by DARPA and NSF Nanoscale Science and Engineering Center (NSEC) under Grant No. DMI-0327077. NR 18 TC 35 Z9 37 U1 2 U2 29 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 28 PY 2009 VL 17 IS 20 BP 17652 EP 17657 DI 10.1364/OE.17.017652 PG 6 WC Optics SC Optics GA 500JP UT WOS:000270295300044 PM 19907550 ER PT J AU Chao, W Kim, J Rekawa, S Fischer, P Anderson, EH AF Chao, Weilun Kim, Jihoon Rekawa, Senajith Fischer, Peter Anderson, Erik H. TI Demonstration of 12 nm Resolution Fresnel Zone Plate Lens based Soft X-ray Microscopy SO OPTICS EXPRESS LA English DT Article ID HOLOGRAPHY AB To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond. (C) 2009 Optical Society of America C1 [Chao, Weilun; Rekawa, Senajith; Fischer, Peter; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Kim, Jihoon] Univ Calif Berkeley, NSF ERC Extreme Ultraviolet Sci & Technol, Berkeley, CA 94720 USA. RP Chao, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wlchao@lbl.gov RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012 OI Fischer, Peter/0000-0002-9824-9343; FU Director, Office of Science, Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC02-05CH11231]; Engineering Research Centers Program of the National Science Foundation [EEC-0310717] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Engineering Research Centers Program of the National Science Foundation under NSF Award Number EEC-0310717. We extend our gratitude to Farhad Salmassi for fabricating the multilayer coatings, to Patrick Naulleau for image analysis, and to the engineering team for providing the technical support. NR 30 TC 138 Z9 143 U1 3 U2 33 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 28 PY 2009 VL 17 IS 20 BP 17669 EP 17677 DI 10.1364/OE.17.017669 PG 9 WC Optics SC Optics GA 500JP UT WOS:000270295300046 PM 19907552 ER PT J AU Rakich, PT Popovic, MA Wang, Z AF Rakich, Peter T. Popovic, Milos A. Wang, Zheng TI General Treatment of Optical Forces and Potentials in Mechanically Variable Photonic Systems SO OPTICS EXPRESS LA English DT Article ID RADIATION-PRESSURE; CAVITY; MIRROR; PARTICLES; RESONANCE; FIELD AB We present an analytical formalism for the treatment of the forces and potentials induced by light in mechanically variable photonic systems (or optomechanically variable systems) consisting of linear media. Through energy and photon-number conservation, we show that knowledge of the phase and the amplitude response of an optomechanically variable system, and its dependence on the mechanical coordinate of interest, is sufficient to compute the forces produced by light. This formalism not only offers a simple analytical alternative to computationally intensive Maxwell stress-tensor methods, but also greatly simplifies the analysis of mechanically variable photonic systems driven by multiple external laser sources. Furthermore, we show, through this formalism, that a scalar optical potential can be derived in terms of the phase and amplitude response of an arbitrary optomechanically variable one-port system and in generalized optomechanically variable multi-port systems, provided that their optical response is variable through a single mechanical degree of freedom. With these simplifications, well-established theories of optical filter synthesis could be extended to allow for the synthesis of complex optical force and potential profiles, independent of the construction of the underlying device or its field distribution. (C) 2009 Optical Society of America C1 [Rakich, Peter T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Popovic, Milos A.; Wang, Zheng] MIT, Cambridge, MA 02139 USA. RP Rakich, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rakich@alum.mit.edu RI Wang, Zheng/B-9804-2009; OI POPOVIC, MILOS/0000-0002-8048-0678 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Director of Defense Research and Engineering under Air Force [FA8721-05-C-0002] FX We acknowledge the generous support and encouragement of M. Soljacic, E. P. Ippen, Y. Fink and J. D. Joannopoulos. We thank P. Davids for helpful technical discussions regarding Poynting's theorem and feedback through the writing of this manuscript. In addition, we thank C. E. Rakich for help in preparing this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported in part by the office of the Director of Defense Research and Engineering under Air Force contract FA8721-05-C-0002. NR 36 TC 46 Z9 46 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 28 PY 2009 VL 17 IS 20 BP 18116 EP 18135 DI 10.1364/OE.17.018116 PG 20 WC Optics SC Optics GA 500JP UT WOS:000270295300096 PM 19907602 ER PT J AU Nelson, AJ Toleikis, S Chapman, H Bajt, S Krzywinski, J Chalupsky, J Juha, L Cihelka, J Hajkova, V Vysin, L Burian, T Kozlova, M Faustlin, RR Nagler, B Vinko, SM Whitcher, T Dzelzainis, T Renner, O Saksl, K Khorsand, AR Heimann, PA Sobierajski, R Klinger, D Jurek, M Pelka, J Iwan, B Andreasson, J Timneanu, N Fajardo, M Wark, JS Riley, D Tschentscher, T Hajdu, J Lee, RW AF Nelson, A. J. Toleikis, S. Chapman, H. Bajt, S. Krzywinski, J. Chalupsky, J. Juha, L. Cihelka, J. Hajkova, V. Vysin, L. Burian, T. Kozlova, M. Faeustlin, R. R. Nagler, B. Vinko, S. M. Whitcher, T. Dzelzainis, T. Renner, O. Saksl, K. Khorsand, A. R. Heimann, P. A. Sobierajski, R. Klinger, D. Jurek, M. Pelka, J. Iwan, B. Andreasson, J. Timneanu, N. Fajardo, M. Wark, J. S. Riley, D. Tschentscher, T. Hajdu, J. Lee, R. W. TI Soft x-ray free electron laser microfocus for exploring matter under extreme conditions SO OPTICS EXPRESS LA English DT Article ID MOLECULAR-SOLIDS; ABLATION; IRRADIATION; ULTRAVIOLET; PULSES; BEAM AB We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 mu J, 5Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) -PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of <= 1 mu m. Observations were correlated with simulations of best focus to provide further relevant information. (C) 2009 Optical Society of America C1 [Nelson, A. J.; Lee, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Toleikis, S.; Chapman, H.] Univ Hamburg, CFEL, D-22607 Hamburg, Germany. [Bajt, S.; Faeustlin, R. R.; Tschentscher, T.] DESY, D-22607 Hamburg, Germany. [Krzywinski, J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Chalupsky, J.; Juha, L.; Cihelka, J.; Hajkova, V.; Vysin, L.; Burian, T.; Kozlova, M.; Renner, O.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Chalupsky, J.; Vysin, L.; Burian, T.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Cihelka, J.] Acad Sci Czech Republic, J Heyrovsky Inst Phys Chem, CR-18223 Prague 8, Czech Republic. [Nagler, B.; Vinko, S. M.; Whitcher, T.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Dzelzainis, T.; Riley, D.] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. [Saksl, K.] Slovak Acad Sci, Inst Mat Res, Kosice 04001, Slovakia. [Khorsand, A. R.] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Heimann, P. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sobierajski, R.; Klinger, D.; Jurek, M.; Pelka, J.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Iwan, B.; Andreasson, J.; Timneanu, N.; Hajdu, J.] Uppsala Univ, SE-75124 Uppsala, Sweden. [Fajardo, M.] Inst Super Tecn, Ctr Fsica Plasmas, Lisbon, Portugal. RP Nelson, AJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM nelson63@llnl.gov RI Vinko, Sam/I-4845-2013; Chapman, Henry/G-2153-2010; Renner, Oldrich/C-1591-2010; Bajt, Sasa/G-2228-2010; Timneanu, Nicusor/C-7691-2012; Vysin, Ludek/G-6885-2014; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; Burian, Tomas/H-3236-2014; Fajardo, Marta/A-4608-2012; Klinger, Dorota/K-8819-2016; Pelka, Jerzy/S-8587-2016; Sobierajski, Ryszard/E-7619-2012 OI Vinko, Sam/0000-0003-1016-0975; Chapman, Henry/0000-0002-4655-1743; Renner, Oldrich/0000-0003-4942-2637; Timneanu, Nicusor/0000-0001-7328-0400; Burian, Tomas/0000-0003-3982-9978; Fajardo, Marta/0000-0003-2133-2365; Pelka, Jerzy/0000-0002-1863-8219; NR 16 TC 28 Z9 28 U1 2 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 28 PY 2009 VL 17 IS 20 BP 18271 EP 18278 DI 10.1364/OE.17.018271 PG 8 WC Optics SC Optics GA 500JP UT WOS:000270295300112 PM 19907618 ER PT J AU Getty, AD Tai, CC Linehan, JC Jessop, PG Olmstead, MM Rheingold, AL AF Getty, April D. Tai, Chih-Cheng Linehan, John C. Jessop, Philip G. Olmstead, Marilyn M. Rheingold, Arnold L. TI Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: A Mechanistic Investigation Using High-Pressure NMR Spectroscopy SO ORGANOMETALLICS LA English DT Article ID TRANSITION-METAL COMPLEXES; RAY CRYSTAL-STRUCTURES; FORMIC-ACID; HOMOGENEOUS HYDROGENATION; DIHYDROGEN COMPLEXES; DIHYDRIDE COMPLEXES; HYDRIDE COMPLEXES; ALCOHOLS; RHODIUM; WATER AB Complex cis(PMe(3))(4)RuCl(OAc) (1) acts as a catalyst for CO(2) hydrogenation into formic acid in the presence of a base and an alcohol cocatalyst. NMR spectroscopy has revealed that I exists in solution in equilibrium with fac-(PMe(3))(3)RuCl(eta(2)-OAc) (2), [(PMe(3))(4)Ru(eta(2)-OAc)]Cl (3a), and free PMe(3). Complex 2 was found to be a poor CO(2) hydrogenation catalyst under the conditions of catalysis used for 1. Complex 3a can be prepared by adding certain alcohols, such as MeOH, EtOH, or C(6)H(5)OH, to a solution of 1 in CDCl(3). The chloride ion of 3a was exchanged for the noncoordinating anion BPh(4)(-) or B(Ar(F))(4)(-) (B(Ar(F))(4) = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to produce [(PMe(3))(4)Ru(eta(2)-OAc)]BPh(4) (3b) and [(PMe(3))(4)-Ru(eta(2)-OAc)]B(Ar(F))(4) (3c). Complexes 3b and 3c were found to be as efficient as 1 in the catalytic hydrogenation of CO(2) to formic acid in the presence of an alcohol cocatalyst. In contrast to 1, 3b and 3c continued to show high catalytic activity in the absence of the alcohol cocatalyst. High-pressure NMR spectroscopy was used to investigate the mechanism of CO(2) hydrogenation via 3b,c in the presence of base. The observations were inconsistent with the previously reported phosphine-loss mechanism; a new mechanism is proposed involving an unsaturated, cationic ruthenium complex of the form [(PMe(3))(4)RuH](+) (B) as the active catalyst. The role of the base in this system includes not only trapping of the formic acid product but also initiation of the catalysis by aiding the conversion of 3b,c to B. Crystallographically determined structures are reported for complexes 2, 3b, {[(PMe(3))(3)RU](2)(mu-Cl)(2)(mu-OAc)}BPh(4), and {[(PMe(3))(3)RU](2)(mu-Cl)(3)}(Cl, C1 [Getty, April D.; Linehan, John C.] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Tai, Chih-Cheng; Olmstead, Marilyn M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Jessop, Philip G.] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada. [Rheingold, Arnold L.] Univ Delaware, Newark, DE 19716 USA. [Jessop, Philip G.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Linehan, JC (reprint author), Pacific NW Natl Lab, Div Chem Sci, POB 999,MS K2-57, Richland, WA 99352 USA. EM john.linehan@pnl.gov; jessop@chem.queensu.ca FU Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC06-76RLO 1830.]; Pacific Northwest National Laboratory for the Department of Energy; Office of Science, Off-ice of Basic Energy Sciences; Chemical Sciences Division of the U.S. Department of Energy [DE-FG03-99ER14986] FX Acknowledgment is made by A.D.G and J.C.L. for support from the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract DE-AC06-76RLO 1830. Battelle operates the Pacific Northwest National Laboratory for the Department of Energy. P. G.J. and C.-C.T. gratefully acknowledge support from the Office of Science, Off-ice of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under grant number DE-FG03-99ER14986. NR 59 TC 33 Z9 33 U1 3 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD SEP 28 PY 2009 VL 28 IS 18 BP 5466 EP 5477 DI 10.1021/om900128s PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 495LH UT WOS:000269892300018 ER PT J AU Pennycook, SJ Chisholm, MF Lupini, AR Varela, M Borisevich, AY Oxley, MP Luo, WD van Benthem, K Oh, SH Sales, DL Molina, SI Garcia-Barriocanal, J Leon, C Santamaria, J Rashkeev, SN Pantelides, ST AF Pennycook, S. J. Chisholm, M. F. Lupini, A. R. Varela, M. Borisevich, A. Y. Oxley, M. P. Luo, W. D. van Benthem, K. Oh, S. -H. Sales, D. L. Molina, S. I. Garcia-Barriocanal, J. Leon, C. Santamaria, J. Rashkeev, S. N. Pantelides, S. T. TI Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Review DE scanning transmission electron microscopy; Z-contrast; electron energy loss spectroscopy ID BLOCH WAVE ANALYSIS; SCATTERED ELECTRONS; LOSS SPECTROSCOPY; INELASTIC-SCATTERING; CATALYTIC-ACTIVITY; DISLOCATION CORE; QUANTUM WIRES; GOLD CLUSTERS; RESOLUTION; CRYSTALS AB The new possibilities of aberration-corrected scanning transmission electron microscopy (STEM) extend far beyond the factor of 2 or more in lateral resolution that was the original motivation. The smaller probe also gives enhanced single atom sensitivity, both for imaging and for spectroscopy, enabling light elements to be detected in a Z-contrast image and giving much improved phase contrast imaging using the bright field detector with pixel-by-pixel correlation with the Z-contrast image. Furthermore, the increased probe-forming aperture brings significant depth sensitivity and the possibility of optical sectioning to extract information in three dimensions. This paper reviews these recent advances with reference to several applications of relevance to energy, the origin of the low-temperature catalytic activity of nanophase Au, the nucleation and growth of semiconducting nanowires, and the origin of the eight orders of magnitude increased ionic conductivity in oxide superlattices. Possible future directions of aberration-corrected STEM for solving energy problems are outlined. C1 [Pennycook, S. J.; Chisholm, M. F.; Lupini, A. R.; Varela, M.; Borisevich, A. Y.; Oxley, M. P.; Luo, W. D.; Pantelides, S. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Pennycook, S. J.; Oxley, M. P.; Luo, W. D.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [van Benthem, K.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Oh, S. -H.] Korea Basic Sci Inst, Taejon, South Korea. [Sales, D. L.; Molina, S. I.] Univ Cadiz, Dept Ciencias Mat & IM & QI, Cadiz, Spain. [Garcia-Barriocanal, J.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, GFMC, E-28040 Madrid, Spain. [Rashkeev, S. N.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Pennycook, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pennycooksj@ornl.gov RI Leon, Carlos/A-5587-2008; Molina, Sergio/A-8241-2008; Varela, Maria/H-2648-2012; Borisevich, Albina/B-1624-2009; Varela, Maria/E-2472-2014; Sales, David/K-9453-2014; Santamaria, Jacobo/N-8783-2016; Luo, Weidong/A-8418-2009 OI Leon, Carlos/0000-0002-3262-1843; Molina, Sergio/0000-0002-5221-2852; Borisevich, Albina/0000-0002-3953-8460; Varela, Maria/0000-0002-6582-7004; Sales, David/0000-0001-6652-514X; Santamaria, Jacobo/0000-0003-4594-2686; Luo, Weidong/0000-0003-3829-1547 NR 74 TC 37 Z9 38 U1 5 U2 56 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD SEP 28 PY 2009 VL 367 IS 1903 BP 3709 EP 3733 DI 10.1098/rsta.2009.0112 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 491HM UT WOS:000269569400006 PM 19687062 ER PT J AU Dahmen, U Erni, R Radmilovic, V Kisielowski, C Rossell, MD Denes, P AF Dahmen, Ulrich Erni, Rolf Radmilovic, Velimir Kisielowski, Christian Rossell, Marta-Dacil Denes, Peter TI Background, status and future of the Transmission Electron Aberration-corrected Microscope project SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE aberration correction; depth sectioning; monochromator; single-atom detection; light atom imaging; electron microscopy ID HIGH-RESOLUTION; GOLD; GRAPHENE; ATOMS; PARTICLES AB The strong interaction of electrons with small volumes of matter make them an ideal probe for nanomaterials, but our ability to fully use this signal in electron microscopes remains limited by lens aberrations. To bring this unique advantage to bear on materials research requires a sample space for electron scattering experiments in a tunable electron-optical environment. This is the vision for the Transmission Electron Aberration-corrected Microscope (TEAM) project, which was initiated as a collaborative effort to re-design the electron microscope around aberration-correcting optics. The resulting improvements in spatial, spectral and temporal resolution, the increased space around the sample and the possibility of exotic electron-optical settings will enable new types of experiments. This contribution will give an overview of the TEAM project and its current status, illustrate the performance of the TEAM 0.5 instrument, with highlights from early applications of the machine, and outline future scientific opportunities for aberration-corrected microscopy. C1 [Dahmen, Ulrich; Erni, Rolf; Radmilovic, Velimir; Kisielowski, Christian; Rossell, Marta-Dacil] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Denes, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Dahmen, U (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM udahmen@lbl.gov RI Erni, Rolf/P-7435-2014; Rossell, Marta/E-9785-2017 OI Erni, Rolf/0000-0003-2391-5943; FU DOE Office of Science, Office of Basic Energy Science FX The TEAM project is supported by the DOE Office of Science, Office of Basic Energy Science. NR 31 TC 44 Z9 45 U1 1 U2 21 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD SEP 28 PY 2009 VL 367 IS 1903 BP 3795 EP 3808 DI 10.1098/rsta.2009.0094 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 491HM UT WOS:000269569400010 PM 19687066 ER PT J AU Davoudiasl, H Ponton, E AF Davoudiasl, Hooman Ponton, Eduardo TI B-decay signatures of warped top-condensation SO PHYSICS LETTERS B LA English DT Article ID BULK FIELDS; GEOMETRY; MODULUS; B->SGG; HIGGS AB We point out that the light radion phi in a recently proposed Warped Top-Condensation Model (WTCM), can provide distinct signatures in b --> s phi, where the on-shell phi can decay with displaced vertices. We find that some of the parameter space of these models is constrained by B-meson and astrophysical data. Future B-decay measurements can lead to the discovery of the WTCM. (C) 2009 Elsevier B.V. All rights reserved. C1 [Davoudiasl, Hooman] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Ponton, Eduardo] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov; eponton@phys.columbia.edu RI Ponton, Eduardo/I-4125-2013 OI Ponton, Eduardo/0000-0003-3138-1136 FU United States Department of Energy [DE-AC02-98CH10886]; DOE [DE-FG02-92ER-40699] FX We thank S. Dawson and A. Soni for discussions. The work of H.D. is supported by the United States Department of Energy under Grant Contract DE-AC02-98CH10886. E.P. is supported by DOE under contract DE-FG02-92ER-40699. NR 23 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 28 PY 2009 VL 680 IS 3 BP 247 EP 250 DI 10.1016/j.physletb.2009.09.002 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 504LL UT WOS:000270618200009 ER PT J AU Butko, VY Logvenov, G Bozovic, N Radovic, Z Bozovic, I AF Butko, Vladimir Y. Logvenov, Gennady Bozovic, Natasha Radovic, Zoran Bozovic, Ivan TI Madelung Strain in Cuprate Superconductors - A Route to Enhancement of the Critical Temperature SO ADVANCED MATERIALS LA English DT Article ID OXIDE SUPERCONDUCTORS; SINGLE-CRYSTALS; APICAL OXYGEN; THIN-FILMS; PRESSURE; LA2-XSRXCUO4; INTERFACE; LA2CUO4; PHASE AB "Madelung Strain" in cuprate films containing metal (M = La1.56Sr0.44CuO4) and insulator (I = La2CuO4) layers: X-ray diffraction shows that, unexpectedly, the volume of unit cell of the top layer adjusts to that of the bottom layer. The effect is due to long-range Coulomb forces; it affects interfacial superconductivity because the critical temperature scales with the unit-cell height. C1 [Butko, Vladimir Y.; Logvenov, Gennady; Bozovic, Ivan] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Butko, Vladimir Y.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Bozovic, Natasha] San Jose State Univ, Dept Math, San Jose, CA 95192 USA. [Radovic, Zoran] Univ Belgrade, Dept Phys, Belgrade 11000, Serbia. RP Bozovic, I (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM bozovic@bnl.gov FU US DOE [MA-509-MACA] FX We benefited from useful comments and suggestions by A. Gozar, D. Savage, A. Millis, N. Ashcroft, M. L. Cohen, T H. Geballe, O. Pelleg, C. Di Castro, W. Hardy, D. Khomskii, M. Naito, V. Kresin, M. Lagally, A. Alexandrov, F. Kusmartsev, P. Abbamonte, and A. Balatsky. The work at BNL was supported by US DOE contract MA-509-MACA. Supporting Information is available online from Wiley InterScience or from the author. NR 30 TC 28 Z9 28 U1 5 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 25 PY 2009 VL 21 IS 36 BP 3644 EP + DI 10.1002/adma.200803850 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 502FT UT WOS:000270441700003 ER PT J AU Sancho, JC Kerbyson, DJ AF Sancho, Jose Carlos Kerbyson, Darren J. TI Optimizing multiple conjugate gradient solvers for large-scale systems SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE overlapping communications; conjugate gradient solvers; lattice quantum chromodynamics ID PARALLEL COMPUTERS AB Conjugate gradient (CG) solvers are the most time consuming part of many scientific applications. These solvers exhibit communication operations that can prevent high performance from being achieved on large-scale systems. In this paper we present a novel technique to boost the performance of these solvers. In this, multiple independent solvers, which occur in some applications, are combined allowing for the overlapping of communication with other communication and computation, resulting with increased performance. This is the first work where a combination of CG solvers has been exploited and offers performance improvements, which may be particularly important in very large-scale systems. Results are presented for the MIMD lattice computation (MILC) application that show the cost of collective communications can be reduced by a factor of up to 2.5x. Moreover the performance of MILC is significantly improved, by over 10% for typical lattice sizes on a 1024-processor system, and by 15% on a 4096-processor system. Larger improvements are expected on larger systems. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Sancho, Jose Carlos; Kerbyson, Darren J.] Los Alamos Natl Lab, Performance & Architecture Lab, Los Alamos, NM 87545 USA. RP Sancho, JC (reprint author), POB 1663,CCS 1,Mail Stop B287, Los Alamos, NM 87545 USA. EM jcsancho@lanl.gov RI Sancho , Jose Carlos/B-3125-2016 OI Sancho , Jose Carlos/0000-0002-6917-9155 FU Advanced Simulation and Computing program; Office of Science of the DOE [DE-AC52-06NA25396] FX This work was funded in part by the Advanced Simulation and Computing program and the Office of Science of the DOE. Los Alamos is operated by the Los Alamos National Security, LLC for the U.S. DOE under contract No. DE-AC52-06NA25396. NR 16 TC 0 Z9 0 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD SEP 25 PY 2009 VL 21 IS 14 BP 1804 EP 1818 DI 10.1002/cpe.1440 PG 15 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 502OX UT WOS:000270470900005 ER PT J AU Lavraud, B Borovsky, JE Genot, V Schwartz, SJ Birn, J Fazakerley, AN Dunlop, MW Taylor, MGGT Hasegawa, H Rouillard, AP Berchem, J Bogdanova, Y Constantinescu, D Dandouras, I Eastwood, JP Escoubet, CP Frey, H Jacquey, C Panov, E Pu, ZY Shen, C Shi, J Sibeck, DG Volwerk, M Wild, JA AF Lavraud, B. Borovsky, J. E. Genot, V. Schwartz, S. J. Birn, J. Fazakerley, A. N. Dunlop, M. W. Taylor, M. G. G. T. Hasegawa, H. Rouillard, A. P. Berchem, J. Bogdanova, Y. Constantinescu, D. Dandouras, I. Eastwood, J. P. Escoubet, C. P. Frey, H. Jacquey, C. Panov, E. Pu, Z. Y. Shen, C. Shi, J. Sibeck, D. G. Volwerk, M. Wild, J. A. TI Tracing solar wind plasma entry into the magnetosphere using ion-to-electron temperature ratio SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; KELVIN-HELMHOLTZ VORTICES; LATITUDE BOUNDARY-LAYER; KINETIC ALFVEN WAVES; DAYSIDE MAGNETOPAUSE; GEOTAIL OBSERVATIONS; EARTHS MAGNETOSPHERE; SHEET; TRANSPORT; REGION AB When the solar wind Mach number is low, typically such as in magnetic clouds, the physics of the bow shock leads to a downstream ion-to-electron temperature ratio that can be notably lower than usual. We utilize this property to trace solar wind plasma entry into the magnetosphere by use of Cluster measurements in the vicinity of the dusk magnetopause during the passage of a magnetic cloud at Earth on November 25, 2001. The ion-to-electron temperature ratio was indeed low in the magnetosheath (T(i)/T(e) similar to 3). In total, three magnetopause boundary layer intervals are encountered on that day. They all show that the low ion-to-electron temperature ratio can be preserved as the plasma enters the magnetosphere, and both with and without the observation of Kelvin-Helmholtz activity. This suggests that the ion-to-electron temperature ratio in the magnetopause boundary layer, which is usually high, is not prescribed by the heating characteristics of the plasma entry mechanism that formed these boundary layers. In the future, this property may be used to (1) further trace plasma entry into inner regions and (2) determine the preferred entry mechanisms if other theoretical, observational and simulation works can give indications on which mechanisms may alter this ratio. Citation: Lavraud, B., et al. (2009), Tracing solar wind plasma entry into the magnetosphere using ion-to-electron temperature ratio, Geophys. Res. Lett., 36, L18109, doi: 10.1029/2009GL039442. C1 [Lavraud, B.; Genot, V.; Dandouras, I.; Jacquey, C.] Univ Toulouse, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Berchem, J.] Univ Calif Los Angeles, IGPP, Los Angeles, CA 90095 USA. [Borovsky, J. E.; Birn, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bogdanova, Y.] La Trobe Univ, Dept Phys, Melbourne, Vic 3086, Australia. [Constantinescu, D.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Dunlop, M. W.; Rouillard, A. P.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Eastwood, J. P.; Frey, H.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Taylor, M. G. G. T.; Escoubet, C. P.] ESA, Estec, NL-2200 AG Noordwijk, Netherlands. [Fazakerley, A. N.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Hasegawa, H.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Panov, E.; Volwerk, M.] Space Res Inst, A-8042 Graz, Austria. [Pu, Z. Y.] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Schwartz, S. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Shen, C.; Shi, J.] Chinese Acad Sci, Ctr Space Sci & Appl Res, Beijing 100080, Peoples R China. [Sibeck, D. G.] NASA, GSFC, Greenbelt, MD 20771 USA. [Wild, J. A.] Univ Lancaster, Dept Commun Syst, Lancaster LA1 4WA, England. [Lavraud, B.; Genot, V.; Dandouras, I.; Jacquey, C.] CNRS, UMR 5187, Toulouse, France. RP Lavraud, B (reprint author), Univ Toulouse, Ctr Etud Spatiale Rayonnements, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. EM benoit.lavraud@cesr.fr RI Hasegawa, Hiroshi/A-1192-2007; Constantinescu, Ovidiu Dragos/C-4350-2012; Sibeck, David/D-4424-2012; dunlop, malcolm/F-1347-2010; Constantinescu, Dragos/A-6007-2013; OI Hasegawa, Hiroshi/0000-0002-1172-021X; Dandouras, Iannis/0000-0002-7121-1118; Frey, Harald/0000-0001-8955-3282; Wild, James/0000-0001-8025-8869 FU ISSI (Bern, Switzerland) FX The authors acknowledge the support of ISSI (Bern, Switzerland) for the organization of a combined Cluster-THEMIS study team. We are grateful for the use the AMDA/CDPP tool which allowed conditional searches of low Mach number intervals. We thank the OMNI data team for providing the solar wind data, as well as the ACE teams. NR 34 TC 15 Z9 15 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 25 PY 2009 VL 36 AR L18109 DI 10.1029/2009GL039442 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 499OZ UT WOS:000270235200001 ER PT J AU Scase, MM Aspden, AJ Caulfield, CP AF Scase, M. M. Aspden, A. J. Caulfield, C. P. TI The effect of sudden source buoyancy flux increases on turbulent plumes SO JOURNAL OF FLUID MECHANICS LA English DT Article ID DECREASING SOURCE STRENGTHS; LARGE-EDDY SIMULATION; NEUTRAL SURROUNDINGS; IMPLICIT LES; JETS; VORTEX; ENTRAINMENT; CONVECTION; BEHAVIOR; MOTION AB Building upon the recent experimentally verified modelling of turbulent plumes which are Subject to decreases in their source strength (Scase et al., J. Fluid Mech., vol. 563, 2006b, p. 443), we consider the complementary case where the plume's source strength is increased. We consider the effect or increasing the source strength of an established plume and we also compare time-dependent plume model predictions for the behaviour of a starting plume to those of Turner (J. Fluid Mech., vol. 13, 1962, p. 356). Unlike the decreasing source strength problems considered previously, the relevant solution to the time-dependent plume equations is not a simple similarity solution. However, scaling laws are demonstrated which are shown to be applicable across a large number of orders of magnitude of source strength increase. It is shown that an established plume that is subjected to an increase in its source strength supports a self-similar 'pulse' structure propagating upwards. For a point source plume, in pure plume balance, subjected to an increase in the Source buoyancy flux F-0, the rise height of this pulse in terms of time t scales as t(3/4) while the vertical extent of the pulse scales as t(1/4). The volume of the pulse is shown to scale as t(9/4). For plumes in pure plume balance that emanate from a distributed source it is shown that the same scaling laws apply far from the Source, demonstrating an analogous convergence to pure plume balance as that which Is well known in steady plumes. These scaling law predictions are compared to implicit large eddy simulations of the buoyancy increase problem and are shown to be in good agreement. We also compare the predictions of the time-dependent model to a starting plume in the limit where the source buoyancy flux is discontinuously increased from zero. The conventional model for a starting Plume is well approximated by a rising turbulent, entraining, buoyant vortex ring which is fed from below by a 'steady' plume. However, the time-dependent plume equations have been defined for top-hat profiles assuming only horizontal entrainment. Therefore, this system cannot model either the internal dynamics of the starting plume's head or the extra entrainment of ambient fluid into the head due to the turbulent boundary of the vortex ring-like cap. We show that the lack of entrainment of ambient fluid through the head of the starting plume means that the time-dependent Plume equations overestimate the rise height of a starting plume with time. However, by modifying the entrainment coefficient appropriately, we see that realistic predictions consistent with experiment can be attained. C1 [Scase, M. M.] Univ Nottingham, Fac Engn, Div Proc & Environm Engn, Nottingham NG7 2RD, England. [Aspden, A. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Caulfield, C. P.] Univ Cambridge, BP Inst, Cambridge CB3 0EZ, England. [Caulfield, C. P.] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England. RP Scase, MM (reprint author), Univ Nottingham, Fac Engn, Div Proc & Environm Engn, Nottingham NG7 2RD, England. EM matthew.scase@nottingham.ac.uk RI Caulfield, Colm-cille/F-7691-2011; Aspden, Andy/A-7391-2017; OI Aspden, Andy/0000-0002-2970-4824; Caulfield, Colm-cille/0000-0002-3170-9480 NR 36 TC 12 Z9 12 U1 1 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD SEP 25 PY 2009 VL 635 BP 137 EP 169 DI 10.1017/S002211200900740X PG 33 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 500QK UT WOS:000270318400006 ER PT J AU Lyubimova, TP Lyubimov, DV Morozov, VA Scuridin, RV Ben Hadid, H Henry, D AF Lyubimova, T. P. Lyubimov, D. V. Morozov, V. A. Scuridin, R. V. Ben Hadid, H. Henry, D. TI Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 1. Effect of aspect ratio and Prandtl number SO JOURNAL OF FLUID MECHANICS LA English DT Article ID OSCILLATORY CONVECTION; NATURAL-CONVECTION; HADLEY CIRCULATIONS; SHALLOW CAVITY; MOLTEN GALLIUM; LIQUID-METALS; INSTABILITIES; MOTIONS; ONSET; WALLS AB The paper deals with the numerical investigation of the steady convective flow in a horizontal channel of rectangular cross-section subjected to a uniform longitudinal temperature gradient imposed at the walls. It is shown that at zero Prandtl number the solution of the problem corresponds to a plane-parallel flow along the channel axis. In this case, the fluid moves in the direction of the imposed temperature gradient in the upper part of the channel and in the opposite direction in the lower part. At non-zero values of the Prandtl number, such Solution does not exist. At any small values of Pr all three components of the flow velocity differ from zero and in the channel cross-section four vortices develop. The direction of these vortices is such that the fluid moves from the centre to the periphery in the vertical direction and returns to the centre in the horizontal direction. The stability of these convective flows (uniform along the channel axis) with regard to small three-dimensional perturbations periodical in the direction of the channel axis is studied. It is shown that at low values of the Prandtl number the basic state loses its stability due to the steady hydrodynamic mode related to the development of vortices at the boundary of the counter flows. The growth of the Prandtl number results in the strong stabilization of this instability mode and, beyond a certain value of the Prandtl number depending on the cross-section aspect ratio, a new steady hydrodynamic instability mode becomes the most dangerous. This mode is characterized by the localization of the perturbations near the sidewalls of the channel. At still higher values of the Prandtl number, the spiral perturbations (rolls with axis parallel to the temperature gradient) become the most dangerous modes, at first the oscillatory spiral perturbations and then the Rayleigh-type steady spiral perturbations. The influence of the channel width on these different instabilities is also emphasized. C1 [Ben Hadid, H.; Henry, D.] Univ Lyon 1, Ecole Cent Lyon, INSA Lyon, Lab Mecan Fluides & Acoust,CNRS,UMR 5509, F-69622 Villeurbanne, France. [Lyubimova, T. P.; Scuridin, R. V.] RAS, UB, Inst Continuous Media Mech, Perm 614013, Russia. [Lyubimov, D. V.] Perm State Univ, Perm 614990, Russia. [Morozov, V. A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ben Hadid, H (reprint author), Univ Lyon 1, Ecole Cent Lyon, INSA Lyon, Lab Mecan Fluides & Acoust,CNRS,UMR 5509, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France. EM hamda.benhadid@univ-lyon1.fr OI Henry, Daniel/0000-0002-7231-7918 NR 30 TC 17 Z9 18 U1 2 U2 12 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD SEP 25 PY 2009 VL 635 BP 275 EP 295 DI 10.1017/S0022112009007587 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 500QK UT WOS:000270318400011 ER PT J AU Boudko, SP Sasaki, T Engel, J Lerch, TF Nix, J Chapman, MS Bachinger, HP AF Boudko, Sergei P. Sasaki, Takako Engel, Juergen Lerch, Thomas F. Nix, Jay Chapman, Michael S. Baechinger, Hans Peter TI Crystal Structure of Human Collagen XVIII Trimerization Domain: A Novel Collagen Trimerization Fold SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE collagens XVIII and XV; crystal structure; trimerization domain; non-collagenous domain; endostatin ID HELICAL COILED-COIL; ENDOTHELIAL-CELL APOPTOSIS; MANNOSE-BINDING PROTEIN; P22 TAILSPIKE PROTEIN; OLIGOMERIZATION DOMAIN; SULFATE PROTEOGLYCAN; TISSUE DISTRIBUTION; III PROCOLLAGEN; TUMOR-GROWTH; XV COLLAGEN AB Collagens contain a unique triple-helical structure with a repeating sequence -G-X-Y-, where proline and hydroxyproline are major constituents in X and Y positions, respectively. Folding of the collagen triple helix requires trimerization domains. Once trimerized, collagen chains are correctly aligned and the folding of the triple helix proceeds in a zipper-like fashion. Here we report the isolation, characterization, and crystal structure of the trimerization domain of human type XVIII collagen, a member of the multiplexin family. This domain differs from all other known trimerization domains in other collagens and exhibits a high trimerization potential at picomolar concentrations. Strong chain association and high specificity of binding are needed for multiplexins, which are present at very low levels. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Boudko, Sergei P.; Sasaki, Takako; Baechinger, Hans Peter] Shriners Hosp Children, Res Dept, Portland, OR 97239 USA. [Boudko, Sergei P.; Sasaki, Takako; Lerch, Thomas F.; Chapman, Michael S.; Baechinger, Hans Peter] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97239 USA. [Engel, Juergen] Univ Basel, Biozentrum, CH-4056 Basel, Switzerland. [Nix, Jay] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Biol Consortium, Adv Light Source Beamline 422, Berkeley, CA 94720 USA. RP Bachinger, HP (reprint author), Shriners Hosp Children, Res Dept, 3101 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM hpb@shcc.org FU Shriners Hospital for Children FX This work was supported by a grant from Shriners Hospital for Children. NR 65 TC 21 Z9 21 U1 0 U2 3 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 25 PY 2009 VL 392 IS 3 BP 787 EP 802 DI 10.1016/j.jmb.2009.07.057 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 500QE UT WOS:000270317700019 PM 19631658 ER PT J AU Paolone, A Palumbo, O Rispoli, P Cantelli, R Autrey, T AF Paolone, Annalisa Palumbo, Oriele Rispoli, Pasquale Cantelli, Rosario Autrey, Tom TI An investigation of the structural phase transition of ammonia borane SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT 15th International Conference on Internal Friction and Mechanical Spectroscopy (ICIFMS-15) CY JUL 20-25, 2008 CL Perugia, ITALY SP Perugia Univ, Phys Dept, CNISM DE Elastic properties; Ammonia borane; Hydrogen storage; Structural phase transition ID ANELASTIC SPECTROSCOPY; DIHYDROGEN BOND; HIGH-PRESSURE; DYNAMICS; BH3NH3; DECOMPOSITION; OCTAHEDRA; CRYSTAL; NMR AB A detailed anelastic spectroscopy study of the structural phase transition of ammonia borane was conducted for the first time. The transformation from the tetragonal high temperature phase into the orthorhombic low temperature one is detected on cooling around 220 K by a huge drop of the elastic modulus and a spike of the elastic energy dissipation. We find clear indications of a hysteresis, which led us to conclude that the transition is of first-order. The kinetics of the transition was investigated in detail. (C) 2009 Elsevier B.V. All rights reserved. C1 [Paolone, Annalisa; Palumbo, Oriele] Univ Roma La Sapienza, Dipartimento Fis, CNISM, I-00185 Rome, Italy. [Paolone, Annalisa] CNR INFM, Lab Reg SuperMAT, Salerno, Italy. [Rispoli, Pasquale] Univ Roma La Sapienza, Dept Phys, CNR, I-00185 Rome, Italy. [Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Paolone, A (reprint author), Univ Roma La Sapienza, Dipartimento Fis, CNISM, Piazzale A Moro 2, I-00185 Rome, Italy. EM Annalisa.Paolone@roma1.infn.it RI Palumbo, Oriele/B-7694-2015; Paolone, Annalisa/B-7701-2015; OI Paolone, Annalisa/0000-0002-4839-7815; Palumbo, Oriele/0000-0003-4968-1049 NR 19 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 25 PY 2009 VL 521-22 BP 169 EP 171 DI 10.1016/j.msea.2008.09.145 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 500UJ UT WOS:000270330700042 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De la Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nikolaev, I Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nikolaev, I. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Direct Measurement of the Mass Difference between Top and Antitop Quarks SO PHYSICAL REVIEW LETTERS LA English DT Article ID CPT VIOLATION AB We present a measurement of the mass difference between t and (t) over bar quarks in lepton + jets final states of t (t) over bar events in 1 fb(-1) of data collected with the D0 detector from Fermilab Tevatron Collider p (p) over bar collisions at root s = 1.96 TeV. The measured mass difference of 3.8 +/- 3.7 GeV is consistent with the equality of t and (t) over bar masses. This is the first direct measurement of a mass difference between a quark and its antiquark partner. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Petroff, P.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Nikolaev, I.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012 OI Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Christoudias, Theodoros/0000-0001-9050-3880; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Li, Liang/0000-0001-6411-6107; de Jong, Sijbrand/0000-0002-3120-3367; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Carrera, Edgar/0000-0002-0857-8507; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Landsberg, Greg/0000-0002-4184-9380; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; West-Grid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 13 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 25 PY 2009 VL 103 IS 13 AR 132001 DI 10.1103/PhysRevLett.103.132001 PG 7 WC Physics, Multidisciplinary SC Physics GA 499RA UT WOS:000270241100011 ER PT J AU Acbas, G Kim, MH Cukr, M Novak, V Scarpulla, MA Dubon, OD Jungwirth, T Sinova, J Cerne, J AF Acbas, G. Kim, M. -H. Cukr, M. Novak, V. Scarpulla, M. A. Dubon, O. D. Jungwirth, T. Sinova, Jairo Cerne, J. TI Electronic Structure of Ferromagnetic Semiconductor Ga1-xMnxAs Probed by Subgap Magneto-optical Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; CARRIER-INDUCED FERROMAGNETISM; GA1-XMN(X)AS; TEMPERATURE; ZINCBLENDE AB We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. Unlike the unpolarized absorption, the infrared magneto-optical effects we study are intimately related to ferromagnetism, and their interpretation is much more microscopically constrained in terms of the orbital character of the relevant band states. We show that the conventional theory of the disordered valence band with an antiferromatnetic exchange term accounts semiquantitatively for the overall characteristics of the measured infrared magneto-optical spectra. C1 [Acbas, G.; Kim, M. -H.; Cerne, J.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Cukr, M.; Novak, V.; Jungwirth, T.; Sinova, Jairo] Acad Sci Czech Republic, Inst Phys, Vvi, Prague 16253 6, Czech Republic. [Scarpulla, M. A.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Scarpulla, M. A.; Dubon, O. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jungwirth, T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sinova, Jairo] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Acbas, G (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RI Scarpulla, Michael/C-7941-2009; Novak, Vit/G-6844-2014; Sinova, Jairo/G-9071-2014; Jungwirth, Tomas/G-8952-2014; OI Sinova, Jairo/0000-0002-9490-2333; Jungwirth, Tomas/0000-0002-9910-1674; Scarpulla, Michael/0000-0002-6084-6839 FU Research Corporation Cottrell Scholar; UB CAS; DOE [DE-AC03-76SF00098, ONR-N000140610122, NSF-CAREER-DMR-0547875]; SWAN-NRI; EU [FP7-215368 SemiSpinNet, FP7-214499 NAMASTE]; Czech Republic [FON/06/E001, FON/06/E002, AV0Z10100521, KAN400100652, LC510]; Preamium Academiae; [NSF-CAREER-DMR0449899] FX This work was supported by the Research Corporation Cottrell Scholar Grant (J.C. and J.S.); NSF-CAREER-DMR0449899 (J.C.); UB CAS (J.C.); DOE Contract No. DE-AC03-76SF00098 (O.D.D.); ONR-N000140610122 (J.S. and T.J.); NSF-CAREER-DMR-0547875 (J.S.); the SWAN-NRI (J.S. and T.J.); EU Grants No. FP7-215368 SemiSpinNet and No. FP7-214499 NAMASTE; Czech Republic Grants No. FON/06/E001, No. FON/06/E002, No. AV0Z10100521, No. KAN400100652, No. LC510; and Preamium Academiae (T.J. and V.N.). NR 35 TC 23 Z9 23 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 25 PY 2009 VL 103 IS 13 AR 137201 DI 10.1103/PhysRevLett.103.137201 PG 4 WC Physics, Multidisciplinary SC Physics GA 499RA UT WOS:000270241100045 PM 19905537 ER PT J AU Stavsetra, L Gregorich, KE Dvorak, J Ellison, PA Dragojevic, I Garcia, MA Nitsche, H AF Stavsetra, L. Gregorich, K. E. Dvorak, J. Ellison, P. A. Dragojevic, I. Garcia, M. A. Nitsche, H. TI Independent Verification of Element 114 Production in the Ca-48+Pu-242 Reaction SO PHYSICAL REVIEW LETTERS LA English DT Article AB Independent verification of the production of element 114 in the reaction of 244-MeV Ca-48 with Pu-242 is presented. Two chains of time- and position-correlated decays have been assigned to (286)114 and (287)114. The observed decay modes, half-lives, and decay energies agree with published results. The measured cross sections at a center-of-target energy of 244 MeV for the (242)Pud(Ca-48; 3-4n)(287,286)114 reactions were 1.4(-1.2)(+3.2) pb each, which are lower than the reported values. C1 [Stavsetra, L.; Gregorich, K. E.; Dvorak, J.; Ellison, P. A.; Dragojevic, I.; Garcia, M. A.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Ellison, P. A.; Dragojevic, I.; Garcia, M. A.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Stavsetra, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Garcia, Mitch/G-2413-2010 FU Office of High Energy and Nuclear Physics, Nuclear Physics Division; U. S. Department of Energy [DE-AC03-76SF00098, DE-AC02-05CH11231] FX We gratefully acknowledge the ion source staff and operators of the 88-Inch Cyclotron for providing high intensity and stable 48Ca beams during the experiment. L. S. would like to thank Dr. Zuzana Dvorakova for her assistance in the hot laboratory. Financial support was provided by the Office of High Energy and Nuclear Physics, Nuclear Physics Division, and by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Bioscience of the U. S. Department of Energy, under Contracts No. DE-AC03-76SF00098 and No. DE-AC02-05CH11231. P. A. E. was supported by the U.S. Department of Energy, National Nuclear Security Agency, Stewardship Science Program. NR 17 TC 120 Z9 121 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 25 PY 2009 VL 103 IS 13 AR 132502 DI 10.1103/PhysRevLett.103.132502 PG 4 WC Physics, Multidisciplinary SC Physics GA 499RA UT WOS:000270241100014 PM 19905506 ER PT J AU Wang, F Alvarez, JV Allen, JW Mo, SK He, J Jin, R Mandrus, D Hochst, H AF Wang, Feng Alvarez, J. V. Allen, J. W. Mo, S. -K. He, J. Jin, R. Mandrus, D. Hoechst, H. TI Quantum Critical Scaling in the Single-Particle Spectrum of a Novel Anisotropic Metal SO PHYSICAL REVIEW LETTERS LA English DT Article ID ONE-DIMENSIONAL METALS; LUTTINGER-LIQUID; LI0.9MO6O17; MODEL; PHOTOEMISSION; BRONZE AB We report an angle resolved photoemission spectroscopy study of quantum critical scaling in the single-particle spectral function of a novel anisotropic metal Li(0.9)Mo(6)O(17). We find a temperature (T) scaling exponent value and also low-T angle resolved photoemission spectroscopy line shapes that are very challenging for current one-dimensional theory frameworks. These results add a new spectroscopic component to a growing collection of puzzling low-T transport behaviors of this material. C1 [Wang, Feng; Allen, J. W.; Mo, S. -K.] Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA. [Alvarez, J. V.] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. [Alvarez, J. V.] Univ Autonoma Madrid, Inst Fis Mat Nicolas Cabrera, E-28049 Madrid, Spain. [He, J.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Jin, R.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mandrus, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hoechst, H.] Univ Wisconsin Madison, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. RP Wang, F (reprint author), Univ Michigan, Randall Lab, Ann Arbor, MI 48109 USA. RI Mo, Sung-Kwan/F-3489-2013; Mandrus, David/H-3090-2014; Alvarez, Jose/H-4696-2015 OI Mo, Sung-Kwan/0000-0003-0711-8514; Alvarez, Jose/0000-0001-5178-4309 FU U. S. National Science Foundation (NSF) [DMR-03-02825, DMR-07-04480, DMR-00-84402]; MEC [FIS2006-122117C04-02]; SC EPSCOR/Clemson University Cost Share; U. S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This work was supported at UM by the U. S. National Science Foundation (NSF) (DMR-03-02825 and DMR-07-04480), at UAM by MEC under a RyC contract and FIS2006-122117C04-02, at Clemson by the SC EPSCOR/Clemson University Cost Share and the U. S. Department of Energy (DOE) Implementation Program, at the SRC by the U. S. NSF (DMR-00-84402), and at ORNL by the Division of Materials Sciences and Engineering, Office of BES, U.S. DOE, under Contract No. DE-AC05-00OR22725. We gratefully acknowledge a key suggestion for our QC T-scaling analysis by M. C. Aronson, and early contributions to the work by G.-H. Gweon. J.W.A and J.V.A. benefited greatly from discussions at the Aspen Center for Physics. NR 31 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 25 PY 2009 VL 103 IS 13 AR 136401 DI 10.1103/PhysRevLett.103.136401 PG 4 WC Physics, Multidisciplinary SC Physics GA 499RA UT WOS:000270241100037 PM 19905529 ER PT J AU Kwak, JH Hu, JZ Mei, D Yi, CW Kim, DH Peden, CHF Allard, LF Szanyi, J AF Kwak, Ja Hun Hu, Jianzhi Mei, Donghai Yi, Cheol-Woo Kim, Do Heui Peden, Charles H. F. Allard, Lawrence F. Szanyi, Janos TI Coordinatively Unsaturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on gamma-Al2O3 SO SCIENCE LA English DT Article ID GAMMA-ALUMINA SURFACES; SYSTEM; IONS; NMR; DFT AB In many heterogeneous catalysts, the interaction of metal particles with their oxide support can alter the electronic properties of the metal and can play a critical role in determining particle morphology and maintaining dispersion. We used a combination of ultrahigh magnetic field, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy coupled with density functional theory calculations to reveal the nature of anchoring sites of a catalytically active phase of platinum on the surface of a gamma-Al2O3 catalyst support material. The results obtained show that coordinatively unsaturated pentacoordinate Al3+ (Al-penta(3+)) centers present on the (100) facets of the gamma-Al2O3 surface are anchoring Pt. At low loadings, the active catalytic phase is atomically dispersed on the support surface (Pt/Al-penta(3+) = 1), whereas two-dimensional Pt rafts form at higher coverages. C1 [Kwak, Ja Hun; Hu, Jianzhi; Mei, Donghai; Kim, Do Heui; Peden, Charles H. F.; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yi, Cheol-Woo] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea. [Yi, Cheol-Woo] Sungshin Womens Univ, Dept Chem, Seoul 136742, South Korea. [Allard, Lawrence F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kwak, JH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM Kwak@pnl.gov; chuck.peden@pnl.gov; janos.szanyi@pnl.gov RI Mei, Donghai/D-3251-2011; Hu, Jian Zhi/F-7126-2012; Mei, Donghai/A-2115-2012; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; Yi, Cheol-Woo/B-3082-2010; OI Mei, Donghai/0000-0002-0286-4182; Yi, Cheol-Woo/0000-0003-4549-5433; Peden, Charles/0000-0001-6754-9928 FU U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Chemical Sciences; Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program; DOE [DE-AC05-76RL01830] FX We gratefully acknowledge the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Chemical Sciences, and Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, for the support of this work. The research described in this paper was primarily carried out in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. Computing time was granted by National Energy Research Scientific Center (NERSC). The HR-STEM images were recorded at Oak Ridge National Laboratory's High Temperature Materials Laboratory, sponsored by the DOE, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 17 TC 214 Z9 218 U1 43 U2 254 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 25 PY 2009 VL 325 IS 5948 BP 1670 EP 1673 DI 10.1126/science.1176745 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 498II UT WOS:000270131800040 PM 19779194 ER PT J AU Torkzaban, S Walker, SL Bradford, SA AF Torkzaban, Saeed Walker, Sharon L. Bradford, Scott A. TI Reply to comment by William P. Johnson et al. on "Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry'' SO WATER RESOURCES RESEARCH LA English DT Article ID COLLOID FILTRATION THEORY; SECONDARY ENERGY MINIMUM; DLVO INTERACTIONS; SURFACE; ADHESION; PREDICTION; FORCE; MODEL; FLOW; REENTRAINMENT C1 [Torkzaban, Saeed] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bradford, Scott A.] ARS, US Salin Lab, USDA, Riverside, CA 92507 USA. [Walker, Sharon L.] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. RP Torkzaban, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM scott.bradford@ars.usda.gov RI Torkzaban, Saeed/G-7377-2013 OI Torkzaban, Saeed/0000-0002-5146-9461 NR 27 TC 8 Z9 8 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 25 PY 2009 VL 45 AR W09604 DI 10.1029/2008WR007576 PG 3 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 499RV UT WOS:000270243500004 ER PT J AU Klippenstein, SJ Harding, LB Ruscic, B Sivaramakrishnan, R Srinivasan, NK Su, MC Michael, JV AF Klippenstein, S. J. Harding, L. B. Ruscic, B. Sivaramakrishnan, R. Srinivasan, N. K. Su, M. -C. Michael, J. V. TI Thermal Decomposition of NH2OH and Subsequent Reactions: Ab Initio Transition State Theory and Reflected Shock Tube Experiments SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TEMPERATURE RATE CONSTANTS; CONFIGURATION-INTERACTION CALCULATIONS; ACTIVE THERMOCHEMICAL TABLES; FLASH-PHOTOLYSIS; MASTER EQUATION; PERTURBATION-THEORY; CHEMICAL-KINETICS; PREDICTIVE THEORY; PULSE-RADIOLYSIS; PRESSURE LIMIT AB Primary and secondary reactions involved in the thermal decomposition of NH2OH are studied with a combination of shock tube experiments and transition state theory based theoretical kinetics. This coupled theory and experiment study demonstrates the utility of NH2OH as a high temperature source of OH radicals. The reflected shock technique is employed in the determination of OH radical time profiles via multipass electronic absorption spectrometry. O-atoms are searched for with atomic resonance absorption spectrometry. The experiments provide a direct measurement of the rate coefficient, k(1), for the thermal decomposition of NH2OH. Secondary rate measurements are obtained for the NH2 + OH (5a) and NH2OH + OH (6a) abstraction reactions. The experimental data are obtained for temperatures in the range from 1355 to 1889 K and are well represented by the respective rate expressions: log[k/(cm(3) molecule(-1) s(-1))] (-10.12 +/- 0.20) + (-6793 +/- 317 K/T) (k(1)); log[k/(cm(3) molecule(-1) s(-1))] (-10.00 +/- 0.06) + (-879 +/- 101 K/T) (k(5a)); log[k/(cm(3) molecule(-1) s(-1))] = (-9.75 +/- 0.08) + (-1248 +/- 123 K/T) (k(6a)). Theoretical predictions are made for these rate coefficients as well for the reactions of NH2OH + NH2, NH2OH + NH, NH + OH, NH2 + NH2, NH2 + NH, and NH + NH, each of which could be of secondary importance in NH2OH thermal decomposition. The theoretical analyses employ a combination of ab initio transition state theory and master equation simulations. Comparisons between theory and experiment are made where possible. Modest adjustments of predicted barrier heights (i.e., by 2 kcal/mol or less) generally yield good agreement between theory and experiment. The rate coefficients obtained here should be of utility in modeling NOx in various combustion environments. C1 [Klippenstein, S. J.; Harding, L. B.; Ruscic, B.; Sivaramakrishnan, R.; Srinivasan, N. K.; Su, M. -C.; Michael, J. V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Su, M. -C.] Sonoma State Univ, Dept Chem, Rohnert Pk, CA 94928 USA. RP Klippenstein, SJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Bldg 200, Argonne, IL 60439 USA. EM sjk@anl.gov; harding@anl.gov; jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010; Ruscic, Branko/A-8716-2008; OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; Ruscic, Branko/0000-0002-4372-6990; Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357. NR 99 TC 16 Z9 16 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 24 PY 2009 VL 113 IS 38 BP 10241 EP 10259 DI 10.1021/jp905454k PG 19 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 493OG UT WOS:000269746200015 PM 19722533 ER PT J AU Page, TA Kraut, ND Page, PM Baker, GA Bright, FV AF Page, Taylor A. Kraut, Nadine D. Page, Phillip M. Baker, Gary A. Bright, Frank V. TI Dynamics of Loop 1 of Domain I in Human Serum Albumin When Dissolved in Ionic Liquids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ALPHA-CHYMOTRYPSIN; FLUORESCENCE DEPOLARIZATION; MULTIFREQUENCY PHASE; AQUEOUS-SOLUTIONS; ORGANIC-SOLVENTS; BIOCATALYSIS; STABILIZATION; ACRYLODAN; DENATURATION; CATALYSIS AB We report on the rotational reorientation dynamics associated with loop I of domain I within a large multidomain protein (human serum albumin, HSA) when it is dissolved in binary mixtures of ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(4)mim][Tf(2)N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim][BF(4)]), or 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)])) and distilled deionized water (ddH(2)O) as a function of temperature and water loading. In IL/2% ddH(2)O (v/v) mixtures, loop I of domain I is more significantly denatured:in comparison to the protein dissolved in aqueous solutions containing strong chemical denaturants (e.g., 8 M guanidine HCl (Gu center dot HCl) or urea). As water loading increases, there is evidence for progressive refolding of loop I of domain I followed by recoupling with domains I, II, and III in the [C(4)mim][BF(4)]/ddH(2)O mixtures at 20 degrees C. Above 30% (v/v) water, where domain I appears refolded, the Ac reporter molecule's serniangle steadily decreases from 35 degrees to 20 degrees with increasing water loading. From the perspective of domain I in HSA, this behavior is similar to the effects of dilution from 4 to 0 M Gu center dot HCl in aqueous solution. Overall, these results lend insight into the tangle of biocatalytic and structural/dynamical mechanisms that enzymes may undergo in ionic liquid-based systems. It will be particularly motivating to extend this work to include enzyme-attuned ionic liquids shown to improve biocatalytic performance beyond that possible in the native (predominantly aqueous) setting. C1 [Page, Taylor A.; Kraut, Nadine D.; Page, Phillip M.; Bright, Frank V.] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Bright, FV (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM chefvb@buffalo.edu RI Baker, Gary/H-9444-2016; OI Baker, Gary/0000-0002-3052-7730; Bright, Frank/0000-0002-1500-5969 FU U.S. Department of Energy; Office of Basic Energy Sciences FX This research was generously supported by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 62 TC 48 Z9 49 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 24 PY 2009 VL 113 IS 38 BP 12825 EP 12830 DI 10.1021/jp904475v PG 6 WC Chemistry, Physical SC Chemistry GA 493OQ UT WOS:000269747300028 PM 19711930 ER PT J AU Boily, JF Lins, RD AF Boily, Jean-Francois Lins, Roberto D. TI Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CATALYTIC ALUMINAS; HYDROGEN-BONDS; GOETHITE; WATER; SPECTROSCOPY; SIMULATION; CHEMISTRY; SITES; FTIR AB The O-H bond distribution of hydroxyl groups at the {110} goethite (alpha-FeOOH) surface was investigated by molecular dynamics. This distribution was strongly affected by electrostatic interactions with neighboring oxo and hydroxo groups. The effects of proton surface loading, simulated by emplacing two protons at different distances of separation, were diverse and generated several sets of O-H bond distributions. DFT calculations of a representative molecular cluster were also carried out to demonstrate the impact of these effects on the orientation of oxygen lone pairs in neighboring oxo groups. These effects should have strong repercussions on O-H stretching vibrations of metal oxide surfaces. C1 [Boily, Jean-Francois] Umea Univ, Dept Chem, S-90187 Umea, Sweden. [Lins, Roberto D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Boily, JF (reprint author), Umea Univ, Dept Chem, S-90187 Umea, Sweden. EM jean-francois.boily@chem.umu.se RI Lins, Roberto/J-7511-2012 OI Lins, Roberto/0000-0002-3983-8025 FU Kempe and Wallenberg Foundations (Sweden); U.S. Department of Energy, Office of Basic Energy Sciences (Geosciences); Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Kempe and Wallenberg Foundations (Sweden) and by the U.S. Department of Energy, Office of Basic Energy Sciences (Geosciences) Research Program. The MD calculations were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. The quantum chemical calculations were carried out at the High Performance Computing Center North (HPC2N) cluster of Umea University. NR 23 TC 3 Z9 3 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 24 PY 2009 VL 113 IS 38 BP 16568 EP 16570 DI 10.1021/jp906124a PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 493OB UT WOS:000269745700003 ER PT J AU Owens, J Koester, C AF Owens, Janel Koester, Carolyn TI Quantitative Analysis of Chemical Warfare Agent Degradation Products in Beverages by Liquid Chromatography Tandem Mass Spectrometry SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE Phosphonic acids; chemical warfare agents; liquid chromatography; mass spectrometry; food ID ELECTROSPRAY-IONIZATION; GAS-CHROMATOGRAPHY; ALKYLPHOSPHONIC ACIDS; HYDROLYSIS PRODUCTS; DERIVATIZATION; EXTRACTION; SAMPLES; URINE; ETHYL; WATER AB Though chemical warfare agents (CWAs) have been banned by the Chemical Weapons Convention, the threat that such chemicals may be used, including their deliberate addition to food, remains. In such matrixes, CWAs may hydrolyze to phosphonic acids, which are good surrogate markers of CWA contamination. The method described here details the extraction of five CWA degradation products, including methylphosphonic acid (MPA), ethyl-MPA, isopropyl-MPA, cyclohexyl-MPA, and pinacolyl-MPA, from five different beverages by strata-X solid phase extraction cartridges. Samples were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS) with multiple reaction monitoring. The limit of quantitation ranged from 0.05 to 0.5 ng on-column, and the limit of detection was >0.02 ng on-column. Beverages were fortified with the five phosphonic acids at 1 mu g/mL and 0.25 mu g/mL and quantitated using both an internally standardized method and matrix-matched standards. Reasonable recoveries (>50%) were achieved for ethyl, isopropyl, cyclohexyl, and pinacolyl-MPA for most matrixes. C1 [Owens, Janel; Koester, Carolyn] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA. RP Owens, J (reprint author), Lawrence Livermore Natl Lab, Forens Sci Ctr, 7000 East Ave,L-091, Livermore, CA 94550 USA. EM jowens2@uccs.edu FU U.S. Food and Drug Administration; U.S. Environmental Protection Agency; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-411419] FX We thank Karen Wolnik, Frederick Fricke, and Bryan Gamble of the Forensic Chemistry Center of the U.S. Food and Drug Administration for their assistance and insightful discussions: Lawrence Zintek of the U.S. Environmental Protection and Agency for his assistance with establishing H PLC and ESI source conditions. Funding from the U.S. Food and Drug Administration and U.S. Environmental Protection Agency is gratefully acknowledged. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-411419. NR 19 TC 8 Z9 8 U1 6 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD SEP 23 PY 2009 VL 57 IS 18 BP 8227 EP 8235 DI 10.1021/jf901478k PG 9 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 493OS UT WOS:000269747500022 PM 19685865 ER PT J AU Wang, J Daum, PH Yum, SS Liu, YA Senum, GI Lu, ML Seinfeld, JH Jonsson, H AF Wang, Jian Daum, Peter H. Yum, Seong Soo Liu, Yangang Senum, Gunnar I. Lu, Miao-Ling Seinfeld, John H. Jonsson, Haflidi TI Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WARM-RAIN INITIATION; CUMULUS CLOUDS; NOCTURNAL STRATOCUMULUS; SIZE DISTRIBUTIONS; EFFECTIVE RADIUS; ENTRAINMENT; CONDENSATION; TURBULENCE; STRATUS; EVOLUTION AB During the Marine Stratus/Stratocumulus Experiment, cloud and aerosol microphysics were measured in the eastern Pacific off the coast of northern California on board Department of Energy Gulfstream-1 in July 2005. Three cases with uniform aerosol concentration and minimal drizzle concentration were examined to study cloud microphysical behavior. For these three cases, the average droplet number concentration increased with increasing altitude, while the average interstitial aerosol concentration decreased with altitude. The data show enhanced growth of large droplets and spectral broadening in cloud parcels with low liquid water mixing ratio. Three mixing models, including inhomogeneous mixing, entity type entrainment mixing, and circulation mixing proposed in this study, are examined with regard to their influences on cloud microphysics. The observed cloud microphysical behavior is most consistent with the circulation mixing, which describes the mixing between cloud parcels with different lifting condensation levels during their circulations driven by evaporative and radiative cooling. The enhanced growth and spectrum broadening resulting from the circulation mixing reduce cloud albedo at the same liquid water path and facilitate the formation of precipitation embryos. C1 [Wang, Jian; Daum, Peter H.; Liu, Yangang; Senum, Gunnar I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Yum, Seong Soo] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea. [Lu, Miao-Ling; Seinfeld, John H.] CALTECH, Dept Environm Sci & Engn, Pasadena, CA 91125 USA. [Jonsson, Haflidi] USN, Postgrad Sch, Ctr Interdisciplinary Remotely Piloted Aircraft S, Monterey, CA 93943 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, 75 Rutherford Dr, Upton, NY 11973 USA. EM jian@bnl.gov RI Wang, Jian/G-9344-2011; Liu, Yangang/H-6154-2011 FU U. S. Department of Energy [DE-AC02-98CH10886.]; Korea Meteorological Administration Research and Development Program [CATER 2009-3214] FX The authors thank Steven Springston, who reduced the aircraft data used in this analysis, and the flight crew of the DOE Gulfstream-1 for their excellent work. We also thank two anonymous reviewers for their thoughtful and constructive comments. This research was sponsored by the Atmospheric Science Program within the Office of Biological and Environmental Research of U. S. Department of Energy under contract DE-AC02-98CH10886. Seong Soo Yum was also supported by the Korea Meteorological Administration Research and Development Program under grant CATER 2009-3214. NR 48 TC 24 Z9 25 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 23 PY 2009 VL 114 AR D18210 DI 10.1029/2008JD011035 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 499PD UT WOS:000270235600001 ER PT J AU Bhakta, RK Herberg, JL Jacobs, B Highley, A Behrens, R Ockwig, NW Greathouse, JA Allendorf, MD AF Bhakta, Raghunandan K. Herberg, Julie L. Jacobs, Benjamin Highley, Aaron Behrens, Richard, Jr. Ockwig, Nathan W. Greathouse, Jeffery A. Allendorf, Mark D. TI Metal-Organic Frameworks As Templates for Nanoscale NaAlH4 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SODIUM ALUMINUM HYDRIDES; BEAM MASS-SPECTROMETRY; HYDROGEN STORAGE; THERMAL-DECOMPOSITION; NANOPARTICLES; ALANATE; CARBON; LIBH4; XRD; TI AB Metal-organic frameworks (MOFs) offer an attractive alternative to traditional hard and soft templates for nanocluster synthesis because their. ordered crystalline lattice provides a highly controlled and inherently understandable environment. We demonstrate that MOFs are stable hosts for metal hydrides proposed for hydrogen storage and their reactive precursors, providing platform to test recent theoretical predictions that some of these materials can be destabilized with respect to hydrogen desorption by reducing their critical dimension to the nanoscale. With the MOF HKUST-1 as template, we show that NaAlH4 nanoclusters as small as eight formula units can be synthesized. The confinement of these clusters within the MOF pores dramatically accelerates the desorption kinetics, causing decomposition to occur at similar to 100 degrees C lower than bulk NaAlH4. However, using simultaneous thermogravimetric modulated beam mass spectrometry, we also show that the thermal decomposition mechanism of NaAlH4 is complex and may involve processes such as nucleation and growth in addition to the normally assumed two-step chemical decomposition reactions. C1 [Bhakta, Raghunandan K.; Jacobs, Benjamin; Highley, Aaron; Behrens, Richard, Jr.; Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA USA. [Herberg, Julie L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ockwig, Nathan W.; Greathouse, Jeffery A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA USA. EM mdallen@sandia.gov NR 26 TC 75 Z9 77 U1 12 U2 107 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 23 PY 2009 VL 131 IS 37 BP 13198 EP 13199 DI 10.1021/ja904431x PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZU UT WOS:000270186500008 PM 19719170 ER PT J AU Tang, YF Allen, BL Kauffman, DR Star, A AF Tang, Yifan Allen, Brett L. Kauffman, Douglas R. Star, Alexander TI Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION; FUEL-CELLS; CATALYSTS; BIOSENSORS; PYROLYSIS; GRAPHENE; ARRAYS; SITES AB The electrochemical activity of stacked nitrogen-doped carbon nanotube cups (NCNCs) has been explored in comparison to commercial Pt-decorated carbon nanotubes. The nanocup catalyst has demonstrated comparable performance to that of Pt catalyst in oxygen reduction reaction. In addition to effectively catalyzing O-2 reduction, the NCNC electrodes have been used for H2O2 oxidation and consequently for glucose detection when NCNCs were functionalized with glucose oxidase (GOx). Creating the catalysts entirety free of precious metals is of great importance for tow-cost fuel cells and biosensors. C1 [Star, Alexander] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. Natl Energy Technol Lab, Pittsburgh, PA 15260 USA. RP Star, A (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. EM astar@pitt.edu RI Tang, Yifan/F-4275-2012; Star, Alexander/C-3399-2013; OI Kauffman, Douglas/0000-0002-7855-3428 FU Pennsylvania NanoMaterials Commercialization Center; DCED FX This work was supported by. the Pennsylvania NanoMaterials Commercialization Center through funding provided by DCED. We thank John Baltrus at the National Energy Technology Laboratory for access to the XPS instrumentation and. Shigeru Amemiya for access to RRDE. NR 15 TC 352 Z9 359 U1 25 U2 264 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 23 PY 2009 VL 131 IS 37 BP 13200 EP 13201 DI 10.1021/ja904595t PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZU UT WOS:000270186500009 PM 19722487 ER PT J AU Tian, J Thallapally, PK Dalgarno, SJ Atwood, JL AF Tian, Jian Thallapally, Praveen K. Dalgarno, Scott J. Atwood, Jerry L. TI Free Transport of Water and CO2 in Nonporous Hydrophobic Clarithromycin Form II Crystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE; FRAMEWORKS; CHANNELS; POROSITY; STORAGE AB Clarithromycin is a well-known antibiotic that exists in various polymorphic forms. This molecule can be sublimed to afford a guest-free form that displays the unexpected transport of molecules of water or carbon dioxide to voids within the channel-free crystal lattice. C1 [Tian, Jian; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Thallapally, Praveen K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Dalgarno, Scott J.] Heriot Watt Univ, Sch Engn & Phys Sci Chem, Dept Chem, Edinburgh EH14 4AS, Midlothian, Scotland. RP Atwood, JL (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM atwoodj@missouri.edu RI Tian, Jian/I-8637-2012; thallapally, praveen/I-5026-2014; Dalgarno, Scott/A-7358-2010 OI thallapally, praveen/0000-0001-7814-4467; Dalgarno, Scott/0000-0001-7831-012X FU NSF; DOE FX We acknowledge the NSF and DOE for financial support of this work. P.K.T. thanks DOE-Office of Science for support. