FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Green, JR Jellinek, J Berry, RS AF Green, Jason R. Jellinek, Julius Berry, R. Stephen TI Space-time properties of Gram-Schmidt vectors in classical Hamiltonian evolution SO PHYSICAL REVIEW E LA English DT Article DE atomic clusters; chaos; many-body problems; nonlinear dynamical systems; potential energy surfaces; statistical mechanics; vectors ID LOCAL LYAPUNOV EXPONENTS; LENNARD-JONES CLUSTERS; PROBABILITY-DISTRIBUTIONS; LIAPUNOV EXPONENTS; SINGULAR VECTORS; CHAOTIC DYNAMICS; SYSTEMS; FLUIDS; LOCALIZATION; EQUILIBRIUM AB Not all tangent space directions play equivalent roles in the local chaotic motions of classical Hamiltonian many-body systems. These directions are numerically represented by basis sets of mutually orthogonal Gram-Schmidt vectors, whose statistical properties may depend on the chosen phase space-time domain of a trajectory. We examine the degree of stability and localization of Gram-Schmidt vector sets simulated with trajectories of a model three-atom Lennard-Jones cluster. Distributions of finite-time Lyapunov exponent and inverse participation ratio spectra formed from short-time histories reveal that ergodicity begins to emerge on different time scales for trajectories spanning different phase-space regions, in a narrow range of total energy and history length. Over a range of history lengths, the most localized directions were typically the most unstable and corresponded to atomic configurations near potential landscape saddles. C1 [Green, Jason R.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Green, Jason R.; Jellinek, Julius] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Green, Jason R.; Berry, R. Stephen] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Green, Jason R.; Berry, R. Stephen] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Green, JR (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. EM jg525@cam.ac.uk; jellinek@anl.gov; berry@uchicago.edu RI Green, Jason/C-5432-2009 FU National Science Foundation [OISE-0700911]; Argonne National Laboratory/University of Chicago Joint Theory Institute; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC-02-06CH11357] FX J.R.G. acknowledges support from the National Science Foundation (Grant No. OISE-0700911), the Argonne National Laboratory/University of Chicago Joint Theory Institute, and helpful discussions with David J. Wales. J. J. was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy under Contract No. DE-AC-02-06CH11357. NR 42 TC 8 Z9 8 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066205 DI 10.1103/PhysRevE.80.066205 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000040 PM 20365252 ER PT J AU Kugland, NL Gregori, G Bandyopadhyay, S Brenner, CM Brown, CRD Constantin, C Glenzer, SH Khattak, FY Kritcher, AL Niemann, C Otten, A Pasley, J Pelka, A Roth, M Spindloe, C Riley, D AF Kugland, N. L. Gregori, G. Bandyopadhyay, S. Brenner, C. M. Brown, C. R. D. Constantin, C. Glenzer, S. H. Khattak, F. Y. Kritcher, A. L. Niemann, C. Otten, A. Pasley, J. Pelka, A. Roth, M. Spindloe, C. Riley, D. TI Evolution of elastic x-ray scattering in laser-shocked warm dense lithium SO PHYSICAL REVIEW E LA English DT Article DE foils; ionisation; lithium; plasma diagnostics; plasma heating by laser; plasma shock waves; plasma simulation ID ONE-COMPONENT PLASMA; STATISTICAL-MECHANICS; THOMSON SCATTERING; MONTE-CARLO; MATTER; ENERGY; EQUATION; CODE AB We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li. C1 [Kugland, N. L.; Constantin, C.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Kugland, N. L.; Glenzer, S. H.; Kritcher, A. L.; Niemann, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gregori, G.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Bandyopadhyay, S.; Brenner, C. M.; Spindloe, C.] Rutherford Appleton Lab, CLF, Chilton OX11 0QX, Didcot, England. [Brenner, C. M.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. [Brown, C. R. D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Brown, C. R. D.] AWE Plc, Reading RG7 4PR, Berks, England. [Khattak, F. Y.] Kohat Univ Sci & Technol, Dept Phys, Kohat 26000, Nwfp, Pakistan. [Kritcher, A. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. [Otten, A.; Pelka, A.; Roth, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Riley, D.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. RP Kugland, NL (reprint author), Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. RI KHATTAK, Fida Younus/L-2404-2015; Brennan, Patricia/N-3922-2015; OI Brenner, Ceri/0000-0003-0347-4415 FU LDRD [08-ERI-002, 08-LW-004]; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL Lawrence Scholar Program; Science and Technology Facilities Council of the United Kingdom; EPSRC [EP/G007187/1, EP/C001869/1]; German BMBF FX We would like to thank the staff of the RAL CLF for their assistance. The work of N.L.K., A. L. K., and S. H. G. was supported by LDRD Grants No. 08-ERI-002 and No. 08-LW-004, and was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We also acknowledge support from the LLNL Lawrence Scholar Program. G. G. was partially supported by the Science and Technology Facilities Council of the United Kingdom and by EPSRC Grant No. EP/G007187/1. A.O. was supported by the German BMBF. F.Y.K and D. R. were supported by EPSRC Grant No. EP/C001869/1. NR 51 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066406 DI 10.1103/PhysRevE.80.066406 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000073 PM 20365285 ER PT J AU Larkin, J Bandi, MM Pumir, A Goldburg, WI AF Larkin, Jason Bandi, M. M. Pumir, Alain Goldburg, Walter I. TI Power-law distributions of particle concentration in free-surface flows SO PHYSICAL REVIEW E LA English DT Article DE probability; turbulence ID TURBULENCE; RANGE AB Particles floating on the surface of a turbulent incompressible fluid accumulate along string-like structures, while leaving large regions of the flow domain empty. This is reflected experimentally by a very peaked probability distribution function of c(r), the coarse-grained particle concentration at scale r, around c(r)=0, with a power-law decay over two decades of c(r), Pi(c(r))proportional to c(r)(r)(-beta). The positive exponent beta(r) decreases with scale in the inertial range and stays approximately constant in the dissipative range, thus, indicating a qualitative difference between the dissipative and the inertial ranges of scales, also visible in the first moment of c(r). C1 [Larkin, Jason; Goldburg, Walter I.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bandi, M. M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bandi, M. M.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. [Pumir, Alain] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon, France. RP Larkin, J (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. FU U.S. National Science Foundation [DMR-0604477]; French ANR; IDRIS; U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We acknowledge very helpful discussions with G. Falkovich and K. Gawedzki. Funding was provided by the U.S. National Science Foundation Grant No. DMR-0604477 and by the French ANR (contract DSPET) and by IDRIS. This work was partially carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 22 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066301 DI 10.1103/PhysRevE.80.066301 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000049 PM 20365261 ER PT J AU Mau, Y Hagberg, A Meron, E AF Mau, Yair Hagberg, Aric Meron, Ehud TI Dual-mode spiral vortices SO PHYSICAL REVIEW E LA English DT Article DE bifurcation; chaos; oscillations; pattern formation; spatiotemporal phenomena; vortices ID GINZBURG-LANDAU EQUATION; LOCALIZED STRUCTURES; SPATIOTEMPORAL PATTERNS; HOPF BIFURCATIONS; TURING PATTERNS; SYSTEM; BIRHYTHMICITY; INSTABILITIES; CONVECTION; DESIGN AB We show that spiral vortices in oscillatory systems can lose stability to secondary modes to form dual-mode spiral vortices. The secondary modes grow at the vortex core where the oscillation amplitude vanishes but are nonlinearly damped by the oscillatory mode away from the core. Gradients of the oscillation phase, induced by the hosted secondary mode, can lead to additional hosting events that culminate in periodic core oscillations or in a novel form of spatiotemporal chaos. The results of this study apply to physical, chemical, and biological systems that go through cusp-Hopf, fold-Hopf, and Hopf-Turing bifurcations. C1 [Mau, Yair; Meron, Ehud] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. [Hagberg, Aric] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Meron, Ehud] Ben Gurion Univ Negev, BIDR, Dept Solar Energy & Environm Phys, IL-84990 Sede Boqer, Israel. RP Mau, Y (reprint author), Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. RI MERON, EHUD/F-1810-2012; Mau, Yair/A-9673-2013 NR 25 TC 5 Z9 5 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 065203 DI 10.1103/PhysRevE.80.065203 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000008 PM 20365220 ER PT J AU Oppelstrup, T Bulatov, VV Donev, A Kalos, MH Gilmer, GH Sadigh, B AF Oppelstrup, Tomas Bulatov, Vasily V. Donev, Aleksandar Kalos, Malvin H. Gilmer, George H. Sadigh, Babak TI First-passage kinetic Monte Carlo method SO PHYSICAL REVIEW E LA English DT Article DE Brownian motion; Green's function methods; Monte Carlo methods; N-body problems; reaction-diffusion systems ID 2-SPECIES ANNIHILATION; STOCHASTIC SIMULATION; DIFFUSION; ALGORITHMS; MODELS AB We present an efficient method for Monte Carlo simulations of diffusion-reaction processes. Introduced by us in a previous paper [Phys. Rev. Lett. 97, 230602 (2006)], our algorithm skips the traditional small diffusion hops and propagates the diffusing particles over long distances through a sequence of superhops, one particle at a time. By partitioning the simulation space into nonoverlapping protecting domains each containing only one or two particles, the algorithm factorizes the N-body problem of collisions among multiple Brownian particles into a set of much simpler single-body and two-body problems. Efficient propagation of particles inside their protective domains is enabled through the use of time-dependent Green's functions (propagators) obtained as solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm is event-driven and asynchronous; each Brownian particle propagates inside its own protective domain and on its own time clock. The algorithm reproduces the statistics of the underlying Monte Carlo model exactly. Extensive numerical examples demonstrate that for an important class of diffusion-reaction models the algorithm is efficient at low particle densities, where other existing algorithms slow down severely. C1 [Oppelstrup, Tomas; Bulatov, Vasily V.; Donev, Aleksandar; Kalos, Malvin H.; Gilmer, George H.; Sadigh, Babak] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Oppelstrup, Tomas] Royal Inst Technol KTH, S-10044 Stockholm, Sweden. [Donev, Aleksandar] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Oppelstrup, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 21 TC 28 Z9 28 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066701 DI 10.1103/PhysRevE.80.066701 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000084 PM 20365296 ER PT J AU Weinstein, M Horn, D AF Weinstein, Marvin Horn, David TI Dynamic quantum clustering: A method for visual exploration of structures in data SO PHYSICAL REVIEW E LA English DT Article DE eigenvalues and eigenfunctions; Schrodinger equation; wave functions ID DIFFUSION MAPS AB A given set of data points in some feature space may be associated with a Schroumldinger equation whose potential is determined by the data. This is known to lead to good clustering solutions. Here we extend this approach into a full-fledged dynamical scheme using a time-dependent Schroumldinger equation. Moreover, we approximate this Hamiltonian formalism by a truncated calculation within a set of Gaussian wave functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states opening up the possibility of exploration of relationships among data points through observation of varying dynamical distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing such as dimensional reduction through singular-value decomposition or feature filtering. C1 [Weinstein, Marvin] Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. [Horn, David] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Weinstein, M (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. FU U.S. DOE [DE-AC02-76SF00515] FX This work was supported by the U.S. DOE under Contract No. DE-AC02-76SF00515. NR 14 TC 10 Z9 10 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066117 DI 10.1103/PhysRevE.80.066117 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000029 PM 20365241 ER PT J AU Widmer-Cooper, A Harrowell, P AF Widmer-Cooper, Asaph Harrowell, Peter TI Central role of thermal collective strain in the relaxation of structure in a supercooled liquid SO PHYSICAL REVIEW E LA English DT Article DE glass transition; liquid mixtures; liquid theory; molecular dynamics method; plastic flow; stress relaxation; supercooling ID DYNAMICS; GLASS; DEFORMATION; MIXTURE; FLOW AB The spatial distribution of structural relaxation in a supercooled liquid is studied using molecular dynamics simulations of a two-dimensional binary mixture. It is shown that the spatial heterogeneity of the relaxation along with the time scale of the relaxation is determined, not by the frequency with which particles move a distance pi/2k(Bragg), but by the frequency with which particles can achieve persistent displacements. We show that these persistent displacements are achieved through the coupled action of local reorganizations and unrecoverable thermal strains. C1 [Widmer-Cooper, Asaph; Harrowell, Peter] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Widmer-Cooper, Asaph] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Widmer-Cooper, A (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RI Widmer-Cooper, Asaph/E-6923-2010 OI Widmer-Cooper, Asaph/0000-0001-5459-6960 NR 36 TC 10 Z9 10 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 061501 DI 10.1103/PhysRevE.80.061501 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BD UT WOS:000273227500073 PM 20365173 ER PT J AU Balbekov, V AF Balbekov, V. TI Transverse modes of a bunched beam with space charge dominated impedance SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Transverse coherent oscillations of a bunched beam in a ring accelerator are considered with space charge dominated impedance, taking into account linear synchrotron oscillations. A general equation of the bunch eigenmodes is derived, its exact analytical solution is presented for boxcar bunch, and numerical solutions are found for several realistic models. Both low and high synchrotron frequency approximations are considered and compared, fields of their applicability are determined, and some estimations are developed in the intermediate region. It is shown that most of the bunch eigenmodes are stabilized by Landau damping due to the space charge produced tune spread. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Balbekov, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM balbekov@fnal.gov NR 11 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 124402 DI 10.1103/PhysRevSTAB.12.124402 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600010 ER PT J AU Franchetti, G Hofmann, I Fischer, W Zimmermann, F AF Franchetti, G. Hofmann, I. Fischer, W. Zimmermann, F. TI Incoherent effect of space charge and electron cloud SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RESONANCES; RINGS AB Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e. g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters. C1 [Franchetti, G.; Hofmann, I.] GSI, D-64291 Darmstadt, Germany. [Fischer, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zimmermann, F.] CERN, CH-1211 Geneva, Switzerland. RP Franchetti, G (reprint author), GSI, D-64291 Darmstadt, Germany. NR 51 TC 11 Z9 11 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 124401 DI 10.1103/PhysRevSTAB.12.124401 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600009 ER PT J AU Jing, C Gao, F Antipov, S Yusof, Z Conde, M Power, JG Xu, P Zheng, S Chen, H Tang, C Gai, W AF Jing, C. Gao, F. Antipov, S. Yusof, Z. Conde, M. Power, J. G. Xu, P. Zheng, S. Chen, H. Tang, C. Gai, W. TI Observation of wakefields in a beam-driven photonic band gap accelerating structure SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM(01)- and TM(02)-like) and dipole (TM(11)- and TM(12)-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be similar to 10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to similar to 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations. C1 [Jing, C.; Gao, F.; Antipov, S.; Yusof, Z.; Conde, M.; Power, J. G.; Gai, W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Jing, C.; Gao, F.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Xu, P.; Zheng, S.; Chen, H.; Tang, C.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. RP Jing, C (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. FU Department of Energy, High Energy Physics Division [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, High Energy Physics Division, under Contract No. DE-AC02-06CH11357. We thank Huyu (Allen) Zhao, James Zmuda, and Marvin Lien for their work in building the stepping motor-driven translation stage. NR 21 TC 17 Z9 17 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 121302 DI 10.1103/PhysRevSTAB.12.121302 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600007 ER PT J AU Leemann, SC Andersson, A Eriksson, M Lindgren, LJ Wallen, E Bengtsson, J Streun, A AF Leemann, S. C. Andersson, A. Eriksson, M. Lindgren, L. -J. Wallen, E. Bengtsson, J. Streun, A. TI Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID EMITTANCE; LATTICE AB MAX IV will be Sweden's next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 angstrom radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance. C1 [Leemann, S. C.; Andersson, A.; Eriksson, M.; Lindgren, L. -J.; Wallen, E.] Lund Univ, Max Lab, S-22363 Lund, Sweden. [Bengtsson, J.] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Streun, A.] Paul Scherrer Inst, SLS, CH-5232 Villigen, Switzerland. RP Leemann, SC (reprint author), Lund Univ, Max Lab, S-22363 Lund, Sweden. EM simon.leemann@maxlab.lu.se NR 47 TC 40 Z9 40 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 120701 DI 10.1103/PhysRevSTAB.12.120701 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600003 ER PT J AU Rihaoui, M Piot, P Power, JG Yusof, Z Gai, W AF Rihaoui, M. Piot, P. Power, J. G. Yusof, Z. Gai, W. TI Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID EMITTANCE GROWTH; ELECTRON-BEAM AB We report on an experimental study of space-charge effects in a radio-frequency (rf) photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam. C1 [Rihaoui, M.; Piot, P.] No Illinois Univ, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. [Rihaoui, M.; Piot, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Rihaoui, M.; Power, J. G.; Yusof, Z.; Gai, W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Piot, P.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Rihaoui, M (reprint author), No Illinois Univ, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. NR 34 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 124201 DI 10.1103/PhysRevSTAB.12.124201 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600008 ER PT J AU Stygar, WA Corcoran, PA Ives, HC Spielman, RB Douglas, JW Whitney, BA Mostrom, MA Wagoner, TC Speas, CS Gilliland, TL Allshouse, GA Clark, RE Donovan, GL Hughes, TP Humphreys, DR Jaramillo, DM Johnson, MF Kellogg, JW Leeper, RJ Long, FW Martin, TH Mulville, TD Pelock, MD Peyton, BP Poukey, JW Ramirez, JJ Reynolds, PG Seamen, JF Seidel, DB Seth, AP Sharpe, AW Shoup, RW Smith, JW Van De Valde, DM Wavrik, RW AF Stygar, W. A. Corcoran, P. A. Ives, H. C. Spielman, R. B. Douglas, J. W. Whitney, B. A. Mostrom, M. A. Wagoner, T. C. Speas, C. S. Gilliland, T. L. Allshouse, G. A. Clark, R. E. Donovan, G. L. Hughes, T. P. Humphreys, D. R. Jaramillo, D. M. Johnson, M. F. Kellogg, J. W. Leeper, R. J. Long, F. W. Martin, T. H. Mulville, T. D. Pelock, M. D. Peyton, B. P. Poukey, J. W. Ramirez, J. J. Reynolds, P. G. Seamen, J. F. Seidel, D. B. Seth, A. P. Sharpe, A. W. Shoup, R. W. Smith, J. W. Van De Valde, D. M. Wavrik, R. W. TI 55-TW magnetically insulated transmission-line system: Design, simulations, and performance SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CATHODE PLASMA FORMATION; POST-HOLE CONVOLUTE; ELECTRON FLOW; Z-PINCHES; DIODES; PROPAGATION; ACCELERATOR AB We describe herein a system of self-magnetically insulated vacuum transmission lines (MITLs) that operated successfully at 20 MA, 3 MV, and 55 TW. The system delivered the electromagnetic-power pulse generated by the Z accelerator to a physics-package load on over 1700 Z shots. The system included four levels that were electrically in parallel. Each level consisted of a water flare, vacuum-insulator stack, vacuum flare, and 1.3-m-radius conical outer MITL. The outputs of the four outer MITLs were connected in parallel by a 7.6-cm-radius 12-post double-post-hole vacuum convolute. The convolute added the currents of the four outer MITLs, and delivered the combined current to a single 6-cm-long inner MITL. The inner MITL delivered the current to the load. The total initial inductance of the stack-MITL system was 11 nH. A 300-element transmission-line-circuit model of the system has been developed using the TL code. The model accounts for the following: (i) impedance and electrical length of each of the 300 circuit elements, (ii) electron emission from MITL-cathode surfaces wherever the electric field has previously exceeded a constant threshold value, (iii) Child-Langmuir electron loss in the MITLs before magnetic insulation is established, (iv) MITL-flow-electron loss after insulation, assuming either collisionless or collisional electron flow, (v) MITL-gap closure, (vi) energy loss to MITL conductors operated at high lineal current densities, (vii) time-dependent self-consistent inductance of an imploding z-pinch load, and (viii) load resistance, which is assumed to be constant. Simulations performed with the TL model demonstrate that the nominal geometric outer-MITL-system impedance that optimizes overall performance is a factor of similar to 3 greater than the convolute-load impedance, which is consistent with an analytic model of an idealized MITL-load system. Power-flow measurements demonstrate that, until peak current, the Z stack-MITL system performed as expected. TL calculations of the peak electromagnetic power at the stack, stack energy, stack voltage, outer-MITL current, and load current, as well as the pinch-implosion time, agree with measurements to within 5%. After peak current, TL calculations and measurements diverge, which appears to be due in part to the idealized pinch model assumed by TL. The results presented suggest that the design of the Z accelerator's stack-MITL system, and the TL model, can serve as starting points for the design of stack-MITL systems of future superpower accelerators. C1 [Stygar, W. A.; Speas, C. S.; Allshouse, G. A.; Donovan, G. L.; Hughes, T. P.; Humphreys, D. R.; Jaramillo, D. M.; Kellogg, J. W.; Leeper, R. J.; Long, F. W.; Martin, T. H.; Mulville, T. D.; Pelock, M. D.; Poukey, J. W.; Ramirez, J. J.; Seamen, J. F.; Seidel, D. B.; Seth, A. P.; Sharpe, A. W.; Smith, J. W.; Wavrik, R. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Corcoran, P. A.; Douglas, J. W.; Whitney, B. A.] L3 Commun, San Leandro, CA 94577 USA. [Ives, H. C.; Van De Valde, D. M.] EG&G, Albuquerque, NM 87107 USA. [Spielman, R. B.; Wagoner, T. C.; Gilliland, T. L.; Peyton, B. P.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Mostrom, M. A.] Mission Res Corp, Albuquerque, NM 87110 USA. [Clark, R. E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Johnson, M. F.; Reynolds, P. G.] Team Specialty Prod Corp, Albuquerque, NM 87123 USA. [Shoup, R. W.] ITT Corp, Albuquerque, NM 87110 USA. RP Stygar, WA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 85 TC 24 Z9 35 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 120401 DI 10.1103/PhysRevSTAB.12.120401 PG 19 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600002 ER PT J AU Wenk, HR Barton, N Bortolotti, M Vogel, SC Voltolini, M Lloyd, GE Gonzalez, GB AF Wenk, Hans-Rudolf Barton, N. Bortolotti, M. Vogel, S. C. Voltolini, M. Lloyd, G. E. Gonzalez, G. B. TI Dauphin, twinning and texture memory in polycrystalline quartz. Part 3: texture memory during phase transformation SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Quartz phase transformation; Texture memory; Twinning; Neutron diffraction ID ALPHA-BETA-TRANSITION; SYNCHROTRON DIFFRACTION IMAGES; IN-SITU OBSERVATION; NEUTRON-DIFFRACTION; TEMPERATURE-DEPENDENCE; TOF DIFFRACTOMETER; HIGH-PRESSURE; X-RAY; THERMODYNAMICS; ZIRCONIUM AB Samples of quartz-bearing rocks were heated above the alpha (trigonal)-beta (hexagonal) phase transformation of quartz (625-950A degrees C) to explore changes in preferred orientation patterns. Textures were measured both in situ and ex situ with neutron, synchrotron X-ray and electron backscatter diffraction. The trigonal-hexagonal phase transformation does not change the orientation of c- and a-axes, but positive and negative rhombs become equal in the hexagonal beta-phase. In naturally deformed quartzites measured by neutron diffraction a perfect texture memory was observed, i.e. crystals returned to the same trigonal orientation they started from, with no evidence of twin boundaries. Samples measured by electron back-scattered diffraction on surfaces show considerable twinning and memory loss after the phase transformation. In experimentally deformed quartz rocks, where twinning was induced mechanically before heating, the orientation memory is lost. A mechanical model can explain the memory loss but so far it does not account for the persistence of the memory in quartzites. Stresses imposed by neighboring grains remain a likely cause of texture memory in this mineral with a very high elastic anisotropy. If stresses are imposed experimentally the internal stresses are released during the phase transformation and the material returns to its original state prior to deformation. Similarly, on surfaces there are no tractions and thus texture memory is partially lost. C1 [Wenk, Hans-Rudolf; Bortolotti, M.; Voltolini, M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Barton, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vogel, S. C.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. [Gonzalez, G. B.] ESRF, F-38043 Grenoble, France. [Lloyd, G. E.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Lujan Center, LANL/G-4896-2012; Bortolotti, Mauro/H-2159-2012; Voltolini, Marco/G-2781-2015 FU U. S. Department of Energy [DE-AC52-06NA25396, DE-FG02-05ER15637]; NSF [EAR 0836402] FX Neutron scattering experiments were performed with HIPPO at the Lujan Center, Los Alamos National Laboratory. This facility is funded by the U. S. Department of Energy's Office of Basic Energy Sciences under contract DE-AC52-06NA25396. Synchrotron X-ray diffraction was done at ESRF (beamline ID15-B) and HASY (beamline PETRA 2). We acknowledge access to these facilities. Some samples were obtained from Jan Tullis (Brown University) and Erik Rybacki (GfZ Potsdam). Research was supported by NSF (EAR 0836402), DOE (DE-FG02-05ER15637) and IGPP-LLNL. Paulo Monteiro kindly provided the quartzite from Brazil. The work of NB was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 (UCRL-JRNL-220357). Comments on the manuscript by D. Mainprice and an anonymous reviewer were very helpful for making improvements. NR 70 TC 8 Z9 11 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD DEC PY 2009 VL 36 IS 10 BP 567 EP 583 DI 10.1007/s00269-009-0302-6 PG 17 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 523LV UT WOS:000272075800003 ER PT J AU Chen, H Wilks, SC Bonlie, JD Chen, SN Cone, KV Elberson, LN Gregori, G Meyerhofer, DD Myatt, J Price, DF Schneider, MB Shepherd, R Stafford, DC Tommasini, R Maren, R Beiersdorfer, P AF Chen, Hui Wilks, S. C. Bonlie, J. D. Chen, S. N. Cone, K. V. Elberson, L. N. Gregori, G. Meyerhofer, D. D. Myatt, J. Price, D. F. Schneider, M. B. Shepherd, R. Stafford, D. C. Tommasini, R. Van Maren, R. Beiersdorfer, P. TI Making relativistic positrons using ultraintense short pulse lasers SO PHYSICS OF PLASMAS LA English DT Article DE plasma production by laser; plasma sources; positron sources; relativistic plasmas ID PAIR PRODUCTION; FEMTOSECOND-LASER; ELECTRON; PLASMA; BEAMS; CONDENSATION; TARGETS; PHOTON AB This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10(10) positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (similar to 1 ps) ultraintense (similar to 1x10(20) W/cm(2)) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators. C1 [Chen, Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gregori, G.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Meyerhofer, D. D.; Myatt, J.