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DEAC05-76RLO 1830. NR 22 TC 42 Z9 43 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 23 PY 2009 VL 131 IS 37 BP 13216 EP 13217 DI 10.1021/ja904658p PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZU UT WOS:000270186500017 PM 19715295 ER PT J AU Parks, JM Guo, H Momany, C Liang, LY Miller, SM Summers, AO Smith, JC AF Parks, Jerry M. Guo, Hong Momany, Cory Liang, Liyuan Miller, Susan M. Summers, Anne O. Smith, Jeremy C. TI Mechanism of Hg-C Protonolysis in the Organomercurial Lyase MerB SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ENZYMATIC-REACTIONS; MOLECULAR-ENERGIES; TRANSITION-STATES; BOND-CLEAVAGE; MERCURY; MODEL; DFT; GEOMETRIES; COMPLEXES; ENZYMES AB Demethylation is a key reaction in global mercury cycling. The bacterial organomercurial lyase, MerB, catalyzes the demethylation of a wide range of organomercurials via Hg-C protonolysis. Two strictly conserved cysteine residues in the active site are required for catalysis, but the source of the catalytic proton and the detailed reaction mechanism have not been determined. Here, the two major proposed reaction mechanisms of MerB are investigated and compared using hybrid density functional theory calculations. A model of the active site was constructed from an X-ray crystal structure of the Hg(II)-bound MerB product complex. Stationary point structures and energies characterized for the Hg-C protonolysis of methylmercury. rule out the direct protonation mechanism in which a cysteine residue delivers the catalytic proton directly to the organic leaving group. Instead, the calculations support a two-step mechanism in which Cys96 or Cys159 first donates a proton to Asp99, enabling coordination of two thiolates with R-Hg(II). At the rate-limiting transition state, Asp99 protonates the nascent carbanion in a trigonal planar, bis thiolligated R-Hg(II) species to cleave the Hg-C bond and release the hydrocarbon product. Reactions with two other substrates, vinylmercury and cis-2-butenyl-2-mercury, were also modeled, and the computed activation barriers for all three organomercurial substrates reproduce the trend in the experimentally observed enzymatic reaction rates. Analysis of atomic charges in the rate-limiting transition state structure using Natural Population Analysis shows that MerB lowers the activation free energy in the Hg-C protonolysis reaction by redistributing electron density into the leaving group and away from the catalytic proton. C1 [Parks, Jerry M.; Guo, Hong; Smith, Jeremy C.] Oak Ridge Natl Lab, UT, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Guo, Hong; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Momany, Cory] Univ Georgia, Dept Pharmaceut & Biomed Sci, Athens, GA 30602 USA. [Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Miller, Susan M.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Summers, Anne O.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. RP Parks, JM (reprint author), Oak Ridge Natl Lab, UT, Ctr Biophys Mol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM parksjm@ornl.gov RI Guo, Hong/E-6357-2010; smith, jeremy/B-7287-2012; Parks, Jerry/B-7488-2009; Liang, Liyuan/O-7213-2014; OI smith, jeremy/0000-0002-2978-3227; Parks, Jerry/0000-0002-3103-9333; Liang, Liyuan/0000-0003-1338-0324; Summers, Anne/0000-0003-4258-9696 FU U.S. Department of Energy Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP); U.S. Department of Energy [DE-AC05-000R22725]; National Science Foundation [TG-MCA08X032, TG-CHE090017] FX This research was sponsored by the U.S. Department of Energy Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-000R22725. Computer time was provided by the National Science Foundation through TeraGrid resources provided by NCSA (Grants TG-MCA08X032 and TG-CHE090017). We thank Hao-Bo Guo and Alexander Johs for helpful discussions and an anonymous reviewer for providing many useful comments. NR 40 TC 27 Z9 27 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 23 PY 2009 VL 131 IS 37 BP 13278 EP 13285 DI 10.1021/ja9016123 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 498ZU UT WOS:000270186500038 PM 19719173 ER PT J AU Xiao, K Rondinone, AJ Puretzky, AA Ivanov, IN Retterer, ST Geohegan, DB AF Xiao, Kai Rondinone, Adam J. Puretzky, Alex A. Ivanov, Ilia N. Retterer, Scott T. Geohegan, David B. TI Growth, Patterning, and One-Dimensional Electron -Transport Properties of Self-Assembled Ag-TCNQF(4) Organic Nanowires SO CHEMISTRY OF MATERIALS LA English DT Article ID THIN-FILMS; COPPER-TETRACYANOQUINODIMETHANE; TRANSFER COMPLEXES; POLYMER NANOWIRES; CHARGE-TRANSFER; DEVICES; NANOTUBES; AG(TCNQ); BEHAVIOR; SALTS AB Controllable synthesis approaches for organic nanowires that permit the in situ fabrication of devices will enable future applications in nano-electronics and nano-optoelectronics. Here, the first synthesis of single-crystal silver-tetrafluorotetracyano-p-quinodimethane (Ag-TCNQF(4)) nanowires is reported. Ag-TCNQF(4) is it good charge-transfer complex and nanowires of this organic semiconductor material were deterministically synthesized in a facile vapor-solid process on selected regions through the reaction of TCNQF(4) vapor with patterned silver. Use of a growth barrier is shown to control the growth of Ag-TCNQF(4) nanowires to horizontal alignment, permitting the reproducible in situ growth of single Ag-TCNQF(4) nanowire devices and device arrays between prefabricated electrodes. The single-crystal nanowires are predominantly monoclinic in structure with efficient pi-stacking of the TCNQF(4) units, leading to a high conductivity along the nanowire. However, the electron-withdrawing fluorine groups on the pi-delocalized ring in the TCNQF(4) results in a distinctly different structure compared to that previously reported for Ag-TCNQ nanowires. The temperature- and bias-voltage-dependent electrical transport properties of in situ fabricated Ag-TCNQF(4) organic nanowire devices were investigated and exhibit a power-law behavior characteristic of one-dimensional systems. C1 [Xiao, Kai; Rondinone, Adam J.; Puretzky, Alex A.; Ivanov, Ilia N.; Retterer, Scott T.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xiao, K (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xiaok@ornl.gov; geohegandb@ornl.gov RI Retterer, Scott/A-5256-2011; Xiao, Kai/A-7133-2012; ivanov, ilia/D-3402-2015; Rondinone, Adam/F-6489-2013; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI Retterer, Scott/0000-0001-8534-1979; Xiao, Kai/0000-0002-0402-8276; ivanov, ilia/0000-0002-6726-2502; Rondinone, Adam/0000-0003-0020-4612; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors gratefully acknowledge technical assistance by Pamela Fleming. We also thank Dr. Lu J. for writing the program for the LL equation fitting. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy, managed by UT-Battelle, LLC, For the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 48 TC 30 Z9 30 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD SEP 22 PY 2009 VL 21 IS 18 BP 4275 EP 4281 DI 10.1021/cm901431f PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 492YP UT WOS:000269699200028 ER PT J AU He, LL Fujimoto, CH Cornelius, CJ Perahia, D AF He, Lilin Fujimoto, Cy H. Cornelius, Chris J. Perahia, Dvora TI From Solutions to Membranes: Structure Studies of Sulfonated Polyphenylene Ionomers SO MACROMOLECULES LA English DT Article ID ANGLE NEUTRON-SCATTERING; ELECTROCHEMICAL SENSORS; POLYMER MEMBRANES; COATED ELECTRODES; AQUEOUS-SOLUTIONS; NAFION; MICROEMULSIONS; MORPHOLOGY; MODEL AB The structure of rigid sulfonated polyphenylene ionomers was investigated in bulk and in dilute organic solutions. The uniqueness of polyphenylene ionomers lies in their rigid backbone which prevents folding and therefore affects the partition into hydrophilic ionic domains and hydrophobic regions. This segregation dominates the structure of flexible ionic polymers. Small-angle neutron scattering studies of these ionomers have demonstrated that bundles of polymer molecules are formed in dilute organic solutions. This clustered building block persists in bulk dry and hydrated states of the ionomers. Hydration of these ionomers membranes results in segregation to hydrophilic and hydrophobic regions, where diffusion into interstitial spaces between the bundles of sulfonated and unsulfonated domains takes place followed by rearrangements of domains to yield locally bicontinuous regions. Only at very high sulfonation levels are fully bicontinues phases formed. With controlling the degree of continuity, the stiffness of the backbone offers a means to tune the transport in ionic polymers. C1 [He, Lilin; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Fujimoto, Cy H.; Cornelius, Chris J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cornelius, Chris J.] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA. RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM dperahi@ces.clemson.edu OI He, Lilin/0000-0002-9560-8101 FU National Institute of Standards and Technology; U.S. Department of Commerce; Lujan Center at LANL; Sandia National Laboratories; DOE [DE-FG02-07ER46456] FX We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, and Lujan Center at LANL in providing the neutron research facilities used in this work. and Sandia National Laboratories for funding and materials. The authors also thank Sabina Maskey for her simulation work and Thusitha Etampawala for his help with the membrane swelling experiment. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. DOE Grant DE-FG02-07ER46456 is acknowledged for supporting this work. NR 38 TC 9 Z9 9 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 22 PY 2009 VL 42 IS 18 BP 7084 EP 7090 DI 10.1021/ma900314g PG 7 WC Polymer Science SC Polymer Science GA 492YR UT WOS:000269699400033 ER PT J AU Winoto, W Tan, SP Shen, YQ Radosz, M Hong, KL Mays, JW AF Winoto, Winoto Tan, Sugata P. Shen, Youqing Radosz, Maciej Hong, Kunlun Mays, Jimmy W. TI High-Pressure Micellar Solutions of Symmetric and Asymmetric Styrene-Diene Diblocks in Compressible Near-Critical Solvents: Micellization Pressures and Cloud Pressures Respond but Micellar Cloud Pressures Insensitive to Copolymer Molecular Weight, Concentration, and Block Ratio Changes SO MACROMOLECULES LA English DT Article ID SUPERCRITICAL CARBON-DIOXIDE; ANIONIC-POLYMERIZATION; MODEL POLYDIENES; PHASE-BEHAVIOR; POLYSTYRENE; PROPANE; POLYISOPRENE; POLYBUTADIENE; POLYOLEFINS; TRANSITION AB High-pressure solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in compressible propane or propylene exhibit a robust micellar region that grows in pressure-temperature coordinates with increasing copolymer concentration, molecular weight, and styrene/diene block ratio. This happens because, while the micellization pressure strongly increases with increasing copolymer concentration, molecular weight, and styrene/diene block ratio, the micellar cloud pressure (the pressure at which the micelles aggregate and precipitate from solution) is largely insensitive to these variables. In other words, neither the block size nor the block ratio nor the copolymer concentration seems to affect much the copolymer separation from solution in the micellar region. C1 [Winoto, Winoto; Tan, Sugata P.; Shen, Youqing; Radosz, Maciej] Univ Wyoming, Dept Chem & Petr Engn, Soft Mat Lab, Laramie, WY 82071 USA. [Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Radosz, M (reprint author), Univ Wyoming, Dept Chem & Petr Engn, Soft Mat Lab, Laramie, WY 82071 USA. EM radosz@uwyo.edu RI Shen, Youqing/E-6144-2011; Hong, Kunlun/E-9787-2015 OI Shen, Youqing/0000-0003-1837-7976; Hong, Kunlun/0000-0002-2852-5111 FU National Science Foundation [CTS-0625338]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2006-114] FX This work is funded by a National Science Foundation Grant CTS-0625338 at the University of Wyoming. Part of this research was done at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, through User Project CNMS2006-114. NR 16 TC 6 Z9 6 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 22 PY 2009 VL 42 IS 18 BP 7155 EP 7163 DI 10.1021/ma900848j PG 9 WC Polymer Science SC Polymer Science GA 492YR UT WOS:000269699400043 ER PT J AU Le Crom, S Schackwitz, W Pennacchio, L Magnuson, JK Culley, DE Collett, JR Martin, J Druzhinina, IS Mathis, H Monot, F Seiboth, B Cherry, B Rey, M Berka, R Kubicek, CP Baker, SE Margeot, A AF Le Crom, Stephane Schackwitz, Wendy Pennacchio, Len Magnuson, Jon K. Culley, David E. Collett, James R. Martin, Joel Druzhinina, Irina S. Mathis, Hugues Monot, Frederic Seiboth, Bernhard Cherry, Barbara Rey, Michael Berka, Randy Kubicek, Christian P. Baker, Scott E. Margeot, Antoine TI Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biofuels; biotechnology ID HYPOCREA-JECORINA; WILD-TYPE; SUGAR MODIFICATIONS; GENE; MUTANT; LOCALIZATION; GENOME; STRAIN; 2-DEOXYGLUCOSE; GLYCOSYLATION AB Trichoderma reesei (teleomorph Hypocrea jecorina) is the main industrial source of cellulases and hemicellulases harnessed for the hydrolysis of biomass to simple sugars, which can then be converted to biofuels such as ethanol and other chemicals. The highly productive strains in use today were generated by classical mutagenesis. To learn how cellulase production was improved by these techniques, we performed massively parallel sequencing to identify mutations in the genomes of two hyperproducing strains (NG14, and its direct improved descendant, RUT C30). We detected a surprisingly high number of mutagenic events: 223 single nucleotides variants, 15 small deletions or insertions, and 18 larger deletions, leading to the loss of more than 100 kb of genomic DNA. From these events, we report previously undocumented non-synonymous mutations in 43 genes that are mainly involved in nuclear transport, mRNA stability, transcription, secretion/vacuolar targeting, and metabolism. This homogeneity of functional categories suggests that multiple changes are necessary to improve cellulase production and not simply a few clear-cut mutagenic events. Phenotype microarrays show that some of these mutations result in strong changes in the carbon assimilation pattern of the two mutants with respect to the wild-type strain QM6a. Our analysis provides genome-wide insights into the changes induced by classical mutagenesis in a filamentous fungus and suggests areas for the generation of enhanced T. reesei strains for industrial applications such as biofuel production. C1 [Schackwitz, Wendy; Pennacchio, Len; Martin, Joel; Baker, Scott E.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Le Crom, Stephane] INSERM, U784, F-75230 Paris 05, France. [Le Crom, Stephane] Inst Federatif Rech, F-75230 Paris 05, France. [Le Crom, Stephane] Ecole Normale Super, F-75230 Paris, France. [Magnuson, Jon K.; Culley, David E.; Collett, James R.; Baker, Scott E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Druzhinina, Irina S.; Seiboth, Bernhard; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, A-1060 Vienna, Austria. [Mathis, Hugues; Monot, Frederic; Margeot, Antoine] Inst Francais Petr, Dept Biotechnol, F-92852 Rueil Malmaison, France. [Cherry, Barbara; Rey, Michael; Berka, Randy] Novozymes Inc, Davis, CA 95618 USA. RP Baker, SE (reprint author), Joint Genome Inst, Dept Energy, 2800 Mitchell Ave, Walnut Creek, CA 94598 USA. EM scott.baker@pnl.gov; antoine.margeot@ifp.fr RI IFPEN, Publications/A-8028-2008; Le Crom, Stephane/P-4176-2016; Physico chimie, Direction Physico /C-1380-2013 OI Le Crom, Stephane/0000-0002-0534-7797; FU United States Department of Energy ( DOE) Office of Biological and Environmental Research; Austrian Science Foundation [P-19160]; Reseau National Genopole (RNG); IBISA FX The H. jecorina/T. reesei mutant genome sequencing by the Joint Genome Institute was funded by the United States Department of Energy ( DOE) Office of Biological and Environmental Research, and accounted for one strain sequencing. Work in the Austrian lab was supported by a grant from the Austrian Science Foundation ( FWF P-19160) to C. P. K. This work was supported by the Reseau National Genopole (RNG) and IBISA for SLC. We thank Julie Poulain, Laurie Bertand, and Corinne Cruaud from the Genoscope/ CNS for their help conducting the Solexa/Illumina sequencing for two strains. We thank Corinne Blugeon for SNV sequence validation, and Hugo Valls and Maya Spichal for their preliminary work on deletion detection. Analysis performed at Pacific Northwest National Laboratory was funded by the DOE Office of the Biomass Program. NR 37 TC 95 Z9 95 U1 3 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 22 PY 2009 VL 106 IS 38 BP 16151 EP 16156 DI 10.1073/pnas.0905848106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 497PF UT WOS:000270071600030 PM 19805272 ER PT J AU Agapie, T Suseno, S Woodward, JJ Stoll, S Britt, RD Marletta, MA AF Agapie, Theodor Suseno, Sandy Woodward, Joshua J. Stoll, Stefan Britt, R. David Marletta, Michael A. TI NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE heme protein; iron-sulfur cluster; reductase; tetrahydrobiopterin; tetrahydrofolate ID BACILLUS-SUBTILIS; HEME DOMAIN; DEINOCOCCUS-RADIODURANS; ESCHERICHIA-COLI; PROTEIN; PTERIN; TETRAHYDROBIOPTERIN; ENZYMOLOGY; EXPRESSION; CATALYSIS AB The role of nitric oxide ( NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O(2) and NADPH. Mammalian NOS contains a flavin reductase domain ( FAD and FMN) and a catalytic heme oxygenase domain (P450-type heme and tetrahydrobiopterin). Bacterial NOSs, while much less studied, were previously identified as only containing the heme oxygenase domain of the more complex mammalian NOSs. We report here on the characterization of a NOS from Sorangium cellulosum ( both full-length, scNOS, and oxygenase domain, scNOSox). scNOS contains a catalytic, oxygenase domain similar to those found in the mammalian NOS and in other bacteria. Unlike the other bacterial NOSs reported to date, however, this protein contains a fused reductase domain. The scNOS reductase domain is unique for the entire NOS family because it utilizes a 2Fe2S cluster for electron transfer. scNOS catalytically produces NO and citrulline in the presence of either tetrahydrobiopterin or tetrahydrofolate. These results establish a bacterial electron transfer pathway used for biological NO synthesis as well as a unique flexibility in using different tetrahydropterin cofactors for this reaction. C1 [Agapie, Theodor; Suseno, Sandy; Woodward, Joshua J.; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Cali Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. [Agapie, Theodor] Univ Calif Berkeley, Miller Inst Basic Sci, Berkeley, CA 94720 USA. [Stoll, Stefan; Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM marletta@berkeley.edu RI Stoll, Stefan/C-5225-2008 OI Stoll, Stefan/0000-0003-4255-9550 FU Miller Institute for Basic Science FX We thank Prof. Rolf Muller (Saarland University, Germany) for providing bacterial artificial chromosomes containing the scNOS gene. This work was supported by the Miller Institute for Basic Science (University of California, Berkeley). NR 39 TC 27 Z9 29 U1 0 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 22 PY 2009 VL 106 IS 38 BP 16221 EP 16226 DI 10.1073/pnas.0908443106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 497PF UT WOS:000270071600042 PM 19805284 ER PT J AU Iancu, V Kent, PRC Zeng, CG Weitering, HH AF Iancu, V. Kent, P. R. C. Zeng, C. G. Weitering, H. H. TI Structure of YSi2 nanowires from scanning tunneling spectroscopy and first principles SO APPLIED PHYSICS LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; SI(001); SURFACE; NANOSTRUCTURES; SILICIDES; GROWTH AB Exceptionally long and uniform YSi2 nanowires are formed via self-assembly on Si(001). The in-plane width of the thinnest wires is known to be quantized in odd multiples of the silicon lattice constant. Here, we identify a class of nanowires that violates the "odd multiple" rule. The structure of the thinnest wire in this category is determined by comparing scanning tunneling spectroscopy measurements with the calculated surface density of states of candidate models by means of the Pendry R-factor analysis. The relative stability of the odd and even wire systems is analyzed via first-principles calculations. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236778] C1 [Iancu, V.; Zeng, C. G.; Weitering, H. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37931 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Weitering, H. H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Iancu, V (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37931 USA. EM kentpr@ornl.gov RI Kent, Paul/A-6756-2008; Iancu, Violeta/B-7657-2008 OI Kent, Paul/0000-0001-5539-4017; Iancu, Violeta/0000-0003-1146-2959 FU NIH [R01HG002647]; National Energy Research Scientific Computing Center [DE-AC0205CH11231]; National Center for Computational Sciences [DE-AC05-00OR22725]; Center for Nanophase Materials Sciences; DOE Office of Science FX P. R. C. K. thanks Mao-Hua Du for helpful conversations. The experimental research was sponsored by the NIH under Grant No. R01HG002647. The computational research performed by P. R. C. K. used resources of the National Energy Research Scientific Computing Center (contract DE-AC0205CH11231), National Center for Computational Sciences (DE-AC05-00OR22725), and the Center for Nanophase Materials Sciences, which are all sponsored by the DOE Office of Science. NR 21 TC 12 Z9 12 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 123107 DI 10.1063/1.3236778 PG 3 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800059 PM 19859579 ER PT J AU Jimenez, E Camarero, J Sort, J Nogues, J Hoffmann, A Teran, FJ Perna, P Garcia-Martin, JM Dieny, B Miranda, R AF Jimenez, E. Camarero, J. Sort, J. Nogues, J. Hoffmann, A. Teran, F. J. Perna, P. Garcia-Martin, J. M. Dieny, B. Miranda, R. TI Highly asymmetric magnetic behavior in exchange biased systems induced by noncollinear field cooling SO APPLIED PHYSICS LETTERS LA English DT Article ID ANISOTROPY; BILAYERS; FEF2-FE AB A detailed study of the angular dependence of the magnetization reversal in polycrystalline ferromagnetic (FM)/antiferromagnetic Co/IrMn bilayers with noncollinear FM and unidirectional anisotropies shows a peculiar asymmetric magnetic behavior. The anisotropy configuration is set via a field cooling (FC) procedure with the magnetic field misaligned with respect to the easy magnetization direction of the FM layer. Different magnetization reversal modes are observed for either positive or negative angles with respect to the FC direction. The angular dependence of both coercivity and exchange bias also clearly displays the broken symmetry of the induced noncollinearity. Our findings are reproduced with a modified Stoner-Wohlfarth model including the induced anisotropy configuration. Our results highlight the importance of the relative angle between anisotropies in exchange bias systems, opening a new path for the tailoring of their magnetic properties. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236768] C1 [Jimenez, E.; Camarero, J.; Miranda, R.] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. [Jimenez, E.; Camarero, J.; Miranda, R.] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. [Camarero, J.; Teran, F. J.; Perna, P.; Miranda, R.] Inst Madrileno Estudios Avanzados Nanociencia IMD, Madrid 28049, Spain. [Sort, J.] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain. [Sort, J.] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain. [Nogues, J.] CSIC, ICN, Ctr Invest Nanociencia & Nanotecnol, Bellaterra 08193, Spain. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Garcia-Martin, J. M.] CSIC, CNM, IMM, Tres Cantos 28760, Spain. [Dieny, B.] UJF, CEA Grenoble, CNRS, SPINTEC,UMR 8191,CEA, F-38054 Grenoble 9, France. RP Jimenez, E (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain. EM julio.camarero@uam.es RI Teran, Francisco/F-1285-2010; Hoffmann, Axel/A-8152-2009; Garcia-Martin, Jose Miguel/H-4434-2011; Nogues, Josep/D-7791-2012; PERNA, PAOLO/C-3862-2012; Sort, Jordi/F-6582-2014; Camarero, Julio/C-4375-2014; Microelectronica de Madrid, Instituto de/D-5173-2013 OI Camarero De Diego, Julio/0000-0003-0078-7280; Hoffmann, Axel/0000-0002-1808-2767; Garcia-Martin, Jose Miguel/0000-0002-5908-8428; Nogues, Josep/0000-0003-4616-1371; PERNA, PAOLO/0000-0001-8537-4834; Sort, Jordi/0000-0003-1213-3639; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045 FU Spanish MICINN [MAT2006-13470, MAT200766309-C02, HF2006-0197, CSD2007-00010]; Comunidad de Madrid and the Generalitat de Catalunya [S-0505/MAT/0194, 2009-SGR-1292]; UChicago Argonne, LLC [DE-AC02-06CH1357] FX This work was supported in part by the Spanish MICINN through Project Nos. MAT2006-13470, MAT200766309-C02, HF2006-0197, and CSD2007-00010 and by the Comunidad de Madrid and the Generalitat de Catalunya through Project Nos. Nanomagnet S-0505/MAT/0194 and 2009-SGR-1292, respectively. Work at Argonne was supported by the UChicago Argonne, LLC through Contract No. DE-AC02-06CH1357. NR 19 TC 36 Z9 36 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 122508 DI 10.1063/1.3236768 PG 3 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800046 ER PT J AU Myers, S Plis, E Khoshakhlagh, A Kim, HS Sharma, Y Dawson, R Krishna, S Gin, A AF Myers, Stephen Plis, Elena Khoshakhlagh, Arezou Kim, Ha Sul Sharma, Yagya Dawson, Ralph Krishna, Sanjay Gin, Aaron TI The effect of absorber doping on electrical and optical properties of nBn based type-II InAs/GaSb strained layer superlattice infrared detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID PASSIVATION; PHOTODIODES AB We have investigated the electrical and optical properties of a nBn based InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature dependent dark current, responsivity, and detectivity were measured. The device with a nonintentionally doped absorption region demonstrated the lowest dark current density with a specific detectivity at zero bias equal to 1.2 x 10(11) cm Hz(1/2)/W at 77 K. This value decreased to 6 x 10(10) cm Hz(1/2)/W at 150 K. This contrasts significantly with p-i-n diodes, in which the D* decreases by over two orders of magnitude from 77 to 150 K, making nBn devices promising for higher operating temperatures. (C) 2009 American Institute of Physics. [doi:10.1063/1.3230069] C1 [Myers, Stephen; Plis, Elena; Khoshakhlagh, Arezou; Kim, Ha Sul; Sharma, Yagya; Dawson, Ralph; Krishna, Sanjay] Univ New Mexico, Dept Elect & Comp Engn, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Gin, Aaron] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Krishna, S (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Ctr High Technol Mat, Albuquerque, NM 87106 USA. EM skrishna@chtm.unm.edu RI Krishna, Sanjay /C-5766-2009; Gin, Aaron/E-3647-2010; Sharma, Yagya/E-4921-2010 FU AFRL [FA9453-07-C-0171]; AFOSR [FA9550-09-1-0231]; U. S. Department of Energy [DE-AC04-94AL85000] FX The authors would like to acknowledge support from AFRL Contract No. FA9453-07-C-0171 and AFOSR Contract No. FA9550-09-1-0231. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin Co., for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 25 TC 2 Z9 2 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 121110 DI 10.1063/1.3230069 PG 3 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800010 ER PT J AU Yang, A Steger, M Sekiguchi, T Thewalt, MLW Ager, JW Haller, EE AF Yang, A. Steger, M. Sekiguchi, T. Thewalt, M. L. W. Ager, J. W., III Haller, E. E. TI Homogeneous linewidth of the P-31 bound exciton transition in silicon SO APPLIED PHYSICS LETTERS LA English DT Article ID HIGH-PURITY; DONORS AB The optical transitions of the shallow donor bound exciton associated with phosphorus in silicon are a subject of renewed interest due to the recent discovery that these transitions can be used to both read out and initialize the donor electron and nuclear spin in highly enriched Si-28. The ultimate limit of these processes will be determined by the natural or homogeneous linewidth which we determine here using spectral hole burning. The observed 10 neV linewidth is only four times the limit set by the bound exciton lifetime. (C) 2009 American Institute of Physics. [doi:10.1063/1.3238268] C1 [Yang, A.; Steger, M.; Sekiguchi, T.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ager, J. W., III; Haller, E. E.] LBNL, Berkeley, CA 94720 USA. RP Yang, A (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM thewalt@sfu.ca OI Ager, Joel/0000-0001-9334-9751 FU Natural Sciences and Engineering Research Council of Canada (NSERC) FX This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 15 TC 8 Z9 8 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 122113 DI 10.1063/1.3238268 PG 3 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800038 ER PT J AU Yuan, HC Yost, VE Page, MR Stradins, P Meier, DL Branz, HM AF Yuan, Hao-Chih Yost, Vernon E. Page, Matthew R. Stradins, Paul Meier, Daniel L. Branz, Howard M. TI Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules SO APPLIED PHYSICS LETTERS LA English DT Article ID POROUS SILICON AB We study optical effects and factors limiting performance of our confirmed 16.8% efficiency "black silicon" solar cells. The cells incorporate density-graded nanoporous surface layers made by a one-step nanoparticle-catalyzed etch and reflect less than 3% of the solar spectrum, with no conventional antireflection coating. The cells are limited by recombination in the nanoporous layer which decreases short-wavelength spectral response. The optimum density-graded layer depth is then a compromise between reflectance reduction and recombination loss. Finally, we propose universal design rules for high-efficiency solar cells based on density-graded surfaces. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3231438] C1 [Yuan, Hao-Chih; Yost, Vernon E.; Page, Matthew R.; Stradins, Paul; Meier, Daniel L.; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yuan, HC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM hao.chih.yuan@nrel.gov FU U. S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the U. S. Department of Energy under Grant No. DE-AC36-08GO28308. We thank Anna Duda, Lorenzo Roybal, Bobby To, Robert Reedy, and Paul Ciszek for cell fabrication and characterization assistance. NR 16 TC 162 Z9 171 U1 6 U2 80 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 123501 DI 10.1063/1.3231438 PG 3 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800085 ER PT J AU Zeng, L Huegel, A Helgren, E Hellman, F Piamonteze, C Arenholz, E AF Zeng, Li Huegel, A. Helgren, E. Hellman, F. Piamonteze, C. Arenholz, E. TI X-ray absorption study of the electronic structure of Mn-doped amorphous Si (vol 92, 142503, 2008) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Piamonteze, C.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zeng, L (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM li_zeng@berkeley.edu RI MSD, Nanomag/F-6438-2012; Piamonteze, Cinthia/E-9740-2016 NR 1 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 129901 DI 10.1063/1.3238103 PG 1 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800103 ER PT J AU Zhou, YG Zu, XT Gao, F Lv, HF Xiao, HY AF Zhou, Y. G. Zu, X. T. Gao, F. Lv, H. F. Xiao, H. Y. TI Adsorption-induced magnetic properties and metallic behavior of graphene SO APPLIED PHYSICS LETTERS LA English DT Article AB Magnetic properties and electronic structures of graphene with Cl, S, and P adsorption have been investigated using ab initio calculations. The adsorption of Cl leads to Fermi level shifting to valence band, which results in metallic graphene. A band gap of 0.6 eV emerges in a S-absorbed graphene, leading to the semiconducting graphene. The unpaired electrons in the absorbed P atom are polarized and thus exhibit a magnetic moment of 0.86(mu B), while no magnetic moment has been observed after Cl and S adsorption. This demonstrates that the magnetic properties and conductive behavior of graphene can be modified via atom adsorption. Specially, P-absorbed graphene may be useful for spintronic applications, such as tunneling magnetoresistance. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236783] C1 [Zhou, Y. G.; Zu, X. T.; Lv, H. F.; Xiao, H. Y.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com; fei.gao@pnl.gov RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 FU NSAF Joint Foundation of China [10376006]; Sichuan Young Scientists Foundation [03ZQ026-059]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-76RL01830] FX This study was financially supported by the NSAF Joint Foundation of China (Grant No. 10376006), the Sichuan Young Scientists Foundation (Grant No. 03ZQ026-059), and the Project-sponsored by the SRF for ROCS, SEM. F. G. was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy under Grant No. DE-AC05-76RL01830. NR 18 TC 40 Z9 41 U1 6 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 21 PY 2009 VL 95 IS 12 AR 123119 DI 10.1063/1.3236783 PG 3 WC Physics, Applied SC Physics GA 499RX UT WOS:000270243800071 ER PT J AU Grant, DJ Dixon, DA Camaioni, D Potter, RG Christe, KO AF Grant, Daniel J. Dixon, David A. Camaioni, Donald Potter, Robert G. Christe, Karl O. TI Lewis Acidities and Hydride, Fluoride, and V Affinities of the BH3-X-n(n) Compounds for (X = F, Cl, Br, I, NH2, OH, and SH) from Coupled Cluster Theory SO INORGANIC CHEMISTRY LA English DT Article ID CONSISTENT BASIS-SETS; CORRELATED MOLECULAR CALCULATIONS; ELECTRONIC-STRUCTURE CALCULATIONS; DIATOMIC DISSOCIATION-ENERGIES; HYDROGEN STORAGE-SYSTEMS; CONVERGENT BASIS-SETS; GAUSSIAN-BASIS SETS; TRIPLE EXCITATIONS; WAVE-FUNCTIONS; RELATIVISTIC PSEUDOPOTENTIALS AB Atomization energies at 0 K and enthalpies of formation at 0 and 298 K are predicted for the BH4-X-n(n)- and the BH3-nXnF- compounds for (X = F, Cl, Br, I, NH2, OH, and SH) from coupled cluster theory (CCSD(T)) calculations with correlation-consistent basis sets and with an effective core potential on I. To achieve near chemical accuracy (+/- 1.0 kcal/mol), additional corrections were added to the complete basis set binding energies. The hydride, fluoride, and X- affinities of the BH3-nXn compounds were predicted. Although the hydricle and fluoride affinities differ somewhat in their magnitudes, they show very similar trends and are both suitable for judging the Lewis acidities of compounds. The only significant differences in their acidity strength orders are found for the boranes substituted with the strongly electron withdrawing and back-donating fluorine and hydroxyl ligands. The highest H- and F- affinities are found for BI3 and the lowest ones for B(NH2)(3). Within the boron trihalide series, the Lewis acidity increases monotonically with increasing atomic weight of the halogen, that is, Bl(3) is a considerably stronger Lewis acid than BF3. For the X- affinities in the BX3, HBX2, and H2BX series, the fluorides show the highest values, whereas the amino and mercapto compounds show the lowest ones. Hydride and fluoride affinities of the BH3-X-n(n) compounds exhibit linear correlations with the proton affinity of X- for most X ligands. Reasons for the correlation are discussed. A detailed analysis of the individual contributions to the Lewis acidities of these substituted boranes shows that the dominant effect in the magnitude of the acidity is the strength of the BX3--F bond. The main contributor to the relative differences in the Lewis acidities of BX3 for X, a halogen, is the electron affinity Of BX3 with a secondary contribution from the distortion energy from planar to pyramidal BX3. The B-F bond dissociation energy Of X3B-F- and the distortion energy from pyramidal to tetrahedral BX3- are of less importance in determining the relative acidities. Because the electron affinity Of BX3 is strongly influenced by the charge density in the empty p(z) lowest unoccupied molecular orbital of boron, the amount of pi-back-donation from the halogen to boron is crucial and explains why the Lewis acidity of BF3 is significantly lower than those of BX3 with X = Cl, Br, and I. C1 [Grant, Daniel J.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Camaioni, Donald; Potter, Robert G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Christe, Karl O.] Univ So Calif, Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA. [Christe, Karl O.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu RI Christe, Karl/O-4885-2014 OI Christe, Karl/0000-0003-0661-5519 FU Department of Energy; Office of Energy Efficiency; Renewable Energy under the Hydrogen Storage Grand Challenge, Solicitation [DE-PS36-03GO93013]; Air Force Office of Scientific Research; National Science Foundation; Defense Threat Reduction Agency; Office of Naval Research FX Funding provided in part by the Department of Energy, Office of Energy Efficiency and Renewable Energy under the Hydrogen Storage Grand Challenge, Solicitation No. DE-PS36-03GO93013. This work was done as part of the Chemical Hydrogen Storage Center. D.A.D. is indebted to the Robert Ramsay Endowment of the University of Alabama. K.O.C. thanks the Air Force Office of Scientific Research, the National Science Foundation, the Defense Threat Reduction Agency, and the Office of Naval Research for financial support. NR 67 TC 32 Z9 32 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 21 PY 2009 VL 48 IS 18 BP 8811 EP 8821 DI 10.1021/ic901092x PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 492PR UT WOS:000269671500024 PM 19697951 ER PT J AU Rothenberger, A Morris, C Wang, HH Chung, DY Kanatzidis, MG AF Rothenberger, Alexander Morris, Collin Wang, Hsien-Hau Chung, Duck Young Kanatzidis, Mercouri G. TI Soft-Hard Acid-Base Interactions: Probing Coordination Preferences of Sulfur and Selenium in Mixed Chalcophosphates in the Family APbPS(4-x)Se(x) (A = K, Rb, Cs; x=0-4) SO INORGANIC CHEMISTRY LA English DT Article ID 2ND-HARMONIC GENERATION RESPONSE; METAL POLYTHIOPHOSPHATE FLUXES; SODIUM IONIC-CONDUCTIVITY; CRYSTAL-STRUCTURE; MONOTHIOPHOSPHATE; CHEMISTRY; A=K; THIOPHOSPHATE; POLYMER; SALT AB The synthesis and structures of the three new compounds, KPbPS1.84Se2.16 (1), RbPbPS1.56Se2.43 (2), and CsPbPS3.46Se0.54 (3), are reported. The solid state structures of 1-3 consist of two-dimensional layers of [PbP-(S/Se)(4)] separated by alkali metal ions. The structure of 1 was solved in the orthorhombic space group Pna2(1). Compounds 2 and 3 possess the CsSmGeS4 structure type, crystallizing in the orthorhombic space group P2(1)2(1)2(1). All compounds were refined as racemic twins. All chalcogen sites around the tetrahedrally coordinated P atoms show mixed S/Se occupancy; however, there is a preference for Se binding to Pb ions and S binding to alkali ions. A (31)p magic angle spinning NMR study on 1 suggests that, in mixed seleno-/thiophosphates, all of the anions [PSxSe4-x](3-) (x = 0, 1, 2, 3, 4) are present. The different amount of sulfur and selenium present in KPbPS1.84Se2.16 (1), RbPbPS1.56Se2.43 (2), and CsPbPS3.46Se0.54 (3) is reflected in the solid state absorption spectra from which bandgaps of 2.2 eV were determined for 1 and 2, and a blue-shift to 2.5 eV was observed because of the higher sulfur-content in 3. Thermogravimetric analysis experiments indicated that, upon heating, compound 1 decomposes forming PbSe and sulfur together with other unidentified products. A Raman spectrum of compound 1 showed more bands than are usually observed in seleno- or thiophosphate salts and is another indicator of the mixed seleno-/thiophosphate anions found in 1. C1 [Rothenberger, Alexander; Morris, Collin; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wang, Hsien-Hau; Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Morris, Collin/E-1218-2015; Rothenberger, Alexander/B-9119-2015 FU DFG [RO 3069/4-1]; National Science Foundation [DMR-0801855]; U.S. DOE Office of Science [DE-AC02-06CH11357] FX Financial support from the DFG (RO 3069/4-1) and from the National Science Foundation (DMR-0801855) is gratefully acknowledged. This work was also supported by the U.S. DOE Office of Science under contract No. DE-AC02-06CH11357 (Chung, Wang). NR 37 TC 8 Z9 8 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD SEP 21 PY 2009 VL 48 IS 18 BP 9036 EP 9040 DI 10.1021/ic901283k PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 492PR UT WOS:000269671500048 PM 19708675 ER PT J AU Kerisit, S Rosso, KM AF Kerisit, Sebastien Rosso, Kevin M. TI Transition path sampling of water exchange rates and mechanisms around aqueous ions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID MOLECULAR-DYNAMICS SIMULATION; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; PRESSURE NMR KINETICS; METAL HEXAAQUA IONS; X-RAY-DIFFRACTION; FREE-ENERGY; HYDRATION SHELL; MD SIMULATIONS; MEAN FORCE AB The rates and mechanisms of water exchange around two aqueous ions, namely, Na(+) and Fe(2+), have been determined using transition path sampling. In particular, the pressure dependence of the water exchange rates was computed to determine activation volumes. A common approach for calculating water exchange rates, the reactive flux method, was also employed and the two methods were compared. The water exchange rate around Na(+) is fast enough to be calculated by direct molecular dynamics simulations, thus providing a reference for comparison. Both approaches predicted exchange rates and activation volumes in agreement with the direct simulation results. Four additional sodium potential models were considered to compare the results of this work with the only activation volume for Na(+) previously determined from molecular simulation [D. Spangberg et al., Chem. Phys. Lett. 276, 114 (1997)] and provide the best possible estimate of the activation volume based on the ability of the models to reproduce known properties of the aqueous sodium ion. The Spangberg and Hermansson [D. Spangberg and K. Hermansson, J. Chem. Phys. 120, 4829 (2004)] and X-Plor/Charmm-22 [M. Patra and M. Karttunen, J. Comput. Chem. 25, 678 (2004)] models performed best and predicted activation volumes of -0.22 and -0.78 cm(3) mol(-1), respectively. For water exchange around Fe(2+), transition path sampling predicts an activation volume of +3.8 cm(3) mol(-1), in excellent agreement with the available experimental data. The potential of mean force calculation in the reactive flux approach, however, failed to sufficiently sample appropriate transition pathways and the opposite pressure dependence of the rate was predicted as a result. Analysis of the reactive trajectories obtained with the transition path sampling approach suggests that the Fe(2+) exchange reaction takes place via an associative interchange mechanism, which goes against the conventional mechanistic interpretation of a positive activation volume. Collectively, considerable insight was obtained not only for the exchange rates and mechanisms for Na(+) and Fe(2+) but also for identifying the most robust modeling strategy for these purposes. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3224737] C1 [Kerisit, Sebastien; Rosso, Kevin M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov FU U.S. Department of Energy (DOE) FX The authors acknowledge Dr. Cynthia Lo for her help with the initial implementation and application of the transition path sampling approach and Dr. Gregory Schenter for useful discussions. This research was supported by the U.S. Department of Energy (DOE) through the Office of Basic Energy Sciences-Geosciences program and the Office of Biological and Environmental Research-supported Stanford Environmental Molecular Sciences Institute. The computer simulations were performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U. S. Department of Energy's Office of Biological and Environmental Research (OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract No. DE-AC0576RL01830. NR 102 TC 21 Z9 21 U1 5 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2009 VL 131 IS 11 AR 114512 DI 10.1063/1.3224737 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 497XG UT WOS:000270097400043 PM 19778134 ER PT J AU Schwartz, CP Uejio, JS Duffin, AM England, AH Prendergast, D Saykally, RJ AF Schwartz, Craig P. Uejio, Janel S. Duffin, Andrew M. England, Alice H. Prendergast, David Saykally, Richard J. TI Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; ENERGY-LOSS SPECTROSCOPY; LIQUID WATER; FINE-STRUCTURE; AB-INITIO; MOLECULES; EXCITATION; MICROJETS; SURFACES AB Near edge x-ray absorption fine structure spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3223539] C1 [Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Saykally, Richard J.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Prendergast, David] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu RI Prendergast, David/E-4437-2010; OI England, Alice/0000-0001-7698-8156 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the LBNL Chemical Sciences Division, the Molecular Foundry, and the ALS. Computational resources were provided by NERSC, a DOE Advanced Scientific Computing Research User Facility. We wish to thank Wanli Yang for excellent user support of Beamline 8.0.1. NR 50 TC 13 Z9 13 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 21 PY 2009 VL 131 IS 11 AR 114509 DI 10.1063/1.3223539 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 497XG UT WOS:000270097400040 PM 19778131 ER PT J AU Zhang, YY Stevens, B Medeiros, B Ghil, M AF Zhang, Yunyan Stevens, Bjorn Medeiros, Brian Ghil, Michael TI Low-Cloud Fraction, Lower-Tropospheric Stability, and Large-Scale Divergence SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; PLANETARY BOUNDARY-LAYER; TOPPED MIXED LAYERS; MARINE STRATOCUMULUS; NORTHEAST PACIFIC; ENTRAINMENT; PARAMETERIZATION; SIMULATIONS; CONVECTION; DYNAMICS AB This paper explores the capability of the mixed-layer model (MLM) to represent the observed relationship between low-cloud fraction and lower-tropospheric stability; it also investigates the influence of large-scale meteorological fields and their variability on this relationship. The MLM's local equilibrium solutions are examined subject to realistic boundary forcings that are derived from data of the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). The MLM is successful in reproducing the positive correlation between low-cloud fraction and lower-tropospheric stability. The most accurate relationship emerges when the forcings capture synoptic variability, in particular, the daily varying large-scale divergence is a leading factor in improving the regression slope. The feature of the results is mainly attributed to the model cloud fraction's intrinsic nonlinear response to the divergence field. Given this nonlinearity, the full range of divergence must be accounted for since a broad distribution of divergences will give a better cloud fraction overall, although model biases might still affect individual MLM results. The model cloud fraction responds rather linearly to lower-tropospheric stability, and the distribution of the latter is less sensitive to sampling at different time scales than divergence. The strongest relationship between cloud fraction and stability emerges in the range of intermediate stability values. This conditional dependence is evident in both model results and observations. The observed correlation between cloud fraction and stability may thus depend on the underlying distribution of weather noise, and hence may not be appropriate in situations where such statistics can be expected to change. C1 [Zhang, Yunyan] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Zhang, Yunyan; Stevens, Bjorn; Medeiros, Brian; Ghil, Michael] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Stevens, Bjorn] Max Planck Inst Meteorol, Hamburg, Germany. [Ghil, Michael] Ecole Normale Super, CNRS, IPSL, Dept Geosci, Paris, France. [Ghil, Michael] Ecole Normale Super, CNRS, IPSL, Meteorol Dynam Lab, Paris, France. RP Zhang, YY (reprint author), Lawrence Livermore Natl Lab, Mail Code L-103,POB 808, Livermore, CA 94551 USA. EM zhang25@llnl.gov RI Zhang, Yunyan/F-9783-2011; Medeiros, Brian/A-3695-2009; Stevens, Bjorn/A-1757-2013 OI Medeiros, Brian/0000-0003-2188-4784; Stevens, Bjorn/0000-0003-3795-0475 NR 31 TC 25 Z9 26 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD SEP 21 PY 2009 VL 22 IS 18 BP 4827 EP 4844 DI 10.1175/2009JCLI2891.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 496ZT UT WOS:000270021000007 ER PT J AU Kucheyev, SO Hamza, AV Worsley, MA AF Kucheyev, S. O. Hamza, A. V. Worsley, M. A. TI Ion-beam-induced stiffening of nanoporous silica SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID MECHANICAL-PROPERTIES; SENSING INDENTATION; AEROGELS; FILMS AB Low-density nanoporous solids have notoriously poor mechanical properties. Here, we show that light-ion irradiation can significantly improve the elastic modulus and hardness of low-density silica nanofoams (aerogels). Both elastic modulus and hardness saturate with ion fluence, and the saturation level increases with the ion stopping power. Such ion-beam stiffening is attributed to local material modification along ion tracks. C1 [Kucheyev, S. O.; Hamza, A. V.; Worsley, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU US DOE [DE-AC52-07NA27344] FX The authors thank J H Satcher Jr for providing the nanoporous silica monolith used in this study. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. NR 21 TC 3 Z9 3 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 21 PY 2009 VL 42 IS 18 AR 182003 DI 10.1088/0022-3727/42/18/182003 PG 4 WC Physics, Applied SC Physics GA 491DG UT WOS:000269557000003 ER PT J AU Pandey, KKM Chen, JS Liu, T Sun, CJ Chow, GM AF Pandey, K. K. M. Chen, J. S. Liu, T. Sun, C. J. Chow, G. M. TI Crystallographic origin of perpendicular magnetic anisotropy in CoPt film: polarized x-ray absorption study SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ALLOY THIN-FILMS; RECORDING MEDIA; SPECTROSCOPY; GROWTH; EXAFS AB Crystallographic structure, growth induced miscibility gap and strain in Ta/Co(100-x)Pt(x) (0 <= x <= 43 at%)/Ru/Ta/glass films deposited at ambient temperature were investigated using polarized x-ray absorption spectroscopy to clarify the origin of observed perpendicular magnetic anisotropy (PMA) in Co(72)Pt(28) film. Extended x-ray absorption fine structure spectroscopy data at Co K-edge showed that Co has a similar local atomic environment and averaged interatomic distance in the in-plane and out-of-plane polarization geometries for Co(72)Pt(28), ruling out the contribution of magneto-elastic anisotropy and growth induced structural anisotropy as the origin of PMA. A large PMA in Co(72)Pt(28) film was attributed to the preferred hexagonal close-packed stacking as observed using the x-ray absorption near-edge structure spectroscopy. C1 [Pandey, K. K. M.; Chen, J. S.; Chow, G. M.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 119260, Singapore. [Liu, T.] Natl Univ Singapore, Singapore Synchrotron Light Source 117603, Singapore 119260, Singapore. [Sun, C. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pandey, KKM (reprint author), Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 119260, Singapore. EM msepkkm@nus.edu.sg RI Chen, Jingsheng/D-9107-2011 FU NUS Academic Research; Office of Naval Research, USA [NoN00014-06-1-0157]; A*STAR, Singapore [062 101 0021] FX GMC acknowledges the support of this work by the NUS Academic Research Grant and the Office of Naval Research, USA (Grant NoN00014-06-1-0157). The partial support of this work by A*STAR, Singapore (Grant No 062 101 0021), is acknowledged. The authors are grateful to Steve M Heald for helping with EXAFS data collection at APS. They appreciate the experimental facility provided by the Data Storage Institute Singapore for the fabrication of samples. NR 23 TC 5 Z9 5 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 21 PY 2009 VL 42 IS 18 AR 185007 DI 10.1088/0022-3727/42/18/185007 PG 6 WC Physics, Applied SC Physics GA 491DG UT WOS:000269557000016 ER PT J AU Rong, LB Perelson, AS AF Rong, Libin Perelson, Alan S. TI Modeling HIV persistence, the latent reservoir, and viral blips SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Review DE HIV-1; HAART; Low-level viremia; Latency; Viral reservoirs; Blips; Mathematical models ID HUMAN-IMMUNODEFICIENCY-VIRUS; ACTIVE ANTIRETROVIRAL THERAPY; CD4(+) T-CELLS; STRUCTURED TREATMENT INTERRUPTIONS; DYNAMICS IN-VIVO; FOLLICULAR DENDRITIC CELLS; LOW-LEVEL VIREMIA; LYMPHOCYTIC CHORIOMENINGITIS VIRUS; INTEGRASE INHIBITOR RALTEGRAVIR; BLOOD MONONUCLEAR-CELLS AB HIV-1 eradication from infected individuals has not been achieved with the prolonged use of highly active antiretroviral therapy (HAART). The cellular reservoir for HIV-1 in resting memory CD4(+) T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time but is able to release replication-competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling has helped improve our understanding of HIV-1 dynamics in patients on HAART and of the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies. Published by Elsevier Ltd. C1 [Rong, Libin; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; NIH [AI028433-18, RR06555-17] FX Portions of this work were performed under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396. This work was supported by NIH Grants AI028433-18 and RR06555-17. We thank three reviewers for their constructive comments and suggestions that improved this manuscript. NR 237 TC 86 Z9 90 U1 2 U2 16 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD SEP 21 PY 2009 VL 260 IS 2 BP 308 EP 331 DI 10.1016/j.jtbi.2009.06.011 PG 24 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 559CP UT WOS:000274798300014 PM 19539630 ER PT J AU Adloff, C Karyotakis, Y Repond, J Yu, J Eigen, G Hawkes, CM Mikami, Y Miller, O Watson, NK Wilson, JA Goto, T Mavromanolakis, G Thomson, MA Ward, DR Yan, W Benchekroun, D Hoummada, A Krim, M Benyamna, M Boumediene, D Brun, N Carloganu, C Gay, P Morisseau, F Blazey, GC Chakraborty, D Dyshkant, A Francis, K Hedin, D Lima, G Zutshi, V Hostachy, JY Morin, L D'Ascenzo, N Cornett, U David, D Fabbri, R Falley, G Gadow, K Garutti, E Gottlicher, P Jung, T Karstensen, S Korbel, V Lucaci-Timoce, AI Lutz, B Meyer, N Morgunov, V Reinecke, M Sefkow, F Smirnov, P Vargas-Trevino, A Wattimena, N Wendt, O Feege, N Groll, M Haller, J Heuer, RD Richter, S Samson, J Kaplan, A Schultz-Coulon, HC Shen, W Tadday, A Bilki, B Norbeck, E Onel, Y Kim, EJ Baek, NI Kim, DW Lee, K Lee, SC Kawagoe, K Tamura, Y Bowerman, DA Dauncey, PD Magnan, AM Yilmaz, H Zorba, O Bartsch, V Postranecky, M Warren, M Wing, M Giannelli, MF Green, MG Salvatore, F Bedjidian, M Kieffer, R Laktineh, I Bailey, DS Barlow, RJ Kelly, M Thompson, RJ Danilov, M Tarkovsky, E Baranova, N Karmanov, D Korolev, M Merkin, M Voronin, A Frey, A Lu, S Prothmann, K Simon, F Bouquet, B Callier, S Cornebise, P Fleury, J Li, H Richard, F de la Taille, C Poeschl, R Raux, L Ruan, M Seguin-Moreau, N Wicek, F Anduze, M Boudry, V Brient, JC Gaycken, G Freitas, PME Musat, G Reinhard, M Rouge, A Vanel, JC Videau, H Park, KH Zacek, J Cvach, J Gallus, P Havranek, M Janata, M Marcisovsky, M Polak, I Popule, J Tomasek, L Tomasek, M Ruzicka, P Sicho, P Smolik, J Vrba, V Zalesak, J Belhorma, B Belmir, M Nam, SW Park, IH Yang, J Chai, JS Kim, JT Kim, GB Kang, J Kwon, YJ AF Adloff, C. Karyotakis, Y. Repond, J. Yu, J. Eigen, G. Hawkes, C. M. Mikami, Y. Miller, O. Watson, N. K. Wilson, J. A. Goto, T. Mavromanolakis, G. Thomson, M. A. Ward, D. R. Yan, W. Benchekroun, D. Hoummada, A. Krim, M. Benyamna, M. Boumediene, D. Brun, N. Carloganu, C. Gay, P. Morisseau, F. Blazey, G. C. Chakraborty, D. Dyshkant, A. Francis, K. Hedin, D. Lima, G. Zutshi, V. Hostachy, J. -Y. Morin, L. D'Ascenzo, N. Cornett, U. David, D. Fabbri, R. Falley, G. Gadow, K. Garutti, E. Goettlicher, P. Jung, T. Karstensen, S. Korbel, V. Lucaci-Timoce, A. -I. Lutz, B. Meyer, N. Morgunov, V. Reinecke, M. Sefkow, F. Smirnov, P. Vargas-Trevino, A. Wattimena, N. Wendt, O. Feege, N. Groll, M. Haller, J. Heuer, R. -D. Richter, S. Samson, J. Kaplan, A. Schultz-Coulon, H. -Ch. Shen, W. Tadday, A. Bilki, B. Norbeck, E. Onel, Y. Kim, E. J. Baek, N. I. Kim, D. -W. Lee, K. Lee, S. C. Kawagoe, K. Tamura, Y. Bowerman, D. A. Dauncey, P. D. Magnan, A. -M. Yilmaz, H. Zorba, O. Bartsch, V. Postranecky, M. Warren, M. Wing, M. Giannelli, M. Faucci Green, M. G. Salvatore, F. Bedjidian, M. Kieffer, R. Laktineh, I. Bailey, D. S. Barlow, R. J. Kelly, M. Thompson, R. J. Danilov, M. Tarkovsky, E. Baranova, N. Karmanov, D. Korolev, M. Merkin, M. Voronin, A. Frey, A. Lu, S. Prothmann, K. Simon, F. Bouquet, B. Callier, S. Cornebise, P. Fleury, J. Li, H. Richard, F. de la Taille, Ch. Poeschl, R. Raux, L. Ruan, M. Seguin-Moreau, N. Wicek, F. Anduze, M. Boudry, V. Brient, J. -C. Gaycken, G. Mora e Freitas, P. Musat, G. Reinhard, M. Rouge, A. Vanel, J. -Ch. Videau, H. Park, K. -H. Zacek, J. Cvach, J. Gallus, P. Havranek, M. Janata, M. Marcisovsky, M. Polak, I. Popule, J. Tomasek, L. Tomasek, M. Ruzicka, P. Sicho, P. Smolik, J. Vrba, V. Zalesak, J. Belhorma, B. Belmir, M. Nam, S. W. Park, I. H. Yang, J. Chai, J. S. Kim, J. -T. Kim, G. -B. Kang, J. Kwon, Y. -J. TI Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CALICE; ILC; Electromagnetic calorimeter; Silicon detector; Electron reconstruction AB A prototype silicon-tungsten electromagnetic calorimeter (ECAL) for an international linear collider (ILC) detector was installed and tested during summer and autumn 2006 at CERN. The detector had 6480 silicon pads of dimension 1 x 1 cm(2). Data were collected with electron beams in the energy range 6-45 GeV. The analysis described in this paper focuses on electromagnetic shower reconstruction and characterises the ECAL response to electrons in terms of energy resolution and linearity. The detector is linear to within approximately the 1% level and has a relative energy resolution of (16.5 +/- 0.14(stat) +/- 0.4(syst))/root E(GeV) circle plus (1.07 +/- 0.07(stat) +/- 0.1 (syst)) (%). The spatial uniformity and the time stability of the ECAL are also addressed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Benyamna, M.; Boumediene, D.; Brun, N.; Carloganu, C.; Gay, P.; Morisseau, F.] Phys Corpusculaire Lab, F-63177 Clermont Ferrand, France. [Adloff, C.; Karyotakis, Y.] Lab Annecy Le Vieux Phys Particules, F-74941 Annecy, France. [Repond, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Hawkes, C. M.; Mikami, Y.; Miller, O.; Watson, N. K.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Benchekroun, D.; Hoummada, A.; Krim, M.] Univ Hassan II An Chock, Fac Sci, Casablanca, Morocco. [Blazey, G. C.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Lima, G.; Zutshi, V.] No Illinois Univ, Dept Phys, NICADD, De Kalb, IL 60115 USA. [Hostachy, J. -Y.; Morin, L.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, Inst Polytech Grenoble,IN2P3, F-38026 Grenoble, France. [D'Ascenzo, N.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Goettlicher, P.; Jung, T.; Karstensen, S.; Korbel, V.; Lucaci-Timoce, A. -I.; Lutz, B.; Meyer, N.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.] DESY, D-22603 Hamburg, Germany. [Feege, N.; Groll, M.; Haller, J.; Heuer, R. -D.; Richter, S.; Samson, J.] Univ Hamburg, Dept Phys, Inst Expt Phys, D-22761 Hamburg, Germany. [Kaplan, A.; Schultz-Coulon, H. -Ch.; Shen, W.; Tadday, A.] Univ Heidelberg, Fak Phys & Astron, D-69120 Heidelberg, Germany. [Bilki, B.; Norbeck, E.; Onel, Y.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kim, E. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Baek, N. I.; Kim, D. -W.; Lee, K.; Lee, S. C.] Kangnung Natl Univ, HEP PD, Kangnung, South Korea. [Kawagoe, K.; Tamura, Y.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Bowerman, D. A.; Dauncey, P. D.; Magnan, A. -M.; Yilmaz, H.; Zorba, O.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2BW, England. [Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Giannelli, M. Faucci; Green, M. G.; Salvatore, F.] Royal Holloway Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Bedjidian, M.; Kieffer, R.; Laktineh, I.] Univ Lyon, F-69622 Lyon, France. [Bedjidian, M.; Kieffer, R.; Laktineh, I.] Univ Lyon 1, F-69622 Villeurbanne, France. [Bedjidian, M.; Kieffer, R.; Laktineh, I.] Inst Phys Nucl, CNRS, IN2P3, Lyon, France. [Bailey, D. S.; Barlow, R. J.; Kelly, M.; Thompson, R. J.] Univ Manchester, Sch Phys & Astron, Schuster Lab, Manchester M13 9PL, Lancs, England. [Danilov, M.; Tarkovsky, E.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Baranova, N.; Karmanov, D.; Korolev, M.; Merkin, M.; Voronin, A.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys SINP MSU, Moscow 119991, Russia. [Frey, A.; Lu, S.; Prothmann, K.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bouquet, B.; Callier, S.; Cornebise, P.; Fleury, J.; Li, H.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Ruan, M.; Seguin-Moreau, N.; Wicek, F.] Univ Paris 11, Ctr Orsay, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Anduze, M.; Boudry, V.; Brient, J. -C.; Gaycken, G.; Mora e Freitas, P.; Musat, G.; Reinhard, M.; Rouge, A.; Vanel, J. -Ch.; Videau, H.] Ecole Polytech, Lab Leprince Ringuet LLR, F-91128 Palaiseau, France. [Park, K. -H.] Pohang Accelerator Lab, Pohang 790784, South Korea. [Zacek, J.] Charles Univ Prague, Inst Nucl & Particle Phys, CZ-18000 Prague 8, Czech Republic. [Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Belhorma, B.; Belmir, M.] Ctr Natl Energie Sci & Tech Nucl, Rabat, Morocco. [Nam, S. W.; Park, I. H.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120, South Korea. [Chai, J. S.; Kim, J. -T.; Kim, G. -B.] Sungkyunkwan Univ, Suwon 440746, Gyeonggi Do, South Korea. [Kang, J.; Kwon, Y. -J.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. RP Carloganu, C (reprint author), Phys Corpusculaire Lab, 24 Ave Landais, F-63177 Clermont Ferrand, France. EM carlogan@in2p3.fr RI Merkin, Mikhail/D-6809-2012; Cvach, Jaroslav/G-6269-2014; Smolik, Jan/H-1479-2014; Marcisovsky, Michal/H-1533-2014; Zalesak, Jaroslav/G-5691-2014; Tomasek, Lukas/G-6370-2014; Danilov, Mikhail/C-5380-2014; OI Watson, Nigel/0000-0002-8142-4678; Zalesak, Jaroslav/0000-0002-4519-4705; Tomasek, Lukas/0000-0002-5224-1936; Danilov, Mikhail/0000-0001-9227-5164; Bilki, Burak/0000-0001-9515-3306; Hedin, David/0000-0001-9984-215X; Blazey, Gerald/0000-0002-7435-5758 FU Bundesministerium fur Bildung und Forschung, Germany; DFG; Helmholtz-Nachwuchsgruppen [VH-NG-206]; BMBF [05HS6VH1, 05HS6GU1]; Alexander von Humboldt Foundation [RUS1066839]; Helmholtz Foundation; RFBR [HRJRG-002]; Russian Agency for Atomic Energy [3090]; Russian Grants [SS-1329.2008.2, RFBR0402/17307a]; Russian Ministry of Education and Science; CRI(MST) of MOST/KOSEF in Korea; US Department of Energy; US National Science Foundation; Ministry of Education, Youth and Sports of the Czech Republic [AV0 Z3407391, AV0 Z10100502, LC527]; Agency of the Czech Republic [202/05/0653]; Science and Technology Facilities Council, UK FX We would like to thank the technicians and the engineers who contributed to the design and construction of the prototypes, including U. Cornett, G. Falley, K Gadow, R Gottlicher, S. Karstensen and P. Smirnov. We also gratefully acknowledge the DESY and CERN managements for their support and hospitality, and their accelerator staff for the reliable and efficient beam operation. We would like to thank the HEP group of the University of Tsukuba for the loan of drift chambers for the DESY test-beam. The authors would like to thank the RIMST (Zelenograd) group for their help and sensors manufacturing. This work was supported by the Bundesministerium fur Bildung und Forschung, Germany: by the DFG cluster of excellence "Origin and Structure of the Universe": by the Helmholtz-Nachwuchsgruppen Grant VH-NG-206; by the BMBF, Grant numbers 05HS6VH1 and 05HS6GU1; by the Alexander von Humboldt Foundation (Research Award IV, RUS1066839 GSA): by joint Helmholtz Foundation and RFBR Grant HRJRG-002, Russian Agency for Atomic Energy, ISTC Grant 3090; by Russian Grants SS-1329.2008.2 and RFBR0402/17307a and by the Russian Ministry of Education and Science; by CRI(MST) of MOST/KOSEF in Korea: by the US Department of Energy and the US National Science Foundation: by the Ministry of Education, Youth and Sports of the Czech Republic under the Projects AVO Z3407391. AVO Z10100502, LC527 and by the Grant Agency of the Czech Republic under the Project 202/05/0653; and by the Science and Technology Facilities Council, UK. NR 11 TC 20 Z9 20 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2009 VL 608 IS 3 BP 372 EP 383 DI 10.1016/j.nima.2009.07.026 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 504IU UT WOS:000270610400002 ER PT J AU Guerrero, C Abbondanno, U Aerts, G Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Ferrant, L Ferrari, A Ferreira-Marques, R Fujii, K Furman, W Goncalves, I Gonzalez-Romero, E Gramegna, F Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kappeler, F Kadi, Y Karadimos, D Kerveno, M Koehler, P Kossionides, E Krticka, M Lampoudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mendoza, E Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vicente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wiescher, M Wisshak, K AF Guerrero, C. Abbondanno, U. Aerts, G. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fujii, K. Furman, W. Goncalves, I. Gonzalez-Romero, E. Gramegna, F. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Kerveno, M. Koehler, P. Kossionides, E. Krticka, M. Lampoudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mendoza, E. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vicente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wiescher, M. Wisshak, K. TI The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE n_TOF; Neutron capture; Neutron cross-sections; Total Absorption; Time-of-Flight; BaF2 detector ID CROSS-SECTION MEASUREMENTS; OF-FLIGHT FACILITY; DETECTOR; TRANSMUTATION; ISOTOPES; BEAM AB The n_TOF Collaboration has built and commissioned a high-performance detector for (n, gamma) measurements called the Total Absorption Calorimeter (TAC). The TAC was especially designed for measuring neutron capture cross-sections of low-mass and/or radioactive samples with the accuracy required for nuclear technology and stellar nucleosynthesis. We present a detailed description of the TAC and discuss its overall performance in terms of energy and time resolution, background discrimination, detection efficiency and neutron sensitivity. (C) 2009 Elsevier B.V. All rights reserved. C1 [Guerrero, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Villamarin, D.; Vicente, M. C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Carrapico, C.; Dridi, W.; Gunsing, F.; Lampoudis, C.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay DSM DAPNIA, Gif Sur Yvette, France. [Alvarez, H.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; Baumann, P.; David, S.; Ferrant, L.; Haas, B.; Kerveno, M.; Lukic, S.; Rudolf, G.; Stephan, C.; Tassan-Got, L.] Ctr Natl Rech Sci IN2P3 IReS, Strasbourg, France. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, E-08028 Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Trieste, Italy. [Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Mengoni, A.; Rubbia, C.; Sarchiapone, L.; Vlachoudis, V.] CERN, Geneva, Switzerland. [Capote, R.; Mengoni, A.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.] Tech Univ Munich, Phys Dept E12, D-8046 Garching, Germany. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM USA. [Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe GmbH FZK, Inst Kernphys, Karlsruhe, Germany. [Igashira, M.] Tokyo Inst Technol, Tokyo, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Inst Isotopenforsch & Kernphys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Capote, R.; Lozano, M.; Quesada, J.] Univ Seville, Seville, Spain. [Rauscher, T.] Univ Basel, Dept Phys, CH-4003 Basel, Switzerland. [Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Inst Tecnol & Nucl ITN, Lisbon, Portugal. [Ventura, A.] ENEA, Bologna, Italy. RP Guerrero, C (reprint author), Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. EM carlos.guerrero@ciemat.es RI Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Quesada Molina, Jose Manuel/K-5267-2014; Mendoza Cembranos, Emilio/K-5789-2014; Gramegna, Fabiana/B-1377-2012; santos, cayetano/L-1873-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Rauscher, Thomas/D-2086-2009; Cano Ott, Daniel/K-4945-2014; Jericha, Erwin/A-4094-2011; Becvar, Frantisek/D-3824-2012; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; OI Paradela Dobarro, Carlos/0000-0003-0175-8334; Chepel, Vitaly/0000-0003-0675-4586; Lozano Leyva, Manuel Luis/0000-0003-2853-4103; Koehler, Paul/0000-0002-6717-0771; Domingo-Pardo, Cesar/0000-0002-2915-5466; Massimi, Cristian/0000-0003-2499-5586; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Pavlik, Andreas/0000-0001-7526-3372; Goncalves, Isabel/0000-0002-1997-955X; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Gramegna, Fabiana/0000-0001-6112-0602; santos, cayetano/0000-0003-0727-1914; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Rauscher, Thomas/0000-0002-1266-0642; Cano Ott, Daniel/0000-0002-9568-7508; Jericha, Erwin/0000-0002-8663-0526; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Marques, Rui/0000-0003-3549-8198 FU European Commission [FIKW-CT-2000-00107] FX This work was partially funded by the ENRESA-CIEMAT agreement for the Transmutacion Aplicada a los Residuos Radioactivos de Alta Actividad and by the European Commission 5th Framework Programme under Contract number FIKW-CT-2000-00107 (n_TOF-ND-ADS Project). NR 46 TC 49 Z9 50 U1 5 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2009 VL 608 IS 3 BP 424 EP 433 DI 10.1016/j.nima.2009.07.025 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 504IU UT WOS:000270610400009 ER PT J AU Awwal, AAS Rice, KL Taha, TM AF Awwal, Abdul A. S. Rice, Kenneth L. Taha, Tarek M. TI Hardware accelerated optical alignment of lasers using beam-specific matched filters SO APPLIED OPTICS LA English DT Article ID NATIONAL-IGNITION-FACILITY; PERFORMANCE; SYSTEMS AB Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter-based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process images for thousands of templates in under a second, as may be required in future high-energy laser systems. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro field programmable gate array (FPGA) hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.2 GHz AMD Opteron core. (C) 2009 Optical Society of America C1 [Awwal, Abdul A. S.] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. [Rice, Kenneth L.] Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29631 USA. [Taha, Tarek M.] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA. RP Awwal, AAS (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. EM awwal1@llnl.gov; ttaha@ieee.org FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Air Force Research Laboratory; National Science Foundation (NSF); Naval Research Laboratory FX This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Abdul Awwal acknowledges the improvements suggested by Paul Van Arsdall. Kenneth Rice acknowledges the summer student support at Lawrence Livermore National Laboratory. Kenneth Rice and Tarek Taha acknowledge grants from the Air Force Research Laboratory (including the AFRL Information Directorate) and a National Science Foundation (NSF) CAREER award. This work was also supported in part by a grant of computer time from the DOD High Performance Computing Modernization Program at the Naval Research Laboratory. NR 20 TC 9 Z9 11 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD SEP 20 PY 2009 VL 48 IS 27 BP 5190 EP 5196 DI 10.1364/AO.48.005190 PG 7 WC Optics SC Optics GA 498DU UT WOS:000270117900025 PM 19767937 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Cesarini, A Chow, YC Ciupik, L Cogan, P Cui, W Dickherber, R Ergin, T Fegan, SJ Finley, JP Fortin, P Fortson, L Furniss, A Gall, D Gillanders, GH Gotthelf, EV Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Horan, D Hui, CM Humensky, TB Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Cui, W. Dickherber, R. Ergin, T. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gillanders, G. H. Gotthelf, E. V. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI DETECTION OF EXTENDED VHE GAMMA RAY EMISSION FROM G106.3+2.7 WITH VERITAS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: observations; ISM: individual (G106.3+2.7=VER J2227+608); pulsars: individual (J2229+6114); supernova remnants ID PULSAR WIND NEBULAE; SOURCE 3EG J2227+6122; GALACTIC-PLANE SURVEY; SUPERNOVA REMNANT; MOLECULAR CLOUDS; SOURCE LIST; TELESCOPE; DISCOVERY; ASTRONOMY; FIELD AB We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0 degrees.6 by 0 degrees.4. Most notably, the centroid of the VHE emission is centered near the peak of the coincident (12)CO (J = 1-0) emission, 0 degrees.4 away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N(0)(E/3 TeV)(-Gamma) with a differential index of Gamma = 2.29 +/- 0.33(stat) +/- 0.30(sys) and a flux of N(0) = (1.15 +/- 0.27(stat) +/- 0.35(sys)) x 10(-13) cm(-2) s(-1) TeV(-1). The integral flux above 1 TeV corresponds to similar to 5 percent of the steady Crab Nebula emission above the same energy. We describe the observations and analysis of the object and briefly discuss the implications of the detection in a multiwavelength context. C1 [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Acciari, V. A.; Benbow, W.