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Tommasini, Riccardo/A-8214-2009; OI Tommasini, Riccardo/0000-0002-1070-3565; chen, sophia n./0000-0002-3372-7666 FU U.S. DOE [DE-AC52-07NA27344, DE-FC52-08NA28302]; LLNL's Institute for Laser Science and Applications.; University of Rochester; New York State Energy Research and Development Authority; [LDRD-08-LW-058] FX This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344 and was funded by LDRD-08-LW-058. Additional support was provided from LLNL's Institute for Laser Science and Applications. Work performed by the University of Rochester was supported by the U.S. DOE Office of Inertial Confinement Fusion under Grant No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The authors gratefully acknowledge support from the staff at Jupiter Laser Facility and Dr. Mark Eckart, Dr. Andrew Ng, Dr. Robert Cauble, Dr. William Goldstein, and Dr. Don Correll, and discussions with Dr. Robert Heeter. NR 46 TC 16 Z9 16 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 122702 DI 10.1063/1.3271355 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200035 ER PT J AU Dorf, MA Davidson, RC Startsev, EA Qin, H AF Dorf, Mikhail A. Davidson, Ronald C. Startsev, Edward A. Qin, Hong TI Adiabatic formation of a matched-beam distribution for an alternating-gradient quadrupole lattice SO PHYSICS OF PLASMAS LA English DT Article DE plasma diagnostics; plasma simulation; plasma-beam interactions ID FOCUSING CHANNEL; HALO FORMATION; ION-BEAM; SIMULATION; BUNCHES; LIMITS AB The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code. C1 [Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dorf, MA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-76CH-O3073] FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH-O3073 with the Princeton Plasma Physics Laboratory. NR 31 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123107 DI 10.1063/1.3271467 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200043 ER PT J AU Fredrickson, ED Crocker, NA Bell, RE Darrow, DS Gorelenkov, NN Kramer, GJ Kubota, S Levinton, FM Liu, D Medley, SS Podesta, M Tritz, K White, RB Yuh, H AF Fredrickson, E. D. Crocker, N. A. Bell, R. E. Darrow, D. S. Gorelenkov, N. N. Kramer, G. J. Kubota, S. Levinton, F. M. Liu, D. Medley, S. S. Podesta, M. Tritz, K. White, R. B. Yuh, H. TI Modeling fast-ion transport during toroidal Alfveacuten eigenmode avalanches in National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Review DE plasma Alfven waves; plasma diagnostics; plasma instability; plasma simulation; plasma toroidal confinement; plasma transport processes; Tokamak devices ID FUSION TEST REACTOR; INDUCED ALFVEN EIGENMODES; BEAM-DRIVEN INSTABILITIES; DIII-D TOKAMAK; NEUTRAL-BEAM; INTERNAL KINK; PARTICLE EXPERIMENTS; ENERGETIC PARTICLES; MHD SPECTROSCOPY; ALPHA-PARTICLES AB Experiments on the National Spherical Torus Experiment [M. Ono , Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfveacuten eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments. C1 [Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Levinton, F. M.; Yuh, H.] Nova Photon, Princeton, NJ 08543 USA. [Liu, D.; Podesta, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21287 USA. RP Fredrickson, ED (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM efredrickson@pppl.gov RI White, Roscoe/D-1773-2013; Liu, Deyong/Q-2797-2015 OI White, Roscoe/0000-0002-4239-2685; Liu, Deyong/0000-0001-9174-7078 FU U.S. DOE [DE-AC02-09CH11466, DE-FG03-99ER54527, DE-FG0206ER54867, DE-FG02-99ER54527] FX This work was supported by U.S. DOE Contract Nos. DE-AC02-09CH11466, DE-FG03-99ER54527, DE-FG0206ER54867, and DE-FG02-99ER54527. NR 119 TC 39 Z9 39 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 122505 DI 10.1063/1.3265965 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200031 ER PT J AU Hey, DS Foord, ME Key, MH LePape, SL Mackinnon, AJ Patel, PK Ping, Y Akli, KU Stephens, RB Bartal, T Beg, FN Fedosejevs, R Friesen, H Tiedje, HF Tsui, YY AF Hey, D. S. Foord, M. E. Key, M. H. LePape, S. L. Mackinnon, A. J. Patel, P. K. Ping, Y. Akli, K. U. Stephens, R. B. Bartal, T. Beg, F. N. Fedosejevs, R. Friesen, H. Tiedje, H. F. Tsui, Y. Y. TI Laser-accelerated proton conversion efficiency thickness scaling SO PHYSICS OF PLASMAS LA English DT Article DE foils; gold; plasma-beam interactions ID FAST IGNITION; PLASMA; DRIVEN; SOLIDS; BEAMS AB The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10(19) W/cm(2) Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 mu m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 mu m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH(3) on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data. C1 [Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom Co, La Jolla, CA 92186 USA. [Bartal, T.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada. RP Hey, DS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hey2@llnl.gov RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 25 TC 9 Z9 9 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123108 DI 10.1063/1.3270079 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200044 ER PT J AU Lee, WW Kolesnikov, RA AF Lee, W. W. Kolesnikov, R. A. TI Response to "Comment on 'On higher-order corrections to gyrokinetic Vlasov-Poisson equations in the long wavelength limit'" [Phys. Plasmas 16, 124701 (2009)] SO PHYSICS OF PLASMAS LA English DT Editorial Material DE plasma kinetic theory; plasma toroidal confinement; plasma transport processes; plasma turbulence; Poisson equation; Tokamak devices; Vlasov equation AB We show in this response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin [Phys. Fluids 26, 3524 (1983)]. This nonlinear contribution in phi(2) is indeed of the order of k(perpendicular to)(4) in the long wavelength limit and remains finite for zero ion temperature, in contrast with the nonlinear term by Parra and Catto [Plasma Phys. Controlled Fusion 50, 065014 (2008)], which is of the order of k(perpendicular to)(2) and diverges for T(i)-> 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k(perpendicular to)(2)phi. C1 [Lee, W. W.; Kolesnikov, R. A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lee, WW (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 4 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 124702 DI 10.1063/1.3272154 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200067 ER PT J AU Ping, Y Kirkwood, RK Wang, TL Clark, DS Wilks, SC Meezan, N Berger, RL Wurtele, J Fisch, NJ Malkin, VM Valeo, EJ Martins, SF Joshi, C AF Ping, Y. Kirkwood, R. K. Wang, T. -L. Clark, D. S. Wilks, S. C. Meezan, N. Berger, R. L. Wurtele, J. Fisch, N. J. Malkin, V. M. Valeo, E. J. Martins, S. F. Joshi, C. TI Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma SO PHYSICS OF PLASMAS LA English DT Article DE gas lasers; optical pulse generation; optical pumping; plasma density; plasma heating by laser; plasma jets; plasma light propagation; plasma simulation; Raman lasers; stimulated Raman scattering ID CROSS-SECTION; AMPLIFICATION; GENERATION; REGIME AB Progress on developing a plasma amplifier/compressor based on stimulated Raman scattering of nanosecond laser pulses is reported. Generation of a millijoule seed pulse at a wavelength that is redshifted relative to the pump beam has been achieved using an external Raman gas cell. By interacting the shifted picosecond seed pulse and the nanosecond pump pulse in a gas jet plasma at a density of similar to 10(19) cm(-3), the upper limit of the pump intensity to avoid angular spray of the amplified seed has been determined. The Raman amplification has been studied as a function of the pump and seed intensities. Although the heating of plasma by the nanosecond pump pulse results in strong Landau damping of the plasma wave, an amplified pulse with an energy of up to 14 mJ has been demonstrated, which is, to the best of our knowledge, the highest output energy so far by Raman amplification in a plasma. One-dimensional particle-in-cell simulations indicate that the saturation of amplification is consistent with onset of particle trapping, which might be overcome by employing a shorter seed pulse. C1 [Ping, Y.; Kirkwood, R. K.; Clark, D. S.; Wilks, S. C.; Meezan, N.; Berger, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wang, T. -L.; Martins, S. F.; Joshi, C.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Wurtele, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fisch, N. J.; Malkin, V. M.; Valeo, E. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 FU U.S. Department of Energy [DE-AC52-07NA27344] FX We wish to thank JLF Team for laser operation and G. Freeze for technical support. We also thank W. B. Mori and the OSIRIS consortium for use of the OSIRIS code. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 32 TC 26 Z9 27 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123113 DI 10.1063/1.3276739 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200049 ER PT J AU Svidzinski, VA Li, H Rose, HA Albright, BJ Bowers, KJ AF Svidzinski, V. A. Li, H. Rose, H. A. Albright, B. J. Bowers, K. J. TI Particle in cell simulations of fast magnetosonic wave turbulence in the ion cyclotron frequency range SO PHYSICS OF PLASMAS LA English DT Article DE cyclotron resonance; plasma instability; plasma ion acoustic waves; plasma magnetohydrodynamics; plasma oscillations; plasma simulation; plasma turbulence ID COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ANISOTROPY; PLASMAS; FLUID; FIELD AB Fully electromagnetic particle in cell simulations of nonlinear waves propagation and interaction are performed in two-dimensional plane geometry in magnetized plasma in ion cyclotron frequency range. A spectrum of fast magnetosonic wave modes with wave numbers parallel and perpendicular to the uniform equilibrium magnetic field is launched into plasma and the nonlinear dynamics of these waves is analyzed. Results show that the wave magnetic energy spectrum cascades to smaller scales. In the low frequency in the magnetohydrodynamic regime, the cascade is basically isotropic. Once entering the high frequency kinetic regime the cascade exhibits strong anisotropy, it extends to much smaller scales in direction perpendicular to the equilibrium magnetic field. The shape of the cascade is established after a few ion cyclotron periods and most of the energy in the cascade stays in the fast wave oscillations. Collisionless damping on electrons is the main dissipation channel in these results. C1 [Svidzinski, V. A.; Li, H.; Rose, H. A.; Albright, B. J.; Bowers, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Svidzinski, VA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Albright, Brian/0000-0002-7789-6525 NR 18 TC 24 Z9 24 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 122310 DI 10.1063/1.3274559 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200026 ER PT J AU Wang, TL Michta, D Lindberg, RR Charman, AE Martins, SF Wurtele, JS AF Wang, T. -L. Michta, D. Lindberg, R. R. Charman, A. E. Martins, S. F. Wurtele, J. S. TI Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension SO PHYSICS OF PLASMAS LA English DT Article DE Maxwell equations; plasma light propagation; plasma simulation; Vlasov equation AB Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov , Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations. C1 [Wang, T. -L.; Martins, S. F.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. [Michta, D.; Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lindberg, R. R.] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. [Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Wang, TL (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 FU Lawrence Livermore University Education Partnership Program; U.S. Department of Energy (DOE) [DE-FG02-04ER41289]; NNSA [DE-FG5207NA28122] FX This work was supported by the Lawrence Livermore University Education Partnership Program, by the U.S. Department of Energy (DOE), Grant No. DE-FG02-04ER41289, and by the NNSA under the SSAA Program through U.S. DOE Research Grant No. DE-FG5207NA28122. We thank W. B. Mori for the use of the OSIRIS code for conducting this comparative study. NR 23 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123110 DI 10.1063/1.3280012 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200046 ER PT J AU Welch, DR Rose, DV Bruner, N Clark, RE Oliver, BV Hahn, KD Johnston, MD AF Welch, Dale R. Rose, David V. Bruner, Nichelle Clark, Robert E. Oliver, Bryan V. Hahn, Kelly D. Johnston, Mark D. TI Hybrid simulation of electrode plasmas in high-power diodes SO PHYSICS OF PLASMAS LA English DT Article DE numerical analysis; plasma density; plasma diodes; plasma kinetic theory; plasma simulation ID BEAM AB New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss. C1 [Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), Voss Sci LLC, 418 Washington St, Albuquerque, NM 87108 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX The authors would like to thank Jim Threadgold for his perseverance in pursuing the SMP diode, and John Maenchen, John Porter, and Bill Stygar for many years of discussion and support. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. NR 21 TC 16 Z9 19 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123102 DI 10.1063/1.3270471 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200038 ER PT J AU Brown, H Tarter, CB AF Brown, Harold Tarter, C. Bruce TI Herbert Frank York SO PHYSICS TODAY LA English DT Biographical-Item C1 [Brown, Harold] Ctr Strateg & Int Studies, Washington, DC 20006 USA. [Tarter, C. Bruce] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Brown, H (reprint author), Ctr Strateg & Int Studies, Washington, DC 20006 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD DEC PY 2009 VL 62 IS 12 BP 64 EP 65 PG 2 WC Physics, Multidisciplinary SC Physics GA 526JF UT WOS:000272283600023 ER PT J AU Crease, RP AF Crease, Robert P. TI Surely you're joking, Mr Duchamp! SO PHYSICS WORLD LA English DT Article C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD DEC PY 2009 VL 22 IS 12 BP 28 EP 33 PG 6 WC Physics, Multidisciplinary SC Physics GA 531YH UT WOS:000272708900028 ER PT J AU McAndrews, HJ Thomsen, MF Arridge, CS Jackman, CM Wilson, RJ Henderson, MG Tokar, RL Khurana, KK Sittler, EC Coates, AJ Dougherty, MK AF McAndrews, H. J. Thomsen, M. F. Arridge, C. S. Jackman, C. M. Wilson, R. J. Henderson, M. G. Tokar, R. L. Khurana, K. K. Sittler, E. C. Coates, A. J. Dougherty, M. K. TI Plasma in Saturn's nightside magnetosphere and the implications for global circulation SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Magnetospheric; Ions; Planetary wind; Magnetotail ID JOVIAN MAGNETOSPHERE; SPECTROMETER; ATMOSPHERE; COROTATION; ENCELADUS AB We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50R(S). The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic held strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma. (C) 2009 Published by Elsevier Ltd. C1 [McAndrews, H. J.; Thomsen, M. F.; Wilson, R. J.; Henderson, M. G.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Coates, A. J.] UCL, Ctr Planetary Sci, UCL Birkbeck, London WC1E 6BT, England. [Jackman, C. M.; Dougherty, M. K.] Imperial Coll London, Space & Atmospher Phys Grp, London SW7 2BW, England. [Khurana, K. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Sittler, E. C.] NASA, Goddard Space Flight Ctr, Heliosphys Sci Div, Geospace Phys Lab Code 673, Greenbelt, MD 20771 USA. RP McAndrews, HJ (reprint author), Los Alamos Natl Lab, POB 1663,D466, Los Alamos, NM 87545 USA. EM hazelm@lanl.gov; mthomsen@lanl.gov; csa@mssl.ucl.ac.uk; c.jackman@imperial.ac.uk; rjw@lanl.gov; mghenderson@lanl.gov; rlt@lanl.gov; kkhurana@igpp.ucla.edu; Edward.C.Sittler@nasa.gov; ajc@mssl.ucl.ac.uk; m.dougherty@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Henderson, Michael/A-3948-2011; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; Henderson, Michael/0000-0003-4975-9029; Jackman, Caitriona/0000-0003-0635-7361 FU US DOE; NASA Cassini program; JPL [1243218]; STFC; ISSI FX The work at Los Alamos was performed under the auspices of the US DOE and was supported by the NASA Cassini program. Work at Southwest Research Institute was supported by the JPL Contract 1243218. Cassini is managed by the jet Propulsion Laboratory for NASA. Work at Imperial was supported by the STFC C.S.A. and A.J.C. were supported in this work by the STFC rolling grant to MSSL/UCL. Part of this work was discussed during a tearn meeting at the International Space Science Institute in Bern, Switzerland. HJM, MFT, CSA and ECS acknowledge funding from ISSI to attend this meeting. NR 39 TC 61 Z9 61 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1714 EP 1722 DI 10.1016/j.pss.2009.03.003 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100008 ER PT J AU Masters, A Achilleos, N Bertucci, C Dougherty, MK Kanani, SJ Arridge, CS McAndrews, HJ Coates, AJ AF Masters, A. Achilleos, N. Bertucci, C. Dougherty, M. K. Kanani, S. J. Arridge, C. S. McAndrews, H. J. Coates, A. J. TI Surface waves on Saturn's dawn flank magnetopause driven by the Kelvin-Helmholtz instability SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Magnetosphere; Magnetopause; Waves; Kelvin-Helmholtz instability ID WIND DYNAMIC PRESSURE; MAGNETIC-FIELD; SOLAR-WIND; MAGNETOSPHERIC BOUNDARY; HYDROMAGNETIC STABILITY; EARTHS MAGNETOPAUSE; RECONNECTION; VORTICES; FLUX; DISCONTINUITY AB Crossings of Saturn's magnetopause made by the Cassini spacecraft on 12, 13 and 17 March 2006 are analysed. During this period Cassini's trajectory was approximately parallel to the magnetopause boundary given by a model of the surface. Magnetic field and electron data are used to identify excursions into the magnetosheath bounded by crossings of the magnetopause current layer. Minimum variance analysis of the magnetic field vector measurements is used to determine the normal to the boundary for each crossing. The normals corresponding to the crossings oscillate about an average orientation that is consistent with the unperturbed normal predicted by the surface model. This reveals the presence of regular boundary waves with a direction of propagation found to be within 24 degrees of Saturn's rotational equator. Two categories of boundary wave are identified: the first with a period of the order of hours, and the second with a period of 45+/-9 min. Based on the propagation direction and a comparison of magnetospheric and magnetosheath magnetic fields, we conclude that both types of wave were driven by the Kelvin-Helmholtz instability. The observed boundary perturbations are consistent with a superposition of different types of surface wave activity. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Masters, A.; Bertucci, C.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Blackett Lab, London SW7 2AZ, England. [Achilleos, N.] Univ London Imperial Coll Sci Technol & Med, Dept Phys & Astron, Atmospher Phys Lab, London WC1E 6BT, England. [Bertucci, C.] Inst Astron & Space Phys, Buenos Aires, DF, Argentina. [Kanani, S. J.; Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Dorking RH5 6NT, Surrey, England. [Kanani, S. J.; Arridge, C. S.; Coates, A. J.] UCL, Ctr Planetary Sci, London WC1E 6BT, England. [McAndrews, H. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Masters, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Blackett Lab, Prince Consort Road, London SW7 2AZ, England. EM adam.masters02@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Bertucci, Cesar/0000-0002-2540-5384; Achilleos, Nicholas/0000-0002-5886-3509 FU UK STFC; Imperial College London FX AM acknowledges useful discussions with K. Nykyri, M.G. Kivelson and the support of the Royal Astronomical Society. We acknowledge the support of the MAG data processing/distribution staff and L.K. Gilbert and G.R. Lewis for ELS data processing. This work was supported by UK STFC through the award of a studentship (AM) and research grants to MSSL/UCL and Imperial College London. NR 51 TC 36 Z9 36 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1769 EP 1778 DI 10.1016/j.pss.2009.02.010 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100013 ER PT J AU Arridge, CS McAndrews, HJ Jackman, CM Forsyth, C Walsh, AP Sittler, EC Gilbert, LK Lewis, GR Russell, CT Coates, AJ Dougherty, MK Collinson, GA Wellbrock, A Young, DT AF Arridge, C. S. McAndrews, H. J. Jackman, C. M. Forsyth, C. Walsh, A. P. Sittler, E. C. Gilbert, L. K. Lewis, G. R. Russell, C. T. Coates, A. J. Dougherty, M. K. Collinson, G. A. Wellbrock, A. Young, D. T. TI Plasma electrons in Saturn's magnetotail: Structure, distribution and energisation SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Cassini; Magnetotail; Plasma sheet; Electrons ID MAGNETIC RECONNECTION; MAGNETOSPHERE; SPECTROMETER; SHEET; JUPITER; FIELD AB In this paper Saturn's nightside and pre-dawn electron (0.5 eV-28 keV) plasma sheet is studied using Cassini plasma electron and magnetic field data from 2006. Case studies are presented which exemplify the typical and atypical states of the plasma sheet, and are complemented by a statistical study of the plasma sheet. It will be shown that Saturn's nightside and pre-dawn electron plasma sheet exists in two states: a quiescent state with a steady electron temperature of similar to 100 eV and where the electron distribution functions are best characterised by Kappa distributions, and a disturbed state where the electrons are hot (similar to 1 keV) and often seen in alternating layers between warm and hot populations. Evidence is also presented for bimodal cold/warm (both quiet and disturbed states) and warm/hot distributions (disturbed states). The disturbed states are qualitatively similar to electron distributions from Earth's magnetotail during intervals of reconnection and we argue that these disturbed states also result from periods of tail reconnection. We present statistics of electron number density, temperature, partial electron beta, and pressure, and show that large values of partial beta are necessary but not sufficient to uniquely identify the central plasma sheet. Finally the thermodynamic properties of the electron plasma sheet are studied and we show that the electrons behave isothermally. These results are important for modelling and theoretical analyses, and for use in studies which examine dynamics in Saturn's magnetosphere. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Arridge, C. S.; Forsyth, C.; Walsh, A. P.; Gilbert, L. K.; Lewis, G. R.; Coates, A. J.; Collinson, G. A.; Wellbrock, A.] Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Gilbert, L. K.; Lewis, G. R.; Coates, A. J.; Wellbrock, A.] UCL, UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Sittler, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McAndrews, H. J.] Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Los Alamos, NM 87545 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Jackman, C. M.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Space & Atmospher Phys Grp, London SW7 2AZ, England. [Young, D. T.] SW Res Inst, San Antonio, TX 78228 USA. [Wellbrock, A.] UCL, Dept Phys & Astron, Atmospher Phys Lab, London WC1E 6BT, England. RP Arridge, CS (reprint author), Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM csa@mssl.ucl.ac.uk RI Arridge, Christopher/A-2894-2009; Forsyth, Colin/E-4159-2010; Walsh, Andrew/E-6701-2011; Collinson, Glyn/D-5700-2012; Coates, Andrew/C-2396-2008; OI Arridge, Christopher/0000-0002-0431-6526; Forsyth, Colin/0000-0002-0026-8395; Coates, Andrew/0000-0002-6185-3125; Walsh, Andrew/0000-0002-1682-1212; Jackman, Caitriona/0000-0003-0635-7361; Russell, Christopher/0000-0003-1639-8298 FU NASA [1243218]; International Space Science Institute FX C.S.A. acknowledges useful discussions with N. Andre, A.N. Fazakerley, S. Grimald, J.S. Leisner, J. Matthews and A.M. Rymer. The authors thank S. Kellock, R Slootweg, T. Seears and L.-N. Alconcel at Imperial College for MAG data processing. C.S.A. thanks K.H. Arridge and J. Matthews for valuable comments on the manuscript. C.S.A., AJ.C. and C.F. were funded in this work by the STFC rolling grant to MSSL/UCL. A.P.W., G.A.C. and AW were funded by STFC quota studentships. E.C.S. and D.T.Y. were supported by NASA contract 1243218 with NASA/JPL. Cassini CAPS/ELS and MAG data processing activities, at MSSL and Imperial College, respectively, were funded by STFC. C.S.A., H.J.M., E.C.S., K.K.K. and C.T.R. also acknowledge funding from the International Space Science Institute. NR 46 TC 22 Z9 22 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 2032 EP 2047 DI 10.1016/j.pss.2009.09.007 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100039 ER PT J AU Kang, BG Osburn, L Kopsell, D Tuskan, GA Cheng, ZM AF Kang, Byung-guk Osburn, Lori Kopsell, Dean Tuskan, Gerald A. Cheng, Zong-Ming TI Micropropagation of Populus trichocarpa 'Nisqually-1': the genotype deriving the Populus reference genome SO PLANT CELL TISSUE AND ORGAN CULTURE LA English DT Article DE Activated charcoal; Cytokinin; Gelling agent; Gelrite; Tissue culture; Poplar ID TISSUE CULTURE MEDIA; ACTIVATED-CHARCOAL; PLANT-REGENERATION; NORWAY SPRUCE; CHLOROPHYLL; INVITRO; TRANSFORMATION; EMBRYOGENESIS; MORPHOGENESIS; CLONES AB Populus serves as a model tree for biotechnology and molecular biology research due to the availability of the reference genome sequence of Populus trichocarpa (Torr. & Gray) genotype 'Nisqually-1'. However, 'Nisqually-1' has been shown to be very recalcitrant to micropropagation, regeneration and transformation. In this study, a highly efficient micropropagation protocol from greenhouse-grown shoot tips of 'Nisqually-1' was established. The optimal micropropagation protocol involves growing in vitro shoots in plant growth regulator-free Murashige and Skoog (MS) basal medium supplemented with 3% sucrose, 0.3% Gelrite(A (R)) and 5-10 g L(-1) of activated charcoal. Plants grown on this medium were significantly longer, and contained significantly higher concentrations of chlorophyll. This highly effective protocol provides a consistent supply of quality leaf and stem materials throughout the year for transformation experiments and other in vitro manipulations, therefore eliminating inconsistency due to seasonal and greenhouse environmental variations and the need for repetitive tissue sterilization. C1 [Kang, Byung-guk; Osburn, Lori; Kopsell, Dean; Cheng, Zong-Ming] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Cheng, ZM (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM zcheng@utk.edu RI Tuskan, Gerald/A-6225-2011 OI Tuskan, Gerald/0000-0003-0106-1289 FU DOEBioenergy Center (BESC); US Department of Energy/Oak Ridge National Laboratory; Tennessee Agricultural Experiment Station; Office of Biological and Environmental Research in the DOE Office of Science FX This project was supported in part by DOEBioenergy Center (BESC) grant, by the US Department of Energy/Oak Ridge National Laboratory (subcontract to Z.-M.C.), and by the Tennessee Agricultural Experiment Station. The BESC is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 35 TC 15 Z9 19 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6857 J9 PLANT CELL TISS ORG JI Plant Cell Tissue Organ Cult. PD DEC PY 2009 VL 99 IS 3 BP 251 EP 257 DI 10.1007/s11240-009-9596-9 PG 7 WC Biotechnology & Applied Microbiology; Plant Sciences SC Biotechnology & Applied Microbiology; Plant Sciences GA 515WP UT WOS:000271503900002 ER PT J AU Byrne, SL Guiney, E Donnison, IS Mur, LAJ Milbourne, D Barth, S AF Byrne, Stephen Laurence Guiney, Emma Donnison, Iain S. Mur, Luis A. J. Milbourne, Dan Barth, Susanne TI Identification of genes involved in the floral transition at the shoot apical meristem of Lolium perenne L. by use of suppression subtractive hybridisation SO PLANT GROWTH REGULATION LA English DT Article DE Lolium perenne; Suppression subtractive hybridisation; Flowering; Heading ID TRANSCRIPTION FACTOR FAMILY; MADS-BOX GENES; VERNALIZATION RESPONSE; ARABIDOPSIS-THALIANA; FLOWERING TIME; DOMAIN PROTEINS; DNA METHYLATION; GENOME-WIDE; RYEGRASS; RICE AB Generally, heading in Lolium perenne L. (perennial ryegrass) is associated with a reduction in the feed quality of the forage and therefore extending the period of vegetative growth during the growing season will contribute to an improvement in quality. The genetic control of floral transition has been well studied in model plant species but less research has been done in economically important crop species such as perennial ryegrass. A differential gene expression study was performed between two full sibling lines of L. perenne with contrasting flowering time. Suppression subtractive hybridization was used to identify 155 transcripts differentially expressed between the two sibling lines in the shoot apical meristem after primary and during secondary induction. Transcripts with a putative role in the floral transition were further characterized, through floral induction stages, by real time RT-PCR. This revealed five genes with greater than tenfold difference in expression between the lines during floral induction. Furthermore, a putative methyl binding domain protein and bHLH transcription factor were identified, which show clear differential expression patterns through floral induction and may act as potential enhancers of flowering in L. perenne. C1 [Byrne, Stephen Laurence; Guiney, Emma; Milbourne, Dan; Barth, Susanne] TEAGASC, Crops Res Ctr, Carlow, Ireland. [Donnison, Iain S.; Mur, Luis A. J.