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Arlen, T.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Aliu, E (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM ealiu@bartol.udel.edu; wakely@uchicago.edu OI Lang, Mark/0000-0003-4641-4201; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; Natural Sciences and Engineering Research Council (NSERC) in Canada; Science Foundation Ireland; Science and Technology Facilities Council in the UK FX This research is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation and the Smithsonian Institution, by the Natural Sciences and Engineering Research Council (NSERC) in Canada, by Science Foundation Ireland, and by the Science and Technology Facilities Council in the UK. The research presented in this paper has used data from the Canadian Galactic Plane Survey, a Canadian project with international partners, supported by NSERC. We acknowledge the work of the technical support staff at the FLWO, of BtWD, and of the collaborating institutions in the construction and operation of the instrument. NR 44 TC 17 Z9 17 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2009 VL 703 IS 1 BP L6 EP L9 DI 10.1088/0004-637X/703/1/L6 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 492AQ UT WOS:000269626600002 ER PT J AU Shin, Y Bae, IT Exarhos, GJ AF Shin, Yongsoon Bae, In-Tae Exarhos, Gregory J. TI "Green" approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS LA English DT Article DE Platinum; Glucose; Hydrothermal; Reduction; Nanowire ID INFRARED-SPECTROSCOPY; METAL NANOPARTICLES; SONOCHEMICAL METHOD; SILVER NANOWIRES; GROWTH; NANOCRYSTALS; GOLD; PHOTOREDUCTION; STABILIZATION; MONOLAYERS AB A completely "green" synthetic approach has been developed for the reduction and stabilization of Pt nanoparticles followed by self-assembly into nanowires in an aqueous beta-D-glucose solution. Hydrothermal treatment initiated the reduction of Pt(IV) ions dispersed in a pH 8.0 beta-D-glucose Solution. The Pt nanoparticles were stabilized with oxidized glucose molecules. The Pt nanoparticles continued growing into nanowires followed by transformation into Cubic nanocrystals with a tough needle Surface. Evidence from TEM and FT-IR spectra reveal that carboxylate groups, which are generated by the oxidation of beta-D-glucose, strongly interact with and stabilize the surface of these Pt nanostructures. (c) 2009 Elsevier B.V. All rights reserved. C1 [Shin, Yongsoon; Bae, In-Tae; Exarhos, Gregory J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K2-44, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov FU Battelle Memorial Institute for the U.S. Department of Energy [DE-AC06-76RL0 1830]; Ministry of Knowledge Economy, Republic of Korea FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RL0 1830. This work is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, and by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 38 TC 15 Z9 15 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7757 J9 COLLOID SURFACE A JI Colloid Surf. A-Physicochem. Eng. Asp. PD SEP 20 PY 2009 VL 348 IS 1-3 BP 191 EP 195 DI 10.1016/j.colsurfa.2009.07.013 PG 5 WC Chemistry, Physical SC Chemistry GA 504NO UT WOS:000270623900030 ER PT J AU Garzon, M Gray, LJ Sethian, JA AF Garzon, M. Gray, L. J. Sethian, J. A. TI Numerical simulation of non-viscous liquid pinch-off using a coupled level set-boundary integral method SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Drop pinch-off; Level set methods; Boundary integral methods; Non-viscous flow; Potential flow ID PROPAGATING INTERFACES; DROP FORMATION; DYNAMICS; FRONTS; FLOWS; CURVATURE; EVOLUTION; BREAKUP; FLUID; FIELD AB Simulations of the pinch-off of an inviscid fluid column are carried out based upon a potential flow model with capillary forces. The interface location and the time evolution of the free surface boundary condition are both approximated by means of level set techniques on a fixed domain. The interface velocity is obtained via a Galerkin boundary integral solution of the 3D axisymmetric Laplace equation. A short-time analytical solution of the Raleigh-Taylor instability in a liquid column is available, and this result is compared with our numerical experiments to validate the algorithm. The method is capable of handling pinch-off and after pinch-off events, and simulations showing the time evolution of the fluid tube are presented. (C) 2009 Elsevier Inc. All rights reserved. C1 [Sethian, J. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. [Garzon, M.] Univ Oviedo, Dept Appl Math, Oviedo, Spain. [Gray, L. J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Sethian, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. EM sethian@math.berkeley.edu FU US Department of Energy, Applied Mathematical Sciences; Division of Mathematical Sciences, National Science Foundation FX This work was partially supported by US Department of Energy, Applied Mathematical Sciences, and the Division of Mathematical Sciences, National Science Foundation. NR 41 TC 13 Z9 14 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2009 VL 228 IS 17 BP 6079 EP 6106 DI 10.1016/j.jcp.2009.04.048 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 482OI UT WOS:000268898200001 ER PT J AU Bernstein, JP Hughes, PA AF Bernstein, J. P. Hughes, P. A. TI Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Numerical methods; Hydrodynamics; Relativity: special; Pulsars ID PULSAR WIND NEBULAE; CENTRAL-TYPE SCHEME; EQUATION-OF-STATE; SUPERNOVA-REMNANTS; GUITAR NEBULA; EXTRAGALACTIC JETS; MHD SIMULATIONS; MAGNETIC-FIELD; NEUTRON-STAR; CRAB-NEBULA AB We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 10(2)-10(6). We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 10(2) and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter's capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bernstein, J. P.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Bernstein, J. P.; Hughes, P. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Bernstein, JP (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM jpbernst@umich.edu; phughes@umich.edu FU NASA Graduate Student Researchers Program [NGT5-159] FX This work was majority supported by NASA Graduate Student Researchers Program Grant # NGT5-159. Steve Kuhlmann of Argonne National Laboratory provided access to additional computing resources beyond those used at the University of Michigan. NR 48 TC 2 Z9 2 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2009 VL 228 IS 17 BP 6212 EP 6230 DI 10.1016/j.jcp.2009.05.012 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 482OI UT WOS:000268898200008 ER PT J AU Lin, PT Shadid, JN Sala, M Tuminaro, RS Hennigan, GL Hoekstra, RJ AF Lin, Paul T. Shadid, John N. Sala, Marzio Tuminaro, Raymond S. Hennigan, Gary L. Hoekstra, Robert J. TI Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Multilevel preconditioners; Multigrid; Nonsmoothed aggregation; Newton-Krylov; Schwarz domain decomposition; Graph partitioning; Drift-diffusion; Semiconductor devices; Finite element ID DOMAIN DECOMPOSITION PRECONDITIONERS; COMPUTATIONAL FLUID-DYNAMICS; SMOOTHED AGGREGATION; LINEAR-SYSTEMS; KRYLOV METHODS; SIMULATIONS; FORMULATION; EQUATIONS; FLOW AB In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system is obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10(8) unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system. (C) 2009 Elsevier Inc. All rights reserved. C1 [Lin, Paul T.; Shadid, John N.; Hennigan, Gary L.; Hoekstra, Robert J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sala, Marzio] BMW Sauber, Hinwil, Switzerland. [Tuminaro, Raymond S.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Lin, PT (reprint author), Sandia Natl Labs, POB 5800,MS 0316, Albuquerque, NM 87185 USA. EM ptlin@sandia.gov FU DOE NNSA ASC program; DOE Office of Science ASCR Applied Math Research program at Sandia National Laboratory FX Partially supported by the DOE NNSA ASC program and the DOE Office of Science ASCR Applied Math Research program at Sandia National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 54 TC 31 Z9 31 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 20 PY 2009 VL 228 IS 17 BP 6250 EP 6267 DI 10.1016/j.jcp.2009.05.024 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 482OI UT WOS:000268898200010 ER PT J AU Lee, SS Kim, CS Gomez, ED Purushothaman, B Toney, MF Wang, C Hexemer, A Anthony, JE Loo, YL AF Lee, Stephanie S. Kim, Chang Su Gomez, Enrique D. Purushothaman, Balaji Toney, Michael F. Wang, Cheng Hexemer, Alexander Anthony, John. E. Loo, Yueh-Lin TI Controlling Nucleation and Crystallization in Solution-Processed Organic Semiconductors for Thin-Film Transistors SO ADVANCED MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; TRIETHYLSILYLETHYNYL ANTHRADITHIOPHENE; SOLUBLE ANTHRADITHIOPHENE; CHARGE-TRANSPORT; GRAIN-REFINEMENT; PENTACENE; MORPHOLOGY; MOBILITY; PERFORMANCE; ELECTRONICS AB Three orders of magnitude is the range over which the grain size (see figure) can be tuned in solution-processed organic semiconductor thin films for TFTs. Fluorinated triethylsilyl anthradithiophene (FTES-ADT) is added in fractional amounts to seed crystallization of TES-ADT Correlation between device mobility and grain size in the active layer is described by a composite mobility model that assumes charge-carrier traps are located at grain boundaries. C1 [Lee, Stephanie S.; Kim, Chang Su; Gomez, Enrique D.; Loo, Yueh-Lin] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Wang, Cheng; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Purushothaman, Balaji; Anthony, John. E.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. RP Loo, YL (reprint author), Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. EM lloo@princeton.edu RI Loo, Yueh-Lin/C-6607-2011; Wang, Cheng /E-7399-2012; Gomez, Enrique/E-5887-2013; Wang, Cheng/A-9815-2014; OI Anthony, John/0000-0002-8972-1888 FU National Science Foundation [DMR-0819860] FX Y.-L.L. and S.S.L. gratefully acknowledge funding from the National Science Foundation MRSEC Program through the Princeton Center for Complex Materials (DMR-0819860). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. Supporting Information is available online from Wiley InterScience or from the author. NR 33 TC 80 Z9 81 U1 5 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD SEP 18 PY 2009 VL 21 IS 35 BP 3605 EP + DI 10.1002/adma.200900705 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 502FH UT WOS:000270440500014 ER PT J AU Andrews, NL Pfeiffer, JR Martinez, AM Haaland, DM Davis, RW Kawakami, T Oliver, JM Wilson, BS Lidke, DS AF Andrews, Nicholas L. Pfeiffer, Janet R. Martinez, A. Marina Haaland, David M. Davis, Ryan W. Kawakami, Toshiaki Oliver, Janet M. Wilson, Bridget S. Lidke, Diane S. TI Small, Mobile Fc epsilon R1 Receptor Aggregates Are Signaling Competent SO IMMUNITY LA English DT Article ID FC-EPSILON-RI; T-CELL-RECEPTOR; BASOPHILIC LEUKEMIA-CELLS; IMMUNOGLOBULIN-E-RECEPTOR; RBL-2H3 MAST-CELLS; IGE-RECEPTORS; TYROSINE PHOSPHORYLATION; IMMUNOLOGICAL SYNAPSE; ROTATIONAL-DYNAMICS; CROSS-LINKING AB Crosslinking of IgE-bound Fc epsilon R1 triggers mast cell degranulation. Previous fluorescence recovery after photobleaching (FRAP) and phosphorescent anisotropy studies suggested that Fc epsilon R1 must immobilize to signal. Here, single quantum dot (QD) tracking and hyperspectral microscopy methods were used for defining the relationship between receptor mobility and signaling. QD-IgE-Fc epsilon R1 aggregates of at least three receptors remained highly mobile overextended times at low concentrations of antigen that induced Syk kinase activation and near-maximal secretion. Multivalent antigen, presented as DNP-QD, also remained mobile at low doses that supported secretion. Fc epsilon R1 immobilization was marked at intermediate and high antigen concentrations, correlating with increases in cluster size and rates of receptor internalization. The kinase inhibitor PP2 blocked secretion without affecting immobilization or internalization. We propose that immobility is a feature of highly crosslinked immunoreceptor aggregates and a trigger for receptor internalization, but is not required for tyrosine kinase activation leading to secretion. C1 [Andrews, Nicholas L.; Pfeiffer, Janet R.; Martinez, A. Marina; Oliver, Janet M.; Wilson, Bridget S.; Lidke, Diane S.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Andrews, Nicholas L.; Pfeiffer, Janet R.; Martinez, A. Marina; Oliver, Janet M.; Wilson, Bridget S.; Lidke, Diane S.] Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Haaland, David M.; Davis, Ryan W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kawakami, Toshiaki] La Jolla Inst Allergy & Immunol, Div Cell Biol, La Jolla, CA 92037 USA. RP Lidke, DS (reprint author), Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. EM dlidke@salud.unm.edu RI Kawakami, Toshiaki/O-1616-2015 FU NIH [R01 A1051575, R01 GM49814, P20 GM67594, S10 RR14668, S10 RR19287, S10 RR0116918, P20 RR111830, P30 CA118100, GM067594, S10 RR15734, RR022493]; Sandia SURP program; Human Frontier Science Program; U.S. Department of Energy [DE-AC04-94AL85000]; Microscale Immune Studies Laboratory Grand Challenge LDRD at Sandia National Laboratories; NSF [DGE-0549500, MCB9982161]; UNM-SOM MD/PhD Program FX This work was supported by NIH grants R01 A1051575, R01 GM49814, and P20 GM67594, the Sandia SURP program, and the Human Frontier Science Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. A portion of this work was supported by the Microscale Immune Studies Laboratory Grand Challenge LDRD at Sandia National Laboratories. N.L.A. was supported by NSF IGERT DGE-0549500 and the UNM-SOM MD/PhD Program. We thank S. Ryan and Y. Kawakami for cell culture assistance and M. Raymond-Stintz, S. Steinberg, and M. Wester for assistance with the quantification of EM data. Support for the UNM Cancer Center Fluorescence Microscopy and Flow Cytometry Facilities was from NIH grants S10 RR14668, S10 RR19287, S10 RR0116918, P20 RR111830, and P30 CA118100 and NSF grant MCB9982161; the UNM EM Facility received support from NIH GM067594, S10 RR15734, and RR022493. NR 54 TC 60 Z9 61 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-7613 J9 IMMUNITY JI Immunity PD SEP 18 PY 2009 VL 31 IS 3 BP 469 EP 479 DI 10.1016/j.immuni.2009.06.026 PG 11 WC Immunology SC Immunology GA 503IA UT WOS:000270525900014 PM 19747859 ER PT J AU Dong, HX Jiang, Y He, YH Song, M Zou, J Xu, NP Huang, BY Liu, CT Liaw, PK AF Dong, H. X. Jiang, Y. He, Y. H. Song, M. Zou, J. Xu, N. P. Huang, B. Y. Liu, C. T. Liaw, P. K. TI Formation of porous Ni-Al intermetallics through pressureless reaction synthesis SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Ni-Al intermetallics; Powder metallurgy; Porous; Intermediates ID EXTRUSION REACTION SYNTHESIS; NICKEL-ALUMINIDE; PORE STRUCTURE; PHASE; INTERDIFFUSION; FABRICATION; COMBUSTION; ALLOYS; NI3AL; METALS AB Pressureless reaction synthesis method was used to produce porous NiAl and Ni(3)Al intermetallics using elemental Ni and Al powder mixture in this investigation. The sintering behavior of Ni and Al mixed powder compacts was investigated by applying XRD, SEM and EDS in the temperature range of 510-1000 degrees C. It has been found that the formation of porous Ni(3)Al and NiAl was accompanied by the volume expansion due to the formation of intermediates and pores during the reaction synthesis procedure. The intensive reaction and phase transformation procedures were similar in the Ni-14wt% Al and Ni-30wt% Al. However, the maximum pore size, expansion ratio and porosity have been found to be varied with the sintering temperature and Al content in the compacts. The Al content in the green compacts could effectively influence the volume expansion and pores of the products: the volume expansion and maximum pore size of NiAl are much higher than that of Ni(3)Al under the same sintering procedure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dong, H. X.; Jiang, Y.; He, Y. H.; Song, M.; Huang, B. Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. [Zou, J.] Univ Queensland, Div Mat, Brisbane, Qld 4072, Australia. [Zou, J.] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Xu, N. P.] Nanjing Univ Technol, Membrane Sci & Technol Res Ctr, Nanjing 210009, Peoples R China. [Liu, C. T.; Liaw, P. K.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP He, YH (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. EM yuehui@mail.csu.edu.cn; j.zou@uq.edu.au RI Zou, Jin/B-3183-2009; Song, Min/C-3730-2013 OI Zou, Jin/0000-0001-9435-8043; Song, Min/0000-0002-3197-4647 FU National Natural Science Foundation of China [20476106, 50721003, 20636020]; National Natural Science Founds for Distinguished Young Scholar [50825102]; "863" program [2006AA03Z511] FX This research was financially supported by the National Natural Science Foundation of China (Nos. 20476106, 50721003 and 20636020) and by the National Natural Science Founds for Distinguished Young Scholar (No. 50825102) and "863" program (2006AA03Z511). NR 31 TC 27 Z9 32 U1 2 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 18 PY 2009 VL 484 IS 1-2 BP 907 EP 913 DI 10.1016/j.jallcom.2009.05.079 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 513PK UT WOS:000271334900171 ER PT J AU Yang, XY Ye, YY Kramer, MJ Sordelet, DJ AF Yang, X. Y. Ye, Y. Y. Kramer, M. J. Sordelet, D. J. TI Influence of oxygen on the structure and devitrification pathways in Zr66.7Ni33.3 and Zr66.7Cu33.3 amorphous systems SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Zr66.7Ni33.3 and Zr66.7Cu33.3 metallic glasses; Melt-spinning; Devitrification; Big-cube phase; First-principle calculation ID TOTAL-ENERGY CALCULATIONS; CU METALLIC GLASSES; MELT-SPUN RIBBONS; SHORT-RANGE ORDER; WAVE BASIS-SET; ZR-NI; DIFFRACTION AB Experimental and theoretical approaches were combined to investigate the role of O on the as-quenched structure and phase selection process during devitrification of melt-spun Zr66.7Ni33.3 and Zr66.7Cu33.3 metallic glasses. Oxygen was observed to degrade glass formation for both systems at relatively high contents approaching 15,000 pprn mass, but at lower amounts amorphous structures were obtained. In the case of Zr66.7Ni33.3 alloys, O contents ranging from below 250 ppm mass up to nominally 5000 ppm mass yielded qualitatively similar as-quenched amorphous structures, as determined from high-energy synchrotron X-ray diffraction. However, O did promote a dramatic change in the devitrification pathways of the Zr66.7Ni33.3 glasses. Whereas ribbons with no intentionally added O transformed directly to the c16 (Al2Cu-type) Zr2Ni structure, their counterparts with nominally 2000 and 5000 ppm mass O instead transformed from their amorphous structure to a metastable Ti2Ni-type "Big Cube" structure before ultimately forming the c16 structure with further heating. For the Zr66.7Cu33.3 glasses, the c11b (MoSi2-type) phase formed regardless of the O content up to the nominally 5000 pprn mass level probed in this study. First-principle calculations were performed to help understand these differences. It was found that the strong bonding between Zr's d-electrons and O's p-electrons contributes to increasing the stability of both systems as more O is added. In addition, the stronger bonding between Zr d-electrons and Ni d-electrons over that of Zr d-electrons and Cu d-electrons helps explain the easier formation of Zr64Ni32O16 BC phase observed in the experiments. (C) 2009 Published by Elsevier B.V. C1 [Yang, X. Y.; Ye, Y. Y.; Kramer, M. J.; Sordelet, D. J.] Iowa State Univ, Ames Lab, Div Mat Sci, Ames, IA 50011 USA. RP Yang, XY (reprint author), Iowa State Univ, Ames Lab, Div Mat Sci, Ames, IA 50011 USA. EM xyang@ameslab.gov FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. The high-energy X-ray work at the MUCAT sector of the APS was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 21 TC 7 Z9 7 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 18 PY 2009 VL 484 IS 1-2 BP 914 EP 919 DI 10.1016/j.jallcom.2009.05.078 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 513PK UT WOS:000271334900172 ER PT J AU Zhu, J Sabharwal, T Kalyanasundaram, A Guo, LH Wang, GD AF Zhu, Jie Sabharwal, Tanya Kalyanasundaram, Aruna Guo, Lianhong Wang, Guodong TI Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation SO JOURNAL OF BIOMECHANICS LA English DT Article DE Atomic force microscopy; Cardiac muscle fibers; Sarcomere; Topography; Compression elasticity ID TRANSVERSE STIFFNESS; SKELETAL; MORPHOLOGY; MYOFIBRILS; MYOCYTES; COLLAGEN; MATRIX; CARDIOMYOCYTES; NANOMECHANICS; ARCHITECTURE AB Surface topography and compression elasticity of bovine cardiac muscle fibers in rigor and relaxing state have been studied with atomic force microscopy. Characteristic sarcomere patterns running along the longitudinal axis of the fibers were clearly observed, and Z-lines, M-lines, I-bands, and A-bands can be distinguished through comparing with TEM images and force curves. AFM height images of fibers had shown a sarcomere length of 1.22 +/- 0.02 mu m (n = 5) in rigor with a significant 9% increase in sarcomere length in relaxing state (1.33 +/- 0.03 mu m, n = 5), indicating that overlap moves with the changing physiological conditions. Compression elasticity curves along with sarcomere locations have been taken by AFM compression processing. Coefficient of Z-line, I-band, Overlap, and M-line are 25 +/- 2, 8 +/- 1, 10 +/- 1, and 17 +/- 1.5 pN/nm respectively in rigor state, and 18 +/- 2.5, 4 +/- 0.5, 6 +/- 1, and 11 +/- 0.5 pN/nm respectively in relaxing state. Young's Modulus in Z-line, I-band, Overlap, and M-line are 115 +/- 12, 48 +/- 9, 52 +/- 8, and 90 +/- 12 kPa respectively in rigor, and 98 +/- 10, 23 +/- 4, 42 +/- 4, and 65 +/- 7 kPa respectively in relaxing state. The elasticity curves have shown a similar appearance to the section analysis profile of AFM height images of sarcomere and the distance between adjacent largest coefficient and Young's Modulus is equal to the sarcomere length measured from the AFM height images using section analysis, indicating that mechanic properties of fibers have a similar periodicity to the topography of fibers. Published by Elsevier Ltd. C1 [Zhu, Jie; Wang, Guodong] NW A&F Univ, Coll Sci, Cardiac Biophys & Bioengn Lab, Yangling 712100, Shaanxi, Peoples R China. [Zhu, Jie] Argonne Natl Lab, Adv Photon Source, Biophys Collaborat Access Team, Argonne, IL 60439 USA. [Zhu, Jie; Sabharwal, Tanya; Kalyanasundaram, Aruna] IIT, Pritzker Inst Biomed Sci & Engn, Chicago, IL 60616 USA. [Sabharwal, Tanya] Univ Texas Austin, Sect Mol Cell & Dev Biol, Sch Biol Sci, Austin, TX 78712 USA. [Guo, Lianhong] NW A&F Univ, Dept Appl Math, Lab Biomath, Yangling 712100, Shaanxi, Peoples R China. [Guo, Lianhong] IIT, Coll Sci & Letters, Dept Appl Math, Chicago, IL 60616 USA. RP Zhu, J (reprint author), NW A&F Univ, Coll Sci, Cardiac Biophys & Bioengn Lab, Yangling 712100, Shaanxi, Peoples R China. EM medfbi@gmail.com; gdwang211@yahoo.com.cn FU Talent Foundation of Northwest AF University [01140501]; Foundation of China Scholarship Council [2007103068]; National Institute of Health [RR-08630]; American Heart Association [0435339Z] FX The authors would like to thank Prof. Irving and Prof. Orgel at IIT and Prof. Sun at SNU for their generous and helpful discussions and Taeyoung Kim and Jenny Lee for their assistance on instrumental setup and data analysis. This project is mainly supported by the Talent Foundation of Northwest A&F University (no.01140501), the Foundation of China Scholarship Council (no.2007103068), and partly supported by the National Institute of Health Grant (no.RR-08630) and the American Heart Association Grant (no.0435339Z). NR 56 TC 15 Z9 16 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD SEP 18 PY 2009 VL 42 IS 13 BP 2143 EP 2150 DI 10.1016/j.jbiomech.2009.05.031 PG 8 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 502RO UT WOS:000270478000020 PM 19640539 ER PT J AU Kaczmarski, K Kostka, J Zapala, W Guiochon, G AF Kaczmarski, Krzysztof Kostka, Joanna Zapala, Wojciech Guiochon, Georges TI Modeling of thermal processes in high pressure liquid chromatography I. Low pressure onset of thermal heterogeneity SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE HPLC; Axial temperature profiles; Radial temperature profiles; Column efficiency; Heat generation; Heat transfer; Viscous friction ID VISCOUS HEAT DISSIPATION; TEMPERATURE-GRADIENTS; COLUMNS; PERFORMANCE; EFFICIENCY; DISPERSION; DIFFUSION; FRICTION; HPLC AB Heat due to viscous friction is generated in chromatographic columns. When these columns are operated at high flow rates, under a high inlet pressure, this heat causes the formation of significant axial and radial temperature gradients. Consequently, these columns become heterogeneous and several physico-chemical parameters, including the retention factors and the parameters of the mass transfer kinetics of analytes are no longer constant along and across the columns. A robust modeling of the distributions of the physico-chemical parameters allows the analysis of the impact of the heat generated on column performance. We developed a new model of the coupled heat and mass transfers in chromatographic columns, calculated the axial and radial temperature distributions in a column, and derived the distributions of the viscosity and the density of the mobile phase, hence of the axial and radial mobile phase velocities. The coupling of the mass and the heat balances in chromatographic columns was used to model the migration of a compound band under linear conditions. This process yielded the elution band profiles of analytes, hence the column efficiency under two different sets of experimental conditions: (1) the column is operated under natural convection conditions; (2) the column is dipped in a stream of thermostated fluid. The calculated results show that the column efficiency is remarkably lower in the second than in the first case. The inconvenience of maintaining constant the temperature of the column wall (case 2) is that retention factors and mobile phase velocities vary much more significantly across the column than if the column is kept under natural convection conditions (case 1). (C) 2009 Elsevier B.V. All rights reserved. C1 [Kaczmarski, Krzysztof; Kostka, Joanna; Zapala, Wojciech] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. [Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kaczmarski, K (reprint author), Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. EM kkaczmarski@prz.edu.pl RI Zapala, Wojciech/F-6140-2011 FU Polish Ministry of Science and Higher Education [N204 002036] FX This work was supported by grant N N204 002036 of the Polish Ministry of Science and Higher Education. NR 32 TC 23 Z9 24 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD SEP 18 PY 2009 VL 1216 IS 38 BP 6560 EP 6574 DI 10.1016/j.chroma.2009.07.020 PG 15 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 496IA UT WOS:000269962600003 PM 19640545 ER PT J AU Kaczmarski, K Gritti, F Kostka, J Guiochon, G AF Kaczmarski, Krzysztof Gritti, Fabrice Kostka, Joanna Guiochon, Georges TI Modeling of thermal processes in high pressure liquid chromatography II. Thermal heterogeneity at very high pressures SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE VHPLC; Axial temperature profiles; Radial temperature profiles; Column efficiency; Heat generation; Heat transfer; Viscous friction; Peak profiles ID VISCOUS HEAT DISSIPATION; TEMPERATURE-GRADIENTS; COLUMNS; PERFORMANCE; EFFICIENCY; PROFILES; FRICTION; ELUENT AB Advanced instruments for liquid chromatography enables the operation of columns packed with sub-2 mu m particles at the very high inlet pressures, up to 1000 bar, that are necessary to achieve the high column efficiency and the short analysis times that can be provided by the use of these columns. However, operating rather short columns at high mobile phase velocities, under high pressure gradients causes the production of a large amount of heat due to the viscous friction of the eluent percolating through the column bed. The evacuation of this heat causes the formation of significant axial and radial temperature gradients. Due to these thermal gradients, the retention factors of analytes and the mobile phase velocity are no longer constant throughout the column. The consequence of this heat production is a loss of column efficiency. We previously developed a model combining the heat and mass balance of the column, the equations of flow through porous media, and a linear isotherm model of the analyte. This model was solved and validated for conventional columns operated under moderate pressures. We report here on the results obtained when this model is applied to columns packed with very fine particles, operated under very high pressures. These results prove that our model accounts well for all the experimental results. The same column that elutes symmetrical, nearly Gaussian peaks at low flow rates, under relatively low pressure drops, provides strongly deformed, unsymmetrical peaks when operated at high flow rates, under high pressures, and under different thermal environments. The loss in column efficiency is particularly important when the column wall is kept at constant temperature, by immersing the column in a water bath. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kaczmarski, Krzysztof; Kostka, Joanna] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Dept Chem Sci, Oak Ridge, TN 37831 USA. RP Kaczmarski, K (reprint author), Rzeszow Univ Technol, Dept Chem & Proc Engn, Ul Palo 2, PL-35959 Rzeszow, Poland. EM kkaczmarski@prz.edu.pl; guiochon@utk.edu FU Polish Ministry of Science and Higher Education [N204 002036] FX This work was partially supported by grant N N204 002036 of the Polish Ministry of Science and Higher Education. NR 33 TC 40 Z9 40 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD SEP 18 PY 2009 VL 1216 IS 38 BP 6575 EP 6586 DI 10.1016/j.chroma.2009.07.049 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 496IA UT WOS:000269962600004 PM 19665717 ER PT J AU Klein, MG Zwart, P Bagby, SC Cai, F Chisholm, SW Heinhorst, S Cannon, GC Kerfeld, CA AF Klein, Michael G. Zwart, Peter Bagby, Sarah C. Cai, Fei Chisholm, Sallie W. Heinhorst, Sabine Cannon, Gordon C. Kerfeld, Cheryl A. TI Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE carboxysome; bacterial microcompartment; gated transport; Prochlorococcus; carbon concentrating mechanism ID CO2 CONCENTRATING MECHANISM; HALOTHIOBACILLUS-NEAPOLITANUS; CYANOBACTERIUM SYNECHOCYSTIS; MAXIMUM-LIKELIHOOD; ORGANELLES; PROCHLOROCOCCUS; CARBON; TOOLS; MICROCOMPARTMENTS; PROKARYOTES AB Bacterial microcompartments (BMCs) are polyhedral bodies, composed entirely of proteins, that function as organelles in bacteria; they promote subcellular processes by encapsulating and co-localizing targeted enzymes with their substrates. The best-characterized BMC is the carboxysome, a central part of the carbon-concentrating mechanism that greatly enhances carbon fixation in cyanobacteria and some chemoautotrophs. Here we report the first structural insights into the carboxysome of Prochlorococcus, the numerically dominant cyanobacterium in the world's oligotrophic oceans. Bioinformatic methods, substantiated by analysis of gene expression data, were used to identify a new carboxysome shell component, CsoS1D, in the genome of Prochlorococcus strain MED4; orthologs were subsequently found in all cyanobacteria. Two independent crystal structures of Prochlorococcus MED4 CsoS1D reveal three features not seen in any BMC-domain protein structure solved to date. First, CsoS1D is composed of a fused pair of BMC domains. Second, this double-domain protein trimerizes to form a novel pseudohexameric building block for incorporation into the carboxysome shell, and the trimers further dimerize, forming a two-tiered shell building block. Third, and most strikingly, the large pore formed at the 3-fold axis of symmetry appears to be gated. Each dimer of trimers contains one trimer with an open pore and one whose pore is obstructed due to side-chain conformations of two residues that are invariant among all CsoS1D orthologs. This is the first evidence of the potential for gated transport across the carboxysome shell and reveals a new type of building block for BMC shells. (C) 2009 Published by Elsevier Ltd. C1 [Klein, Michael G.; Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Zwart, Peter] US DOE, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bagby, Sarah C.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. [Cai, Fei; Heinhorst, Sabine; Cannon, Gordon C.] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. [Chisholm, Sallie W.] MIT, Dept Biol, Cambridge, MA 02139 USA. [Chisholm, Sallie W.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Kerfeld, CA (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM ckerfeld@lbl.gov RI Zwart, Peter/F-7123-2013; OI Bagby, Sarah/0000-0002-1795-3161 FU Gordon and Betty Moore Foundation; National Science Foundation (NSF) [MCB-0851094, MCB-0818680, DMR-0213883]; DOE-GTL; U.S. Department of Energy's Office of Science; University of California [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX We thank Sandra Schwarte, Martin Hagemann, Hermann Bauwe, Michael Sawaya, and Todd Yeates for helpful discussions, and Edwin Kim and Jay Kinney for figure preparation and technical assistance. S.C.B. is a Howard Hughes Medical Institute precloctoral fellow. S.W.C. is supported in part by the Gordon and Betty Moore Foundation, NSF, and DOE-GTL. CAK, G.R.C and S.H. are also supported in part by NSF (MCB-0851094) G.R.C. and S.H. acknowledge support from the National Science Foundation (MCB-0818680 and DMR-0213883). The work of C.A.K. is performed under the auspices of the U.S. Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract number DE-AC5207NA27344. NR 47 TC 78 Z9 79 U1 1 U2 26 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 18 PY 2009 VL 392 IS 2 BP 319 EP 333 DI 10.1016/j.jmb.2009.03.056 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 498FY UT WOS:000270123800006 PM 19328811 ER PT J AU Perez-Berna, AJ Marabini, R Scheres, SHW Menendez-Conejero, R Dmitriev, IP Curiel, DT Mangel, WF Flint, SJ Martin, CS AF Perez-Berna, Ana J. Marabini, Roberto Scheres, Sjors H. W. Menendez-Conejero, Rosa Dmitriev, Igor P. Curiel, David T. Mangel, Walter F. Flint, S. Jane San Martin, Carmen TI Structure and Uncoating of Immature Adenovirus SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE adenovirus; virus maturation; virus uncoating; virus structure; three-dimensional electron microscopy ID QUASI-ATOMIC MODEL; ELECTRON-MICROSCOPY; PROTEINASE ACTIVITY; BACTERIOPHAGE PRD1; CAPSID PROTEIN; CORE PROTEIN; VIRUS ENTRY; TYPE-5; RESOLUTION; DNA AB Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particles as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Perez-Berna, Ana J.; Scheres, Sjors H. W.; Menendez-Conejero, Rosa; San Martin, Carmen] CSIC, CNB, Dept Macromol Struct, E-28049 Madrid, Spain. [Marabini, Roberto] Univ Autonoma Madrid, Escuela Politecn Super, E-28049 Madrid, Spain. [Dmitriev, Igor P.; Curiel, David T.] Univ Alabama Birmingham, Gene Therapy Ctr, Birmingham, AL 35294 USA. [Mangel, Walter F.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Flint, S. Jane] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA. RP Martin, CS (reprint author), CSIC, CNB, Dept Macromol Struct, Darwin 3, E-28049 Madrid, Spain. EM carmen@cnb.csic.es RI San Martin, Carmen/A-4074-2010; Marabini, Roberto/B-6141-2014; Perez-Berna, Ana/G-2789-2016; OI San Martin, Carmen/0000-0001-9799-175X; Marabini, Roberto/0000-0001-7876-1684; Scheres, Sjors/0000-0002-0462-6540 FU Ministerio de Ciencia e Innovacion of Spain [BFU2007-60228, BIO2007-67150-C0303]; Comunidad Autonorna de Madrid and Consejo Superior de Investigaciones Cientificas [CCG08-CSIC/SAL-3442]; National Institutes of Health [5R01CA111569, R0141599, GM037705] FX This work was supported by grants from the Ministerio de Ciencia e Innovacion of Spain (BFU2007-60228 to C.S.M. and BIO2007-67150-C0303 to R.M.), the Comunidad Autonorna de Madrid and Consejo Superior de Investigaciones Cientificas (CCG08-CSIC/SAL-3442 to C.S.M.) and the National Institutes of Health (5R01CA111569 to D.T.C., R0141599 to WEM. and GM037705 to S.J.E). R.M.-C. is a recipient of a PFIS fellowship from the Instituto de Salud Carlos III of Spain. A.J.P.-B. holds a CSIC JAEDoc postdoctoral position, partially funded by the European Social Fund. We are grateful to Maria Lopez (CNB-CSIC) and Wenying Huang (Princeton University) for providing technical assistance and to Dr. Daniel Luque (CNB-CSIC) for helping with URO. We acknowledge use of computing resources at the Supercomputing Center of Galicia (CESGA). NR 56 TC 35 Z9 35 U1 0 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD SEP 18 PY 2009 VL 392 IS 2 BP 547 EP 557 DI 10.1016/j.jmb.2009.06.057 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 498FY UT WOS:000270123800021 PM 19563809 ER PT J AU Dong, S Yamauchi, K Yunoki, S Yu, R Liang, SH Moreo, A Liu, JM Picozzi, S Dagotto, E AF Dong, Shuai Yamauchi, Kunihiko Yunoki, Seiji Yu, Rong Liang, Shuhua Moreo, Adriana Liu, J. -M. Picozzi, Silvia Dagotto, Elbio TI Exchange Bias Driven by the Dzyaloshinskii-Moriya Interaction and Ferroelectric Polarization at G-Type Antiferromagnetic Perovskite Interfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAK FERROMAGNETISM; THIN-FILMS; ANISOTROPY; BIFEO3 AB Exchange bias is usually rationalized invoking spin pinning effects caused by uncompensated antiferromagnetic interfaces. However, for compensated antiferromagnets other extrinsic factors, such as interface roughness or spin canting, have to be considered to produce a small uncompensation. As an alternative, here we propose two (related) possible mechanisms, driven by the intrinsic Dzyaloshinskii-Moriya interaction and ferroelectric polarization, for the explanation of exchange bias effects in perovskites with compensated G-type antiferromagnetism. One of the mechanisms is only active when a multiferroic material is involved and it is controllable by electric fields. C1 [Dong, Shuai; Yu, Rong; Liang, Shuhua; Moreo, Adriana; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dong, Shuai; Yu, Rong; Liang, Shuhua; Moreo, Adriana; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dong, Shuai; Liu, J. -M.] Nanjing Univ, Nanjing Natl Lab Microstruct, Nanjing 210093, Peoples R China. [Yamauchi, Kunihiko; Picozzi, Silvia] CNR, INFM, CASTI Reg Lab, I-67100 Laquila, Italy. [Yunoki, Seiji] RIKEN, Computat Condensed Matter Phys Lab, Wako, Saitama 3510198, Japan. [Yunoki, Seiji] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan. [Liu, J. -M.] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China. RP Dong, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Yamauchi, Kunihiko/A-6324-2009; YU, RONG/C-1506-2012; Yunoki, Seiji/B-1831-2008; Yu, Rong/K-5854-2012; Dong (董), Shuai (帅)/A-5513-2008; Picozzi, Silvia/E-2374-2011; Yamauchi, Kunihiko/E-5833-2010; Yu, Rong/H-3355-2016 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; Picozzi, Silvia/0000-0002-3232-788X; Yamauchi, Kunihiko/0000-0003-4164-4569; FU NSF [DMR-0706020]; Division of Materials Science and Engineering; U.S. DOE; European Research Council [FP7/2007-2013)/ERC]; CREST-JST; 973 Projects of China [2006CB921802, 2009CB623303]; NSFC [50832002] FX We thank R. Ramesh, P. Yu, L. W. Martin, and M. Huijben for providing experimental results before publication and fruitful discussions. We also thank C. Ederer, J.-S. Zhou, O. Chmaissem, S. Okamoto, and J. Nogues for helpful discussions. Work supported by the NSF (DMR-0706020) and the Division of Materials Science and Engineering, U.S. DOE, under contract with UT-Battelle, LLC. K.Y. and S. P. were supported by the European Research Council under the EU 7th Framework Programme (FP7/2007-2013)/ERC grant agreement No. 203523. S.Y. was supported by CREST-JST. S. D. and J. M. L. were supported by the 973 Projects of China (2006CB921802, 2009CB623303) NSFC (50832002). NR 26 TC 72 Z9 73 U1 3 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2009 VL 103 IS 12 AR 127201 DI 10.1103/PhysRevLett.103.127201 PG 4 WC Physics, Multidisciplinary SC Physics GA 498KO UT WOS:000270139000042 PM 19792455 ER PT J AU Wittenberg, JS Merkle, MG Alivisatos, AP AF Wittenberg, Joshua S. Merkle, Maxwell G. Alivisatos, A. Paul TI Wurtzite to Rocksalt Phase Transformation of Cadmium Selenide Nanocrystals via Laser-Induced Shock Waves: Transition from Single to Multiple Nucleation SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTOR NANOCRYSTALS; MOLECULAR-DYNAMICS; PRESSURE; NONVOLATILE; MEMORY AB The behavior of CdSe nanocrystals shocked to stresses of 2-3.75 GPa has been studied. Above 3 GPa a near-complete disappearance of the first excitonic feature and broadening of the low-energy absorption edge were observed, consistent with a wurtzite to rocksalt structural transformation. The transformation pressure is reduced relative to hydrostatic compression in a diamond anvil cell, and the rate increases, attributed to shock induced shear stress along the reaction coordinate. The especially rapid rate observed for a 3.75 GPa shock suggests multiple nucleation events per particle. C1 [Wittenberg, Joshua S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wittenberg, JS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@uclink4.berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU AFOSR [FA-9550-07-1-0334]; AFOSR MURI [FA-9550-04-1-0242] FX We thank Professor Dong Hee Son and Dr. Michael Grunwald for helpful discussions. This work has been funded by AFOSR (FA-9550-07-1-0334) and AFOSR MURI (FA-9550-04-1-0242). NR 19 TC 9 Z9 9 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2009 VL 103 IS 12 AR 125701 DI 10.1103/PhysRevLett.103.125701 PG 4 WC Physics, Multidisciplinary SC Physics GA 498KO UT WOS:000270139000032 PM 19792445 ER PT J AU Zilman, A Pearson, J Bel, G AF Zilman, A. Pearson, J. Bel, G. TI Effects of Jamming on Nonequilibrium Transport Times in Nanochannels SO PHYSICAL REVIEW LETTERS LA English DT Article ID FACILITATED MEMBRANE-TRANSPORT; NUCLEAR-PORE COMPLEXES; SELECTIVE TRANSPORT; NANOTUBE MEMBRANES; OPEN BOUNDARIES; CHANNEL; DIFFUSION; MOLECULES; OCCUPANCY; PARTICLES AB Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a "closed" to an "open" state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nanomolecular sorting devices and biosensors. To elucidate the transport mechanisms, it is important to understand the transport on the single molecule level in the experimentally relevant regime when multiple particles are crowded in the channel. In this Letter we analyze the effects of interparticle crowding on the nonequilibrium transport times through a finite-length channel by means of analytical theory and computer simulations. C1 [Zilman, A.; Pearson, J.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Zilman, A.; Bel, G.] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bel, G.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Zilman, A (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA. RI Bel, Golan/C-6528-2008; BEL, GOLAN/F-1573-2012 OI Bel, Golan/0000-0002-3307-9478; BEL, GOLAN/0000-0002-3307-9478 FU NIGMS NIH HHS [R01 GM065830] NR 49 TC 18 Z9 18 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2009 VL 103 IS 12 AR 128103 DI 10.1103/PhysRevLett.103.128103 PG 4 WC Physics, Multidisciplinary SC Physics GA 498KO UT WOS:000270139000051 PM 19792464 ER PT J AU Zwolak, M Lagerqvist, J Di Ventra, M AF Zwolak, Michael Lagerqvist, Johan Di Ventra, Massimiliano TI Quantized Ionic Conductance in Nanopores SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSVERSE ELECTRONIC TRANSPORT; POLYNUCLEOTIDE MOLECULES; DNA; CHANNEL; DISCRIMINATION; DYNAMICS; SIMULATION; WATER AB Ionic transport in nanopores is a fundamentally and technologically important problem in view of its occurrence in biological processes and its impact on novel DNA sequencing applications. Using molecular dynamics simulations we show that ion transport may exhibit strong nonlinearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. We discuss this phenomenon and the conditions under which it should be experimentally observable. C1 [Zwolak, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lagerqvist, Johan; Di Ventra, Massimiliano] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Di Ventra, Massimiliano/E-1667-2011; Zwolak, Michael/G-2932-2013 OI Di Ventra, Massimiliano/0000-0001-9416-189X; Zwolak, Michael/0000-0001-6443-7816 FU NIH-NHGRI; U.S. Department of Energy FX This research is supported by the NIH-NHGRI (J.L. and M. D.) and by the U.S. Department of Energy through the LANL/LDRD Program (M.Z.). NR 27 TC 31 Z9 31 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2009 VL 103 IS 12 AR 128102 DI 10.1103/PhysRevLett.103.128102 PG 4 WC Physics, Multidisciplinary SC Physics GA 498KO UT WOS:000270139000050 PM 19792463 ER PT J AU Huda, MN Yan, YF Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Al-Jassim, Mowafak M. TI On the existence of Si-C double bonded graphene-like layers SO CHEMICAL PHYSICS LETTERS LA English DT Article ID BORON-NITRIDE NANOTUBES; SILICON-CARBIDE NANOTUBES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GRAPHITIC SILICON; CARBON FULLERENE; METALS AB Upon analyzing an earlier experimental study by density-functional theory we have shown that graphene-like SiC layers can exist. We found that, for a particular stacking sequence, Si=C double bond was responsible for the much larger interlayer distances observed in synthesized multi-walled SiC nanotubes. The Si/C ratios in SiC layers determine the extent of interlayer distances and bonding nature. It has been also shown that for some intermediate ratios of Si:C and/or with other stacking sequences, a collapse of SiC layers to tetrahedrally bonded system is possible. We have argued that these synthesized Si=C double-bonded multi-wall silicon-carbide nanotubes may provide a pathway for future realization of SiC graphene-like materials. (c) 2009 Published by Elsevier B.V. C1 [Huda, Muhammad N.; Yan, Yanfa; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Muhammad.Huda@nrel.gov RI Huda, Muhammad/C-1193-2008 OI Huda, Muhammad/0000-0002-2655-498X FU US Department of Energy [DE-AC36-08GO28308] FX This work was supported by the US Department of Energy under Contract # DE-AC36-08GO28308. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC36-08GO28308. NR 30 TC 23 Z9 23 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD SEP 17 PY 2009 VL 479 IS 4-6 BP 255 EP 258 DI 10.1016/j.cplett.2009.08.028 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 493GQ UT WOS:000269724100015 ER PT J AU Mullin, JM Roskop, LB Pruitt, SR Collins, MA Gordon, MS AF Mullin, Jonathan M. Roskop, Luke B. Pruitt, Spencer R. Collins, Michael A. Gordon, Mark S. TI Systematic Fragmentation Method and the Effective Fragment Potential: An Efficient Method for Capturing Molecular Energies SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID FAST MULTIPOLE METHOD; ELECTRON CORRELATION METHODS; PLESSET PERTURBATION-THEORY; DENSITY-FUNCTIONAL THEORY; GAUSSIAN-BASIS SETS; AB-INITIO CALCULATION; QUANTUM-MECHANICAL CALCULATION; PERIODIC BOUNDARY-CONDITIONS; COUPLED-CLUSTER METHODS; CONSISTENT BASIS-SETS AB The systematic fragmentation method fragments a large molecular system into smaller pieces, in such a way as to greatly reduce the computational cost while retaining nearly the accuracy of the parent ab initio electronic structure method. In order to attain the desired (sub-kcal/mol) accuracy, one must properly account for the nonbonded interactions between the separated fragments. Since, for a large molecular species, there can be a great many fragments and therefore a great many nonbonded interactions, computations of the nonbonded interactions can be very time-consuming. The present work explores the efficacy of employing the effective fragment potential (EFP) method to obtain the nonbonded interactions since the EFP method has been shown previously to capture nonbonded interactions with an accuracy that is often comparable to that of second-order perturbation theory. It is demonstrated that for nonbonded interactions that are not high on the repulsive wall (generally >2.7 angstrom), the EFP method appears to be a viable approach for evaluating the nonbonded interactions. The efficacy of the EFP method for this purpose is illustrated by comparing the method to ab initio methods for small water Clusters, the ZOVGAS molecule, retinal, and the a-helix. Using SFM with EFP for nonbonded interactions yields an error of 0.2 kcal/mol for the retinal cis-trans isomerization and a mean error of 1.0 kcal/mol for the isomerization energies of live small (120-170 atoms) alpha-helices. C1 [Mullin, Jonathan M.; Roskop, Luke B.; Pruitt, Spencer R.; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Collins, Michael A.] Australian Natl Univ, Res Sch Chem, Canberra, ACT, Australia. RP Gordon, MS (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Mullin, Jonathan/F-2083-2011 FU Air Force Office of Scientific Research; National Science Foundation; Australian Research Council FX This work was supported in part by the Air Force Office of Scientific Research, by the National Science Foundation, and by the Australian Research Council. Helpful discussions with Dr. Heather Netzloff and Professors Lyudmila Slipchenko and Theresa Windus are gratefully acknowledged. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 205 TC 45 Z9 45 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 17 PY 2009 VL 113 IS 37 BP 10040 EP 10049 DI 10.1021/jp9036183 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 492KY UT WOS:000269656000013 PM 19739681 ER PT J AU Mantz, YA Branduardi, D Bussi, G Parrinello, M AF Mantz, Yves A. Branduardi, Davide Bussi, Giovanni Parrinello, Michele TI Ensemble of Transition State Structures for the Cis-Trans Isomerization of N-Methylacetamide SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MECHANICS ENERGY FUNCTIONS; MOLECULAR-DYNAMICS; AB-INITIO; INTERNAL-ROTATION; VIBRATIONAL SPECTROSCOPY; FINITE-TEMPERATURE; LIQUID AMIDES; PEPTIDE; WATER; SOLVENT AB The cis-trans isomerization of N-methylacetamide (NMA), a model peptidic fragment, is studied theoretically in vacuo and in explicit water solvent at 300 K using the metadynamics technique. The computed cis-trans free energy difference is very similar for NMA(g) and NMA(aq), in agreement with experimental measurements of population ratios and theoretical studies at 0 K. By exploiting the flexibility in the definition of a pair of recently introduced collective variables (Branduardi, D.; Gervasio, F. L.; Parrinello, M. J. Chem. Phys. 2007, 126, 054103), an ensemble of transition state structures is generated at finite temperature for both NMA(g) and NMA(aq), as verified by computing committor distribution functions. Ensemble members of NMA(g) are shown to have correlated values of the backbone dihedral angle and a second dihedral angle involving the amide hydrogen atom. The dynamical character of these structures is preserved in the presence of solvent, whose influence on the committor functions can be modeled using effective friction/noise terms. C1 [Mantz, Yves A.; Branduardi, Davide; Bussi, Giovanni; Parrinello, Michele] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-6900 Lugano, Switzerland. RP Mantz, YA (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM yves.mantz@netl.doe.gov RI Bussi, Giovanni/A-1776-2009; Branduardi, Davide/B-2473-2010 OI Bussi, Giovanni/0000-0001-9216-5782; FU NSF [0502240] FX One of us (Y.A.M.) gratefully acknowledges Support from a NSF international research postdoctoral fellowship (Grant No. 0502240). NR 52 TC 15 Z9 15 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 17 PY 2009 VL 113 IS 37 BP 12521 EP 12529 DI 10.1021/jp8106556 PG 9 WC Chemistry, Physical SC Chemistry GA 492KW UT WOS:000269655700011 PM 19694484 ER PT J AU Spoerke, ED Lloyd, MT Lee, YJ Lambert, TN McKenzie, BB Jiang, YB Olson, DC Sounart, TL Hsu, JWP Voigt, JA AF Spoerke, Erik D. Lloyd, Matthew T. Lee, Yun-ju Lambert, Timothy N. McKenzie, Bonnie B. Jiang, Ying-Bing Olson, Dana C. Sounart, Thomas L. Hsu, Julia W. P. Voigt, James A. TI Nanocrystal Layer Deposition: Surface-Mediated Templating of Cadmium Sulfide Nanocrystals on Zinc Oxide Architectures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL BATH DEPOSITION; CDS THIN-FILMS; SOLAR-CELLS; II-VI; GROWTH; MECHANISM; NANORODS; THIOUREA; COMPLEX; SYSTEM AB The integration of zinc oxide (ZnO) and cadmium sulfide (CdS) has shown promise in applications such as sensing and photovoltaics. We describe here a room temperature, aqueous synthetic strategy to selectively grow nanocrystalline US on ZnO. In particular, we describe all experimentally simple process that selectively grows a conformal nanocrystalline coating only I nanocrystal (10-20 nm) thick on planar and three-dimensional extended ZnO structures. We explore the synthesis, characterization, and mechanisms involved in the formation of this composite material, and we demonstrate a promising optical response from these composite structures that may prove valuable for future optoelectronic applications. C1 [Spoerke, Erik D.; Lee, Yun-ju; Sounart, Thomas L.; Voigt, James A.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87109 USA. [Jiang, Ying-Bing] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87109 USA. EM edspoer@sandia.gov FU Sandia's Laboratory Directed Research and Development program; Division of Material Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy FX The authors acknowledge Dr. Bruce C. Bunker and Dr. David R. Wheeler for insightful technical discussions, This work was supported by Sandia's Laboratory Directed Research and Development program and by the Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 34 TC 34 Z9 35 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 17 PY 2009 VL 113 IS 37 BP 16329 EP 16336 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 492KX UT WOS:000269655800006 ER PT J AU Munoz-Losa, A Vukovic, S Corni, S Mennucci, B AF Munoz-Losa, Aurora Vukovic, Sinisa Corni, Stefano Mennucci, Benedetta TI Nonplasmonic Metal Particles as Excitation Energy Transfer Acceptors: an Unexpected Efficiency Revealed by Quantum Mechanics SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLARIZABLE CONTINUUM MODEL; EFFECTIVE CORE POTENTIALS; ENHANCED RAMAN-SCATTERING; NONRADIATIVE DECAY-RATES; GOLD NANOPARTICLES; MOLECULAR CALCULATIONS; ANISOTROPIC DIELECTRICS; IONIC-SOLUTIONS; FLUORESCENCE; SURFACE AB We present a time-dependent density functional theory investigation of the excitation energy transfer (EET) between a typical chromophore (perylene diimide) and a small metal cluster (Au(20)). Two different physical descriptions are tested for the metal: the real (nonplasmonic) cluster and a hypothetical nanoparticle characterized by a bulk gold dielectric response (which thus sustains surface plasmons). By comparing the results obtained for the same EET process with the two types of metal particles, we show that, surprisingly, nonplasmonic small metal clusters can be as intrinsically effective as plasmonic particles in EET, a finding that is also relevant for applications in several field ranging from analytical chemistry to nanoscience. C1 [Munoz-Losa, Aurora; Vukovic, Sinisa; Mennucci, Benedetta] Univ Pisa, Dept Chem & Ind Chem, I-56126 Pisa, Italy. [Corni, Stefano] INFM CNR Natl Res Ctr NanoStruct & BioSyst Surfac, I-41100 Modena, Italy. [Vukovic, Sinisa] Lawrence Berkeley Natl Lab, Div Chem Sci, Gilman, CA 94720 USA. RP Mennucci, B (reprint author), Univ Pisa, Dept Chem & Ind Chem, Via Risorgimento 35, I-56126 Pisa, Italy. EM bene@dcci.unipi.it RI Mennucci, Benedetta/H-2216-2011; Corni, Stefano/A-6198-2012; Vukovic, Sinisa/J-3106-2013; Munoz-Losa, Aurora /J-2808-2014; Mennucci, Benedetta/G-5522-2016; OI Vukovic, Sinisa/0000-0002-7682-0705; Mennucci, Benedetta/0000-0002-4394-0129; Corni, Stefano/0000-0001-6707-108X FU EU FX This work was supported within the EU FP6, by the ERANET project NanoSci-ERA: Nanoscience in the European research area. The authors wish to thank Dr. Anne Debarre and Prof. Gregory D. Scholes for critical reading of the manuscript and Dr. Rosa Di Felice for useful discussions. NR 58 TC 17 Z9 17 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 17 PY 2009 VL 113 IS 37 BP 16364 EP 16370 DI 10.1021/jp904366f PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 492KX UT WOS:000269655800010 ER PT J AU Wyart, C Del Bene, F Warp, E Scott, EK Trauner, D Baier, H Isacoff, EY AF Wyart, Claire Del Bene, Filippo Warp, Erica Scott, Ethan K. Trauner, Dirk Baier, Herwig Isacoff, Ehud Y. TI Optogenetic dissection of a behavioural module in the vertebrate spinal cord SO NATURE LA English DT Article ID FLUID-CONTACTING NEURONS; IONOTROPIC GLUTAMATE-RECEPTOR; LARVAL ZEBRAFISH; IN-VIVO; GENETIC DISSECTION; LOCOMOTOR NETWORK; NEURAL CIRCUITS; CELLS; LIGHT; INTERNEURONS AB Locomotion relies on neural networks called central pattern generators (CPGs) that generate periodic motor commands for rhythmic movements(1). In vertebrates, the excitatory synaptic drive for inducing the spinal CPG can originate from either supraspinal glutamatergic inputs or from within the spinal cord(2,3). Here we identify a spinal input to the CPG that drives spontaneous locomotion using a combination of intersectional gene expression and optogenetics(4) in zebrafish larvae. The photo-stimulation of one specific cell type was sufficient to induce a symmetrical tail beating sequence that mimics spontaneous slow forward swimming. This neuron is the Kolmer-Agduhr cell(5), which extends cilia into the central cerebrospinal-fluid-containing canal of the spinal cord and has an ipsilateral ascending axon that terminates in a series of consecutive segments(6). Genetically silencing Kolmer-Agduhr cells reduced the frequency of spontaneous free swimming, indicating that activity of Kolmer-Agduhr cells provides necessary tone for spontaneous forward swimming. Kolmer-Agduhr cells have been known for over 75 years, but their function has been mysterious. Our results reveal that during early development in zebrafish these cells provide a positive drive to the spinal CPG for spontaneous locomotion. C1 [Wyart, Claire; Warp, Erica; Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Wyart, Claire; Warp, Erica; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Del Bene, Filippo; Scott, Ethan K.; Baier, Herwig] Univ Calif San Francisco, Dept Physiol, Program Neurosci, San Francisco, CA 94158 USA. [Trauner, Dirk] Univ Munich, Dept Chem, Munich, Germany. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. EM herwig.baier@ucsf.edu; ehud@berkeley.edu RI Scott, Ethan/F-6693-2015; Wyart, Claire/H-3783-2016; OI Wyart, Claire/0000-0002-1668-4975; Scott, Ethan/0000-0003-3150-9216; del bene, filippo/0000-0001-8551-2846 FU Marie Curie Outgoing International Fellowship [CNRS-UMR5020]; Human Frontier Science Program Long-term Postdoctoral Fellowship; National Institutes of Health Nanomedicine Development Center [5PN2EY018241]; Human Frontiers Science Program [RGP23-2005]; Lawrence Berkeley National Laboratory Directed Research and Development Program [R01 NS053358]; Sandler Opportunity Award FX We thank M.Volgraf for MAG-1 synthesis, K.Kawakami for the UAS: TeTxLC-CFP line, B.Appel for the Olig2-DsRed line, W.Staub for animal care, D.Li for help with screening BGUG larvae, B.Vigh, C.Girit, E.Brustein, P.Drapeau and S.Hugel for discussions, P.G.de Gennes and Noam Sobel for support and O.Wyart for aesthetic input.We are grateful to K.Best, P.Tavormina, H.Aaron, R.Ayer, B.Nowak and M.Ulbrich for advice on the design of the photostimulation setup.Support for the work was from the Marie Curie Outgoing International Fellowship (with the CNRS-UMR5020 'Neurosciences Sensorielles, Comportement Cognition' laboratory, Lyon, France) (C.W.), the Human Frontier Science Program Long-term Postdoctoral Fellowship (F.D.B.), the National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (5PN2EY018241) (E.Y.I., D.T.and H.B.), the Human Frontiers Science Program (RGP23-2005) (E.Y.I.and D.T.), the Lawrence Berkeley National Laboratory Directed Research and Development Program (E.Y.I.and D.T.), R01 NS053358 (H.B.) and a Sandler Opportunity Award (H.B.). NR 31 TC 193 Z9 198 U1 2 U2 61 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 17 PY 2009 VL 461 IS 7262 BP 407 EP U105 DI 10.1038/nature08323 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 494QB UT WOS:000269828100042 PM 19759620 ER PT J AU Law, RJ Lightstone, FC AF Law, Richard J. Lightstone, Felice C. TI Modeling Neuronal Nicotinic and GABA Receptors: Important Interface Salt-Links and Protein Dynamics SO BIOPHYSICAL JOURNAL LA English DT Article ID GATED ION-CHANNEL; ACETYLCHOLINE-RECEPTOR; MOLECULAR-DYNAMICS; GATING MECHANISM; ELECTROSTATIC INTERACTIONS; AGONIST BINDING; INHIBITION; SIMULATION; ALPHA-7; PORE AB Protein motions in the Cys-loop ligand-gated ion receptors that govern the gating mechanism are still not well understood. The details as to how motions in the ligand-binding domain are translated to the transmembrane domain and how subunit rotations are linked to bring about the cooperative movements involved in gating are under investigation. Homology models of the alpha 4 beta 2 nicotinic acetylcholine (nACh) and beta 2 alpha 1 gamma 2 GABA receptors were constructed based on the torpedo neuromuscular-like nicotinic receptor structure. The template constructed for the full electron microscopy structure must be considered more reliable for structure-function studies due to the preservation of the E45-R209 salt-link. Many other salt-links are seen to transiently form, including switching off of the E45-R209 link, within a network of potential salt-links at the binding domain to the transmembrane domain interface region. Several potentially important intersubunit salt-links form in both the nAChR and GABAR structures during the simulation and appear conserved across many subunit combinations, such as the salt-link between alpha 4.E262 and beta 2.K255 in nAChR (beta 2.E262 and alpha 1.K263 in GABAR), at the top of the pore-lining M2 helices, and the intersubunit link of R210 on the M1-linker to E168 on the beta 8-sheet of the adjacent subunit in the GABA receptor (E175-K46 being the structurally equivalent link in the nAChR, with reversed polarity). A network of other salt-links may be vital for transmitting the cooperative gating motions between subunits that become biased upon ligand binding. The changes seen in the simulations suggest that this network of salt-links helps to set limits and specific states for the conformational changes involved in gating of the receptor. We hope that these hypotheses will be tested experimentally in the near future. C1 [Law, Richard J.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM felice@llnl.gov FU Laboratory Directed Research and Development Program [05-ERD-025]; U.S. Department of Energy [DE-AC52-07NA27344]; UCRL [UCRL-JRNL-231445] FX This work was supported by the Laboratory Directed Research and Development Program (grant 05-ERD-025) at Lawrence Livermore National Laboratory, and performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. UCRL#: UCRL-JRNL-231445. NR 49 TC 16 Z9 18 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 16 PY 2009 VL 97 IS 6 BP 1586 EP 1594 DI 10.1016/j.bpj.2009.06.044 PG 9 WC Biophysics SC Biophysics GA 501KO UT WOS:000270380800009 PM 19751663 ER PT J AU DeCamp, SJ Naganathan, AN Waldauer, SA Bakajin, O Lapidus, LJ AF DeCamp, Stephen J. Naganathan, Athi N. Waldauer, Steven A. Bakajin, Olgica Lapidus, Lisa J. TI Direct Observation of Downhill Folding of lambda-Repressor in a Microfluidic Mixer SO BIOPHYSICAL JOURNAL LA English DT Article ID NONEXPONENTIAL RELAXATION KINETICS; PROTEIN HYDROPHOBIC COLLAPSE; UNRELIABLE SIGNATURES; SPEED LIMIT; DYNAMICS; TEMPERATURE; LANDSCAPE; FUNNELS; TIME AB The protein lambda(6-85) has been implicated in barrierless folding by observations of kinetic relaxation after nanosecond T-jump. In this work we observed folding of this protein after dilution of a high denaturant in an ultrarapid microfluidic mixer at temperatures far below the thermal midpoint. The observations of total intensity and spectral shift of tryptophan fluorescence yielded distinctly different kinetics and activation energies. These results may be explained as diffusion on a low-barrier, one-dimensional, free-energy surface, with different probes having different sensitivities along the reaction coordinate. Additionally, we observed an extremely fast phase within the mixing time that was not observed by T-jump, suggesting that the ensemble of unfolded states populated at high denaturant is distinct from those accessible at high temperature. C1 [DeCamp, Stephen J.; Waldauer, Steven A.; Lapidus, Lisa J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Naganathan, Athi N.] CSIC, Ctr Invest Biol, Dept Prot Sci, Madrid, Spain. [Bakajin, Olgica] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA USA. RP Lapidus, LJ (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM lapidus@pa.msu.edu RI Waldauer, Steven/D-1217-2010; Naganathan, Athi/D-1964-2013; OI DeCamp, Stephen/0000-0001-7002-7370 FU National Science Foundation (NSF) [EF-0623664, PHY 0120999]; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by funding frorn the National Science Foundation (NSF) Frontiers in Integrative Biological Research Program (grant EF-0623664) and administered in part by the Center for Biophotonics, all NSF Science and Technology Center, managed by the University ofCalifornia, Davis, under Cooperative Agreement PHY 0120999. The research of Lisa Lapidus, PhD, was Supported in part by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 with funding from the Laboratory Directed Research and Development Program. NR 30 TC 32 Z9 32 U1 2 U2 9 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 16 PY 2009 VL 97 IS 6 BP 1772 EP 1777 DI 10.1016/j.bpj.2009.07.003 PG 6 WC Biophysics SC Biophysics GA 501KO UT WOS:000270380800029 PM 19751683 ER PT J AU Henne, KL Nakatsu, CH Thompson, DK Konopka, AE AF Henne, Kristene L. Nakatsu, Cindy H. Thompson, Dorothea K. Konopka, Allan E. TI High-level chromate resistance in Arthrobacter sp strain FB24 requires previously uncharacterized accessory genes SO BMC MICROBIOLOGY LA English DT Article ID PSEUDOMONAS-AERUGINOSA; ESCHERICHIA-COLI; HEXAVALENT CHROMIUM; ALCALIGENES-EUTROPHUS; SUBSURFACE SEDIMENTS; NUCLEOTIDE-SEQUENCE; METALLIDURANS CH34; TRANSPORTER CHRA; METAL RESISTANCE; VINYL-CHLORIDE AB Background: The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase ( most similar to malate: quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. Results: A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. Conclusion: Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study. C1 [Henne, Kristene L.; Thompson, Dorothea K.; Konopka, Allan E.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Nakatsu, Cindy H.] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Konopka, Allan E.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Henne, KL (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. EM khenne@purdue.edu; cnakatsu@purdue.edu; dthomps4@utk.edu; allan.konopka@pnl.gov FU Department of Energy's Environmental Remediation Science Program [DE-FG02-98ER62681]; Purdue Research Foundation; Purdue Graduate School Bilsland Doctoral Fellowship FX This work was supported by a grant from the Department of Energy's Environmental Remediation Science Program (grant DE-FG02-98ER62681). K. H. received support from the Purdue Research Foundation and the Purdue Graduate School Bilsland Doctoral Fellowship. We would like to thank Karl Wood and Arlene Rothwell of the Purdue Mass Spectrometry Center for performing the ICP-MS analysis, Jillian Detweiler for assistance with statistical analyses and Gene Wickham, Kurt Jerke for phylogenetic and technical assistance and Militza Carrero-Colon for thoughtful discussion. Vector pART2 was a kind gift from Cristinel Sandu. NR 58 TC 29 Z9 31 U1 0 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD SEP 16 PY 2009 VL 9 AR 199 DI 10.1186/1471-2180-9-199 PG 14 WC Microbiology SC Microbiology GA 503DO UT WOS:000270512800001 PM 19758450 ER PT J AU Ibarra, B Chemla, YR Plyasunov, S Smith, SB Lazaro, JM Salas, M Bustamante, C AF Ibarra, Borja Chemla, Yann R. Plyasunov, Sergey Smith, Steven B. Lazaro, Jose M. Salas, Margarita Bustamante, Carlos TI Proofreading dynamics of a processive DNA polymerase SO EMBO JOURNAL LA English DT Article DE bacteriophage Phi29; DNA replication; molecular motors; optical tweezers; proofreading ID EXONUCLEASE ACTIVE-SITE; STRAND-DISPLACEMENT; 2-AMINOPURINE FLUORESCENCE; MUTATIONAL ANALYSIS; CRYSTAL-STRUCTURE; KINETIC-ANALYSIS; KLENOW FRAGMENT; SINGLE-MOLECULE; EDITING COMPLEX; BETA-HAIRPIN AB Replicative DNA polymerases present an intrinsic proofreading activity during which the DNA primer chain is transferred between the polymerization and exonuclease sites of the protein. The dynamics of this primer transfer reaction during active polymerization remain poorly understood. Here we describe a single-molecule mechanical method to investigate the conformational dynamics of the intramolecular DNA primer transfer during the processive replicative activity of the Phi 29 DNA polymerase and two of its mutants. We find that mechanical tension applied to a single polymerase-DNA complex promotes the intramolecular transfer of the primer in a similar way to the incorporation of a mismatched nucleotide. The primer transfer is achieved through two novel intermediates, one a tension-sensitive and functional polymerization conformation and a second non-active state that may work as a fidelity check point for the proofreading reaction. The EMBO Journal (2009) 28, 2794-2802. doi: 10.1038/emboj.2009.219; Published online 6 August 2009 C1 [Bustamante, Carlos] Univ Calif Berkeley, Dept Phys, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Lazaro, Jose M.; Salas, Margarita] UAM, CSIC, Ctr Biol Mol Severo Ochoa, Madrid, Spain. [Bustamante, Carlos] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Bustamante, C (reprint author), Univ Calif Berkeley, Dept Phys, Howard Hughes Med Inst, QB3,608 Stanley Hall, Berkeley, CA 94720 USA. EM carlos@alice.berkeley.edu RI Salas, Margarita/J-9873-2014; Ibarra, Borja/H-5840-2015 OI Salas, Margarita/0000-0001-5939-3441; FU National Institutes of Health; Spanish Ministry of Education and Science; Comunidad de Madrid; Burroughs Wellcome Fund FX We thank JR Moffitt for critical reading of the paper, E Galburt and S Grill for help with data analysis and helpful discussions. This work was supported by the National Institutes of Health (CB), the Spanish Ministry of Education and Science and Comunidad de Madrid (MS). YRC acknowledges the Burroughs Wellcome Fund, Career Award at the Scientific Interface. BI and CB designed the experiments; BI performed the experiments; BI, YRC and SP analysed the data; SBS, JML and MS provided technical and biochemical tools; and BI, YRC and CB wrote the paper. NR 41 TC 44 Z9 46 U1 1 U2 13 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD SEP 16 PY 2009 VL 28 IS 18 BP 2794 EP 2802 DI 10.1038/emboj.2009.219 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 494TY UT WOS:000269842000011 PM 19661923 ER PT J AU Loken, E Botterud, A Holen, AT AF Loken, Espen Botterud, Audun Holen, Arne T. TI Use of the equivalent attribute technique in multi-criteria planning of local energy systems SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH LA English DT Article DE Multiple criteria analysis; OR in energy; Equivalent attribute technique; Local energy-planning; Multi-attribute utility theory ID DECISION AB This paper discusses how the equivalent attribute technique (EAT) can be used to improve the comprehensibility of a multi-attribute utility theory study. When using EAT, 'vague' expected total utility values are converted into equivalent values for one of the attributes being considered, often an economic attribute. Two models are considered: a simplified linear model. and a more advanced non-linear model that includes the DM's strength-of-preference and risk attitude. EAT is particularly useful in distinguishing between alternatives with similar utility values. When the difference between utility values is larger, the choice among the alternatives should be clear, and EAT therefore becomes less useful. The technique can still be used, although extra care is needed when choosing the equivalent attribute. A local energy-planning problem is used as a case study to illustrate and exemplify the EAT approach. (c) 2008 Elsevier B.V. All rights reserved. C1 [Loken, Espen; Holen, Arne T.] Norwegian Univ Sci & Technol, Dept Elect Power Engn, N-7491 Trondheim, Norway. [Botterud, Audun] Argonne Natl Lab, Ctr Energy Environm & Econ Syst Anal, Argonne, IL 60439 USA. RP Loken, E (reprint author), KanEnergi AS, Hoffsvn 13, N-0275 Oslo, Norway. EM el@kanenergi.no; abotterud@anl.gov; holen@elkraft.ntnu.no NR 18 TC 14 Z9 15 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-2217 EI 1872-6860 J9 EUR J OPER RES JI Eur. J. Oper. Res. PD SEP 16 PY 2009 VL 197 IS 3 BP 1075 EP 1083 DI 10.1016/j.ejor.2007.12.050 PG 9 WC Management; Operations Research & Management Science SC Business & Economics; Operations Research & Management Science GA 430KR UT WOS:000264988500019 ER PT J AU Tian, HJ Simonyi, T Poston, J Siriwardane, R AF Tian, Hanjing Simonyi, Thomas Poston, James Siriwardane, Ranjani TI Effect of Hydrogen Sulfide on Chemical Looping Combustion of Coal-Derived Synthesis Gas over Bentonite-Supported Metal-Oxide Oxygen Carriers SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID IRON-OXIDES; COPPER OXIDES; XPS SPECTRA; NICKEL; REDUCTION; PARTICLES; OXIDATION; METHANE; SYSTEM; H2S AB The effect of hydrogen sulfide (H(2)S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides-such as iron oxide, nickel oxide, manganese oxide, and copper oxide-was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H(2)S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H(2)S to form metal Sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H,S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H(2)S for all four metal oxides. C1 [Tian, Hanjing; Simonyi, Thomas; Poston, James; Siriwardane, Ranjani] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Tian, Hanjing; Simonyi, Thomas] Parsons, Pittsburgh, PA 15129 USA. RP Siriwardane, R (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM ranjani.siriwardane@netl.doe.gov NR 53 TC 23 Z9 26 U1 6 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 16 PY 2009 VL 48 IS 18 BP 8418 EP 8430 DI 10.1021/ie900638p PG 13 WC Engineering, Chemical SC Engineering GA 492KP UT WOS:000269654800015 ER PT J AU Johnson, JA Weber, JKR Kolesnikov, AI Schweizer, S AF Johnson, J. A. Weber, J. K. R. Kolesnikov, A. I. Schweizer, S. TI Crystallization in heat-treated fluorochlorozirconate glasses SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CERAMICS AB Crystallization phenomena of fluorochlorozirconate glasses were investigated by means of differential scanning calorimetry and inelastic neutron scattering. The precipitation of barium chloride nanoparticles from the glass matrix upon heat treatment was found to be suppressed when re-melting the glass with a reducing agent but not if the agent was present in the initial synthesis. Addition of small amounts of oxide to the predominantly fluoride melt was found to maintain the presence of nanoparticles but not to induce the predicted phase transition of the barium chloride nanoparticles from hexagonal to orthorhombic structure. Inelastic neutron scattering performed on an 'as-made' glass and a heat-treated glass showed an increase in 'hardness', consistent with a more ordered structure. C1 [Johnson, J. A.] Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. [Weber, J. K. R.] Mat Dev Inc, Evanston, IL 60201 USA. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Schweizer, S.] Fraunhofer Ctr Silicon Photovolta, D-06120 Halle, Saale, Germany. [Schweizer, S.] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Saale, Germany. RP Johnson, JA (reprint author), Univ Tennessee, Inst Space, Tullahoma, TN 37388 USA. EM jjohnson@utsi.edu RI Schweizer, Stefan/H-3518-2011; Johnson, Jacqueline/P-4844-2014; Kolesnikov, Alexander/I-9015-2012 OI Johnson, Jacqueline/0000-0003-0830-9275; Kolesnikov, Alexander/0000-0003-1940-4649 FU National Institutes of Health (NIH) [1R01EB006145-01A2]; US Department of Energy [DE-AC05-00OR22725, DE-AC02-06CH11357]; FhG Internal Programs [692 034] FX This publication was supported by Grant Number 1R01EB006145-01A2 from the National Institutes of Health (NIH) to the University of Tennessee Space Institute (UTSI) and under subcontracts from UTSI. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH. One of us (AIK) wishes to acknowledge ORNL/SNS which is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. We thank Mr Alexander Terekhov for his help in setting up and operating the glove box furnace system. S Schweizer was supported by the FhG Internal Programs under Grant No. Attract 692 034. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 3 Z9 3 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 16 PY 2009 VL 21 IS 37 AR 375103 DI 10.1088/0953-8984/21/37/375103 PG 6 WC Physics, Condensed Matter SC Physics GA 486LU UT WOS:000269198900005 ER PT J AU Frueh, DP Arthanari, H Koglin, A Walsh, CT Wagner, G AF Frueh, Dominique P. Arthanari, Haribabu Koglin, Alexander Walsh, Christopher T. Wagner, Gerhard TI A Double TROSY hNCAnH Experiment for Efficient Assignment of Large and Challenging Proteins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NONRIBOSOMAL PEPTIDE SYNTHETASE; RESONANCE; THIOESTERASE; ENTB; C-13 AB We present an experiment that allows for a straightforward assignment of NMR resonances, even in large and/or challenging proteins. A single 3D double-TROSY experiment provides three pairs of sequential correlations between two alpha carbons, two amide protons, and two nitrogen nuclei. Thus, all correlated nuclei can readily be visualized within all dimensions of the resulting spectrum, and chain elongation of sequential amino acids can be effected with this single data set. This resolves ambiguities occurring in traditional methods which involve time-consuming and cumbersome strip comparisons obtained with series of triple-resonance spectra. The experiment makes use of the double TROSY technique to account for signal intensity losses during transfer and evolution periods and was tested on a 500 mu M sample of the 33 kDa nonribosomal peptide synthetase protein EntB. C1 [Frueh, Dominique P.; Arthanari, Haribabu; Koglin, Alexander; Walsh, Christopher T.; Wagner, Gerhard] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Koglin, Alexander] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Frueh, DP (reprint author), Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, 240 Longwood Ave, Boston, MA 02115 USA. EM dominique_frueh@hms.harvard.edu; Gerhard_Wagner@hms.harvard.edu RI Frueh, Dominique/A-6462-2008 OI Frueh, Dominique/0000-0003-4605-3776 FU National Institutes of Health [GM47467, AI37581, RR00995]; Los Alamos National Laboratory FX This research was supported by the National Institutes of Health (Grants GM47467, AI3758 1, and RR00995) and a Human Frontier Science Program long-term fellowship from 2007-2009 (A.K.). A.K. is a Director's fellow of the Los Alamos National Laboratory awarded in 2009. NR 16 TC 17 Z9 17 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 16 PY 2009 VL 131 IS 36 BP 12880 EP + DI 10.1021/ja9046685 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 493KR UT WOS:000269736000009 PM 19702261 ER PT J AU Voznyy, O Dubowski, JJ Yates, JT Maksymovych, P AF Voznyy, Oleksandr Dubowski, Jan J. Yates, J. T., Jr. Maksymovych, Peter TI The Role of Gold Adatoms and Stereochemistry in Self-Assembly of Methylthiolate on Au(111) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; X-RAY-DIFFRACTION; MONOLAYERS; SURFACES; PHASE; ALKANETHIOLS; INTERFACE; FORM AB On the basis of high resolution STM images and DFT modeling, we have resolved low- and high-coverage structures of methylthiolate (CH(3)S) self-assembled on the Au(111) surface. The key new finding is that the building block of all these structures has the same stoichiometry of two thiolate species joined by a gold adatom. The self-arrangement of the methylthiolate-adatom complexes on the surface depends critically on their stereochemical properties. Variations of the latter can produce local ordering of adatom complexes with either (3 x 4) or (3 x 4 root 3) periodicity. A possible structural connection between the (3 x 4 root 3) structure and commonly observed (root 3 x root 3)R30 degrees phase in methylthiolate self-assembled monolayers is developed by taking into account the reduction in the long-range order and stereochemical isomerization at high coverage. We also suggest how the observed self-arrangements of methylthiolate may be related to the c(4 x 2) phase of its longer homologues. C1 [Voznyy, Oleksandr; Dubowski, Jan J.] Univ Sherbrooke, Dept Elect & Comp Engn, Ctr Excellence Informat Engn CEGI, Sherbrooke, PQ J1K 2R1, Canada. [Yates, J. T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Yates, J. T., Jr.; Maksymovych, Peter] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15217 USA. [Maksymovych, Peter] Oak Ridge Natl Lab, Ctr Nanophuse Mat Sci, Oak Ridge, TN 37831 USA. RP Voznyy, O (reprint author), Univ Sherbrooke, Dept Elect & Comp Engn, Ctr Excellence Informat Engn CEGI, Sherbrooke, PQ J1K 2R1, Canada. EM o.voznyy@usherbrooke.ca; 5nm@oml.gov RI Maksymovych, Petro/C-3922-2016; OI Maksymovych, Petro/0000-0003-0822-8459; Voznyy, Oleksandr/0000-0002-8656-5074 FU Natural Sciences and Engineering Research Council of Canada [STPGP 350501-07]; W. M. Keck Foundation; Army Research Office FX The funding for this research has been provided by the Natural Sciences and Engineering Research Council of Canada - STPGP 350501-07 and Canada Research Chair in Quantum Semiconductors Program (J.J.D.). P.M. and J.T.Y: Supported by the W. M. Keck Foundation and by the Army Research Office. P.M.: Research performed in part, as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory. Computational resources were provided by the Reseau quebecois de calcul de haute performance (RQCHP). NR 29 TC 105 Z9 106 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 16 PY 2009 VL 131 IS 36 BP 12989 EP 12993 DI 10.1021/ja902629y PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 493KR UT WOS:000269736000036 PM 19737018 ER PT J AU Choi, Y Liu, P AF Choi, YongMan Liu, Ping TI Mechanism of Ethanol Synthesis from Syngas on Rh(111) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RHODIUM SILICA CATALYSTS; SUPPORTED RH CATALYSTS; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; STRUCTURE-SENSITIVITY; TRANSITION-METALS; SADDLE-POINTS; CO; ADSORPTION; SURFACE AB Rh-based catalysts display unique efficiency and selectivity in catalyzing ethanol synthesis from syngas (2CO + 4H(2) -> C(2)H(5)OH + H(2)O). Understanding the reaction mechanism at the molecular level is the key to rational design of better catalysts for ethanol synthesis, which is one of major challenges for ethanol application in energy. In this work, extensive calculations based on density functional theory (DFT) were carried out to investigate the complex ethanol synthesis on Rh(111). Our results show that ethanol synthesis on Rh(111) starts with formyl formation from CO hydrogenation, followed by subsequent hydrogenation reactions and CO insertion. Three major products are involved in this process: methane; methanol, and ethanol, where the ethanol productivity is low and Rh(111) is highly selective to methane rather than ethanol or methanol. The rate-limiting step of the overall conversion is the hydrogenation of CO to formyl species, while the selectivity to ethanol is controlled by methane formation and C-C bond formation between methyl species and CO. The strong Rh-CO interaction impedes the CO hydrogenation and therefore slows down the overall reaction; however, its high affinity to methyl, oxygen, and acetyl species indeed helps the C-O bond breaking of methoxy species and therefore the direct ethanol synthesis via CO insertion. Our results show that to achieve high productivity and selectivity for ethanol, Rh has to get help from the promoters, which should be able to suppress methane formation and/or boost C-C bond formation. The present study provides the basis to understand and develop novel Rh-based catalysts for ethanol synthesis. C1 [Choi, YongMan; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov RI Choi, YongMan/N-3559-2014 OI Choi, YongMan/0000-0003-4276-1599 FU Brookhaven National Laboratory with the U.S. Department of Energy [DE-AC02-98CH10886] FX This research was carried out at Brookhaven National Laboratory under Contract DE-AC02-98CH10886 with the U.S. Department of Energy (Division of Chemical Sciences). First-principle calculations were carried out using computational resources at Center for Functional Nanomaterials, Brookhaven National Laboratory, and National Energy Research Scientific NR 53 TC 123 Z9 123 U1 17 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 16 PY 2009 VL 131 IS 36 BP 13054 EP 13061 DI 10.1021/ja903013x PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 493KR UT WOS:000269736000044 PM 19702298 ER PT J AU Smolentsev, G Soldatov, AV Messinger, J Merz, K Weyhermuller, T Bergmann, U Pushkar, Y Yano, J Yachandra, VK Glatzel, P AF Smolentsev, Grigory Soldatov, Alexander V. Messinger, Johannes Merz, Kathrin Weyhermueller, Thomas Bergmann, Uwe Pushkar, Yulia Yano, Junko Yachandra, Vittal K. Glatzel, Pieter TI X-ray Emission Spectroscopy To Study Ligand Valence Orbitals in Mn Coordination Complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FLUORESCENCE SPECTROSCOPY; SPECTRA; TRANSITION; ABSORPTION; XANES; REFINEMENT; WATER; CRYSTALLOGRAPHY; APPROXIMATION; INTENSITIES AB We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O center dot center dot center dot), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)(6)](2+), [Mn(H2O)(5)OH](+), and [Mn(H2O)(5)NH3](2+). An application of the method, with comparison between theory and experiment, is presented for the solvated Mn 2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N-3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion. C1 [Smolentsev, Grigory; Soldatov, Alexander V.] So Fed Univ, Fac Phys, Rostov Na Donu 344090, Russia. [Smolentsev, Grigory; Soldatov, Alexander V.] So Fed Univ, Res Ctr Nanoscale Struct Matter, Rostov Na Donu 344090, Russia. [Messinger, Johannes; Merz, Kathrin; Weyhermueller, Thomas] Max Planck Inst Bioinorgan Chem, D-45470 Mulheim, Germany. [Bergmann, Uwe] Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. [Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Glatzel, Pieter] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Smolentsev, G (reprint author), So Fed Univ, Fac Phys, Rostov Na Donu 344090, Russia. EM smolentsev@yandex.ru; glatzel@esrf.fr RI Weyhermuller, Thomas/G-6730-2012; Soldatov, Alexander/E-9323-2012; Glatzel, Pieter/E-9958-2010 OI Weyhermuller, Thomas/0000-0002-0399-7999; Soldatov, Alexander/0000-0001-8411-0546; Glatzel, Pieter/0000-0001-6532-8144 FU Ministry of Education and Science (Russia) [2.1.1.5932]; NIH [GM 55302]; Director, Office of Science, Office of Basic Energy Sciences (OBES); Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) [DE-AC02-05CH11231]; DFG [Me 1629/2-4]; Max-Planck-Gesellschaft; Umea University; Wallenberg Foundation FX We thank the European Synchrotron Radiation Facility for the invitation of G.S. as a Visiting Scientist and J. Grattage for a careful reading of the manuscript. The research is partially supported by grant of Ministry of Education and Science (Russia) 2.1.1.5932. V.K.Y. acknowledges support from NIH Grant GM 55302 and by the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) under Contract DE-AC02-05CH11231. J.M. acknowledges support by the DFG (Me 1629/2-4), the Max-Planck-Gesellschaft, Umea University, and the Wallenberg Foundation. NR 54 TC 70 Z9 70 U1 4 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 16 PY 2009 VL 131 IS 36 BP 13161 EP 13167 DI 10.1021/ja808526m PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 493KR UT WOS:000269736000056 PM 19663435 ER PT J AU Chen, KG Leapman, RD Zhang, GF Lai, B Valencia, JC Cardarelli, CO Vieira, WD Hearing, VJ Gottesman, MM AF Chen, Kevin G. Leapman, Richard D. Zhang, Guofeng Lai, Barry Valencia, Julio C. Cardarelli, Carol O. Vieira, Wilfred D. Hearing, Vincent J. Gottesman, Michael M. TI Influence of Melanosome Dynamics on Melanoma Drug Sensitivity SO JOURNAL OF THE NATIONAL CANCER INSTITUTE LA English DT Article ID BINDING CASSETTE TRANSPORTER; MULTIDRUG-RESISTANCE; P-GLYCOPROTEIN; MALIGNANT-MELANOMA; CYTOTOXIC DRUGS; CELLS; TYROSINASE; CISPLATIN; CANCER; MELANOCYTES AB Malignant melanomas are intrinsically resistant to many conventional treatments, such as radiation and chemotherapy, for reasons that are poorly understood. Here we propose and test a model that explains drug resistance or sensitivity in terms of melanosome dynamics. The growth and sensitivity to cisplatin of MNT-1 cells, which are melanotic and enriched with mature stage III and IV melanosomes, and SK-MEL-28 cells, which have only immature stage I and II melanosomes, were compared using clonogenic assays. Differences in pigmentation, melanosome stages, melanosome number, and cellular structures in different cell lines in response to various treatments were examined by electron microscopy. The relative numbers of melanosomes of different stages were compared after treatment with 1-phenyl-2-thiourea. The relationship between drug transporter function and endogenous melanogenic toxicity was assessed by treating cells with the cyclosporin analog PSC-833 and by assessing vacuole formation and cell growth inhibition. All statistical tests were two-sided. Endogenous melanogenic cytotoxicity, produced by damaged melanosomes, resulted in pronounced cell growth inhibition in MNT-1 cells compared with amelanotic SK-MEL-28 cells. The sensitivity to CDDP of MNT-1 cells was 3.8-fold higher than that of SK-MEL-28 cells (mean IC(50) for SK-MEL-28 and MNT-1 = 2.13 mu M and 0.56 mu M, respectively; difference = 1.57 mu M, 95% confidence interval = 1.45 to 1.69; P = .0017). After treatment with 6.7 mu M CDDP for 72 hours, the number of stage II-III melanosomes in surviving MNT-1 cells was 6.8-fold that of untreated cells. Modulation of MNT-1 cells to earlier-stage (II, II-III, III) melanosomes by treatment with the tyrosinase inhibitor 1-phenyl-2-thiourea dramatically increased CDDP resistance. Furthermore, PSC-833 principally suppressed MNT-1 melanotic cell growth via an elevation of autophagosome-like vacuolar structures, possibly by inhibiting melanosome membrane transporters. Melanosome dynamics (including their biogenesis, density, status, and structural integrity) regulate the drug resistance of melanoma cells. Manipulation of melanosome functions may be an effective way to enhance the therapeutic activity of anticancer drugs against melanoma. C1 [Chen, Kevin G.; Valencia, Julio C.; Cardarelli, Carol O.; Vieira, Wilfred D.; Hearing, Vincent J.; Gottesman, Michael M.] NCI, Cell Biol Lab, NIH, Bethesda, MD 20892 USA. [Leapman, Richard D.; Zhang, Guofeng] Natl Inst Biomed Imaging & Bioengn, Lab Bioengn & Phys Sci, NIH, Bethesda, MD USA. [Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gottesman, MM (reprint author), NCI, Cell Biol Lab, NIH, Bldg 37,Rm 2108, Bethesda, MD 20892 USA. EM mgottesman@nih.gov RI Chen, Kevin/D-6769-2011 OI Chen, Kevin/0000-0003-2983-6330 FU Intramural NIH HHS [Z99 NS999999] NR 40 TC 21 Z9 21 U1 1 U2 5 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0027-8874 J9 J NATL CANCER I JI J. Natl. Cancer Inst. PD SEP 16 PY 2009 VL 101 IS 18 BP 1259 EP 1271 DI 10.1093/jnci/djp259 PG 13 WC Oncology SC Oncology GA 496YD UT WOS:000270015400008 PM 19704071 ER PT J AU Barabote, RD Xie, G Brettin, TS Hinrichs, SH Fey, PD Jay, JJ Engle, JL Godbole, SD Noronha, JM Scheuermann, RH Zhou, LW Lion, C Dempsey, MP AF Barabote, Ravi D. Xie, Gary Brettin, Thomas S. Hinrichs, Steven H. Fey, Paul D. Jay, Justin J. Engle, Jennifer L. Godbole, Shubhada D. Noronha, Jyothi M. Scheuermann, Richard H. Zhou, Liwei W. Lion, Christine Dempsey, Michael P. TI Complete Genome Sequence of Francisella tularensis Subspecies holarctica FTNF002-00 SO PLOS ONE LA English DT Article AB Francisella tularensis subspecies holarctica FTNF002-00 strain was originally obtained from the first known clinical case of bacteremic F. tularensis pneumonia in Southern Europe isolated from an immunocompetent individual. The FTNF002-00 complete genome contains the RD23 deletion and represents a type strain for a clonal population from the first epidemic tularemia outbreak in Spain between 1997-1998. Here, we present the complete sequence analysis of the FTNF002-00 genome. The complete genome sequence of FTNF002-00 revealed several large as well as small genomic differences with respect to two other published complete genome sequences of F. tularensis subsp. holarctica strains, LVS and OSU18. The FTNF002-00 genome shares >99.9% sequence similarity with LVS and OSU18, and is also similar to 5 MB smaller by comparison. The overall organization of the FTNF002-00 genome is remarkably identical to those of LVS and OSU18, except for a single 3.9 kb inversion in FTNF002-00. Twelve regions of difference ranging from 0.1-1.5 kb and forty-two small insertions and deletions were identified in a comparative analysis of FTNF002-00, LVS, and OSU18 genomes. Two small deletions appear to inactivate two genes in FTNF002-00 causing them to become pseudogenes; the intact genes encode a protein of unknown function and a drug:H(+) antiporter. In addition, we identified ninety-nine proteins in FTNF002-00 containing amino acid mutations compared to LVS and OSU18. Several non-conserved amino acid replacements were identified, one of which occurs in the virulence-associated intracellular growth locus subunit D protein. Many of these changes in FTNF002-00 are likely the consequence of direct selection that increases the fitness of this subsp. holarctica clone within its endemic population. Our complete genome sequence analyses lay the foundation for experimental testing of these possibilities. RP Barabote, RD (reprint author), Los Alamos Natl Lab, Biosci Div, M888, Los Alamos, NM 87545 USA. EM dempseym@afip.osd.mil RI Barabote, Ravi/B-8727-2011; Barabote, Ravi/C-1299-2017; OI Barabote, Ravi/0000-0002-0403-246X; xie, gary/0000-0002-9176-924X; Scheuermann, Richard/0000-0003-1355-892X NR 43 TC 21 Z9 277 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 16 PY 2009 VL 4 IS 9 AR e7041 DI 10.1371/journal.pone.0007041 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 496KE UT WOS:000269970000010 PM 19756146 ER PT J AU Wunschel, D Webb-Robertson, BJ Frevert, CW Skerrett, S Beagley, N Willse, A Colburn, H Antolick, K AF Wunschel, David Webb-Robertson, Bobbie-Jo Frevert, Charles W. Skerrett, Shawn Beagley, Nat Willse, Alan Colburn, Heather Antolick, Kathryn TI Differentiation of Gram-Negative Bacterial Aerosol Exposure Using Detected Markers in Bronchial-Alveolar Lavage Fluid SO PLOS ONE LA English DT Article AB The identification of biosignatures of aerosol exposure to pathogens has the potential to provide useful diagnostic information. In particular, markers of exposure to different types of respiratory pathogens may yield diverse sets of markers that can be used to differentiate exposure. We examine a mouse model of aerosol exposure to known Gram negative bacterial pathogens, Francisella tularensis novicida and Pseudomonas aeruginosa. Mice were subjected to either a pathogen or control exposure and bronchial alveolar lavage fluid (BALF) was collected at four and twenty four hours post exposure. Small protein and peptide markers within the BALF were detected by matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and analyzed using both exploratory and predictive data analysis methods; principle component analysis and degree of association. The markers detected were successfully used to accurately identify the four hour exposed samples from the control samples. This report demonstrates the potential for small protein and peptide marker profiles to identify aerosol exposure in a short post-exposure time frame. RP Wunschel, D (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM David.Wunschel@pnl.gov RI Wunschel, David/F-3820-2010 FU NIAID NIH HHS [U54 AI057141] NR 45 TC 2 Z9 2 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 16 PY 2009 VL 4 IS 9 AR e7047 DI 10.1371/journal.pone.0007047 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 496KE UT WOS:000269970000014 PM 19756149 ER PT J AU Tsang, YW Birkholzer, JT Mukhopadhyay, S AF Tsang, Y. W. Birkholzer, J. T. Mukhopadhyay, S. TI MODELING OF THERMALLY DRIVEN HYDROLOGICAL PROCESSES IN PARTIALLY SATURATED FRACTURED ROCK SO REVIEWS OF GEOPHYSICS LA English DT Review ID REACTIVE GEOCHEMICAL TRANSPORT; WASTE EMPLACEMENT TUNNELS; DRIFT SCALE TEST; YUCCA-MOUNTAIN; FLUID-FLOW; HEATER TEST; THERMOHYDROLOGIC CONDITIONS; HYDRAULIC CONDUCTIVITY; CHEMICAL-PROCESSES; PREFERENTIAL FLOW AB This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last 2 decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow, in turn, will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes. C1 [Tsang, Y. W.; Birkholzer, J. T.; Mukhopadhyay, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Tsang, YW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM yttsang@lbl.gov RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This manuscript has been authored by Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231 with the U.S. Department of Energy. The authors' views and opinions expressed in this article do not necessarily state or reflect those of the U.S. Government or any agency thereof or the Regents of the University of California.; The Editor responsible for this paper was Michael Manga. He thanks George Danko and Ardyth Simmons as technical reviewers and one anonymous cross-disciplinary reviewer. NR 99 TC 6 Z9 6 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD SEP 16 PY 2009 VL 47 AR RG3004 DI 10.1029/2008RG000265 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 497LB UT WOS:000270059600001 ER PT J AU Shestopalov, AM Fedorov, AE Rodinovskaya, LA Shestopalov, AA Gakh, AA AF Shestopalov, Anatoliy M. Fedorov, Alexander E. Rodinovskaya, Liudmila A. Shestopalov, Alexander A. Gakh, Andrei A. TI Microwave-assisted synthesis of substituted fluoroazines using KF center dot 2H(2)O SO TETRAHEDRON LETTERS LA English DT Article ID NICOTINIC ACETYLCHOLINE-RECEPTORS; MEDIATED IMAGING AGENTS; NUCLEOPHILIC FLUORINATION; BIOLOGICAL EVALUATION; RADIOLIGAND; DERIVATIVES; PET AB This Letter describes a new microwave-assisted fluorination of azines using hydrated potassium fluoride in untreated DMSO under atmospheric conditions. It is thought that microwave irradiation promotes desolvation of the fluorine anion leading to halide nucleophilic Substitution. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Shestopalov, Anatoliy M.; Fedorov, Alexander E.; Rodinovskaya, Liudmila A.; Shestopalov, Alexander A.] ND Zelinskii Inst Organ Chem, Moscow 119991, Russia. [Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Shestopalov, AM (reprint author), ND Zelinskii Inst Organ Chem, Moscow 119991, Russia. EM shchem@dol.ru; gakhaa@ornl.gov RI Rodinovskaya, Lyudmila/Q-1829-2015 OI Rodinovskaya, Lyudmila/0000-0001-9080-1087 NR 22 TC 6 Z9 6 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0040-4039 J9 TETRAHEDRON LETT JI Tetrahedron Lett. PD SEP 16 PY 2009 VL 50 IS 37 BP 5257 EP 5259 DI 10.1016/j.tetlet.2009.07.015 PG 3 WC Chemistry, Organic SC Chemistry GA 484NF UT WOS:000269051700025 ER PT J AU Bera, AK Atanasova, V Robinson, H Eisenstein, E Coleman, JP Pesci, EC Parsons, JF AF Bera, Asim K. Atanasova, Vesna Robinson, Howard Eisenstein, Edward Coleman, James P. Pesci, Everett C. Parsons, James F. TI Structure of PqsD, a Pseudomonas Quinolone Signal Biosynthetic Enzyme, in Complex with Anthranilate SO BIOCHEMISTRY LA English DT Article ID ANGSTROM CRYSTAL-STRUCTURE; PLANT POLYKETIDE SYNTHASE; TO-CELL COMMUNICATION; CHALCONE SYNTHASE; REACTION-MECHANISM; AERUGINOSA; PROTEIN; SYSTEM; REFINEMENT; VIRULENCE AB Pseudomonas quinolone signal (PQS), 2-heptyl-3-hydroxy-4-quinolone, is an intercellular alkyl quinolone signaling molecule produced by the opportunistic pathogen Pseudomonas aeruginosa. Alkyl quinolone signaling is an atypical system that, in P. aeruginosa, controls the expression of numerous virulence factors. PQS is synthesized from the tryptophan pathway intermediate, anthranilate, which is derived either from the kynurenine pathway or from an alkyl quinolone specific anthranilate synthase encoded by phnA B. Anthranilate is converted to PQS by the enzymes encoded by the pqsABCDE operon and pqsH. PqsA forms an activated anthraniloyl-CoA thioester that shuttles anthranilate to the PqsD active site where it is transferred to Cys112 of PqsD. In the only biochemically characterized reaction, a condensation then occurs between anthraniloyl-PqsD and malonyl-CoA or malonyl-ACP, a second PqsD substrate, forming 2,4-dihydroxyquinoline (DHQ). The role PqsD plays in the biosynthesis of other alkyl quinolones, Such as PQS, is unclear, though it has been reported to be required for their production. No evidence exists that DHQ is a PQS precursor, however. Here we present a structural and biophysical characterization of PqsD that includes several crystal structures of the enzyme, including that of the PqsD-anthranilate covalent intermediate and the inactive Cys112Ala active Site Mutant in complex with anthranilate. The structure reveals that PqsD is structurally similar to the FabH and chalcone synthase families of fatty acid and polyketide synthases. The crystallographic asymmetric unit contains a PqsD dirtier. The PqsD monomer is composed of two nearly identical similar to 170-residue alpha beta alpha beta alpha domains. The structures show anthranilate-liganded Cys112 is positioned deep in the protein interior at the bottom of an similar to 15 angstrom long channel while a second anthraniloyl-CoA molecule is waiting in the cleft leading to the protein surface. Cys112, His257, and Asn287 form the FabH-like catalytic triad of PqsD. The C112A mutant is inactive, although it still reversibly binds anthraniloyl-CoA. The covalent complex between anthranilate and Cys112 clearly illuminates the orientation of key elements of the PqsD catalytic machinery and represents a snapshot of a key point in the catalytic cycle. C1 [Coleman, James P.; Pesci, Everett C.] E Carolina Univ, Dept Microbiol & Immunol, Brody Sch Med, Greenville, NC 27834 USA. [Bera, Asim K.; Atanasova, Vesna; Eisenstein, Edward; Parsons, James F.] Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Pesci, EC (reprint author), E Carolina Univ, Dept Microbiol & Immunol, Brody Sch Med, 600 Moye Blvd, Greenville, NC 27834 USA. EM pescie@ecu.edu; parsonsj@umbi.umd.edu OI Coleman, James P./0000-0002-4637-4847; Pesci, Everett/0000-0002-7490-7591 FU National Institutes of Health [AI067530, AI076272] FX This work was supported by National Institutes of Health Grants AI067530 (J.F.P.) and AI076272 (E.C.P.). NR 38 TC 27 Z9 28 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 15 PY 2009 VL 48 IS 36 BP 8644 EP 8655 DI 10.1021/bi9009055 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 490FV UT WOS:000269485500017 PM 19694421 ER PT J AU Derewenda, U Boczek, T Gorres, KL Yu, M Hung, LW Cooper, D Joachimiak, A Raines, RT Derewenda, ZS AF Derewenda, Urszula Boczek, Tomasz Gorres, Kelly L. Yu, Minmin Hung, Li-wei Cooper, David Joachimiak, Andrzej Raines, Ronald T. Derewenda, Zygmunt S. TI Structure and Function of Bacillus subtilis YphP, a Prokaryotic Disulfide Isomerase with a CXC Catalytic Motif SO BIOCHEMISTRY LA English DT Article ID RATIONAL PROTEIN CRYSTALLIZATION; AUTOMATED STRUCTURE SOLUTION; ELECTRON-DENSITY MAPS; CRYSTAL-STRUCTURE; HIGH-THROUGHPUT; CXXC-MOTIF; REFINEMENT; FOLD; SITE; SUPERFAMILY AB The DUF1094 family contains over 100 bacterial proteins, all containing a conserved CXC motif, with unknown function. We solved the crystal structure of the Bacillus subtilis representative, the product of the yphP gene. The protein shows remarkable structural similarity to thioredoxins, with a canonical alpha beta alpha beta alpha beta beta alpha topology, despite low amino acid sequence identity to thioredoxin. The CXC motif is found in the loop immediately downstream of the first beta-strand, in a location equivalent to the CXXC motif of thioredoxins, with the first Cys occupying a position equivalent to the first Cys in canonical thioredoxin. The experimentally determined reduction potential of YphP is E(o') = -130 mV, significantly higher than that of thioredoxin and consistent with disulfide isomerase activity. Functional assays confirmed that the protein displays a level of isomerase activity that might be biologically significant. We propose a mechanism by which the members of this family catalyze isomerization using the CXC catalytic site. C1 [Gorres, Kelly L.; Raines, Ronald T.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Raines, Ronald T.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Derewenda, Urszula; Boczek, Tomasz; Cooper, David; Derewenda, Zygmunt S.] Univ Virginia, Sch Med, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. [Derewenda, Urszula; Boczek, Tomasz; Cooper, David; Derewenda, Zygmunt S.] Univ Virginia, Sch Med, ISFI PSI2 Ctr, Charlottesville, VA 22908 USA. [Hung, Li-wei] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Hung, Li-wei] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Raines, RT (reprint author), Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. EM rtraines@wisc.edu; zsd4n@virginia.edu RI Raines, Ronald/A-5009-2013; OI Raines, Ronald/0000-0001-7164-1719; Hung, Li-Wei/0000-0001-6690-8458 FU NIH [U54 GM074946-01US, GM044783, U54 GM074942, T32 BM008505]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was supported by NIH NIGMS Grant U54 GM074946-01US (Z.S.D.), Grant GM044783 (R.T.R.), and Grant U54 GM074942 (A.J.). K.L.G. was supported by Chemistry-Biology Interface Training Grant T32 BM008505 (NIH). The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 18 Z9 18 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 15 PY 2009 VL 48 IS 36 BP 8664 EP 8671 DI 10.1021/bi900437z PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 490FV UT WOS:000269485500019 PM 19653655 ER PT J AU Warner, MG Grate, JW Tyler, A Ozanich, RM Miller, KD Lou, JL Marks, JD Bruckner-Lea, CJ AF Warner, Marvin G. Grate, Jay W. Tyler, Abby Ozanich, Richard M. Miller, Keith D. Lou, Jianlong Marks, James D. Bruckner-Lea, Cynthia J. TI Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Quantum dot; Immunoassay; Botulinum toxin; Fluorescence ID TOXIN TYPE-A; LINKED-IMMUNOSORBENT-ASSAY; CLOSTRIDIUM-BOTULINUM; FLOW-INJECTION; MOLECULAR EVOLUTION; RAPID DETECTION; BINDING DOMAIN; B NEUROTOXIN; FOODS; MICROCOLUMNS AB A fluorescence sandwich immunoassay using high-affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum neurotoxin serotype A (BoNT/A) using a nontoxic recombinant fragment of the holotoxin (BoNT/A-H(C)-fragment) as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. Detection to 31 pM with a total incubation time of 3 h was demonstrated. in a second format, the AR4 capture antibody was coupled to Sepharose beads, and the reactions were carried out in microcentrifuge tubes with an incubation time of I h. The beads were subsequently captured and concentrated in a rotating rod "renewable surface" flow cell equipped with a fiber optic system for fluorescence measurements. In PBS buffer, the BoNT/A-H(C)-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach. (C) 2009 Elsevier B.V. All rights reserved. C1 [Warner, Marvin G.; Grate, Jay W.; Tyler, Abby; Ozanich, Richard M.; Miller, Keith D.; Bruckner-Lea, Cynthia J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lou, Jianlong; Marks, James D.] Univ Calif San Francisco, Dept Anesthesia, San Francisco, CA 94110 USA. RP Warner, MG (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM marvin.warner@pnl.gov RI Zhou, Feng/E-9510-2011 FU United States Department of Homeland Security Science and Technology Directorate [HSHQDC-06-X-00213]; NIAID [A153389-01]; MAID [U01 A1056493]; DoD [DAMD17-03-C-0076] FX This work has been supported with funding from the United States Department of Homeland Security Science and Technology Directorate, project IAA No. HSHQDC-06-X-00213. In addition, the antibody development work at UCSF was partially supported by NIAID R21 grant A153389-01, MAID cooperative agreement U01 A1056493, and DoD contract DAMD17-03-C-0076. The research was performed in part at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for the U.S. DOE by Battelle Memorial Institute. NR 58 TC 31 Z9 33 U1 3 U2 20 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD SEP 15 PY 2009 VL 25 IS 1 BP 179 EP 184 DI 10.1016/j.bios.2009.06.031 PG 6 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 503MM UT WOS:000270538400029 PM 19643593 ER PT J AU Wu, D Li, Y Song, GJ Cheng, CY Zhang, RG Joachimiak, A Shaw, N Liu, ZJ AF Wu, Dong Li, Yang Song, Gaojie Cheng, Chongyun Zhang, Rongguang Joachimiak, Andrzej Shaw, Neil Liu, Zhi-Jie TI Structural Basis for the Inhibition of Human 5,10-Methenyltetrahydrofolate Synthetase by N10-Substituted Folate Analogues SO CANCER RESEARCH LA English DT Article ID ONE-CARBON METABOLISM; SERINE HYDROXYMETHYLTRANSFERASE; CANCER-CHEMOTHERAPY; 5-FORMYLTETRAHYDROFOLATE; ACID; NEUROBLASTOMA; METHOTREXATE; HYDROLYSIS; MECHANISMS; CONVERSION AB 5,10-Methenyltetrahydrofolate synthetase (MTHFS) regulates the flow of carbon through the one-carbon metabolic network, which supplies essential components for the growth and proliferation of cells. Inhibition of MTHFS in human MCF-7 breast cancer cells has been shown to arrest the growth of cells. Absence of the three-dimensional structure of human MTHFS (hMTHFS) has hampered the rational design and optimization of drug candidates. Here, we report the structures of native hMTHFS, a binary complex of hMTHFS with ADP, hMTHFS bound with the N5-iminium phosphate reaction intermediate, and an enzyme-product complex of hMTHFS. The N5-iminium phosphate captured for the first time in our crystal structure unravels a unique strategy used by hMTHFS for recognition of the substrate and provides structural basis for the regulation of enzyme activity. Binding of N10-substituted folate analogues places Y152 in the middle of the channel connecting ATP binding site with the substrate binding pocket, precluding the positioning of gamma-phosphate for a nucleophilic attack. Using the structures of hMTHFS as a guide, we have probed the role of residues surrounding the active site in catalysis by mutagenesis. The ensemble of hMTHFS structures and the mutagenesis data yield a coherent picture of the MTHFS active site, determinants of substrate specificity, and new insights into the mechanism of inhibition of hMTHFS. [Cancer Res 2009;69(18):7294-301] C1 [Wu, Dong; Li, Yang; Song, Gaojie; Cheng, Chongyun; Shaw, Neil; Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China. [Zhang, Rongguang; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Liu, ZJ (reprint author), Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China. EM neilshaw@moon.ibp.ac.cn; zjliu@ibp.ac.cn RI Li, Yang/G-3685-2011; Liu, Zhi-Jie/A-3946-2012; Li, Yang/M-1246-2013 OI Liu, Zhi-Jie/0000-0001-7279-2893; FU Ministry of Science and Technology of China [2006AA02A316, 2006CB910901, 2009DFB30310]; National Natural Science Foundation of China [30870483, 30670427, 30721003]; Ministry of Health of China [2008ZX10004-015]; CAS Research [KSCX2-YW-R-127] FX Grant support: Ministry of Science and Technology of China grants 2006AA02A316, 2006CB910901, and 2009DFB30310; National Natural Science Foundation of China grants 30870483, 30670427. and 30721003; Ministry of Health of China grant. 2008ZX10004-015; and CAS Research grant KSCX2-YW-R-127. NR 37 TC 3 Z9 5 U1 1 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD SEP 15 PY 2009 VL 69 IS 18 BP 7294 EP 7301 DI 10.1158/0008-5472.CAN-09-192 PG 8 WC Oncology SC Oncology GA 496FC UT WOS:000269954000023 PM 19738041 ER PT J AU Mandernack, KW Mills, CT Johnson, CA Rahn, T Kinney, C AF Mandernack, Kevin W. Mills, Christopher T. Johnson, Craig A. Rahn, Thomas Kinney, Chad TI The delta N-15 and delta O-18 values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria SO CHEMICAL GEOLOGY LA English DT Article; Proceedings Paper CT Annual Fall American-Geophysical-Union Meeting CY DEC 13-14, 2008 CL San Francisco, CA SP Amer Geophys Union, Mineralog Soc Amer, Dept Energy DE Methanotrophy; Nitrification; Atmospheric nitrous oxide; Oxygen isotopes; Nitrogen isotopes; N2O ID NITROUS-OXIDE PRODUCTION; OXYGEN-ISOTOPE RATIOS; TROPICAL FOREST SOILS; LANDFILL COVER SOILS; DENITRIFYING BACTERIA; METHANE CONSUMPTION; NITRIFIER DENITRIFICATION; BIOGEOCHEMICAL CONTROLS; NITROSOMONAS-EUROPAEA; OXIDIZING BACTERIA AB In order to determine if the delta N-15 and delta O-18 values of N2O produced during co-oxidation of NH4+ by methanotrophic (methane oxidizing) bacteria can be isotopically distinguished from N2O produced either by autotrophic nitrifying or denitrifying bacteria, we conducted laboratory incubation experiments with pure cultures of methanotrophic bacteria that were provided NH4Cl as an oxidation substrate. The N2O produced during NH4+ oxidation by methanotrophic bacteria showed nitrogen isotope fractionation between NH4+ and N2O (epsilon(+)(N2O-NH4)) of -48 and -55 parts per thousand for Methylomonas methanica and Methylosinus trichosporium, OB3b respectively. These large fractionations are similar to those previously measured for autotrophic nitrifying bacteria and consistent with N2O formation by multiple rate limiting steps that include NH4+ oxidation by the methane monooxygenase enzyme and reduction of N2O- to N2O. Consequently, N2O formed by NH4+ oxidation via methanotrophic or autotrophic nitrifying bacteria might generally be characterized by lower delta N-15(N2O) values than that formed by denitrificaiton, although this also depends on the variability of delta N-15 of available nitrogen sources (e.g., NH4+, NO3-, NO2-). Additional incubations with M. trichosporium OB3b at high and low CH4 conditions in waters of different delta O-18 values revealed that 19-27% of the oxygen in N2O Was derived from O-2 with the remainder from water. The biochemical mechanisms that could explain this amount Of O-2 incorporation are discussed. The delta O-18 of N2O formed under high CH4 conditions was similar to + 15 parts per thousand more positive than that formed under lower CH4 Conditions. This enrichment resulted in part from the incorporation of O-2 into N2O that was enriched in O-18 due to an isotope fractionation effect of - 16.1 +/- 2.0 parts per thousand and - 17.5 +/- 5.4 parts per thousand associated with O-2 consumption during the high and low methane concentration incubations, respectively. Therefore, N2O formed by NH4+ oxidation via methanotrophic or autotrophic nitrifying bacteria can have very positive delta O-18(N2O) values if the O-2 incorporated is previously enriched in O-18 from high rates of respiration. Nitrous oxide was collected from various depths in soils overlying a coal-bed methane seep where methanotrophic bacteria are naturally enriched. In one sampling when soil methane concentrations were very high, the delta O-18(VSMOW) values of the N2O were highly enriched (+ 50 parts per thousand), consistent with our laboratory experiments. Thus, soils overlying methane seeps could provide an O-18-enriched source of atmospheric N2O. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mandernack, Kevin W.; Mills, Christopher T.; Kinney, Chad] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Mills, Christopher T.; Johnson, Craig A.] US Geol Survey, Denver, CO 80225 USA. [Rahn, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. [Kinney, Chad] Colorado State Univ, Dept Chem, Pueblo, CO USA. RP Mandernack, KW (reprint author), Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. EM kmandern@mines.edu; cmills@usgs.gov; cjohnso@usgs.gov; trahn@lanl.gov; chad.kinney@colostate-pueblo.edu RI Rahn, Thom/C-5211-2012 NR 81 TC 22 Z9 22 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD SEP 15 PY 2009 VL 267 IS 1-2 SI SI BP 96 EP 107 DI 10.1016/j.chemgeo.2009.06.008 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 504QC UT WOS:000270631000010 ER PT J AU Sturchio, NC Caffee, M Beloso, AD Heraty, LJ Bohlke, JK Hatzinger, PB Jackson, WA Gu, BH Heikoop, JM Dale, M AF Sturchio, Neil C. Caffee, Marc Beloso, Abelardo D., Jr. Heraty, Linnea J. Boehlke, John Karl Hatzinger, Paul B. Jackson, W. Andrew Gu, Baohua Heikoop, Jeffrey M. Dale, Michael TI Chlorine-36 as a Tracer of Perchlorate Origin SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID UNITED-STATES; ATACAMA DESERT; NATURAL PERCHLORATE; NITRATE DEPOSITS; NORTHERN CHILE; BREAST-MILK; NEW-MEXICO; CHLORINE; GROUNDWATER; FRACTIONATION AB Perchlorate (ClO4-) is ubiquitous in the environment It is produced naturally by atmospheric photochemical reactions, and also is synthesized in large quantities for military, aerospace, and industrial applications. Nitrate-enriched salt deposits of the Atacama Desert (Chile) contain high concentrations of natural ClO4-, and have been exported worldwide since the mid-1800s for use in agriculture. The widespread introduction of synthetic and agricultural ClO4- into the environment has contaminated numerous municipal water supplies. Stable isotope ratio measurements of Cl and O have been applied for discrimination of different ClO4- sources in the environment. This study explores the potential of Cl-36 measurements for further improving the discrimination Of ClO4- sources. Groundwater and desert soil samples from the southwestern United States (U.S.) contain ClO4- having high Cl-36 abundances (Cl-36/Cl = 3100 x 10(-15) to 28,800 x 10(-15)), compared with those from the Atacama Desert (Cl-36/Cl = 0.9 x 10(-15) to 590 x 10(-15)) and synthetic ClO4- reagents and products (Cl-36/Cl = 0.0 x 10(-15) to 40 x 10(-15)). In conjunction with stable Cl and O isotope ratios, Cl-36 data provide a clear distinction among three principal ClO4- source types in the environment of the southwestern U.S. C1 [Sturchio, Neil C.; Beloso, Abelardo D., Jr.; Heraty, Linnea J.] Univ Illinois, Chicago, IL 60607 USA. [Caffee, Marc] Purdue Univ, PRIME Lab, W Lafayette, IN 47907 USA. [Boehlke, John Karl] US Geol Survey, Reston, VA 20192 USA. [Hatzinger, Paul B.] Shaw Environm Inc, Lawrenceville, NJ 08648 USA. [Jackson, W. Andrew] Texas Tech Univ, Lubbock, TX 79409 USA. [Gu, Baohua] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Heikoop, Jeffrey M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dale, Michael] New Mexico Environm Dept, Los Alamos, NM 87545 USA. RP Sturchio, NC (reprint author), Univ Illinois, Chicago, IL 60607 USA. EM sturchio@uic.edu RI Jackson, William/B-8999-2009; Heikoop, Jeffrey/C-1163-2011; Gu, Baohua/B-9511-2012; Caffee, Marc/K-7025-2015; OI Gu, Baohua/0000-0002-7299-2956; Caffee, Marc/0000-0002-6846-8967; Heikoop, Jeffrey/0000-0001-7648-3385 FU U.S. Department of Defense [ER-0509]; U.S. Geological Survey; National Science Foundation; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Environment Security Technology Certification Program of the U.S. Department of Defense (Project ER-0509), the Environmental Management Program of the U.S. Department of Energy, and the National Research Program in the Water Resources Discipline of the U.S. Geological Survey. The PRIME Lab is supported by the National Science Foundation. We thank Dale Counce, Michael Rearick, George Perkins, Toti Larson, and Armand Groffman for assistance with collection of Water Canyon Gallery and Valle Grande Spring samples, and Michael Hiskey for the reagent sample from Taiwan. Oak Ridge National Laboratory is managed by UT-Battetle LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 47 TC 24 Z9 26 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2009 VL 43 IS 18 BP 6934 EP 6938 DI 10.1021/es9012195 PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 492KZ UT WOS:000269656200011 PM 19806723 ER PT J AU Bradford, SA Kim, HN Haznedaroglu, BZ Torkzaban, S Walker, SL AF Bradford, Scott A. Kim, Hyunjung N. Haznedaroglu, Berat Z. Torkzaban, Saeed Walker, Sharon L. TI Coupled Factors Influencing Concentration-Dependent Colloid Transport and Retention in Saturated Porous Media SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SECONDARY ENERGY MINIMUM; TO-GRAIN CONTACTS; BACTERIAL TRANSPORT; DEPOSITION; FLOW; MODEL; GROUNDWATER; MECHANISMS; FILTRATION; DYNAMICS AB The coupled influence of input suspension concentration (C-i), ionic strength (IS), and hydrodynamics on the transport and retention of 1,1 mu m carboxyl-modified latex colloids in saturated quartz sand (150 mu m) under unfavorable attachment conditions (pH 10) was investigated. The percentage of retained colloids in column experiments decreased with C-i at intermediate IS conditions (31 or 56 mM) when colloids were weakly associated with the solid phase by a shallow secondary energy minima. In contrast, the effects of C-i on colloid retention were absent when IS was too low (6 mM) or too high (106 mM). The concentration effects under intermediate IS conditions were dependent on the system hydrodynamics, magnitude of C-i, and injection order of C-i, but they were largely independent of the input colloid mass. These observations were explained in part by time- and concentration-dependent filling of retention sites. Only a small fraction of the solid surface area was found to contribute to retention when IS was 31 mM, and micromodel observations indicated that colloid retention was enhanced in lower velocity regions of the pore space that occurred near grain-grain contacts. Consequently, retention profiles for IS = 31 mM conditions were increasingly nonexponential at lower values of C-i (during filling), whereas the observed concentration effect was largely eliminated as retention locations became filled. In addition, micromodel observations indicated that liquid and solid phase mass transfer of colloids to retention locations was influenced by C-i under intermediate IS conditions. Higher values of C-i are expected to produce less relative mass transfer to retention locations due to increased numbers of collisions that knock weakly associated colloids off the solid phase. Hence, the concentration effects were found to be largely independent of input colloid mass during filling of retention sites. C1 [Bradford, Scott A.] ARS, USDA, US Salin Lab, Riverside, CA 92507 USA. [Kim, Hyunjung N.; Haznedaroglu, Berat Z.; Walker, Sharon L.] Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92521 USA. [Torkzaban, Saeed] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bradford, SA (reprint author), ARS, USDA, US Salin Lab, Riverside, CA 92507 USA. EM Scott.Bradford@ars.usda.gov RI Haznedaroglu, Berat/A-6467-2011; Kim, Hyunjung/F-1505-2013; Torkzaban, Saeed/G-7377-2013 OI Haznedaroglu, Berat/0000-0002-0081-8801; Kim, Hyunjung/0000-0003-2115-6891; Torkzaban, Saeed/0000-0002-5146-9461 FU United States Department of Agriculture (USDA); Agricultural Research Service (ARS); National Program (NP) 206; Cooperative State Research, Education, and Extension Service (CSREES); National Research Initiative (NRI) [2006-02541] FX We thank Alan Nguyen and Lorena Altamirano for their help in conducting the transport experiments. This research was supported by the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Program (NP) 206 and the Cooperative State Research, Education, and Extension Service (CSREES), National Research Initiative (NRI), Grant 2006-02541. NR 40 TC 62 Z9 66 U1 4 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2009 VL 43 IS 18 BP 6996 EP 7002 DI 10.1021/es900840d PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 492KZ UT WOS:000269656200021 PM 19806733 ER PT J AU Meitl, LA Eggleston, CM Colberg, PJS Khare, N Reardon, CL Shi, L AF Meitl, Leisa A. Eggleston, Carrick M. Colberg, Patricia J. S. Khare, Nidhi Reardon, Catherine L. Shi, Liang TI Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID C-TYPE CYTOCHROMES; DISSIMILATORY METAL REDUCTION; ACCESSING INSOLUBLE FE(III); IRON-REDUCING BACTERIA; PUTREFACIENS MR-1; GEOBACTER-SULFURREDUCENS; TRANSFER KINETICS; OXIDE REDUCTION; FE(III)-REDUCING BACTERIUM; SUBSURFACE ENVIRONMENTS AB Bacterial metal reduction is an important biogeochemical process in anaerobic environments. An understanding of electron transfer pathways from dissimilatory metal-reducing bacteria (DMRB) to solid phase metal (hydr)oxides is important for understanding metal redox cycling in soils and sediments, for utilizing DMRB in bioremedation, and for developing technologies such as microbial fuel cells. Here we hypothesize that the outer membrane cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 are the only terminal reductases capable of direct electron transfer to a hematite working electrode. Cyclic voltammetry (CV) was used to study electron transfer between hematite electrodes and protein films, S. oneidensis MR-1 wild-type cell suspensions, and cytochrome deletion mutants. After controlling for hematite electrode dissolution at negative potential, the midpoint potentials of adsorbed OmcA and MtrC were measured (-201 mV and -163 mV vs. Ag/AgCl, respectively). Cell suspensions of wild-type MR-1, deletion mutants deficient in OmcA (Delta omcA), MtrC (Delta mtrC), and both OmcA and MtrC (Delta mtrC-Delta omcA) were also studied; voltammograms for Delta mtrC-Delta omcA were indistinguishable from the control. When the control was subtracted from the single deletion mutant voltammograms, redox peaks were consistent with the present cytochrome (i.e., Delta omcA consistent with MtrC and Delta mtrC consistent with OmcA). The results indicate that OmcA and MtrC are capable of direct electron exchange with hematite electrodes, consistent with a role as terminal reductases in the S. oneidensis MR-1 anaerobic respiratory pathway involving ferric minerals. There was no evidence for other terminal reductases operating under the conditions investigated. A Marcus-based approach to electron transfer kinetics indicated that the rate constant for electron transfer k(et) varies from 0.025 s(-1) in the absence of a barrier to 63.5 s(-1) with a 0.2 eV barrier. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Meitl, Leisa A.; Eggleston, Carrick M.; Khare, Nidhi] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Colberg, Patricia J. S.] Univ Wyoming, Dept Civil & Architectural Engn, Laramie, WY 82071 USA. [Reardon, Catherine L.; Shi, Liang] Pacific NW Natl Lab, Microbiol Grp, Richland, WA 99354 USA. RP Eggleston, CM (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM carrick@uwyo.edu FU National Science Foundation [EAR-0434019]; US Department of Energy [DE-FG02-06ER15823]; Pacific Northwest National Laboratory Biogeochemistry Grand Challenge FX The authors gratefully acknowledge support from the National Science Foundation (EAR-0434019), the US Department of Energy (DE-FG02-06ER15823), and a Pacific Northwest National Laboratory Biogeochemistry Grand Challenge for this work. The content of this paper represents the views of the authors and does not represent the views of the above named organizations. NR 97 TC 52 Z9 52 U1 13 U2 77 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2009 VL 73 IS 18 BP 5292 EP 5307 DI 10.1016/j.gca.2009.06.021 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 489EB UT WOS:000269401600005 ER PT J AU Romanek, CS Jimenez-Lopez, C Navarro, AR Sanchez-Roman, M Sahai, N Coleman, M AF Romanek, Christopher S. Jimenez-Lopez, Concepcion Rodriguez Navarro, Alejandro Sanchez-Roman, Monica Sahai, Nita Coleman, Max TI Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EARLY DIAGENETIC SIDERITE; OXYGEN-ISOTOPE FRACTIONATION; PRECAMBRIAN IRON-FORMATIONS; HYDROUS FERRIC-OXIDE; CRYSTAL-GROWTH; SYSTEM CACO3-MGCO3-FECO3; DISSIMILATORY REDUCTION; ELEMENTAL COMPOSITION; SUBSOLIDUS RELATIONS; MAGNESIAN CALCITE AB A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 degrees C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid solutions formed at 25 degrees C which are not predicted from the extrapolation of higher temperature equilibrium assemblages; instead, solids formed that were intermediary in chemical composition to known magnesite-siderite and dolomite solid solutions. A calcite-siderite solid solution precipitated at 25 degrees C, with the percentage of CaCO(3) in the solid being proportional to the aqueous Ca/Fe ratio of the solution, while Mg was excluded from the crystal structure except at relatively high aqueous Mg/Ca and Mg/Fe ratios and a low Ca content. Alternatively, at 70 degrees C Mg was the predominant cation of the solid solutions. These results are compatible with the hypothesis that the relative dehydration energies of Fe, Ca and Mg play an important role in the formation of mixed cation carbonates in nature. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Romanek, Christopher S.; Sanchez-Roman, Monica] Univ Georgia, Dept Geol, Athens, GA 30602 USA. [Romanek, Christopher S.; Sanchez-Roman, Monica] Univ Georgia, NASA, Astrobiol Inst, Athens, GA 30602 USA. [Romanek, Christopher S.; Sanchez-Roman, Monica] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jimenez-Lopez, Concepcion] Univ Granada, Fac Ciencias, Dept Microbiol, E-18071 Granada, Spain. [Rodriguez Navarro, Alejandro] Univ Granada, Fac Ciencias, Dept Mineral & Petr, E-18071 Granada, Spain. [Sahai, Nita] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Sahai, Nita] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Coleman, Max] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Coleman, Max] CALTECH, NASA, Astrobiol Inst, Pasadena, CA 91109 USA. RP Romanek, CS (reprint author), Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA. EM c.romanek@uky.edu; cjl@ugr.es FU MEC (Spain) [GL2004-03910, CGL2007-63859]; Fulbright/MEC Program; NSF [0208036]; ACS [47792-AC2]; JPL's Research and Technology Development Program [01 STCR-R.07.023.01 1]; NASA's Astrobiology Institute; NASA's Ancient Martian Meteorite program; US Department of Energy [DE-FC09-96-SR 18546]; University of Georgia Research Foundation; Junta de Andalucia research [BIO-103] FX CJL acknowledges support from grants CGL2004-03910 and CGL2007-63859 from MEC (Spain) and the Fulbright/MEC Program. NS acknowledges funding support from NSF EAR CAREER 0208036 and ACS PRF 47792-AC2. The contribution of MC was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA), partly supported by JPL's Research and Technology Development Program (grant 01 STCR-R.07.023.01 1). This work was also supported in part by NASA's Astrobiology Institute, NASA's Ancient Martian Meteorite program, and the US Department of Energy through Financial Assistance Award No. DE-FC09-96-SR 18546 to the University of Georgia Research Foundation. Lindy Paddock, Brian Jackson, John Shields and the Junta de Andalucia research group BIO-103 are acknowledged for analytical assistance. Finally, J. Morse and A. Mucci are thanked for reviewing previous versions of this manuscript. NR 83 TC 27 Z9 27 U1 4 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2009 VL 73 IS 18 BP 5361 EP 5376 DI 10.1016/j.gca.2009.05.065 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 489EB UT WOS:000269401600010 ER PT J AU Pawlikowski, AV Gray, TS Schoendorff, G Baird, B Ellern, A Windus, TL Sadow, AD AF Pawlikowski, Andrew V. Gray, Tristan S. Schoendorff, George Baird, Benjamin Ellern, Arkady Windus, Theresa L. Sadow, Aaron D. TI Structure, bonding, and ligand-based reactions of zwitterionic boratoiridium(I) complexes with oxazolinyl scorpionate ligands SO INORGANICA CHIMICA ACTA LA English DT Article DE Iridium compounds; Scorpionate; Oxazoline ID RAY CRYSTAL-STRUCTURE; HETEROCYCLIC LIGANDS; RHODIUM COMPLEX; ACTIVATION; CHEMISTRY; HAPTICITY; PROTONATION; NICKEL(2); COPPER(2); COBALT(2) AB New tris(4,4-dimethyl-2-oxazolinyl) phenylboratoiridium(I) scorpionate-type compounds [Ir(To(M))L(2)] (L(2) = eta(4)-C(8)H(12) and (CO)(2)) and electrophiles form adducts that contain a bidentate IrTo(M)-coordination and an N-electrophile interaction of the third oxazoline instead of the oxidative addition product. The adduct with lithium chloride gives a unique heterobimetallic Li-O-oxazoline-N-Ir bridging structure that has been identified through X-ray crystallography. Density functional theory calculations provide thermodynamic data, orbital symmetries, and orbital energies that explain the formation of the observed iridium( I) products. (C) 2009 Elsevier B. V. All rights reserved. C1 [Sadow, Aaron D.] Iowa State Univ, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM sadow@iastate.edu FU U. S. DOE office of Basic Energy Sciences [AL-03-380-011]; Roy J. Carver Charitable Trust; National Science Foundation [OCI-0749156] FX We thank the U. S. DOE office of Basic Energy Sciences, through the Catalysis Science Grant No. AL-03-380-011, the Roy J. Carver Charitable Trust, and the National Science Foundation (Award number OCI-0749156) for support. We gratefully acknowledge Ames Laboratory and Iowa State University for computational resources. Dr. Bruce Fulton is thanked for assistance collecting 15N NMR spectral data. NR 37 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD SEP 15 PY 2009 VL 362 IS 12 BP 4517 EP 4525 DI 10.1016/j.ica.2009.06.017 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 498TY UT WOS:000270168100032 ER PT J AU Koizumi, H Whitten, WB Reilly, PTA Koizumi, E AF Koizumi, Hideya Whitten, William B. Reilly, Peter T. A. Koizumi, Eiko TI Derivation of mathematical expressions to define resonant ejection from square and sinusoidal wave ion traps SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Ion trap mass spectrometry; Resonance ejection; Digital ion trap; Sinusoidal ion trap ID MASS-SPECTROMETER; RESOLUTION AB Resonant ejection for mass analysis with ion traps is widely used because it markedly improves the mass range and resolution of ion traps. Unfortunately, an easy-to-use analytical expression that defines the ejection mass as a function of the trapping and excitation frequencies is missing in the literature because the secular frequency of the ions in sinusoidal ion traps is not easily determined for all stable values of q(z) from the Mathieu equation. However, the ion secular frequency for all stable values of q(z) in digital ion traps can be readily determined from Hill's equation. We have taken this expression and solved it for q(z) to produce an analytical expression for the ejection mass as a function of trapping and excitation frequency. We also recognized that the expression for the ion mass during resonant ejection for a square wave driven trap can be converted to an expression for a sinusoidal wave trap merely by multiplication by a factor of 4/pi. These new expressions open up the possibility of rapid mass calibration for any method of resonant ejection from square or sinusoidal wave driven ion traps. (C) 2009 Elsevier B.V. All rights reserved. C1 [Koizumi, Hideya; Whitten, William B.; Reilly, Peter T. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Koizumi, Eiko] Peace Coll, Dept Math, Raleigh, NC 27604 USA. RP Reilly, PTA (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6142, Oak Ridge, TN 37831 USA. EM ReillyPT@ornl.gov FU UT-Battelle, LLC [DE-AC05-00OR22725] FX This research was paid for by maturation funding from UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle. LLC. NR 18 TC 7 Z9 7 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP 15 PY 2009 VL 286 IS 2-3 BP 64 EP 69 DI 10.1016/j.ijms.2009.06.011 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 513XH UT WOS:000271356900003 ER PT J AU Burger, S Riciputi, LR Bostick, DA Turgeon, S McBay, EH Lavelle, M AF Buerger, S. Riciputi, L. R. Bostick, D. A. Turgeon, S. McBay, E. H. Lavelle, M. TI Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Review DE Multi-collector thermal ionization mass spectrometry; Multiple-ion counting; Efficiency; Detection limit; Isotope ratio analysis ID ABLATION-ICP-MS; NUCLEAR FORENSIC ANALYSIS; MU-BQ QUANTITIES; ENVIRONMENTAL-SAMPLES; LASER-ABLATION; SURFACE-IONIZATION; PLUTONIUM ISOTOPES; URANIUM ISOTOPES; SYNTHETIC URINE; GLOBAL FALLOUT AB A ThermoFisher "Triton" multi-col lector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotope ratio analysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of < 0.1 fg (10(4) atoms to 10(5) atoms) for Pu239-242+244, U233+236, Am241-243, Sr-89,Sr-90, and Cs-134,Cs-135,Cs-137, and <= 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEMI) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10(6) or better using a SEMI are reported here. Precisions of RSD approximate to 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications. (C) 2009 Elsevier B.V. All rights reserved. C1 [Buerger, S.; Riciputi, L. R.; Bostick, D. A.; Turgeon, S.; McBay, E. H.; Lavelle, M.] Oak Ridge Natl Lab, Chem & Isotope Mass Spectrometry Grp, Transuranium Res Inst, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Burger, S (reprint author), Dept Energy, New Brunswick Lab, 9800 S Cass Ave,Bldg 350, Argonne, IL 60439 USA. EM stefan.buerger@ch.doe.gov FU Office of Non-Proliferation Research and Engineering [NA-22]; National Nuclear Security Administration (NNSA); U.S. Department of Energy [DE-AC0500OR22725]; U.S. Government [DE-AC05 00OR22725] FX We like to thank the two reviewers for their helpful comments. Research sponsored by the Office of Non-Proliferation Research and Engineering (NA-22), National Nuclear Security Administration (NNSA), U.S. Department of Energy, under contract DE-AC0500OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The submitted manuscript was authored by a contractor of the U.S. Government under contract No. DE-AC05 00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 186 TC 31 Z9 31 U1 8 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP 15 PY 2009 VL 286 IS 2-3 BP 70 EP 82 DI 10.1016/j.ijms.2009.06.010 PG 13 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 513XH UT WOS:000271356900004 ER PT J AU Epstein, RI Malloy, KJ AF Epstein, Richard I. Malloy, Kevin J. TI Electrocaloric devices based on thin-film heat switches SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LYOTROPIC LIQUID-CRYSTAL; THERMAL-CONDUCTIVITY; CARBON NANOTUBES; DIFFUSIVITY; TEMPERATURE; ANISOTROPY AB We describe a new approach to refrigeration, heat pumping, and electrical generation that allows one to exploit the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators and heat pumps or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of electrocaloric thin-film devices can be at least as high as that of current thermoelectric devices. Advanced heat switches that may use carbon nanotubes would enable thin-film refrigerators and generators to outperform conventional vapor-compression devices. (C) 2009 American Institute of Physics. [doi:10.1063/1.3190559] C1 [Epstein, Richard I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Epstein, Richard I.; Malloy, Kevin J.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA. [Epstein, Richard I.; Malloy, Kevin J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Epstein, RI (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM epstein@lanl.gov RI Malloy, Kevin/E-5994-2010; OI Epstein, Richard/0000-0002-3929-4363 NR 15 TC 54 Z9 55 U1 2 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2009 VL 106 IS 6 AR 064509 DI 10.1063/1.3190559 PG 7 WC Physics, Applied SC Physics GA 501JP UT WOS:000270378100144 ER PT J AU Hopkins, PE Norris, PM Tsegaye, MS Ghosh, AW AF Hopkins, Patrick E. Norris, Pamela M. Tsegaye, Mikiyas S. Ghosh, Avik W. TI Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green's function approach compared to semiclassical methods SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSPORT; CONDUCTIVITY; SUPERLATTICES; TRANSMISSION; SIMULATION; ELECTRON; QUANTUM; HEAT AB The thermal conductance of nanoscale phonon modes is typically calculated using the Boltzmann transport equation. A particular implementation of this method is the acoustic mismatch model (AMM) that compares impedance ratios at a mathematically abrupt transition between two equilibrium regions. The shortcomings of this model can be rectified by starting from a microscopic physics based equation describing the propagation of phonon waves across an extended junction, with carefully computed thermal boundary conditions on either side. The resulting nonequilibrium Green's function (NEGF) formalism provides an accurate yet physically transparent machinery to calculate energy transfer, especially in nanosystems where the concept of thermal equilibrium breaks down readily. The purpose of this paper is to establish the NEGF formalism of thermal conductivity with a few simple examples and illustrate its particular strengths compared to the AMM. (C) 2009 American Institute of Physics. [doi:10.1063/1.3212974] C1 [Hopkins, Patrick E.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. [Norris, Pamela M.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Tsegaye, Mikiyas S.; Ghosh, Avik W.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov NR 36 TC 33 Z9 33 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2009 VL 106 IS 6 AR 063503 DI 10.1063/1.3212974 PG 10 WC Physics, Applied SC Physics GA 501JP UT WOS:000270378100037 ER PT J AU Steiner, MA Bhusal, L Geisz, JF Norman, AG Romero, MJ Olavarria, WJ Zhang, Y Mascarenhas, A AF Steiner, M. A. Bhusal, L. Geisz, J. F. Norman, A. G. Romero, M. J. Olavarria, W. J. Zhang, Y. Mascarenhas, A. TI CuPt ordering in high bandgap GaxIn1-xP alloys on relaxed GaAsP step grades SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; GAP; GROWTH; GAINP2; PHOTOLUMINESCENCE; GA0.52IN0.48P AB We have fabricated a series of GaxIn1-xP samples over the compositional range 0.51 < x < 0.76 on GaAs substrates. The samples were prepared by first growing a thick step-graded layer of GaAs1-yPy to bridge the lattice misfit between the GaxIn1-xP layers and the GaAs substrate. The order parameter was tuned using a dilute antimony surfactant during growth. The composition, strain, and order parameter of each sample were characterized by x-ray diffraction, and the bandgap was measured by photoluminescence. We find good agreement between the experimentally measured bandgaps and theoretically modeled curves. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3213376] C1 [Steiner, M. A.; Bhusal, L.; Geisz, J. F.; Norman, A. G.; Romero, M. J.; Olavarria, W. J.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhang, Y.] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA. RP Steiner, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM myles.steiner@nrel.gov RI Norman, Andrew/F-1859-2010; Zhang, Yong/D-3412-2013 OI Norman, Andrew/0000-0001-6368-521X; NR 27 TC 14 Z9 14 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 15 PY 2009 VL 106 IS 6 AR 063525 DI 10.1063/1.3213376 PG 5 WC Physics, Applied SC Physics GA 501JP UT WOS:000270378100059 ER PT J AU Walker, CB He, ZL Yang, ZK Ringbauer, JA He, Q Zhou, JH Voordouw, G Wall, JD Arkin, AP Hazen, TC Stolyar, S Stahl, DA AF Walker, Christopher B. He, Zhili Yang, Zamin K. Ringbauer, Joseph A., Jr. He, Qiang Zhou, Jizhong Voordouw, Gerrit Wall, Judy D. Arkin, Adam P. Hazen, Terry C. Stolyar, Sergey Stahl, David A. TI The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ARCHAEON PYROCOCCUS-FURIOSUS; HEAT-SHOCK RESPONSE; ESCHERICHIA-COLI; GENOMIC DNA; GLYCOLATE OXIDOREDUCTASE; METHANOSARCINA-BARKERI; SHEWANELLA-ONEIDENSIS; RHODOSPIRILLUM-RUBRUM; ALCOHOL-DEHYDROGENASE; ENERGY-METABOLISM AB Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered. C1 [Walker, Christopher B.; Stolyar, Sergey; Stahl, David A.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [He, Zhili; Yang, Zamin K.; He, Qiang; Zhou, Jizhong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Ringbauer, Joseph A., Jr.; Wall, Judy D.] Univ Missouri, Div Biochem, Columbia, MO USA. [Ringbauer, Joseph A., Jr.; Wall, Judy D.] Univ Missouri, Dept Mol Microbiol & Immunol, Columbia, MO USA. [Voordouw, Gerrit] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Arkin, Adam P.