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Gogerddan SY23 3EB, Ceredigion, Wales. RP Byrne, SL (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM stephen.byrne@teagasc.ie RI Donnison, Iain/K-6138-2014; Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Mur, Luis/0000-0002-0961-9817; Donnison, Iain/0000-0001-6276-555X; Byrne, Stephen/0000-0002-1179-2272 FU Teagasc, Ireland FX S. Byrne was funded by a Walsh Fellowship awarded by Teagasc, Ireland. NR 44 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6903 EI 1573-5087 J9 PLANT GROWTH REGUL JI Plant Growth Regul. PD DEC PY 2009 VL 59 IS 3 BP 215 EP 225 DI 10.1007/s10725-009-9407-7 PG 11 WC Plant Sciences SC Plant Sciences GA 510KT UT WOS:000271088100004 ER PT J AU Gao, JP Ajjawi, I Manoli, A Sawin, A Xu, CC Froehlich, JE Last, RL Benning, C AF Gao, Jinpeng Ajjawi, Imad Manoli, Arthur Sawin, Andrew Xu, Changcheng Froehlich, John E. Last, Robert L. Benning, Christoph TI FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases SO PLANT JOURNAL LA English DT Article DE FAD4; map-based cloning; metalloenzyme; histidine motif; phosphatidylglycerol ID BACTERIUM MYXOCOCCUS-XANTHUS; ACYL-CARRIER-PROTEIN; MUTANT; PHOSPHATIDYLGLYCEROL; EXPRESSION; THALIANA; PLANTS; GENE; DIACYLGLYCEROL; BIOSYNTHESIS AB P>Polar membrane glycerolipids occur in a mixture of molecular species defined by a polar head group and characteristic acyl groups esterified to a glycerol backbone. A molecular species of phosphatidylglycerol specific to chloroplasts of plants carries a Delta 3-trans hexadecenoic acid in the sn-2 position of its core glyceryl moiety. The fad4-1 mutant of Arabidopsis thaliana missing this particular phosphatidylglycerol molecular species lacks the necessary fatty acid desaturase, or a component thereof. The overwhelming majority of acyl groups associated with membrane lipids in plants contains double bonds with a cis configuration. However, FAD4 is unusual because it is involved in the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. As a first step towards the analysis of this unusual desaturase reaction, the FAD4 gene was identified by mapping of the FAD4 locus and coexpression analysis with known lipid genes. FAD4 encodes a predicted integral membrane protein that appears to be unrelated to classic membrane bound fatty acid desaturases based on overall sequence conservation. However, the FAD4 protein contains two histidine motifs resembling those of metalloproteins such as fatty acid desaturases. FAD4 is targeted to the plastid. Overexpression of the cDNA in transgenic Arabidopsis led to increased accumulation of the Delta 3-trans hexadecanoyl group in phosphatidylglycerol relative to wild type. Taken together these results are consistent with the hypothesis that FAD4 is the founding member of a novel class of fatty acid desaturases. C1 [Gao, Jinpeng; Ajjawi, Imad; Manoli, Arthur; Sawin, Andrew; Last, Robert L.; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Xu, Changcheng] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Froehlich, John E.] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. [Last, Robert L.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Last, RL (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM lastr@msu.edu RI Last, Robert/D-9197-2011; Gao, Jinpeng/F-8460-2012; OI Last, Robert/0000-0001-6974-9587 FU NSF Arabidopsis [MCB-0519740]; DOE [DE-FD02-98ER20305, DE-FG02-91ER20021]; NSF [MCB-0741395] FX We are grateful to John Ohlrogge for his advice and critique of the manuscript, to Dan Jones for help with the mass spectrometry analysis and Barry Williams and Kristine Cox for help with yeast functional assays. We thank John Browse for providing the Arabidopsis fad4-1 allele, Federica Brandizzi for providing the plasmid VKH18-EN6-Sec12-vYPF and Peter Griac and Maria Simockova for the crd1 mutant. This work was funded by NSF Arabidopsis 2010 grant MCB-0519740 to RL, CB and others, by DOE grant DE-FD02-98ER20305 to CB and NSF grant MCB-0741395 to CB. JEF was funded by DOE grant DE-FG02-91ER20021 to Ken Keegstra. NR 41 TC 27 Z9 31 U1 2 U2 13 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD DEC PY 2009 VL 60 IS 5 BP 832 EP 839 DI 10.1111/j.1365-313X.2009.04001.x PG 8 WC Plant Sciences SC Plant Sciences GA 525BU UT WOS:000272188900007 PM 19682287 ER PT J AU Li, M Xiong, GY Li, R Cui, JJ Tang, D Zhang, BC Pauly, M Cheng, ZK Zhou, YH AF Li, Ming Xiong, Guangyan Li, Rui Cui, Jiajun Tang, Ding Zhang, Baocai Pauly, Markus Cheng, Zhukuan Zhou, Yihua TI Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth SO PLANT JOURNAL LA English DT Article DE OsCSLD4; cell-wall biosynthesis; plant growth; dwarfism; rice ID SIGNAL-TRANSDUCTION; XYLAN BIOSYNTHESIS; DEFICIENT MUTANT; ALPHA-SUBUNIT; CSL GENES; ARABIDOPSIS; PROTEIN; ENCODES; HOMOGALACTURONAN; FAMILY AB P>Cellulose synthase-like (CSL) proteins of glycosyltransferase family 2 (GT2) are believed to be involved in the biosynthesis of cell-wall polymers. The CSL D sub-family (CSLD) is common to all plants, but the functions of CSLDs remain to be elucidated. We report here an in-depth characterization of a narrow leaf and dwarf1 (nd1) rice mutant that shows significant reduction in plant growth due to retarded cell division. Map-based cloning revealed that ND1 encodes OsCSLD4, one of five members of the CSLD sub-family in rice. OsCSLD4 is mainly expressed in tissues undergoing rapid growth. Expression of OsCSLD4 fluorescently tagged at the C- or N-terminus in rice protoplast cells or Nicotiana benthamiana leaves showed that the protein is located in the endoplasmic reticulum or Golgi vesicles. Golgi localization was verified using phenotype-rescued transgenic plants expressing OsCSLD4-GUS under the control of its own promoter. Two phenotype-altered tissues, culms and root tips, were used to investigate the specific wall defects. Immunological studies and monosaccharide compositional and glycosyl linkage analyses explored several wall compositional effects caused by disruption of OsCSLD4, including alterations in the structure of arabinoxylan and the content of cellulose and homogalacturonan, which are distinct in the monocot grass species Oryza sativa (rice). The inconsistent alterations in the two tissues and the observable structural defects in primary walls indicate that OsCSLD4 plays important roles in cell-wall formation and plant growth. C1 [Li, Ming; Xiong, Guangyan; Li, Rui; Cui, Jiajun; Tang, Ding; Zhang, Baocai; Cheng, Zhukuan; Zhou, Yihua] Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res, Beijing 100101, Peoples R China. [Pauly, Markus] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Pauly, Markus] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Cheng, ZK (reprint author), Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res, Beijing 100101, Peoples R China. EM zkcheng@genetics.ac.cn; yhzhou@genetics.ac.cn RI Pauly, Markus/B-5895-2008; li, rui/M-6671-2014 OI Pauly, Markus/0000-0002-3116-2198; FU National Natural Science Foundation of China [90717117]; Ministry of Sciences and Technology of China [2005CB120805, 2006AA10A101]; Chinese Academy of Sciences [KSCX2-YW-G-033] FX We thank Yinhong Zhang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China) for confocal microscope examination, Hongjing Hao (Institute of Atomic Energy, Chinese Academy of Agricultural Sciences, Beijing, China) for transmission electron microscopy, and Jianhua Wei (Beijing Academy of Agriculture and Forestry Sciences) for GC-MS analysis. Karen Bird (US Department of Energy Plant Research Laboratory) is thanked for text editing. This work was supported by grants from the National Natural Science Foundation of China (90717117), the Ministry of Sciences and Technology of China (2005CB120805 and 2006AA10A101), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-033). NR 52 TC 63 Z9 81 U1 3 U2 23 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD DEC PY 2009 VL 60 IS 6 BP 1055 EP 1069 DI 10.1111/j.1365-313X.2009.04022.x PG 15 WC Plant Sciences SC Plant Sciences GA 530KN UT WOS:000272590000011 PM 19765235 ER PT J AU Penning, BW Hunter, CT Tayengwa, R Eveland, AL Dugard, CK Olek, AT Vermerris, W Koch, KE McCarty, DR Davis, MF Thomas, SR McCann, MC Carpita, NC AF Penning, Bryan W. Hunter, Charles T., III Tayengwa, Reuben Eveland, Andrea L. Dugard, Christopher K. Olek, Anna T. Vermerris, Wilfred Koch, Karen E. McCarty, Donald R. Davis, Mark F. Thomas, Steven R. McCann, Maureen C. Carpita, Nicholas C. TI Genetic Resources for Maize Cell Wall Biology SO PLANT PHYSIOLOGY LA English DT Review ID MULTIPLE SEQUENCE ALIGNMENT; PECTIN METHYLESTERASE GENE; D-GLUCURONATE 4-EPIMERASE; COBRA-LIKE PROTEIN; ARABIDOPSIS-THALIANA; CELLULOSE SYNTHASE; MOLECULAR CHARACTERIZATION; RHAMNOGALACTURONAN-II; LIGNIN BIOSYNTHESIS; EXPRESSION ANALYSIS AB Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward-and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. C1 [Penning, Bryan W.; Dugard, Christopher K.; Olek, Anna T.; Carpita, Nicholas C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Penning, Bryan W.; Dugard, Christopher K.; McCann, Maureen C.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Hunter, Charles T., III; Eveland, Andrea L.; Koch, Karen E.; McCarty, Donald R.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. [Tayengwa, Reuben; Vermerris, Wilfred] Univ Florida, Genet Inst, Gainesville, FL 32610 USA. [Tayengwa, Reuben; Vermerris, Wilfred] Univ Florida, Dept Agron, Gainesville, FL 32610 USA. [Davis, Mark F.; Thomas, Steven R.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Carpita, NC (reprint author), Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. EM carpita@purdue.edu RI Eveland, Andrea/M-9886-2014; OI Eveland, Andrea/0000-0003-4825-1282; davis, mark/0000-0003-4541-9852 FU National Science Foundation [DBI-0217552]; Office of Science, U. S. Department of Energy [DE-FG02-08ER64702] FX This work was supported by the National Science Foundation Plant Genome Research Program (grant no. DBI-0217552 to W. V., K. E. K., D. R. M., S. R. T., M. C. M., and N.C.C.) and the Office of Science, U. S. Department of Energy (grant no. DE-FG02-08ER64702 to N.C.C. and M. C. M.). NR 150 TC 71 Z9 75 U1 4 U2 72 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2009 VL 151 IS 4 BP 1703 EP 1728 DI 10.1104/pp.109.136804 PG 26 WC Plant Sciences SC Plant Sciences GA 528KK UT WOS:000272443500002 PM 19926802 ER PT J AU Landau, AM Lokstein, H Scheller, HV Lainez, V Maldonado, S Prina, AR AF Mabel Landau, Alejandra Lokstein, Heiko Scheller, Henrik Vibe Lainez, Veronica Maldonado, Sara Raul Prina, Alberto TI A Cytoplasmically Inherited Barley Mutant Is Defective in Photosystem I Assembly Due to a Temperature-Sensitive Defect in ycf3 Splicing SO PLANT PHYSIOLOGY LA English DT Article ID EFFICIENT ELECTRON-TRANSFER; IRON-SULFUR PROTEIN; PSI-D SUBUNIT; ARABIDOPSIS-THALIANA; HIGHER-PLANTS; CHLAMYDOMONAS-REINHARDTII; PHOTOAUTOTROPHIC GROWTH; CHLOROPLAST DEVELOPMENT; TARGETED INACTIVATION; GENE AB A cytoplasmically inherited chlorophyll-deficient mutant of barley (Hordeum vulgare) termed cytoplasmic line 3 (CL3), displaying a viridis (homogeneously light-green colored) phenotype, has been previously shown to be affected by elevated temperatures. In this article, biochemical, biophysical, and molecular approaches were used to study the CL3 mutant under different temperature and light conditions. The results lead to the conclusion that an impaired assembly of photosystem I (PSI) under higher temperatures and certain light conditions is the primary cause of the CL3 phenotype. Compromised splicing of ycf3 transcripts, particularly at elevated temperature, resulting from a mutation in a noncoding region (intron 1) in the mutant ycf3 gene results in a defective synthesis of Ycf3, which is a chaperone involved in PSI assembly. The defective PSI assembly causes severe photoinhibition and degradation of PSII. C1 [Mabel Landau, Alejandra; Raul Prina, Alberto] Inst Nacl Tecnol Agropecuaria, Inst Genet EA Favret, Ctr Invest Ciencias Vet & Agron, Castelar, Buenos Aires, Argentina. [Lokstein, Heiko] Univ Potsdam, Inst Biochem & Biol, D-14476 Potsdam, Germany. [Scheller, Henrik Vibe] Univ Copenhagen, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark. [Scheller, Henrik Vibe] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Lainez, Veronica; Maldonado, Sara] Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn, Dept Biodiversidad & Biol Expt, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina. [Maldonado, Sara] Inst Nacl Tecnol Agropecuaria, Inst Recursos Biol, Ctr Invest Recursos Nat, Castelar, Buenos Aires, Argentina. RP Landau, AM (reprint author), Inst Nacl Tecnol Agropecuaria, Inst Genet EA Favret, Ctr Invest Ciencias Vet & Agron, B1712WAA, Castelar, Buenos Aires, Argentina. EM alandau@cnia.inta.gov.ar RI Scheller, Henrik/A-8106-2008 OI Scheller, Henrik/0000-0002-6702-3560 FU Instituto Nacional de Tecnologia Agropecuaria and Proyecto de Investigacion Cientifica y Tecnica, Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [04841]; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Danish National Research Foundation; Deutsche Forschungsgemeinschaft [SFB 429, TPA2] FX This work was supported by Instituto Nacional de Tecnologia Agropecuaria and Proyecto de Investigacion Cientifica y Tecnica (no. 04841), Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina; the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research (through contract no. DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy); and the Danish National Research Foundation. H. L. acknowledges financial support by the Deutsche Forschungsgemeinschaft (grant no. SFB 429, TPA2). NR 48 TC 16 Z9 20 U1 0 U2 10 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2009 VL 151 IS 4 BP 1802 EP 1811 DI 10.1104/pp.109.147843 PG 10 WC Plant Sciences SC Plant Sciences GA 528KK UT WOS:000272443500010 PM 19812182 ER PT J AU Amendt, PA Milovich, JL Wilks, SC Li, CK Petrasso, RD Seguin, FH AF Amendt, P. A. Milovich, J. L. Wilks, S. C. Li, C. K. Petrasso, R. D. Seguin, F. H. TI Electric field and ionization-gradient effects on inertial-confinement-fusion implosions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID NATIONAL IGNITION FACILITY; TARGETS AB The generation of strong, self-generated electric fields (10(8)-10(9) V m(-1)) in direct-drive, inertial-confinement-fusion capsules has been reported (Li et al 2008 Phys. Rev. Lett. 100 225001). Various models are considered herein to explain the observed electric field evolution, including the potential roles of electron pressure gradients near the fuel-pusher interface and plasma polarization effects that are predicted to occur across shock fronts (Zel'dovich and Raizer 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p 522). In the latter case, strong fields in excess of 10(10) V m(-1) and localized to 10-100 nm may be consistent with the data obtained from proton radiography. Such field strengths are similar in magnitude to the criterion for runaway electron generation that could lead to plasma kinetic effects and potential shock-front broadening. The observed electric field generation may also be partly due to plasma ionization gradients localized near the fuel-pusher interface. A model is proposed that allows for differing electron-and ion-density gradient scale lengths in the presence of ionization gradients while preserving overall charge neutrality. Such a redistribution of electrons compared with standard, charge-neutral, single-fluid radiation-hydrodynamics modelling may affect the interpretation of imploded-core x-ray diagnostics as well as alter alpha particle deposition in the thermonuclear fuel. C1 [Amendt, P. A.; Milovich, J. L.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Li, C. K.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Amendt, PA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM amendt1@llnl.gov NR 16 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124048 DI 10.1088/0741-3335/51/12/124048 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800059 ER PT J AU Bell, MG Kugel, HW Kaita, R Zakharov, LE Schneider, H LeBlanc, BP Mansfield, D Bell, RE Maingi, R Ding, S Kaye, SM Paul, SF Gerhardt, SP Canik, JM Hosea, JC Taylor, G AF Bell, M. G. Kugel, H. W. Kaita, R. Zakharov, L. E. Schneider, H. LeBlanc, B. P. Mansfield, D. Bell, R. E. Maingi, R. Ding, S. Kaye, S. M. Paul, S. F. Gerhardt, S. P. Canik, J. M. Hosea, J. C. Taylor, G. CA NSTX Res Team TI Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID NSTX; LIMITER AB Experiments in the National Spherical Torus Experiment ( NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbon-fiber-composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor toward the lower divertor. In neutral beam injection (NBI)-heated deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of edge-localized modes (ELMs) were observed, including complete ELM suppression for periods of up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off-layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off-layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts. C1 [Bell, M. G.; Kugel, H. W.; Kaita, R.; Zakharov, L. E.; Schneider, H.; LeBlanc, B. P.; Mansfield, D.; Bell, R. E.; Kaye, S. M.; Paul, S. F.; Gerhardt, S. P.; Hosea, J. C.; Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.; Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ding, S.] Acad Sci Inst Plasma Phys, Hefei, Peoples R China. RP Bell, MG (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Canik, John/0000-0001-6934-6681 NR 27 TC 84 Z9 84 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124054 DI 10.1088/0741-3335/51/12/124054 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800065 ER PT J AU Heidbrink, WW Murakami, M Park, JM Petty, CC Van Zeeland, MA Yu, JH McKee, GR AF Heidbrink, W. W. Murakami, M. Park, J. M. Petty, C. C. Van Zeeland, M. A. Yu, J. H. McKee, G. R. TI Beam-ion confinement for different injection geometries SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID DIII-D TOKAMAK; ENERGETIC PARTICLES; THOMSON SCATTERING; SPHERICAL TOKAMAK; RIPPLE LOSS; TRANSPORT; SPECTROSCOPY; EMISSION; INSTABILITIES; TURBULENCE AB The DIII-D tokamak is equipped with neutral beam sources that inject in four different directions; in addition, the plasma can be moved up or down to compare off-axis with on-axis injection. Fast-ion data for eight different conditions have been obtained: co/counter, near-tangential/near-perpendicular and on-axis/off-axis. Neutron measurements during short beam pulses assess prompt and delayed losses under low-power conditions. As expected, co-injection has fewer losses than counter, tangential fewer than perpendicular and on-axis fewer than off-axis; the differences are greater at low current than at higher current. The helicity of the magnetic field has a weak effect on the overall confinement. Fast-ion D(alpha) (FIDA) and neutron measurements diagnose the confinement at higher power. The basic trends are the same as in low-power plasmas but, even in plasmas without long wavelength Alfven modes or other MHD, discrepancies with theory are observed, especially in higher temperature plasmas. At modest temperature, two-dimensional images of the FIDA light are in good agreement with the simulations for both on-axis and off-axis injection. Discrepancies with theory are more pronounced at low fast-ion energy and at high plasma temperature, suggesting that fast-ion transport by microturbulence is responsible for the anomalies. C1 [Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Petty, C. C.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [McKee, G. R.] Univ Wisconsin, Madison, WI 53726 USA. RP Heidbrink, WW (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. FU US Department of Energy [SC-G903402, DE-FC02-04ER54698] FX The authors gratefully acknowledge the assistance of K Burrell, B Grierson, R Groebner, Deyong Liu, Yadong Luo, T Osborne, D Pace, R Prater, E Ruskov, Yubao Zhu and the entire DIII-D team. Wenlu Zhang kindly provided data from [30]. This work was supported by the US Department of Energy under SC-G903402 and DE-FC02-04ER54698. NR 54 TC 26 Z9 26 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 125001 DI 10.1088/0741-3335/51/12/125001 PG 32 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800002 ER PT J AU Kaganovich, ID Demidov, VI Adams, SF Raitses, Y AF Kaganovich, I. D. Demidov, V. I. Adams, S. F. Raitses, Y. TI Non-local collisionless and collisional electron transport in low-temperature plasma SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID GAS-DISCHARGE PLASMAS; GLOW-DISCHARGE; KINETICS; MODEL AB This paper reviews recent advances in non-local electron kinetics in low-pressure discharges. Non-local electron kinetics, non-local electrodynamics with collisionless electron heating and non-linear processes in the sheaths are typical for such discharges. Progress in understanding the non-local interaction of electric fields with real, bounded plasma created by the fields has been one of the major achievements of the past few decades. C1 [Kaganovich, I. D.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Demidov, V. I.] UES Inc, Dayton, OH 45432 USA. [Demidov, V. I.] W Virginia Univ, Morgantown, WV 26506 USA. [Adams, S. F.] USAF, Res Labs, Wright Patterson AFB, OH 45433 USA. RP Kaganovich, ID (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ikaganov@pppl.gov RI Demidov, Vladimir/A-4247-2013 OI Demidov, Vladimir/0000-0002-2672-7684 NR 35 TC 9 Z9 9 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124003 DI 10.1088/0741-3335/51/12/124003 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800014 ER PT J AU Perez, F Koenig, M Batani, D Baton, SD Beg, FN Benedetti, C Brambrink, E Chawla, S Dorchies, F Fourment, C Galimberti, M Gizzi, LA Heathcote, R Higginson, DP Hulin, S Jafer, R Koester, P Labate, L Lancaster, K MacKinnon, AJ McPhee, AG Nazarov, W Nicolai, P Pasley, J Ravasio, A Richetta, M Santos, JJ Sgattoni, A Spindloe, C Vauzour, B Volpe, L AF Perez, F. Koenig, M. Batani, D. Baton, S. D. Beg, F. N. Benedetti, C. Brambrink, E. Chawla, S. Dorchies, F. Fourment, C. Galimberti, M. Gizzi, L. A. Heathcote, R. Higginson, D. P. Hulin, S. Jafer, R. Koester, P. Labate, L. Lancaster, K. MacKinnon, A. J. McPhee, A. G. Nazarov, W. Nicolai, P. Pasley, J. Ravasio, A. Richetta, M. Santos, J. J. Sgattoni, A. Spindloe, C. Vauzour, B. Volpe, L. TI Fast-electron transport in cylindrically laser-compressed matter SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID CENTERED LAGRANGIAN SCHEME; FLOW PROBLEMS AB Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (similar to 4 x 50 J, 1 ns, at 0.53 mu m) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm(-3)). 2D simulations predict a density of 2-5 g cm(-3) and a plasma temperature up to 100 eV at maximum compression. Ashort pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 x 10(18) W cm(-2). X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations. C1 [Perez, F.; Koenig, M.; Baton, S. D.; Brambrink, E.; Ravasio, A.] Lab Utilisat Lasers Intenses, Palaiseau, France. [Batani, D.; Jafer, R.; Volpe, L.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy. [Beg, F. N.; Chawla, S.; Higginson, D. P.] Univ Calif San Diego, San Diego, CA 92103 USA. [Benedetti, C.; Sgattoni, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Dorchies, F.; Fourment, C.; Hulin, S.; Nicolai, P.; Santos, J. J.; Vauzour, B.] Univ Bordeaux, CNRS, CEA, Ctr Lasers Intenses & Applicat, F-33405 Talence, France. [Galimberti, M.; Heathcote, R.; Lancaster, K.; Pasley, J.; Spindloe, C.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Gizzi, L. A.; Koester, P.; Labate, L.] CNR, LIL IPCF, Pisa, Italy. [MacKinnon, A. J.; McPhee, A. G.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Nazarov, W.] Univ St Andrews, St Andrews KY16 9AJ, Fife, Scotland. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Richetta, M.] Univ Roma Tor Vergata, Dipartimento Ingn Meccan, I-00173 Rome, Italy. RP Perez, F (reprint author), Lab Utilisat Lasers Intenses, Palaiseau, France. RI Koenig, Michel/A-2167-2012; Gizzi, Leonida/F-4782-2011; RICHETTA, MARIA/I-8513-2012; Vauzour, Benjamin/N-8385-2013; Jafer, Rashida/K-2078-2014; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016; Brennan, Patricia/N-3922-2015 OI Gizzi, Leonida A./0000-0001-6572-6492; MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788; NR 13 TC 23 Z9 23 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124035 DI 10.1088/0741-3335/51/12/124035 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800046 ER PT J AU Puiatti, ME Alfier, A Auriemma, F Cappello, S Carraro, L Cavazzana, R Dal Bello, S Fassina, A Escande, DF Franz, P Gobbin, M Innocente, P Lorenzini, R Marrelli, L Martin, P Piovesan, P Predebon, I Sattin, F Spizzo, G Terranova, D Valisa, M Zaniol, B Zanotto, L Zuin, M Agostini, M Antoni, V Apolloni, L Baruzzo, M Bolzonella, T Bonfiglio, D Bonomo, F Boozer, A Brombin, M Canton, A Delogu, R De Masi, G Gaio, E Gazza, E Giudicotti, L Grando, L Guo, SC Manduchi, G Marchiori, G Martines, E Martini, S Menmuir, S Momo, B Moresco, M Munaretto, S Novello, L Paccagnella, R Pasqualotto, R Piovan, R Piron, L Pizzimenti, A Pomphrey, N Scarin, P Serianni, G Spada, E Soppelsa, A Spagnolo, S Spolaore, M Taliercio, C Vianello, N Zamengo, A Zanca, P AF Puiatti, M. E. Alfier, A. Auriemma, F. Cappello, S. Carraro, L. Cavazzana, R. Dal Bello, S. Fassina, A. Escande, D. F. Franz, P. Gobbin, M. Innocente, P. Lorenzini, R. Marrelli, L. Martin, P. Piovesan, P. Predebon, I. Sattin, F. Spizzo, G. Terranova, D. Valisa, M. Zaniol, B. Zanotto, L. Zuin, M. Agostini, M. Antoni, V. Apolloni, L. Baruzzo, M. Bolzonella, T. Bonfiglio, D. Bonomo, F. Boozer, A. Brombin, M. Canton, A. Delogu, R. De Masi, G. Gaio, E. Gazza, E. Giudicotti, L. Grando, L. Guo, S. C. Manduchi, G. Marchiori, G. Martines, E. Martini, S. Menmuir, S. Momo, B. Moresco, M. Munaretto, S. Novello, L. Paccagnella, R. Pasqualotto, R. Piovan, R. Piron, L. Pizzimenti, A. Pomphrey, N. Scarin, P. Serianni, G. Spada, E. Soppelsa, A. Spagnolo, S. Spolaore, M. Taliercio, C. Vianello, N. Zamengo, A. Zanca, P. TI Helical equilibria and magnetic structures in the reversed field pinch and analogies to the tokamak and stellarator SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID INTERNAL TRANSPORT BARRIERS; STEADY-STATE OPERATION; MHD ACTIVE CONTROL; RFX-MOD; SELF-ORGANIZATION; CONFINEMENT; PLASMAS; PHYSICS; REGIMES; UPGRADE AB The reversed field pinch configuration is characterized by the presence of magnetic structures both in the core and at the edge: in the core, at high plasma current the spontaneous development of a helical structure is accompanied by the appearance of internal electron transport barriers; at the edge strong pressure gradients, identifying an edge transport barrier, are observed too, related to the position of the field reversal surface. The aim of this paper is the experimental characterization of both the internal and edge transport barriers in relation to the magnetic topology, discussing possible analogies and differences with other confinement schemes. C1 [Puiatti, M. E.; Alfier, A.; Auriemma, F.; Cappello, S.; Carraro, L.; Cavazzana, R.; Dal Bello, S.; Fassina, A.; Escande, D. F.; Franz, P.; Gobbin, M.; Innocente, P.; Lorenzini, R.; Marrelli, L.; Martin, P.; Piovesan, P.; Predebon, I.; Sattin, F.; Spizzo, G.; Terranova, D.; Valisa, M.; Zaniol, B.; Zanotto, L.; Zuin, M.; Agostini, M.; Antoni, V.; Apolloni, L.; Baruzzo, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Canton, A.; Delogu, R.; De Masi, G.; Gaio, E.; Gazza, E.; Giudicotti, L.; Grando, L.; Guo, S. C.; Manduchi, G.; Marchiori, G.; Martines, E.; Martini, S.; Menmuir, S.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Paccagnella, R.; Pasqualotto, R.; Piovan, R.; Piron, L.; Pizzimenti, A.; Scarin, P.; Serianni, G.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Vianello, N.; Zamengo, A.; Zanca, P.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. [Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France. [Boozer, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Pomphrey, N.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Puiatti, ME (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. RI Martines, Emilio/B-1418-2009; pomphrey, neil/G-4405-2010; Soppelsa, Anton/G-6971-2011; Pasqualotto, Roberto/B-6676-2011; Bonfiglio, Daniele/I-9398-2012; Sattin, Fabio/B-5620-2013; Auriemma, Finizia/B-7218-2014; Spizzo, Gianluca/B-7075-2009; Marrelli, Lionello/G-4451-2013; Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; zaniol, barbara/L-7745-2013; Cappello, Susanna/H-9968-2013; Vianello, Nicola/B-6323-2008; Momo, Barbara/I-7686-2015; spagnolo, silvia/E-9384-2017; OI Martines, Emilio/0000-0002-4181-2959; Bonfiglio, Daniele/0000-0003-2638-317X; Auriemma, Finizia/0000-0003-4604-2057; Spizzo, Gianluca/0000-0001-8586-2168; Marrelli, Lionello/0000-0001-5370-080X; zaniol, barbara/0000-0001-9934-8370; Cappello, Susanna/0000-0002-2022-1113; Vianello, Nicola/0000-0003-4401-5346; Momo, Barbara/0000-0001-7760-8960; Escande, Dominique/0000-0002-0460-8385; AGOSTINI, MATTEO/0000-0002-3823-1002; antoni, vanni/0000-0002-4588-8168; Munaretto, Stefano/0000-0003-1465-0971 NR 68 TC 32 Z9 32 U1 3 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124031 DI 10.1088/0741-3335/51/12/124031 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800042 ER PT J AU Roach, CM Abel, IG Akers, RJ Arter, W Barnes, M Camenen, Y Casson, FJ Colyer, G Connor, JW Cowley, SC Dickinson, D Dorland, W Field, AR Guttenfelder, W Hammett, GW Hastie, RJ Highcock, E Loureiro, NF Peeters, AG Reshko, M Saarelma, S Schekochihin, AA Valovic, M Wilson, HR AF Roach, C. M. Abel, I. G. Akers, R. J. Arter, W. Barnes, M. Camenen, Y. Casson, F. J. Colyer, G. Connor, J. W. Cowley, S. C. Dickinson, D. Dorland, W. Field, A. R. Guttenfelder, W. Hammett, G. W. Hastie, R. J. Highcock, E. Loureiro, N. F. Peeters, A. G. Reshko, M. Saarelma, S. Schekochihin, A. A. Valovic, M. Wilson, H. R. TI Gyrokinetic simulations of spherical tokamaks SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID TURBULENCE SIMULATIONS; TRANSPORT; PLASMA; MODE; CONFINEMENT; MICROSTABILITY; INSTABILITIES; EQUILIBRIUM; PHYSICS; FIELD AB This paper reviews transport and confinement in spherical tokamaks (STs) and our current physics understanding of this that is partly based on gyrokinetic simulations. Equilibrium flow shear plays an important role, and we show how this is consistently included in the gyrokinetic framework for flows that greatly exceed the diamagnetic velocity. The key geometry factors that influence the effectiveness of turbulence suppression by flow shear are discussed, and we show that toroidal equilibrium flow shear can sometimes entirely suppress ion scale turbulence in today's STs. Advanced nonlinear simulations of electron temperature gradient (ETG) driven turbulence, including kinetic ion physics, collisions and equilibrium flow shear, support the model that ETG turbulence can explain electron heat transport in many ST discharges. C1 [Roach, C. M.; Akers, R. J.; Arter, W.; Barnes, M.; Colyer, G.; Connor, J. W.; Cowley, S. C.; Field, A. R.; Hastie, R. J.; Loureiro, N. F.; Saarelma, S.; Valovic, M.