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer, Joseph A., Jr.; He, Qiang; Zhou, Jizhong; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. RP Stahl, DA (reprint author), Univ Washington, Dept Civil & Environm Engn, 302 More Hall,Box 352700, Seattle, WA 98195 USA. EM dastahl@u.washington.edu RI He, Qiang/G-9061-2011; He, Zhili/C-2879-2012; Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012 OI He, Qiang/0000-0002-7155-6474; Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was part of work by the Virtual Institute for Microbial Stress and Survival (http://VIMSS/lbl.gov) supported by the U.S. Department of Energy Office of Science Office of Biological and Environmental Research Genomics: GTL program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy.; M. maripaludis strain S2 and culturing assistance were kindly provided by John Leigh (University of Washington). We thank Bernard Schink (University of Constance) and Everett Shock (Arizona State University) for thoughtful editorial assistance. NR 50 TC 71 Z9 71 U1 5 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD SEP 15 PY 2009 VL 191 IS 18 BP 5793 EP 5801 DI 10.1128/JB.00356-09 PG 9 WC Microbiology SC Microbiology GA 488TI UT WOS:000269372600026 PM 19581361 ER PT J AU Fata, SN Gray, LJ AF Fata, S. Nintcheu Gray, L. J. TI Semi-analytic integration of hypersingular Galerkin BIEs for three-dimensional potential problems SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE Analytic integration; Galerkin approximation; Singular integrals; Hypersingular integrals; Boundary element method; Triangular boundary; Potential theory ID FRACTURE-ANALYSIS; QUADRATURE-RULES; EQUATION METHOD; BEM; TRIANGLE; KERNEL AB An accurate and efficient semi-analytic integration technique is developed for three-dimensional hypersingular boundary integral equations of potential theory. Investigated in the context of a Galerkin approach, surface integrals are defined as limits to the boundary and linear surface elements are employed to approximate the geometry and field variables on the boundary. In the inner integration procedure, all singular and non-singular integrals over a triangular boundary element are expressed exactly as analytic formulae over the edges of the integration triangle. In the outer integration scheme, closed-form expressions are obtained for the coincident case, wherein the divergent terms are identified explicitly and are shown to cancel with corresponding terms from the edge-adjacent case. The remaining surface integrals, containing only weak singularities, are carried out successfully by use of standard numerical cubatures. Sample problems are included to illustrate the performance and validity of the proposed algorithm. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fata, S. Nintcheu; Gray, L. J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Fata, SN (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, POB 2008,MS 6367, Oak Ridge, TN 37831 USA. EM nintcheufats@ornl.gov FU US Government [DE-AC05-00OR22725] FX The submitted manuscript has been authored by a contractor of the US Government under Contract No. DE-AC05-00OR22725. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 23 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD SEP 15 PY 2009 VL 231 IS 2 BP 561 EP 576 DI 10.1016/j.cam.2009.04.003 PG 16 WC Mathematics, Applied SC Mathematics GA 477JJ UT WOS:000268515000007 ER PT J AU Yantasee, W Fryxell, GE Addleman, RS Wiacek, RJ Koonsiripaiboon, V Pattamakomsan, K Sukwarotwat, V Xu, J Raymond, KN AF Yantasee, Wassana Fryxell, Glen E. Addleman, R. Shane Wiacek, Robert J. Koonsiripaiboon, View Pattamakomsan, Kanda Sukwarotwat, Vichaya Xu, Jide Raymond, Kenneth N. TI Selective removal of lanthanides from natural waters, acidic streams and dialysate SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Lanthanides; Removal; Dialysis; Mesoporous silica; Sorbent; Water; Acid ID RARE-EARTH-ELEMENTS; SELF-ASSEMBLED MONOLAYERS; MESOPOROUS SUPPORTS SAMMS; EXTRACTION CHROMATOGRAPHY; ACTINIDE SEQUESTRATION; ASYMMETRIC CATALYSIS; ADSORPTION BEHAVIOR; SOLVENT-EXTRACTION; MINING AREA; COMPLEXES AB The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS (TM)), that were functionalized with diphosphonic acid (DiPhos). acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthan ides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 mu g/L of Cd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCI) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yantasee, Wassana; Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya] PNNL, Richland, WA 99352 USA. [Xu, Jide; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Jide; Raymond, Kenneth N.] LBNL, Berkeley, CA 94720 USA. RP Yantasee, W (reprint author), PNNL, POB 999, Richland, WA 99352 USA. EM wassana.yantasee@pnl.gov FU Laboratory Directed Research and Development (LDRD); National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]; National Institute of Allergy and Infectious Diseases (NIAID) [R01 A1074064] FX The work was partially supported by Laboratory Directed Research and Development (LDRD) program at PNNL, National Institute of Environmental Health Sciences (NIEHS), grant# R21 ES015620, and National Institute of Allergy and Infectious Diseases (NIAID), grant# R01 A1074064. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. The authors thank jarupa Kanlayanatham, Dr. Worapon Kiatkittipong, Dr. Joongjai Panpranot, Dr. Daniel J. Gaspar, Dr. Charles Timchalk, Dr. William J. Weber, and Dr. Karla Thrall for their contributions. NR 57 TC 56 Z9 59 U1 7 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD SEP 15 PY 2009 VL 168 IS 2-3 BP 1233 EP 1238 DI 10.1016/j.jhazmat.2009.03.004 PG 6 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 473IX UT WOS:000268200700096 PM 19345006 ER PT J AU Gade, SK Payzant, EA Park, HJ Thoen, PM Way, JD AF Gade, Sabina K. Payzant, E. Andrew Park, Helen J. Thoen, Paul M. Way, J. Douglas TI The effects of fabrication and annealing on the structure and hydrogen permeation of Pd-Au binary alloy membranes SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Hydrogen separation; Metal membranes; Electroless plating; Palladium membranes; Palladium-gold alloy ID PALLADIUM MEMBRANES; SEGREGATION; DIFFRACTION; STABILITY; PLATINUM; BEHAVIOR; GOLD; H2S AB The addition of gold to palladium membranes produces many desirable effects for hydrogen purification, including improved tolerance of sulfur compounds, reduction in hydride phase formation, and, for certain compositions, improved hydrogen permeability. The focus of this work is to determine if sequential plating can be used to produce self-supported alloy membranes with equivalent properties to membranes produced by conventional metallurgical techniques such as cold-working. Sequential electroplating and electroless plating were used to produce freestanding planar Pd-Au membranes with Au contents ranging from 0 to 20 wt%, consisting of Au layers on both sides of a pure Pd core. Membranes were characterized by single-gas permeation measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and high temperature, controlled-atmosphere XRD (HTXRD). Sequentially plated foils tested without any prior annealing had significantly lower H-2 permeabilities than either measured or literature values for homogeneous foils of equivalent composition. This effect appears to be due to the formation of stable gold-enriched surface layers. Pretreatment of membranes to 1023 K created membranes with hydrogen permeabilities equivalent to literature values, despite the fact that trace amounts of surface gold remained detectable with XRD. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gade, Sabina K.; Park, Helen J.; Thoen, Paul M.; Way, J. Douglas] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Way, JD (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM sgade@mines.edu; payzanta@ornl.gov; hpark@mines.edu; pthoen@msn.com; dway@mines.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 NR 36 TC 27 Z9 27 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD SEP 15 PY 2009 VL 340 IS 1-2 BP 227 EP 233 DI 10.1016/j.memsci.2009.05.034 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 475GP UT WOS:000268346900025 ER PT J AU Yan, Y Burtseva, TA Billone, MC AF Yan, Y. Burtseva, T. A. Billone, M. C. TI High-temperature steam-oxidation behavior of Zr-1Nb cladding alloy E110 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ZIRCALOY-4; KINETICS AB Oxidation experiments were conducted at 1000-1200 degrees C in flowing steam with samples of as-received Zr-1Nb alloy E110 tubing and/or polished E110 tubing. The purpose was to determine the oxidation behavior of this alloy under postulated loss-of-coolant accident conditions in light water reactors. The as-received El 10 tubing exhibited a high degree of susceptibility to nodular oxidation and breakaway oxidation at relatively low test times, as compared to other cladding alloys. The nodules grew much more rapidly at 1000 degrees C than 1100 degrees C, as did the associated hydrogen uptake. The oxidation behavior was strongly affected by the surface condition of the materials. Polishing to approximate to 0.1 mu m roughness (the roughness of the as-received tubing was approximate to 0.4 mu m) delayed breakaway oxidation. Polishing also removed surface impurities. For polished samples oxidized at 1100 degrees C, no significant nodular oxidation appeared up to 1000 s. For polished samples oxidized at 1000 degrees C, hydrogen uptake >100 wppm was delayed from approximate to 300 s to >900 s. Weight-gain coefficients were determined for pre-breakaway oxidation of polished-only and machined-and-polished E110 tubing samples: 0.162 (mg/cm(2))/s(0.5) at 1000 degrees C and 0.613 (mg/cm(2))/s(0.5) at 1100 degrees C. Published by Elsevier B.V. C1 [Yan, Y.; Burtseva, T. A.; Billone, M. C.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Yan, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yan@anl.gov FU US Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; UChicago Argonne, LLC FX This work was sponsored by the Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission (NRC). The electron microscopy was performed at the Electron Microscopy Center at Argonne National Laboratory, a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We would like to express our appreciation to R. Cook and J. Hiller for their help on SEM and TEM examinations. We are indebted to R. Terasvirta of Fortum for proving us with E110 tubing and cladding. We are particularly grateful to H.H. Scott (NRC) for managing this program and to R.O. Meyer (NRC) for his technical guidance in pre-test planning and post-test data interpretation, which resulted in significant contributions to this work. NR 27 TC 24 Z9 24 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2009 VL 393 IS 3 BP 433 EP 448 DI 10.1016/j.jnucmat.2009.06.029 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 504OM UT WOS:000270626500007 ER PT J AU Wichner, RP Burchell, TD Contescu, CI AF Wichner, Robert P. Burchell, Timothy D. Contescu, Cristian I. TI Penetration depth and transient oxidation of graphite by oxygen and water vapor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Equations are derived for the approach to equilibrium in the oxidation of graphite under assumptions of constant graphite density and linearized oxidation kinetics. A two-factor expression is assumed for the effective diffusivity. Equilibration may be estimated by observing the convergence of profiles with time or by means of an algebraic approximation. At large times, the profiles converge to the steady state. Oxidation depths show fair agreement with published measurements and follow closely the observed temperature trend. (C) 2009 Elsevier B.V. All rights reserved. C1 [Burchell, Timothy D.; Contescu, Cristian I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wichner, Robert P.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 200,MS-6087, Oak Ridge, TN 37831 USA. EM wichner@bellsouth.net; contescuci@ornl.gov RI Contescu, Cristian/E-8880-2011; Burchell, Tim/E-6566-2017 OI Contescu, Cristian/0000-0002-7450-3722; Burchell, Tim/0000-0003-1436-1192 FU US Department of Energy [DE-AC05-00OR22725] FX Work funded in part by the US Department of Energy, Office of Nuclear Energy under the NGNP Program. Oak Ridge National Laboratory is managed by U.T. Battelle LLC for the US Department of Energy, under Contract DE-AC05-00OR22725. NR 9 TC 8 Z9 11 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP 15 PY 2009 VL 393 IS 3 BP 518 EP 521 DI 10.1016/j.jnucmat.2009.06.032 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 504OM UT WOS:000270626500019 ER PT J AU Chan, EY Sutton, JN Jacobs, JM Bondarenko, A Smith, RD Katze, MG AF Chan, Eric Y. Sutton, Jennifer N. Jacobs, Jon M. Bondarenko, Andrey Smith, Richard D. Katze, Michael G. TI Dynamic Host Energetics and Cytoskeletal Proteomes in Human Immunodeficiency Virus Type 1-Infected Human Primary CD4 Cells: Analysis by Multiplexed Label-Free Mass Spectrometry SO JOURNAL OF VIROLOGY LA English DT Article ID HTLV-III/LAV ENVELOPE; T-CELLS; HIV-1 INFECTION; GENE-EXPRESSION; MESSENGER-RNA; UP-REGULATION; PROTEIN; NUCLEAR; APOPTOSIS; IDENTIFICATION AB We report on a proteomic analysis of ex vivo human immunodeficiency virus (HIV) type 1 infection in human primary CD4 cells by shotgun liquid chromatography-tandem mass spectrometry analysis, revealing two distinct proteomic profiles at two phases of virus replication. Relative to mock-infected cells, 168 signature proteins exhibited abundance changes at the first sign of Gag p24 production (8 h postinfection [p.i.]) or the peak of virus replication (24 h p.i.); interestingly, most of the changes were exclusive to only one phase of virus replication. Based on characterization by functional ontology and known human-HIV protein interactions, we observed the enrichment for protein abundance increases pertaining to protein synthesis and nucleasomal reorganization amid an otherwise placid cellular proteome at the first sign of HIV replication. In contrast, we observed indications of decreased protein turnover, concomitant with heightened DNA repair activities and preludes to apoptosis, in the presence of robust virus replication. We also observed hints of disruptions in protein and small molecule trafficking. Our label-free proteomic strategy allowed us to perform multiplexed comparisons-we buttressed our detection specificity with the use of a reverse transcriptase inhibitor as a counterscreen, enabling highlighting of cellular protein abundance changes unique to robust virus replication as opposed to viral entry. In conjunction with complementary high-throughput screens for cellular partners of HIV, we put forth a model pinpointing specific rerouting of cellular biosynthetic, energetic, and trafficking pathways as HIV replication accelerates in human primary CD4 cells. C1 [Chan, Eric Y.; Katze, Michael G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. [Sutton, Jennifer N.] Thermo Fisher Sci, Cambridge, MA USA. [Jacobs, Jon M.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Bondarenko, Andrey] Rosetta Biosoftware, Seattle, WA USA. RP Katze, MG (reprint author), Univ Washington, Dept Microbiol, POB 358070, Seattle, WA 98195 USA. EM honey@u.washington.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH [T32AI07140]; National Center for Research Resources [R24 RR016354, P51 RR000166]; National Institute on Drug Abuse. [P30 DA015625] FX E.Y.C. was supported by an STD/AIDS research training grant (NIH T32AI07140). This work was supported by Public Health Service grants R24 RR016354 and P51 RR000166 from the National Center for Research Resources and P30 DA015625 from the National Institute on Drug Abuse. NR 59 TC 40 Z9 42 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD SEP 15 PY 2009 VL 83 IS 18 BP 9283 EP 9295 DI 10.1128/JVI.00814-09 PG 13 WC Virology SC Virology GA 485MI UT WOS:000269127000025 PM 19587052 ER PT J AU Brumbach, MT Boal, AK Wheeler, DR AF Brumbach, Michael T. Boal, Andrew K. Wheeler, David R. TI Metalloporphyrin Assemblies on Pyridine-Functionalized Titanium Dioxide SO LANGMUIR LA English DT Article ID TIN OXIDE ELECTRODES; SENSITIZED SOLAR-CELLS; AXIAL LIGAND; RUTHENIUM PHTHALOCYANINES; NANOCRYSTALLINE TIO2; VISIBLE ABSORPTION; IR SENSITIZATION; COMPLEXES; DYE; PORPHYRINS AB Porphyrin adsorption on TiO(2) nanoparticles has been achieved for multiple porphyrins, and in mixed porphyrin assemblies, via axial ligation to surface-bound pyridine anchored by either para carboxylic or phosphonic functionalizations. Homogenous assemblies were prepared and characterized, while mixed metalloporphyrin assemblies were demonstrated by controlling the concentration ratios of respective porphyrins in the modifying solution. Evaluation of the assemblies using spectroscopic techniques and electrochemistry confirms high porphyrin retention, while exhibiting their surface bound optical and electrochemical properties. A thorough study is discussed where several metalloporphyrins have been evaluated (Ru(CO)OEP, Ru(CO)TPP, and ZnTPP) for relative comparisons and relationships to pyridyl axial binding strengths. The systematic study evaluates multiple background cases using either H(2)TPP, TiO(2) modification with benzoic acid, or unmodified TiO(2) to confirm the high affinity of Ru and Zn porphyrins for surface-anchored pyridyl sites. The simple method of step-by-step coordinative anchoring of porphyrins to TiO(2) using small, commercially available molecules is highly adaptable for use in dye-sensitized solar cells (DSSC) where intimate contact between the absorbing dye and the semiconductor is required. DSSC devices with novel mixed porphyrin assemblies were shown to give higher power performance than DSSCs utilizing sensitization with only one type of porphyrin. C1 [Brumbach, Michael T.; Wheeler, David R.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Boal, Andrew K.] MIOX Corp, Albuquerque, NM 87113 USA. RP Brumbach, MT (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM mtbrumb@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Paul Kotula for TEM images. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 38 TC 26 Z9 26 U1 2 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 15 PY 2009 VL 25 IS 18 BP 10685 EP 10690 DI 10.1021/la901130a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 492KR UT WOS:000269655000039 PM 19678616 ER PT J AU Sun, JM Chi, MF Lobo-Lapidus, RJ Mehraeen, S Browning, ND Gates, BC AF Sun, Junming Chi, Miaofang Lobo-Lapidus, Rodrigo J. Mehraeen, Shareghe Browning, Nigel D. Gates, Bruce C. TI Tantalum Clusters Supported on Silica-Alumina: Influence of Support Composition and Chemistry on Cluster Structure SO LANGMUIR LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; METAL-CLUSTERS; COMPLEXES; SURFACE; REACTIVITY; DECOMPOSITION; ZEOLITES; SPECTRA; LIGAND; SITES AB Small cationic tantalum clusters were prepared on the surfaces of SiO(2), silica-aluminas, and gamma-Al(2)O(3) supports by treating physisorbed pentabenzyltantalum at 523 K for 24 h in flowing H(2). The rate of decomposition and the products formed in the decomposition of pentabenzyltantalum are dependent on the support composition. When the support was SiO(2), the evolved products were mainly biphenyl and a small amount of toluene, indicating that the Ta-C bond in pentabenzyltantalum was activated. As the alumina content of the support increased, diphenylmethane, benzene, and ethylene were increasingly formed,and these products show that. the activation of the C-C bonds linking the C atoms of methyl groups to the aromatic rings of the benzyl ligands was facilitated. Infrared spectra of the surface species and mass spectra of the effluents formed during the treatment show that the composition of the support had significant influence oil the decomposition of pentabenzyltantalum, and the chemistry is inferred to be related to the electron-donor properties of the supports. Extended X-ray absorption fine structure (EXAFS) spectra recorded at the Ta L(III) edge indicate the formation of clusters with a Ta-Ta first-shell coordination number of similar to 3, and images obtained by scanning transmission electron microscopy (STEM) confirm the presence of such small clusters. X-ray absorption near edge structure (XANES) data indicate that the formal oxidation state of the tantalum in the clusters decreased from similar to 3.0 to similar to 2.6 as the support was changed from SiO(2) to silica-aluminas to gamma-Al(2)O(3). The data suggest that the tantalum clusters were anchored to the supports via bridging O atoms. The EXAFS data show that the support composition had little influence on the cluster structure. C1 [Sun, Junming; Lobo-Lapidus, Rodrigo J.; Mehraeen, Shareghe; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM bcgates@ucdavis.edu RI ZHANG, He/A-6219-2011; Sun, Junming/B-3019-2011; Chi, Miaofang/Q-2489-2015; OI Sun, Junming/0000-0002-0071-9635; Chi, Miaofang/0000-0003-0764-1567; Browning, Nigel/0000-0003-0491-251X FU National Science Foundation [CTS-05-00511]; U.S. Department of Energy [FG02-87ER13790, DEAC02-98CH10886, DE-FG02-05ER15688]; Stanford Synchrotron Radiation Laboratory (SSRL) FX We thank Jun Yang for helpful comments. This research was supported by the National Science Foundation (GOALI Grant No. CTS-05-00511) and by the U.S. Department of Energy, Office of Energy Research, Basic Energy Sciences (under Contract No. FG02-87ER13790, to R.J.L.-L.). X-ray absorption spectra were collected at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. We also acknowledge the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, Beamline X-18B, for access to beam time; the NSLS is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (under Contract No. DEAC02-98CH10886). Beamline X-18B is supported by the NSLS, through the Divisions of Materials and Chemical Sciences of DOE and the Synchrotron Catalysis Consortium (U.S. DOE Grant No. DE-FG02-05ER15688). We thank the beamline staffs for their assistance. The electron microscopy experiments were performed at the Oak Ridge National Laboratory SHaRE User Facility, which is supported by the Division of Scientific User Facilities, DOE Office of Science, Basic Energy Sciences. NR 34 TC 5 Z9 5 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 15 PY 2009 VL 25 IS 18 BP 10754 EP 10763 DI 10.1021/la901295d PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 492KR UT WOS:000269655000047 PM 19606856 ER PT J AU Mudiyanselage, K Yi, CW Szanyi, J AF Mudiyanselage, Kumudu Yi, Cheol-Woo Szanyi, Janos TI Reactivity of a Thick BaO Film Supported on Pt(111): Adsorption and Reaction of NO2, H2O, and CO2 SO LANGMUIR LA English DT Article ID MODEL NSR CATALYSTS; STORAGE MATERIALS; BARIUM OXIDE; STORAGE/REDUCTION CATALYSTS; VIBRATIONAL SPECTROSCOPY; THERMAL-DECOMPOSITION; SURFACE; REGENERATION; REDUCTION; METAL AB Reactions of NO2, H2O, and CO2 with a thick (> 20 monolayer equivalent (MLE)) BaO film supported on Pt(111) were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). NO2 reacts with a thick BaO layer to form surface nitrite-nitrate ion pairs at 300 K, while only nitrates form at 600 K. In the thermal decomposition process of nitrite-nitrate ion pairs, first nitrites decompose and desorb as NO. Then nitrates decompose in two steps: at lower temperature with the release of NO2 and at higher temperature, nitrates dissociate to NO + O-2. The thick BaO layer converts completely to Ba(OH)(2) following the adsorption of H2O at 300 K. Dehydration/dehydroxylation of this hydroxide layer call be fully achieved by annealing to 550 K. CO2 also reacts with BaO to form BaCO3 that completely decomposes to regenerate BaO upon annealing to 825 K. However, the thick BaO film cannot be converted completely to Ba(NOx)(2) or BaCO3 tinder the experimental conditions employed in this study. C1 [Mudiyanselage, Kumudu; Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yi, Cheol-Woo] Sungshin Womens Univ, Sch Biol Sci & Chem, Seoul 136742, South Korea. [Yi, Cheol-Woo] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM janos.szanyi@pnl.gov RI Mudiyanselage, Kumudu/B-2277-2013; Yi, Cheol-Woo/B-3082-2010 OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Yi, Cheol-Woo/0000-0003-4549-5433 FU U.S. Department of Energy (DOE) [DEAC05-76RL01830]; Sungshin Women's University Research FX We gratefully acknowledge the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNI.). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract number DEAC05-76RL01830. C.-W.Y. also acknowledges thesupport of this work by Sungshin Women's University Research Grant of 2008. NR 40 TC 11 Z9 11 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 15 PY 2009 VL 25 IS 18 BP 10820 EP 10828 DI 10.1021/la901371g PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 492KR UT WOS:000269655000055 PM 19588918 ER PT J AU Rosenqvist, J Machesky, ML Vlcek, L Cummings, PT Wesolowski, DJ AF Rosenqvist, Joergen Machesky, Michael L. Vlcek, Lukas Cummings, Peter T. Wesolowski, David J. TI Charging Properties of Cassiterite (alpha-SnO2) Surfaces in NaCl and RbCl Ionic Media SO LANGMUIR LA English DT Article ID RUTILE-WATER INTERFACE; PROTONATION EQUILIBRIUM-CONSTANTS; DENSITY-FUNCTIONAL THEORY; ELECTRIC DOUBLE-LAYER; METAL-OXIDE SURFACES; MOLECULAR-DYNAMICS; MUSIC MODEL; SNO2 SURFACES; ADSORPTION; (HYDR)OXIDES AB The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 tinder all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated that the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log K-H) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural, alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence oil the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH-0.40) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range. C1 [Machesky, Michael L.] Illinois State Water Survey, Champaign, IL 61820 USA. [Vlcek, Lukas; Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Vlcek, Lukas] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, CR-16502 Prague 6, Czech Republic. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rosenqvist, Joergen; Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Rosenqvist, J (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9LT, W Yorkshire, England. EM j.rosenqvist@leeds.ac.uk RI Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013 OI Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702 FU U.S. Department of Energy [AC0500OR22725] FX We thank Dr. Lawrence Anovitz for his help with the characterization of the SnO powder. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences through the project "Nanoseale complexity at the oxide/water interface" (ERKCC41) under contract DE-AC0500OR22725, Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 37 TC 11 Z9 11 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 EI 1520-5827 J9 LANGMUIR JI Langmuir PD SEP 15 PY 2009 VL 25 IS 18 BP 10852 EP 10861 DI 10.1021/la901396w PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 492KR UT WOS:000269655000059 PM 19673509 ER PT J AU Wang, TM Gao, F Hu, WY Lai, WS Lu, GH Zu, XT AF Wang, Tianmin Gao, Fei Hu, Wangyu Lai, Wensheng Lu, Guang-Hong Zu, Xiaotao TI Proceedings of the Ninth International Conference on Computer Simulation of Radiation Effects in Solids (COSIRES 2008) Beijing, China, 12-17 October 2008 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Editorial Material C1 [Wang, Tianmin; Lu, Guang-Hong] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hu, Wangyu] Hunan Univ, Dept Appl Phys, Changsha 410082, Peoples R China. [Lai, Wensheng] Tsinghua Univ, Dept Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China. [Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. RP Wang, TM (reprint author), Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. RI Hu, Wangyu/B-5762-2009; Gao, Fei/H-3045-2012 OI Hu, Wangyu/0000-0001-7416-3994; NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP V EP V DI 10.1016/j.nimb.2009.06.096 PG 1 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500001 ER PT J AU Gao, F Weber, WJ Xiao, HY Zu, XT AF Gao, F. Weber, W. J. Xiao, H. Y. Zu, X. T. TI Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Defect properties; Ab initio simulation; Defect clusters; Silicon carbide ID ENERGETICS; SILICON AB Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the di-vacancy cluster consists of two C vacancies located at the second nearest neighbor sites is stable up to 1300 K, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and nC vacancies (V(Si)-nV(C)) are much smaller than those with a C vacancy and nSi vacancies (V(C)-nV(Si)). These results demonstrate that the V(Si)-nV(C) clusters are more stable than the V(C)-nV(Si) clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gao, F.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; NR 20 TC 6 Z9 9 U1 6 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 2995 EP 2998 DI 10.1016/j.nimb.2009.06.018 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500008 ER PT J AU Devanathan, R AF Devanathan, Ram TI Radiation damage evolution in ceramics SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Ceramics; Radiation damage; Radiation tolerance; Defects; Amorphization ID MOLECULAR-DYNAMICS SIMULATION; SILICON-CARBIDE; INDUCED AMORPHIZATION; DEFECT PRODUCTION; ZIRCON; TOLERANCE; OXIDES; DISPLACEMENT; CASCADES; SPINEL AB A review is presented of recent results on radiation damage production, defect accumulation and dynamic annealing in a number of ceramics, such as silicon carbide, zircon and zirconia. Under energetic particle irradiation, ceramics can undergo amorphization by the accumulation of point defects and defect clusters (silicon carbide) or direct impact amorphization (zircon). Ceramics that resist radiation-induced amorphization have mechanisms to dissipate the primary knock-on atom energy, such as replacement collision sequences that leave the lattice undisturbed and low-energy cation site exchange. The presence of engineered mobile defects, such as structural vacancies in stabilized zirconia, can dynamically anneal radiation damage. Thus, defect engineering is a promising strategy to design radiation tolerance for applications such as nuclear waste disposal. (C) 2009 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Devanathan, R (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, MS K8-87, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Devanathan, Ram/C-7247-2008 OI Devanathan, Ram/0000-0001-8125-4237 NR 40 TC 13 Z9 13 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 3017 EP 3021 DI 10.1016/j.nimb.2009.06.020 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500013 ER PT J AU Luo, GN Umstadter, K Shu, WM Wampler, W Lu, GH AF Luo, G. -N. Umstadter, K. Shu, W. M. Wampler, W. Lu, G. -H. TI Behavior of tungsten with exposure to deuterium plasmas SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Tungsten; Plasma; Blistering; Retention; Nuclear fusion ID HIGH-FLUX; LOW-ENERGY; BLISTER FORMATION; HIGH FLUENCES; RETENTION; SURFACE; COMPONENTS; BEAMS AB Four kinds of tungsten (W) materials, i.e. (1) foil of 50 mu m thick (f-W), (2) polycrystalline (Pc-W) with grain size of similar to 3 mu m, (3) recrystallized (Re-W) with grain size of similar to 50 mu m and (4) vacuum plasma spraying (VPS-W) coatings, were irradiated employing linear plasma generators, with fluxes >= 1 x 10(22) D/m(2)/s and energies <= 100 eV/D. Scanning electron microscopy (SEM) was used to observe blister formation at the surfaces. The SEM surface morphology and cross section observation indicates that blister formation is related to the microstructure and surface state of different material grades. Results of trapping and deuterium retention measured by thermal desorption spectroscopy (TDS) and nuclear reaction analysis (NRA) show also a close correlation between the retention and the microstructure and surface state. (C) 2009 Elsevier B.V. All rights reserved. C1 [Luo, G. -N.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Umstadter, K.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Shu, W. M.] Japan Atom Energy Agcy, Tritium Technol Grp, Tokai, Ibaraki 3191195, Japan. [Wampler, W.] Sandia Natl Labs, Radiat Solid Interact Dept, Albuquerque, NM 87185 USA. [Luo, G. -N.; Lu, G. -H.] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100083, Peoples R China. RP Luo, GN (reprint author), Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Peoples R China. EM gnluo@ipp.ac.cn NR 18 TC 31 Z9 33 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 3041 EP 3045 DI 10.1016/j.nimb.2009.06.049 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500019 ER PT J AU Yang, L Zu, XT Gao, F Heinisch, HL Kurtz, RJ AF Yang, L. Zu, X. T. Gao, F. Heinisch, H. L. Kurtz, R. J. TI Effects of Fe-He potential on primary damage formation in Fe-1%He SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Molecular dynamics; Displacement cascade; Point defects; Fe-He interstitial clusters ID MOLECULAR-DYNAMICS SIMULATIONS; DISPLACEMENT CASCADES; HELIUM; CLUSTERS AB The effects of different Fe-He interatomic potentials on primary damage formation in Fe-1%He are investigated using molecular dynamics (MD) methods. Simulations of cascades produced by primary knock-on atoms (PKA) of energy E(p) = 0.5-10 keV were performed at an irradiation temperature of 100 K. It is found that the Fe-He potentials have significant effects on the point defect creation and the formation of Fe-He interstitial clusters, whereas small effects on the formation of He-vacancy clusters. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yang, L.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, L (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM yanglilkd@yahoo.com.cn RI Gao, Fei/H-3045-2012 NR 15 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 3046 EP 3049 DI 10.1016/j.nimb.2009.06.048 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500020 ER PT J AU Lai, WS Yu, JJ Gao, F Bacon, DJ AF Lai, W. S. Yu, J. J. Gao, F. Bacon, D. J. TI Computer simulation of sputtering at the low index (1 0 0), (1 1 0) and (1 1 1) surfaces of Ni3Al in a STEM SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Surface sputtering; Ni3Al; Molecular dynamics simulation; STEM ID POINT-DEFECT PROPERTIES; GRAIN-BOUNDARIES; EVENTS AB The present study is relevant to the preferential Al sputtering and/or enhancement of the Ni/Al ratio in Ni3Al observed by the scanning transmission electron microscopy fitted with a field emission gun (FEG STEM). Atomic recoil events at the low index (1 0 0), (1 1 0) and (1 1 1) surfaces of Ni3Al through elastic collisions between electrons and atoms are simulated using molecular dynamics (MD) methods. The threshold energy for sputtering, E-sp, and adatom creation, E-ad, are determined as a function of recoil direction. Based on the MID determined E-sp, the sputtering cross-sections for Ni and Al atoms in these surfaces are calculated with the previous proposed model. It is found that the sputtering cross-section for Al atoms is about 7-8 times higher than that for Ni, indicating the preferential sputtering of Al in Ni3Al, in good agreement with experiments. It is also found that the sputtering cross-sections for Ni atoms are almost the same in these three surfaces, suggesting that they are independent of surface orientation. Thus, the sputtering process is almost independent of the surface orientation in Ni3Al, as it is controlled by the sputtering of Ni atoms with a lower sputtering rate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lai, W. S.; Yu, J. J.] Tsinghua Univ, Dept Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. RP Lai, WS (reprint author), Tsinghua Univ, Dept Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China. EM wslai@tsinghua.edu.cn RI Gao, Fei/H-3045-2012 NR 10 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 3076 EP 3079 DI 10.1016/j.nimb.2009.06.022 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500027 ER PT J AU Li, XC Gao, F Lu, GH AF Li, Xiao-Chun Gao, F. Lu, Guang-Hong TI Molecular dynamics simulation of interaction of H with vacancy in W SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Tungsten; Hydrogen; Vacancy; Molecular dynamics ID DISPLACEMENT CASCADES; DEFECT PRODUCTION; BCC TUNGSTEN; IRON AB Molecular dynamics simulations were performed to investigate the interaction between H and vacancy in W using an analytical bond-order potential to describe the interactions between W-W, W-H and H-H. The most stable configuration for H in W is the tetrahedron interstitial site. We calculated the binding energies of an H and a vacancy to an H-vacancy cluster (H(n)V(m)) in W, respectively, where n and m ranged from 0 to 10. The binding energy was almost unchanged. The binding energy of a vacancy to H-vacancy cluster is about 0.4 eV, which is higher than the binding energy of an H to H-vacancy cluster. Vacancy is much easier to bond with H-vacancy cluster than H. And H is easier to stay in the tetrahedron interstitial site or octahedron interstitial site in bcc W. (C) 2009 Elsevier B.V. All rights reserved. C1 [Li, Xiao-Chun; Lu, Guang-Hong] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lu, GH (reprint author), Beihang Univ, Dept Phys, Beijing 100191, Peoples R China. EM lgh@buaa.edu.cn RI Gao, Fei/H-3045-2012 NR 16 TC 20 Z9 21 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 3197 EP 3199 DI 10.1016/j.nimb.2009.06.065 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500058 ER PT J AU Watanabe, Y Morishita, K Kohyama, A Heinisch, HL Gao, F AF Watanabe, Y. Morishita, K. Kohyama, A. Heinisch, H. L. Gao, F. TI Energetics of defects in beta-SiC under irradiation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 9th International Conference on Computer Simulation of Radiation Effects in Solids CY OCT 12-17, 2008 CL Beihang Univ, Beijing, PEOPLES R CHINA HO Beihang Univ DE Irradiation damage; Microstructural evolution; Defect clusters; Ceramics materials AB Energetics of point defects in beta-SiC have been investigated using atomistic calculations with the empirical interatomic potential, where a simple static relaxation method and a dynamic relaxation method are separately employed. In addition to formation energy of isolated silicon interstitials, migration energies for interstitials and vacancies obtained from the dynamic relaxation method are much lower than those obtained from the simple static relaxation method. It indicates that the dynamic relaxation method possibly can provide more relaxed defect configuration than the simple static relaxation method. (C) 2009 Elsevier B.V. All rights reserved. C1 [Watanabe, Y.] Kyoto Univ, Grad Sch Energy Sci, Kyoto 6110011, Japan. [Morishita, K.; Kohyama, A.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Heinisch, H. L.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Watanabe, Y (reprint author), Kyoto Univ, Grad Sch Energy Sci, Kyoto 6110011, Japan. EM y-watanabe@iae.kyoto-u.ac.jp RI Gao, Fei/H-3045-2012 NR 11 TC 11 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2009 VL 267 IS 18 BP 3223 EP 3226 DI 10.1016/j.nimb.2009.06.062 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 513UN UT WOS:000271349500064 ER PT J AU Lauro, FM McDougald, D Thomas, T Williams, TJ Egan, S Rice, S DeMaere, MZ Ting, L Ertan, H Johnson, J Ferriera, S Lapidus, A Anderson, I Kyrpides, N Munk, AC Detter, C Han, CS Brown, MV Robb, FT Kjelleberg, S Cavicchioli, R AF Lauro, Federico M. McDougald, Diane Thomas, Torsten Williams, Timothy J. Egan, Suhelen Rice, Scott DeMaere, Matthew Z. Ting, Lily Ertan, Haluk Johnson, Justin Ferriera, Steven Lapidus, Alla Anderson, Iain Kyrpides, Nikos Munk, A. Christine Detter, Chris Han, Cliff S. Brown, Mark V. Robb, Frank T. Kjelleberg, Staffan Cavicchioli, Ricardo TI The genomic basis of trophic strategy in marine bacteria SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microbial adaptation and ecology; microbial genomics and metagenomics; monitoring environmental health; trophic adaptation ID OPERON COPY NUMBER; OLIGOTROPHIC ULTRAMICROBACTERIUM; SPHINGOMONAS-ALASKENSIS; DI-GMP; SEA; PACIFIC; GROWTH; LIFE; ENVIRONMENT; LIMITATION AB Many marine bacteria have evolved to grow optimally at either high (copiotrophic) or low (oligotrophic) nutrient concentrations, enabling different species to colonize distinct trophic habitats in the oceans. Here, we compare the genome sequences of two bacteria, Photobacterium angustum S14 and Sphingopyxis alaskensis RB2256, that serve as useful model organisms for copiotrophic and oligotrophic modes of life and specifically relate the genomic features to trophic strategy for these organisms and define their molecular mechanisms of adaptation. We developed a model for predicting trophic lifestyle from genome sequence data and tested >400,000 proteins representing >500 million nucleotides of sequence data from 126 genome sequences with metagenome data of whole environmental samples. When applied to available oceanic metagenome data (e.g., the Global Ocean Survey data) the model demonstrated that oligotrophs, and not the more readily isolatable copiotrophs, dominate the ocean's free-living microbial populations. Using our model, it is now possible to define the types of bacteria that specific ocean niches are capable of sustaining. C1 [Lauro, Federico M.; Brown, Mark V.; Kjelleberg, Staffan; Cavicchioli, Ricardo] Univ New S Wales, Environm Microbiol Initiat, Sydney, NSW 2052, Australia. [Lauro, Federico M.; Williams, Timothy J.; Egan, Suhelen; DeMaere, Matthew Z.; Ting, Lily; Ertan, Haluk; Brown, Mark V.; Cavicchioli, Ricardo] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia. [McDougald, Diane; Thomas, Torsten; Rice, Scott; Kjelleberg, Staffan] Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia. [Johnson, Justin; Ferriera, Steven] J Craig Venter Inst, Rockville, MD 20850 USA. [Lapidus, Alla; Anderson, Iain; Kyrpides, Nikos; Munk, A. Christine] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Detter, Chris; Han, Cliff S.] Los Alamos Natl Lab, Dept Energy, Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Robb, Frank T.] Univ Maryland, Inst Biotechnol, Ctr Marine Biotechnol, Baltimore, MD 21202 USA. [Ertan, Haluk] Istanbul Univ, Dept Mol Biol & Genet, Fac Sci, TR-34118 Istanbul, Turkey. RP Cavicchioli, R (reprint author), Univ New S Wales, Environm Microbiol Initiat, Sydney, NSW 2052, Australia. EM r.cavicchioli@unsw.edu.au RI DeMaere, Matthew/D-9002-2012; Cavicchioli, Ricardo/D-4341-2013; McDougald, Diane/B-5564-2009; Kjelleberg, Staffan/C-9229-2015; Kyrpides, Nikos/A-6305-2014; Lapidus, Alla/I-4348-2013 OI Egan, Suhelen/0000-0003-3286-4279; Robb, Frank/0000-0001-5833-6496; Lauro, Federico/0000-0002-8373-1014; DeMaere, Matthew/0000-0002-7601-5108; rice, scott/0000-0002-9486-2343; Cavicchioli, Ricardo/0000-0001-8989-6402; McDougald, Diane/0000-0001-5827-8441; Kjelleberg, Staffan/0000-0003-4271-6413; Kyrpides, Nikos/0000-0002-6131-0462; Lapidus, Alla/0000-0003-0427-8731 FU Australian Research Council; DOE's Office of Science, Biological and Environmental Research; University of California, Lawrence Berkeley National Laboratory; Gordon and Betty Moore Foundation FX The work of the Australian contingent was supported by the Australian Research Council. The work of JGI members was performed under the auspices of the DOE's Office of Science, Biological and Environmental Research Program and the University of California, Lawrence Berkeley National Laboratory. The work of JCVI members was supported by the Gordon and Betty Moore Foundation. NR 38 TC 217 Z9 222 U1 6 U2 77 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 15 PY 2009 VL 106 IS 37 BP 15527 EP 15533 DI 10.1073/pnas.0903507106 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 494IS UT WOS:000269806600005 PM 19805210 ER PT J AU Ganguly, AR Steinhaeuser, K Erickson, DJ Branstetter, M Parish, ES Singh, N Drake, JB Buja, L AF Ganguly, Auroop R. Steinhaeuser, Karsten Erickson, David J., III Branstetter, Marcia Parish, Esther S. Singh, Nagendra Drake, John B. Buja, Lawrence TI Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE climate change; extremes; regional analysis ID QUANTIFYING UNCERTAINTY; CLIMATE-CHANGE; PREDICTIONS; ENSEMBLE; CO2; PROJECTIONS; DESIGN; MODELS; NCEP AB Generating credible climate change and extremes projections remains a high-priority challenge, especially since recent observed emissions are above the worst-case scenario. Bias and uncertainty analyses of ensemble simulations from a global earth systems model show increased warming and more intense heat waves combined with greater uncertainty and large regional variability in the 21st century. Global warming trends are statistically validated across ensembles and investigated at regional scales. Observed heat wave intensities in the current decade are larger than worst-case projections. Model projections are relatively insensitive to initial conditions, while uncertainty bounds obtained by comparison with recent observations are wider than ensemble ranges. Increased trends in temperature and heat waves, concurrent with larger uncertainty and variability, suggest greater urgency and complexity of adaptation or mitigation decisions. C1 [Ganguly, Auroop R.; Steinhaeuser, Karsten; Parish, Esther S.; Singh, Nagendra] Oak Ridge Natl Lab, Computat Sci & Engn Div, Geog Informat Sci & Technol Grp, Oak Ridge, TN 37831 USA. [Steinhaeuser, Karsten] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA. [Erickson, David J., III; Branstetter, Marcia; Drake, John B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. [Buja, Lawrence] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. RP Ganguly, AR (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Geog Informat Sci & Technol Grp, Oak Ridge, TN 37831 USA. EM gangulyar@ornl.gov RI Parish, Esther/B-9443-2012; OI Parish, Esther/0000-0001-9264-6295 FU Oak Ridge National Laboratory [DE-AC05-00OR22725] FX We thank Dr. Shih-Chieh Kao of Oak Ridge National Laboratory (ORNL) for his comments. This research was supported by the Laboratory-Directed Research and Development Program of the Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U. S. Department of Energy under Contract DE-AC05-00OR22725. NR 25 TC 50 Z9 53 U1 3 U2 28 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 15 PY 2009 VL 106 IS 37 BP 15555 EP 15559 DI 10.1073/pnas.0904495106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 494IS UT WOS:000269806600010 PM 19805213 ER PT J AU Kim, JW Haam, SY Oh, YS Park, S Cheong, SW Sharma, PA Jaime, M Harrison, N Han, JH Jeon, GS Coleman, P Kim, KH AF Kim, Jae Wook Haam, S. Y. Oh, Y. S. Park, S. Cheong, S. -W. Sharma, P. A. Jaime, M. Harrison, N. Han, Jung Hoon Jeon, Gun-Sang Coleman, P. Kim, Kee Hoon TI Observation of a multiferroic critical end point SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE spin-flop transition; metaelectric transition; BiMn2O5 ID QUANTUM CRITICALITY; PHASE-TRANSITION; MAGNETIC-FIELD; POLARIZATION AB The study of abrupt increases in magnetization with magnetic field known as metamagnetic transitions has opened a rich vein of new physics in itinerant electron systems, including the discovery of quantum critical end points with a marked propensity to develop new kinds of order. However, the electric analogue of the metamagnetic critical end point, a "metaelectric" critical end point, has been rarely studied. Multiferroic materials wherein magnetism and ferroelectricity are cross-coupled are ideal candidates for the exploration of this novel possibility using magnetic-field (H) as a tuning parameter. Herein, we report the discovery of a magnetic-field-induced metaelectric transition in multiferroic BiMn2O5, in which the electric polarization (P) switches polarity along with a concomitant Mn spin-flop transition at a critical magnetic field H-c. The simultaneous metaelectric and spin-flop transitions become sharper upon cooling but remain a continuous cross-over even down to 0.5 K. Near the P = 0 line realized at mu H-0(c) approximate to 18 T below 20 K, the dielectric constant (epsilon) increases significantly over wide field and temperature (T) ranges. Furthermore, a characteristic power-law behavior is found in the P(H) and epsilon(H) curves at T = 0.66 K. These findings indicate that a magnetic-field-induced metaelectric critical end point is realized in BiMn2O5 near zero temperature. C1 [Kim, Jae Wook; Haam, S. Y.; Oh, Y. S.; Jeon, Gun-Sang; Kim, Kee Hoon] Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151742, South Korea. [Kim, Jae Wook; Haam, S. Y.; Oh, Y. S.; Jeon, Gun-Sang; Kim, Kee Hoon] Seoul Natl Univ, Frontier Phys Res Div, Dept Phys & Astron, Seoul 151742, South Korea. [Park, S.; Cheong, S. -W.; Coleman, P.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Park, S.; Cheong, S. -W.; Coleman, P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Sharma, P. A.; Jaime, M.; Harrison, N.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Han, Jung Hoon] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Han, Jung Hoon] Sungkyunkwan Univ, Phys Res Div BK21, Suwon 440746, South Korea. RP Kim, KH (reprint author), Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151742, South Korea. EM khkim@phya.snu.ac.kr RI Oh, Yoon Seok/A-1071-2011; Sharma, Peter/G-1917-2011; Jaime, Marcelo/F-3791-2015; OI Oh, Yoon Seok/0000-0001-8233-1898; Sharma, Peter/0000-0002-3071-7382; Jaime, Marcelo/0000-0001-5360-5220; Harrison, Neil/0000-0001-5456-7756 FU Korean Government through National Research Laboratory Program [M10600000238, K20702020014-07E0200-01410]; Korea Research Foundation [KRF-2008-205-C00101]; Seoul Research and Business Development; National Science Foundation [NSF-0405682, NSF-DMR-0605935] FX We thank P. Chandra, S. Rowley, J. Schmalian, and G. R. Stewart for stimulating discussions. This work was supported by the Korean Government through National Research Laboratory Program M10600000238 and Graduate Partnerships Program K20702020014-07E0200-01410, and by Korea Research Foundation Grant KRF-2008-205-C00101. J. W. K. was supported by Seoul Research and Business Development. Work at Rutgers University was supported by National Science Foundation Grants NSF-0405682 and NSF-DMR-0605935. Work at the National High Magnetic Field Laboratory was performed under the auspices of the National Science Foundation, the State of Florida, and the U. S. Department of Energy. NR 31 TC 21 Z9 21 U1 3 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 15 PY 2009 VL 106 IS 37 BP 15573 EP 15576 DI 10.1073/pnas.0907589106 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 494IS UT WOS:000269806600014 PM 19717461 ER PT J AU Konstantinidis, KT Serres, MH Romine, MF Rodrigues, JLM Auchtung, J Mccue, LA Lipton, MS Obraztsova, A Giometti, CS Nealson, KH Fredrickson, JK Tiedje, JM AF Konstantinidis, Konstantinos T. Serres, Margrethe H. Romine, Margaret F. Rodrigues, Jorge L. M. Auchtung, Jennifer McCue, Lee-Ann Lipton, Mary S. Obraztsova, Anna Giometti, Carol S. Nealson, Kenneth H. Fredrickson, James K. Tiedje, James M. TI Comparative systems biology across an evolutionary gradient within the Shewanella genus SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE comparative genomics; evolution; proteomics; speciation; phenotype ID SPECIES DEFINITION; EXPRESSION; IDENTIFICATION; PATHWAYS; DATABASE; PROTEOME; GENOME; COLI AB To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for ( new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera. C1 [Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Romine, Margaret F.; McCue, Lee-Ann; Lipton, Mary S.; Fredrickson, James K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Auchtung, Jennifer; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Obraztsova, Anna; Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Rodrigues, Jorge L. M.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. [Giometti, Carol S.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Serres, Margrethe H.] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA. RP Konstantinidis, KT (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, 310 Ferst Dr, Atlanta, GA 30332 USA. EM kostas@ce.gatech.edu; tiedjej@msu.edu OI Auchtung, Jennifer/0000-0003-3038-583X; Romine, Margaret/0000-0002-0968-7641; McCue, Lee Ann/0000-0003-4456-517X FU U. S. Department of Energy; National Science Foundation [DEB 0516252] FX The authors thank the numerous members of the Shewanella Federation for useful discussions during the course of their genomic investigations of Shewanella. The authors were supported by the U. S. Department of Energy through the Shewanella Federation consortium and the Proteomics Application project. The Michigan State University work relevant to speciation was also supported by the National Science Foundation (DEB 0516252). Portions of this research were performed in the Environmental Molecular Sciences Laboratory, a U. S. Department of Energy national scientific user facility located at the Pacific Northwest National Laboratory in Richland, Washington. NR 22 TC 53 Z9 54 U1 2 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 15 PY 2009 VL 106 IS 37 BP 15909 EP 15914 DI 10.1073/pnas.0902000106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 494IS UT WOS:000269806600072 PM 19805231 ER PT J AU Adamo, C Ke, X Wang, HQ Xin, HL Heeg, T Hawley, ME Zander, W Schubert, J Schiffer, P Muller, DA Maritato, L Schlom, DG AF Adamo, C. Ke, X. Wang, H. Q. Xin, H. L. Heeg, T. Hawley, M. E. Zander, W. Schubert, J. Schiffer, P. Muller, D. A. Maritato, L. Schlom, D. G. TI Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID METAL-INSULATOR-TRANSITION; MOLECULAR-BEAM EPITAXY; MANGANITE FILMS; MAGNETORESISTANCE; TEMPERATURE AB We have studied the effect of biaxial strain on thin films of (001) La0.7Sr0.3MnO3. We deposited films by reactive molecular-beam epitaxy on different single crystalline substrates, varying the substrate-induced biaxial strain from -2.3% to +3.2%. Magnetization and electrical transport measurements reveal that the dependence of the Curie temperature on biaxial strain is in very good agreement with the theoretical predictions of Millis et al. [J. Appl. Phys. 83, 1588 (1998)]. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3213346] C1 [Adamo, C.; Heeg, T.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Ke, X.; Schiffer, P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Ke, X.; Schiffer, P.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Wang, H. Q.; Xin, H. L.; Muller, D. A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Hawley, M. E.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 8, Los Alamos, NM 87545 USA. [Zander, W.; Schubert, J.] Forschungszentrum Julich, Inst Bio & Nanosyst IBN1 IT, D-52425 Julich, Germany. [Zander, W.; Schubert, J.] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany. [Maritato, L.] Univ Salerno, Dipartimento Matemat & Informat, I-84081 Baronissi, SA, Italy. [Maritato, L.] CNR INFM Salerno, I-84081 Baronissi, SA, Italy. RP Adamo, C (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM schlom@cornell.edu RI Schiffer, Peter/F-3227-2011; Wang, Hui-Qiong/H-4690-2011; Schlom, Darrell/J-2412-2013; Schubert, Jurgen/K-9543-2013; Xin, Huolin/E-2747-2010; Muller, David/A-7745-2010; OI Schlom, Darrell/0000-0003-2493-6113; Schubert, Jurgen/0000-0003-0185-6794; Xin, Huolin/0000-0002-6521-868X; Muller, David/0000-0003-4129-0473; Wang, Hui-Qiong/0000-0002-0495-3146; Schiffer, Peter/0000-0002-6430-6549 FU National Science Foundation [DMR-0520404, DMR-0820404, DMR-0701582] FX We gratefully acknowledge the financial support from the National Science Foundation through the MRSEC program (Grant Nos. DMR-0520404 and DMR-0820404) and Grant No. DMR-0701582. NR 20 TC 82 Z9 82 U1 6 U2 67 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2009 VL 95 IS 11 AR 112504 DI 10.1063/1.3213346 PG 3 WC Physics, Applied SC Physics GA 497XC UT WOS:000270096900048 ER PT J AU Chroneos, A Jiang, C Grimes, RW Schwingenschlogl, U Bracht, H AF Chroneos, A. Jiang, C. Grimes, R. W. Schwingenschloegl, U. Bracht, H. TI E centers in ternary Si1-x-yGexSny random alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID GROUP-IV SEMICONDUCTORS; OPTOELECTRONICS; GE(001) AB Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1-x-yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3224894] C1 [Chroneos, A.; Grimes, R. W.; Schwingenschloegl, U.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. [Jiang, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Schwingenschloegl, U.] KAUST, PCSE Div, Jeddah 21534, Saudi Arabia. [Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. RP Chroneos, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. EM alexander.chroneos@imperial.ac.uk RI Jiang, Chao/A-2546-2011; OI Chroneos, Alex/0000-0002-2558-495X FU King Abdullah University of Science and Technology (KAUST); Deutsche Forschungsgemeinschaft; U. S. Department of Energy FX This publication was based on work supported in part by King Abdullah University of Science and Technology (KAUST). H. B. acknowledges support from the Deutsche Forschungsgemeinschaft and C. J. from the U. S. Department of Energy, Office of Basic Energy Sciences. Computing resources were provided by the HPC facility of Imperial College London and in this regard we particularly thank Simon Burbidge. NR 36 TC 41 Z9 41 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2009 VL 95 IS 11 AR 112101 DI 10.1063/1.3224894 PG 3 WC Physics, Applied SC Physics GA 497XC UT WOS:000270096900034 ER PT J AU Collino, RR Dick, BB Naab, F Wang, YQ Thouless, MD Goldman, RS AF Collino, R. R. Dick, B. B. Naab, F. Wang, Y. Q. Thouless, M. D. Goldman, R. S. TI Blister formation in ion-implanted GaAs: Role of diffusivity SO APPLIED PHYSICS LETTERS LA English DT Article ID HYDROGEN IMPLANTATION; SILICON; TEMPERATURE; REDISTRIBUTION; MECHANISMS; NITROGEN; LAYER AB We have investigated the influence of substrate temperature during implantation, T(implant), on blister formation in GaAs: N layers produced by N ion implantation followed by rapid thermal annealing. Similar depths of popped blisters (craters) and damage profiles were observed for both low and high T(implant). This is in contrast to reports of T(implant)-dependent blister formation in higher-diffusivity systems such as GaAs: H and Si: H. The apparent T(implant)-insensitivity of blister formation in GaAs: N is likely due to the lower diffusivity of N in GaAs in comparison to that of H in GaAs and Si. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3224199] C1 [Collino, R. R.; Thouless, M. D.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Dick, B. B.; Naab, F.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Thouless, M. D.; Goldman, R. S.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Collino, RR (reprint author), Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. EM rsgold@umich.edu RI Schaff, William/B-5839-2009; Goldman, Rachel/J-9091-2012; Collino, Rachel/B-5513-2014 OI Collino, Rachel/0000-0002-7958-4859 FU NSF [CMMI-0700301, DMR-0520701]; NSF Graduate Research Fellowship; Michigan Memorial Phoenix Energy Institute FX This work was supported by NSF through Grant No. CMMI-0700301 monitored by Clark Cooper. R. C. was supported in part by an NSF Graduate Research Fellowship and the Michigan Memorial Phoenix Energy Institute. We gratefully acknowledge the support of the Center for Integrated Nanotechnologies at Los Alamos National Laboratory as well as the assistance of the staff at the Michigan Ion Beam (MIBL) and Electron Microscopy and Analysis laboratories at UM. The ion implanter at MIBL is supported by NSF Grant No. DMR-0520701. NR 21 TC 4 Z9 4 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2009 VL 95 IS 11 AR 111912 DI 10.1063/1.3224199 PG 3 WC Physics, Applied SC Physics GA 497XC UT WOS:000270096900030 ER PT J AU Hansel, RA Allison, SW Walker, DG AF Hansel, Rachael A. Allison, S. W. Walker, D. G. TI Temperature-dependent luminescence of Ce3+ in gallium-substituted garnets SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOSPHORS; THERMOMETRY; YAG AB The luminescent lifetime of cerium-doped yttrium aluminum garnet has been determined as a function of temperature and as a function of gallium content. We have shown that increasing gallium content decreases the decay lifetime and results in luminescence quenching at lower temperatures. The results are quantitatively explained using a configurational coordinate diagram. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3216583] C1 [Hansel, Rachael A.] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37212 USA. [Allison, S. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Walker, D. G.] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. RP Hansel, RA (reprint author), Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37212 USA. EM rachael.a.hansel@vanderbilt.edu; swallison@ornl.gov; greg.walker@vanderbilt.edu RI Walker, Don/B-3718-2012 OI Walker, Don/0000-0002-6061-048X FU NSF IGERT [0333392] FX This work was supported in part by an NSF IGERT grant no. (0333392) NR 8 TC 20 Z9 20 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2009 VL 95 IS 11 AR 114102 DI 10.1063/1.3216583 PG 2 WC Physics, Applied SC Physics GA 497XC UT WOS:000270096900095 ER PT J AU Hau-Riege, SP London, RA Bionta, RM Ryutov, D Soufli, R Bajt, S McKernan, MA Baker, SL Krzywinski, J Sobierajski, R Nietubyc, R Klinger, D Pelka, JB Jurek, M Juha, L Chalupsky, J Cihelka, J Hajkova, V Velyhan, A Krasa, J Tiedtke, K Toleikis, S Wabnitz, H Bergh, M Caleman, C Timneanu, N AF Hau-Riege, S. P. London, R. A. Bionta, R. M. Ryutov, D. Soufli, R. Bajt, S. McKernan, M. A. Baker, S. L. Krzywinski, J. Sobierajski, R. Nietubyc, R. Klinger, D. Pelka, J. B. Jurek, M. Juha, L. Chalupsky, J. Cihelka, J. Hajkova, V. Velyhan, A. Krasa, J. Tiedtke, K. Toleikis, S. Wabnitz, H. Bergh, M. Caleman, C. Timneanu, N. TI Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation SO APPLIED PHYSICS LETTERS LA English DT Article ID COHERENT-LIGHT SOURCE; X-RAY OPTICS; CARBIDE THIN-FILMS; LINAC; MICROSTRUCTURE; COATINGS; SLAC AB We exposed bulk SiC and films of SiC and B(4)C to single 25 fs long free-electron-laser pulses with wavelengths between 13.5 and 32 nm. The materials are candidates for x-ray free-electron laser optics. We found that the threshold for surface-damage of the bulk SiC samples exceeds the fluence required for thermal melting at all wavelengths. The damage threshold of the film sample shows a strong wavelength dependence. For wavelengths of 13.5 and 21.7 nm, the damage threshold is equal to or exceeds the melting threshold, whereas at 32 nm the damage threshold falls below the melting threshold. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3216845] C1 [Hau-Riege, S. P.; London, R. A.; Bionta, R. M.; Ryutov, D.; Soufli, R.; Bajt, S.; McKernan, M. A.; Baker, S. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Krzywinski, J.] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sobierajski, R.; Nietubyc, R.; Klinger, D.; Pelka, J. B.; Jurek, M.] PAS, Inst Phys, PL-02668 Warsaw, Poland. [Juha, L.; Chalupsky, J.; Cihelka, J.; Hajkova, V.; Velyhan, A.; Krasa, J.] Inst Phys AS CR, Prague 18221 8, Czech Republic. [Tiedtke, K.; Toleikis, S.; Wabnitz, H.] DESY, D-22607 Hamburg, Germany. [Bergh, M.; Caleman, C.; Timneanu, N.] Uppsala Univ, Dept Cell & Mol Biol, Biomed Ctr, SE-75124 Uppsala, Sweden. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hauriege1@llnl.gov RI Bajt, Sasa/G-2228-2010; Timneanu, Nicusor/C-7691-2012; Sobierajski, Ryszard/E-7619-2012; Krasa, Josef/C-1442-2014; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; Klinger, Dorota/K-8819-2016; Pelka, Jerzy/S-8587-2016 OI Timneanu, Nicusor/0000-0001-7328-0400; Krasa, Josef/0000-0002-3888-8370; Pelka, Jerzy/0000-0002-1863-8219 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Czech Ministry of Education [LC510, LC528]; INGO [LA08024]; Academy of Sciences of the Czech Republic [Z10100523, IAA400100701, KAN300100702] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was performed for the LCLS project at SLAC. This work was partially funded by the Czech Ministry of Education from the National Research Centers program Project Nos. LC510 and LC528, program INGO Grant No. LA08024, and by Academy of Sciences of the Czech Republic Grant Nos. Z10100523, IAA400100701, and KAN300100702. NR 26 TC 19 Z9 19 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2009 VL 95 IS 11 AR 111104 DI 10.1063/1.3216845 PG 3 WC Physics, Applied SC Physics GA 497XC UT WOS:000270096900004 ER PT J AU Pauzauskie, PJ Jamshidi, A Valley, JK Satcher, JH Wu, MC AF Pauzauskie, Peter J. Jamshidi, Arash Valley, Justin K. Satcher, Joe H., Jr. Wu, Ming C. TI Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers SO APPLIED PHYSICS LETTERS LA English DT Article ID OPTICAL TWEEZERS; MANIPULATION; TRANSISTORS; BUNDLES; FORCE AB Here we report the use of optoelectronic tweezers and dynamic virtual electrodes to address multiwalled carbon nanotubes (MWCNTs) with trap stiffness values of approximately 50 fN/mu m. Both high-speed translation (>200 mu m/s) of individual-MWCNTs and two-dimensional trapping of MWCNT ensembles are achieved using 100,000 times less optical power density than single beam laser tweezers. Modulating the virtual electrode's intensity enables tuning of the MWCNT ensemble's number density by an order of magnitude on the time scale of seconds promising a broad range of applications in MWCNT science and technology. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3212725] C1 [Pauzauskie, Peter J.; Satcher, Joe H., Jr.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. [Jamshidi, Arash; Valley, Justin K.; Wu, Ming C.] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. RP Pauzauskie, PJ (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave,L-231, Livermore, CA 94551 USA. EM pauzauskie1@llnl.gov; wu@eecs.berkeley.edu RI Wu, Ming/J-9906-2012; Pauzauskie, Peter/A-1316-2014 FU National Institutes of Health; NIH Roadmap for Medical Research [PN2 EY018228]; DARPA FX P. J. P. thanks the LLNL for a Lawrence Fellowship, Ian Hutcheon for use of SEM facilities, and Alex Noy and Ray Friddle for use of AFM facilities. This work was supported in part by the National Institutes of Health through the NIH Roadmap for Medical Research (Grant No. PN2 EY018228) and DARPA. The authors thank Aaron Ohta, Hsan-Yin Hsu, Steven L. Neale, Sarah Baker, Marcus Worsley, Yong Han, Joe Zaug, Jason Holt, and Ted Laurence for valuable discussion and assistance. This work was performed under the auspices of the U. S. DOE by the LLNL (Contract No. DE-AC52-07NA27344). P. J. P. and A. J. contributed equally to this work. NR 29 TC 20 Z9 20 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2009 VL 95 IS 11 AR 113104 DI 10.1063/1.3212725 PG 3 WC Physics, Applied SC Physics GA 497XC UT WOS:000270096900063 PM 19884988 ER PT J AU Brown, JR Mccoy, JD Adolf, DB AF Brown, Jonathan R. McCoy, John D. Adolf, Douglas B. TI Driven simulations of the dynamic heat capacity SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DEPENDENT SPECIFIC-HEAT; GLASS-TRANSITION; MOBILITY; TMDSC AB The dynamic heat capacity is calculated from molecular dynamics simulations of a model glass former of simple bead-spring chains. The temperature is directly modulated and the energy tracked. The frequency-dependent heat capacity is found as the complex response function. There is agreement both with molecular dynamics simulations of related glass formers and with an energy-landscape-based, two state model. In particular, at high packing fraction, a low frequency loss peak is seen to split from the main, high frequency peak. This low frequency peak describes the configurational contribution to the heat capacity associated with the glass transition. Although the current application is in the linear response regime, this methodology paves the way for studies of nonlinear response that parallel experiment. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3231605] C1 [Brown, Jonathan R.; McCoy, John D.] New Mexico Inst Min & Technol, Dept Mat & Met Engn, Socorro, NM 87801 USA. [Adolf, Douglas B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brown, JR (reprint author), New Mexico Inst Min & Technol, Dept Mat & Met Engn, Socorro, NM 87801 USA. EM mccoy@nmt.edu RI McCoy, John/B-3846-2010 OI McCoy, John/0000-0001-5404-1404 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. J.D.M. and J. R. B. thank Brian Borchers for useful discussions. We also thank the undergraduate research assistants, Phillip Jenks and Devon Turner. NR 17 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2009 VL 131 IS 10 AR 104507 DI 10.1063/1.3231605 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 494LP UT WOS:000269814800033 ER PT J AU Doll, JD Gubernatis, JE Plattner, N Meuwly, M Dupuis, P Wang, H AF Doll, J. D. Gubernatis, J. E. Plattner, Nuria Meuwly, Markus Dupuis, P. Wang, H. TI A spatial averaging approach to rare-event sampling SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article AB We describe a method for treating the sparse or rare-event sampling problem. Our approach is based on the introduction of a family of modified importance functions, functions that are related to but easier to sample than the original statistical distribution. We quantify the performance of the approach for a series of example problems using an asymptotic convergence analysis based on transition matrix methods. (C) 2009 American Institute of Physics. [doi:10.1063/1.3220629] C1 [Doll, J. D.] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Gubernatis, J. E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Gubernatis, J. E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Plattner, Nuria; Meuwly, Markus] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland. [Dupuis, P.; Wang, H.] Brown Univ, Div Appl Math, Providence, RI 02912 USA. RP Doll, JD (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM jimmie_doll@brown.edu FU Schweizerischer National-fonds [200021-117810] FX The US-based authors gratefully acknowledge joint grant support of this research through the DOE Multiscale Mathematics and Optimization for Complex Systems program. J.D.D. would also like to thank the Department of Chemistry, University of Basel for sabbatical visit support during which portions of this work were completed. The work in Basel is supported by the Schweizerischer National-fonds, Grant No. 200021-117810. NR 16 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2009 VL 131 IS 10 AR 104107 DI 10.1063/1.3220629 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 494LP UT WOS:000269814800009 ER PT J AU Ogawa, H Kanaya, T Nishida, K Matsuba, G Majewski, JP Watkins, E AF Ogawa, Hiroki Kanaya, Toshiji Nishida, Koji Matsuba, Go Majewski, Jaroslaw P. Watkins, Erik TI Time-resolved specular and off-specular neutron reflectivity measurements on deuterated polystyrene and poly(vinyl methyl ether) blend thin films during dewetting process SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GLASS-TRANSITION TEMPERATURE; PHASE-SEPARATION; POLYMER BLEND; MISCIBLE BLENDS; SURFACE; IDENTIFICATION; FLUCTUATIONS; SEGREGATION; BEHAVIOR AB We performed time-resolved specular and off-specular neutron reflectivity measurements on blend thin films 42 and 98 nm thick of deuterated polystyrene and poly(vinyl methyl ether) during dewetting process induced by the phase separation in two phase region using a time-of-flight neutron reflectometer. In the specular measurements we found that the phase separation directed to the depth direction occurred near the air interface as well as near the Si substrate during the incubation period before dewetting. In addition we also found that the phase separation occurred asymmetrically at the two interfaces and inhomogeneously in the film plane, showing that the dewetting was induced by the composition fluctuation mechanism. Off-specular reflectivity was analyzed, for the first time, to evaluate kinetics of structure formation in the film plane during the dewetting process. We found in the analysis that the droplets formation in micrometer scale occurred in the late stage of dewetting. (C) 2009 American Institute of Physics. [doi:10.1063/1.3224125] C1 [Ogawa, Hiroki; Kanaya, Toshiji; Nishida, Koji; Matsuba, Go] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Majewski, Jaroslaw P.; Watkins, Erik] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. RP Ogawa, H (reprint author), Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. EM kanaya@scl.kyoto-u.ac.jp RI Lujan Center, LANL/G-4896-2012 NR 38 TC 9 Z9 9 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2009 VL 131 IS 10 AR 104907 DI 10.1063/1.3224125 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 494LP UT WOS:000269814800052 ER PT J AU Settersten, TB Patterson, BD Humphries, WH AF Settersten, Thomas B. Patterson, Brian D. Humphries, William H. TI Radiative lifetimes of NO A (2)Sigma(+)(v '=0,1,2) and the electronic transition moment of the A (2)Sigma(+)-X (2)Pi system SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID OSCILLATOR STRENGTH MEASUREMENTS; FLUORESCENCE BRANCHING RATIOS; INFRARED-EMISSION SPECTRUM; LASER-INDUCED FLUORESCENCE; FRANCK-CONDON FACTORS; NITRIC-OXIDE; GAMMA-SYSTEM; EINSTEIN COEFFICIENTS; ROTATIONAL LEVELS; HIGH-RESOLUTION AB Improved measurements of the radiative lifetimes of NO A (2)Sigma(+)(v' = 0,1,2) are presented and used to update the absolute electronic transition moment for the NO gamma bands. The pressure-dependent fluorescence decay rate was measured in a low-pressure, room-temperature, flow cell containing dilute mixtures of NO in N-2 using time-resolved laser-induced fluorescence excited with a picosecond laser and detected with a microchannel-plate photomultiplier tube. Fluorescence decay rates were determined using an analysis procedure that accounted for the electronic response of the detection system and measurement noise. Radiative lifetimes were determined from an extrapolation of the measured decay rates to zero pressure. In comparison with prior measurements of these radiative lifetimes, the improved experimental approach and analysis procedure result in a significant improvement in the measurement precision. The accuracy of the fluorescence decay-rate measurements was confirmed by independent measurements using time-correlated single-photon counting and time-resolved probing of laser-excited population in A (2)Sigma(+) using 266 nm photoionization and charge detection. The measured radiative lifetimes are 192.6 +/- 0.2 ns for v' = 0, 186.2 +/- 0.4 ns for v' = 1, and 179.4 +/- 0.7 ns for v' = 2. The measured lifetimes are shown to be in outstanding agreement with those predicted by an electronic transition moment that is identical in form to the function recommended by Luque and Crosley [J. Chem. Phys. 111, 7405 (1999)] after appropriate rescaling. This rescaling does not affect the agreement of the transition moment function with the previously reported vibrational branching ratios and improves agreement with previously reported absolute oscillator strength measurements. Based on the rescaled transition moment, updated values of absolute transition probabilities in the NO A (2)Sigma(+)-X (2)Pi system are presented. (C) 2009 American Institute of Physics. [doi:10.1063/1.3227520] C1 [Settersten, Thomas B.; Patterson, Brian D.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Humphries, William H.] Ohio No Univ, Dept Chem, Ada, OH 45810 USA. RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM tbsette@sandia.gov RI Settersten, Thomas/B-3480-2009 OI Settersten, Thomas/0000-0002-8017-0258 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Jorge Luque (Lam Research Corporation) for providing vibrational branching ratio data and for many useful discussions. Additionally, interactions with Habib Najm (Sandia) and Youssef Marzouk (MIT) regarding uncertainties in the fitting of the decay data were particularly useful. Funding for this research was provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 56 TC 17 Z9 17 U1 5 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2009 VL 131 IS 10 AR 104309 DI 10.1063/1.3227520 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 494LP UT WOS:000269814800021 ER PT J AU Colgan, J Al-Hagan, O Madison, DH Murray, AJ Pindzola, MS AF Colgan, J. Al-Hagan, O. Madison, D. H. Murray, A. J. Pindzola, M. S. TI Deep interference minima in non-coplanar triple differential cross sections for the electron-impact ionization of small atoms and molecules SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID PERPENDICULAR PLANE; CONTINUUM STATES; ENERGY; HELIUM; 2E; COLLISIONS; HYDROGEN; COPLANAR; GEOMETRY AB The time-dependent close-coupling method and a distorted-wave approach are used to explore deep minima discovered in the non-coplanar triple differential cross sections for the electron-impact ionization of helium. This phenomenon has been well studied experimentally but so far has not been investigated by a non-perturbative theoretical approach. We find that our time-dependent calculations reproduce very well the experimental minima, and that the distorted-wave calculations also confirm this phenomenon. Further investigations reveal that the minima appear to be due to deep destructive interference between the partial wave contributions which make up the cross sections. We also show that similar minima may be found in triple differential cross sections arising from the electron-impact ionization of atomic and molecular hydrogen. C1 [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Al-Hagan, O.; Madison, D. H.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Murray, A. J.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Colgan, James/0000-0003-1045-3858 FU Los Alamos National Security; US Department of Energy [DE-AC5206NA25396]; DOE; NSF; NERSC, in Oakland; CA; LANL Institutional Computing Resources award; National Science Foundation [PHY-0757749]; EPSRC (UK) FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no: DE-AC5206NA25396. A portion of this work was performed through DOE and NSF grants to Auburn University. Computational work was carried out at NERSC, in Oakland, CA, and through a LANL Institutional Computing Resources award. A portion of this work was done under National Science Foundation grant no: PHY-0757749, and we acknowledge the EPSRC (UK) for supporting the experimental program in the UK. NR 37 TC 20 Z9 20 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD SEP 14 PY 2009 VL 42 IS 17 AR 171001 DI 10.1088/0953-4075/42/17/171001 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 485XL UT WOS:000269158700001 ER PT J AU Baker, KL Homoelle, D Utternback, E Stappaerts, EA Siders, CW Barty, CPJ AF Baker, K. L. Homoelle, D. Utternback, E. Stappaerts, E. A. Siders, C. W. Barty, C. P. J. TI Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing SO OPTICS EXPRESS LA English DT Article ID FACILITY; TURBULENCE; SYSTEMS; ENGINE AB Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing, intra-beam phasing and overall wave-front quality. In this article experimental results are presented which were taken on an interferometric adaptive optics testbed that was designed and built to test the capabilities of such a system to control phasing, pointing and higher order beam aberrations. These measurements included quantification of the reduction in Strehl ratio incurred when using the MEMS device to correct for pointing errors in the system. The interferometric adaptive optics system achieved a Strehl ratio of 0.83 when correcting for a piston, tip/tilt error between two adjacent rectangular apertures, the geometry expected for the National ignition Facility. The interferometric adaptive optics system also achieved a Strehl ratio of 0.66 when used to correct for a phase plate aberration of similar magnitude as expected from simulations of the ARC beam line. All of these corrections included measuring both the upstream and downstream aberrations in the testbed and applying the sum of these two measurements in open-loop to the MEMS deformable mirror. (C) 2009 Optical Society of America C1 [Baker, K. L.; Homoelle, D.; Utternback, E.; Siders, C. W.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stappaerts, E. A.] Stappaerts Consulting LLC, San Ramon, CA USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Baker7@llnl.gov FU U. S. Department of Energy [DE-AC52-07NA27344] FX The authors would like to acknowledge S. M. Jones for writing the driver used to control the MEMS deformable mirror. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 22 TC 18 Z9 20 U1 2 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 14 PY 2009 VL 17 IS 19 BP 16696 EP 16709 DI 10.1364/OE.17.016696 PG 14 WC Optics SC Optics GA 493KS UT WOS:000269736100036 PM 19770884 ER PT J AU Applegate, RW Marr, DWM Squier, J Graves, SW AF Applegate, Robert W., Jr. Marr, David W. M. Squier, Jeff Graves, Steven W. TI Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars SO OPTICS EXPRESS LA English DT Article ID DIELECTRIC SPHERE; MANIPULATION; FORCES AB We explore a simple, inexpensive approach to large particle manipulation using diode laser bar optical trapping. This method overcomes limitations that prevent conventional point laser traps from effectively directing large particles. Expanding a previously developed line optical trap model into larger particle regimes, we verify and examine the advantages and limitations of diode laser bar trapping for manipulating particles greater than 100 mu m in diameter within fluidic environments for biochemical, biological, and biomedical applications. (C) 2009 Optical Society of America C1 [Applegate, Robert W., Jr.; Graves, Steven W.] Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA. [Applegate, Robert W., Jr.; Graves, Steven W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marr, David W. M.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Squier, Jeff] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Applegate, RW (reprint author), Univ New Mexico, Ctr Biomed Engn, 222 Univ Blvd NE,Centennial Engn Ctr Room 2041, Albuquerque, NM 87131 USA. EM rappleg8@unm.edu FU NIH [RR001315] FX We thank Tor Vestad for help in previous mathematical model development. This work was supported by the National Flow Cytometry Resource (NIH RR001315). NR 17 TC 13 Z9 14 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 14 PY 2009 VL 17 IS 19 BP 16731 EP 16738 DI 10.1364/OE.17.016731 PG 8 WC Optics SC Optics GA 493KS UT WOS:000269736100040 PM 19770888 ER PT J AU McBee, JL Tilley, TD AF McBee, Jennifer L. Tilley, T. Don TI Synthesis and Reactivity of Iridium and Rhodium Silyl Complexes Supported by a Bipyridine Ligand SO ORGANOMETALLICS LA English DT Article ID C-H SILYLATION; TRANSITION-METAL-COMPLEXES; REDUCTIVE ELIMINATION; MILD CONDITIONS; SILICON ATOM; ARENES; MECHANISM; SI; 2,2'-BIPYRIDINE; GENERATION AB The rhodium and iridium complexes [((t)Bu(2)bPY)(2)M(mu-Cl)](2)(M = Rh(1), Ir(2)) containing the bidentate (t)Bubpy(4,4'-di-tert-butyl-2,2'-bipyridyl) ligand were prepared. Dimeric complexes 1 and 2 react with HSiPh(3) to give [((t)Bu(2)bpy)MH(SiPh(3))(mu-Cl)](2) in good yields(M = Rh(3) 92%, Ir(4) 90%). Addition of P(i)Pr(3) to 3 or 4 gave monomeric crystalline complexes of the type((t)Bu(2)bpy)MH(SiPh(3))Cl(P(i)Pr(3)) (M = Rh(7) and Ir(8)), which adopt a slightly distorted octahedral coordination geometry with the (t)Bu(2)bpy ligand occupying sites trans to the hydride and chloride ligands, as determined by X-ray crystallography. Salt metathesis reactions of 7 and 8 produced((t)Bu(2)bpy)MH(SiPh(3))(R)P(i)Pr3 as monomeric octahedral complexes with the (t)Bu(2)bpy ligand occupying sites trans to the hydride and R substituents(M = Rh, R = H(11) and M = Ir, R = H(12), Me(14), and Ph(15)). Salt metathesis reactions with 3 and 4 also generated the dimeric, dicationic complexes [((t)Bu(2)bpy)M(SiPh(3))(mu-H)](2)-[B(C(6)F(5))(4)](2), where M = Rh(116) or Ir(17). Thermolysis of 15 at 100 degrees C in C(6)H(6) for I day produced 12 and Ph(4)Si in 47% yield, and heating 15 in the presence of 1 equiv of HSiR(3)(R = Ph, Et) also gave 12, as well as the Si-C coupled product PhSiR(3) in > 95% yield. C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu FU U.S. Department of Energy [DE-AC02-76SF0098] FX This work is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract DE-AC02-76SF0098. We thank Dr. Rudi Nunlist for NMR spectroscopy assistance and Dr. Frederick Hollander and Dr. Antonio diPasquale for X-ray crystallography assistance. NR 46 TC 9 Z9 9 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD SEP 14 PY 2009 VL 28 IS 17 BP 5072 EP 5081 DI 10.1021/om900385a PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 489MM UT WOS:000269424200024 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behr, J Behrens, U Blohm, C Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Geiser, A Gottlicher, R Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Loehr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Tomaszewska, J Wolf, G Wrona, K Yagues-Molina, AG Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, R Schoorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kuprash, O Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Zolko, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M del Peso, J Ron, E Terron, J Uribe-Estrada, C Corriveau, F Schwartz, J Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, R Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Sola, V Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Zarnecki, AF Adamus, M Plucinski, P Tymieniecka, T Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behr, J. Behrens, U. Blohm, C. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Geiser, A. Goettlicher, R. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Tomaszewska, J. Wolf, G. Wrona, K. Yaguees-Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, R. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kuprash, O. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Zolko, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. del Peso, J. Ron, E. Terron, J. Uribe-Estrada, C. Corriveau, F. Schwartz, J. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, R. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Sola, V. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Zarnecki, A. F. Adamus, M. Plucinski, P. Tymieniecka, T. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Exclusive photoproduction of gamma mesons at HERA SO PHYSICS LETTERS B LA English DT Article ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; J/PSI PRODUCTION; CONSTRUCTION; DESIGN; LUMINOSITY; SYSTEM AB The exclusive photoproduction reaction gamma p -> gamma p has been studied with the ZEUS experiment in ep collisions at HERA using an integrated luminosity of 468 pb(-1). The measurement covers the kinematic range 60 < W < 220 GeV and Q(2) < 1 GeV2, where W is the photon-proton centre-of-mass energy and Q(2) is the photon virtuality. These results, which represent the analysis of the full ZEUS data sample for this channel, are compared to predictions based on perturbative QCD. (C) 2009 Elsevier B.V. All rights reserved. C1 [Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, R.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] DESY, D-2000 Hamburg, Germany. [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] INFN Florence, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, R.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-3000 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, R.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, R.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] INFN Padova, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Sch Phys, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Katkov, I. I.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] UST, AGH, FPACS, Krakow, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Haas, T (reprint author), DESY, Notkestr 85, D-2000 Hamburg, Germany. EM tobias.haas@desy.de RI Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Korzhavina, Irina/D-6848-2012; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012 OI Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Chwastowski, Janusz/0000-0002-6190-8376; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; NR 34 TC 38 Z9 38 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 14 PY 2009 VL 680 IS 1 BP 4 EP 12 DI 10.1016/j.physletb.2009.07.066 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 500VA UT WOS:000270332500002 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Lacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Morris, JD Kaur, M Kaur, R Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WAW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, R Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behr, J Behrens, U Blohm, C Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Tomaszewska, J Wolf, G Wrona, K Yagues-Molina, AG Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kuprash, O Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Zolko, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M del Peso, J Ron, E Terron, J Uribe-Estrada, C Corriveau, F Schwartz, J Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Ishitsuka, M Kanno, T Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Sola, V Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Zarnecki, AF Adamus, M Plucinski, P Tymieniecka, T Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Hartner, G Noor, U Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Lacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, R. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behr, J. Behrens, U. Blohm, C. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Tomaszewska, J. Wolf, G. Wrona, K. Yaguees-Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kuprash, O. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Zolko, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. del Peso, J. Ron, E. Terron, J. Uribe-Estrada, C. Corriveau, F. Schwartz, J. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Ishitsuka, M. Kanno, T. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Sola, V. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Zarnecki, A. F. Adamus, M. Plucinski, P. Tymieniecka, T. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Hartner, G. Noor, U. Whyte, J. TI Multi-lepton production at high transverse momentum at HERA SO PHYSICS LETTERS B LA English DT Article ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; CROSS-SECTIONS; DESIGN; CONSTRUCTION; ENERGY; SYSTEM AB A search for events containing two or more high-transverse-momentum isolated leptons has been performed in ep collisions with the ZEUS detector at HERA using the full collected data sample, corresponding to an integrated luminosity of 480 pb(-1). The number of observed events has been compared with the prediction from the Standard Model, searching for possible deviations, especially for multi-lepton events with invariant mass larger than 100 GeV. Good agreement with the Standard Model has been observed. Total and differential cross sections for di-lepton production have been measured in a restricted phase space dominated by photon-photon collisions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Lacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, R.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] INFN Florence, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] INFN Padova, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, P.; Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Gialas, I.] DESY, Hamburg, Germany. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Tassi, Enrico/K-3958-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Wiggers, Leo/0000-0003-1060-0520; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; NR 25 TC 6 Z9 6 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 14 PY 2009 VL 680 IS 1 BP 13 EP 23 DI 10.1016/j.physletb.2009.08.026 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 500VA UT WOS:000270332500003 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, A Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Lashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadantee, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, R Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, R Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simaki, V Sirotenko, V Skubic, R Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, R Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Lashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadantee, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, R. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. da Silva, W. L. Prado Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simaki, V. Sirotenko, V. Skubic, R. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, R. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for squark production in events with jets, hadronically decaying tau leptons and missing transverse energy at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID PARTICLE PHYSICS; FORTRAN CODE; SUPERSYMMETRY; MSSM AB A search for supersymmetric partners of quarks is performed in the topology of multijet events accompanied by at least one tau lepton decaying hadronically and large missing transverse energy. Approximately 1 fb(-1) of p (p) over bar collision data from the Fermilab Tevatron Collider at a center of mass energy of 1.96 TeV recorded by the D detector is analyzed. Results are combined with the previously published DO inclusive search for squarks and gluinos. No evidence of physics beyond the Standard Model is found and lower limits on the squark mass up to 410 GeV are derived in the framework of minimal supergravity with tan beta = 15, A(0) = -2m(0) and mu < 0, in the region where decays to tau leptons dominate. Gaugino masses m(1/2) are excluded up to 172 GeV. (C) 2009 Elsevier B.V. All rights reserved. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Maciel, A. K. A.] LAFEX, Cent Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadantee, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hoeneisen, B.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simaki, V.; Vokac, R.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Escalier, M.; Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. -J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Galea, C. F.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ Sci & Technol, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; McGivern, C. L.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Lashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Eno, S.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, R.; Slattery, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, R.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. EM biscarat@in2p3.fr RI Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Li, Liang/O-1107-2015 OI Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; CNRS [IN2P3]; FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia): CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany): SH (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia): CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany): SH (Ireland): The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 26 TC 7 Z9 7 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 14 PY 2009 VL 680 IS 1 BP 24 EP 33 DI 10.1016/j.physletb.2009.08.002 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 500VA UT WOS:000270332500004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simaki, V Sirotenko, V Skubic, R Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simaki, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W-C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for associated production of charginos and neutralinos in the trilepton final state using 2.3 fb(-1) of data SO PHYSICS LETTERS B LA English DT Article ID PHYSICS; SUPERSYMMETRY AB We report the results of a search for associated production of charginos and neutralinos using a data set corresponding to an integrated luminosity of 2.3 fb(-1) collected with the Demptyset experiment during Run II of the Tevatron proton-antiproton collider. Final states containing three charged leptons and missing transverse energy are probed for a signal from supersymmetry with four dedicated trilepton event selections. No evidence for a signal is observed, and we set limits on the product of production cross section and leptonic branching fraction. Within minimal supergravity, these limits translate into bounds on m(0) and m(1/2) that are well beyond existing limits. (C) 2009 Elsevier B.V. All rights reserved. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simaki, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Andrieu, B.; Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, LPNHE, CNRS, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Irfu, Saclay, France. [Brown, D.; Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W-C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. EM hohlfeld@fnal.gov RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012 OI Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Li, Liang/0000-0001-6411-6107; Carrera, Edgar/0000-0002-0857-8507; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India): Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic): CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SH (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India): Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic): CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SH (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China): and the Alexander von Humboldt Foundation (Germany). NR 18 TC 62 Z9 62 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 14 PY 2009 VL 680 IS 1 BP 34 EP 43 DI 10.1016/j.physletb.2009.08.011 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 500VA UT WOS:000270332500005 ER PT J AU Gopalakrishna, S Lee, SJ Wells, JD AF Gopalakrishna, Shrihari Lee, Seung J. Wells, James D. TI Dark matter and Higgs boson collider implications of fermions in an Abelian-gauged hidden sector SO PHYSICS LETTERS B LA English DT Article ID INVISIBLE HIGGS; LHC; PARTICLE; MODEL AB We add fermions to an Abelian-gauged hidden sector. We show that the lightest can be the dark matter with the right thermal relic abundance, and discovery is within reach of upcoming dark matter detectors. We also show that these fermions change Higgs boson phenomenology at the Large Hadron Collider (LHC). and in particular could induce a large invisible width to the lightest Higgs boson state. Such an invisibly decaying Higgs boson can be discovered with good significance in the vector boson fusion channel at the LHC. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gopalakrishna, Shrihari] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Lee, Seung J.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Wells, James D.] CERN Theoret Phys PH TH, CH-1211 Geneva, Switzerland. [Wells, James D.] Univ Michigan, MCTP, Ann Arbor, MI 48109 USA. RP Gopalakrishna, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM shri@quark.phy.bnl.gov RI Lee, Seung/F-9911-2011; OI Lee, Seung/0000-0002-7756-0407; Gopalakrishna, Shrihari/0000-0002-3476-0011 FU DOE [DE-AC02-98CH10886] FX We thank S. Dawson, B. Kilgore, F Paige, A. Rajararnan, C. Sturm, T. Tait and C. Wagner for valuable discussions. We also thank A. Pukhov for help with micrOMEGAs. S.G. is supported in part by the DOE grant DE-AC02-98CH10886 (BNL). We thank KITP, Santa Barabara, for hospitality during the "Physics of the LHC" workshop where part of this work was carried out. NR 46 TC 18 Z9 18 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 14 PY 2009 VL 680 IS 1 BP 88 EP 93 DI 10.1016/j.physletb.2009.08.010 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 500VA UT WOS:000270332500013 ER PT J AU Hamberger, C Moro, S Malfatti, M Turteltaub, K Mally, A Dekant, W AF Hamberger, Carolin Moro, Sabrina Malfatti, Mike Turteltaub, Ken Mally, Angela Dekant, Wolfgang TI Analysis of DNA binding of furan in rat liver by accelerator mass spectrometry SO TOXICOLOGY LETTERS LA English DT Meeting Abstract CT 46th Congress of the European-Societies-of-Toxicology CY SEP 13-16, 2009 CL Dreden, GERMANY SP European Soc Toxicol C1 [Hamberger, Carolin; Moro, Sabrina; Mally, Angela; Dekant, Wolfgang] Univ Wurzburg, Inst Pharmakol & Toxikol, Wurzburg, Germany. [Malfatti, Mike; Turteltaub, Ken] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD SEP 13 PY 2009 VL 189 BP S229 EP S229 DI 10.1016/j.toxlet.2009.06.486 PG 1 WC Toxicology SC Toxicology GA 493ZM UT WOS:000269778800674 ER PT J AU Price, P Schnelle, K Poet, T Hinderliter, P AF Price, Paul Schnelle, Karl Poet, Torka Hinderliter, Paul TI Improving the assessment of risks from dietary exposures by modeling variation and uncertainty in exposure and dose response using linked exposure and PBPK/PD models SO TOXICOLOGY LETTERS LA English DT Meeting Abstract CT 46th Congress of the European-Societies-of-Toxicology CY SEP 13-16, 2009 CL Dreden, GERMANY SP European Soc Toxicol C1 [Schnelle, Karl] Global AG Math Modeling, Dow AgroSci, Indianapolis, IN USA. [Poet, Torka; Hinderliter, Paul] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD SEP 13 PY 2009 VL 189 BP S240 EP S240 DI 10.1016/j.toxlet.2009.06.454 PG 1 WC Toxicology SC Toxicology GA 493ZM UT WOS:000269778800708 ER PT J AU Surowiec, M Custelcean, R Surowiec, K Bartsch, RA AF Surowiec, Malgorzata Custelcean, Radu Surowiec, Kazmiriez Bartsch, Richard A. TI Mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations: synthesis, structure and silver(I) extraction SO TETRAHEDRON LA English DT Article ID CESIUM NITRATE; COMPLEXATION; CALIXCROWNS; CONFORMERS; EFFICIENCY; IONOPHORES; ETHERS AB Two series of novel mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations are synthesized. In one series, the proton-ionizable group (PIG) is attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether ring cavity. In the other series, the PIG is a substituent on the benzo group in the polyether ring. This orients the PIG away from the crown ether cavity. In addition to carboxylic acid functions, the PIGs include N-(X)sulfonyl carboxamide groups. With X group variation from methyl to phenyl to 4-nitrophenyl to trifluoromethyl, the acidity of the PIG is 'tuned'. Solvent extraction of Ag(+) from aqueous Solutions into chloroform is used to probe the influence of structural variation within the mono-ionizable calixcrown ligand on metal ion extraction efficiency, including the identity and acidity of the PIG and its orientation with respect to the polyether ring. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Surowiec, Malgorzata; Surowiec, Kazmiriez; Bartsch, Richard A.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Custelcean, Radu] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Bartsch, RA (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM richard.bartsch@ttu.edu RI Custelcean, Radu/C-1037-2009 OI Custelcean, Radu/0000-0002-0727-7972 FU Office of Biological and Environmental Research of the U.S. Department of Energy [FG02-03ER63676, DE-AC05-00OR22725] FX This research was supported at TTU by the Office of Biological and Environmental Research of the U.S. Department of Energy (Grant Number FG02-03ER63676). This research was supported at ORNL by the Environmental Management Science Program of the Offices of Science and Environmental Management of the U.S. Department of Energy (Contract Number DE-AC05-00OR22725). NR 19 TC 11 Z9 11 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0040-4020 J9 TETRAHEDRON JI Tetrahedron PD SEP 12 PY 2009 VL 65 IS 37 BP 7777 EP 7783 DI 10.1016/j.tet.2009.07.006 PG 7 WC Chemistry, Organic SC Chemistry GA 490CT UT WOS:000269475600002 ER PT J AU Loque, D Mora, SI Andrade, SLA Pantoja, O Frommer, WB AF Loque, Dominique Mora, Silvia I. Andrade, Susana L. A. Pantoja, Omar Frommer, Wolf B. TI Pore Mutations in Ammonium Transporter AMT1 with Increased Electrogenic Ammonium Transport Activity SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; PLASMA-MEMBRANE; NEUROTRANSMITTER TRANSPORTERS; SACCHAROMYCES-CEREVISIAE; ARABIDOPSIS ROOTS; CHANNEL AMTB; NH4+; MECHANISM; REVEALS AB AMT/Mep ammonium transporters mediate high affinity ammonium/ammonia uptake in bacteria, fungi, and plants. The Arabidopsis AMT1 proteins mediate uptake of the ionic form of ammonium. AMT transport activity is controlled allosterically via a highly conserved cytosolic C terminus that interacts with neighboring subunits in a trimer. The C terminus is thus capable of modulating the conductivity of the pore. To gain insight into the underlying mechanism, pore mutants suppressing the inhibitory effect of mutations in the C-terminal trans-activation domain were characterized. AMT1; 1 carrying the mutation Q57H in transmembrane helix I (TMH I) showed increased ammonium uptake but reduced capacity to take up methylammonium. To explore whether the transport mechanism was altered, the AMT1; 1-Q57H mutant was expressed in Xenopus oocytes and analyzed electrophysiologically. AMT1; 1-Q57H was characterized by increased ammonium-induced and reduced methylammonium-induced currents. AMT1; 1-Q57H possesses a 100x lower affinity for ammonium (K(m)) and a 10-fold higher V(max) as compared with the wild type form. To test whether the trans-regulatory mechanism is conserved in archaeal homologs, AfAmt-2 from Archaeoglobus fulgidus was expressed in yeast. The transport function of AfAmt-2 also depends on trans-activation by the C terminus, and mutations in pore-residues corresponding to Q57H of AMT1; 1 suppress nonfunctional AfAmt-2 mutants lacking the activating C terminus. Altogether, our data suggest that bacterial and plant AMTs use a conserved allosteric mechanism to control ammonium flux, potentially using a gating mechanism that limits flux to protect against ammonium toxicity. C1 Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. [Loque, Dominique] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Mora, Silvia I.; Pantoja, Omar] Univ Nacl Autonoma Mexico, Inst Biotecnol, Cuernavaca 62250, Morelos, Mexico. [Andrade, Susana L. A.] Univ Freiburg, Dept Biochem, Inst Organ Chem & Biochem, D-79104 Freiburg, Germany. RP Frommer, WB (reprint author), 260 Panama St, Stanford, CA 94305 USA. EM wfrommer@stanford.edu RI Frommer, Wolf B/A-8256-2008; Pantoja, Omar/H-5981-2012; Loque, Dominique/A-8153-2008; Andrade, Susana/D-5119-2012 OI Andrade, Susana/0000-0003-2267-8499 FU National Science Foundation Arabidopsis 2010 Program [MCB-0618402] FX This work was supported in part by National Science Foundation Arabidopsis 2010 Program Grant MCB-0618402 (to W. B. F.). NR 39 TC 19 Z9 21 U1 1 U2 16 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD SEP 11 PY 2009 VL 284 IS 37 BP 24988 EP 24995 DI 10.1074/jbc.M109.020842 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 493JZ UT WOS:000269734000034 PM 19581303 ER PT J AU Yan, RB Newman, JA Faber, SM Coil, AL Cooper, MC Davis, M Weiner, BJ Gerke, BF Koo, DC AF Yan, Renbin Newman, Jeffrey A. Faber, S. M. Coil, Alison L. Cooper, Michael C. Davis, Marc Weiner, Benjamin J. Gerke, Brian F. Koo, David C. TI The DEEP2 Galaxy Redshift Survey: environments of post-starburst galaxies at z similar to 0.1 and similar to 0.8 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: starburst; galaxies: statistics; galaxies: stellar content ID DIGITAL SKY SURVEY; DELTA-STRONG GALAXIES; STAR-FORMATION; E+A-GALAXIES; FIELD GALAXIES; DISTANT CLUSTERS; K+A GALAXIES; RED-SEQUENCE; POSTSTARBURST GALAXIES; LUMINOSITY FUNCTION AB Post-starburst (also known as K+A) galaxies exhibit spectroscopic signatures indicating that their star formation was recently quenched; they are candidates for galaxies in transition from a star-forming phase to a passively evolving phase. We have spectroscopically identified large samples of post-starburst galaxies both in the Sloan Digital Sky Survey (SDSS) at z similar to 0.1 and in the DEEP2 Galaxy Redshift Survey at z similar to 0.8, using a uniform and robust selection method based on a cut in H beta line emission rather than the more problematic [O ii] lambda 3727. Based on measurements of the overdensity of galaxies around each object, we find that post-starburst galaxies brighter than 0.4L*(B) at low redshift have a similar, statistically indistinguishable environment distribution as blue galaxies, preferring underdense environments, but dramatically different from that of red galaxies. However, at higher-z, the environment distribution of post-starburst galaxies is more similar to red galaxies than to blue galaxies. We conclude that the quenching of star formation and the build-up of the red sequence through the K+A phase is happening in relatively overdense environments at z similar to 1 but in relatively underdense environments at z similar to 0. Although the relative environments where quenching occurs are decreasing with time, the corresponding absolute environment may have stayed the same along with the quenching mechanisms, because the mean absolute environments of all galaxies has to grow with time. In addition, we do not find any significant dependence on luminosity in the environment distribution of K+As. The existence of a large K+A population in the field at both redshifts indicates that cluster-specific mechanisms cannot be the dominant route by which these galaxies are formed. Our work also demonstrates that studying post-starburst-environment relations by measuring the K+A fraction in different environments, as is the common practice, is highly non-robust; modest changes in the comparison population used to define the fraction can drastically alter conclusions. Statistical comparisons of the overall environment distributions of different populations are much better behaved. C1 [Yan, Renbin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15620 USA. [Faber, S. M.; Koo, David C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Coil, Alison L.; Cooper, Michael C.; Weiner, Benjamin J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Coil, Alison L.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. [Davis, Marc] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Davis, Marc] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gerke, Brian F.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Coil, Alison L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. RP Yan, RB (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. EM yan@astro.utoronto.ca FU Ontario Post-doctoral Fellowship; NASA [HST-HF-01182.01-A, NAS 5-26555]; US Department of Energy [DE-AC02-76SF00515]; NSF [AST00-71198, AST00-71048]; Alfred P. Sloan Foundation; Japanese Monbukagakusho; Max-Planck Society FX The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck Institute for Astronomy (MPIA), the Max-Planck Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory and the University of Washington. NR 86 TC 37 Z9 38 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2009 VL 398 IS 2 BP 735 EP 753 DI 10.1111/j.1365-2966.2009.15192.x PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 490NH UT WOS:000269507200016 ER PT J AU Hernandez-Monteagudo, C Ho, S AF Hernandez-Monteagudo, Carlos Ho, Shirley TI On the peculiar momentum of baryons after reionization SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; cosmic microwave background; cosmology: observations; cosmology: theory ID MICROWAVE BACKGROUND ANISOTROPIES; POWER SPECTRUM; SKY MAPS; POLARIZATION; FLUCTUATIONS; SIMULATIONS; VELOCITIES; CLUSTERS; ENERGY; FLOWS AB The peculiar motion of ionized baryons is known to introduce temperature anisotropies in the cosmic microwave background (CMB) radiation by means of the kinetic Sunyaev-Zel'dovich (kSZ) effect. In this work, we present an all-sky computation of angular power spectrum of the temperature anisotropies introduced by kSZ momentum of all baryons in the Universe during and after reionization. In an attempt to study the bulk flows of the missing baryons not yet detected, we separately address the contribution from all baryons in the intergalactic medium (IGM) and those baryons located in collapsed structures like groups and clusters of galaxies. In the first case, our approach provides a complete all-sky computation of the kSZ effect in the second order of cosmological perturbation theory [also known as the Ostriker-Vishniac (OV) effect]. Most of the power of the OV effect is generated during reionization, although it has a non-negligible tail at low redshifts, when the bulk of the kSZ peculiar momentum of the halo (cluster + group) population arises. If gas outside haloes is comoving with clusters as the theory predicts, then the signature of the bulk flows of the missing baryons should be recovered by a cross-correlation analysis of future CMB data sets with kSZ estimates in clusters of galaxies. For an Atacama Cosmology Telescope (ACT) or South Pole Telescope (SPT) type of CMB experiment, all-sky kSZ estimates of all clusters above 2 x 10(14) h(-1) M(circle dot) should provide a detection of dark flows with signal-to-noise ratio (S/N) of similar to 23 (S/N similar to 5-11 for 2000-10 000 deg(2)). Improving kSZ estimates with data from Large Scale Structure surveys should enable a deeper confrontation of the theoretical predictions for bulk flows with observations. The combination of future CMB and optical data should shed light on the dark flows of the nearby, so far undetected, diffuse baryons. C1 [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys MPA, D-85741 Garching, Germany. [Ho, Shirley] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94704 USA. RP Hernandez-Monteagudo, C (reprint author), Max Planck Inst Astrophys MPA, Karl Schwarzschild Str 1, D-85741 Garching, Germany. EM chm@mpa-garching.mpg.de NR 38 TC 10 Z9 10 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2009 VL 398 IS 2 BP 790 EP 806 DI 10.1111/j.1365-2966.2009.14946.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 490NH UT WOS:000269507200020 ER PT J AU Ptitsyn, VI Shatunov, YM Mane, SR AF Ptitsyn, V. I. Shatunov, Yu. M. Mane, S. R. TI Spin response formalism in circular accelerators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Polarized beams; Spin flippers; Storage rings; Circular accelerators; Siberian Snakes ID SIBERIAN SNAKES; POLARIZATION; ELECTRON; RINGS; PARTICLES AB We present the principal features of the so-called "spin response formalism", which is linear response theory applied to the spin dynamics in circular accelerators. The formalism is useful for calculating the resonance strengths of several classes of first-order spin resonances in rings, including those for spin flippers. We describe some of the successful applications of the formalism to various storage rings. We include a brief comparison with other formalisms and indicate topics for future work. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ptitsyn, V. I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Shatunov, Yu. M.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Mane, S. R.] Convergent Comp Inc, Shoreham, NY 11786 USA. RP Ptitsyn, VI (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM vadimp@bnl.gov; srmane@optonline.net FU U.S. Department of Energy [DE-AC02-98CH10886] FX V. Ptitsyn is an employee of Brookhaven Science Associates, LLC and his work was funded under Contract no. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 29 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2009 VL 608 IS 2 BP 225 EP 233 DI 10.1016/j.nima.2009.06.066 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 500TC UT WOS:000270326800001 ER PT J AU Andrews, R Jaskierny, W Jostlein, H Kendziora, C Pordes, S Tope, T AF Andrews, R. Jaskierny, W. Joestlein, H. Kendziora, C. Pordes, S. Tope, T. TI A system to test the effect of materials on electron drift lifetime in liquid argon and the effect of water SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE LArTPC; Liquid argon; Purity; Water; Electron drift lifetime ID DETECTOR AB A materials test system (MTS) has been developed at FNAL to assess the suitability of materials for use in a large liquid argon time projection chamber. During development of the MTS, it was noted that controlling the cryostat pressure with a 'raining' condenser reduced the electron drift lifetime in the liquid argon. The effect of condensing has been investigated using a series of passive materials to filter the condensate. We report the results of these studies and of tests on different candidate materials for detector construction. The inferred reduction of electron drift lifetime by water concentrations in the parts per trillion is of particular interest. (C) 2009 Elsevier B.V. All rights reserved. C1 [Andrews, R.; Jaskierny, W.; Joestlein, H.; Kendziora, C.; Pordes, S.; Tope, T.] Fermilab Natl Accelerator Lab, Particle Phys Div, Batavia, IL 60510 USA. RP Pordes, S (reprint author), Fermilab Natl Accelerator Lab, Particle Phys Div, POB 500, Batavia, IL 60510 USA. EM stephen@fnal.gov FU DOE [DE-AC02-07CH11359] FX The present effort to understand liquid argon as a detection material for particle physics is inspired by the work of the ICARUS Collaboration [11]. Recent work on liquid argon TPCs at Fermilab was initiated by Adam Para. We are happy to acknowledge the help of John Krider in all aspects of the initial stages of this project and of Ewa Skup in operations and with the construction of lifetime monitors. Alan Baurnbaugh provided the lifetime monitor data acquisition which allows the system to run unattended. Particularly useful have been the electronic logbook and the document database systems provided by Suzanne Gysin and Marcia Teckenbrock of the Fermilab Computing Division. This work was carried out under DOE contract DE-AC02-07CH11359. NR 9 TC 12 Z9 12 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2009 VL 608 IS 2 BP 251 EP 258 DI 10.1016/j.nima.2009.07.024 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 500TC UT WOS:000270326800005 ER PT J AU Schultz, LJ Wallace, MS Galassi, MC Hoover, AS Mocko, M Palmer, DM Tornga, SR Kippen, RM Hynes, MV Toolin, MJ Harris, B McElroy, JE Wakeford, D Lanza, RC Horn, BKP Wehe, DK AF Schultz, L. J. Wallace, M. S. Galassi, M. C. Hoover, A. S. Mocko, M. Palmer, D. M. Tornga, S. R. Kippen, R. M. Hynes, M. V. Toolin, M. J. Harris, B. McElroy, J. E. Wakeford, D. Lanza, R. C. Horn, B. K. P. Wehe, D. K. TI Hybrid coded aperture and Compton imaging using an active mask SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma-ray imaging; Stand-off detection; Homeland security; Coded aperture; Compton imaging ID LIST-MODE LIKELIHOOD; TRANSMISSION TOMOGRAPHY; EM ALGORITHM; GAMMA; EMISSION AB The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction. (C) 2009 Elsevier B.V. All rights reserved. C1 [Schultz, L. J.; Wallace, M. S.; Galassi, M. C.; Hoover, A. S.; Mocko, M.; Palmer, D. M.; Tornga, S. R.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hynes, M. V.; Toolin, M. J.; Harris, B.; McElroy, J. E.] Raytheon Integrated Def Syst, Tewksbury, MA USA. [Wakeford, D.] Bubble Technol Ind, Chalk River, ON, Canada. [Lanza, R. C.; Horn, B. K. P.] MIT, Cambridge, MA 02139 USA. [Wehe, D. K.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Schultz, LJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM schultz@lanl.gov RI Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012; OI Mocko, Michael/0000-0003-0447-4687 FU US Department of Homeland Security Domestic Nuclear Detection Office [HSHQDC-08-C-00001] FX This work was supported by the US Department of Homeland Security Domestic Nuclear Detection Office under contract number HSHQDC-08-C-00001. NR 19 TC 10 Z9 10 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2009 VL 608 IS 2 BP 267 EP 274 DI 10.1016/j.nima.2009.06.043 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 500TC UT WOS:000270326800007 ER PT J AU Bagi, J Dechamp, L Dransart, P Dzbikowicz, Z Dufour, JL Holzleitner, L Huszti, J Looman, M Ferrer, MM Lambert, T Peerani, P Rackham, J Swinhoe, M Tobin, S Weber, AL Wilson, M AF Bagi, Janos Dechamp, Luc Dransart, Pascal Dzbikowicz, Zdzislaw Dufour, Jean-Luc Holzleitner, Ludwig Huszti, Joseph Looman, Marc Ferrer, Montserrat Marin Lambert, Thierry Peerani, Paolo Rackham, Jamie Swinhoe, Martyn Tobin, Steve Weber, Anne-Laure Wilson, Mark TI Neutron coincidence counting with digital signal processing SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monte Carlo codes; Neutron detectors; Neutron coincidence counting; Nuclear safeguards; Calibration of neutron counters AB Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of "virtual instruments." These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the rationale for changing to the new technology, give an overview of the hardware and software tools available today and a feedback of the experience gained in the first tests. Associated with the experimental tests, the ESARDA-NDA working group is also performing an intercomparison benchmark exercise on the analysis software for pulse processing. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Holzleitner, Ludwig; Ferrer, Montserrat Marin; Peerani, Paolo] Joint Res Ctr, European Commiss, IPSC, Ispra, VA, Italy. [Dufour, Jean-Luc; Lambert, Thierry; Weber, Anne-Laure] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France. [Swinhoe, Martyn; Tobin, Steve] LANL, Safeguards Sci & Technol Grp, Los Alamos, NM USA. [Looman, Marc] Consulenze Tecn, Cocquio Trevisago, VA, Italy. [Bagi, Janos; Huszti, Joseph] IKI, Inst Isotopes, Budapest, Hungary. [Rackham, Jamie; Wilson, Mark] VT Nucl Serv, Sellafield, Seascale, England. RP Peerani, P (reprint author), Joint Res Ctr, European Commiss, IPSC, Ispra, VA, Italy. EM paolo.peerani@jrc.it OI Swinhoe, Martyn/0000-0002-7620-4654 NR 11 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2009 VL 608 IS 2 BP 316 EP 327 DI 10.1016/j.nima.2009.07.029 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 500TC UT WOS:000270326800014 ER PT J AU Sanchez-Hanke, C Kao, CC Hulbert, SL AF Sanchez-Hanke, C. Kao, C. -C. Hulbert, S. L. TI Fast-switching elliptically polarized soft X-ray beamline X13A at NSLS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Soft X-ray beamline; Elliptical/circular polarization; Modulated polarization ID CIRCULAR-DICHROISM; SCATTERING; EDGES AB The X13A beamline at NSLS is dedicated to the generation and uses of fast-switching elliptically polarized soft X-ray radiation in the energy range from 250 to similar to 1600 eV. The source for this beamline is an elliptically polarized wiggler (EPW) that delivers linearly elliptically polarized soft X-rays at a switching rate, between right- and left-handed polarization, up to 100Hz. The optical design is a spherical grating monochromator (SGM) that focuses and diffracts in plane orthogonal to the polarization switching direction. The X13A beamline scientific program is dedicated to spectroscopy and scattering studies of magnetism and magnetic materials. The fast-switching capability of the EPW enables the use of lock-in techniques, thereby greatly enhancing the detection sensitivity for small polarization-dependent signals. (C) 2009 Published by Elsevier B.V. C1 [Sanchez-Hanke, C.; Kao, C. -C.; Hulbert, S. L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Sanchez-Hanke, C (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Bldg 725,725 Brookhaven Ave, Upton, NY 11973 USA. EM hanke@bnl.gov FU US Department of Energy; Office of Basic Energy Sciences [DEAC02-98CH10886] FX We acknowledge the pioneering effort by C-C. Kao, E.D. Johnson, and J. Hastings in the initial development of the X13A soft X-ray scattering endstation. We also acknowledge the efforts of K. Polewski, J. Trunk, J.C. Sutherland, and D. Monteleone in the implementation of the phase detection scheme at X13A. We thank the NSLS beamline mechanical technicians, A. Lenhard, G. Nintzel, S. Cheung, R. Greene, M. Caruso, and D. Carlson, for expert assembly and maintenance of the X13A beamline and endstation. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract no. DEAC02-98CH10886. NR 23 TC 8 Z9 8 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2009 VL 608 IS 2 BP 351 EP 359 DI 10.1016/j.nima.2009.07.018 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 500TC UT WOS:000270326800020 ER PT J AU Battaglia, M Contarato, D Denes, P Giubilato, P AF Battaglia, Marco Contarato, Devis Denes, Peter Giubilato, Piero TI Cluster imaging with a direct detection CMOS pixel sensor in Transmission Electron Microscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monolithic active pixel sensor; Transmission Electron Microscopy ID SIMULATION AB A cluster imaging technique for Transmission Electron Microscopy with a direct detection CMOS pixel sensor is presented. Charge centre-of-gravity reconstruction for individual electron clusters improves the spatial resolution and thus the point spread function. Data collected with a CIVICS sensor with 9.5 x 9.5 mu m(2) pixels show an improvement of a factor of two in point spread function to 2.7 mu m at 300 keV and of a factor of three in the image contrast, compared to traditional bright field illumination. (C) 2009 Elsevier B.V. All rights reserved. C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Giubilato, Piero] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, Marco] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Giubilato, Piero] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. RP Battaglia, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM MBattaglia@lbl.gov OI Giubilato, Piero/0000-0003-4358-5355 FU U.S. Department of Energy [DE-AC0205CH11231]; Department of Energy; Office of Science, Basic Energy Sciences FX This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract no. DE-AC0205CH11231. The TEAM Project is supported by the Department of Energy, Office of Science, Basic Energy Sciences. NR 14 TC 16 Z9 16 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 11 PY 2009 VL 608 IS 2 BP 363 EP 365 DI 10.1016/j.nima.2009.07.017 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 500TC UT WOS:000270326800022 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Brice, SJ Brown, BC Bugel, L Conrad, JM Djurcic, Z Fleming, BT Ford, R Garcia, FG Garvey, GT Gonzales, J Grange, J Green, C Green, JA Imlay, R Johnson, RA Karagiorgi, G Katori, T Kobilarcik, T Linden, SK Louis, WC Mahn, KBM Marsh, W Mauger, C McGary, VT Metcalf, W Mills, GB Moore, CD Mousseau, J Nelson, RH Nienaber, P Nowak, JA Osmanov, B Pavlovic, Z Perevalov, D Polly, CC Ray, H Roe, BP Russell, AD Shaevitz, MH Sorel, M Spitz, J Stancu, I Stefanski, RJ Tayloe, R Tzanov, M Van de Water, RG Wascko, MO White, DH Wilking, MJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Brice, S. J. Brown, B. C. Bugel, L. Conrad, J. M. Djurcic, Z. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Gonzales, J. Grange, J. Green, C. Green, J. A. Imlay, R. Johnson, R. A. Karagiorgi, G. Katori, T. Kobilarcik, T. Linden, S. K. Louis, W. C. Mahn, K. B. M. Marsh, W. Mauger, C. McGary, V. T. Metcalf, W. Mills, G. B. Moore, C. D. Mousseau, J. Nelson, R. H. Nienaber, P. Nowak, J. A. Osmanov, B. Pavlovic, Z. Perevalov, D. Polly, C. C. Ray, H. Roe, B. P. Russell, A. D. Shaevitz, M. H. Sorel, M. Spitz, J. Stancu, I. Stefanski, R. J. Tayloe, R. Tzanov, M. Van de Water, R. G. Wascko, M. O. White, D. H. Wilking, M. J. Zeller, G. P. Zimmerman, E. D. CA MiniBooNe Collaboration TI Search for Electron Antineutrino Appearance at the Delta m(2) similar to 1 eV(2) Scale SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRINO OSCILLATIONS; LSND EXPERIMENT AB The MiniBooNE Collaboration reports initial results from a search for (nu) over bar (mu) -> (nu) over bar (e) oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39 x 10(20) protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200 < E-nu(QE) < 3000 MeV: 144 electronlike events have been observed in this energy range, compared to an expectation of 139.2 +/- 17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested by data from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory. C1 [Aguilar-Arevalo, A. A.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Johnson, R. A.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Bugel, L.; Djurcic, Z.; Mahn, K. B. M.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA. [Brice, S. J.; Brown, B. C.; Ford, R.; Garcia, F. G.; Green, C.; Kobilarcik, T.; Marsh, W.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Polly, C. C.] Univ Illinois, Urbana, IL 61801 USA. [Green, J. A.; Katori, T.; Polly, C. C.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Gonzales, J.; Green, C.; Green, J. A.; Louis, W. C.; Mauger, C.; Mills, G. B.; Pavlovic, Z.; Ray, H.; Van de Water, R. G.; White, D. H.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Nowak, J. A.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Conrad, J. M.; Karagiorgi, G.; Katori, T.; McGary, V. T.] MIT, Cambridge, MA 02139 USA. [Roe, B. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Anderson, C. E.; Fleming, B. T.; Linden, S. K.; Spitz, J.] Yale Univ, New Haven, CT 06520 USA. RP Aguilar-Arevalo, AA (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RI Nowak, Jaroslaw/P-2502-2016; OI Nowak, Jaroslaw/0000-0001-8637-5433; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375 FU Fermilab; Department of Energy; National Science Foundation; Los Alamos National Laboratory FX We acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation, and we acknowledge Los Alamos National Laboratory for LDRD funding. We also acknowledge the use of CONDOR software for the analysis of the data. NR 30 TC 78 Z9 79 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 11 PY 2009 VL 103 IS 11 AR 111801 DI 10.1103/PhysRevLett.103.111801 PG 5 WC Physics, Multidisciplinary SC Physics GA 493FC UT WOS:000269718700014 ER PT J AU Xiang, HJ Da Silva, JLF Branz, HM Wei, SH AF Xiang, H. J. Da Silva, Juarez L. F. Branz, Howard M. Wei, Su-Huai TI Understanding the Clean Interface between Covalent Si and Ionic Al2O3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GLOBAL OPTIMIZATION; GAMMA-ALUMINA; SILICON; CLUSTERS; SEMICONDUCTORS; GAMMA-AL2O3; DIELECTRICS; SURFACES AB The atomic and electronic structures of the (001)-Si/d(001)-gamma-Al2O3 heterointerface are investigated by first principles total energy calculations combined with a newly developed "modified basin-hopping'' method. It is found that all interface Si atoms are fourfold coordinated due to the formation of Si-O and unexpected covalent Si-Al bonds in the new abrupt interface model. And the interface has perfect electronic properties in that the unpassivated interface has a large LDA band gap and no gap levels. These results show that it is possible to have clean semiconductor-oxide interfaces. C1 [Xiang, H. J.; Da Silva, Juarez L. F.; Branz, Howard M.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Xiang, Hongjun/A-4076-2008; Da Silva, Juarez L. F./D-1779-2011; Xiang, Hongjun/I-4305-2016 OI Da Silva, Juarez L. F./0000-0003-0645-8760; Xiang, Hongjun/0000-0002-9396-3214 FU U.S. Department of Energy [DE-AC36-08GO28308] FX Work at NREL was supported by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308. NR 33 TC 12 Z9 12 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 11 PY 2009 VL 103 IS 11 AR 116101 DI 10.1103/PhysRevLett.103.116101 PG 4 WC Physics, Multidisciplinary SC Physics GA 493FC UT WOS:000269718700035 PM 19792386 ER PT J AU Zwolak, M Quan, HT Zurek, WH AF Zwolak, Michael Quan, H. T. Zurek, Wojciech H. TI Quantum Darwinism in a Mixed Environment SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECOHERENCE; EINSELECTION AB Quantum Darwinism recognizes that we-the observers-acquire our information about the "systems of interest" indirectly from their imprints on the environment. Here, we show that information about a system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual information between the system and the fragment is given solely by the fragment's entropy increase. For fairly mixed environments, this means a reduction by a factor 1 - h, where h is the haziness of the environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by similar to(1 - h)(-1) to gain the same information about the system. C1 [Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Quan, Haitao/G-8521-2012; Zwolak, Michael/G-2932-2013 OI Quan, Haitao/0000-0002-4130-2924; Zwolak, Michael/0000-0001-6443-7816 FU U.S. Department of Energy FX We would like to thank G. Smith, J. Yard, and M. Zubelewicz. This research is supported by the U.S. Department of Energy through the LANL/LDRD Program. NR 29 TC 27 Z9 27 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 11 PY 2009 VL 103 IS 11 AR 110402 DI 10.1103/PhysRevLett.103.110402 PG 4 WC Physics, Multidisciplinary SC Physics GA 493FC UT WOS:000269718700002 PM 19792353 ER PT J AU Lopresti, V AF Lopresti, Vin TI Introductory Biology: Top-Down Teaching SO SCIENCE LA English DT Letter C1 Sandia Natl Labs, LDRD Program Off, Albuquerque, NM 87185 USA. RP Lopresti, V (reprint author), Sandia Natl Labs, LDRD Program Off, POB 5800, Albuquerque, NM 87185 USA. EM vclopre@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 11 PY 2009 VL 325 IS 5946 BP 1338 EP 1339 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 492YO UT WOS:000269699100013 PM 19745131 ER PT J AU Cuoco, A Hannestad, S Haugbolle, T Kachelriess, M Serpico, PD AF Cuoco, A. Hannestad, S. Haugbolle, T. Kachelriess, M. Serpico, P. D. TI A GLOBAL AUTOCORRELATION STUDY AFTER THE FIRST AUGER DATA: IMPACT ON THE NUMBER DENSITY OF UHECR SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; large-scale structure of universe; methods: statistical ID ENERGY COSMIC-RAYS; ARRIVAL DISTRIBUTION; UPPER LIMIT; ANISOTROPY; SPECTRUM; DIRECTIONS; UNIVERSE AB We perform an autocorrelation study of the Auger data with the aim to constrain the number density n(s) of ultrahigh energy cosmic ray (UHECR) sources, estimating at the same time the effect on n(s) of the systematic energy scale uncertainty and of the distribution of UHECR. The use of global analysis has the advantage that no biases are introduced, either in n(s) or in the related error bar, by the a priori choice of a single angular scale. The case of continuous, uniformly distributed sources is nominally disfavored at 99% CL and the fit improves if the sources follow the large-scale structure of matter in the universe. The best-fit values obtained for the number density of proton sources are within a factor similar to 2 around n(s) similar or equal to 1 x 10(-4) Mpc(-3) and depend mainly on the Auger energy calibration scale, with lower densities being preferred if the current scale is correct. The data show no significant small-scale clustering on scales smaller than a few degrees. This might be interpreted as a signature of magnetic smearing of comparable size, comparable with the indication of a approximate to 3 degrees magnetic deflection coming from cross-correlation results. The effects of some approximations done on the above results are also discussed. C1 [Cuoco, A.; Hannestad, S.; Haugbolle, T.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Kachelriess, M.] NTNU, Inst Fys, N-7491 Trondheim, Norway. [Serpico, P. D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Serpico, P. D.] CERN, Theory Grp, Div Phys, CH-1211 Geneva 23, Switzerland. RP Cuoco, A (reprint author), Univ Aarhus, Dept Phys & Astron, Bygn 1520, DK-8000 Aarhus, Denmark. RI Haugbolle, Troels/L-7984-2014 OI Haugbolle, Troels/0000-0002-9422-8684 FU US Department of Energy [DE-AC02-07CH11359]; NASA [NAG5-10842] FX We are grateful to Gunter Sigl for useful discussions. M. K. thanks the Max-Planck-Institut fur Physik in Munich for hospitality and support. P. S. is supported by the US Department of Energy and by NASA grant NAG5-10842. Fermilab is operated by Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359 with the United States Department of Energy. NR 50 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2009 VL 702 IS 2 BP 825 EP 832 DI 10.1088/0004-637X/702/2/825 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BI UT WOS:000269245000001 ER PT J AU Lee, JC Xiang, JG Ravel, B Kortright, J Flanagan, K AF Lee, Julia C. Xiang, Jingen Ravel, Bruce Kortright, Jeffrey Flanagan, Kathryn TI CONDENSED MATTER ASTROPHYSICS: A PRESCRIPTION FOR DETERMINING THE SPECIES-SPECIFIC COMPOSITION AND QUANTITY OF INTERSTELLAR DUST USING X-RAYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; dust, extinction; ISM: molecules; methods: data analysis; methods: laboratory; techniques: spectroscopic; X-rays: ISM ID ABSORPTION FINE-STRUCTURE; PERTURBATION-THEORY APPROACH; IRON; SPECTROSCOPY; FE; TRANSMISSION; WAVELENGTHS; REFLECTION; SCATTERING; SPECTRUM AB We present a new technique for determining the quantity and composition of dust in astrophysical environments using <6 keV X-rays. We argue that high-resolution X-ray spectra as enabled by the Chandra and XMM-Newton gratings should be considered a powerful and viable new resource for delving into a relatively unexplored regime for directly determining dust properties: composition, quantity, and distribution. We present initial cross section measurements of astrophysically likely iron-based dust candidates taken at the Lawrence Berkeley National Laboratory Advanced Light Source synchrotron beamline, as an illustrative tool for the formulation of our technique for determining the quantity and composition of interstellar dust with X-rays. (Cross sections for the materials presented here will be made available for astrophysical modeling in the near future.) Focused at the 700 eV Fe L-III and L-II photoelectric edges, we discuss a technique for modeling dust properties in the soft X-rays using L-edge data to complement K-edge X-ray absorption fine structure analysis techniques discussed by Lee & Ravel. The paper is intended to be a techniques paper of interest and useful to both condensed matter experimentalists and astrophysicists. For the experimentalists, we offer a new prescription for normalizing relatively low signal-to-noise ratio L-edge cross section measurements. For astrophysics interests, we discuss the use of X-ray absorption spectra for determining dust composition in cold and ionized astrophysical environments and a new method for determining species-specific gas and dust ratios. Possible astrophysical applications of interest, including relevance to Sagittarius A*, are offered. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters, for proposed and planned missions such as Astro-H and the International X-ray Observatory. C1 [Lee, Julia C.; Xiang, Jingen] Harvard Univ, Dept Astron, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ravel, Bruce] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Kortright, Jeffrey] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Flanagan, Kathryn] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Lee, JC (reprint author), Harvard Univ, Dept Astron, Harvard Smithsonian Ctr Astrophys, 60 Garden St MS 6, Cambridge, MA 02138 USA. RI MSD, Nanomag/F-6438-2012; Lee, Julia/G-2381-2015 OI Lee, Julia/0000-0002-7336-3588 FU U.S. Department of Energy [DE-AC02-05CH11231]; Harvard Faculty of Arts and Sciences; [SAO AR8-9007] FX We acknowledge Eric Gullickson, Pannu Nachimuthu, and Elke Arenholz for beamline support. We thank Claude Canizares and Alex Dalgarno for advice and conversations, and Fred Baganoff for discussions relating to Sgr A*. The Advanced Light Source and JKB is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. J. C. L. is grateful to Chandra grant SAO AR8-9007 and the Harvard Faculty of Arts and Sciences for financial support. NR 28 TC 23 Z9 23 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2009 VL 702 IS 2 BP 970 EP 979 DI 10.1088/0004-637X/702/2/970 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BI UT WOS:000269245000015 ER PT J AU Kubo, JM Khiabanian, H Dell'Antonio, IP Wittman, D Tyson, JA AF Kubo, Jeffrey M. Khiabanian, Hossein Dell'Antonio, Ian P. Wittman, David Tyson, J. Anthony TI DARK MATTER STRUCTURES IN THE DEEP LENS SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: clusters: general; gravitational lensing; large-scale structure of universe ID DIGITAL SKY SURVEY; MASS RECONSTRUCTION; GALAXY CLUSTERS; WEAK; SHEAR; HALOS; DISTORTIONS; CONSTRAINTS; STATISTICS; COSMOLOGY AB We present a regularized maximum likelihood weak-lensing reconstruction of the Deep Lens Survey F2 field (4 deg(2)). High signal-to-noise ratio peaks in our lensing significance map appear to be associated with possible projected filamentary structures. The largest apparent structure extends for over a degree in the field and has contributions from known optical clusters at three redshifts (z similar to 0.3, 0.43, 0.5). Noise in weak-lensing reconstructions is known to potentially cause "false positives"; we use Monte Carlo techniques to estimate the contamination in our sample, and find that 10%-25% of the peaks are expected to be false detections. For significant lensing peaks, we estimate the total signal-to-noise ratio of detection using a method that accounts for pixel-to-pixel correlations in our reconstruction. We also report the detection of a candidate relative underdensity in the F2 field with a total signal-to-noise ratio of similar to 5.5. C1 [Kubo, Jeffrey M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Khiabanian, Hossein; Dell'Antonio, Ian P.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Wittman, David; Tyson, J. Anthony] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Kubo, JM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM kubo@fnal.gov; hossein@het.brown.edu; ian@het.brown.edu; dwittman@physics.ucdavis.edu; tyson@physics.ucdavis.edu OI Khiabanian, Hossein/0000-0003-1446-4394; Wittman, David/0000-0002-0813-5888 FU NSF [AST-0134753, AST-0708433]; United States Department of Energy [DE-AC02-07CH11359] FX We thank NOAO for generous allocations of telescope time for the survey. This work was supported by NSF grants AST-0134753 and AST-0708433. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 49 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2009 VL 702 IS 2 BP 980 EP 988 DI 10.1088/0004-637X/702/2/980 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BI UT WOS:000269245000016 ER PT J AU Tur, C Heger, A Austin, SM AF Tur, Clarisse Heger, Alexander Austin, Sam M. TI DEPENDENCE OF s-PROCESS NUCLEOSYNTHESIS IN MASSIVE STARS ON TRIPLE-ALPHA AND C-12(alpha, gamma)O-16 REACTION RATE UNCERTAINTIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; supernovae: general ID NEUTRON-CAPTURE NUCLEOSYNTHESIS; WEAK COMPONENT; CORE HELIUM; EVOLUTION; SOLAR; METALLICITY; ABUNDANCES; EXPLOSION; C-12(ALPHA,GAMMA)O-16; ELEMENTS AB We have studied the sensitivity of s-process nucleosynthesis in massive stars to +/- 2 sigma variations in the rates of the triple-alpha and C-12(alpha, gamma)O-16 reactions. We simulated the evolution of massive stars from H burning through Fe-core collapse, followed by a supernova explosion. We found that the production factors of s-process nuclides between Fe-58 and Zr-96 change strongly with changes in the He burning reaction rates; using the Lodders solar abundances rather than those of Anders and Grevesse reduces s-process nucleosynthesis; later burning phases beyond core He burning and shell C burning have a significant effect on post-explosive production factors. We also discuss the implications of the uncertainties in the helium burning rates for evidence of a new primary neutron capture process (LEPP) in massive stars. C1 [Tur, Clarisse; Austin, Sam M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Los Alamos Natl Lab, Theoret Astrophys Grp, Los Alamos, NM 87545 USA. [Heger, Alexander] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Tur, C (reprint author), Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. EM tur@nscl.msu.edu; alex@physics.umn.edu; austin@nscl.msu.edu FU US National Science Foundation [PHY06-06007, PHY02-16783]; Joint Institute for Nuclear Astrophysics (JINA); National Science Foundation Physics Frontier Center; US Department of Energy [DE-AC52-06NA25396, DE-FC02-01ER41176] FX We thank Robert Hoffman for providing the solar-abundance sets used in this study and Stan Woosley for helpful discussions, including studies on the relative influence of the two reaction rates. This research was supported in part by the US National Science Foundation grants PHY06-06007 and PHY02-16783, the latter funding the Joint Institute for Nuclear Astrophysics (JINA), a National Science Foundation Physics Frontier Center. A. Heger performed his contribution under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under contract DE-AC52-06NA25396, and has been supported by the DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-FC02-01ER41176). NR 36 TC 31 Z9 32 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2009 VL 702 IS 2 BP 1068 EP 1077 DI 10.1088/0004-637X/702/2/1068 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BI UT WOS:000269245000025 ER PT J AU Simon, JD Gal-Yam, A Gnat, O Quimby, RM Ganeshalingam, M Silverman, JM Blondin, S Li, WD Filippenko, AV Wheeler, JC Kirshner, RP Patat, F Nugent, P Foley, RJ Vogt, SS Butler, RP Peek, KMG Rosolowsky, E Herczeg, GJ Sauer, DN Mazzali, PA AF Simon, Joshua D. Gal-Yam, Avishay Gnat, Orly Quimby, Robert M. Ganeshalingam, Mohan Silverman, Jeffrey M. Blondin, Stephane Li, Weidong Filippenko, Alexei V. Wheeler, J. Craig Kirshner, Robert P. Patat, Ferdinando Nugent, Peter Foley, Ryan J. Vogt, Steven S. Butler, R. Paul Peek, Kathryn M. G. Rosolowsky, Erik Herczeg, Gregory J. Sauer, Daniel N. Mazzali, Paolo A. TI VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA SO ASTROPHYSICAL JOURNAL LA English DT Review DE circumstellar matter; supernovae: general; supernovae: individual (SN 1999cl, SN 2006X, SN 2007le) ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; HIGH-VELOCITY FEATURES; BRAHES 1572 SUPERNOVA; STANDARD TYPE IA; DARK ENERGY; SECONDARY STAR; LIGHT-ECHO; CIRCUMSTELLAR INTERACTION; INTERSTELLAR ABSORPTION; SPECTRUM SYNTHESIS AB Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from the Keck I Telescope and the Hobby - Eberly Telescope. The data span a time frame of approximately three months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na I D absorption lines strengthened significantly with time, indicating a total column density increase of similar to 2.5 x 10(12) cm(-2). The data limit the typical timescale for the variability to be more than 2 days but less than 10 days. The changes appear to be most prominent after maximum light rather than at earlier times when the ultraviolet flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H and K absorption lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two supernovae exhibiting variable absorption, SN 2007le is not highly reddened (EB-V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization calculations show that the data are consistent with a dense (10(7) cm(-3)) cloud or clouds of gas located similar to 0.1 pc (3 x 10(17) cm) from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present possible evidence for narrow Ha emission associated with the SN, which will require deep imaging and spectroscopy at late times to confirm. C1 [Simon, Joshua D.