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Abel, I. G.; Barnes, M.; Highcock, E.; Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Camenen, Y.; Casson, F. J.; Guttenfelder, W.; Peeters, A. G.] Univ Warwick, Dept Phys, CFSA, Coventry CV4 7AL, W Midlands, England. [Dickinson, D.; Reshko, M.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Dorland, W.] Univ Maryland, College Pk, MD 20742 USA. [Hammett, G. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Roach, CM (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RI Peeters, Arthur/A-1281-2009; Schekochihin, Alexander/C-2399-2009; Hammett, Gregory/D-1365-2011; Barnes, Michael/F-4934-2011; Roach, Colin/C-4839-2011; Dorland, William/B-4403-2009; Loureiro, Nuno/E-8719-2011 OI Hammett, Gregory/0000-0003-1495-6647; Dorland, William/0000-0003-2915-724X; Loureiro, Nuno/0000-0001-9755-6563 NR 37 TC 43 Z9 43 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124020 DI 10.1088/0741-3335/51/12/124020 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800031 ER PT J AU Roth, M Alber, I Bagnoud, V Brown, CRD Clarke, R Daido, H Fernandez, J Flippo, K Gaillard, S Gauthier, C Geissel, M Glenzer, S Gregori, G Gunther, M Harres, K Heathcote, R Kritcher, A Kugland, N LePape, S Li, B Makita, M Mithen, J Niemann, C Nurnberg, F Offermann, D Otten, A Pelka, A Riley, D Schaumann, G Schollmeier, M Schutrumpf, J Tampo, M Tauschwitz, A Tauschwitz, A AF Roth, M. Alber, I. Bagnoud, V. Brown, C. R. D. Clarke, R. Daido, H. Fernandez, J. Flippo, K. Gaillard, S. Gauthier, C. Geissel, M. Glenzer, S. Gregori, G. Guenther, M. Harres, K. Heathcote, R. Kritcher, A. Kugland, N. LePape, S. Li, B. Makita, M. Mithen, J. Niemann, C. Nuernberg, F. Offermann, D. Otten, A. Pelka, A. Riley, D. Schaumann, G. Schollmeier, M. Schuetrumpf, J. Tampo, M. Tauschwitz, A. Tauschwitz, An TI Proton acceleration experiments and warm dense matter research using high power lasers SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID ION-ACCELERATION; BEAMS; IGNITION; DRIVEN; SOLIDS; PLASMA AB The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth. C1 [Roth, M.; Alber, I.; Guenther, M.; Harres, K.; Nuernberg, F.; Otten, A.; Pelka, A.; Schaumann, G.; Schollmeier, M.; Schuetrumpf, J.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Bagnoud, V.; Tauschwitz, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Brown, C. R. D.] Univ London Imperial Coll Sci Technol & Med, Plasma Phys Grp, London SW7 2BZ, England. [Brown, C. R. D.] AWE Plc, Reading RG7 4PR, Berks, England. [Clarke, R.; Heathcote, R.; Li, B.; Schaumann, G.] Rutherford Appleton Lab, STFC, Didcot OX14 OQX, Oxon, England. [Daido, H.; Tampo, M.] JAEA, Photo Med Res Ctr, Kizugawa City, Kyoto 6190215, Japan. [Fernandez, J.; Flippo, K.; Gaillard, S.; Gauthier, C.; Offermann, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Geissel, M.; Schollmeier, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Glenzer, S.; Kritcher, A.; Kugland, N.; LePape, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gregori, G.; Mithen, J.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Makita, M.; Riley, D.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Tauschwitz, An] Goethe Univ Frankfurt, Inst Theor Phys, D-60438 Frankfurt, Germany. RP Roth, M (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM markus.roth@physik.tu-darmstadt.de RI Bagnoud, Vincent/K-4266-2015; Flippo, Kirk/C-6872-2009; Fernandez, Juan/H-3268-2011; Schollmeier, Marius/H-1056-2012; Tampo, Motonobu/I-2897-2012 OI Bagnoud, Vincent/0000-0003-1512-4578; Flippo, Kirk/0000-0002-4752-5141; Offermann, Dustin/0000-0002-6033-4905; Fernandez, Juan/0000-0002-1438-1815; Schollmeier, Marius/0000-0002-0683-022X; NR 24 TC 13 Z9 13 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124039 DI 10.1088/0741-3335/51/12/124039 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800050 ER PT J AU Spizzo, G White, RB Cappello, S Marrelli, L AF Spizzo, G. White, R. B. Cappello, S. Marrelli, L. TI Nonlocal transport in the reversed field pinch SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID ANOMALOUS TRANSPORT; PARTICLE-TRANSPORT; SELF-ORGANIZATION; RANDOM-WALKS; RFX; DIFFUSION; CHAOS; TURBULENCE; TOKAMAKS; BEHAVIOR AB Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparison with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch (RFP) offers a unique possibility for such a study. A numerical modeling of the magnetic structure and associated particle transport is carried out for the RFP experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code (White and Chance 1984 Phys. Fluids 27 2455) reliably reproduces the observed soft x-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by RechesterRosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch (Spizzo et al 2007 Phys. Plasmas 14 102310). It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared with the experiment. The relation of this formulation to fractional kinetics is also described. C1 [Spizzo, G.; Cappello, S.; Marrelli, L.] Euratom ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy. [White, R. B.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Spizzo, G (reprint author), Euratom ENEA Assoc, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. EM gianluca.spizzo@igi.cnr.it RI Marrelli, Lionello/G-4451-2013; Cappello, Susanna/H-9968-2013; White, Roscoe/D-1773-2013; Spizzo, Gianluca/B-7075-2009 OI Marrelli, Lionello/0000-0001-5370-080X; Cappello, Susanna/0000-0002-2022-1113; White, Roscoe/0000-0002-4239-2685; Spizzo, Gianluca/0000-0001-8586-2168 NR 45 TC 19 Z9 19 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124026 DI 10.1088/0741-3335/51/12/124026 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800037 ER PT J AU Theobald, W Anderson, KS Betti, R Craxton, RS Delettrez, JA Frenje, JA Glebov, VY Gotchev, OV Kelly, JH Li, CK Mackinnon, AJ Marshall, FJ McCrory, RL Meyerhofer, DD Myatt, JF Norreys, PA Nilson, PM Patel, PK Petrasso, RD Radha, PB Ren, C Sangster, TC Seka, W Smalyuk, VA Solodov, AA Stephens, RB Stoeckl, C Yaakobi, B AF Theobald, W. Anderson, K. S. Betti, R. Craxton, R. S. Delettrez, J. A. Frenje, J. A. Glebov, V. Yu Gotchev, O. V. Kelly, J. H. Li, C. K. Mackinnon, A. J. Marshall, F. J. McCrory, R. L. Meyerhofer, D. D. Myatt, J. F. Norreys, P. A. Nilson, P. M. Patel, P. K. Petrasso, R. D. Radha, P. B. Ren, C. Sangster, T. C. Seka, W. Smalyuk, V. A. Solodov, A. A. Stephens, R. B. Stoeckl, C. Yaakobi, B. TI Advanced-ignition-concept exploration on OMEGA SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID LASER FUSION IGNITION; PARTICLES; TRANSPORT; DENSITY; PLASMAS AB Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40 mu m thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40 + 20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1 x 10(16) W cm(-2)) for shock generation. C1 [Theobald, W.; Anderson, K. S.; Betti, R.; Craxton, R. S.; Delettrez, J. A.; Glebov, V. Yu; Gotchev, O. V.; Kelly, J. H.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Myatt, J. F.; Nilson, P. M.; Radha, P. B.; Ren, C.; Sangster, T. C.; Seka, W.; Smalyuk, V. A.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Frenje, J. A.; Li, C. K.; Petrasso, R. D.] MIT, Cambridge, MA 02439 USA. [Mackinnon, A. J.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Norreys, P. A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Stephens, R. B.] Gen Atom, San Diego, CA 91286 USA. [Anderson, K. S.; Betti, R.; Gotchev, O. V.; Meyerhofer, D. D.; Nilson, P. M.; Ren, C.; Solodov, A. A.] Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit Ph, Rochester, NY 14623 USA. [Betti, R.; McCrory, R. L.; Meyerhofer, D. D.; Ren, C.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Betti, R.; McCrory, R. L.; Meyerhofer, D. D.] Univ Rochester, Dept Phys, Rochester, NY 14623 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. EM wthe@lle.rochester.edu RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 45 TC 29 Z9 29 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124052 DI 10.1088/0741-3335/51/12/124052 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800063 ER PT J AU Angly, FE Willner, D Prieto-Davo, A Edwards, RA Schmieder, R Vega-Thurber, R Antonopoulos, DA Barott, K Cottrell, MT Desnues, C Dinsdale, EA Furlan, M Haynes, M Henn, MR Hu, YF Kirchman, DL McDole, T McPherson, JD Meyer, F Miller, RM Mundt, E Naviaux, RK Rodriguez-Mueller, B Stevens, R Wegley, L Zhang, LX Zhu, BL Rohwer, F AF Angly, Florent E. Willner, Dana Prieto-Davo, Alejandra Edwards, Robert A. Schmieder, Robert Vega-Thurber, Rebecca Antonopoulos, Dionysios A. Barott, Katie Cottrell, Matthew T. Desnues, Christelle Dinsdale, Elizabeth A. Furlan, Mike Haynes, Matthew Henn, Matthew R. Hu, Yongfei Kirchman, David L. McDole, Tracey McPherson, John D. Meyer, Folker Miller, R. Michael Mundt, Egbert Naviaux, Robert K. Rodriguez-Mueller, Beltran Stevens, Rick Wegley, Linda Zhang, Lixin Zhu, Baoli Rohwer, Forest TI The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SPECTRAL ABUNDANCE FACTORS; FIELD GEL-ELECTROPHORESIS; STATISTICAL SIGNIFICANCE; ONLINE TOOL; DIVERSITY; VIRUSES; VIRIOPLANKTON; INFORMATION; RESOURCE; PHAGES AB Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions. C1 [Angly, Florent E.; Willner, Dana; Prieto-Davo, Alejandra; Edwards, Robert A.; Barott, Katie; Dinsdale, Elizabeth A.; Furlan, Mike; Haynes, Matthew; McDole, Tracey; Rodriguez-Mueller, Beltran; Wegley, Linda; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Angly, Florent E.; Schmieder, Robert; Rodriguez-Mueller, Beltran] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Edwards, Robert A.; Schmieder, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.; Meyer, Folker; Stevens, Rick] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Antonopoulos, Dionysios A.; Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Vega-Thurber, Rebecca] Florida Int Univ, Dept Biol, Miami, FL 33199 USA. [Cottrell, Matthew T.; Kirchman, David L.] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA. [Desnues, Christelle] Univ Aix Marseille 2, URMITE, CNRS, UMR IRD 6236, Marseille, France. [Haynes, Matthew] Massachusetts Inst Technol & Harvard, Broad Inst, Cambridge, MA USA. [Hu, Yongfei; Zhang, Lixin; Zhu, Baoli] Chinese Acad Sci, Inst Microbiol, Key Lab Pathogen Microbiol & Immunol, Beijing, Peoples R China. [McPherson, John D.] MaRS Ctr, Ontario Inst Canc Res, Toronto, ON, Canada. [Mundt, Egbert] Univ Georgia, Coll Vet Med, Poultry Diagnost & Res Ctr, Athens, GA USA. [Naviaux, Robert K.] Univ Calif San Diego, Sch Med, San Diego, CA 92103 USA. RP Angly, FE (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM forent.angly@gmail.com RI Angly, Florent/A-7717-2011; Cottrell, Matthew/C-3266-2009; Desnues, Christelle/B-1383-2010; OI Angly, Florent/0000-0002-8999-0738; Desnues, Christelle/0000-0002-2178-0355; Meyer, Folker/0000-0003-1112-2284; Barott, Katie/0000-0001-7371-4870 FU Massachusetts Institute of Technology; Agouron Institute; National High Technology Research and Development Program of China [2007AA09Z443, 2007AA021301]; The Chinese Academy of Sciences [KSCX2-YW-G-022]; Gordon and Betty Moore Foundation; NSF [OPP 0124733] FX The Massachusetts Institute of Technology and the Agouron Institute for sequencing funded the Oxygen Minimum Zone project. The National High Technology Research and Development Program of China (2007AA09Z443 and 2007AA021301) and Knowledge Innovation Project of The Chinese Academy of Sciences (KSCX2-YW-G-022) supported the South China sediments microbiome project. The Antarctica Lakes research was supported by the Gordon and Betty Moore Foundation. NSF OPP 0124733 funded the Arctic microbiome sampling. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 44 TC 112 Z9 113 U1 4 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD DEC PY 2009 VL 5 IS 12 AR e1000593 DI 10.1371/journal.pcbi.1000593 PG 10 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 551SE UT WOS:000274229000011 PM 20011103 ER PT J AU Wall, ME Markowitz, DA Rosner, JL Martin, RG AF Wall, Michael E. Markowitz, David A. Rosner, Judah L. Martin, Robert G. TI Model of Transcriptional Activation by MarA in Escherichia coli SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID LAMBDA-PRM PROMOTER; RNA-POLYMERASE; TERMINAL DOMAIN; BINDING-SITES; HSP70 GENE; REPRESSOR; PROTEIN; DNA; MELANOGASTER; ORIENTATION AB The AraC family transcription factor MarA activates similar to 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond. C1 [Wall, Michael E.; Markowitz, David A.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Wall, Michael E.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Wall, Michael E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Rosner, Judah L.; Martin, Robert G.] NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM mewall@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 FU Department of Energy [DE-FG02-97ER25308]; National Institutes of Health FX This work was supported by funding from the Department of Energy (LANL Laboratory-Directed Research & Development, MEW) and the National Institutes of Health (Intramural Research Program, RGM and JLR). Early modeling and analysis of promoter activity data were made possible by Department of Energy Computational Science Graduate Fellowship Grant DE-FG02-97ER25308 to DAM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 15 Z9 16 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD DEC PY 2009 VL 5 IS 12 AR e1000614 DI 10.1371/journal.pcbi.1000614 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 551SE UT WOS:000274229000032 PM 20019803 ER PT J AU Bernstein, R Gillen, KT AF Bernstein, R. Gillen, K. T. TI Predicting the lifetime of fluorosilicone o-rings SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE o-Ring; Fluorosilicone; Arrhenius evaluation; Field aging; Compression set; Sealing force ID NON-ARRHENIUS BEHAVIOR; WEAR-OUT APPROACH; EPR MATERIALS; DEGRADATION; EXTRAPOLATION; TEMPERATURE; RELAXATION; ELASTOMERS; POLYMERS AB Long-term (up to 1000 days) accelerated oven-aging studies on a commercial fluorosilicone o-ring seal are used to predict the sealing lifetime at room temperature (23 degrees C). The study follows force decay (relaxation) on squeezed o-ring material using isothermal compression stress relaxation (CSR) techniques. The relaxation is normally a complex mix of reversible physical effects and non-reversible chemical effects but we utilize an over-strain approach to quickly achieve physical equilibrium. This allows us to concentrate the measurements on the chemical relaxation effects of primary interest to lifetime assessment. The long-term studies allow us to access a fairly broad temperature range (80-138 degrees C) which results in improved modeling of the temperature dependence of the accelerated data. Non-Arrhenius behavior is observed with evidence of a significant lowering of the activation energy at the lowest accelerated aging temperature (80 degrees C). This observation is consistent with numerous recent accelerated aging studies that probed temperature ranges large enough to observe similar non-Arrhenius behavior. The extrapolated predictions imply that significant loss of sealing force requires on the order of 50-100 years at 23 degrees C. Field aging results out to similar to 25 years at 23 degrees C are shown to be in reasonable accord with the significant change in Arrhenius slope observed from the accelerated aging study. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Bernstein, R.; Gillen, K. T.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Bernstein, R (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM rbernst@sandia.gov FU National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors wish to acknowledge Donald Bradley and Mat Celina in their help obtaining modulus profiling data. NR 29 TC 18 Z9 22 U1 5 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2009 VL 94 IS 12 BP 2107 EP 2113 DI 10.1016/j.polymdegradstab.2009.10.005 PG 7 WC Polymer Science SC Polymer Science GA 530WY UT WOS:000272624400001 ER PT J AU Salazar, MR Kress, JD Lightfoot, JM Russell, BG Rodin, WA Woods, L AF Salazar, Michael R. Kress, Joel D. Lightfoot, J. Michael Russell, Bobby G. Rodin, Wayne A. Woods, Lorelei TI Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the Poly[ester urethane] binder SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Aging; Degradation; Oxidation; Explosives; Polyurethanes; Molecular weight analysis ID POLY(ESTER URETHANE) ELASTOMER; DECOMPOSITION; HYDROLYSIS; PBX-9501; DIFFUSION; WATER AB The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 degrees C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (cross-linking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Salazar, Michael R.; Kress, Joel D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Salazar, Michael R.] Union Univ, Dept Chem, Jackson, TN 38305 USA. [Lightfoot, J. Michael; Russell, Bobby G.; Rodin, Wayne A.; Woods, Lorelei] BWXT Pantex LLC, Amarillo, TX 79120 USA. RP Salazar, MR (reprint author), Los Alamos Natl Lab, Div Theoret, T-12,MS B268, Los Alamos, NM 87545 USA. EM msalazar@uu.edu FU Los Alamos National Security, LLC; U.S. Department of Energy [DE-AC5206NA25396] FX We would like to thank Russ Pack and Pat Foster for help in the experimental design of the CAS studies. We also thank Gordon Osborn for the CAS sample formulations, Gail Watson, Jerry Bishop for the sample containers, and Judy Pitts for coordinating sample removal. For the analytical results, we thank Debbie Jones, George Howard IV, Susan Britten, Rebecca Kennon, and Michele McWilliams. We thank Denise Pauler, Sheldon Larson, Debra Wrobleski, Bruce Orler, and David Hanson for very helpful discussions on this work. This work was supported by the Enhanced Surveillance Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC5206NA25396. NR 17 TC 3 Z9 3 U1 3 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2009 VL 94 IS 12 BP 2231 EP 2240 DI 10.1016/j.polymdegradstab.2009.08.011 PG 10 WC Polymer Science SC Polymer Science GA 530WY UT WOS:000272624400017 ER PT J AU Evrin, C Clarke, P Zech, J Lurz, R Sun, JC Uhle, S Li, HL Stillman, B Speck, C AF Evrin, Cecile Clarke, Pippa Zech, Juergen Lurz, Rudi Sun, Jingchuan Uhle, Stefan Li, Huilin Stillman, Bruce Speck, Christian TI A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE helicase; initiation; mini chromosome maintenance; ORC; pre-RC ID BUDDING YEAST; IN-VITRO; ATP HYDROLYSIS; HUMAN-CELLS; T-ANTIGEN; HELICASE; PROTEINS; RECOGNITION; INITIATION; CDC6 AB During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks. C1 [Stillman, Bruce] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Evrin, Cecile; Clarke, Pippa; Zech, Juergen; Uhle, Stefan; Speck, Christian] Univ London Imperial Coll Sci Technol & Med, DNA Replicat Grp, MRC, Ctr Clin Sci, London W12 0NN, England. [Lurz, Rudi] Max Planck Inst Mol Genet, Microscopy Unit, D-14195 Berlin, Germany. [Sun, Jingchuan; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Stillman, B (reprint author), Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA. EM stillman@cshl.edu; christian.speck@csc.mrc.ac.uk RI Speck, Christian/G-2882-2011; OI Speck, Christian/0000-0001-6646-1692; Stillman, Bruce/0000-0002-9453-4091 FU United Kingdom Medical Research Council; National Institutes of Health (NIH) [GM45436, GM74985]; Goldring Family Foundation; Brookhaven National Laboratory Laboratory Directed Research and Development [06-06] FX We thank Niall Dillon, Matthias Merkenschlager, Ana Pombo, and members of the DNA Replication Group for helpful comments on the manuscript; and Luis Aragon for yeast strains. This work was supported by the United Kingdom Medical Research Council (C. S.), National Institutes of Health (NIH) Grant GM45436 (to B. S.), the Goldring Family Foundation (B. S.), NIH Grant GM74985 (to H. L.), and by Brookhaven National Laboratory Laboratory Directed Research and Development project number 06-06 (to H. L.). NR 43 TC 203 Z9 210 U1 1 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 1 PY 2009 VL 106 IS 48 BP 20240 EP 20245 DI 10.1073/pnas.0911500106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 525YQ UT WOS:000272254400022 PM 19910535 ER PT J AU Verhelst, S Wallner, T AF Verhelst, Sebastian Wallner, Thomas TI Hydrogen-fueled internal combustion engines SO PROGRESS IN ENERGY AND COMBUSTION SCIENCE LA English DT Review DE Hydrogen; Internal combustion engine; NO(x) emissions; Direct injection; Port-fuel injection; Abnormal combustion ID LAMINAR BURNING VELOCITIES; SPARK-IGNITION ENGINE; EXHAUST-GAS RECIRCULATION; TURBULENT PREMIXED FLAMES; NOX EMISSION REDUCTION; AIR MIXTURES; FLAME/STRETCH INTERACTIONS; MARKSTEIN LENGTHS; KINETIC MECHANISM; PORT INJECTION AB The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H(2)ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H(2)ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H(2)ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Verhelst, Sebastian] Univ Ghent, Dept Flow Heat & Combust Mech, B-9000 Ghent, Belgium. [Wallner, Thomas] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Verhelst, S (reprint author), Univ Ghent, Dept Flow Heat & Combust Mech, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium. EM sebastian.verhelst@ugent.be; twallner@anl.gov OI Verhelst, Sebastian/0000-0003-2421-580X FU Belgian Science Policy TAP [CP/02/222]; European Commission [ENK6-CT-2000-57]; DOE [DE-AC02-06CH11357] FX Research referenced in this manuscript was partially funded by DOE's FreedomCAR and Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy. T. Wallner wishes to thank Gurpreet Singh and Lee Slezak, program managers at DOE, for their support. NR 279 TC 208 Z9 213 U1 16 U2 134 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1285 J9 PROG ENERG COMBUST JI Prog. Energy Combust. Sci. PD DEC PY 2009 VL 35 IS 6 BP 490 EP 527 DI 10.1016/j.pecs.2009.08.001 PG 38 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 523KV UT WOS:000272073000003 ER PT J AU Steiner, MA Wanlass, MW Carapella, JJ Duda, A Ward, JS Moriarty, TE Emery, KA AF Steiner, M. A. Wanlass, M. W. Carapella, J. J. Duda, A. Ward, J. S. Moriarty, T. E. Emery, K. A. TI A Monolithic Three-Terminal GaInAsP/GaInAs Tandem Solar Cell SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE III-V semiconductors; tandem; three terminal; concentrator; solar cell; GaAs filter; GaInAsP; GaInAs AB We describe the design and performance of a three-terminal tandem solar cell for low-concentration terrestrial applications. Designed for operation under a GaAs filter, the tandem demonstrates cumulative conversion efficiencies of 10.2 and 11.9% at 1 sun and 45 suns, respectively, under the concentrated direct spectrum. The middle terminal is shared between the two subcells and allows them to be operated independently at their respective maximum power points. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Steiner, M. A.; Wanlass, M. W.; Carapella, J. J.; Duda, A.; Ward, J. S.; Moriarty, T. E.; Emery, K. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Steiner, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM myles.steiner@nrel.gov FU Defense Advanced Research Projects Agency (DARPA) [HR0011-0709-0005]; US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This research was funded in part by the Defense Advanced Research Projects Agency (DARPA) "Very High Efficiency Solar Cell" program, under Agreement No. HR0011-0709-0005. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the US Government. Work was also supported by the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. This document is approved for public release, distribution unlimited. NR 17 TC 15 Z9 15 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD DEC PY 2009 VL 17 IS 8 BP 587 EP 593 DI 10.1002/pip.913 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 532GE UT WOS:000272733500007 ER PT J AU Chavez, DE Tappan, BC Mason, BA Parrish, D AF Chavez, David E. Tappan, Bryce C. Mason, Benjamin Aaron Parrish, Damon TI Synthesis and Energetic Properties of Bis-(Triaminoguanidinium) 3,3 '-Dinitro-5,5 '-Azo-1,2,4-Triazolate (TAGDNAT): A New High-Nitrogen Material SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Explosives; Propellants ID RICH SALTS AB This paper describes the synthesis and characterization of bis-(triaminoguanidinium)-3,3'-dinitro-5,5'-azo-1,2,4-triazolate (TAGDNAT), a novel high-nitrogen molecule that derives its energy release from both a high heat of formation and intramolecular oxidation reactions. TAGDNAT shows promise as a propellant or explosive ingredient not only due to its high nitrogen content (66.35 wt.-%) but also due to its high hydrogen content (4.34 wt.-%). This new molecule has been characterized with respect to its morphology, sensitivity properties, explosive, and combustion performance. The heat of formation of TAGDNAT was also experimentally determined. The results of these studies show that TAGDNAT has one of the fastest low-pressure burning rates (at 6.9 MPa) measured till date, 6.79 cm s(-1) at 6.9 MPa (39% faster than triaminoguanidinium azotetrazolate (TAGzT), a comparable high-nitrogen/high-hydrogen material). Furthermore, its pressure sensitivity is 0.507, a 33% reduction compared to TAGzT. C1 [Chavez, David E.; Tappan, Bryce C.; Mason, Benjamin Aaron] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. [Parrish, Damon] USN, Res Lab, Washington, DC 20375 USA. RP Chavez, DE (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM dechavez@lanl.gov FU Defense Threat Reduction Agency (DTRA) - Advanced Energetics Initiative FX This work was supported by the joint Department of Defense and the Department of Energy Munitions Technology Development Program with partial funding from the Defense Threat Reduction Agency (DTRA) - Advanced Energetics Initiative. The Los Alamos National Laboratory is operated by Los Alamos National Security for the U.S. Department of Energy's National Nuclear Security Agency. We also would like to thank Gabriel Avilucea for sensitivity testing, Stephanie Hagelberg for elemental analysis, Jose Archuleta for chemical analysis, and Joe Lloyd for performing the rate stick/plate dent experiments. NR 22 TC 32 Z9 32 U1 2 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2009 VL 34 IS 6 BP 475 EP 479 DI 10.1002/prep.200800081 PG 5 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 539GV UT WOS:000273242900003 ER PT J AU Maiti, A Gee, RH AF Maiti, Amitesh Gee, Richard H. TI Modeling Growth, Surface Kinetics, and Morphology Evolution in PETN SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Molecular Modeling; PETN ID ATOMIC-FORCE MICROSCOPE; PENTAERYTHRITOL TETRANITRATE CRYSTALS; THERMODYNAMIC ANALYSIS; DISTRIBUTIONS; DYNAMICS; COMPASS; FIELD AB Pentaerythritol tetranitrate (PETN) is a commonly used energetic material with both military and civilian applications. Good ignition properties mandate a powdered material with a high Surface area. However. existing experimental data on PETN powder suggest an active surface that leads to particle coarsening and gradual reduction of the specific surface area over time. In this work we review some of the atomic-level and coarse-grained potential models developed for PETN and discuss their applications for studying particle morphology, growth, and surface kinetics, including molecular diffusion and evaporation/condensation rates. Simulation methods include classical molecular dynamics, kinetic Monte Carlo, and transition state calculations. C1 [Maiti, Amitesh; Gee, Richard H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM maiti2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge the collaboration with a number of colleagues, including A. Burnham, L. Zepeda-Ruiz, C. Wu, G. Gilmer, R. Qiu, H. Huang, B. Weeks, G. Overturf, and C. Hrousis. We also thank M. Moore and A. Duncan of the Applied Technology division of BWXT Pantex for stimulating discussions and giving us access to unpublished experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 38 TC 12 Z9 13 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2009 VL 34 IS 6 BP 489 EP 497 DI 10.1002/prep.200800066 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 539GV UT WOS:000273242900006 ER PT J AU Harlin, J Nemzek, R AF Harlin, Jeremiah Nemzek, Robert TI Physical Properties of Conventional Explosives Deduced from Radio Frequency Emissions SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Electric Field Change; Free Charge; Ionization; Radio Frequency Emissions AB Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (< 80 MHz) were shot-to-shot repeatable and occurred within the first 100 mu s at measured amplitudes of about 2 V m(-1) at 35 m distance. High frequency signals (> 290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 mu C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K. C1 [Harlin, Jeremiah; Nemzek, Robert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Harlin, J (reprint author), Los Alamos Natl Lab, MS-D436, Los Alamos, NM 87545 USA. EM harlin@lanl.gov FU Los Alamos National Laboratory; Department of Energy FX This project was supported by Los Alamos National Laboratory and the Department of Energy. NR 12 TC 1 Z9 1 U1 1 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2009 VL 34 IS 6 BP 544 EP 550 DI 10.1002/prep.200800076 PG 7 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 539GV UT WOS:000273242900014 ER PT J AU Rau, A Kulkarni, SR Law, NM Bloom, JS Ciardi, D Djorgovski, GS Fox, DB Gal-Yam, A Grillmair, CC Kasliwal, MM Nugent, PE Ofek, EO Quimby, RM Reach, WT Shara, M Bildsten, L Cenko, SB Drake, AJ Filippenko, AV Helfand, DJ Helou, G Howell, DA Poznanski, D Sullivan, M AF Rau, Arne Kulkarni, Shrinivas R. Law, Nicholas M. Bloom, Joshua S. Ciardi, David Djorgovski, George S. Fox, Derek B. Gal-Yam, Avishay Grillmair, Carl C. Kasliwal, Mansi M. Nugent, Peter E. Ofek, Eran O. Quimby, Robert M. Reach, William T. Shara, Michael Bildsten, Lars Cenko, S. Bradley Drake, Andrew J. Filippenko, Alexei V. Helfand, David J. Helou, George Howell, D. Andrew Poznanski, Dovi Sullivan, Mark TI Exploring the Optical Transient Sky with the Palomar Transient Factory SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Review ID GAMMA-RAY BURSTS; FOLLOW-UP OBSERVATIONS; EXTRASOLAR GIANT PLANETS; CORE-COLLAPSE SUPERNOVAE; NEAR-EARTH OBJECTS; II-P SUPERNOVAE; BLACK-HOLE MASS; CATACLYSMIC VARIABLES; TIDAL DISRUPTION; GALAXY CLUSTERS AB The Palomar Transient Factory (PTF) is a wide-field experiment designed to investigate the optical transient and variable sky on time scales from minutes to years. PTF uses the CFH12k mosaic camera, with a field of view of 7:9 deg(2) and a plate scale of 1 '' pixel(-1), mounted on the Palomar Observatory 48 inch Samuel Oschin Telescope. The PTF operation strategy is devised to probe the existing gaps in the transient phase space and to search for theoretically predicted, but not yet detected, phenomena, such as fallback supernovae, macronovae, .Ia supernovae, and the orphan afterglows of gamma-ray bursts. PTF will also discover many new members of known source classes, from cataclysmic variables in their various avatars to supernovae and active galactic nuclei, and will provide important insights into understanding galactic dynamics (through RR Lyrae stars) and the solar system (asteroids and near-Earth objects). The lessons that can be learned from PTF will be essential for the preparation of future large synoptic sky surveys like the Large Synoptic Survey Telescope. In this article we present the scientific motivation for PTF and describe in detail the goals and expectations for this experiment. C1 [Rau, Arne; Kulkarni, Shrinivas R.; Law, Nicholas M.; Djorgovski, George S.; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert M.; Drake, Andrew J.