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Quimby, Robert M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Ganeshalingam, Mohan; Silverman, Jeffrey M.; Li, Weidong; Filippenko, Alexei V.; Peek, Kathryn M. G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Blondin, Stephane; Patat, Ferdinando] European So Observ, D-85748 Garching, Germany. [Wheeler, J. Craig] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Kirshner, Robert P.; Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Nugent, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Vogt, Steven S.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Butler, R. Paul] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Rosolowsky, Erik] Univ British Columbia, Dept Phys, Okanagan, BC V1V 1V7, Canada. [Herczeg, Gregory J.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Sauer, Daniel N.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Mazzali, Paolo A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Mazzali, Paolo A.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Mazzali, Paolo A.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. RP Simon, JD (reprint author), Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. EM jsimon@ociw.edu; avishay.gal-yam@weizmann.ac.il; orlyg@tapir.caltech.edu; quimby@astro.caltech.edu; mganesh@astro.berkeley.edu; jsilverman@astro.berkeley.edu; sblondin@eso.org; weidong@astro.berkeley.edu; alex@astro.berkeley.edu; wheel@astro.as.utexas.edu; kirshner@cfa.harvard.edu; fpatat@eso.org; penugent@lbl.gov; rfoley@cfa.harvard.edu; vogt@ucolick.org; butler@dtm.ciw.edu; kpeek@astro.berkeley.edu; erik.rosolowsky@ubc.ca; gregoryh@mpe.mpg.de; dsauer@astro.su.se; mazzali@mpa-garching.mpg.de RI Butler, Robert/B-1125-2009; Sauer, Daniel/A-3033-2012; OI Sauer, Daniel/0000-0002-0317-5063; Patat, Ferdinando/0000-0002-0537-3573; Herczeg, Gregory/0000-0002-7154-6065 FU Carnegie Institution of Washington; Israeli Science Foundation; EU Seventh Framework Programme Marie Curie IRG fellowship; Ministry of Science, Culture Sport, Israel; Ministry of Research, France; NSF [AST-0707769, AST-0607485, AST 0606772]; US Department of Energy [DE-FG02-08ER41563]; TABASGO Foundation; Sun Microsystems, Inc; Hewlett-Packard Company FX J. D. S. acknowledges the support of a Millikan Fellowship provided by Caltech and a Vera Rubin Fellowship from the Carnegie Institution of Washington. A. G. acknowledges support by the Israeli Science Foundation; an EU Seventh Framework Programme Marie Curie IRG fellowship; the Ministry of Science, Culture & Sport, Israel and the Ministry of Research, France; and the Benoziyo Center for Astrophysics, UK-Weizmann fund, a research grant from the Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. R. Q. and J. C. W. are supported in part by NSF grant AST-0707769. A. V. F.'s supernova group at U. C. Berkeley is supported by NSF grant AST-0607485, US Department of Energy grant DE-FG02-08ER41563, and the TABASGO Foundation. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. Supernova research at the Harvard College Observatory is supported in part by the NSF through AST 0606772. NR 106 TC 106 Z9 106 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2009 VL 702 IS 2 BP 1157 EP 1170 DI 10.1088/0004-637X/702/2/1157 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BI UT WOS:000269245000031 ER PT J AU Ouyed, R Pudritz, RE Jaikumar, P AF Ouyed, Rachid Pudritz, Ralph E. Jaikumar, Prashanth TI QUARK-NOVAE, COSMIC REIONIZATION, AND EARLY r-PROCESS ELEMENT PRODUCTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; nuclear reactions, nucleosynthesis, abundances; stars: neutron; supernovae: general ID GAMMA-RAY-BURSTS; POPULATION-III STARS; PROBE WMAP OBSERVATIONS; EARLY METAL ENRICHMENT; INTERGALACTIC MEDIUM; 1ST STARS; PREGALACTIC OUTFLOWS; SUPERNOVA EXPLOSIONS; HELIUM REIONIZATION; PHASE-TRANSITIONS AB We examine the case for quark-novae (QNe) as possible sources for the reionization and early metal enrichment of the universe. QNe are predicted to arise from the explosive collapse (and conversion) of sufficiently massive neutron stars into quark stars (QSs). A QN can occur over a range of timescales following the supernova (SN) event. For QNe that arise days to weeks after the SNe, we show that dual shock that arises as the QN ejecta encounter the SN ejecta can produce enough photons to reionize hydrogen in most of the intergalactic medium (IGM) by z similar to 6. Such events can explain the large optical depth tau(e) similar to 0.1 as measured by WMAP, if the clumping factor, C, of the material being ionized is smaller than 10. We suggest a way in which a normal initial mass function for the oldest stars can be reconciled with a large optical depth as well as the mean metallicity of the early IGM post reionization. We find that QN also make a contribution to r-process element abundances for atomic numbers A >= 130. We predict that the main cosmological signatures of QNe are the gamma-ray bursts that announce their birth. These will be clustered at redshifts in the range z similar to 7-8 in our model. C1 [Ouyed, Rachid; Pudritz, Ralph E.] McMaster Univ, Origins Inst, ABB 241, Hamilton, ON L8S 4M1, Canada. [Ouyed, Rachid] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Jaikumar, Prashanth] Inst Math Sci, Chennai 600013, Tamil Nadu, India. [Jaikumar, Prashanth] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Ouyed, R (reprint author), McMaster Univ, Origins Inst, ABB 241, Hamilton, ON L8S 4M1, Canada. EM ouyed@phas.ucalgary.ca NR 94 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2009 VL 702 IS 2 BP 1575 EP 1583 DI 10.1088/0004-637X/702/2/1575 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BI UT WOS:000269245000063 ER PT J AU Hui, YW Schultz, DR Kharchenko, VA Stancil, PC Cravens, TE Lisse, CM Dalgarno, A AF Hui, Yawei Schultz, David R. Kharchenko, Vasili A. Stancil, Phillip C. Cravens, Thomas E. Lisse, Carey M. Dalgarno, Alexander TI THE ION-INDUCED CHARGE-EXCHANGE X-RAY EMISSION OF THE JOVIAN AURORAS: MAGNETOSPHERIC OR SOLAR WIND ORIGIN? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE atomic processes; planets and satellites: individual (Jupiter) ID XMM-NEWTON; CHANDRA OBSERVATIONS; JUPITER; OXYGEN; PRECIPITATION; SPECTRA; TRANSITIONS; ATMOSPHERE; SCATTERING; PLANETS AB A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions (similar to 0.7-2 MeV u(-1)), but infer a different relative sulfur-to-oxygen abundance ratio for these Chandra observations. C1 [Hui, Yawei; Schultz, David R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kharchenko, Vasili A.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Stancil, Phillip C.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Stancil, Phillip C.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Cravens, Thomas E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, SD SRE, Laurel, MD 20723 USA. [Dalgarno, Alexander] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Hui, YW (reprint author), Oak Ridge Natl Lab, Div Phys, Bldg 6010, Oak Ridge, TN 37831 USA. EM huiy@ornl.gov; schultzd@ornl.gov; kharchenko@phys.uconn.edu; stancil@physast.uga.edu; cravens@ku.edu; carey.lisse@jhuapl.edu; adalgarno@cfa.harvard.edu RI Lisse, Carey/B-7772-2016 OI Lisse, Carey/0000-0002-9548-1526 FU NASA Planetary Atmospheres Program [NNH07AF12I] FX This work has been supported by NASA Planetary Atmospheres Program Grant NNH07AF12I. We are also grateful to A. Bhardwaj and G. Branduardi- Raymont for helpful discussions, and to the Chandra Helpdesk staff for advice on and assistance with processing the raw observation files. NR 37 TC 15 Z9 15 U1 4 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2009 VL 702 IS 2 BP L158 EP L162 DI 10.1088/0004-637X/702/2/L158 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BN UT WOS:000269245500013 ER PT J AU Kubo, JM Annis, J Hardin, FM Kubik, D Lawhorn, K Lin, H Nicklaus, L Nelson, D Reis, RRR Seo, HJ Soares-Santos, M Stebbins, A Yunker, T AF Kubo, Jeffrey M. Annis, James Hardin, Frances M. Kubik, Donna Lawhorn, Kelsey Lin, Huan Nicklaus, Liana Nelson, Dylan Reis, Ribamar R. R. Seo, Hee-Jong Soares-Santos, Marcelle Stebbins, Albert Yunker, Tony TI THE SLOAN NEARBY CLUSTER WEAK LENSING SURVEY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: clusters: general; gravitational lensing ID DIGITAL SKY SURVEY; GALAXY CLUSTERS; DATA RELEASE; DARK-MATTER; MASS; CALIBRATION; CATALOG; ALIGNMENTS; TELESCOPE; MONITOR AB We describe and present initial results of a weak lensing survey of nearby (z less than or similar to 0.1) galaxy clusters in the Sloan Digital Sky Survey (SDSS). In this first study, galaxy clusters are selected from the SDSS spectroscopic galaxy cluster catalogs of Miller et al. and Berlind et al. We report a total of seven individual low-redshift cluster weak lensing measurements that include A2048, A1767, A2244, A1066, A2199, and two clusters specifically identified with the C4 algorithm. Our program of weak lensing of nearby galaxy clusters in the SDSS will eventually reach similar to 200 clusters, making it the largest weak lensing survey of individual galaxy clusters to date. C1 [Kubo, Jeffrey M.; Annis, James; Kubik, Donna; Lin, Huan; Reis, Ribamar R. R.; Seo, Hee-Jong; Soares-Santos, Marcelle; Stebbins, Albert] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hardin, Frances M.; Lawhorn, Kelsey; Nicklaus, Liana; Yunker, Tony] Illinois Math & Sci Acad, Aurora, IL 60506 USA. [Nelson, Dylan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Soares-Santos, Marcelle] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508 Sao Paulo, Brazil. RP Kubo, JM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI Reis, Ribamar/H-9381-2012 FU Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; Brazilian National Research Council (CNPq) FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. M. Soares-Santos and R. Reis are supported by the Brazilian National Research Council (CNPq). NR 42 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2009 VL 702 IS 2 BP L110 EP L113 DI 10.1088/0004-637X/702/2/L110 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487BN UT WOS:000269245500003 ER PT J AU Wang, W Ichii, K Hashimoto, H Michaelis, AR Thornton, PE Law, BE Nemani, RR AF Wang, Weile Ichii, Kazuhito Hashimoto, Hirofumi Michaelis, Andrew R. Thornton, Peter E. Law, Beverly E. Nemani, Ramakrishna R. TI A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration SO ECOLOGICAL MODELLING LA English DT Article DE Terrestrial ecosystem; Biome-BGC; Hierarchical analysis; Equilibrium analysis; Model calibration ID NET PRIMARY PRODUCTIVITY; CARBON STORAGE; REGIONAL APPLICATIONS; NORTHERN WISCONSIN; GENERAL-MODEL; UNITED-STATES; FLUX DATA; FORESTS; CLIMATE; ASSIMILATION AB The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. in particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BCC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wang, Weile] Care of Ramakrishna R Nemani, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wang, Weile; Hashimoto, Hirofumi; Michaelis, Andrew R.] Calif State Univ, Seaside, CA USA. [Ichii, Kazuhito] Fukushima Univ, Fac Symbiot Syst Sci, Fukushima, Japan. [Thornton, Peter E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Law, Beverly E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. RP Wang, W (reprint author), Care of Ramakrishna R Nemani, NASA, Ames Res Ctr, Mail Stop 242-4, Moffett Field, CA 94035 USA. EM weile.wang@gmail.com RI Ichii, Kazuhito/D-2392-2010; Thornton, Peter/B-9145-2012; OI Ichii, Kazuhito/0000-0002-8696-8084; Thornton, Peter/0000-0002-4759-5158; Law, Beverly/0000-0002-1605-1203 NR 52 TC 25 Z9 27 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD SEP 10 PY 2009 VL 220 IS 17 BP 2009 EP 2023 DI 10.1016/j.ecolmodel.2009.04.051 PG 15 WC Ecology SC Environmental Sciences & Ecology GA 479LC UT WOS:000268659800007 ER PT J AU Liu, Y Franco, A Huang, L Gersappe, D Clark, RAF Rafailovich, MH AF Liu, Ying Franco, Alicia Huang, Lei Gersappe, Dilip Clark, Richard A. F. Rafailovich, Miriam H. TI Control of cell migration in two and three dimensions using substrate morphology SO EXPERIMENTAL CELL RESEARCH LA English DT Article DE Electrospinning; Dermal fibroblasts; Cell migration; Wound repair ID 3-DIMENSIONAL COLLAGEN MATRICES; ULTRATHIN FIBRONECTIN FIBERS; EXTRACELLULAR-MATRIX; FIBROBLASTS; ADHESION; GUIDANCE; SYSTEM; ORIENTATION; NANOFIBERS; LOCOMOTION AB We have shown that en masse cell migration of fibroblasts on the planar surface results in a radial outward trajectory, and a spatially dependent velocity distribution that decreases exponentially in time towards the single cell value. If the cells are plated on the surface of aligned electropsun fibers above 1 mu m in diameter, they become polarized along the fiber, expressing integrin receptors which follow closely the contours of the fibers. The velocity of the cells on the fibrous scaffold is lower than that on the planar surface, and does not depend on the degree of orientation. Cells on fiber smaller than 1 mu m migrate more slowly than on the planar surface, since they appear to have a large concentration of receptors. True three-dimensional migration can be observed when plating the droplet on a scaffold comprises of at least three layers. The cells still continue to migrate on the fibers surfaces, as they diffuse into the lower layers of the fibrous scaffold. (C) 2009 Elsevier Inc. All rights reserved. C1 [Liu, Ying; Gersappe, Dilip; Rafailovich, Miriam H.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Franco, Alicia] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Huang, Lei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11793 USA. [Clark, Richard A. F.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. RP Liu, Y (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM yinliu@ic.sunysb.edu FU National Science Foundation Materials Research Science (NSF-MRSEC) FX This work was supported by the National Science Foundation Materials Research Science (NSF-MRSEC) program. The author would like to thank Dr. Marcia Simon and Dr. Fubao Lin for their valuable suggestions. We would also like to thank Sarajane Gross and Elias Goodman of North Shore Hebrew Academy High School for help in the scaffold fabrication. NR 33 TC 26 Z9 26 U1 3 U2 26 PU ELSEVIER INC PI SAN DIEGO PA 525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0014-4827 J9 EXP CELL RES JI Exp. Cell Res. PD SEP 10 PY 2009 VL 315 IS 15 BP 2544 EP 2557 DI 10.1016/j.yexcr.2009.05.013 PG 14 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 548CQ UT WOS:000273937600008 PM 19464288 ER PT J AU McEligot, DM Brodkey, RS Eckelmann, H AF McEligot, Donald M. Brodkey, Robert S. Eckelmann, Helmut TI Laterally converging duct flows. Part 4. Temporal behaviour in the viscous layer SO JOURNAL OF FLUID MECHANICS LA English DT Article ID TURBULENT-BOUNDARY-LAYERS; ADVERSE PRESSURE-GRADIENT; REYNOLDS-NUMBER TURBULENT; ADJACENT WALL REGION; SHEAR FLOWS; HEAT-TRANSFER; CHANNEL FLOW; VORTICITY; STRESS; MODEL AB Since insight into entropy generation is a key to increasing efficiency and thereby reducing fuel consumption and/or waste and - for wall-bounded flows - most entropy is generated in the Viscous layer, we examine the transient behaviour of its dominant contributor there for a non-canonical flow. New measurements in oil flow are presented for the effects of favourable streamwise mean pressure gradients on temporal entropy generation rates and, in the process, on key Reynolds-stress-producing events such as sweep front passage and on the deceleration/outflow phase of the overall bursting process. Two extremes have been considered: (1) a high pressure gradient, nearing 'laminarization, and (2), for comparison, a low pressure gradient corresponding to many earlier experiments. In both cases, the peak temporal entropy generation rate occurs shortly after passage of the ejection/sweep interface. Whether sweep and ejection rates appear to decrease or increase with the pressure gradient depends on the feature examined and the manner of sampling. When compared using wall coordinates for velocities, distances and time, the trends and magnitudes of the transient behaviours are mostly the same. The main effects of the higher pressure gradient are (a) changes in the time lag between detections - representing modification of the shape of the sweep front and the sweep angle with the wall, (b) modification of the magnitude of an instantaneous Reynolds shear stress with wall distance and (c) enlarging the sweeps and ejections. Results, new for both low and high pressure gradients, are the temporal behaviours of the dominant contribution to entropy generation; it is found to be much more sensitive to distance from the wall than to streamwise pressure gradient. C1 [McEligot, Donald M.] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. [McEligot, Donald M.] Univ Stuttgart, Inst Kernenerget & Energiesyst, D-70569 Stuttgart, Germany. [McEligot, Donald M.] INL, Idaho Falls, ID 83415 USA. [McEligot, Donald M.] Univ Limerick, Stokes Res Inst, Limerick, Ireland. [Brodkey, Robert S.] Ohio State Univ, Chem & Biomol Engn Dept, Columbus, OH 43210 USA. [Eckelmann, Helmut] Univ Gottingen, Inst Nichtlineare Dynam, D-37073 Gottingen, Germany. [Eckelmann, Helmut] Max Planck Inst Dynam & Selbstorg, D-37073 Gottingen, Germany. RP McEligot, DM (reprint author), Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. EM dm6@inel.gov FU Idaho National Engineering Laboratory [DE-AC07-761DO1570]; Applied Hydrodynamics Research Program of the Office of Naval Research; National Science Foundation; U.S. Deutschland Fulbright Commission; Max Planck Geselischaft; University of Arizona and Westinghouse Naval Systems Division FX We appreciate the kindly assistance of Professor James M. Wallace of U. Maryland, an architect of the original pattern recognition code, and Professor Ronald L. Panton of U. Texas who also provided advance copies of their recent journal manuscripts. The study reported was partly supported through the Long Term Research Initiative at the Idaho National Engineering Laboratory under DOE Idaho Operations Office Contract DE-AC07-761DO1570. Earlier incarnations were financed by the Applied Hydrodynamics Research Program of the Office of Naval Research (Dr James A. Fein, Program Manager), the National Science Foundation (Dr Win Aung, Program Manager), the U.S. Deutschland Fulbright Commission, the Max Planck Geselischaft, the University of Arizona and Westinghouse Naval Systems Division (earlier Gould Ocean Systems Division). At the University of Limerick, Professor Mark R. D. Davies and Dr Edmond J. Walsh provided friendly encouragement and support enabling completion of this version of this paper. To all we are extremely grateful. NR 72 TC 8 Z9 8 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD SEP 10 PY 2009 VL 634 BP 433 EP 461 DI 10.1017/S0022112009006727 PG 29 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 497ND UT WOS:000270065600018 ER PT J AU Morley, SK Ables, ST Sciffer, MD Fraser, BJ AF Morley, Steven K. Ables, Sean T. Sciffer, Murray D. Fraser, Brian J. TI Multipoint observations of Pc1-2 waves in the afternoon sector SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION-CYCLOTRON WAVES; GROUND-SATELLITE-OBSERVATIONS; PC 1 MICROPULSATION; MAGNETIC PULSATIONS; MAGNETOSPHERE; DENSITY; PLASMASPHERE; REGION; MODEL; NETWORK AB Coordinated observations from GOES-9, DMSP F-13, and Chokurdakh (CHD) have shown concurrent Pc1-2 band wave activity in the late afternoon sector, close to 16 MLT. The left-hand polarization of the waves in space indicates that these are electromagnetic ion cyclotron (EMIC) waves. In the region of field line conjunction, DMSP also observed 6-30 keV energy ion precipitation. We have examined the propagation of the EMIC waves from the magnetosphere to the ionosphere using both time series analysis and a 21/2D magnetohydrodynamic model. Our analysis suggests that the EMIC are generated by interactions with cold plasma within a drainage plume, consistent with theory, and that the waves primarily propagate earthward along geomagnetic field lines at the eastward (outer) edge of the plume. C1 [Morley, Steven K.; Ables, Sean T.; Sciffer, Murray D.; Fraser, Brian J.] Univ Newcastle, Ctr Space Phys, Callaghan, NSW 2308, Australia. RP Morley, SK (reprint author), Los Alamos Natl Lab, Mail Stop D466,POB 1663, Los Alamos, NM 87545 USA. EM smorley@lanl.gov; sean.ables@newcastle.edu.au; murray.sciffer@newcastle.edu.au; brian.fraser@newcastle.edu.au RI Morley, Steven/A-8321-2008; Sciffer, Murray/B-3061-2011 OI Morley, Steven/0000-0001-8520-0199; FU Australian Research Council [DP0663643, DP0772504] FX The authors thank H. Singer for providing the GOES data; F. Rich for supplying the DMSP magnetometer data; and D. Hardy, F. Rich, and P. Newell for the DMSP particle data. The particle detectors were designed by D. Hardy of AFRL, and data obtained from JHU/APL. The LANL MPA data were obtained through CDAweb, and we thank M. Thomsen for their use. We also acknowledge the WDC for Geomagnetism, Kyoto for geophysical indices. The authors also wish to thank P. Ponomarenko for helpful discussions and M. Terkildsen for help identifying the satellite conjunctions. S. K. M. and B.J.F. were supported by the Australian Research Council ( projects DP0663643 and DP0772504, respectively). NR 50 TC 34 Z9 34 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 10 PY 2009 VL 114 AR A09205 DI 10.1029/2009JA014162 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 493SP UT WOS:000269758600001 ER PT J AU Jensen, L Govind, N AF Jensen, Lasse Govind, Niranjan TI Excited States of DNA Base Pairs Using Long-Range Corrected Time-Dependent Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID NUCLEIC-ACID BASES; AB-INITIO; ELECTRONIC-SPECTRA; DYNAMICS; EXCHANGE; ADENINE; TDDFT; PERFORMANCE; MOLECULES; CHEMISTRY AB In this work, we present a study of the excitation energies of adenine, cytosine, guanine, thymine, and the adenine-thymine (AT) and guanine-cytosine (GC) base pairs using long-range corrected (LC) density functional theory. We compare three recent LC functionals, BNL, CAM-B3LYP, and LC-PBE0, with B3LYP and coupled cluster results from the literature. We find that the best overall performance is for the BNL functional based on LDA. However, in order to achieve this good agreement, a smaller attenuation parameter is needed, which leads to nonoptimum performance for ground-state properties. B3LYP, on the other hand, severely underestimates the charge-transfer (CT) transitions in the base pairs. Surprisingly, we also find that the CAM-B3LYP functional also underestimates the CT excitation energy for the GC base pair but correctly describes the AT base pair. This illustrates the importance of retaining the full long-range exact exchange even at distances as short as that of the DNA base pairs. The worst overall performance is obtained with the LC-PBE0 functional, which overestimates the excitations for the individual bases as well as the base pairs. It is therefore crucial to strike a good balance between the amount of local and long-range exact exchange. Thus, this work highlights the difficulties in obtained LC functionals, which provides a good description of both ground- and excited-state properties. C1 [Jensen, Lasse] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Govind, Niranjan] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Jensen, L (reprint author), Penn State Univ, Dept Chem, 104 Chem Bldg, University Pk, PA 16802 USA. EM jensen@chem.psu.edu; niri.govind@pnl.gov RI Govind, Niranjan/D-1368-2011; Jensen, Lasse/B-5132-2008 FU Research Computing and Cyberinfrastructure, a unit of Information Technology Services at Penn State; Office of Biological and Environmental Research in the U.S. Department of Energy; U.S. Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; EMSL [2008] FX L.J. acknowledges start-up funds from the Pennsylvania State University and support received from Research Computing and Cyberinfrastructure, a unit of Information Technology Services at Penn State. The work at the Pacific Northwest National Laboratory (PNNL) was performed using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory. The William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is funded by the Office of Biological and Environmental Research in the U.S. Department of Energy. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. N.G. also acknowledges support from the EMSL Intramural Program 2008. NR 45 TC 52 Z9 52 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 10 PY 2009 VL 113 IS 36 BP 9761 EP 9765 DI 10.1021/jp905893v PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 492KT UT WOS:000269655400001 PM 19678692 ER PT J AU Zhai, HJ Wang, B Huang, X Wang, LS AF Zhai, Hua-Jin Wang, Bin Huang, Xin Wang, Lai-Sheng TI Structural Evolution, Sequential Oxidation, and Chemical Bonding in Tritantalum Oxide Clusters: Ta3On- and Ta3On (n=1-8) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID SUPPORTED TANTALUM OXIDE; D-ORBITAL AROMATICITY; VALENCE BASIS-SETS; AB-INITIO PSEUDOPOTENTIALS; TRANSITION-METAL CLUSTERS; CORE MODEL POTENTIALS; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; QUINTUPLE BOND; CATALYTIC-PROPERTIES AB We report a combined photoelectron spectroscopy (PES) and density functional theory (DFT) study on a series of tritantalum oxide clusters, Ta3On-. Well-resolved PES spectra are obtained for Ta3On- (n = 1-8) at several detachment photon energies, yielding electronic structure information which is used for comparison with the DFT calculations. A trend of sequential oxidation is observed as a function of O content until Ta3O8-, which is a stoichiometric cluster. Extensive DFT calculations are performed in search of the lowest energy structures for both the anions and neutrals. The first three O atoms are shown to successively occupy the bridging sites in the Ta-3 triangle, The next three O atoms each occupy a terminal site, with the seventh and eighth O atoms forming a double-bridge and a double-terminal, respectively. The Ta3O7- anion is found to possess a localized electron pair on a single Ta center, making it an interesting molecular model for Ta3+ surface sites. Molecular orbital analyses are performed to elucidate the chemical bonding in the Ta3On- clusters. C1 [Wang, Bin; Huang, Xin] Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wang, Bin; Huang, Xin] State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China. RP Huang, X (reprint author), Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China. EM xhuang@fzu.edu.cn; ls.wang@pnl.gov FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-FG02-03ER15481]; W. R. Wiley Environmental Molecular Sciences Laboratory; DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory; Natural Science Foundation of China [20641004, 20771026]; Natural Science Foundation of Fujian Province of China [2008J0151] FX The experimental work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Grant DE-FG02-03ER15481 (catalysis center program), and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle. X.H. gratefully acknowledges support from the Natural Science Foundation of China (20641004 and 20771026) and the Natural Science Foundation of Fujian Province of China (No. 2008J0151). NR 101 TC 33 Z9 33 U1 4 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 10 PY 2009 VL 113 IS 36 BP 9804 EP 9813 DI 10.1021/jp905478w PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 492KT UT WOS:000269655400006 PM 19681631 ER PT J AU Visel, A Rubin, EM Pennacchio, LA AF Visel, Axel Rubin, Edward M. Pennacchio, Len A. TI Genomic views of distant-acting enhancers SO NATURE LA English DT Review ID EMBRYONIC STEM-CELLS; BETA-GLOBIN GENE; TRANSCRIPTION-FACTOR-BINDING; PROTEIN-DNA INTERACTIONS; IN-VIVO; CHROMOSOME CONFORMATION; HIRSCHSPRUNG-DISEASE; REGULATORY ELEMENTS; ULTRACONSERVED ELEMENTS; HISTONE MODIFICATIONS AB In contrast to protein-coding sequences, the significance of variation in non-coding DNA in human disease has been minimally explored. A great number of recent genome-wide association studies suggest that non-coding variation is a significant risk factor for common disorders, but the mechanisms by which this variation contributes to disease remain largely obscure. Distant-acting transcriptional enhancers - a major category of functional non-coding DNA - are involved in many developmental and disease-relevant processes. Genome-wide approaches to their discovery and functional characterization are now available and provide a growing knowledge base for the systematic exploration of their role in human biology and disease susceptibility. C1 [Visel, Axel; Rubin, Edward M.; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Visel, Axel; Rubin, Edward M.; Pennacchio, Len A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pennacchio, LA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, MS 84-171, Berkeley, CA 94720 USA. EM lapennacchio@lbl.gov RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU US National Heart, Lung, and Blood Institute; Director, Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231]; US National Human Genome Research Institute FX We thank M. Blow, S. Deutsch and A. Sczyrba for help with computational analysis of GWAS data and C. Attanasio for comments. L. A. P. and E. M. R. were supported by the Berkeley Program for Genomic Applications ( funded by the US National Heart, Lung, and Blood Institute), and the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy, under contract number DE-AC02-05CH11231. L. A. P. was also supported by the US National Human Genome Research Institute. NR 76 TC 270 Z9 277 U1 8 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 10 PY 2009 VL 461 IS 7261 BP 199 EP 205 DI 10.1038/nature08451 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 492KN UT WOS:000269654600032 PM 19741700 ER PT J AU Volkow, ND Wang, GJ Kollins, SH Wigal, TL Newcorn, JH Telang, F Fowler, JS Zhu, W Logan, J Ma, YM Pradhan, K Wong, C Swanson, JM AF Volkow, Nora D. Wang, Gene-Jack Kollins, Scott H. Wigal, Tim L. Newcorn, Jeffrey H. Telang, Frank Fowler, Joanna S. Zhu, Wei Logan, Jean Ma, Yeming Pradhan, Kith Wong, Christopher Swanson, James M. TI Evaluating Dopamine Reward Pathway in ADHD Clinical Implications SO JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION LA English DT Article ID ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; DEFICIT-HYPERACTIVITY DISORDER; NUCLEUS-ACCUMBENS; COCAINE BINDING; BRAIN DOPAMINE; CHILDREN; REINFORCEMENT; PET; AVAILABILITY; ADOLESCENTS AB Context Attention-deficit/hyperactivity disorder (ADHD)-characterized by symptoms of inattention and hyperactivity-impulsivity-is the most prevalent childhood psychiatric disorder that frequently persists into adulthood, and there is increasing evidence of reward-motivation deficits in this disorder. Objective To evaluate biological bases that might underlie a reward/motivation deficit by imaging key components of the brain dopamine reward pathway (mesoaccumbens). Design, Setting, and Participants We used positron emission tomography to measure dopamine synaptic markers (transporters and D(2)/D(3) receptors) in 53 nonmedicated adults with ADHD and 44 healthy controls between 2001-2009 at Brookhaven National Laboratory. Main Outcome Measures We measured specific binding of positron emission tomographic radioligands for dopamine transporters (DAT) using [(11)C] cocaine and for D(2)/D(3) receptors using [(11)C]raclopride, quantified as binding potential (distribution volume ratio -1). Results For both ligands, statistical parametric mapping showed that specific binding was lower in ADHD than in controls (threshold for significance set at P < .005) in regions of the dopamine reward pathway in the left side of the brain. Region-of-interest analyses corroborated these findings. The mean (95% confidence interval [CI] of mean difference) for DAT in the nucleus accumbens for controls was 0.71 vs 0.63 for those with ADHD (95% CI, 0.03-0.13, P=.004) and in the midbrain for controls was 0.16 vs 0.09 for those with ADHD ( 95% CI, 0.03-0.12; P <=. 001); for D(2)/D(3) receptors, the mean accumbens for controls was 2.85 vs 2.68 for those with ADHD( 95% CI, 0.06-0.30, P=.004); and in the midbrain, it was for controls 0.28 vs 0.18 for those with ADHD ( 95% CI, 0.02-0.17, P=.01). The analysis also corroborated differences in the left caudate: the mean DAT for controls was 0.66 vs 0.53 for those with ADHD ( 95% CI, 0.04-0.22; P=. 003) and the mean D(2)/D(3) for controls was 2.80 vs 2.47 for those with ADHD ( 95% CI, 0.10-0.56; P=.005) and differences in D(2)/D(3) in the hypothalamic region, with controls having a mean of 0.12 vs 0.05 for those with ADHD (95% CI, 0.02-0.12; P=.004). Ratings of attention correlated with D(2)/D(3) in the accumbens (r=0.35; 95% CI, 0.15-0.52; P=.001), midbrain (r=0.35; 95% CI, 0.14-0.52; P=.001), caudate (r=0.32; 95% CI, 0.11-0.50; P=.003), and hypothalamic (r=0.31; CI, 0.10-0.49; P=.003) regions and with DAT in the midbrain (r=0.37; 95% CI, 0.16-0.53; P <= .001). Conclusion A reduction in dopamine synaptic markers associated with symptoms of inattention was shown in the dopamine reward pathway of participants with ADHD. JAMA. 2009;302(10):1084-1091 www.jama.com C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. [Volkow, Nora D.; Telang, Frank; Ma, Yeming] NIAAA, Lab Neuroimaging, Bethesda, MD USA. [Wang, Gene-Jack; Fowler, Joanna S.; Logan, Jean; Pradhan, Kith; Wong, Christopher] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Wang, Gene-Jack; Fowler, Joanna S.; Logan, Jean; Pradhan, Kith; Wong, Christopher] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wang, Gene-Jack; Newcorn, Jeffrey H.; Fowler, Joanna S.] Mt Sinai Med Ctr, Dept Psychiat, New York, NY 10029 USA. [Kollins, Scott H.] Duke Univ, Med Ctr, Dept Psychiat, Durham, NC 27710 USA. [Wigal, Tim L.; Swanson, James M.] Univ Calif Irvine, Child Dev Ctr, Irvine, CA USA. [Zhu, Wei] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, 6001 Execut Blvd,Room 5274,MSC 9581, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov RI Kollins, Scott/G-2965-2012; OI Newcorn, Jeffrey /0000-0001-8993-9337 FU Brookhaven National Laboratory (BNL); Intramural Research Program of the National Institutes of Health (NIH) [MH66961-02]; Department of Energy FX This research was carried out at Brookhaven National Laboratory (BNL) and was supported in part by grant MH66961-02 from the Intramural Research Program of the National Institutes of Health (NIH), the National Institute of Mental Health and infrastructure support from the Department of Energy. NR 57 TC 228 Z9 229 U1 9 U2 45 PU AMER MEDICAL ASSOC PI CHICAGO PA 515 N STATE ST, CHICAGO, IL 60610-0946 USA SN 0098-7484 J9 JAMA-J AM MED ASSOC JI JAMA-J. Am. Med. Assoc. PD SEP 9 PY 2009 VL 302 IS 10 BP 1084 EP 1091 PG 8 WC Medicine, General & Internal SC General & Internal Medicine GA 491XH UT WOS:000269616200026 PM 19738093 ER PT J AU Wang, C Garcia, A Yan, HP Sohn, KE Hexemer, A Nguyen, TQ Bazan, GC Kramer, EJ Ade, H AF Wang, Cheng Garcia, Andres Yan, Hongping Sohn, Karen E. Hexemer, Alexander Nguyen, Thuc-Quyen Bazan, Guillermo C. Kramer, Edward J. Ade, Harald TI Interfacial Widths of Conjugated Polymer Bilayers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID X-RAY REFLECTIVITY; OPTOELECTRONIC DEVICES; POLYELECTROLYTES AB The interfaces of conjugated polyelectrolyte (CPE)/poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) bilayers cast from differential solvents are shown by resonant soft X-ray reflectivity (RSoXR) to be very smooth and sharp. The chemical interdiffusion due to casting is limited to less than 0.6 nm, and the interface created is thus nearly "molecularly" sharp. These results demonstrate for the first time and with high precision that the nonpolar MEH-PPV layer is not much disturbed by casting the CPE layer from a polar solvent. A baseline is established for understanding the role of interfacial structure in determining the performance of CIPE-based polymer light-emitting diodes. More broadly, we anticipate further applications of RSoXR as an important toot in achieving a deeper understanding of other multilayer organic optoelectronic devices, including multilayer photovoltaic devices. C1 [Garcia, Andres; Nguyen, Thuc-Quyen; Bazan, Guillermo C.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Wang, Cheng; Yan, Hongping; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sohn, Karen E.; Bazan, Guillermo C.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Bazan, GC (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. EM bazan@chem.ucsb.edu; harald_ade@ncsu.edu RI Ade, Harald/E-7471-2011; Wang, Cheng /E-7399-2012; YAN, HONGPING/N-7549-2013; Wang, Cheng/A-9815-2014; Bazan, Guillermo/B-7625-2014 OI YAN, HONGPING/0000-0001-6235-4523; FU Department of Energy [DE-FG02-98ER45737]; National Science Foundation (UCSB MRL) [DMR 0520415, DMR 0606414, CAREER DMR 0547639]; NSF Graduate Fellowship; DOE [DE-AC02-05CH11231] FX The authors acknowledge support by the Department of Energy (DE-FG02-98ER45737) and the National Science Foundation (UCSB MRL, DMR 0520415, DMR 0606414, CAREER DMR 0547639, and NSF Graduate Fellowship). Data were acquired at beamline 6.3.2 at the ALS (supported by DOE Contract DE-AC02-05CH11231). NR 18 TC 31 Z9 31 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 9 PY 2009 VL 131 IS 35 BP 12538 EP + DI 10.1021/ja905293m PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 493KP UT WOS:000269735800013 PM 19678636 ER PT J AU Zhou, WP Yang, XF Vukmirovic, MB Koel, BE Jiao, J Peng, GW Mavrikakis, M Adzic, RR AF Zhou, Wei-Ping Yang, Xiaofang Vukmirovic, Miomir B. Koel, Bruce E. Jiao, Jiao Peng, Guowen Mavrikakis, Manos Adzic, Radoslav R. TI Improving Electrocatalysts for O-2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL-ALLOYS; OXYGEN REDUCTION; ELECTRONIC-PROPERTIES; PALLADIUM MONOLAYER; BIMETALLIC SURFACES; KINETIC-PARAMETERS; CO CHEMISORPTION; SULFURIC-ACID; FUEL-CELLS; PLATINUM AB We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd3Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd3Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface's electronic properties by underlying Fe. The Pd3Fe(111) suffers a large loss in ORR activity when the subsurface F e is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd3Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PTML/Pd/Pd3Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd3Fe(111) surface. The activity of Pt-ML/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of Pt-ML/Pd/Pd3Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot. C1 [Zhou, Wei-Ping; Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yang, Xiaofang; Koel, Bruce E.] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA. [Jiao, Jiao; Peng, Guowen; Mavrikakis, Manos] Univ Wisconsin, Dept Biol & Chem Engn, Madison, WI 53706 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM adzic@bnl.gov RI zhou, weiping/C-6832-2012; Mavrikakis, Manos/D-5702-2012; Yang, Xiaofang/K-4388-2012; Koel, Bruce/H-3857-2013 OI zhou, weiping/0000-0002-8058-7280; Mavrikakis, Manos/0000-0002-5293-5356; Koel, Bruce/0000-0002-0032-4991 FU U.S. Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886]; DOE-BES FX This work was supported by the U.S. Department of Energy, Divisions of Chemical and Material Sciences, under Contract No. DE-AC02-98CH10886. Work at UW-Madison was supported by DOE-BES. CPU time was utilized at facilities located at ANL, PNNL, ORNIL, and NERSC, all supported by the DOE. NR 59 TC 136 Z9 139 U1 15 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 9 PY 2009 VL 131 IS 35 BP 12755 EP 12762 DI 10.1021/ja9039746 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 493KP UT WOS:000269735800051 PM 19722720 ER PT J AU Kimmel, GA Matthiesen, J Baer, M Mundy, CJ Petrik, NG Smith, RS Dohnalek, Z Kay, BD AF Kimmel, Greg A. Matthiesen, Jesper Baer, Marcel Mundy, Christopher J. Petrik, Nikolay G. Smith, R. Scott Dohnalek, Zdenek Kay, Bruce D. TI No Confinement Needed: Observation of a Metastable Hydrophobic Wetting Two-Layer Ice on Graphene SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WATER-ADSORPTION; INFRARED-SPECTRA; LIQUID WATER; GRAPHITE; SURFACE; PT(111); SIMULATIONS; TRANSITION; INTERFACES; NANOTUBES AB The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate, graphene on Pt(111), with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic walls, but not previously observed experimentally. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a nontetrahedral geometry with weakened hydrogen bonds. C1 [Kimmel, Greg A.; Matthiesen, Jesper; Mundy, Christopher J.; Petrik, Nikolay G.; Smith, R. Scott; Dohnalek, Zdenek; Kay, Bruce D.] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. [Baer, Marcel] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Mat & Chem Sci, POB 999, Richland, WA 99352 USA. EM gregory.kimmel@pnl.gov; chris.mundy@pnl.gov; bruce.kay@pnl.gov RI Baer, Marcel/K-7664-2012; Matthiesen, Jesper/N-2477-2014; Smith, Scott/G-2310-2015; Petrik, Nikolay/G-3267-2015; OI Matthiesen, Jesper/0000-0003-1040-1919; Smith, Scott/0000-0002-7145-1963; Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division; Battelle Memorial Institute [DE-AC06-76RLO 1830]; Deutsche Forschungsgerneinschaft (DFG); Fonds der Chemischen Industrie (FCI) FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division. Experiments and calculations (using NWice) were performed in the W. R. Wiley Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory, which is a National Scientific User Facility operated for DOE, Office of Biological and Environmental Research, by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. M.B. gratefully acknowledges partial financial support by Deutsche Forschungsgerneinschaft (DFG) and by Fonds der Chemischen Industrie (FCI) through grants to Dominik Marx (Bochum). NR 35 TC 87 Z9 89 U1 9 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 9 PY 2009 VL 131 IS 35 BP 12838 EP 12844 DI 10.1021/ja904708f PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 493KP UT WOS:000269735800060 PM 19670866 ER PT J AU Ren, LX He, LH Sun, TC Dong, X Chen, YM Huang, J Wang, C AF Ren, Lixia He, Lihong Sun, Tongchen Dong, Xia Chen, Yongming Huang, Jin Wang, Chun TI Dual-Responsive Supramolecular Hydrogels from Water-Soluble PEG-Grafted Copolymers and Cyclodextrin SO MACROMOLECULAR BIOSCIENCE LA English DT Article DE cyclodextrins; drug delivery; grafted copolymers; hydrogels; stimulus responsive ID ALPHA-CYCLODEXTRIN; INCLUSION COMPLEXATION; POLY(ETHYLENE GLYCOL); N-ISOPROPYLACRYLAMIDE; AQUEOUS-SOLUTION; DRUG-DELIVERY; RECOGNITION; TRANSITION; DEXTRAN; RELEASE AB Novel temperature and pH dual-responsive hydrogels were constructed by inclusion of poly(PEGMA)-co-poly(DMA) with a-cyclodextrin in aqueous solution. The temperature- or pH-induced sol/gel transition in the hydrogels was completely reversible. Studies on structure/property relationships show that chain uniformity, graft density and copolymer concentration affect the hydrogel behavior. A dual-responsive mechanism is proposed. The in vitro release of a model drug from this hydrogel was studied. It was found that the release kinetics were greatly accelerated at higher temperature and at acidic pH conditions, indicating potential applications in controlled drug delivery. C1 [Ren, Lixia; He, Lihong; Sun, Tongchen; Dong, Xia; Chen, Yongming] Chinese Acad Sci, Inst Chem, Div Polymer Sci & Mat, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China. [He, Lihong] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Huang, Jin] Wuhan Univ Technol, Coll Chem Engn, Wuhan 430070, Peoples R China. [Wang, Chun] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA. RP Chen, YM (reprint author), Chinese Acad Sci, Inst Chem, Div Polymer Sci & Mat, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China. EM ymchen@iccas.ac.cn; wangx504@umn.edu RI he, lihong/E-8023-2010; Huang, Jin/E-4537-2011; Li, Yuyan/G-8762-2013; Chen, Yongming/E-3656-2015 OI Chen, Yongming/0000-0003-2843-5543 FU Chinese National Science Foundation [20404014, 20534010, 20625412]; K. C. Wong Education Foundation, Hong Kong FX Support from the Chinese National Science Foundation (grant numbers 20404014,20534010 and 20625412) is gratefully acknowledged. The authors gratefully acknowledge the support of K. C. Wong Education Foundation, Hong Kong. NR 33 TC 44 Z9 47 U1 3 U2 51 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-5187 J9 MACROMOL BIOSCI JI Macromol. Biosci. PD SEP 9 PY 2009 VL 9 IS 9 BP 902 EP 910 DI 10.1002/mabi.200900021 PG 9 WC Biochemistry & Molecular Biology; Materials Science, Biomaterials; Polymer Science SC Biochemistry & Molecular Biology; Materials Science; Polymer Science GA 500FJ UT WOS:000270283800011 PM 19544291 ER PT J AU Gabdulkhakov, A Guskov, A Broser, M Kern, J Muh, F Saenger, W Zouni, A AF Gabdulkhakov, Azat Guskov, Albert Broser, Matthias Kern, Jan Mueh, Frank Saenger, Wolfram Zouni, Athina TI Probing the Accessibility of the Mn4Ca Cluster in Photosystem II: Channels Calculation, Noble Gas Derivatization, and Cocrystallization with DMSO SO STRUCTURE LA English DT Article ID OXYGEN-EVOLVING COMPLEX; PHOTOSYNTHETIC WATER OXIDATION; SYNECHOCOCCUS-ELONGATUS; ALCOHOL BINDING; SUBSTRATE WATER; PROTEIN; RESOLUTION; MANGANESE; OXIDASES; CHLORIDE AB Using the 2.9 angstrom resolution structure of the membrane-intrinsic protein-cofactor complex photosystem II (PSII) from the cyanobacterium Thermosynechococcus elongatus, we calculated and characterized nine possible substrate/product channels leading to/away from the Mn4Ca cluster, where water is oxidized to dioxygen, protons, and electrons. Five narrow channels could function in proton transport, assuming that no large structural changes are associated with water oxidation. Four wider channels could serve to supply water to or remove oxygen from the Mn4Ca cluster. One of them might be regulated by conformational changes of Lys134 in subunit PsbU. Data analyses of Kr derivatized crystals and complexes with dimethyl sulfoxide (DMSO) confirm the accessibility of the proposed dioxygen channels to other molecules. Results from Xe derivatization suggest that the lipid clusters within PSII could serve as a drain for oxygen because of their predominant hydrophobic character and mediate dioxygen release from the lumen. C1 [Gabdulkhakov, Azat; Guskov, Albert; Mueh, Frank; Saenger, Wolfram] Free Univ Berlin, Inst Chem & Biochem Kristallog, D-14195 Berlin, Germany. [Broser, Matthias; Kern, Jan; Mueh, Frank; Zouni, Athina] Tech Univ Berlin, Max Volmer Lab Biophys Chem, Inst Chem, D-10623 Berlin, Germany. [Kern, Jan] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Saenger, W (reprint author), Free Univ Berlin, Inst Chem & Biochem Kristallog, D-14195 Berlin, Germany. EM saenger@chemie.fu-berlin.de; athina.zouni@tu-berlin.de RI Kern, Jan/G-2586-2013; Gabdulkhakov, Azat/H-4343-2013; Guskov, Albert/G-1286-2016 OI Kern, Jan/0000-0002-7272-1603; Gabdulkhakov, Azat/0000-0003-1016-5936; Guskov, Albert/0000-0003-2340-2216 FU Deutsche Forschungsgemeinschaft; BESSY (Berlin); ESRF (Grenoble); SLS (Villigen) FX The authors are grateful to the Deutsche Forschungsgemeinschaft for support within the framework of Sfb 498 (projects A4, C7). Beam time and support at BESSY (Berlin), ESRF (Grenoble), and SLS (Villigen) is gratefully acknowledged. NR 50 TC 56 Z9 57 U1 0 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD SEP 9 PY 2009 VL 17 IS 9 BP 1223 EP 1234 DI 10.1016/j.str.2009.07.010 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 499DR UT WOS:000270197700010 PM 19748343 ER PT J AU Beltowksi, M Blau, PJ Qu, J AF Beltowksi, Mark Blau, Peter J. Qu, J. TI Wear of spheroidal graphite cast irons for tractor drive train components SO WEAR LA English DT Article DE Tractor axle; Cast iron; Wear; Lubricated wear; Brinell hardness AB This study was prompted by a desire to improve the wear resistance of power transmission components in rear axle drives on commercial farm tractors. Reciprocating wear tests were conducted under lubricated and non-lubricated conditions on three spheroidal cast irons which varied in strength and hardness (designated GGG450, GGG600, and GGG700). Hemispherically tipped steel pins (designated 42CrMoS4/41CrS4) were used as the sliders. Except for the selection of the test duration, test procedures were similar to those described in ASTM Standard Test Method G133 for linearly reciprocating sliding. Among the three cast irons tested, the harder and stronger the alloy, the lower was its wear rate. Wear factors were approximately four orders of magnitude lower for experiments lubricated with fresh, fully formulated oil. There was a linear relationship between the Brinell hardness of the alloys and the negative logarithm of the wear factors that were expressed in mm(3)/N-m. Wear of lubricated test pins was not measurable due to the presence of deposits; however under non-lubricated sliding, the ratio of the wear of the flat specimen to that of the pin decreased as the hardness of the flat specimens approached that of the pin specimen. (C) 2009 Elsevier B.V. All rights reserved. C1 [Blau, Peter J.; Qu, J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Beltowksi, Mark] Prod Engn Ctr, Waterloo, IA 50704 USA. RP Blau, PJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM blaupj@ornl.gov OI Qu, Jun/0000-0001-9466-3179 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This research effort was sponsored in part by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The assistance of B. C. Jolly, Oak Ridge National Laboratory, is greatly appreciated. NR 6 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD SEP 9 PY 2009 VL 267 IS 9-10 BP 1752 EP 1756 DI 10.1016/j.wear.2009.03.030 PG 5 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 556IO UT WOS:000274584500049 ER PT J AU Park, MJ Balsara, NP Jackson, A AF Park, Moon Jeong Balsara, Nitash P. Jackson, Andrew TI Order-Disorder Transitions in Block Copolymer Electrolytes at Equilibrium with Humid Air SO MACROMOLECULES LA English DT Article ID MOLECULAR-WEIGHT DEPENDENCE; MICROPHASE SEPARATION; PHASE-BEHAVIOR; INTERACTION PARAMETER; SCATTERING; BLENDS; MEMBRANES; SYSTEMS; THERMODYNAMICS; TEMPERATURE AB The effect of sulfonation level and domain size of hydrophilic channels on humidity-induced phase transitions in poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied as a function of the relative humidity (RH) and temperature of the surrounding air by a combination of water uptake measurements and in situ small-angle neutron scattering. The equality of the chemical potential of water in the gas and polymer phases was exploited to determine the change in the partial molar entropy of water at order-disorder transitions. PSS-PMB samples with 5 nm domain spacing exhibited a disorder-to-order transition with increasing temperature at Fixed RH, while the PSS-PMB samples with 7 nm domain spacing exhibited an order-to-disorder transition with increasing temperature at Fixed RH. There is evidence to Suggest that the disorder-to-order transition is driven by an increase in the partial molar entropy of the water molecules, while the order-to-disorder transition is driven by more familiar driving forces wherein entropic contributions stabilize the disordered phase. C1 [Park, Moon Jeong; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Park, Moon Jeong; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Park, Moon Jeong; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Jackson, Andrew] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Jackson, Andrew/B-9793-2008; Park, Moon Jeong/F-5752-2013 OI Jackson, Andrew/0000-0002-6296-0336; NR 38 TC 15 Z9 15 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD SEP 8 PY 2009 VL 42 IS 17 BP 6808 EP 6815 DI 10.1021/ma901073y PG 8 WC Polymer Science SC Polymer Science GA 492DX UT WOS:000269635900058 ER PT J AU Noah-Vanhoucke, J Geissler, PL AF Noah-Vanhoucke, Joyce Geissler, Phillip L. TI On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE dielectric continuum; ion solvation; liquid-vapor interface; polarizability; water ID MOLECULAR-DYNAMICS SIMULATIONS; DIELECTRIC SOLVATION DYNAMICS; AQUEOUS SALT-SOLUTIONS; AIR/WATER INTERFACE; FREE-ENERGY; STOCKMAYER FLUIDS; SURFACE-TENSION; BULK WATER; POLARIZABILITY; SPECTROSCOPY AB Contrary to the expectations from classic theories of ion solvation, spectroscopy and computer simulations of the liquid-vapor interface of aqueous electrolyte solutions suggest that ions little larger than a water molecule can prefer to reside near the liquid's surface. Here we advance the view that such affinity originates in a competition between strong opposing forces, primarily due to volume exclusion and dielectric polarization, that are common to all dense polar liquids. We present evidence for this generic mechanism from computer simulations of (i) water and (ii) a Stockmayer fluid near its triple point. In both cases, we show that strong surface enhancement of small ions, obtained by tuning solutes' size and charge, can be accentuated or suppressed by modest changes in either of those parameters. Statistics of solvent polarization, when the ion is held at and above the Gibbs dividing surface, highlight a basic deficiency in conventional models of dielectric response, namely, the neglect of interfacial flexibility. By distorting the solution's boundary, an ion experiences fluctuations in electrostatic potential and in electric field whose magnitudes attenuate much more gradually (as the ion is removed from the liquid phase) than for a quiescent planar interface. As one consequence, the collective responses that determine free energies of solvation can resolve very differently in nonuniform environments than in bulk. We show that this persistence of electric-field fluctuations additionally shapes the sensitivity of solute distributions to ion polarizability. C1 [Noah-Vanhoucke, Joyce; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Geissler, PL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM geissler@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Chemical Sciences, Geosciences; Biosciences Division under the Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and the Chemical Sciences, Geosciences, and Biosciences Division under the Department of Energy Contract DE-AC02-05CH11231. NR 49 TC 46 Z9 46 U1 3 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 8 PY 2009 VL 106 IS 36 BP 15125 EP 15130 DI 10.1073/pnas.0905168106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 492CR UT WOS:000269632400009 PM 19720991 ER PT J AU Onorato, RM Otten, DE Saykally, RJ AF Onorato, Robert M. Otten, Dale E. Saykally, Richard J. TI Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE buried interface; Langmuir model; nonlinear optics; self-assembled monolayer; surface spectroscopy ID LIQUID WATER-SURFACE; SUM-FREQUENCY SPECTROSCOPY; HOFMEISTER SERIES; WATER/VAPOR INTERFACE; ORIENTED THIOCYANATE; SALT-SOLUTIONS; BULK WATER; MONOLAYERS; ANIONS; MACROMOLECULES AB Recent experimental and theoretical results have firmly established the existence of enhanced concentrations of selected ions at the air/water interface. Ion adsorption to aqueous interfaces involving complex organic molecules is relevant to biology in connection with the familiar but incompletely understood Hofmeister effects. Here, we describe resonant UV second harmonic generation (SHG) studies of the strongly chaotropic thiocyanate ion adsorbed to the interface formed by water and a monolayer of dodecanol, wherein the Gibbs free energy of adsorption was determined to be -6.7 +/- 1.1 and -6.3 +/- 1.8 kJ/mol for sodium and potassium thiocyanate, respectively, coincident with the value determined for thiocyanate at the air/water interface. Interestingly, near 4 M and higher concentrations, the resonant SHG signal increases discontinuously, indicating a structural change in the interfacial region. C1 [Onorato, Robert M.; Otten, Dale E.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Saykally, Richard J.] Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94618 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@uclink4.berkeley.edu FU National Science Foundation FX We thank Dr. Poul Petersen for his helpful advice. The initial stages of this work were partially supported by the Experimental Physical Chemistry Division of the National Science Foundation. NR 42 TC 27 Z9 27 U1 2 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 8 PY 2009 VL 106 IS 36 BP 15176 EP 15180 DI 10.1073/pnas.0904800106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 492CR UT WOS:000269632400018 PM 19706409 ER PT J AU Chun, J Grim, CJ Hasan, NA Lee, JH Choi, SY Haley, BJ Taviani, E Jeon, YS Kim, DW Lee, JH Brettin, TS Bruce, DC Challacombe, JF Detter, JC Han, CS Munk, AC Chertkov, O Meincke, L Saunders, E Walters, RA Huq, A Nair, GB Colwell, RR AF Chun, Jongsik Grim, Christopher J. Hasan, Nur A. Lee, Je Hee Choi, Seon Young Haley, Bradd J. Taviani, Elisa Jeon, Yoon-Seong Kim, Dong Wook Lee, Jae-Hak Brettin, Thomas S. Bruce, David C. Challacombe, Jean F. Detter, J. Chris Han, Cliff S. Munk, A. Christine Chertkov, Olga Meincke, Linda Saunders, Elizabeth Walters, Ronald A. Huq, Anwar Nair, G. Balakrish Colwell, Rita R. TI Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE genomic islands; cholera toxin prophage; lateral gene transfer ID EL-TOR STRAINS; CLASSICAL CTX PROPHAGE; SEROGROUP CONVERSION; DNA; O1; BIOTYPE; GENES; PHAGE; COMPETENCE; BANGLADESH AB Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the sixth and the current seventh pandemics, respectively. Cholera researchers continually face newly emerging and reemerging pathogenic clones carrying diverse combinations of phenotypic and genotypic properties, which significantly hampered control of the disease. To elucidate evolutionary mechanisms governing genetic diversity of pandemic V. cholerae, we compared the genome sequences of 23 V. cholerae strains isolated from a variety of sources over the past 98 years. The genome-based phylogeny revealed 12 distinct V. cholerae lineages, of which one comprises both O1 classical and El Tor biotypes. All seventh pandemic clones share nearly identical gene content. Using analogy to influenza virology, we define the transition from sixth to seventh pandemic strains as a "shift'' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages. In contrast, transition among clones during the present pandemic period is characterized as a "drift'' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V. cholerae O139 and V. cholerae O1 El Tor hybrid clones. Based on the comparative genomics it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones. C1 [Chun, Jongsik; Grim, Christopher J.; Colwell, Rita R.] Univ Maryland, Inst Adv Comp Studies, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. [Chun, Jongsik; Lee, Je Hee; Choi, Seon Young; Lee, Jae-Hak] Seoul Natl Univ, Sch Biol Sci, Seoul 151742, South Korea. [Chun, Jongsik; Lee, Je Hee; Choi, Seon Young; Lee, Jae-Hak] Seoul Natl Univ, Inst Microbiol, Seoul 151742, South Korea. [Hasan, Nur A.; Haley, Bradd J.; Taviani, Elisa; Huq, Anwar; Colwell, Rita R.] Univ Maryland, Maryland Pathogen Res Inst, College Pk, MD 20742 USA. [Chun, Jongsik; Lee, Je Hee; Choi, Seon Young; Jeon, Yoon-Seong; Kim, Dong Wook] Int Vaccine Inst, Seoul 151818, South Korea. [Hasan, Nur A.] Int Ctr Diarrhoeal Dis Res, Dhaka 1000, Bangladesh. [Brettin, Thomas S.; Bruce, David C.; Challacombe, Jean F.; Detter, J. Chris; Han, Cliff S.; Munk, A. Christine; Chertkov, Olga; Meincke, Linda; Saunders, Elizabeth] Los Alamos Natl Lab, Dept Energy Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Walters, Ronald A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nair, G. Balakrish] Natl Inst Cholera & Enter Dis, Kolkata 700010, India. [Colwell, Rita R.] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA. RP Colwell, RR (reprint author), Univ Maryland, Inst Adv Comp Studies, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. EM rcolwell@umiacs.umd.edu RI Kim, Dong Wook/H-8253-2015 OI Kim, Dong Wook/0000-0001-5351-7597 FU Korea Science and Engineering Foundation National Research Laboratory Program [R0A2005- 000-10110-0]; National Institutes of Health [1RO1A139129-01]; National Oceanic and Atmospheric Administration, Oceans and Human Health Initiative [S0660009]; Department of Homeland Security Grant [NBCH2070002]; Intelligence Community Post-Doctoral Fellowship Program; Korean and Swedish governments; Office of the Chief Scientist and National Institute of Allergy and Infectious Diseases Microbial Sequencing Centers [N01-AI-30001, N01-AI-40001] FX This work was supported in part by Korea Science and Engineering Foundation National Research Laboratory Program Grant R0A2005- 000-10110-0 (to J. C.); National Institutes of Health Grant 1RO1A139129-01 (to R. R. C.); National Oceanic and Atmospheric Administration, Oceans and Human Health Initiative Grant S0660009 (to R. R. C.); Department of Homeland Security Grant NBCH2070002 (to R. R. C.); Intelligence Community Post-Doctoral Fellowship Program (to C. J. G.); and the Korean and Swedish governments (to I. V. I.). Funding for genome sequencing was provided by the Office of the Chief Scientist and National Institute of Allergy and Infectious Diseases Microbial Sequencing Centers Grants N01-AI-30001 and N01-AI-40001. NR 37 TC 183 Z9 189 U1 3 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 8 PY 2009 VL 106 IS 36 BP 15442 EP 15447 DI 10.1073/pnas.0907787106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 492CR UT WOS:000269632400065 PM 19720995 ER PT J AU Simonetti, F Huang, LJ AF Simonetti, Francesco Huang, Lianjie TI Synthetic aperture diffraction tomography for three-dimensional imaging SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE tomography; image formation; wave scattering ID EIGENFUNCTION METHOD; BREAST-CANCER; LARGE-SCALE; ULTRASOUND; MAMMOGRAPHY; OBJECTS; ARRAYS; SYSTEM; RISK AB Tomography of complex three-dimensional objects with ultrasound or microwave has been a long-standing goal since the introduction of these technologies after World War II. While current state-of-the-art systems can provide high-resolution images of cylindrical objects characterized by a two-dimensional structure, the three-dimensional case remains an open challenge owing to current limitations of sensor technology and computer power. Here, this problem is addressed by means of a synthetic aperture technique that, while using hardware technology developed for two-dimensional problems, accounts for the complexity of three-dimensional scattering and leads to high-resolution three-dimensional reconstructions. In this paper, we present the theoretical formulation of this new approach and illustrate it by means of a numerical example. C1 [Simonetti, Francesco] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. [Simonetti, Francesco; Huang, Lianjie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Simonetti, F (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. EM f.simonetti@imperial.ac.uk OI Simonetti, Francesco/0000-0001-8772-0323 NR 35 TC 1 Z9 1 U1 0 U2 2 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P R SOC A JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD SEP 8 PY 2009 VL 465 IS 2109 BP 2877 EP 2895 DI 10.1098/rspa.2009.0163 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 474XH UT WOS:000268317700013 ER PT J AU Partridge, WP Choi, JS AF Partridge, William P. Choi, Jae-Soon TI NH3 formation and utilization in regeneration of Pt/Ba/Al2O3 NOx storage-reduction catalyst with H-2 SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE LNT; Regeneration; NH3; Intra-catalyst measurements; SpaciMS ID TRAP CATALYSTS; AMMONIA; TEMPERATURE; PT-RH/BA/AL2O3; DISTRIBUTIONS; BREAKTHROUGH; SPECTROSCOPY; MECHANISM; HYDROGEN; SULFUR AB The nature of H-2 regeneration of a model Pt/Ba/Al2O3 LNT catalyst was investigated with specific focus on intra-catalyst formation and utilization of NH3 and its role in catalyst regeneration. In situ measurements of the transient intra-catalyst species (H-2, NH3, N-2, NOx) distributions at different temperatures were used to detail the reaction evolution along the catalyst axis. Comparison of the species transients identifies unique individual natures for the reductant (H-2), inert product (N-2) and intermediate-reductant product (NH3) which readily explain the conventional effluent species sequence as an integral effect. The data demonstrate that NH3 is created on similar timescales as the N-2 product inside the catalyst, but consumed as aggressively as H-2 reductant along the catalyst. This spatiotemporal NH3 behavior experimentally confirms that Intermediate-NH3 regeneration pathway is active. Analysis at 200 and 325 degrees C indicates equivalent local NOx storage, H-2 consumption and regeneration effectiveness, but differing NH3/N-2 ratio, suggesting a temperature-dependence of partitioning between Direct-H-2 and Intermediate-NH3 regeneration pathways. Further experimental and numerical work is needed to more clearly understand the partitioning between the possible regeneration pathways. Nevertheless, the experimental data show that intermediate NH3 plays a significant role in LNT catalyst regeneration. (C) 2009 Elsevier B.V. All rights reserved. C1 [Partridge, William P.; Choi, Jae-Soon] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Partridge, WP (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM partridgewp@ornl.gov OI Choi, Jae-Soon/0000-0002-8162-4207 FU U.S. Department of Energy FX This research was performed in a Cummins-ORNL CRADA sponsored by the U.S. Department of Energy, Vehicle Technologies Program, with Ken Howden and Gurpreet Singh as the Program Managers. We thank Mr. Neal Currier and Dr. Aleksey Yezerets of Cummins, Inc., Dr. John Breen (formerly) of Queen's University Belfast, Mr. josh Pihl, Dr. Jim Parks, Dr. John Storey and Dr. Stuart Daw at ORNL for useful discussions and Dr. Todd Toops of ORNL for H2 chemisorption and BET measurements and discussion. NR 26 TC 40 Z9 41 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD SEP 7 PY 2009 VL 91 IS 1-2 BP 144 EP 151 DI 10.1016/j.apcatb.2009.05.017 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 488UA UT WOS:000269374400017 ER PT J AU Ji, YY Toops, TJ Pihl, JA Crocker, M AF Ji, Yaying Toops, Todd J. Pihl, Josh A. Crocker, Mark TI NOx storage and reduction in model lean NOx trap catalysts studied by in situ DRIFTS SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE DRIFTS; IR spectroscopy; Lean NOx trap; NOx adsorber catalyst; Ceria ID FT-IR; NSR-CATALYSTS; PT/BAO/AL2O3 CATALYSTS; STORED NOX; ADSORPTION; REGENERATION; SPECTROSCOPY; BEHAVIOR; OXIDES; BA AB NOx storage and reduction on a model Pt/BaO/Al2O3 catalyst was studied by means of in situ DRIFTS measurements. To examine the effect of ceria addition, experiments were also conducted using Pt/BaO/Al2O3 to which Pt/CeO2 was added as a physical mixture in a 74:26 weight ratio. For the former catalyst, DRIFT spectra acquired during NO/O-2 and NO2/O-2 storage indicated the formation of nitrite at 200 degrees C during the initial stages of adsorption, while increasing the adsorption temperature appeared to facilitate the oxidation of nitrite to nitrate. The ceria-containing catalyst afforded similar DRIFT spectra under these conditions, although the presence of cerium nitrates was observed at 200 and 300 degrees C, consistent with NOx storage on the ceria phase. DRIFT spectra acquired during NOx reduction in CO and CO/H-2 showed that Ba nitrate species remained on the surface of both catalysts at 450 degrees C, whereas the use of H-2-only resulted in complete removal of stored NO2. The observation of Ba carbonates when CO was present suggests that the inferior reduction efficiency of CO may arise from the formation of a crust of BaCO3 on the Ba phase, which inhibits further NOx reduction. DRIFT spectra acquired during lean-rich cycling (6.5 min lean, 1.0 min rich) with CO/H-2 as the rich phase reductants revealed that a significant concentration of nitrates remained on the catalysts at the end of the rich phase. This implies that a large fraction of nitrate is not decomposed during cycling and thus cannot participate in NOx abatement through storage and regeneration. (C) 2009 Published by Elsevier B.V. C1 [Ji, Yaying; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Toops, Todd J.; Pihl, Josh A.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Crocker, M (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM crocker@caer.uky.edu RI Crocker, Mark/A-2704-2008 FU US Department of Energy [DE-FC26-05NT42631] FX This publication was prepared with the support of the US Department of Energy, under Award no. DE-FC26-05NT42631. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE. NR 52 TC 46 Z9 47 U1 2 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD SEP 7 PY 2009 VL 91 IS 1-2 BP 329 EP 338 DI 10.1016/j.apcatb.2009.06.002 PG 10 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 488UA UT WOS:000269374400040 ER PT J AU Huang, QJ Lilley, CM Bode, M AF Huang, Qiaojian Lilley, Carmen M. Bode, Matthias TI Surface scattering effect on the electrical resistivity of single crystalline silver nanowires self-assembled on vicinal Si (001) SO APPLIED PHYSICS LETTERS LA English DT Article DE electrical resistivity; electron-surface impact; grain boundaries; nanowires; self-assembly; silver ID METALLIC NANOWIRES; TEMPERATURE; FILMS; CONDUCTIVITY; RESISTANCE AB Fundamental questions as to the nature of electron surface scattering in nanoscale materials remain unanswered. In order to isolate the effects of surface scattering from grain boundary scattering, single crystalline trapezoidal silver (Ag) nanowires were self-assembled on vicinal silicon substrate. The well established kinetic theory to model electron surface scattering effects on the electrical resistivity of nanowires was extended to include trapezoidal geometries. The experimentally measured electrical resistivity for Ag nanowires was found to fit the theoretical resistivity for the case of electrons diffusely scattering from the nanowire surface. C1 [Huang, Qiaojian; Lilley, Carmen M.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Bode, Matthias] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Lilley, CM (reprint author), Univ Illinois, Dept Mech & Ind Engn, 3055 Engn Res Facil,842 W Taylor St, Chicago, IL 60607 USA. EM q-huang@northwestern.edu; clilley@uic.edu RI Huang, Qiaojian/A-4951-2010; Bode, Matthias/S-3249-2016 OI Bode, Matthias/0000-0001-7514-5560 FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Nathan P. Guisinger for his assistant with the sample preparation and the electrical measurements. The authors would like to acknowledge the Campus Research Board (CRB) at the University of Illinois at Chicago (UIC) for supporting this research with a CRB grant. NR 21 TC 19 Z9 20 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 7 PY 2009 VL 95 IS 10 AR 103112 DI 10.1063/1.3216836 PG 3 WC Physics, Applied SC Physics GA 493GM UT WOS:000269723500058 ER PT J AU Park, J Lee, DR Choi, Y Freeland, JW Lee, KB Sihna, SK Nikolaev, KR Goldman, AM AF Park, Jihwey Lee, Dong Ryeol Choi, Yongseong Freeland, John W. Lee, Ki Bong Sihna, Sunil K. Nikolaev, K. R. Goldman, Allen M. TI Quantifying interlayer exchange coupling via layer-resolved hysteresis loops in antiferromagnetically coupled manganite/nickelate superlattices SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; exchange interactions (electron); ferromagnetic materials; lanthanum compounds; magnetic hysteresis; magnetic multilayers; paramagnetic materials; X-ray scattering ID X-RAY; SCATTERING; MAGNETORESISTANCE; MULTILAYERS AB In superlattices made of a half metallic ferromagnet La2/3Ba1/3MnO3(LBMO) and a metallic paramagnet LaNiO3(LNO), the field dependence of the LBMO magnetization was studied using depth- and element-sensitive x-ray resonant magnetic scattering measurements. The superlattices have ten bilayers of LBMO and LNO, and the LBMO layers were antiferromagnetically coupled across LNO spacer layers. From the x-ray measurements, the magnetic hysteresis loop of each LBMO layer was obtained, and subsequently the obtained layer-resolved LBMO hysteresis loops were utilized to determine the interlayer exchange coupling. C1 [Lee, Dong Ryeol] Soongsil Univ, Dept Phys, Seoul 156743, South Korea. [Park, Jihwey; Lee, Ki Bong] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Choi, Yongseong] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sihna, Sunil K.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. [Sihna, Sunil K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nikolaev, K. R.; Goldman, Allen M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Lee, DR (reprint author), Soongsil Univ, Dept Phys, Seoul 156743, South Korea. EM drlee@ssu.ac.kr FU Korean Government (MOEHRD) [KRF-2007-313-C00251]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357]; NSF Materials Science and Engineering Research Center FX This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (Grant No. KRF-2007-313-C00251). Experiment at Advanced Photon Source was supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. A. M. G. was supported by the NSF Materials Science and Engineering Research Center. NR 20 TC 7 Z9 7 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 7 PY 2009 VL 95 IS 10 AR 102504 DI 10.1063/1.3222944 PG 3 WC Physics, Applied SC Physics GA 493GM UT WOS:000269723500038 ER PT J AU Zaniewski, AM Loster, M Zettl, A AF Zaniewski, A. M. Loster, M. Zettl, A. TI A one-step process for localized surface texturing and conductivity enhancement in organic solar cells SO APPLIED PHYSICS LETTERS LA English DT Article DE atomic force microscopy; current density; electrical conductivity; organic semiconductors; polymer blends; solar cells; surface texture ID ATOMIC-FORCE MICROSCOPY; SCANNING PROBE MICROSCOPY; ELECTROSTATIC NANOLITHOGRAPHY AB A process that improves organic solar cell local morphology and geometry is presented. Strong electric field gradients and current densities, generated by voltages locally applied between a conducting atomic force microscope tip and the device surface, induce enhanced conductivity and raise geometrical texturing features in solar cells formed from poly (3-hexylthiophene): [6,6]-phenyl-C61 butyric acid methyl ester blends. These results may open paths to organic solar cell efficiency enhancements through a single step process that simultaneously textures the surface for increased light trapping and enhances charge extraction. C1 [Zaniewski, A. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zaniewski, AM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@physics.berkeley.edu RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A. M. Z. acknowledges the NSF Graduate Research Fellowship. We thank David Okawa for useful discussions and technical assistance. NR 17 TC 4 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 7 PY 2009 VL 95 IS 10 AR 103308 DI 10.1063/1.3223624 PG 3 WC Physics, Applied SC Physics GA 493GM UT WOS:000269723500068 ER PT J AU Maerzke, KA McGrath, MJ Kuo, IFW Tabacchi, G Siepmann, JI Mundy, CJ AF Maerzke, Katie A. McGrath, Matthew J. Kuo, I-F. William Tabacchi, Gloria Siepmann, J. Ilja Mundy, Christopher J. TI Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MONTE-CARLO SIMULATIONS; 1ST PRINCIPLES; MOLECULAR-DYNAMICS; FORCE-FIELDS; COEXISTENCE PROPERTIES; GIBBS ENSEMBLE; ENERGY; APPROXIMATION AB Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory in mixed quantum mechanics/molecular mechanics implementations. The Gibbs ensemble simulations indicate limited transferability of a KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature that are significantly under- and overestimated, respectively. (C) 2009 Elsevier B. V. All rights reserved. C1 [Maerzke, Katie A.; McGrath, Matthew J.; Siepmann, J. Ilja] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Maerzke, Katie A.; McGrath, Matthew J.; Siepmann, J. Ilja] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Kuo, I-F. William] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. [Tabacchi, Gloria] Univ Insubria, DSCA, I-22100 Como, Italy. [Tabacchi, Gloria] INSTM, I-22100 Como, Italy. [Mundy, Christopher J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Siepmann, JI (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM siepmann@umn.edu; chris.mundy@pnl.gov RI tabacchi, gloria/E-1781-2016 OI tabacchi, gloria/0000-0002-1988-6775 FU Summer Research Institute; National Science Foundation [CBET-0756641]; US Department of Energy's (DOE) Office of Basic Energy Sciences Chemical FX K. A. M. would like to acknowledge support from the Summer Research Institute at Pacific Northwest National Laboratory (PNNL). The work at the University of Minnesota is supported by the National Science Foundation (CBET-0756641). We are grateful for the abundant computer resources provided by the Minnesota Supercomputing Institute and the Molecular Science Computing Facility and Energy Smart Data Center housed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. C.J.M. is supported by the US Department of Energy's (DOE) Office of Basic Energy Sciences Chemical, Geosciences and Biosciences division. PNNL is operated by Battelle for the US DOE. NR 47 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD SEP 7 PY 2009 VL 479 IS 1-3 BP 60 EP 64 DI 10.1016/j.cplett.2009.07.111 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 488JI UT WOS:000269345300011 ER PT J AU Mezger, M Schramm, S Schroder, H Reichert, H Deutsch, M De Souza, EJ Okasinski, JS Ocko, BM Honkimaki, V Dosch, H AF Mezger, Markus Schramm, Sebastian Schroeder, Heiko Reichert, Harald Deutsch, Moshe De Souza, Emerson J. Okasinski, John S. Ocko, Benjamin M. Honkimaki, Veijo Dosch, Helmut TI Layering of [BMIM](+)-based ionic liquids at a charged sapphire interface SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review DE hydrogen bonds; interface phenomena; liquid structure; surface energy; surface tension; X-ray reflection ID SUM-FREQUENCY GENERATION; X-RAY REFLECTIVITY; SENSITIZED SOLAR-CELLS; VIBRATIONAL SPECTROSCOPY; PHYSICAL-PROPERTIES; ELECTROCHEMICAL DEVICES; AIR/LIQUID INTERFACE; IMIDAZOLIUM CATION; SURFACE-STRUCTURE; LOCAL-STRUCTURE AB The structure of two model room temperature ionic liquids, [BMIM](+)[PF6](-) and [BMIM](+)[BF4](-), near the solid/liquid interface with charged Al2O3(0001) (sapphire) was determined with subnanometer resolution by high energy (72.5 keV) x-ray reflectivity. [BMIM](+)[PF6](-) exhibits alternately charged, exponentially decaying, near-surface layering. By contrast, the smaller-anion compound, [BMIM](+)[BF4](-), shows only a single layer of enhanced electron density at the interface. The different layering behaviors, and their characteristic length scales, correspond well to the different bulk diffraction patterns, also measured in this study. Complementary measurements of the surface and interface energies showed no significant different between the two RTILs. The combined bulk-interface results support the conclusion that the interfacial ordering is dominated by the same electrostatic ion-ion interactions dominating the bulk correlations, with hydrogen bonding and dispersion interactions playing only a minor role. C1 [Mezger, Markus; Schramm, Sebastian; Schroeder, Heiko; Reichert, Harald; De Souza, Emerson J.; Okasinski, John S.; Dosch, Helmut] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Mezger, Markus; Dosch, Helmut] Univ Stuttgart, Inst Theoret & Angew Phys, D-70550 Stuttgart, Germany. [Reichert, Harald; Honkimaki, Veijo] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Deutsch, Moshe] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Deutsch, Moshe] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Ocko, Benjamin M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Mezger, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mmezger@lbl.gov RI De Souza, Emerson/H-9887-2013; Mezger, Markus/D-6897-2014 OI Mezger, Markus/0000-0001-9049-6983 FU German-Israeli Foundation for Scientific Research and Development [I 77942.10/2003]; U.S.-Israel Binational Science Foundation, Jerusalem; DOE's Division of Materials Science [DE-AC02-76CH0016] FX We would like to thank the beamline staff at ID15A and ID15B (T. Buslaps, G. Gonzalez Aviles, F. Venturini, and D. Pontoni), as well as H. Muller from the central chemistry laboratory of the ESRF for assistance. We gratefully acknowledge the support by the German-Israeli Foundation for Scientific Research and Development (Grant No. I 77942.10/2003) and the U.S.-Israel Binational Science Foundation, Jerusalem. B.N.L. was supported by DOE's Division of Materials Science under Grant No. DE-AC02-76CH0016. NR 101 TC 79 Z9 79 U1 4 U2 70 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2009 VL 131 IS 9 AR 094701 DI 10.1063/1.3212613 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 492AH UT WOS:000269625400022 PM 19739863 ER PT J AU Velizhanin, KA Wang, HB AF Velizhanin, Kirill A. Wang, Haobin TI Dynamics of electron transfer reactions in the presence of mode mixing: Comparison of a generalized master equation approach with the numerically exact simulation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE charge exchange; electron traps; HF calculations; master equation; reaction kinetics theory ID SPIN-BOSON MODEL; DEPENDENT HARTREE APPROACH; DEBYE SPECTRAL DENSITY; CONDENSED-PHASE; MOLECULAR-DYNAMICS; PROPAGATING WAVEPACKETS; POLYATOMIC-MOLECULES; RELAXATION PROCESSES; COMPLEX-SYSTEMS; HYBRID APPROACH AB A generalized master equation approach is developed to describe electron transfer (ET) dynamics in the presence of mode mixing. Results from this approximate approach are compared to the numerically exact simulations using the multilayer multiconfiguration time-dependent Hartree theory. The generalized master equation approach is found to work well for nonadiabatic resonant ET. Depending on the specific situation, it is found that the introduction of mode mixing may either increase or decrease the ET time scale. The master equation fails in the adiabatic ET regime, where the introduction of mode mixing may lead to electron trapping. From both the approximate theory and the numerically exact simulation it is shown how neglecting mode mixing in practical calculations may lead to inaccurate predictions of the ET dynamics. C1 [Velizhanin, Kirill A.; Wang, Haobin] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. RP Velizhanin, KA (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM whb@intrepid.nmsu.edu RI Velizhanin, Kirill/C-4835-2008; Wang, Haobin/E-1208-2011 FU National Science Foundation (NSF) [CHE0348956]; National Energy Research Scientific Computing Center (NERSC); Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Michael Thoss for stimulating discussions and critical comments on this manuscript. This work has been supported by the National Science Foundation (NSF) CAREER under Award No. CHE0348956 and used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 59 TC 15 Z9 15 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2009 VL 131 IS 9 AR 094109 DI 10.1063/1.3213435 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 492AH UT WOS:000269625400010 PM 19739851 ER PT J AU Cho, JH Farson, DF Milewski, JO Hollis, KJ AF Cho, Jung-Ho Farson, Dave F. Milewski, John O. Hollis, Kendall J. TI Weld pool flows during initial stages of keyhole formation in laser welding SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID MULTIPLE REFLECTIONS; FRESNEL ABSORPTION; HEAT-TRANSFER; NUMERICAL-SIMULATION; RECOIL PRESSURE; MOLTEN POOL; FLUID-FLOW; ND-YAG; SURFACE; GAS AB Weld pool transport phenomena during the transition from conduction-mode laser spot welding to keyhole laser spot welding of titanium were studied by numerical simulation. A range of laser powers were simulated and temperature dependent evaporation recoil pressure and cooling were applied as boundary conditions on the weld pool surface. Simulation results predicted a complex time-varying flow pattern during weld pool development. The surface-normal flow at the weld pool centre oscillated between upwards and downwards during the simulation time due to interaction of competing effects of evaporation recoil and surface tension pressures and laser heating and evaporation cooling. The results show that the laser weld pool flow dynamics play a key role during the transition from conduction-mode laser welding to keyhole welding. C1 [Cho, Jung-Ho; Farson, Dave F.] Ohio State Univ, Lab Multiscale Proc & Characterizat, Columbus, OH 43221 USA. [Milewski, John O.; Hollis, Kendall J.] Los Alamos Natl Lab, Div Mat Sci, Los Alamos, NM 87544 USA. RP Cho, JH (reprint author), Ohio State Univ, Lab Multiscale Proc & Characterizat, 1248 Arthur E Adams Dr, Columbus, OH 43221 USA. EM farson.4@osu.edu FU Korean Government [KRF2008-357-D00014] FX This work was partially supported by the Korea Research Foundation Grant funded by the Korean Government (KRF2008-357-D00014). NR 51 TC 23 Z9 25 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 7 PY 2009 VL 42 IS 17 AR 175502 DI 10.1088/0022-3727/42/17/175502 PG 11 WC Physics, Applied SC Physics GA 486LX UT WOS:000269199200046 ER PT J AU Masui, H Mohanty, B Xu, N AF Masui, Hiroshi Mohanty, Bedangadas Xu, Nu TI Predictions of Elliptic flow and nuclear modification factor from 200 GeV U + U collisions at RHIC SO PHYSICS LETTERS B LA English DT Article DE Glauber model; Elliptic flow; Nuclear modification factor ID COLLISIONS; DEPENDENCE; ENERGY AB Predictions of elliptic flow (v(2)) and nuclear modification factor (R-AA) are provided as a function of centrality in U + U collisions at root S-NN = 200 GeV. Since the U-238 nucleus is naturally deformed, one could adjust the properties of the fireball, density and duration of the hot and dense system, for example, in high energy nuclear collisions by carefully selecting the colliding geometry. Within our Monte Carlo Glauber based approach. the v(2) with respect to the reaction plane v(2)(RP) in U + U collisions is consistent with that in Au + Au collisions, while the v(2) with respect to the participant plane v(2)(PP) increases similar to 30-60% at top 10% centrality which is attributed to the larger participant eccentricity at most central U + U collisions. The suppression of RAA increases and reaches similar to 0.1 at most central U + U collisions that is by a factor of 2 more suppression compared to the central Au + Au collisions due to large size and deformation of Uranium nucleus. Published by Elsevier B.V. C1 [Masui, Hiroshi; Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mohanty, Bedangadas] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. RP Masui, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM HMasui@lbl.gov; bedanga@rcf.bnl.gov; NXu@lbl.gov OI Mohanty, Bedangadas/0000-0001-9610-2914 FU US Department of Energy [DE-AC03-76SF00098] FX We thank Peter Filip and Art Poskanzer for discussions. The work is supported in part by the US Department of Energy under Contract No. DE-AC03-76SF00098. NR 36 TC 24 Z9 24 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD SEP 7 PY 2009 VL 679 IS 5 BP 440 EP 444 DI 10.1016/j.physletb.2009.08.025 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 496QK UT WOS:000269990000005 ER PT J AU Cirigliano, V Ecker, G Pich, A AF Cirigliano, V. Ecker, G. Pich, A. TI Reanalysis of pion-pion phase shifts from K -> pi pi decays SO PHYSICS LETTERS B LA English DT Article ID ISOSPIN BREAKING; SCATTERING AB We re-investigate the impact of isospin violation for extracting the s-wave pi pi scattering phase shift difference delta(0)(M(K)) - delta(2)(M(K)) from K -> pi pi decays. Compared to our previous analysis in 2003, more precise experimental data and improved knowledge of low-energy constants are used. In addition, we employ a more robust data-driven method to obtain the phase shift difference delta(0)(M(K)) - delta(2)(M(K)) = (52.5 +/- 0.8(exp) +/- 2.8(theor))degrees. (C) 2009 Elsevier B.V. All rights reserved, C1 [Cirigliano, V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ecker, G.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Pich, A.] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46071 Valencia, Spain. RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cirigliano@lanl.gov OI Cirigliano, Vincenzo/0000-0002-9056-754X FU EU [MRTN-CT-2006-035482]; MICINN, Spain [FPA2007-60323, CSD2007-00042]; Generalitat Valenciana [PROMETEO/2008/069] FX We are grateful to Gilberto Colangelo for communicating to us the value of delta0(MK) obtained in Ref. [1]. We would also like to thank Hans Bijnens, jurg Gasser, Peter Minkowski, Helmut Neufeld and Jorge Portoles for useful comments. This work has been supported in part by the EU Contract MRTN-CT-2006-035482 (FLA-VlAnet), by MICINN, Spain [grants FPA2007-60323 and Consolider-Ingenio 2010 CSD2007-00042 ?CPAN?] and by Generalitat Valenciana (PROMETEO/2008/069). NR 14 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 7 PY 2009 VL 679 IS 5 BP 445 EP 448 DI 10.1016/j.physletb.2009.08.027 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 496QK UT WOS:000269990000006 ER PT J AU Butter, D Gaillard, MK AF Butter, Daniel Gaillard, Mary K. TI Anomaly structure of supergravity and anomaly cancellation SO PHYSICS LETTERS B LA English DT Article ID PAULI-VILLARS REGULARIZATION; STRING THEORY; COUPLINGS; MATTER AB We display the full anomaly structure of supergravity, including new contributions to the conformal anomaly. Our result has the super-Weyl and Kahler U(1). transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gaillard, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Gaillard, MK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. EM mkgaillard@lbl.gov FU US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0457315, PHY05-51164] FX One of us (M.K.G.) acknowledges the hospitality of the Kavli Institute for Theoretical Physics, where part of this work was performed. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the US Department of Energy under Contract DE-AC02-05CH11231, in part by the National Science Foundation under grants PHY-0457315 and PHY05-51164. NR 23 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD SEP 7 PY 2009 VL 679 IS 5 BP 519 EP 522 DI 10.1016/j.physletb.2009.08.023 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 496QK UT WOS:000269990000020 ER PT J AU Zhu, Q Zhou, SH Wang, XQ Dai, S AF Zhu, Qing Zhou, Shenghu Wang, Xiqing Dai, Sheng TI Controlled synthesis of mesoporous carbon modified by tungsten carbides as an improved electrocatalyst support for the oxygen reduction reaction SO JOURNAL OF POWER SOURCES LA English DT Article DE Fuel Cell; Electrocatalysis; Mesoporous carbon ID PEM FUEL-CELL; SURFACE-AREA; CATALYST SUPPORT; ELECTROCHEMISTRY; ELECTROREDUCTION; POLYOXOMETALATE; ADSORPTION; ELECTRODES; MEMBRANE; METHANOL AB Mesoporous carbon was modified with tungsten carbides by the carbothermal hydrogen reduction of a layer of chemisorbed 1:12 phosphotungstic anions (PW(12)O(40)(3-)) on carbon surfaces. Depending on the temperature of carbothermal treatment, different tungsten species, i.e., W, W(2)C, WC, were formed on the carbon matrix. No significant changes in both surface areas and mesostructures were observed during the formation of various tungsten species on carbon surfaces under high-temperature conditions. A uniform dispersion of Pt nanoparticles (1-6 nm) can be achieved via nanoconfinement on the surfaces of both mesoporous carbon and tungsten carbide-modified mesoporous carbon. Pt nanoparticles supported on mesoporous carbons modified with tungsten carbide (Pt/WC-C) exhibit enhanced electrocatalytic activities relative to the control, in which mesoporous carbons without carbide modification were directly used as a support (Pt/C). In addition, both enhanced thermal stability and good electrochemical stability were observed for the Pt/WC-C electrocatalyst. Published by Elsevier B.V. C1 [Zhu, Qing; Wang, Xiqing; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Zhou, Shenghu; Dai, Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhou, Shenghu] Chinese Acad Sci, Div Fuel Cell & Energy Technol, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Wang, Xiqing/E-3062-2010; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Dai, Sheng/0000-0002-8046-3931 FU U.S. DOE Office of Energy Efficiency and renewable Energy (EERE) [DE-AC05-0096OR22725] FX This research was conducted at the Oak Ridge National Laboratory and supported by the U.S. DOE Office of Energy Efficiency and renewable Energy (EERE), under Contract DE-AC05-0096OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. NR 29 TC 48 Z9 51 U1 5 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 5 PY 2009 VL 193 IS 2 BP 495 EP 500 DI 10.1016/j.jpowsour.2009.04.017 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 477LR UT WOS:000268521100015 ER PT J AU Stephens, EV Vetrano, JS Koeppel, BJ Chou, Y Sun, X Khaleel, MA AF Stephens, E. V. Vetrano, J. S. Koeppel, B. J. Chou, Y. Sun, X. Khaleel, M. A. TI Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models SO JOURNAL OF POWER SOURCES LA English DT Article DE Glass-ceramic sealant; Solid oxide fuel cell; Property characterization; Finite element analysis AB This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNL's glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described. Published by Elsevier B.V. C1 [Stephens, E. V.; Koeppel, B. J.; Chou, Y.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Vetrano, J. S.] US DOE, Off Basic Energy Sci, Washington, DC 20585 USA. RP Khaleel, MA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM moe.khaleel@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU U.S. Department of Energy's National Energy Technology Laboratory; U.S. Department of Energy [DE-AC05-76RL01830] FX This paper was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology program by the U.S. Department of Energy's National Energy Technology Laboratory. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 16 TC 36 Z9 36 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 5 PY 2009 VL 193 IS 2 BP 625 EP 631 DI 10.1016/j.jpowsour.2009.02.080 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 477LR UT WOS:000268521100035 ER PT J AU Coyle, CA Marina, OA Thomsen, EC Edwards, DJ Cramer, CD Coffey, GW Pederson, LR AF Coyle, C. A. Marina, O. A. Thomsen, E. C. Edwards, D. J. Cramer, C. D. Coffey, G. W. Pederson, L. R. TI Interactions of nickel/zirconia solid oxide fuel cell anodes with coal gas containing arsenic SO JOURNAL OF POWER SOURCES LA English DT Article DE Coal gas; SOFC; Arsenic; Nickel; Anode; Degradation ID DEPARTMENT-OF-ENERGY; NICKEL-CATALYSTS; SYNGAS; US; ARSINE AB The performance of anode-supported and electrolyte-supported solid oxide fuel cells was investigated in synthetic coal gas containing 0-10 ppm arsenic at 700-800 degrees C. Arsenic was found to interact strongly with nickel, resulting in the formation of nickel-arsenic solid solution, Ni(5)As(2) and Ni(11)As(8), depending on temperature, arsenic concentration, and reaction time. For anode-supported cells, loss of electrical connectivity in the anode support was the principal mode of degradation, as nickel was converted to nickel arsenide phases that migrated to the surface to form large grains. Cell failure occurred well before the entire anode was converted to nickel arsenide, and followed a reciprocal square root of arsenic partial pressure dependence that is consistent with a diffusion-based rate-limiting step. Failure occurred more quickly with electrolyte-supported cells, which have a substantially smaller nickel inventory. For these cells, time to failure varied linearly with the reciprocal arsenic concentration. Failure occurred when arsenic reached the anode/electrolyte interface, though agglomeration of nickel reaction products may have also contributed. Test performed with nickel/zirconia coupons showed that arsenic was essentially completely captured in a narrow band near the fuel gas inlet. Arsenic concentrations of similar to 10 ppb or less are estimated to result in acceptable rates of fuel cell degradation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pederson, L. R.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Pederson, LR (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM larry.pederson@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory as part of the Solid State Energy Conversion Alliance (SECA) Coal-Based Systems Core Research Program; U.S. Department of Energy [AC0676RLO 1830] FX The authors appreciate SEM analyses performed by AL SchemerKohrn and SEM sample preparation by CE Chamberlin. Financial support from the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory as part of the Solid State Energy Conversion Alliance (SECA) Coal-Based Systems Core Research Program (Dr. Paul Tortora, contract manager) is gratefully acknowledged. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract AC0676RLO 1830. NR 23 TC 20 Z9 21 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 5 PY 2009 VL 193 IS 2 BP 730 EP 738 DI 10.1016/j.jpowsour.2009.04.042 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 477LR UT WOS:000268521100047 ER PT J AU Xu, CC Zondlo, JW Finklea, HO Demircan, O Gong, MY Liu, XB AF Xu, Chunchuan Zondlo, John W. Finklea, Harry O. Demircan, Oktay Gong, Mingyang Liu, XingBo TI The effect of phosphine in syngas on Ni-YSZ anode-supported solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; Ni-YSZ anode; Coal syngas; Phosphine; Nickel migration and agglomeration; Nickel phosphide ID YTTRIA-STABILIZED ZIRCONIA; COAL SYNGAS; NICKEL; POLARIZATION; OXYGEN AB Ni-YSZ cermet is commonly used as the anode of a solid oxide fuel cell (SOFC) because it has excellent electrochemical performance, not only in hydrogen fuel, but also in a clean blended synthetic coal syngas mixture (30% H(2), 26% H(2)O, 23% CO, and 21% CO(2)). However, trace impurities, such as phosphine (PH(3)), in coal-derived syngas can cause degradation in cell performance [J.P. Trembly, R.S. Gemmen, D.J. Bayless, J. Power Sources 163 (2007) 986-996]. A commercial solid oxide fuel cell was exposed to a syngas with 10 ppm PH(3) under a constant current load at 800 degrees C and its performance was evaluated periodically using electrochemical methods. The central part of the anode was exposed directly to the syngas without an intervening current collector. Post-mortem analyses of the SOFC anode were performed using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results show that the impurity PH3 caused a significant loss of the Ni-YSZ anode electrochemical performance and an irreversible Ni-YSZ structural modification. Ni(5)P(2) was confirmed to be produced on the cell surface as the dominant nickel phosphorus phase. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xu, Chunchuan; Zondlo, John W.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Finklea, Harry O.; Demircan, Oktay] W Virginia Univ, C Eugene Bennett Dept Chem, Morgantown, WV 26506 USA. [Gong, Mingyang; Liu, XingBo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Finklea, Harry O.] US DOE, Inst Adv Energy Studies, Natl Energy Technol Lab, Washington, DC 20585 USA. RP Xu, CC (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM Chunchuan.Xu@mail.wvu.edu RI Gong, Mingyang/E-5939-2012 FU US DOE (Department of Energy) EPSCoR Program; US DOE Office of Basic Energy Sciences; NETL (National Energy Technology Laboratory); WV State EPSCoR Office; West Virginia University [DE-FG02-06ER46299] FX This work is conducted under US DOE (Department of Energy) EPSCoR Program. It is jointly sponsored by US DOE Office of Basic Energy Sciences, NETL (National Energy Technology Laboratory), WV State EPSCoR Office and the West Virginia University under grant number DE-FG02-06ER46299. Dr. Tim Fitzsimmons is the DOE Technical Monitor. Dr. R. Bajura is the Administrative Manager and Dr. 1. Celik is the Technical Manager and Principal investigator of this project. The authors would like to thank Dr. Randy S Gernmen for suggestions and use of software. Dr. Andy Woodworth, Mr. Liviu Magean, Mrs Andrina MacLeod and MrJunwei Wu are thanked for taking the SEM, EDS, XRD and XPS data. NR 15 TC 32 Z9 32 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 5 PY 2009 VL 193 IS 2 BP 739 EP 746 DI 10.1016/j.jpowsour.2009.04.044 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 477LR UT WOS:000268521100048 ER PT J AU Deng, JQ Lu, ZG Belharouak, I Amine, K Chung, CY AF Deng, Jianqiu Lu, Zhouguang Belharouak, I. Amine, K. Chung, C. Y. TI Preparation and electrochemical properties of Li4Ti5O12 thin film electrodes by pulsed laser deposition SO JOURNAL OF POWER SOURCES LA English DT Article DE Rechargeable lithium-ion battery; Lithium titanate thin film; Anode; Pulsed laser deposition ID RECHARGEABLE LITHIUM BATTERIES; SPINEL LI4TI5O12; ANODE MATERIAL; LICOO2; CATHODE; CELLS AB Spinel Li4Ti5O12 thin film anode material for lithium-ion batteries is prepared by pulsed laser deposition. Thin film anodes are deposited at ambient temperature, then annealed at three different temperatures under an argon gas flow and the influence of annealing temperatures on their electrochemical performances is studied. The microstructure and morphology of the films are characterized by XRD, SEM and AFM. Electrochemical properties of the films are evaluated by using galvanostatic discharge/charge tests, cyclic voltammetry and a.c. impedance spectroscopy. The results reveal that all annealed films crystallize and exhibit good cycle performance. The optimum annealing temperature is about 700 degrees C. The steady-state discharge capacity of the films is about 157 mAh g(-1) at a medium discharge/charge current density of 10 mu A cm(-2). At a considerably higher discharge/charge current density of 60 mu A cm(-2) (about 3.45 C) the discharge capacity of the films remains steady at a relative high value (146 mAh g(-1)). The cycleability of the films is excellent. This implies that such films are suitable for electrodes to be used at high discharge/charge current density. (C) 2009 Elsevier B.V. All rights reserved. C1 [Deng, Jianqiu; Lu, Zhouguang; Chung, C. Y.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. [Belharouak, I.; Amine, K.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Chung, CY (reprint author), City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China. EM appchung@cityu.edu.hk RI Chung, C.Y./H-1689-2011; Lu, Zhouguang/G-6240-2013; Amine, Khalil/K-9344-2013; Deng, Jianqiu/K-1555-2013; OI Chung, C.Y./0000-0003-3639-5852; Lu, Zhouguang/0000-0001-9375-7747; Deng, Jianqiu/0000-0002-8628-9719; Belharouak, Ilias/0000-0002-3985-0278 NR 23 TC 30 Z9 32 U1 5 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 5 PY 2009 VL 193 IS 2 SI SI BP 816 EP 821 DI 10.1016/j.jpowsour.2009.03.074 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 477LR UT WOS:000268521100060 ER PT J AU Harris, SJ Timmons, A Pitz, WJ AF Harris, Stephen J. Timmons, Adam Pitz, William J. TI A combustion chemistry analysis of carbonate solvents used in Li-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Flammability; Electrolyte; Combustion; Heat release; Thermochemistry ID FLAME-RETARDANT ADDITIVES; TRIS(2,2,2-TRIFLUOROETHYL) PHOSPHITE; DIPHENYLOCTYL PHOSPHATE; ELECTROLYTES; INHIBITION; OXIDATION; MECHANISM AB Under abusive conditions Li-ion cells can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical and combustion properties of these gases that determine whether they ignite and how energetically they burn. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. We also show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this contrast is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak heat release rate of an analogous propane flame. Interestingly, peak temperatures differ by only 25%. We argue that heat release rate is a more useful parameter than temperature when evaluating the likelihood that a flame in one cell will ignite a neighboring cell. Our results suggest that thermochemical and combustion property factors might well be considered when choosing solvent mixtures when flammability is a concern. (C) 2009 Elsevier B.V. All rights reserved. C1 [Harris, Stephen J.; Timmons, Adam] Gen Motors R&D Ctr, Warren, MI 48090 USA. [Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Harris, SJ (reprint author), Gen Motors R&D Ctr, MC 480-102-000, Warren, MI 48090 USA. EM stephen.j.harris@gm.com RI Harris, Stephen/B-9584-2010 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Dr. E. Peter Roth at Sandia National Laboratories for very useful discussions. The work at LLNL was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 32 TC 13 Z9 13 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 5 PY 2009 VL 193 IS 2 BP 855 EP 858 DI 10.1016/j.jpowsour.2009.04.030 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 477LR UT WOS:000268521100067 ER PT J AU Wu, RY Richter, S Zhang, RG Anderson, VJ Missiakas, D Joachimiak, A AF Wu, Ruiying Richter, Stefan Zhang, Rong-guang Anderson, Valerie J. Missiakas, Dominique Joachimiak, Andrzej TI Crystal Structure of Bacillus anthracis Transpeptidase Enzyme CapD SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GAMMA-GLUTAMYL-TRANSPEPTIDASE; LETHAL FACTOR; ESCHERICHIA-COLI; FUSION PROTEINS; CAPSULE; MODEL; EXPRESSION; MECHANISM; PROTEASE; PLASMID AB Bacillus anthracis elaborates a poly-gamma-D-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the gamma-glutamyltranspeptidase CapD with and without alpha-L-Glu-L-Glu dipeptide, a non-hydrolyzable analog of poly-gamma-D-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-gamma-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro(427), Gly(428), and Gly(429) activate the catalytic residue of the enzyme, Thr(352), and stabilize an oxyanion hole via main chain amide hydrogen bonds. C1 [Richter, Stefan; Anderson, Valerie J.; Missiakas, Dominique] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Wu, Ruiying; Zhang, Rong-guang; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA. [Wu, Ruiying; Zhang, Rong-guang; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Missiakas, D (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. EM dmissiak@bsd.uchicago.edu; andrzejj@anl.gov FU National Institutes of Health [GM074942, AI057153]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported, in whole or in part, by National Institutes of Health Grants GM074942 and AI057153 (to A. J.). The work was also supported by the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357 (to A. J.). NR 36 TC 15 Z9 16 U1 0 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD SEP 4 PY 2009 VL 284 IS 36 BP 24406 EP 24414 DI 10.1074/jbc.M109.019034 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 488WE UT WOS:000269380200053 PM 19535342 ER PT J AU Harvey, SD Wenzel, TJ AF Harvey, Scott D. Wenzel, Thomas J. TI Selective retention of explosives and related compounds on gas-chromatographic capillary columns coated with lanthanide(III) beta-diketonate polymers SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Lanthanide(dihed) polymers; Metal beta-diketonate polymers; Selective explosives separations; Gas-chromatographic capillary column coating techniques; Selective explosives retention; Selective explosives preconcentration ID LIQUID-CHROMATOGRAPHY; MULTICAPILLARY COLUMNS; SHIFT REAGENT; NUCLEOPHILES; RESOLUTION; COMPLEXES; SORBENTS AB The purpose of this research was to investigate coating capillary columns with lanthanide(III) beta-diketonate polymers to provide gas-chromatographic columns with selectivity toward explosives and related compounds. Capillary columns were statically coated with a mixture of a lanthanide(III) beta-diketonate polymer, which utilized p-di(4,4,5,5,6,6,6-heptafluoro-1,3-hexanedionyl)benzene (dihed) as a ligand, and SE-30. A novel coating technique was developed that used a methanol-containing azeotrope to provide Solubility for both polymers while maintaining a low boiling point compatible with static coating. As based on temperature-programmed retention indices, the experimental columns displayed selective retention of nitroaromatic, nitroalkane, and nitrate ester test probes relative to an appropriate SE-30 control column. Selective retention was more pronounced for strongest Lewis base analyte contained in the test mixture (i.e., cyclohexanone). Relative analyte retention on the La(dihed), Tb(dihed), and Eu(dihed) columns are discussed relative to Lewis acidity and solubility of the polymer in the azeotropic coating solution. (C) 2009 Elsevier B.V. All rights reserved. C1 [Harvey, Scott D.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Wenzel, Thomas J.] Bates Coll, Dept Chem, Lewiston, ME 04240 USA. RP Harvey, SD (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, MSIN P7-07,902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM scott.harvey@pnl.gov FU Initiative for Explosives Detection at Pacific Northwest National Laboratory; Battelle Memorial Institute [DE-AC05-76RL01830] FX We gratefully acknowledge the Laboratory Directed Research and Development program for funding this research through the Initiative for Explosives Detection at Pacific Northwest National Laboratory. We also thank Orville T. Farmer, III for providing ICP/MS analysis of the column coating solutions. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 32 TC 2 Z9 3 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD SEP 4 PY 2009 VL 1216 IS 36 BP 6417 EP 6423 DI 10.1016/j.chroma.2009.07.008 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 489BE UT WOS:000269393700010 PM 19646708 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Charged Higgs Bosons in Decays of Top Quarks in pp Collisions at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID MASSLESS PARTICLES; CONSERVATION-LAWS; BROKEN SYMMETRIES AB We report on the first direct search for charged Higgs bosons decaying into cs in tt events produced by pp collisions at s=1.96 TeV. The search uses a data sample corresponding to an integrated luminosity of 2.2 fb(-1) collected by the CDF II detector at Fermilab and looks for a resonance in the invariant mass distribution of two jets in the lepton+jets sample of tt candidates. We observe no evidence of charged Higgs bosons in top quark decays. Hence, 95% upper limits on the top quark decay branching ratio are placed at B(t -> H(+)b)< 0.1 to 0.3 for charged Higgs boson masses of 60 to 150 GeV/c(2) assuming B(H+-> cs)=1.0. The upper limits on B(t -> H(+)b) are also used as model-independent limits on the decay branching ratio of top quarks to generic scalar charged bosons beyond the standard model. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Azfar, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Martinez, M.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Brigliadori, L.; Compostella, G.; Donini, J.; Dorigo, T.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Chou, J. P.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Moon, Chang-Seong/J-3619-2014; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015 OI Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678 FU U. S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak Ramp; D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R & D Agency; and the Academy of Finland. NR 23 TC 70 Z9 70 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 101803 DI 10.1103/PhysRevLett.103.101803 PG 7 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800012 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for a Standard Model Higgs Boson in WH -> lvbb in pp Collisions at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We present a search for a standard model Higgs boson produced in association with a W boson using 2.7 fb(-1) of integrated luminosity of pp collision data taken at s=1.96 TeV. Limits on the Higgs boson production rate are obtained for masses between 100 and 150 GeV/c(2). Through the use of multivariate techniques, the analysis achieves an observed (expected) 95% confidence level upper limit of 5.6 (4.8) times the theoretically expected production cross section for a standard model Higgs boson with a mass of 115 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Azfar, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Martinez, M.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bedeschi, F.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U. S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, U. K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 35 TC 28 Z9 28 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 101802 DI 10.1103/PhysRevLett.103.101802 PG 8 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800011 ER PT J AU Dong, S Yu, R Liu, JM Dagotto, E AF Dong, Shuai Yu, Rong Liu, J. -M. Dagotto, Elbio TI Striped Multiferroic Phase in Double-Exchange Model for Quarter-Doped Manganites SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZATION; FERROELECTRICITY; SEPARATION; FILMS; SITE AB The phase diagram of quarter-hole-doped perovskite manganites is investigated using the double-exchange model. An exotic striped type-II multiferroic phase, where 25% of the nearest-neighbor spin couplings are orthogonal to each other, is found in the narrow-bandwidth region. Comparing with the spiral-spin ordering phase of undoped manganites, the multiferroic Curie temperature of the new phase is estimated to be similar to 4 times higher, while the ferroelectric polarization is similar in magnitude. Our study provides a path for noncollinear spin multiferroics based on electronic self-organization, different from the traditional approach based on superexchange frustration. C1 [Dong, Shuai; Yu, Rong; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dong, Shuai; Yu, Rong; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dong, Shuai; Liu, J. -M.] Nanjing Univ, Nanjing Natl Lab Microstruct, Nanjing 210093, Peoples R China. [Liu, J. -M.] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China. RP Dong, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI YU, RONG/C-1506-2012; Yu, Rong/K-5854-2012; Dong (董), Shuai (帅)/A-5513-2008; Yu, Rong/H-3355-2016 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; FU NSF [DMR-0706020]; Division of Materials Science and Eng., U.S. DOE; 973 Projects of China [2009CB623303, 2009CB929501]; NSF of China [50832002] FX Work supported by the NSF (DMR-0706020) and the Division of Materials Science and Eng., U.S. DOE, under contract with UT-Battelle, LLC. S. D. and J. M. L. were supported by the 973 Projects of China (2009CB623303 and 2009CB929501) and NSF of China (50832002). NR 31 TC 28 Z9 29 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 107204 DI 10.1103/PhysRevLett.103.107204 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800055 PM 19792340 ER PT J AU Gazit, D Quaglioni, S Navratil, P AF Gazit, Doron Quaglioni, Sofia Navratil, Petr TI Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents in Chiral Effective Field Theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID PERTURBATION-THEORY; NUCLEAR-FORCES; HALF-LIFE; LAGRANGIANS; CAPTURE; RADIUS; MODEL AB The chiral low-energy constants c(D) and c(E) are constrained by means of accurate ab initio calculations of the A=3 binding energies and, for the first time, of the triton beta decay. We demonstrate that these low-energy observables allow a robust determination of the two undetermined constants, a result of the surprising fact that the determination of c(D) depends weakly on the short-range correlations in the wave functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and constrained by properties of the A=2 system and the present determination of c(D) and c(E), are successful in predicting properties of the A=3 and 4 systems. C1 [Gazit, Doron] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Quaglioni, Sofia; Navratil, Petr] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gazit, D (reprint author), Univ Washington, Inst Nucl Theory, Box 351550, Seattle, WA 98195 USA. RI Gazit, Doron/F-7909-2011 OI Gazit, Doron/0000-0002-0350-3266 FU LLNL [DE-AC52-07NA27344]; U. S. DOE/SC/NP [SCW0498, FG02-00ER41132]; U. S. Department of Energy [DE-FC02-07ER41457] FX We thank S. Coon and U. van Kolck for valuable discussions. Numerical calculations have been partly performed at the LLNL LC facilities. Prepared in part by LLNL under Contract No. DE-AC52-07NA27344. S. Q. and P. N. acknowledge support from the U. S. DOE/SC/NP ( Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant No. DE-FC02-07ER41457. D. G. acknowledges support from U. S. DOE Grant No. DE-FG02-00ER41132. NR 43 TC 124 Z9 125 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 102502 DI 10.1103/PhysRevLett.103.102502 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800014 PM 19792299 ER PT J AU Moss, WC King, MJ Blackman, EG AF Moss, William C. King, Michael J. Blackman, Eric G. TI Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONCUSSION AB Traumatic brain injury (TBI) has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design. C1 [Moss, William C.; King, Michael J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Blackman, Eric G.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Moss, WC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU DOD/ DOE Joint Munitions Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX W. C. M. thanks M. Moss for reading R. Glasser's article in the San Jose Mercury News [4-15-07] entitled "The Hidden Wounds of the Iraq War'' and saying "You can simulate that, can't you?'' We thank B. Watkins for support from the DOD/ DOE Joint Munitions Program, M. Hale and S. Lisanby for discussions as part of the Defense Science Study Group of the Institute for Defense Analyses ( E. G. B. also a member), and T. Gay and T. Matula for reading the manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 24 TC 71 Z9 73 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 108702 DI 10.1103/PhysRevLett.103.108702 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800064 PM 19792349 ER PT J AU Samtaney, R Loureiro, NF Uzdensky, DA Schekochihin, AA Cowley, SC AF Samtaney, R. Loureiro, N. F. Uzdensky, D. A. Schekochihin, A. A. Cowley, S. C. TI Formation of Plasmoid Chains in Magnetic Reconnection SO PHYSICAL REVIEW LETTERS LA English DT Article ID CURRENT SHEETS; SIMULATION; FIELD; LINE AB A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (10(4)< S < 10(8)) is reported. Large-aspect-ratio Sweet-Parker current sheets are shown to be unstable to super-Alfveacutenically fast formation of plasmoid (magnetic-island) chains. The plasmoid number scales as S(3/8) and the instability growth rate in the linear stage as S(1/4), in agreement with the theory by Loureiro et al. [Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, plasmoids continue to grow faster than they are ejected and completely disrupt the reconnection layer. These results suggest that high-Lundquist-number reconnection is inherently time-dependent and hence call for a substantial revision of the standard Sweet-Parker quasistationary picture for S > 10(4). C1 [Samtaney, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Loureiro, N. F.; Cowley, S. C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Uzdensky, D. A.] Princeton Univ, Dept Astrophys Sci, CMSO, Princeton, NJ 08544 USA. [Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Cowley, S. C.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. RP Samtaney, R (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Loureiro, Nuno/E-8719-2011; Schekochihin, Alexander/C-2399-2009 OI Loureiro, Nuno/0000-0001-9755-6563; FU U.S. DOE; NSF; STFC FX R. S. was supported by U.S. DOE, and D. A. U. by NSF CMSO. A. A. S. was supported STFC. R. S. and D. A. U. thank the Leverhulme Trust Network for Magnetised Plasma Turbulence for travel support. Simulations were performed at NERSC, NCSA and Tigress (Princeton). NR 31 TC 120 Z9 122 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 105004 DI 10.1103/PhysRevLett.103.105004 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800038 PM 19792323 ER PT J AU Ulrich, C Ament, LJP Ghiringhelli, G Braicovich, L Moretti Sala, M Pezzotta, N Schmitt, T Khaliullin, G van den Brink, J Roth, H Lorenz, T Keimer, B AF Ulrich, C. Ament, L. J. P. Ghiringhelli, G. Braicovich, L. Moretti Sala, M. Pezzotta, N. Schmitt, T. Khaliullin, G. van den Brink, J. Roth, H. Lorenz, T. Keimer, B. TI Momentum Dependence of Orbital Excitations in Mott-Insulating Titanates SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SCATTERING; TRANSITION-METAL OXIDES; LATIO3 AB High-resolution resonant inelastic x-ray scattering has been used to determine the momentum dependence of orbital excitations in Mott-insulating LaTiO(3) and YTiO(3) over a wide range of the Brillouin zone. The data are compared to calculations in the framework of lattice-driven and superexchange-driven orbital ordering models. A superexchange model in which the experimentally observed modes are attributed to two-orbiton excitations yields the best description of the data. C1 [Ulrich, C.; Khaliullin, G.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Ament, L. J. P.; van den Brink, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. [Ghiringhelli, G.] CNR INFM COHERENTIA, I-20133 Milan, Italy. [Ghiringhelli, G.; Braicovich, L.; Moretti Sala, M.; Pezzotta, N.] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy. [Braicovich, L.; Moretti Sala, M.; Pezzotta, N.] CNR INFM SOFT, I-20133 Milan, Italy. [Schmitt, T.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [van den Brink, J.] SLAC, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Roth, H.; Lorenz, T.] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. RP Ulrich, C (reprint author), Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RI Schmitt, Thorsten/A-7025-2010; van den Brink, Jeroen/E-5670-2011; Ghiringhelli, Giacomo/D-1159-2014; Moretti Sala, Marco/H-1034-2014 OI van den Brink, Jeroen/0000-0001-6594-9610; Ghiringhelli, Giacomo/0000-0003-0867-7748; Moretti Sala, Marco/0000-0002-9744-9976 FU DFG [SFB608] FX We thank M. W. Haverkort for useful discussions. L. A. thanks the MPI-FKF, Stuttgart, for its hospitality. The crystal growth in Cologne was supported by the DFG through SFB608. This work was performed at the ADRESS beam line of the SLS ( Paul Scherrer Institut) using the SAXES spectrometer developed jointly by Politecnico di Milano, SLS, and EPFL. NR 33 TC 31 Z9 31 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 107205 DI 10.1103/PhysRevLett.103.107205 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800056 PM 19792341 ER PT J AU Zhao, R Zhou, J Koschny, T Economou, EN Soukoulis, CM AF Zhao, R. Zhou, J. Koschny, Th. Economou, E. N. Soukoulis, C. M. TI Repulsive Casimir Force in Chiral Metamaterials SO PHYSICAL REVIEW LETTERS LA English DT Article AB We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. C1 [Zhao, R.; Zhou, J.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhao, R.; Zhou, J.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhao, R.] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China. [Koschny, Th.; Economou, E. N.; Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Koschny, Th.; Economou, E. N.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Economou, E. N.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. RP Zhao, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Zhao, Rongkuo/B-5731-2008; Economou, Eleftherios /E-6374-2010; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Zhou, Jiangfeng/0000-0002-6958-3342 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; European Community FET project PHOME [213390]; U. S. Department of Commerce NIST [70NANB7H6138]; U. S. Air Force grants; China Scholarship Council FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the European Community FET project PHOME ( contract No. 213390), U. S. Department of Commerce NIST 70NANB7H6138 and the U. S. Air Force grants. The author Rongkuo Zhao specially acknowledges the China Scholarship Council (CSC). NR 31 TC 138 Z9 140 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 103602 DI 10.1103/PhysRevLett.103.103602 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800024 PM 19792309 ER PT J AU Zhu, G Schuricke, M Steinmann, J Albrecht, J Ullrich, J Ben-Itzhak, I Zouros, TJM Colgan, J Pindzola, MS Dorn, A AF Zhu, G. Schuricke, M. Steinmann, J. Albrecht, J. Ullrich, J. Ben-Itzhak, I. Zouros, T. J. M. Colgan, J. Pindzola, M. S. Dorn, A. TI Controlling Two-Electron Threshold Dynamics in Double Photoionization of Lithium by Initial-State Preparation SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE-IONIZATION; CONTINUUM AB Double photoionization (DPI) and ionization-excitation (IE) of Li(2s) and Li(2p), state-prepared and aligned in a magneto-optical trap, were explored in a reaction microscope at the free-electron laser in Hamburg (FLASH). From 6 to 12 eV above threshold (h omega=85, 91 eV), total as well as differential DPI cross sections were observed to critically depend on the initial state and, in particular, on the alignment of the 2p orbital with respect to the VUV-light polarization, whereas no effect is seen for IE. The alignment sensitivity is traced back to dynamical electron correlation at threshold. C1 [Zhu, G.; Schuricke, M.; Steinmann, J.; Albrecht, J.; Ullrich, J.; Dorn, A.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Ullrich, J.] Ctr Free Elect Laser Sci, Max Planck Adv Study Grp, Hamburg, Germany. [Ben-Itzhak, I.] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. [Zouros, T. J. M.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Zhu, G (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. RI Zouros, Theo/C-7212-2011; Ben-Itzhak, Itzik/J-8273-2012; OI Zouros, Theo/0000-0002-5124-2128; Ben-Itzhak, Itzik/0000-0002-6214-3520; Colgan, James/0000-0003-1045-3858 FU U. S. Department of Energy [DE-AC5206NA25396]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy FX We are greatly indebted to R. Treusch, S. Du r sterer, and all other members of the scientific and technical team at FLASH. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC5206NA25396. This work was supported in part by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy. NR 17 TC 32 Z9 32 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2009 VL 103 IS 10 AR 103008 DI 10.1103/PhysRevLett.103.103008 PG 4 WC Physics, Multidisciplinary SC Physics GA 492FH UT WOS:000269639800022 PM 19792307 ER PT J AU Zuo, WY Moses, ME Hou, C Woodruff, WH West, GB Brown, JH AF Zuo, Wenyun Moses, Melanie E. Hou, Chen Woodruff, William H. West, Geoffrey B. Brown, James H. TI Response to Comments on "Energy Uptake and Allocation During Ontogeny" SO SCIENCE LA English DT Editorial Material ID GROWTH; METABOLISM; MODEL AB Our extended ontogenetic growth model is a theoretical model based on conservation of energy and general biological mechanisms underlying ontogenetic growth. We do not believe that the comments of Makarieva et al. and Sousa et al. expose substantive problems with our model. Nevertheless, they raise interesting, still unresolved questions and point to philosophical differences about the role of theory and of simple, general models as opposed to complicated, specific models. C1 [Zuo, Wenyun; Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Moses, Melanie E.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Hou, Chen] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Woodruff, William H.; West, Geoffrey B.; Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Woodruff, William H.; West, Geoffrey B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zuo, WY (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM wyzuo@unm.edu OI Hou, Chen/0000-0002-3665-225X NR 12 TC 4 Z9 4 U1 0 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 4 PY 2009 VL 325 IS 5945 DI 10.1126/science.1171949 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 490RY UT WOS:000269523200019 ER PT J AU Wang, XB Werhahn, JC Wang, LS Kowalski, K Laubereau, A Xantheas, SS AF Wang, Xue-Bin Werhahn, Jasper C. Wang, Lai-Sheng Kowalski, Karol Laubereau, Alfred Xantheas, Sotiris S. TI Observation of a Remarkable Temperature Effect in the Hydrogen Bonding Structure and Dynamics of the CN-(H2O) Cluster SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Letter ID ARGON PREDISSOCIATION SPECTROSCOPY; INITIO MOLECULAR-DYNAMICS; WATER CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; VIBRATIONAL SPECTROSCOPY; COUPLED-CLUSTER; X-CENTER-DOT-H2O X; ANION CLUSTERS; CM(-1) REGION; SOLVATION AB The CN-(H2O) Cluster represents a model diatomic monohydrate with multiple solvation sites. We report Joint experimental and theoretical studies of its structure and dynamics using temperature-control led photoelectron spectroscopy (PES) and ab initio electronic structure calculations. The observed PES spectra of CN-(H2O) display a remarkable temperature effect, namely that the T = 12 K spectrum shows an unexpectedly large blue shift of 0.25 eV in the electron binding energy relative to the room temperature (RT) spectrum. Extensive theoretical analysis of the potential energy function (PEF) of the cluster at the CCSD(T) level of theory reveals the existence of two nearly isoenergetic isomers corresponding to H2O forming a H-bond with either the C or the N atom, respectively. This results in four topologically distinct minima, i.e., CN-(HaOHb), CN-(HbOHa), NC-(HaOHb), and NC-(HbOHa). There are two main pathways connecting these minima: (i) CN- tumbling relative to water and (ii) water rocking relative to CN-. The relative magnitude of the barriers associated with these two motions reverses between low (pathway i is preferred) and high (pathway ii is preferred) temperatures, As a result, at T = 12 K the cluster adopts a structure that is close to the minimum energy CN-(H2O) configuration, while at RT it can effectively access regions of the PEF close to the transition state for pathway ii, explaining the surprisingly large spectral shift between the 12 K and RT PES spectra. C1 [Wang, Xue-Bin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Wang, Lai-Sheng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Kowalski, Karol] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Werhahn, Jasper C.; Laubereau, Alfred] Tech Univ Munich, Dept Phys E11, D-85748 Garching, Germany. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov; sotiris.xantheas@pnl.gov RI Xantheas, Sotiris/L-1239-2015 NR 48 TC 7 Z9 7 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 3 PY 2009 VL 113 IS 35 BP 9579 EP 9584 DI 10.1021/jp9034002 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 487EH UT WOS:000269253000001 PM 19708691 ER PT J AU Smilowitz, L Henson, BF Romero, JJ AF Smilowitz, L. Henson, B. F. Romero, J. J. TI Intercomparison of Calorimetry, Raman Spectroscopy, and Second Harmonic Generation Applied to Solid-Solid Phase Transitions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ENERGETIC NITRAMINE OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; BETA; HMX; SPECTRA; DELTA-OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; DEPENDENCE; ALPHA; SIZE AB This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described, and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-3,5,7-tetranitro-1.3,5,7-tetrazocine, C1 [Smilowitz, L.; Henson, B. F.; Romero, J. J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Smilowitz, L (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM smilo@lanl.gov FU Los Alamos National Laboratory; Departments of Energy and Defense FX The authors wish to acknowledge the support of the Science Campaign 2 and the Surety Program administered by Los Alamos National Laboratory, as well as the Joint Munitions Program administered by both the Departments of Energy and Defense. The authors also wish to acknowledge Dr. Jack B. Henderson of NETZSCH Instruments, Inc. for assistance with modifying the STA409 to allow for fiber optic access. NR 19 TC 5 Z9 5 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 3 PY 2009 VL 113 IS 35 BP 9650 EP 9657 DI 10.1021/jp902111c PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 487EH UT WOS:000269253000011 PM 19663390 ER PT J AU Arima, K Jiang, P Lin, DS Verdaguer, A Salmeron, M AF Arima, Kenta Jiang, Peng Lin, Deng-Sung Verdaguer, Albert Salmeron, Miquel TI Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POLARIZATION FORCE MICROSCOPY; POLAR SUNRISE; SEA-SALT; OZONE DESTRUCTION; NANOMETER-SCALE; THIN-FILMS; MOLECULAR-STRUCTURE; PROBE MICROSCOPY; IN-SITU; SURFACE AB The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO2 and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals, Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface. C1 [Jiang, Peng; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Arima, Kenta] Osaka Univ, Grad Sch Engn, Dept Precis Sci & Technol, Suita, Osaka 5650871, Japan. [Jiang, Peng; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lin, Deng-Sung] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Verdaguer, Albert] CIN2 CSIC ICN, Bellaterra 08193, Catalunya, Spain. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Verdaguer, Albert/A-4303-2008; Lin, Dengsung/A-4127-2009 OI Verdaguer, Albert/0000-0002-4855-821X; FU U.S. Department of Energy [DE-AC02-05CH11231]; Yamada Science Foundation; Spanish Ramon y Cajal Program FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. K.A. acknowledges financial support from the Yamada Science Foundation. A.V. acknowledges support from the Spanish Ramon y Cajal Program. We thank E. Wong for his technical support on SPFM. NR 47 TC 9 Z9 9 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 3 PY 2009 VL 113 IS 35 BP 9715 EP 9720 DI 10.1021/jp904151m PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 487EH UT WOS:000269253000019 PM 19708692 ER PT J AU Schmidt, J VandeVondele, J Kuo, IFW Sebastiani, D Siepmann, JI Hutter, J Mundy, CJ AF Schmidt, Jochen VandeVondele, Joost Kuo, I. -F. William Sebastiani, Daniel Siepmann, J. Ilja Hutter, Juerg Mundy, Christopher J. TI Isobaric-Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at Near-Ambient Conditions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RADIAL-DISTRIBUTION FUNCTIONS; BIAS MONTE-CARLO; 1ST PRINCIPLES; LIQUID WATER; CRYSTAL-STRUCTURE; PHASE-EQUILIBRIA; PRESSURE; TEMPERATURE; ENSEMBLE; SYSTEMS AB We present herein a comprehensive density functional theory study toward assessing the accuracy of two popular gradient-corrected exchange correlation functionals on the structure and density of liquid water at near ambient conditions in the isobaric-isothermal ensemble. Our results indicate that both PBE and BLYP functionals under predict the density and over structure the liquid. Adding the dispersion correction due to Grimme(1.2) improves the predicted densities for both BLYP and PBE in a significant manner. Moreover, the addition of the dispersion correction for BLYP yields an oxygen-oxygen radial distribution function in excellent agreement with experiment. Thus, we conclude that one can obtain a very satisfactory model for water using BLYP and a correction for dispersion. C1 [Schmidt, Jochen; Sebastiani, Daniel] Max Planck Inst Polymer Res, D-55021 Mainz, Germany. [VandeVondele, Joost; Hutter, Juerg] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland. [Kuo, I. -F. William] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. [Siepmann, J. Ilja] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Siepmann, J. Ilja] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Siepmann, J. Ilja] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Mundy, Christopher J.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Mundy, CJ (reprint author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55021 Mainz, Germany. EM chris.mundy@pnl.gov RI Sebastiani, Daniel/B-4670-2008; Hutter, Juerg/E-9244-2011; VandeVondele, Joost/L-6420-2013 OI Sebastiani, Daniel/0000-0003-2240-3938; VandeVondele, Joost/0000-0002-0902-5111 FU DFG [SE 1008/2 U.S.]; National Science Foundation [CBET-0756641]; U.S. Department of Energy's (DOE); Office of Basic Energy Sciences Chemical, Geosciences, and Biosciences; Department of Energy's, Office of Biological and Environmental Research; Pacific Northwest National Laboratory FX C.J.M. acknowledges fruitful discussions with Phill Geissler regarding connections of this work to perturbation theory. This work was funded by the DFG grant SE 1008/2 U.S.) and the National Science Foundation (CBET-0756641). C.J.M. is supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences Chemical, Geosciences, and Biosciences division. PNNL is operated by Battelle for the U.S. DOE. A portion of the research was performed using the Computing resource NWice located in the EMSL, a national scientific user facility sponsored by the Department of Energy's, Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 53 TC 204 Z9 205 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 3 PY 2009 VL 113 IS 35 BP 11959 EP 11964 DI 10.1021/jp901990u PG 6 WC Chemistry, Physical SC Chemistry GA 487EE UT WOS:000269252700020 PM 19663399 ER PT J AU Andersson, DA Casillas, L Baskes, MI Lezama, JS Conradson, SD AF Andersson, David A. Casillas, Luis Baskes, Michael I. Lezama, Juan S. Conradson, Steven D. TI Modeling of the Phase Evolution in Mg1-xAlxB2 (0 < x < 0.5) and Its Experimental Signatures SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID EMBEDDED-ATOM-METHOD; TOTAL-ENERGY CALCULATIONS; EXCHANGE-COUPLED LAYERS; PARTIALLY ORDERED NIMN; AUGMENTED-WAVE METHOD; SUPERCONDUCTING MGB2; 1ST-PRINCIPLES CALCULATIONS; ELECTRONIC-STRUCTURE; ELASTIC PROPERTIES; BASIS-SET AB Despite the chemical and structural simplicity of MgB2, at 39 K this compound has the highest known superconducting transition temperature (T-c) of any binary compound. Electron doping by substituting Al for Mg leads to decreasing T-c, and the observed concentration dependent rate of decrease has been proposed to arise from the nonideal character of MgB2-AlB2 solid solutions, which derives from the existence of an ordered Mg0.5Al0.5B2 compound. Heterogeneous nanoseale structure patterns in solid solutions have emerged as an important concept for complex materials, ranging from actinide alloys and oxides to high-temperature cuprate superconductors and manganite-based materials exhibiting colossal magnetoresistivity. In this work we investigate the formation of structural heterogeneities in Mg1-x,Al-x,B-2, which take the form of nanoscale Al-Al and Al-Mg domains of different geometries and sizes, using molecular statics and Monte Carlo simulations, and in particular we study the corresponding signatures in diffraction experiments. In order to undertake this task, we first derive appropriate Mg-Al-B semiempirical potentials within the modified embedded atom method formalism. These potentials are also applied to explore the equilibrium Mg1-xAlxB2 phase diagram for 0 < x < 0.5. Additionally, density functional theory calculations were utilized to study the influence of heterogeneities on the electronic structure and charge distribution in Mg1-xAlxB2. C1 [Andersson, David A.; Casillas, Luis; Baskes, Michael I.; Lezama, Juan S.; Conradson, Steven D.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Conradson, SD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM conradson@lanl.gov FU OBES Division of Chernical Sciences [W-7405]; Laboratory Directed Research and Development (LDRD) Program; Scaborg Institute at Los Alamos National Laboratory; National Nuclear Security Administration of the U.S. [DE-AC52-06NA25396] FX Work at Los Alamos National Laboratory was funded by OBES Division of Chernical Sciences under the Heavy Element Chemistry Program (Contract No. W-7405) and the Laboratory Directed Research and Development (LDRD) Program.. D.A.A. also acknowledges support from the Scaborg Institute at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396. We are grateful to G. Wang for making his MEAM Monte Carlo simulation code available to us. NR 81 TC 2 Z9 2 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 3 PY 2009 VL 113 IS 35 BP 11965 EP 11976 DI 10.1021/jp902505r PG 12 WC Chemistry, Physical SC Chemistry GA 487EE UT WOS:000269252700021 PM 19673495 ER PT J AU Eres, G Rouleau, CM Yoon, M Puretzky, AA Jackson, JJ Geohegan, DB AF Eres, Gyula Rouleau, C. M. Yoon, Mina Puretzky, A. A. Jackson, J. J. Geohegan, D. B. TI Model for Self-Assembly of Carbon Nanotubes from Acetylene Based on Real-Time Studies of Vertically Aligned Growth Kinetics SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; IN-SITU MEASUREMENTS; FULLERENE FORMATION; LOW-TEMPERATURES; NUCLEATION; POLYYNE; POLYMERIZATION; NANOPARTICLES; COALESCENCE; PYROLYSIS AB Time-resolved optical reflectivity was used to study the kinetics in the early stages of vertically aligned carbon nanotube array growth from a molecular beam of acetylene. The molecular beam environment was used to suppress gas phase reaction pathways and limit the growth to surface reactions specific to the molecular structure of acetylene. The observed acetylene flux dependent induction delay and the threshold for vertically aligned growth are characteristic features of heterogeneous chain reactions. Propagation of chain reactions requires regeneration of the active sites that can occur only if catalytic activity is transferred from the metal catalyst film to surface carbon species. After the active site transformation, acetylene self-assembles into carbon structures of progressively increasing size such as chains, graphene fragments, and nanotubes. In this paper we show that a conceptual framework supported by ab initio density functional theory calculations in which active carbon species facilitate incorporation of new carbon readily explains recent results in vertically aligned nanotube growth that are puzzling in the context of the diffusion/precipitation model. C1 [Eres, Gyula; Rouleau, C. M.; Yoon, Mina; Puretzky, A. A.; Jackson, J. J.; Geohegan, D. B.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yoon, Mina] Fritz Haber Inst, Max Planck Gesell, D-14195 Berlin, Germany. [Yoon, Mina] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Eres, G (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017; Rouleau, Christopher/Q-2737-2015; Yoon, Mina/A-1965-2016 OI Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214; Rouleau, Christopher/0000-0002-5488-3537; Yoon, Mina/0000-0002-1317-3301 FU U.S. Department of Energy FX This work is supported by the Division of Materials Sciences and Engineering, Basic Energy Sciences, U.S. Department of Energy. The authors thank Dr. Asmus Meyer-Plath for providing the ChemSketch code for a carbon nanotube. NR 60 TC 36 Z9 36 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 3 PY 2009 VL 113 IS 35 BP 15484 EP 15491 DI 10.1021/jp9001127 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 487EC UT WOS:000269252500004 ER EF