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Poznanski, Dovi] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ciardi, David] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Grillmair, Carl C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Reach, William T.; Helou, George] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Shara, Michael] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Helfand, David J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Howell, D. Andrew] Las Cumbres Global Telescope Network, Goleta, CA 93117 USA. [Sullivan, Mark] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. RP Rau, A (reprint author), CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. EM arau@mpe.mpg.de OI Reach, William/0000-0001-8362-4094 NR 174 TC 348 Z9 351 U1 1 U2 9 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1334 EP 1351 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200005 ER PT J AU Law, NM Kulkarni, SR Dekany, RG Ofek, EO Quimby, RM Nugent, PE Surace, J Grillmair, CC Bloom, JS Kasliwal, MM Bildsten, L Brown, T Cenko, SB Ciardi, D Croner, E Djorgovski, SG van Eyken, J Filippenko, AV Fox, DB Gal-Yam, A Hale, D Hamam, N Helou, G Henning, J Howell, DA Jacobsen, J Laher, R Mattingly, S McKenna, D Pickles, A Poznanski, D Rahmer, G Rau, A Rosing, W Shara, M Smith, R Starr, D Sullivan, M Velur, V Walters, R Zolkower, J AF Law, Nicholas M. Kulkarni, Shrinivas R. Dekany, Richard G. Ofek, Eran O. Quimby, Robert M. Nugent, Peter E. Surace, Jason Grillmair, Carl C. Bloom, Joshua S. Kasliwal, Mansi M. Bildsten, Lars Brown, Tim Cenko, S. Bradley Ciardi, David Croner, Ernest Djorgovski, S. George van Eyken, Julian Filippenko, Alexei V. Fox, Derek B. Gal-Yam, Avishay Hale, David Hamam, Nouhad Helou, George Henning, John Howell, D. Andrew Jacobsen, Janet Laher, Russ Mattingly, Sean McKenna, Dan Pickles, Andrew Poznanski, Dovi Rahmer, Gustavo Rau, Arne Rosing, Wayne Shara, Michael Smith, Roger Starr, Dan Sullivan, Mark Velur, Viswa Walters, Richard Zolkower, Jeff TI The Palomar Transient Factory: System Overview, Performance, and First Results SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID SKY SURVEY; CLASSIFICATION; SUPERNOVAE; PIPELINE AB The Palomar Transient Factory (PTF) is a fully-automated, wide-field survey aimed at a systematic exploration of the optical transient sky. The transient survey is performed using a new 8.1 square degree camera installed on the 48 inch Samuel Oschin telescope at Palomar Observatory; colors and light curves for detected transients are obtained with the automated Palomar 60 inch telescope. PTF uses 80% of the 1.2 m and 50% of the 1.5 m telescope time. With an exposure of 60 s the survey reaches a depth of m(g') approximate to 21:3 and m(R) approximate to 20:6 (5 sigma, median seeing). Four major experiments are planned for the five-year project:(1) a 5 day cadence supernova search; (2) a rapid transient search with cadences between 90 s and 1 day; (3) a search for eclipsing binaries and transiting planets in Orion; and (4) a 3 pi sr deep H-alpha survey. PTF provides automatic, real-time transient classification and follow-up, as well as a database including every source detected in each frame. This paper summarizes the PTF project, including several months of on-sky performance tests of the new survey camera, the observing plans, and the data reduction strategy. We conclude by detailing the first 51 PTF optical transient detections, found in commissioning data. C1 [Law, Nicholas M.; Kulkarni, Shrinivas R.; Dekany, Richard G.; Ofek, Eran O.; Quimby, Robert M.; Kasliwal, Mansi M.; Croner, Ernest; Djorgovski, S. George; Hale, David; Henning, John; McKenna, Dan; Rahmer, Gustavo; Rau, Arne; Smith, Roger; Velur, Viswa; Walters, Richard; Zolkower, Jeff] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Nugent, Peter E.; Jacobsen, Janet; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Surace, Jason; Grillmair, Carl C.; Ciardi, David; van Eyken, Julian; Hamam, Nouhad; Helou, George; Laher, Russ; Mattingly, Sean] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Poznanski, Dovi; Starr, Dan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Bildsten, Lars; Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Brown, Tim; Howell, D. Andrew; Pickles, Andrew; Rosing, Wayne; Starr, Dan] Global Telescope Network, Las Cumbres Observ, Santa Barbara, CA 93117 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Rau, Arne] Max Planck Inst Extra Terr Phys, D-85748 Garching, Germany. [Shara, Michael] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Sullivan, Mark] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. RP Law, NM (reprint author), CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. EM nlaw@astro.caltech.edu FU NSF [AST-0507734, AST-0607485, AST-0407448, CNS-0540369, PHY 05-51164, AST 07-07633]; NSF/DDDAS-TNRP [CNS-0540352]; TABASGO foundation; EU; Minerva Foundation, Benoziyo Center for Astrophysics; NASA [HST-GO-11104.01-A, NNX08AM04G, 07-GLAST1-0023, HST-AR-11766.01-A]; DOE/SciDAC [DE-FC02-06ER41453, DE-FG02-08ER41563, DE-AC02-05CH11231]; Sylvia and Jim Katzman Foundation; Royal Society; University of Oxford Fell Fund FX This paper is based on observations obtained with the Samuel Oschin Telescope and the 60 inch Telescope at the Palomar Observatory as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. S. R. K. and his group were partially supported by the NSF grant AST-0507734. J. S. B. and his group were partially supported by a Hellman Family Grant, a Sloan Foundation Fellowship, NSF/DDDAS-TNRP grant CNS-0540352, and a continuing grant from DOE/SciDAC. T. B., A. P., W. R. and D. A. H. are supported by the TABASGO foundation and the Las Cumbres Observatory Global Telescope Network. The Weizmann Institute PTF partnership is supported by an ISF equipment grant to A. G. A. G.' s activity is further supported by a Marie Curie IRG grant from the EU, and by the Minerva Foundation, Benoziyo Center for Astrophysics, a research grant from Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. E. O. O. acknowledges partial support from NASA through grants HST-GO-11104.01-A; NNX08AM04G; 07-GLAST1-0023; and HST-AR-11766.01-A. A. V. F. and his group are grateful for funding from NSF grant AST-0607485, DOE/SciDAC grant DE-FC02-06ER41453, DOE grant DE-FG02- 08ER41563, the TABASGO Foundation, Gary and Cynthia Bengier, and the Sylvia and Jim Katzman Foundation. S. G. D. and A. A. M. were supported in part by NSF grants AST-0407448 and CNS-0540369, and also by the Ajax Foundation. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, has provided resources for this project by supporting staff and providing computational resources and data storage. A. V. F. and his group are grateful for funding from NSF grant AST-0607485, DOE/ SciDAC grant DE-FC02-06ER41453, DOE grant DE-FG02-08ER41563, the TABASGO Foundation, Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, and the Sylvia and Jim Katzman Foundation. L. B.'s research is supported by the NSF via grants PHY 05-51164 and AST 07-07633. M. S. acknowledges support from the Royal Society and the University of Oxford Fell Fund. NR 29 TC 430 Z9 433 U1 1 U2 10 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1395 EP 1408 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200011 ER PT J AU Bochanski, JJ Hennawi, JF Simcoe, RA Prochaska, JX West, AA Burgasser, AJ Burles, SM Bernstein, RA Williams, CL Murphy, MT AF Bochanski, John J. Hennawi, Joseph F. Simcoe, Robert A. Prochaska, J. Xavier West, Andrew A. Burgasser, Adam J. Burles, Scott M. Bernstein, Rebecca A. Williams, Christopher L. Murphy, Michael T. TI MASE: A New Data-Reduction Pipeline for the Magellan Echellette Spectrograph SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; SOUTHERN SPECTROPHOTOMETRIC STANDARDS; OPTIMAL EXTRACTION; DATA RELEASE; SPECTRA; SPECTROSCOPY AB We introduce a data-reduction package written in Interactive Data Language (IDL) for the Magellan Echellete Spectrograph (MAGE). MAGE is a medium-resolution (R similar to 4100), cross-dispersed, optical spectrograph, with coverage from similar to 3000-10000 angstrom. The MAGE Spectral Extractor (MASE) incorporates the entire image reduction and calibration process, including bias subtraction, flat fielding, wavelength calibration, sky subtraction, object extraction, and flux calibration of point sources. We include examples of the user interface and reduced spectra. We show that the wavelength calibration is sufficient to achieve similar to 5 km s(-1) rms accuracy and relative flux calibrations better than 10%. A lightweight version of the full reduction pipeline has been included for real-time source extraction and signal-to-noise estimation at the telescope. C1 [Bochanski, John J.; Simcoe, Robert A.; West, Andrew A.; Burgasser, Adam J.; Williams, Christopher L.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hennawi, Joseph F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Prochaska, J. Xavier; Bernstein, Rebecca A.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Burles, Scott M.] DE Shaw & Co LP, Cupertino, CA 95014 USA. [Murphy, Michael T.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. RP Bochanski, JJ (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Murphy, Michael/B-8832-2008; West, Andrew/H-3717-2014 OI Murphy, Michael/0000-0002-7040-5498; FU Magellan Echellette Specrograph; Observatories of the Carnegie Institution of Washington; School of Science of the Massachusetts Institute of Technology; National Science Foundation; Carnegie and MIT [AST-0215989]; NSF CAREER [AST-0548180] FX Support for the design and construction of the Magellan Echellette Specrograph was received from the Observatories of the Carnegie Institution of Washington, the School of Science of the Massachusetts Institute of Technology, and the National Science Foundation in the form of a collaborative Major Research Instrument grant to Carnegie and MIT (AST-0215989). J. X. P. is partially supported by an NSF CAREER grant (AST-0548180). We thank the referee for constructive comments that improved this manuscript. J. J. B. acknowledges Jackie Faherty and Dagny Looper for their illuminating conversations and extensive vetting of MAGE data. We thank Mason Betha for early inspiration in this project. We thank Ricardo Covvarubias for early testing of the MAGE quicklook tool. Finally, thanks to the entire Magellan staff, in particular Mauricio Martinez and Hernan Nunez. NR 27 TC 56 Z9 57 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1409 EP 1418 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200012 ER PT J AU Zhang, ZW Kim, DW Wang, JH Lehner, MJ Chen, WP Byun, YI Alcock, C Axelrod, T Bianco, FB Coehlo, NK Cook, KH Dave, R de Pater, I Giammarco, J King, SK Lee, T Lin, HC Marshall, SL Porrata, R Protopapas, P Rice, JA Schwamb, ME Wang, SY Wen, CY AF Zhang, Z. -W. Kim, D. -W. Wang, J. -H. Lehner, M. J. Chen, W. P. Byun, Y. -I. Alcock, C. Axelrod, T. Bianco, F. B. Coehlo, N. K. Cook, K. H. Dave, R. de Pater, I. Giammarco, J. King, S. -K. Lee, T. Lin, H. -C. Marshall, S. L. Porrata, R. Protopapas, P. Rice, J. A. Schwamb, M. E. Wang, S. -Y. Wen, C. -Y. TI The TAOS Project: High-Speed Crowded Field Aperture Photometry SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID AMERICAN OCCULTATION SURVEY; BODIES AB We have devised an aperture photometry pipeline for data reduction of image data from the Taiwanese-American Occultation Survey (TAOS). The photometry pipeline has high computational performance, and is capable of real-time photometric reduction of images containing up to 1000 stars, within the sampling rate of 5 Hz. The pipeline is optimized for both speed and signal-to-noise performance, and in the latter category it performs nearly as well as DAOPHOT. This paper provides a detailed description of the TAOS aperture photometry pipeline. C1 [Zhang, Z. -W.; Chen, W. P.; Lin, H. -C.] Natl Cent Univ, Inst Astron, Jhongli 320, Taoyuan, Taiwan. [Kim, D. -W.; Byun, Y. -I.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Wang, J. -H.; Lehner, M. J.; King, S. -K.; Lee, T.; Wang, S. -Y.; Wen, C. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Lehner, M. J.; Bianco, F. B.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Lehner, M. J.; Alcock, C.; Bianco, F. B.; Protopapas, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Axelrod, T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Coehlo, N. K.; Rice, J. A.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Cook, K. H.; Marshall, S. L.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Dave, R.; Protopapas, P.] Harvard Univ, Initiat Innovat Comp, Cambridge, MA 02138 USA. [de Pater, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Giammarco, J.] Eastern Univ, Dept Phys & Astron, St Davids, PA 19087 USA. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Porrata, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94270 USA. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Zhang, ZW (reprint author), Natl Cent Univ, Inst Astron, 300 Jhongda Rd, Jhongli 320, Taoyuan, Taiwan. EM zwzhang@asiaa.sinica.edu.tw RI Lee, Typhoon/N-8347-2013; OI Lehner, Matthew/0000-0003-4077-0985 FU National Central University [NSC 96-2112-M-008-024-MY3]; National Research Foundation of Korea [2009-0075376]; National Science Foundation [AST-0501681]; NASA [NNG04G113G]; U.S. Department of Energy [W-7405-Eng-48]; Stanford Linear Accelerator Center [DE-AC02-76SF00515]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52- 07NA27344]; [AS-88-TP-A02] FX The work at National Central University was supported by grant NSC 96-2112-M-008-024-MY3. Y. I. B. acknowledges the support of National Research Foundation of Korea through grant 2009-0075376. Work at Academia Sinica was supported in part by the thematic research program AS-88-TP-A02. Work at the Harvard College Observatory was supported in part by the National Science Foundation under grant AST-0501681 and by NASA under grant NNG04G113G. S. L. M.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and by Stanford Linear Accelerator Center under contract DE-AC02-76SF00515. K. H. C.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52- 07NA27344. NR 13 TC 6 Z9 6 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1429 EP 1439 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200014 ER PT J AU Ma, SQ AF Ma, Shengqian TI Gas adsorption applications of porous metal-organic frameworks SO PURE AND APPLIED CHEMISTRY LA English DT Article DE gas adsorption; hydrogen storage; methane storage; porous metal-organic framework; selective gas adsorption ID HIGH H-2 ADSORPTION; HYDROGEN STORAGE; METHANE STORAGE; SELECTIVE SORPTION; KINETIC SEPARATION; SITES; CATENATION; MOLECULES; BINDING; STABILITY AB Porous metal-organic frameworks (MOFs) represent a new type of functional materials and have recently become a hot research field due to their great potential in various applications. In this review, recent progress of gas adsorption applications of porous MOFs, mainly including hydrogen storage, methane storage, and selective gas adsorption will be briefly summarized. C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ma, SQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sma@anl.gov RI Ma, Shengqian/B-4022-2012 OI Ma, Shengqian/0000-0002-1897-7069 FU Miami University; Argonne National Laboratory; NSF; DOE FX I would first like to thank IUPAC for giving me the precious opportunity to present this work. I would also like to thank the Dissertation Scholarship from Miami University and the Director's Postdoctoral Fellowship from Argonne National Laboratory. Last but not least, I would like to express my deepest appreciation to my Ph.D. advisor, Prof. Hong-Cai Zhou, for his excellent education, tremendous support, and constant encouragement throughout my graduate career and beyond. Financial support for my Ph.D. research work is from Miami University, NSF, and DOE, all of which I would like to acknowledge here as well. NR 63 TC 74 Z9 76 U1 2 U2 27 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-4545 EI 1365-3075 J9 PURE APPL CHEM JI Pure Appl. Chem. PD DEC PY 2009 VL 81 IS 12 BP 2235 EP 2251 DI 10.1351/PAC-CON-09-07-09 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 538TF UT WOS:000273206200006 ER PT J AU Burr, T Hamada, MS Graves, TL Myers, S AF Burr, T. Hamada, M. S. Graves, T. L. Myers, S. TI Augmenting Real Data with Synthetic Data: An Application in Assessing Radio-Isotope Identification Algorithms SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE bias-variance tradeoff; isotope identification algorithm; Lehman-Scheffe theorem; Nal detector; synthetic data AB The performance of Radio-Isotope IDentification (RIID) algorithms using gamma spectroscopy is increasingly becoming important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification to resolve innocent nuisance alarms arising from naturally occurring radioactive material. Recent data collections for RIID testing consist of repeat measurements for each of several scenarios to test RIID algorithms. Efficient allocation of measurement resources requires an appropriate number of repeats for each scenario. To help allocate measurement resources in such data collections for RIID algorithm testing, we consider using only a few real repeals per scenario. In order to reduce uncertainty in the estimated RIID algorithm performance for each scenario, the potential merit of augmenting these real repeals with realistic synthetic repeals is also considered. Our results suggest that for the scenarios and algorithm considered, approximately 10 real repeals augmented with simulated repeals will result in all estimate having comparable uncertainty to the estimate based oil using 60 real repeals. Published in 2009 by John Wiley & Sons, Ltd. C1 [Burr, T.; Hamada, M. S.; Graves, T. L.; Myers, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tburr@lanl.gov FU DOE [DE-AC52-06NA25396] FX The Department of Homeland Security sponsored the production of this material under DOE Contract Number DE-AC52-06NA25396 for the management and operation of Los Alamos National Laboratory. NR 13 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD DEC PY 2009 VL 25 IS 8 BP 899 EP 911 DI 10.1002/qre.1003 PG 13 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 532PN UT WOS:000272762000002 ER PT J AU Li, JH Liang, L Borror, CM Anderson-Cook, C Montgomery, DC AF Li, Jiahong Liang, Li Borror, Connie M. Anderson-Cook, Christine Montgomery, Douglas C. TI Graphical Summaries to Compare Prediction Variance Performance for Variations of the Central Composite Design for 6 to 10 Factors SO QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT LA English DT Article DE Design comparison; fraction of design space plots; G-optimality; I-optimality AB Three readily available second-order response surface designs for a relatively large number of factors are examined and compared. The number of factors in this study range from 6 <= k <= 10 for both spherical and cuboidal regions of interest. As the number of factors in an experiment increases, the number of terms in the second-order model, as well as the total number of observations can increase quite rapidly. Hence finding economical designs that still predict well in the region of interest is an important objective. The scaled and unscaled prediction variances are investigated over the design region for the central composite design (CCD), small composite design (SCD), and minimum-run resolution (MinRes) V designs. For each of the cuboidal and spherical regions, several choices of axial values are compared. Fraction of design space (FDS) plots and box plots are constructed to characterize the prediction variance properties for the designs in this study. C1 [Li, Jiahong; Montgomery, Douglas C.] Arizona State Univ, Dept Ind Engn, Tempe, AZ 85287 USA. [Liang, Li] Duke Clin Res Inst, Durham, NC USA. [Borror, Connie M.] Arizona State Univ, Div Math & Nat Sci, Glendale, AZ USA. [Anderson-Cook, Christine] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. RP Li, JH (reprint author), Arizona State Univ, Dept Ind Engn, Tempe, AZ 85287 USA. NR 11 TC 4 Z9 4 U1 0 U2 1 PU NCTU-NATIONAL CHIAO TUNG UNIV PRESS PI TAICHUNG PA NO 100, WENHWA RD, TAICHUNG, 40724 ROC, TAIWAN SN 1684-3703 J9 QUAL TECHNOL QUANT M JI Qual. Technol. Quant. Manag. PD DEC PY 2009 VL 6 IS 4 BP 433 EP 449 PG 17 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA V18HY UT WOS:000207997100006 ER PT J AU Holm, DD Trouve, A Younes, L AF Holm, Darryl D. Trouve, Alain Younes, Laurent TI THE EULER-POINCARE THEORY OF METAMORPHOSIS SO QUARTERLY OF APPLIED MATHEMATICS LA English DT Article DE Groups of diffeomorphisms; EPDiff; image registration; shape analysis; deformable templates ID LARGE-DEFORMATION DIFFEOMORPHISMS; FRAMEWORK; EQUATIONS; FLOWS; SPACE AB In the pattern matching approach to imaging science, the process of "metamorphosis" is template matching with dynamical templates (Trouve and Younes, Found. Comp. Math., 2005). Here, we recast the metamorphosis equations of that paper into the Euler-Poincare variational framework of Holm, Marsden, and Ratiu, Adv. in Math., 1998 and show that the metamorphosis equations contain the equations for a perfect complex fluid (Holm, Springer, 2002). This result connects the ideas underlying the process of metamorphosis in image matching to the physical concept of an order parameter in the theory of complex fluids. After developing the general theory, we reinterpret various examples, including point set, image and density metamorphosis. We finally discuss the issue of matching measures with metamorphosis, for which we provide existence theorems for the initial and boundary value problems. C1 [Holm, Darryl D.] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Trouve, Alain] Ecole Normale Super, CMLA, CNRS, URA 1611, F-94235 Cachan, France. [Younes, Laurent] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA. RP Holm, DD (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. EM d.holm@ic.ac.uk; trouve@cmla.ens-cachan.fr; laurent.younes@jhu.edu RI Younes, E. Laurent/A-3349-2010; OI Holm, Darryl D/0000-0001-6362-9912 FU US Department of Energy, Office of Science, Applied Mathematical Research; Royal Society of London Wolfson Research Merit Award; NSF [DMS-0456253] FX The work of Laurent Younes was partially supported by NSF DMS-0456253. NR 33 TC 20 Z9 20 U1 0 U2 0 PU UNIV PRESS INC PI PROVIDENCE PA C/O AMER MATHEMATICAL SOC, DISTRIBUTOR, 201 CHARLES ST, PROVIDENCE, RI 02940-2294 USA SN 0033-569X J9 Q APPL MATH JI Q. Appl. Math. PD DEC PY 2009 VL 67 IS 4 BP 661 EP 685 AR PII S0033-569X(09)01134-2 PG 25 WC Mathematics, Applied SC Mathematics GA 529YU UT WOS:000272556300004 ER PT J AU Hall, SR Farber, DL Ramage, JM Rodbell, DT Finkel, RC Smith, JA Mark, BG Kassel, C AF Hall, Sarah R. Farber, Daniel L. Ramage, Joan M. Rodbell, Donald T. Finkel, Robert C. Smith, Jacqueline A. Mark, Bryan G. Kassel, Christopher TI Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID SURFACE EXPOSURE AGES; COSMOGENIC NUCLIDES; CENTRAL ANDES; PRODUCTION-RATES; ATACAMA DESERT; EROSION RATES; NORTHERN PERU; ICE CORE; CLIMATE; MAXIMUM AB The Cordillera Huayhuash in the central Peruvian Andes (10.3 degrees S, 76.9 degrees W) is an ideal mountain range in which to study regional climate through variations in paleoglacier extents. The range trends nearly north-south with modern glaciers confined to peaks >4800 m a.s.l. Geomorphology and geochronology in the nearby Cordillera Blanca and Junin Plain reveal that the Peruvian Andes preserve a detailed record of tropical glaciation. Here, we use ASTER imagery, aerial photographs, and GPS to map and date glacial features in both the western and eastern drainages of the Cordillera Huayhuash. We have used in situ produced cosmogenic Be-10 concentrations in quartz bearing erratics on moraine crests and ice-polished bedrock surfaces to develop an exposure age chronology for Pleistocene glaciation within the range. We have also collected sediment cores from moraine-dammed lakes and bogs to provide limiting C-14 ages for glacial deposits. In contrast to the ranges to the north and south, most glacial features within the Cordillera Huayhuash are Lateglacial in age, however we have identified features with ages that span similar to 0.2 to similar to 38 ka with moraine sets marking the onset of glacier retreat at similar to 0.3 ka, similar to 9-10 ka, similar to 13-14 ka, similar to 20-22 ka, and >26 ka. The range displays a pronounced east-west variation in maximum down-valley distance from the headwall of moraine crests with considerably longer paleoglaciers in the eastern drainages. Importantly, Lateglacial paleoglaciers reached a terminal elevation of similar to 4000 m a.s.l. on both sides of the Cordillera Huayhuash; suggesting that temperature may have been a dominant factor in controlling the maximum glacier extent. We suggest that valley morphology, specifically valley slope, strongly influences down-valley distance to the maximum glacier extent and potential for moraine preservation. While regionally there is an extensive record of older (>50 ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the apparent lack of old moraines in this locality may be explained by the confined morphology of the Cordillera Huayhuash valleys that has inhibited the preservation of older glacial geomorphic features. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hall, Sarah R.; Farber, Daniel L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Farber, Daniel L.; Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Ramage, Joan M.] Lehigh Univ, Earth & Environm Sci, Bethlehem, PA 18015 USA. [Rodbell, Donald T.; Kassel, Christopher] Union Coll, Dept Geol, Schenectady, NY 12308 USA. [Smith, Jacqueline A.] Coll St Rose, Dept Phys & Biol Sci, Albany, NY 12203 USA. [Mark, Bryan G.] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Finkel, Robert C.] Ctr Europeen Rech & Enseignement Geosci Environm, ASTER, F-13100 Aix En Provence, France. RP Hall, SR (reprint author), McGill Univ, Adams Bldg,3450 Univ St, Montreal, PQ H2J 1Y8, Canada. EM sarah.hall@mcgill.ca RI Farber, Daniel/F-9237-2011 FU NSF [EAR-0345895]; LLNL/IGPP [B553611-02]; National Geographic Society; NASA [NNG04GO95G] FX We are grateful to numerous individuals for assistance in the field: Ing. Alcides Ames coordinated all field logistics, and, Patrick Canniff, John Garver, Matt Montario, Molly Luft, Ellyn McFadden, Jeffrey Mackenzie, Michael Ramage, Colby Smith, and Pilar Rojas Linero participated in all aspects of fieldwork. This manuscript was greatly improved by thorough and insightful reviews by 4 anonymous reviewers. Support for this work was provided by the NSF (EAR-0345895; DF), LLNL/IGPP (B553611-02; DF and SH), the National Geographic Society (to DTR), and NASA (NNG04GO95G to JMR). NR 53 TC 12 Z9 12 U1 1 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD DEC PY 2009 VL 28 IS 25-26 BP 2991 EP 3009 DI 10.1016/j.quascirev.2009.08.004 PG 19 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 520TS UT WOS:000271872200032 ER PT J AU Lall-Ramnarine, SI Castano, A Subramaniam, G Thomas, MF Wishart, JF AF Lall-Ramnarine, Sharon I. Castano, Alejandra Subramaniam, Gopal Thomas, Marie F. Wishart, James F. TI Synthesis, characterization and radiolytic properties of bis(oxalato)borate containing ionic liquids SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd Asia-Pacific Symposium on Radiation Chemistry CY AUG 29-SEP 01, 2008 CL Waseda Univ, Int Conf Ctr, Tokyo, JAPAN SP Japanese Soc Radiat Chem, RadTech Japan HO Waseda Univ, Int Conf Ctr DE Ionic liquid; Solvated electron; Pulse radiolysis; Bis(oxalato)borate ID PULSE-RADIOLYSIS; ROOM-TEMPERATURE; METHYLTRIBUTYLAMMONIUM; ACTINIDES; ELECTRON; LITHIUM; CATIONS; ANIONS; SALTS AB Previously unreported bis(oxalato)borate (BOB) ionic liquids (ILs) containing imidazolium, pyridinium, and pyrrolidinium cations were prepared from the corresponding halide salts by reaction with sodium bis(oxalato)borate (NaBOB), and their properties are reported. Pulse radiolysis experiments revealed that the BOB anion scavenges solvated electrons with rate constants of similar to 3 x 108 M(-1) s(-1) in the ionic liquid C(4)mpyrr NTf(2) and 2.8 x 10(7) M(-1) s(-1) in water. This reactivity indicates that BOB ILS may be too sensitive to be used as neat solvents for nuclear separations processes in high radiation fields but may still be useful for preventing criticality while processing relatively "cold" fissile actinides. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Thomas, Marie F.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Lall-Ramnarine, Sharon I.] CUNY Queensborough Community Coll, Dept Chem, Bayside, NY 11364 USA. [Castano, Alejandra; Subramaniam, Gopal; Thomas, Marie F.] CUNY Queens Coll, Dept Chem & Biochem, Flushing, NY 11367 USA. RP Wishart, JF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wishart@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 NR 25 TC 16 Z9 17 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2009 VL 78 IS 12 BP 1120 EP 1125 DI 10.1016/j.radphyschem.2009.02.007 PG 6 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 513QD UT WOS:000271337100025 ER PT J AU Takahashi, K Suda, K Seto, T Katsumura, Y Katoh, R Crowell, RA Wishart, JF AF Takahashi, Kenji Suda, Kayo Seto, Takafumi Katsumura, Yosuke Katoh, Ryuzi Crowell, Robert A. Wishart, James F. TI Photo-detrapping of solvated electrons in an ionic liquid SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd Asia-Pacific Symposium on Radiation Chemistry CY AUG 29-SEP 01, 2008 CL Waseda Univ, Int Conf Ctr, Tokyo, JAPAN SP Japanese Soc Radiat Chem, RadTech Japan HO Waseda Univ, Int Conf Ctr DE Solvated electron; Dry electron; Heterogeneous environment ID PUMP-PROBE SPECTROSCOPY; ROOM-TEMPERATURE; METHYLTRIBUTYLAMMONIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE; REACTION-KINETICS; PULSE-RADIOLYSIS; DYNAMICS; SOLVENTS; EXCITATION; RADICALS; SPECTRUM AB We studied the dynamics of photo-detrapped solvated electrons in the ionic liquid trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI) using laser flash photolysis. The solvated electrons were produced by the electron photodetachment from iodide via a 248 nm KrF excimer laser. The solvated electron decayed by first-order kinetics with a lifetime of about 240 ns. The spectrum of the solvated electron in the ionic liquid TMPA-TFSI is very broad with a peak around 1100 nm. After the 248 nm pulse, a 532 nm pulse was used to subsequently detrap the solvated electrons. After the detrapping pulse, quasi-permanent bleaching was observed. The relative magnitude of the bleaching in the solvated electron absorbance was measured from 500 to 1000 nm. The amount of bleaching depends on the probe wavelength. The fraction of bleached absorbance was larger at 500 nm than that at 1000 nm, suggesting that there are at least two species that absorb 532 nm light. We discuss the present results from viewpoint of the heterogeneity of ionic liquids. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Takahashi, Kenji; Suda, Kayo; Seto, Takafumi] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kanazawa, Ishikawa 9201192, Japan. [Katsumura, Yosuke] Tokai Univ, Dept Nucl Engn & Management, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Katoh, Ryuzi] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Crowell, Robert A.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Takahashi, K (reprint author), Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. EM ktkenji@t.kanazawa-u.ac.jp RI Takahashi, Kenji/C-8846-2011; Wishart, James/L-6303-2013; Seto, Takafumi/D-2874-2012; Takahashi, Kenji/F-4885-2014 OI Wishart, James/0000-0002-0488-7636; NR 23 TC 8 Z9 8 U1 3 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2009 VL 78 IS 12 BP 1129 EP 1132 DI 10.1016/j.radphyschem.2009.07.016 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 513QD UT WOS:000271337100027 ER PT J AU Ainsbury, EA Livingston, GK Abbott, MG Moquet, JE Hone, PA Jenkins, MS Christensen, DM Lloyd, DC Rothkamm, K AF Ainsbury, E. A. Livingston, G. K. Abbott, M. G. Moquet, J. E. Hone, P. A. Jenkins, M. S. Christensen, D. M. Lloyd, D. C. Rothkamm, K. TI Interlaboratory Variation in Scoring Dicentric Chromosomes in a Case of Partial-Body X-Ray Exposure: Implications for Biodosimetry Networking and Cytogenetic "Triage Mode" Scoring SO RADIATION RESEARCH LA English DT Article ID RADIATION; ABERRATIONS; LABORATORIES; DOSIMETRY AB Ainsbury, E. A., Livingston, G. K., Abbott, M. G., Moquet, J. E., Hone, P. A., Jenkins, M. S., Christensen, D. M., Lloyd, D. C. and Rothkamm, K. Interlaboratory Variation in Scoring Dicentric Chromosomes in a Case of Partial-Body X-Ray Exposure: Implications for Biodosimetry Networking and Cytogenetic "Triage Mode" Scoring. Radiat. Res. 172, 746752(2009). The international radiation biodosimetry community has recently been engaged in activities focused on establishing cooperative networks for biodosimetric triage for radiation emergency scenarios involving mass casualties. To this end, there have been several recent publications in the literature regarding the potential for shared scoring in such an accident or incident. We present details from a medical irradiation case where two independently validated laboratories found very different yields of dicentric chromosome aberrations. The potential reasons for this disparity are discussed, and the actual reason is identified as being the partial-body nature of the radiation exposure combined with differing criteria for metaphase selection. In the context of the recent networking activity, this report is intended to highlight the fact that shared scoring may produce inconsistencies and that further validation of the scoring protocols and experimental techniques may be required before the networks are prepared to deal satisfactorily with a radiological or nuclear emergency. Also, the findings presented here clearly demonstrate the limitations of the dicentric assay for estimating radiation doses after partial-body exposures and bring into question the usefulness of rapid "triage mode" scoring in such exposure scenarios. (C) 2009 by Radiation Research Society C1 [Ainsbury, E. A.; Moquet, J. E.; Hone, P. A.; Lloyd, D. C.; Rothkamm, K.] Hlth Protect Agcy, Radiat Protect Div, Ctr Radiat Chem & Environm Hazards, Didcot OX11 0RQ, Oxon, England. [Livingston, G. K.; Abbott, M. G.; Jenkins, M. S.; Christensen, D. M.] Oak Ridge Inst Sci & Educ, Radiat Emergency Assistance Ctr, Oak Ridge, TN USA. RP Ainsbury, EA (reprint author), Hlth Protect Agcy, Radiat Protect Div, Ctr Radiat Chem & Environm Hazards, Didcot OX11 0RQ, Oxon, England. EM liz.ainsbury@hpa.org.uk RI Rothkamm, Kai/A-2164-2014 OI Rothkamm, Kai/0000-0001-7414-5729 NR 15 TC 18 Z9 19 U1 0 U2 2 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2009 VL 172 IS 6 BP 746 EP 752 DI 10.1667/RR1934.1 PG 7 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 527OT UT WOS:000272377100010 PM 19929421 ER PT J AU Bradshaw, JA Ovchinnikova, OS Meyer, KA Goeringer, DE AF Bradshaw, James A. Ovchinnikova, Olga S. Meyer, Kent A. Goeringer, Douglas E. TI Combined chemical and topographic imaging at atmospheric pressure via microprobe laser desorption/ionization mass spectrometry-atomic force microscopy SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID DESORPTION; MALDI; RESOLUTION; ABLATION; SENSITIVITY; IONIZATION; ANALYZER; SURFACE; TISSUE; BEAM AB The operational characteristics and imaging performance are described for a new instrument comprising an atomic force microscope coupled with a pulsed laser and a linear ion trap mass spectrometer. The operating mode of the atomic force microscope is used to produce topographic surface images having sub-micrometer spatial and height resolution. Spatially resolved mass spectra of ions, produced from the same surface via microprobe-mode laser desorption/ionization at atmospheric pressure, are also used to create a 100 x 100 mu m chemical image. The effective spatial resolution of the image (similar to 2 mu m) was constrained by the limit of detection (estimated to be 10(9)-10(10) molecules) rather than by the diameter of the focused laser spot or the step size of the sample stage. The instrument has the potential to be particularly useful for surface analysis scenarios in which chemical analysis of targeted topographic features is desired; consequently, it should have extensive application in a number of scientific areas. Because the number density of desorbed neutral species in laser desorption/ionization is known to be orders-of-magnitude greater than that of ions, it is expected that improvements in imaging performance can be realized by implementation of post-ionization methods. Published in 2009 by John Wiley & Sons, Ltd. C1 [Bradshaw, James A.; Ovchinnikova, Olga S.; Meyer, Kent A.; Goeringer, Douglas E.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Goeringer, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Bldg 4500S,MS 6131, Oak Ridge, TN 37831 USA. EM goeringerde@ornl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; United States Department of Energy [DE-AC05-00OR22725] FX We thank Stephen Jesse for providing LabVIEW code that enabled flexible array-based sampling with the MultiMode AFM. Vilmos Kertesz is acknowledged for-making his imaging software (HandsFree Surface Analysis (R)) available to us. This research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. ORNL is managed and operated by UT-Battelle, LLC, for the United States Department of Energy under Contract DE-AC05-00OR22725. NR 33 TC 21 Z9 21 U1 2 U2 16 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD DEC PY 2009 VL 23 IS 23 BP 3781 EP 3786 DI 10.1002/rcm.4313 PG 6 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 529MY UT WOS:000272522700021 PM 19908223 ER PT J AU Chakraborty, S Kramer, B Kroposki, B AF Chakraborty, Sudipta Kramer, Bill Kroposki, Benjamin TI A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Distributed energy; Power electronics interface; Modularity; Integrated power electronics modules ID DC-DC CONVERTER; FUEL-CELL AB Due to increased attention towards clean and sustainable energy, distributed energy (DE) systems are gaining popularity all over the world. Power electronics are an integral part of these energy systems being able to convert generated electricity into consumer usable and utility compatible forms. But the addition of power electronics adds costs to the DE capital investments along with some reliability issues. Therefore, widespread use of distributed energy requires power electronics topologies that are less expensive and more dependable. Use of modular power electronics is a way to address these issues. Adoption of functional building blocks that can be used for multiple applications results in high volume production and reduced engineering effort, design testing, onsite installation and maintenance work for specific customer applications. In this paper, different power electronics topologies are reviewed that are typically used with distributed energy systems. The integrated power electronics module (IPEM) based back-to-back converter topologies are found to be most suitable interface that can operate with different DE systems with small or no modifications. Also the requirements for a hierarchical control structure with standardized power and communication interfaces are addressed in the paper along with some discussion on future design possibilities for the IPEM-based power electronics topologies. It is expected that modular and flexible power electronics and standardized controls and interfaces. will provide commonality in hardware and software for the power electronics interfaces, thus will enable their volume production and decrease their cost share in distributed energy applications. (C) 2009 Published by Elsevier Ltd. C1 [Chakraborty, Sudipta; Kramer, Bill; Kroposki, Benjamin] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chakraborty, S (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,Mail Stop 3911, Golden, CO 80401 USA. EM sudipta.chakraborty@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; California Energy Commission (CEC) FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors wish to thank the California Energy Commission (CEC) for funding this project1. NR 30 TC 48 Z9 50 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD DEC PY 2009 VL 13 IS 9 BP 2323 EP 2335 DI 10.1016/j.rser.2009.05.005 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 504SG UT WOS:000270637000008 ER PT J AU Al-Karaghouli, A Renne, D Kazmerski, LL AF Al-Karaghouli, Ali Renne, David Kazmerski, Lawrence L. TI Solar and wind opportunities for water desalination in the Arab regions SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Renewable energy; Water desalination; Solar thermal; Solar photovoltaic; Wind energy; Arab region ID OF-THE-ART; POWERED DESALINATION AB Despite the abundance of renewable energy resources in the Arab region, the use of solar thermal, solar photovoltaics, and wind is still in its technological and economic infancy. Great potential exists, but economic constraints have impeded more rapid growth for many applications. These technologies have certainly advanced technically over the last quarter century to the point where they should now be considered clean-energy alternatives to fossil fuels. For the Arab countries and many other regions of the world, potable water is becoming as critical a commodity as electricity. As renewable energy technologies advance and environmental concerns rise, these technologies are becoming more interesting partners for powering water desalination projects. We evaluate the current potential and viability of solar and wind, emphasizing the strict mandate for accurate, reliable site-specific resource data. Water desalination can be achieved through either thermal energy (using phase-change processes) or electricity (driving membrane processes), and these sources are best matched to the particular desalination technology. Desalination using solar thermal can be accomplished by multistage flash distillation, multi-effect distillation, vapor compression, freeze separation, and solar still methods. Concentrating solar power offers the best match to large-scale plants that require both high-temperature fluids and electricity. Solar and wind electricity can be effective energy sources for reverse osmosis, electrodialysis, and ultra- and nano-filtration. All these water desalination processes have special operational and high energy requirements that put additional requisites on the use of solar and wind to power these applications. We summarize the characteristics of the various desalination technologies. The effective match of solar thermal, solar photovoltaics, and wind to each of these is discussed in detail. An economic analysis is provided that incorporates energy consumption, water production levels, and environmental benefits in its model. Finally, the expected evolution of the renewable technologies over the near- to mid-term is discussed with the implications for desalination applications over these timeframes. (C) 2009 Published by Elsevier Ltd. C1 [Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Al-Karaghouli, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ali_al_karaghouli@nrel.gov NR 19 TC 37 Z9 40 U1 5 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD DEC PY 2009 VL 13 IS 9 BP 2397 EP 2407 DI 10.1016/j.rser.2008.05.007 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 504SG UT WOS:000270637000014 ER PT J AU Fthenakis, V AF Fthenakis, Vasilis TI Sustainability of photovoltaics: The case for thin-film solar cells SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Photovoltaics; Tellurium; Indium; Germanium; Availability; Resources; Recycling ID AVAILABILITY; EMISSIONS; CADMIUM; METAL; ELECTRICITY; TE; US AB To ensure photovoltaics become a major sustainable player in a competitive power-generation market, they must provide abundant, affordable electricity. with environmental impacts drastically lower than those from conventional power generation. The recent reduction in the cost of 2nd generation thin-film PV is remarkable, meeting the production milestone of $1 per watt in the fourth quarter of 2008. This achievement holds great promise for the future. However, the questions remaining are whether the expense of PV modules can be lowered further, and if there are resource- and environmental-impact constraints to growth. I examine the potential of thin-films in a prospective life-cycle analysis, focusing on direct costs, resource availability, and environmental impacts. These three aspects are closely related; developing thinner solar cells and recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, Photovolta Environm Res Ctr, Upton, NY 11973 USA. [Fthenakis, Vasilis] Columbia Univ, Ctr Life Cycle Anal, Upton, NY 11973 USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, Photovolta Environm Res Ctr, Bldg 130, Upton, NY 11973 USA. EM vmf@bnl.gov FU Solar Technologies Program, US Department of Energy [DE-AC02-76CH000016] FX Many people contributed to this work with helpful discussions; we would like especially to acknowledge H. Kim, Columbia U., K. Zweibel, GWU, F. Ojebuoboh and A. Meader, FirstSolar, B. Stanbery, HelioVolt, J. Britt, GlobalSolar, S. Guha, Uni-Solar, X. Deng, Xunlight, J. Sites, Colorado State U. and B. von Roedern, NREL. This work was supported by the Solar Technologies Program, US Department of Energy, under Contract: DE-AC02-76CH000016 with the US-DOE. NR 24 TC 163 Z9 164 U1 7 U2 77 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD DEC PY 2009 VL 13 IS 9 BP 2746 EP 2750 DI 10.1016/j.rser.2009.05.001 PG 5 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 504SG UT WOS:000270637000055 ER PT J AU Schafer, T Teaney, D AF Schaefer, Thomas Teaney, Derek TI Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID HEAVY-ION COLLISIONS; LIQUID-HELIUM-II; COUPLING-CONSTANT DEPENDENCE; YANG-MILLS THEORY; ELLIPTIC FLOW; FIELD-THEORY; FERMI GAS; TRANSITION-TEMPERATURE; TRANSPORT-COEFFICIENTS; SHEAR VISCOSITY AB Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity eta to entropy density s in units of (h) over bar /k(B) is bounded by a constant. Here, (h) over bar is Planck's constant and k(B) is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that eta/s >= (h) over bar/(4 pi k(B)). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of eta/s that are smaller than (h) over bar /k(B). These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma. C1 [Schaefer, Thomas] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Teaney, Derek] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Teaney, Derek] Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA. RP Schafer, T (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. OI Schaefer, Thomas/0000-0002-2297-782X FU US Department of Energy [DE-FG02-03ER41260, DE-FG02-08ER41540]; Alfred P Sloan foundation FX This work was supported in parts by the US Department of Energy grant DE-FG02-03ER41260 (TS) and DE-FG02-08ER41540 (DT). DT is also supported by the Alfred P Sloan foundation. The authors would like to thank Gordon Baym for providing the impetus to write this review. They would like to acknowledge useful discussions with Dam Son, Edward Shuryak and John Thomas. In preparing a revised version the authors benefited from the remarks of an anonymous referee, and from communications by G Aarts, C Greiner, A Sinha and F Zwerger. NR 236 TC 178 Z9 180 U1 5 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2009 VL 72 IS 12 AR 126001 DI 10.1088/0034-4885/72/12/126001 PG 40 WC Physics, Multidisciplinary SC Physics GA 523MC UT WOS:000272076800002 ER PT J AU Bechtel, HA Martin, MC May, TE Lerch, P AF Bechtel, Hans A. Martin, Michael C. May, T. E. Lerch, Philippe TI Improved spatial resolution for reflection mode infrared microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ADVANCED LIGHT-SOURCE; SYNCHROTRON-RADIATION; SPECTROMICROSCOPY; LIMITS; MICROSPECTROSCOPY; PERFORMANCE; BEAMLINES AB Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes capable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal plane array detector. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3270260] C1 [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [May, T. E.] Univ Saskatchewan, Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada. [Lerch, Philippe] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Martin, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mcmartin@lbl.gov FU U.S. Department of Energy [DE-nAC02-05CH11231] FX The authors thank G. L. Carr for help with Zemax simulations. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-nAC02-05CH11231. NR 13 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 126106 DI 10.1063/1.3270260 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300058 PM 20059180 ER PT J AU Blum, M Weinhardt, L Fuchs, O Bar, M Zhang, Y Weigand, M Krause, S Pookpanratana, S Hofmann, T Yang, W Denlinger, JD Umbach, E Heske, C AF Blum, M. Weinhardt, L. Fuchs, O. Baer, M. Zhang, Y. Weigand, M. Krause, S. Pookpanratana, S. Hofmann, T. Yang, W. Denlinger, J. D. Umbach, E. Heske, C. TI Solid and liquid spectroscopic analysis (SALSA)-a soft x-ray spectroscopy endstation with a novel flow-through liquid cell SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ABSORPTION SPECTROSCOPY; EMISSION SPECTROSCOPY; WATER AB We present a novel synchrotron endstation with a flow-through liquid cell designed to study the electronic structure of liquids using soft x-ray spectroscopies. In this cell, the liquid under study is separated from the vacuum by a thin window membrane, such that the sample liquid can be investigated at ambient pressure. The temperature of the probing volume can be varied in a broad range and with a fast temperature response. The optimized design of the cell significantly reduces the amount of required sample liquid and allows the use of different window membrane types necessary to cover a broad energy range. The liquid cell is integrated into the solid and liquid spectroscopic analysis (SALSA) endstation that includes a high-resolution, high-transmission x-ray spectrometer and a state-of-the-art electron analyzer. The modular design of SALSA also allows the measurement of solid-state samples. The capabilities of the liquid cell and the x-ray spectrometer are demonstrated using a resonant inelastic x-ray scattering map of a 25 wt % NaOD solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3257926] C1 [Blum, M.; Weinhardt, L.; Fuchs, O.; Weigand, M.; Krause, S.; Umbach, E.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Blum, M.; Baer, M.; Zhang, Y.; Krause, S.; Pookpanratana, S.; Hofmann, T.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Yang, W.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Umbach, E.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Umbach, E.] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany. RP Blum, M (reprint author), Univ Wurzburg, D-97074 Wurzburg, Germany. EM monika.blum@physik.uni-wuerzburg.de; lothar.weinhardt@physik.uni-wuerzburg.de; heske@unlv.nevada.edu RI Krause, Stefan/A-1281-2011; Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU German BMBF [05 KS4WWA/6, 05 KS4VHA/4]; Stiftung der Deutschen Wirtschaft; Deutsche Forschungsgemeinschaft FX This work was supported by the German BMBF (Project Nos. 05 KS4WWA/6 and 05 KS4VHA/4). M. Blum acknowledges the support by the Stiftung der Deutschen Wirtschaft and M. Bar the support by the Emmy-Noether-Programm of the Deutsche Forschungsgemeinschaft. NR 27 TC 28 Z9 28 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 123102 DI 10.1063/1.3257926 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300002 PM 20059126 ER PT J AU Boedo, JA Crocker, N Chousal, L Hernandez, R Chalfant, J Kugel, H Roney, P Wertenbaker, J AF Boedo, J. A. Crocker, N. Chousal, L. Hernandez, R. Chalfant, J. Kugel, H. Roney, P. Wertenbaker, J. CA NSTX Team TI Fast scanning probe for the NSTX spherical tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SCRAPE-OFF LAYER; ALCATOR C-MOD; DIII-D; EDGE PLASMA; TORUS-EXPERIMENT; RECIPROCATING PROBE; MAGNETIZED PLASMAS; BOUNDARY PLASMA; H TRANSITION; TURBULENCE AB We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds similar to 7 m/s and similar to 20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m(2). The National Spherical Torus Experiment SOL features electron temperature, T(e) similar to 10-30 eV, and electron density, n(e) similar to 0.1-5 x 10(12) cm(-3) while the pedestal features n(e) similar to 0.5-1.5 x 10(13) cm(-3) and T(e) similar to 30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile T(e)(r), electron density profile n(e)(r) and Mach number profile M(r), floating potential V(f)(r), poloidal and radial electric field profiles E(theta)(r) and E(rho)(r), saturation current profile I(sat)(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters. (C) 2009 American Institute of Physics. [doi:10.1063/1.3266065] C1 [Boedo, J. A.; Crocker, N.; Chousal, L.; Hernandez, R.; Chalfant, J.] Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA. [Kugel, H.; Roney, P.; Wertenbaker, J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Boedo, JA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA. RI Sabbagh, Steven/C-7142-2011; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015 OI Stotler, Daren/0000-0001-5521-8718; FU DOE [DE-FG02-03ER54731] FX This work has been supported by the DOE Contract No. DE-FG02-03ER54731. The authors are grateful to the NSTX technical support, to Dr. J-W Ahn, and to UCSD's CER-Fusion Energy Division Technical Support Staff for their assistance support. In particular, we are indebted to G. Mounce and T. Lynch. NR 44 TC 9 Z9 9 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 123506 DI 10.1063/1.3266065 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300020 PM 20073119 ER PT J AU Major, J Vorobiev, A Ruhm, A Maier, R Major, M Mezger, M Nulle, M Dosch, H Felcher, GP Falus, P Keller, T Pynn, R AF Major, Janos Vorobiev, Alexei Ruehm, Adrian Maier, Ralf Major, Marton Mezger, Markus Nuelle, Max Dosch, Helmut Felcher, Gian P. Falus, Peter Keller, Thomas Pynn, Roger TI A spin-echo resolved grazing incidence scattering setup for the neutron interrogation of buried nanostructures SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ANOMALOUS SURFACE REFLECTION; X-RAYS; INCIDENCE DIFFRACTION; SPECTROMETRY; INSTRUMENT; FILTER AB We present a dedicated experimental spin-echo resolved grazing incidence scattering (SERGIS) setup for the investigation of surfaces and thin films exhibiting large lateral length scales. This technique uses the neutron spin to encode one in-plane component of the wave-vector transfer in a grazing angle scattering experiment. Instead of the scattering angle, the depolarization of the scattered beam is measured. This allows one to achieve a very high in-plane momentum resolution without collimation of the incident neutron beam in the corresponding direction. SERGIS can therefore offer an alternative or complementary method to conventional grazing incidence neutron scattering experiments. We describe the experimental setup installed at the neutron sources ILL (Grenoble) and FRM II (Garching) and present data obtained with this setup on various samples exhibiting characteristic mesoscopic length scales in the range of several hundred nanometers. We also derive general formulas and error margins for the analysis and interpretation of SERGIS data and apply them to the cases of a one-dimensional structure and of an island morphology. (C) 2009 American Institute of Physics. [doi:10.1063/1.3240598] C1 [Major, Janos; Vorobiev, Alexei; Ruehm, Adrian; Maier, Ralf; Major, Marton; Mezger, Markus; Nuelle, Max; Dosch, Helmut] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Felcher, Gian P.; Falus, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Keller, Thomas] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Pynn, Roger] Indiana Univ, Bloomington, IN 47408 USA. RP Major, J (reprint author), Max Planck Inst Met Res, Heisenbergstr 3, D-70569 Stuttgart, Germany. RI Mezger, Markus/D-6897-2014; Major, Marton/A-8208-2013 OI Mezger, Markus/0000-0001-9049-6983; Major, Marton/0000-0001-6074-6144 NR 51 TC 10 Z9 10 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 123903 DI 10.1063/1.3240598 PG 29 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300028 PM 20059150 ER PT J AU Barron-Palos, L Alarcon, R Alonzi, LP Baessler, S Balascuta, S Bowman, JD Bychkov, M Calarco, JR Carlini, RD Chavez, E Chen, WC Chupp, TE Crawford, C Curiel-Garcia, Q Dabaghyan, M Dadras, J Danagoulian, A Estes, MC Fomin, N Freedman, SJ Frlez, E Gentile, TR Gericke, MT Gillis, RC Greene, GL Hersman, FW Hona, B Huerta, A Ino, T Jones, GL Komives, A Lauss, B Lee, W Leuschner, M Losowski, W Mahurin, R Marin-Lambarri, D Martin, E Masuda, Y Mei, J Mitchell, GS Mueller, PE Musgrave, M Muto, S Nann, H Ortiz, ME Palladino, A Page, S Penttila, SI Pocanic, D Prince, J Ramsay, D Rodriguez-Zamora, P Salas-Bacci, A Santra, S Seo, PN Sharapov, E Sharma, M Smith, T Snow, WM Tang, Z Vorndran, S Wilburn, WS Whitehead, M Yuan, V AF Barron-Palos, L. Alarcon, R. Alonzi, L. P. Baessler, S. Balascuta, S. Bowman, J. D. Bychkov, M. Calarco, J. R. Carlini, R. D. Chavez, E. Chen, W. C. Chupp, T. E. Crawford, C. Curiel-Garcia, Q. Dabaghyan, M. Dadras, J. Danagoulian, A. Estes, M. C. Fomin, N. Freedman, S. J. Frlez, E. Gentile, T. R. Gericke, M. T. Gillis, R. C. Greene, G. L. Hersman, F. W. Hona, B. Huerta, A. Ino, T. Jones, G. L. Komives, A. Lauss, B. Lee, W. Leuschner, M. Losowski, W. Mahurin, R. Marin-Lambarri, D. Martin, E. Masuda, Y. Mei, J. Mitchell, G. S. Mueller, P. E. Musgrave, M. Muto, S. Nann, H. Ortiz, M. E. Palladino, A. Page, S. Penttila, S. I. Pocanic, D. Prince, J. Ramsay, D. Rodriguez-Zamora, P. Salas-Bacci, A. Santra, S. Seo, P. -N. Sharapov, E. Sharma, M. Smith, T. Snow, W. M. Tang, Z. Vorndran, S. Wilburn, W. S. Whitehead, M. Yuan, V. TI Measurement of parity-violating neutron capture gamma asymmetries at low-energies SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 32nd Symposium on Nuclear Physics CY JAN 05-08, 2009 CL Cocoyoc, MEXICO DE Hadronic weak interaction; parity-violation observables; few nucleon systems; fundamental neutron physics AB A sensitive measurement of parity-violating (PV) observables in few-nucleon systems can shed light on our current understanding of the hadronic weak interaction at low momentum transfers. Theoretical models describe the nucleon-nucleon weak interaction at low energies with 6 parameters that need, in principle, to be determined in the same number of independent experiments. In this context, a series of experiments with cold neutrons are being proposed and developed. Particularly, experiments that aim to measure the parity-violating asymmetry in the distribution of the gamma-rays emitted in the capture of polarized neutrons by protons and deuterium, will be discussed in this paper. C1 [Barron-Palos, L.; Chavez, E.; Curiel-Garcia, Q.; Huerta, A.; Marin-Lambarri, D.; Ortiz, M. E.; Rodriguez-Zamora, P.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Alarcon, R.; Balascuta, S.] Arizona State Univ, Tempe, AZ 85287 USA. [Alonzi, L. P.; Bychkov, M.; Frlez, E.; Palladino, A.; Pocanic, D.; Prince, J.] Univ Virginia, Charlottesville, VA 22904 USA. [Baessler, S.; Bowman, J. D.; Crawford, C.; Greene, G. L.; Lee, W.; Mueller, P. E.; Penttila, S. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Calarco, J. R.; Hersman, F. W.] Univ New Hampshire, Durham, NH 03824 USA. [Carlini, R. D.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Chen, W. C.; Gentile, T. R.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Chupp, T. E.; Sharma, M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Crawford, C.; Estes, M. C.; Hona, B.; Martin, E.] Univ Kentucky, Lexington, KY 40506 USA. [Dabaghyan, M.] Harvard Univ, Sch Med, Dept Radiol, Brigham & Womens Hosp, Boston, MA 02115 USA. [Dadras, J.; Fomin, N.; Greene, G. L.; Mahurin, R.; Musgrave, M.] Univ Tennessee, Knoxville, TN 37996 USA. [Danagoulian, A.; Salas-Bacci, A.; Wilburn, W. S.; Yuan, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Freedman, S. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Gericke, M. T.; Page, S.; Ramsay, D.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Gillis, R. C.; Leuschner, M.; Losowski, W.; Mei, J.; Nann, H.; Snow, W. M.; Tang, Z.] Indiana Univ, Bloomington, IN 47405 USA. [Ino, T.; Masuda, Y.; Muto, S.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Jones, G. L.] Hamilton Coll, Clinton, NY 13323 USA. [Komives, A.; Vorndran, S.; Whitehead, M.] DePaw Univ, Greencastle, IN 46135 USA. [Lauss, B.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Mitchell, G. S.] Univ Calif Davis, Davis, CA 95616 USA. [Santra, S.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Seo, P. -N.] Duke Univ, Durham, NC 27708 USA. [Seo, P. -N.] Triangle Univ Nucl Lab, Raleigh, NC 27695 USA. [Sharapov, E.] Joint Inst Nucl Res, Dubna, Russia. [Smith, T.] Univ Dayton, Dayton, OH 45469 USA. RP Barron-Palos, L (reprint author), Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. EM libertad@fisica.unam.mx RI Frlez, Emil/B-6487-2013; Balascuta, Septimiu/J-7679-2015 OI Balascuta, Septimiu/0000-0003-2331-294X NR 12 TC 1 Z9 1 U1 0 U2 3 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD DEC PY 2009 VL 55 IS 2 SU S BP 18 EP 22 PG 5 WC Physics, Multidisciplinary SC Physics GA 536SP UT WOS:000273064400005 ER PT J AU Wilburn, WS Cirigliano, V Klein, A Makela, MF McGaughey, PL Morris, CL Ramsey, J Salas-Bacci, A Saunders, A Brousard, LJ Young, AR AF Wilburn, W. S. Cirigliano, V. Klein, A. Makela, M. F. McGaughey, P. L. Morris, C. L. Ramsey, J. Salas-Bacci, A. Saunders, A. Brousard, L. J. Young, A. R. TI Measurement of the neutrino-spin correlation parameter b in neutron decay using ultracold neutrons SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 32nd Symposium on Nuclear Physics CY JAN 05-08, 2009 CL Cocoyoc, MEXICO DE beta decay; weak-interaction ID BETA-DECAY; PHYSICS AB We present a new approach to measuring the neutrino-spin correlation parameter B in neutron decay. The approach combines the technology of large-area ion-implanted silicon detectors being developed for the abBA experiment, with an ultracold neutron source to provide more precise neutron polarimetry. The technique detects both proton and electron from the neutron decay in coincidence. B is determined from an electron-energy-dependent measurement of the proton-spin asymmetry. This approach will provide a statistical precision of 1 x 10(-4). The systematic precision is still being evaluated, but is expected to be below 1 x 10(-3), and could approach 1 x 10(-4). A measurement of B with this precision would place constraints on supersymmetric extensions to the Standard Model. C1 [Wilburn, W. S.; Cirigliano, V.; Klein, A.; Makela, M. F.; McGaughey, P. L.; Morris, C. L.; Ramsey, J.; Salas-Bacci, A.; Saunders, A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Brousard, L. J.] Duke Univ, Durham, NC 27706 USA. [Young, A. R.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Wilburn, WS (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. NR 13 TC 10 Z9 10 U1 0 U2 1 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD DEC PY 2009 VL 55 IS 2 BP 119 EP 122 PG 4 WC Physics, Multidisciplinary SC Physics GA 536SP UT WOS:000273064400021 ER PT J AU Stickel, JJ Knutsen, JS Liberatore, MW Luu, W Bousfield, DW Klingenberg, DJ Scott, CT Root, TW Ehrhardt, MR Monz, TO AF Stickel, Jonathan J. Knutsen, Jeffrey S. Liberatore, Matthew W. Luu, Wing Bousfield, Douglas W. Klingenberg, Daniel J. Scott, C. Tim Root, Thatcher W. Ehrhardt, Max R. Monz, Thomas O. TI Rheology measurements of a biomass slurry: an inter-laboratory study SO RHEOLOGICA ACTA LA English DT Article DE Biomass; Yield stress; Shear thinning; Viscoelasticity; Wall slip ID HIGH-SOLIDS CONCENTRATIONS; YIELD-STRESS MEASUREMENTS; CORN STOVER; FIBER SUSPENSIONS; PULP SUSPENSIONS; ENZYMATIC-HYDROLYSIS; PARTICLE-SIZE; WALL SLIP; ETHANOL; SHEAR AB The conversion of biomass, specifically lignocellulosic biomass, into fuels and chemicals has recently gained national attention as an alternative to the use of fossil fuels. Increasing the concentration of the biomass solids during biochemical conversion has a large potential to reduce production costs. These concentrated biomass slurries have highly viscous, non-Newtonian behavior that poses several technical challenges to the conversion process. A collaborative effort to measure the rheology of a biomass slurry at four separate laboratories has been undertaken. A comprehensive set of rheological properties were measured using several different rheometers, flow geometries, and experimental methods. The tendency for settling, water evaporation, and wall slip required special care when performing the experiments. The rheological properties were measured at different concentrations up to 30% insoluble solids by mass. The slurry was found to be strongly shear-thinning, to be viscoelastic, and to have a significant concentration-dependent yield stress. The elastic modulus was found to be almost an order of magnitude larger than the loss modulus and weakly dependent on frequency. The techniques and results of this work will be useful to characterize other biomass slurries and in the design of biochemical conversion processing steps that operate at high solids concentrations. C1 [Stickel, Jonathan J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Knutsen, Jeffrey S.; Liberatore, Matthew W.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Luu, Wing; Bousfield, Douglas W.] Univ Maine, Dept Chem & Biol Engn, Orono, ME USA. [Klingenberg, Daniel J.; Root, Thatcher W.; Ehrhardt, Max R.; Monz, Thomas O.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI USA. [Klingenberg, Daniel J.; Root, Thatcher W.; Ehrhardt, Max R.; Monz, Thomas O.] Univ Wisconsin, Rheol Res Ctr, Madison, WI USA. [Scott, C. Tim] US Forest Serv, Forest Prod Lab, Madison, WI 53705 USA. RP Stickel, JJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM jonathan.stickel@nrel.gov RI Liberatore, Matthew/B-6828-2008 FU National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service [2006-35504-17401] FX This work was funded in part by the U. S. Department of Energy Office of the Biomass Program and in part by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, grant number 2006-35504-17401. J. Stickel would like to thank Christine Roche for help with sample preparation. NR 38 TC 68 Z9 68 U1 7 U2 61 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0035-4511 EI 1435-1528 J9 RHEOL ACTA JI Rheol. Acta PD DEC PY 2009 VL 48 IS 9 BP 1005 EP 1015 DI 10.1007/s00397-009-0382-8 PG 11 WC Mechanics SC Mechanics GA 510TU UT WOS:000271116000005 ER PT J AU Wiley, S AF Wiley, Steven TI Speak Your Mind SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD DEC PY 2009 VL 23 IS 12 BP 25 EP 25 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 525OA UT WOS:000272224300016 ER PT J AU Rodriguez-Pascua, MA Bischoff, J Garduno-Monroy, VH Perez-Lopez, R Giner-Robles, JL Israde-Alcantara, I Calvo, JP Williams, RW AF Rodriguez-Pascua, M. A. Bischoff, J. Garduno-Monroy, V. H. Perez-Lopez, R. Giner-Robles, J. L. Israde-Alcantara, I. Calvo, J. P. Williams, R. W. TI Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain) SO SEDIMENTARY GEOLOGY LA English DT Article DE Lacustrine record; Quaternary fault; Slip rate; Intraplate; Paleoearthquake AB The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rodriguez-Pascua, M. A.; Perez-Lopez, R.; Calvo, J. P.] Inst Geol & Minero Espana, Madrid 28003, Spain. [Bischoff, J.] US Geol Survey, Menlo Pk, CA 94025 USA. [Garduno-Monroy, V. H.; Israde-Alcantara, I.] Univ Michoacana, Morelia 58060, Michoacan, Mexico. [Giner-Robles, J. L.] Univ Autonoma Madrid, Fac Ciencias, E-28049 Madrid, Spain. [Williams, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rodriguez-Pascua, MA (reprint author), Inst Geol & Minero Espana, C Rios Rosas 23, Madrid 28003, Spain. EM ma.rodriguez@igme.es; jbischoff@usgs.gov; vgmonroy@umich.mx; r.perez@igme.es; jlginer@gmail.com RI Giner-Robles, Jorge /H-5063-2011; Perez-Lopez, Raul/P-3485-2014; Rodriguez-Pascua, Miguel/H-9323-2015; OI Giner-Robles, Jorge /0000-0002-1507-4796; Rodriguez-Pascua, Miguel/0000-0001-5174-119X; Perez, Raul/0000-0002-9132-4806; Garduno-Monroy, Victor Hugo/0000-0001-7128-992X FU Spanish Ministry of Science and Innovation (MCI) [CGL2006-05001/BTE, CGL2006-28134-E/CLI] FX We are strongly indebted to Dr. Concha Arenas, Dr. Klaus Reicherter, and Dr. Elisabeth Gierlowski-Kordesch for their constructive comments and remarks, with the aim to improve this work. We wish to thank Dr. Ana Alonso Zarza for her kind invitation to the 4th International Limnogeology Congress at Barcelona. This work was supported by the Spanish Ministry of Science and Innovation (MCI), through the project ACTISIS (CGL2006-05001/BTE), and part of the results are included in the project TECTO2 (CGL2006-28134-E/CLI). NR 17 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0037-0738 J9 SEDIMENT GEOL JI Sediment. Geol. PD DEC 1 PY 2009 VL 222 IS 1-2 SI SI BP 89 EP 97 DI 10.1016/j.sedgeo.2009.06.007 PG 9 WC Geology SC Geology GA 528GP UT WOS:000272431100009 ER PT J AU Levinson, R Akbari, H Pomerantz, M Gupta, S AF Levinson, Ronnen Akbari, Hashem Pomerantz, Melvin Gupta, Smita TI Solar access of residential rooftops in four California cities SO SOLAR ENERGY LA English DT Article DE Solar access; Shading; Residential rooftops; Photovoltaics; Trees; California ID ENERGY USE AB Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km(2) residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Levinson, Ronnen] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Heat Isl Grp, Berkeley, CA 94720 USA. [Gupta, Smita] Calif Energy Commiss, Sacramento, CA 95814 USA. RP Levinson, R (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Heat Isl Grp, 1 Cyclotron Rd,MS 90R2000, Berkeley, CA 94720 USA. EM RML27@cornell.edu FU California Energy Commission (CEC); Assistant Secretary for Energy Efficiency and Renewable Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER) and by the Assistant Secretary for Energy Efficiency and Renewable Energy under Contract No. DE-AC02-05CH11231. We thank Bill Pennington of the California Energy Commission for helping to organize the study and for his guidance and support. For identifying trees, we thank Dan Pskowski, arborist, City of Sacramento; Ralph Mize, arborist, City of San Jose; David Lofgren, arborist, Los Angeles County Arboretum; and Drew Potocki, arborist, City of San Diego. For providing spatial data, we thank Nathan Jennings, City of Sacramento; Kevin Briggs and Roland Gong, City of San Jose; and Lisa Lubeley, City of San Diego. Finally, we thank Kimberly Fujita for tracing the outlines of roughly 100,000 roofs, planes and trees in our study-region images. NR 15 TC 36 Z9 37 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2009 VL 83 IS 12 BP 2120 EP 2135 DI 10.1016/j.solener.2009.07.016 PG 16 WC Energy & Fuels SC Energy & Fuels GA 529OD UT WOS:000272526100003 ER PT J AU Hung, I Shetty, K Ellis, PD Brey, WW Gan, ZH AF Hung, Ivan Shetty, Kiran Ellis, Paul D. Brey, William W. Gan, Zhehong TI High-field QCPMG NMR of large quadrupolar patterns using resistive magnets SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Resistive; High field; (35)Cl; QCPMG; NMR; NHMFL ID SOLID-STATE NMR; HIGH-RESOLUTION; STRUCTURAL-CHARACTERIZATION; HYDROCHLORIDE SALTS; ADIABATIC PULSES; HYBRID MAGNETS; ZINC PROTEINS; CHLORINE NMR; ZR-91 NMR; SPECTROSCOPY AB Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hung, Ivan; Shetty, Kiran; Brey, William W.; Gan, Zhehong] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA. [Ellis, Paul D.] Pacific NW Natl Lab, Biol Sci Div Cell Biol & Biochem, Richland, WA 99352 USA. RP Gan, ZH (reprint author), Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, 1800 E Paul Dirac Dr, Tallahassee, FL 32310 USA. EM gan@magnet.fsu.edu RI Gan, Zhehong/C-2400-2011 FU National High Magnetic Field Laboratory through National Science Foundation Cooperative Agreement [DMR-0084173] FX This work was supported by the National High Magnetic Field Laboratory through National Science Foundation Cooperative Agreement (DMR-0084173). NR 51 TC 10 Z9 10 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD DEC PY 2009 VL 36 IS 4 BP 159 EP 163 DI 10.1016/j.ssnmr.2009.10.001 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 555WI UT WOS:000274546900001 PM 19913391 ER PT J AU Julia, J Nyblade, AA Durrheim, RJ Linzer, LM Gok, R Walter, W Spottiswoode, SM Dirks, PHGM AF Julia, J. Nyblade, A. A. Durrheim, R. J. Linzer, L. M. Gok, R. Walter, W. Spottiswoode, S. M. Dirks, P. H. G. M. TI A WADATI FILTER FOR MINE-INDUCED SEISMICITY SO SOUTH AFRICAN JOURNAL OF GEOLOGY LA English DT Article AB We introduce a procedure based on Wadati diagrams to assess and improve the consistency of P- and S-wave travel-time picks with the assumption of propagation at constant wave-speed. Wadati diagrams are plots of S-P vs P-wave travel-times and they are expected to lie along a straight line for a medium of constant velocity. Our procedure automatically searches for the largest subset of (P,S-P) travel-time pairs with regression coefficient above 0.9, which effectively removes travel-times associated with non-homogeneous ray-paths. Inaccuracies in travel-time picks clue to clock drifts or complex arrivals and/or erroneous event associations are also identified and eliminated through this procedure. An application to P- and S-wave travel-times from 11,224 events recorded during 2007 on an in-mine network in Savuka mine near Carletonville (South Africa), reveals that a high correlation coefficient alone is not sufficient to ensure consistency. The histogram of v(p)/v(s) values inferred from the slopes of the Wadati diagrams peaks at values of 1.62 to 1.63, in agreement with the underlying geology, but a significant portion of the catalogued events show unrealistic v(p)/v(s) values. Adding realistic constraints on the slopes of the linear fits to the Wadati filter is critical to ensure the consistency of the travel-time picks. Event relocations obtained for the filtered data set assuming propagation at constant wave-speed do not deviate significantly from locations reported by the in-mine network operator. C1 [Julia, J.; Nyblade, A. A.] Penn State Univ, Dept Geosci, University Pk, PA 16801 USA. [Durrheim, R. J.; Linzer, L. M.; Dirks, P. H. G. M.] Univ Witwatersrand, Sch Geosci, ZA-2050 Wits, South Africa. [Durrheim, R. J.; Linzer, L. M.; Spottiswoode, S. M.] CSIR, ZA-2006 Auckland Pk, South Africa. [Gok, R.; Walter, W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Julia, J (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16801 USA. EM jjulia@geosc.psu.edu; andy@geosc.psu.edu; rdurrhei@csir.co.za; llinzer@csir.co.za; gok1@llnl.gov; walter5@llnl.gov; sspottis@csir.co.za; paul.dirks@wits.ac.za RI Walter, William/C-2351-2013; Gok, Rengin/O-6639-2014 OI Walter, William/0000-0002-0331-0616; FU United States Department of Energy [DE-FC52-06NA27320]; United States National Science Foundation [OISE-0530062] FX AngloGold Ashanti is thanked for the sharing of the proprietary data used in this study. We are also indebted to ISS International for their role in providing the in-mine data, as well as for providing the thousands of related P- and S-wave travel-time picks, event locations, and magnitudes. We are also grateful to Andrew King, Artur Cichowicz, and Shariar Talebi for,critically reviewing the original manuscript. This work has been supported by the United States Department of Energy (contract number DE-FC52-06NA27320) and the United States National Science Foundation (grant OISE-0530062). NR 9 TC 0 Z9 0 U1 0 U2 1 PU GEOLOGICAL SOC SOUTH AFRICA PI MARSHALLTOWN PA PO BOX 61809, MARSHALLTOWN 2107, SOUTH AFRICA SN 1012-0750 J9 S AFR J GEOL JI S. Afr. J. Geol. PD DEC PY 2009 VL 112 IS 3-4 SI SI BP 371 EP 380 DI 10.2113/gssajg.112.3-4.371 PG 10 WC Geology SC Geology GA 593ZB UT WOS:000277500800013 ER PT J AU Foltyn, SR Wang, H Civale, L Maiorov, B Jia, QX AF Foltyn, S. R. Wang, H. Civale, L. Maiorov, B. Jia, Q. X. TI The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID YBCO COATED CONDUCTOR; MISFIT DISLOCATIONS; FILMS; TEMPERATURE; WIRE AB The critical current density (J(c)) of very thin YBa2Cu3O7-delta (YBCO) films can approach 10 MA cm(-2) at 77 K in self-field, but for such films J(c) drops sharply as the film thickness is increased. We have shown previously that this strong thickness dependence results from an enhancement of J(c) near the film-substrate interface. In the present paper we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO3 substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. We find that the 'on' state is accompanied by a dense array of interfacial misfit dislocations, while we do not observe dislocations in films prepared in the 'off' state. This result appears to be but one of many examples in which interfacial properties of electronic film materials are profoundly affected by stress-induced defects at the film-substrate interface; however, to our knowledge the present work is the only case in which electronic properties are shown to be enhanced by such defects. C1 [Foltyn, S. R.; Civale, L.; Maiorov, B.; Jia, Q. X.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Foltyn, SR (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM sfoltyn@lanl.gov RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 21 TC 16 Z9 16 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2009 VL 22 IS 12 AR 125002 DI 10.1088/0953-2048/22/12/125002 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 523MI UT WOS:000272077600002 ER PT J AU Maiorov, B Baily, SA Kohama, Y Hiramatsu, H Civale, L Hirano, M Hosono, H AF Maiorov, B. Baily, S. A. Kohama, Y. Hiramatsu, H. Civale, L. Hirano, M. Hosono, H. TI Angular and field properties of the critical current and melting line of Co-doped SrFe2As2 epitaxial films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID YBA2CU3O7 COATED CONDUCTORS; MAGNETIC-FIELDS; THIN-FILMS; SUPERCONDUCTOR; TRANSITION AB We present measurements of the field and angular dependence of the critical current density (J(c)) and melting line made using transport and magnetization techniques for SrFe1.8Co0.2As2 (nominal composition) biaxially oriented films. At high magnetic fields the angular dependence of the melting line and J(c) (for mu H-0 > 2 T) can be successfully scaled using an anisotropic scaling with gamma = 2, indicating a random-point-like pinning contribution. At lower fields, angular and field J(c) dependences strongly depend on the magnetic field history. We find a hysteretic behaviour of J(c) with H with higher J(c) in the descending branch, similar to that attributed to magnetic pinning and granularity effects. Furthermore this allows us to tune J(c)(Theta) such that a J(c) peak along the c axis can be enhanced up to 30%. The low values of J(c) measured suggest that granularity depresses J(c) but does not rule out the possibility of dilute magnetic pinning. C1 [Maiorov, B.; Baily, S. A.; Civale, L.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. [Baily, S. A.; Kohama, Y.] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA. [Kohama, Y.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Hiramatsu, H.; Hirano, M.; Hosono, H.] Tokyo Inst Technol, Japan Sci & Technol Agcy, Frontier Res Ctr, ERATO SORST,Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Maiorov, B (reprint author), Los Alamos Natl Lab, MPA STC, POB 1663, Los Alamos, NM 87545 USA. EM maiorov@lanl.gov RI Hiramatsu, Hidenori/E-8882-2014; Hosono, Hideo/J-3489-2013; OI Hiramatsu, Hidenori/0000-0002-5664-5831; Hosono, Hideo/0000-0001-9260-6728; Maiorov, Boris/0000-0003-1885-0436 FU JSPS [19.9728]; NHMFL UCGP; US National Science Foundation; US Department of Energy; State of Florida FX Grant-in-Aid JSPS (Grant No 19.9728) provided support for Y Kohama. This work is also supported by an NHMFL UCGP grant, the US National Science Foundation, the US Department of Energy, and the State of Florida. NR 29 TC 16 Z9 17 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2009 VL 22 IS 12 AR 125011 DI 10.1088/0953-2048/22/12/125011 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 523MI UT WOS:000272077600011 ER PT J AU Kim, DH Kwak, JH Szanyi, J Wang, XQ Engelhard, MH Peden, CHF AF Kim, Do Heui Kwak, Ja Hun Szanyi, Janos Wang, Xianqin Engelhard, Mark H. Peden, Charles H. F. TI Promotional Effect of CO2 on Desulfation Processes for Pre-Sulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 8th Congress on Catalysis and Automotive Pollution Control (CAPoC8) CY APR 15-17, 2009 CL Brussels, BELGIUM DE NOx trap; SO2; Desulfation; H-2 TPRX; TR-XRD; XPS ID BAO/AL2O3; MECHANISM; METAL AB A combination of H-2 TPRX, TR-XRD and XPS analysis has been used to investigate the effects of CO2 on the desulfation of pre-sulfated Pt-BaO/Al2O3 samples. The results demonstrate that the presence of CO2 promotes the removal of sulfur species, especially at temperatures below 500 degrees C, with a corresponding suppression of BaS formation, thus resulting in a lower amount of residual sulfur on the sample after desulfation. C1 [Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos; Engelhard, Mark H.; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Wang, Xianqin] New Jersey Inst Technol, Dept Chem Biol & Pharmaceut Engn, Newark, NJ 07102 USA. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM do.kim@pnl.gov RI Engelhard, Mark/F-1317-2010; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928; Engelhard, Mark/0000-0002-5543-0812 NR 9 TC 3 Z9 3 U1 1 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD DEC PY 2009 VL 52 IS 13-20 BP 1719 EP 1722 DI 10.1007/s11244-009-9328-8 PG 4 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 521ST UT WOS:000271945000005 ER PT J AU Grierson, DS Konicek, AR Wabiszewski, GE Sumant, AV de Boer, MP Corwin, AD Carpick, RW AF Grierson, D. S. Konicek, A. R. Wabiszewski, G. E. Sumant, A. V. de Boer, M. P. Corwin, A. D. Carpick, R. W. TI Characterization of Microscale Wear in a Polysilicon-Based MEMS Device Using AFM and PEEM-NEXAFS Spectromicroscopy SO TRIBOLOGY LETTERS LA English DT Article DE Microscale wear; Microelectromechanical systems (MEMS); Nanotractor; Photoelectron emission microscopy (PEEM); Atomic force microscopy (AFM) ID X-RAY-ABSORPTION; AMBIENT AIR; IN-SITU; FRICTION; MECHANISMS; ADHESION; ACTUATOR; FILMS AB Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO(2). The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM). C1 [Grierson, D. S.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Konicek, A. R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Wabiszewski, G. E.; Carpick, R. W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. [Sumant, A. V.] Argonne Natl Labs, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [de Boer, M. P.] Sandia Natl Labs, MEMS Devices & Reliabil Phys Dept, Albuquerque, NM 87185 USA. [Corwin, A. D.] Sandia Natl Labs, MEMS Sci & Technol Dept, Albuquerque, NM 87185 USA. RP Grierson, DS (reprint author), Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. EM dsgrierson@wisc.edu RI de Boer, Maarten/C-1525-2013 OI de Boer, Maarten/0000-0003-1574-9324 FU Air Force grant [FA9550-08-1-0024]; Sandia-a multiprogram laboratory; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE [DE-AC02-05CH11231, DE-AC02-06CH11357] FX This study was partly funded by Air Force grant FA9550-08-1-0024, and partly by Sandia-a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank Dr. Scholl and Dr. Doran for their help with PEEM II at the Advanced Light Source (ALS). The ALS and use of the Center for Nanoscale Materials facility are supported by the DOE under Contract DE-AC02-05CH11231 and Contract DE-AC02-06CH11357, respectively. NR 23 TC 7 Z9 7 U1 1 U2 12 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD DEC PY 2009 VL 36 IS 3 BP 233 EP 238 DI 10.1007/s11249-009-9478-7 PG 6 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 512XA UT WOS:000271284100005 ER PT J AU Masoner, A Erck, R Ajayi, O Fenske, G Comfort, A AF Masoner, Ashley Erck, Robert Ajayi, Oyelayo Fenske, George Comfort, Allen TI Lubrication Properties of a 15W-40 Diesel Engine Oil and Its Base Stock with Additives SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Article C1 [Masoner, Ashley; Erck, Robert; Ajayi, Oyelayo; Fenske, George] Argonne Natl Lab, Argonne, IL 60439 USA. [Comfort, Allen] Force Project Technol, Fuels & Lubricants Tech Team, Warren, MI USA. RP Masoner, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amasoner@gmail.com NR 8 TC 0 Z9 0 U1 0 U2 1 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD DEC PY 2009 VL 65 IS 12 BP 16 EP 17 PG 2 WC Engineering, Mechanical SC Engineering GA 528GV UT WOS:000272431800006 ER PT J AU Reed, BW Morgan, DG Okamoto, NL Kulkarni, A Gates, BC Browning, ND AF Reed, B. W. Morgan, D. G. Okamoto, N. L. Kulkarni, A. Gates, B. C. Browning, N. D. TI Validation and generalization of a method for precise size measurements of metal nanoclusters on supports SO ULTRAMICROSCOPY LA English DT Article DE Scanning transmission electron microscopy (STEM); Microscopic methods, specifically for catalysts and small particles; Data processing/image processing ID ELECTRON-MICROSCOPY; MODEL AB We recently described a data analysis method for precise (similar to 0.1 angstrom random error in the mean for a 200 kV instrument with a 3 angstrom FWHM probe size) size measurements of small clusters of heavy metal atoms on supports as imaged in a scanning transmission electron microscope, including an experimental demonstration using clusters that were primarily triosmium or decaosmium. The method is intended for low signal-to-noise ratio images of radiation-sensitive samples. We now present a detailed analysis, including a generalization to address issues of particle anisotropy and biased orientation distributions. In the future, this analysis should enable extraction of shape as well as size information, up to the noise-defined limit of information present in the image. We also present results from an extensive series of simulations designed to determine the method's range of applicability and expected performance in realistic situations. The simulations reproduce the experiments quite accurately, enabling a correction of systematic errors so that only the similar to 0.1 angstrom random error remains. The results are very stable over a wide range of parameters. We introduce a variation on the method with improved precision and stability relative to the original version, while also showing how simple diagnostics can test whether the results are reliable in any particular instance. (C) 2009 Elsevier B.V. All rights reserved. C1 [Reed, B. W.; Browning, N. D.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Morgan, D. G.; Okamoto, N. L.; Kulkarni, A.; Gates, B. C.; Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Morgan, D. G.] Indiana Univ, Dept Chem, Nanosci Ctr, Bloomington, IN 47405 USA. [Okamoto, N. L.] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto, Japan. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-356, Livermore, CA 94551 USA. EM reed12@llnl.gov RI Okamoto, Norihiko/A-7345-2010; Reed, Bryan/C-6442-2013; OI Okamoto, Norihiko/0000-0003-0199-7271; Browning, Nigel/0000-0003-0491-251X FU National Science Foundation [CTS-0500511]; Japan Society for the Promotion of Science for Young Scientists; U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported in part by the National Science Foundation under GOALI Grant no. CTS-0500511, performed in collaboration with ExxonMobil, and by the Japan Society for the Promotion of Science for Young Scientists. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory supported by Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract DE-AC52-07NA27344. NR 18 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD DEC PY 2009 VL 110 IS 1 BP 48 EP 60 DI 10.1016/j.ultramic.2009.09.005 PG 13 WC Microscopy SC Microscopy GA 532GD UT WOS:000272733400008 PM 19800736 ER PT J AU Ortalan, V Herrera, M Morgan, DG Browning, ND AF Ortalan, V. Herrera, M. Morgan, D. G. Browning, N. D. TI Application of image processing to STEM tomography of low-contrast materials SO ULTRAMICROSCOPY LA English DT Article DE Scanning transmission electron microscopy; Electron tomography; Image processing; Low-contrast materials; Heterostructured superconductors ID ELECTRON TOMOGRAPHY; 3-DIMENSIONAL RECONSTRUCTION; RUTHERFORD SCATTERING; NANOMETER-SCALE; 3 DIMENSIONS; OBJECT; PROJECTIONS; RESOLUTION; GOLGI; CELLS AB In this study, the effect of various image-processing techniques on the visibility of tomographic reconstructions is investigated for a low-contrast material system of non-uniform thickness containing complex features such as grain boundaries and nanoparticles. Starting with a tilt series of high-angle annular dark-field (HAADF) images from an area of Dy-doped YBa(2)Cu(3)O(7-x)-coated superconductor obtained using a scanning transmission electron microscope, various image-processing techniques were applied. These can be classified as edge detection, contrast-enhancing methods for non-uniform thickness and image sharpening. Although the processing methods violate the projection criterion for tomographic reconstruction, they were found, at least in this case, to enhance contrast and define the correct shape and size of structural features with minimal artifacts. Enhancing the visibility of structural features in this way allows the spatial distribution of the nanoparticles, their size, number density and location relative to each other and grain boundaries to be determined, which are essential to understand the flux-pinning characteristics of these materials. Published by Elsevier B.V. C1 [Ortalan, V.; Herrera, M.; Morgan, D. G.; Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Morgan, D. G.] Indiana Univ, Dept Chem, Nanofabricat Ctr, Bloomington, IN 47405 USA. [Browning, N. D.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Ortalan, V (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM vortalan@ucdavis.edu OI Herrera Collado, Miriam/0000-0002-2325-5941; Browning, Nigel/0000-0003-0491-251X FU NSF [DMR04557660] FX This work was supported in part by NSF Grant no. DMR04557660. NR 44 TC 11 Z9 11 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD DEC PY 2009 VL 110 IS 1 BP 67 EP 81 DI 10.1016/j.ultramic.2009.09.007 PG 15 WC Microscopy SC Microscopy GA 532GD UT WOS:000272733400010 PM 19833437 ER PT J AU He, C El-Khatib, S Eisenberg, S Manno, M Lynn, JW Zheng, H Mitchell, JF Leighton, C AF He, C. El-Khatib, S. Eisenberg, S. Manno, M. Lynn, J. W. Zheng, H. Mitchell, J. F. Leighton, C. TI Transport signatures of percolation and electronic phase homogeneity in La1-xSrxCoO3 single crystals SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic materials; lanthanum compounds; magnetic transitions; magnetoresistance; metal-insulator transition; nanostructured materials; percolation; phase separation; spin fluctuations; strontium compounds ID MANGANITES; SEPARATION; TRANSITION; CONDUCTION AB The influence of nanoscopic magnetoelectronic phase separation on electrical transport in La1-xSrxCoO3 crystals is reported. It is demonstrated; (i) that the T=0 metal-insulator transition can be quantitatively understood using double exchange-modified percolation theory, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport due to a crossover in the nature of the spin fluctuations. It is concluded that many features of the transport in La1-xSrxCoO3 can be thoroughly understood based on our current understanding of the phase-separated state. C1 [He, C.; El-Khatib, S.; Eisenberg, S.; Manno, M.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [El-Khatib, S.; Lynn, J. W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu FU DoE [DE-FG0206ER46275, DE-AC02-06CH11357]; NSF [DMR0804432]; Dept. of Commerce FX Work at UMN supported by DoE (Grant No. DE-FG0206ER46275, for neutron scattering), NSF (Grant No. DMR0804432), and Dept. of Commerce. Work at ANL supported by DoE under Grant No. DE-AC02-06CH11357. NR 27 TC 9 Z9 9 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222511 DI 10.1063/1.3269192 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600049 ER PT J AU Huang, L Zhu, Y AF Huang, L. Zhu, Y. TI Controlled reversal of coupled Neacuteel walls in flux-closure magnetic trilayer elements SO APPLIED PHYSICS LETTERS LA English DT Article DE magnetic domain walls; magnetic multilayers; magnetic switching; magnetisation reversal; micromagnetics; Neel temperature; transmission electron microscopy AB We report the detailed field-induced transformation of coupled Neacuteel walls in micron-sized trilayer elliptical elements for novel domain-wall-based device applications. Using in situ Lorentz transmission electron microscopy and micromagnetic simulation, we demonstrate that the magnetostatically coupled composite wall structure can be switched controllably without affecting the overall flux-closure domain configuration via separate translation of vortex cores in the two magnetic layers. The top and bottom Neacuteel walls either trap or expel each other depending on the relative orientation of their magnetization directions, leading to the interesting domain switching behavior observed during magnetization reversal. C1 [Huang, L.; Zhu, Y.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Huang, L (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM lhuang@bnl.gov FU U. S. Department of Energy, Office of Basic Energy Science [DE-AC0298CH10886] FX The authors gratefully acknowledge M. A. Schofield, S. D. Pollard, and V. V. Volkov for stimulating discussions. Sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory. This work is supported by U. S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC0298CH10886. NR 11 TC 4 Z9 4 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222502 DI 10.1063/1.3269608 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600040 ER PT J AU Kim, JW Ryan, PJ Ding, Y Lewis, LH Ali, M Kinane, CJ Hickey, BJ Marrows, CH Arena, DA AF Kim, J. W. Ryan, P. J. Ding, Y. Lewis, L. H. Ali, M. Kinane, C. J. Hickey, B. J. Marrows, C. H. Arena, D. A. TI Surface influenced magnetostructural transition in FeRh films SO APPLIED PHYSICS LETTERS LA English DT Article DE antiferromagnetic materials; ferromagnetic materials; ferromagnetic-antiferromagnetic transitions; iron alloys; lattice constants; magnetic epitaxial layers; rhodium alloys; solid-state phase transformations; surface structure; X-ray scattering AB Surface structural effects accompanying the antiferromagnetic-ferromagnetic magnetostructral transition of epitaxial FeRh thin films were investigated by grazing incidence x-ray scattering. Measurement of the film lattice parameters and variation of x-ray incident angles allow observation of the transition character on scales ranging from a few nm to the total through-thickness of the film. Out-of-plane lattice measurements confirm that the ferromagnetic phase nucleates from the surface during the heating process and is retained at the surface below the transition temperature during the cooling process. These results suggest that surface strain relief fosters nucleation of the ferromagnetic phase. C1 [Kim, J. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ryan, P. J.] Ames Lab, Ames, IA 50011 USA. [Ding, Y.; Arena, D. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lewis, L. H.] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. [Ali, M.; Kinane, C. J.; Hickey, B. J.; Marrows, C. H.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. RP Kim, JW (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM jwkim@aps.anl.gov RI Marrows, Christopher/D-7980-2011; Hickey, B J/B-3333-2016; OI Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393 FU UK EPSRC; STFC FX Work at the University of Leeds was supported by the UK EPSRC and STFC. NR 12 TC 16 Z9 16 U1 2 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222515 DI 10.1063/1.3265921 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600053 ER PT J AU Shi, DL Cho, HS Huth, C Wang, F Dong, ZY Pauletti, GM Lian, J Wang, W Liu, GK Bud'ko, SL Wang, LM Ewing, RC AF Shi, Donglu Cho, Hoon Sung Huth, Chris Wang, Feng Dong, Zhongyun Pauletti, Giovanni. M. Lian, Jie Wang, Wei Liu, Guokui Bud'ko, Sergey L. Wang, Lumin Ewing, Rodney C. TI Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment SO APPLIED PHYSICS LETTERS LA English DT Article DE biomagnetism; biomedical optical imaging; cancer; carbon nanotubes; fluorescence; hyperthermia; hysteresis; nanoparticles; nanotechnology; quantum dots; tumours ID ULTRATHIN POLYMER-FILMS; IN-VIVO; SURFACE FUNCTIONALIZATION; AL2O3 NANOPARTICLES; CANCER; CELLS; DEPOSITION; DELIVERY AB Quantum dots (QDs) and Fe3O4 nanoparticles were conjugated onto the surfaces of carbon nanotubes (CNTs) for medical diagnosis and treatment. The nanoassembly was designed to meet the specific needs in cancer in vivo imaging and simultaneous treatment. The key functionalities needed for clinical applications were integrated, including CNT surface functionalization for attachment of biological molecules in targeting, drug storage capabilities, fluorescent emissions near the infrared range, and magnetic hyperthermia. CNT-QD-Fe3O4 developed exhibited a strong fluorescence near the infrared region for noninvasive optical in vivo imaging. Magnetization measurements showed nearly reversible hysteresis curves from CNT-QD-Fe3O4 nanoassembly. Fe3O4 conjugated CNT was found to experience hyperthermia heating under alternating electromagnetic field. C1 [Shi, Donglu; Cho, Hoon Sung; Huth, Chris; Wang, Feng; Wang, Wei] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Shi, Donglu] Tongji Univ, Inst Adv Mat & Nano Biomed, Shanghai 200092, Peoples R China. [Dong, Zhongyun] Univ Cincinnati, Coll Med, Dept Internal Med, Cincinnati, OH 45267 USA. [Pauletti, Giovanni. M.] Univ Cincinnati, James L Winkle Coll Pharm, Cincinnati, OH 45267 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Liu, Guokui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Bud'ko, Sergey L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, Sergey L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Shi, DL (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM shid@ucmail.uc.edu RI Lian, Jie/A-7839-2010; Pauletti, Giovanni M./I-5468-2015; Wang, Feng/P-3082-2015 OI Pauletti, Giovanni M./0000-0002-0053-4964; Wang, Feng/0000-0003-1133-2804 FU National Science Foundation [DGE-0333377]; Institute for Nanoscience and Technology at University of Cincinnati FX Support from the National Science Foundation under Grant No. DGE-0333377 and the Institute for Nanoscience and Technology at University of Cincinnati are appreciated. NR 27 TC 12 Z9 14 U1 2 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 223702 DI 10.1063/1.3268469 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600083 ER PT J AU Yan, JQ Nandi, S Zarestky, JL Tian, W Kreyssig, A Jensen, B Kracher, A Dennis, KW McQueeney, RJ Goldman, AI McCallum, RW Lograsso, TA AF Yan, J. -Q. Nandi, S. Zarestky, J. L. Tian, W. Kreyssig, A. Jensen, B. Kracher, A. Dennis, K. W. McQueeney, R. J. Goldman, A. I. McCallum, R. W. Lograsso, T. A. TI Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx, and LaFe1-xCoxAsO SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt compounds; crystal growth from solution; electrical resistivity; high-temperature superconductors; iron compounds; lanthanum compounds; lattice constants; magnetic susceptibility; magnetisation ID SUPERCONDUCTIVITY; LAO1-XFXFEAS; COMPOUND AB Millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx, and LaFe1-xCoxAsO were grown in NaAs flux at ambient pressure. The detailed growth procedure and crystal characterizations are reported. The as-grown crystals have typical dimensions of 3x4x0.05-0.3 mm(3) with the crystallographic c-axis perpendicular to the plane of the platelike single crystals. Various characterizations confirmed the high quality of our LaFeAsO crystals. Co and F were introduced into the lattice leading to superconducting LaFe1-xCoxAsO and LaFeAsO1-xFx single crystals, respectively. This growth protocol is expected to be broadly applicable to grow other RMAsO (R=rare earth, M=transition metal) compounds. C1 [Yan, J. -Q.; Nandi, S.; Zarestky, J. L.; Tian, W.; Kreyssig, A.; Jensen, B.; Kracher, A.; Dennis, K. W.; McQueeney, R. J.; Goldman, A. I.; McCallum, R. W.; Lograsso, T. A.] Iowa State Univ, US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Nandi, S.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Yan, JQ (reprint author), Iowa State Univ, US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM jqyan@ameslab.gov RI Tian, Wei/C-8604-2013; McQueeney, Robert/A-2864-2016 OI Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602 FU U. S. DOE [DE-AC02-06CH11357]; United States Department of Energy, Office of Basic Energy Sciences, Materials Science [DE-AC05-00OR22725]; [DE-AC02-07CH11358] FX J.Q.Y. thanks Professor P. C. Canfield for fruitful discussions and for making part of the synthesis possible. The assistance of D. S. Robinson in performing the HEXRD studies at the APS is highly appreciated. S. N. thanks M. G. Kim for crystal orientation. Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by U. S. DOE under Contract No. DE-AC02-06CH11357. The HFIR Center for Neutron Scattering is a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences, Materials Science, under Contract No. DE-AC05-00OR22725 with UT-Battelle. NR 21 TC 63 Z9 64 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222504 DI 10.1063/1.3268435 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600042 ER PT J AU King, BV Moore, JF Veryovkin, IV Zinovev, AV Pellin, MJ AF King, B. V. Moore, J. F. Veryovkin, I. V. Zinovev, A. V. Pellin, M. J. TI Sputtering of neutral clusters from silver-gold alloys SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 4th Vacuum and Surface Science Conference of Asia and Australia CY OCT 28-31, 2008 CL Matsue City, JAPAN DE Sputtering; Clusters; SNMS; Photoionisation AB Polycrystalline Ag, Ag(20)Au(80), Ag(40)Au(60), Ag(80)Au(20) and Au samples were bombarded with 15 keV Ar(+) at 60 degrees incidence and the resulting secondary neutral yield distribution was studied by non-resonant laser postionisation mass spectrometry. Neutral clusters containing up to 21 atoms were observed for the targets. The yield of neutral clusters, Ag(m)Au(n) (m), containing n atoms, Y(n), was found to follow a power in n, i.e. Y(n) proportional to n (delta), where the exponent delta varied from 3.2 to 4.0. For a fixed n, the cluster yields showed a variation with number of gold atoms similar to that expected for a binomial distribution. In addition, the cluster compositions from the sputtered alloys were indicative of sputtering from a gold rich surface. (C) 2009 Elsevier B.V. All rights reserved. C1 [King, B. V.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Moore, J. F.; Veryovkin, I. V.; Zinovev, A. V.; Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Moore, J. F.] MassThink LLC, Naperville, IL 60565 USA. RP King, BV (reprint author), Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. EM bruce.king@newcastle.edu.au RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 16 TC 3 Z9 3 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 30 PY 2009 VL 256 IS 4 BP 991 EP 994 DI 10.1016/j.apsusc.2009.05.084 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 527BX UT WOS:000272342300018 ER PT J AU Seidl, V Song, LF Lindquist, E Gruber, S Koptchinskiy, A Zeilinger, S Schmoll, M Martinez, P Sun, JB Grigoriev, I Herrera-Estrella, A Baker, SE Kubicek, CP AF Seidl, Verena Song, Lifu Lindquist, Erika Gruber, Sabine Koptchinskiy, Alexeji Zeilinger, Susanne Schmoll, Monika Martinez, Pedro Sun, Jibin Grigoriev, Igor Herrera-Estrella, Alfredo Baker, Scott E. Kubicek, Christian P. TI Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey SO BMC GENOMICS LA English DT Article ID ACTIVATED PROTEIN-KINASE; SACCHAROMYCES-CEREVISIAE; PLANT-PATHOGENS; ASPERGILLUS-NIDULANS; SECONDARY METABOLISM; HARZIANUM CECT-2413; BIOCONTROL ACTIVITY; NEUROSPORA-CRASSA; GENE PRB1; SEQUENCE AB Background: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. Results: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. Conclusion: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques. C1 [Seidl, Verena; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, Res Area Gene Technol & Appl Biochem, A-1060 Vienna, Austria. [Song, Lifu; Sun, Jibin] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin 300308, Peoples R China. [Lindquist, Erika; Grigoriev, Igor] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Martinez, Pedro; Herrera-Estrella, Alfredo] CINVESTAV, Lab Nacl Genom Biodiversidada, Guanajuato 36500, Mexico. [Martinez, Pedro; Herrera-Estrella, Alfredo] CINVESTAV, Dept Ingn Genet, Guanajuato 36500, Mexico. [Baker, Scott E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kubicek, CP (reprint author), Vienna Univ Technol, Inst Chem Engn, Res Area Gene Technol & Appl Biochem, Getreidemarkt 9-166, A-1060 Vienna, Austria. EM vseidl@mail.zserv.tuwien.ac.at; lifusong1@gmail.com; EALindquist@lbl.gov; sgruber@mail.zserv.tuwien.ac.at; akop@mail.zserv.tuwien.ac.at; szeiling@mail.zserv.tuwien.ac.at; mschmoll@mail.zserv.tuwien.ac.at; pmartinez@ira.cinvestav.mx; sun.jibin@googlemail.com; IVGrigoriev@lbl.gov; aherrera@ira.cinvestav.mx; scott.baker@pnl.gov; ckubicek@mail.zserv.tuwien.ac.at RI Moreira, Eder/B-2309-2010; Herrera-Estrella, Alfredo/F-3185-2011; Schmoll, Monika/I-6541-2016; OI Herrera-Estrella, Alfredo/0000-0002-4589-6870; Schmoll, Monika/0000-0003-3918-0574; Zeilinger, susanne/0000-0003-3112-0948 FU University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396]; Austrian Science Foundation [P18109] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The contrubitions of SZ were supported by a grant (P18109) of the Austrian Science Foundation. NR 63 TC 48 Z9 51 U1 3 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 30 PY 2009 VL 10 AR 567 DI 10.1186/1471-2164-10-567 PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 533DZ UT WOS:000272804500001 PM 19948043 ER PT J AU Zheng, LG Apps, JA Zhang, YQ Xu, TF Birkholzer, JT AF Zheng, Liange Apps, John A. Zhang, Yingqi Xu, Tianfu Birkholzer, Jens T. TI On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage SO CHEMICAL GEOLOGY LA English DT Article DE CO sequestration; Lead; Arsenic; Reactive transport; Numerical simulation; Groundwater quality ID DISSOLUTION KINETICS; CRYSTAL DISSOLUTION; CLAY-MINERALS; ARSENOPYRITE OXIDATION; FELDSPAR DISSOLUTION; AQUEOUS-SOLUTIONS; PYRITE OXIDATION; FREE-ENERGY; ADSORPTION; MODEL AB If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO2 would change the geochemical conditions and cause secondary effects mainly induced by changes in pH. In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO2. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO2 ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded. Published by Elsevier B.V. C1 [Zheng, Liange; Apps, John A.; Zhang, Yingqi; Xu, Tianfu; Birkholzer, Jens T.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA. RP Zheng, LG (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 90-1116, Berkeley, CA 94709 USA. EM lzheng@lbl.gov RI Birkholzer, Jens/C-6783-2011; Zheng, Liange/E-9521-2010; zheng, liange/B-9748-2011; Zhang, Yingqi/D-1203-2015 OI Birkholzer, Jens/0000-0002-7989-1912; zheng, liange/0000-0002-9376-2535; FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the U.S. Environmental Protection Agency, Office of Water and Office of Air and Radiation, for funding this study under an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory, Contract No. DE-AC02-05CH11231. NR 65 TC 103 Z9 109 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD NOV 30 PY 2009 VL 268 IS 3-4 BP 281 EP 297 DI 10.1016/j.chemgeo.2009.09.007 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 527JW UT WOS:000272364300010 ER PT J AU Shen, PZ He, YH Gao, HY Zou, J Xu, NP Jiang, Y Huang, BY Liu, CT AF Shen, P. Z. He, Y. H. Gao, H. Y. Zou, J. Xu, N. P. Jiang, Y. Huang, B. Y. Liu, C. T. TI Development of a new graded-porosity FeAl alloy by elemental reactive synthesis SO DESALINATION LA English DT Article DE Porous material; Graded structure; Coating; FeAl ID MICROFILTRATION MEMBRANES; IRON ALUMINIDE; BEHAVIOR; METALS AB A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3-5 mu m diameter onto porous FeAl support and then sintered at 1100 degrees C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 mu m, the changes of maximum pore size decreased from 23.6 mu m to 5.9 mu m and the permeability decreased from 184.2 m(3) m(-2) kPa(-1) h(-1) to 76.2 m(3) m(-2) kPa(-1) h(-1), respectively, for a sintering temperature equal to 1100 degrees C. The composite membranes have potential application for excellent filters in severe environments. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shen, P. Z.; He, Y. H.; Gao, H. Y.; Jiang, Y.; Huang, B. Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. [Zou, J.] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Zou, J.] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Xu, N. P.] Nanjing Univ Technol, Membrane Sci & Technol Res Ctr, Nanjing 210009, Peoples R China. [Liu, C. T.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP He, YH (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. EM yuehui@mail.csu.edu.cn; j.zou@uq.edu.cn RI Zou, Jin/B-3183-2009 OI Zou, Jin/0000-0001-9435-8043 FU National Basic Research Program of China [2003CB615707]; National Natural Science Foundation of China [20476106, 20636020] FX This research was performed under the auspices of the National Basic Research Program of China (No. 2003CB615707) and National Natural Science Foundation of China (No. 20476106 and No. 20636020). NR 29 TC 15 Z9 17 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0011-9164 J9 DESALINATION JI Desalination PD NOV 30 PY 2009 VL 249 IS 1 BP 29 EP 33 DI 10.1016/j.desal.2009.06.012 PG 5 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 521WA UT WOS:000271955400006 ER PT J AU Mukherjee, PP Wang, CY Kang, QJ AF Mukherjee, Partha P. Wang, Chao-Yang Kang, Qinjun TI Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells SO ELECTROCHIMICA ACTA LA English DT Article DE Polymer electrolyte fuel cell; Two-phase transport; Flooding phenomena; Lattice Boltzmann model; Stochastic microstructure reconstruction ID LATTICE-BOLTZMANN METHOD; GAS-DIFFUSION LAYERS; DIRECT NUMERICAL-SIMULATION; POROUS-MEDIA; CAPILLARY-PRESSURE; IMMISCIBLE DROPLET; WATER TRANSPORT; FLOW; CATHODE; FLUIDS AB A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water covers the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blocks the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL play a major role in the mass transport loss and hence in the water management of a PEFC. In this work the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation is presented to study the influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer. The two-phase regime transition phenomenon in the capillary dominated transport in the CL and the influence of the mixed wetting characteristics on the flooding dynamics in the GDL are highlighted. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Mukherjee, Partha P.; Wang, Chao-Yang] Penn State Univ, ECEC, University Pk, PA 16802 USA. [Mukherjee, Partha P.; Wang, Chao-Yang] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, CY (reprint author), Penn State Univ, ECEC, University Pk, PA 16802 USA. EM partham@lanl.gov; cxw31@psu.edu RI Wang, Chao-Yang/C-4122-2009; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU NSF [0609727] FX PPM would like to thank V.P. Schulz, A. Wiegmann and J. Becker from Fraunhofer ITWM, Germany, for collaboration with GDL microstructure generation. Financial support from NSF through grant no. 0609727 and ECEC industrial sponsors is gratefully acknowledged. NR 61 TC 101 Z9 101 U1 2 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 30 PY 2009 VL 54 IS 27 BP 6861 EP 6875 DI 10.1016/j.electacta.2009.06.066 PG 15 WC Electrochemistry SC Electrochemistry GA 529VP UT WOS:000272547200014 ER PT J AU Gidofalvi, G Shepard, R AF Gidofalvi, Gergely Shepard, Ron TI Computation of Determinant Expansion Coefficients Within the Graphically Contracted Function Method SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE graphical unitary group approach; configuration interaction; configuration state function; Slater determinant; graphically contracted function method ID UNITARY-GROUP-APPROACH; ELECTRON CORRELATION-PROBLEM; NONLINEAR-WAVE FUNCTIONS; CONFIGURATION-INTERACTION; MATRIX AB Most electronic structure methods express the wavefunction as ail expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of are factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 30: 2414-2419, 2009 C1 [Gidofalvi, Gergely; Shepard, Ron] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gidofalvi, G (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gidofalvi@anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences. and Biosciences, U.S. Department of Energy; SciDAC [DE-AC02-06CH11357] FX Contract/grant sponsors: Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences. and Biosciences, U.S. Department of Energy, and the SciDAC project Advanced Software for the Calculation of Thermochemistry, Kinetics, and Dynamics; contract/grant number: DE-AC02-06CH11357 NR 19 TC 8 Z9 8 U1 0 U2 4 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD NOV 30 PY 2009 VL 30 IS 15 BP 2414 EP 2419 DI 10.1002/jcc.21275 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 507QN UT WOS:000270869600004 PM 19360796 ER PT J AU Marquet, C Xiao, BW Yuan, F AF Marquet, Cyrille Xiao, Bo-Wen Yuan, Feng TI Semi-inclusive deep inelastic scattering at small-x SO PHYSICS LETTERS B LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; TRANSVERSE-MOMENTUM; LARGE NUCLEI; HIGH-ENERGY; SATURATION; QCD; COLLISIONS; REGION; BFKL AB We Study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q(2) dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xiao, Bo-Wen; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Marquet, Cyrille] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Marquet, Cyrille] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Xiao, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cyrille@phys.columbia.edu; bxiao@lbl.gov; fyuan@lbl.gov RI Yuan, Feng/N-4175-2013 FU European Commission [MOIF-CT-2006-039860]; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886] FX F.Y. thanks Anna Stasto and George Sterman for interesting conversations a few years back about the topic studied in this Letter. C.M. would like to thank the nuclear theory group at LBL for hospitality during the start of this work. We thank Al Mueller, Pavel Nadolsky, Jianwei Qiu, and Raju Venugopalan for stimulating discussions and comments. C.M. is supported by the European Commission under the FP6 program, contract No. MOIF-CT-2006-039860. This work was supported in part by the U.S. Department of Energy under contract DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 59 TC 19 Z9 19 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 30 PY 2009 VL 682 IS 2 BP 207 EP 211 DI 10.1016/j.physletb.2009.10.099 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 530QM UT WOS:000272607400007 ER PT J AU Malakhova, M Kurinov, I Liu, KD Zheng, D D'Angelo, I Shim, JH Steinman, V Bode, AM Dong, ZG AF Malakhova, Margarita Kurinov, Igor Liu, Kangdong Zheng, Duo D'Angelo, Igor Shim, Jung-Hyun Steinman, Valerie Bode, Ann M. Dong, Zigang TI Structural Diversity of the Active N-Terminal Kinase Domain of p90 Ribosomal S6 Kinase 2 SO PLOS ONE LA English DT Article ID CANCER-CELL-PROLIFERATION; PROTEIN-KINASE; CRYSTAL-STRUCTURE; DOCKING SITE; MOTIF PHOSPHORYLATION; HISTONE H3; AMP-PNP; C-SRC; ACTIVATION; IDENTIFICATION AB The p90 ribosomal protein kinase 2 (RSK2) is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD), which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 angstrom resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded beta B-sheet inserted in the N-terminal lobe, resulting in displacement of the alpha C-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (beta B-sheet) and the beta-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the alpha C-helix, the beta 4-strand, and the beta B-sheet junction, which is occupied by the N-terminal tail. The presence of a unique beta B-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2. C1 [Malakhova, Margarita; Liu, Kangdong; Zheng, Duo; Shim, Jung-Hyun; Bode, Ann M.; Dong, Zigang] Univ Minnesota, Hormel Inst, Dept Cellular & Mol Biol, Austin, MN 55912 USA. [Kurinov, Igor] Cornell Univ, NE CAT, APS, Argonne, IL USA. [D'Angelo, Igor] Canadian Light Source Inc, Canadian Macromol Crystallog Facil, Saskatoon, SK, Canada. [Steinman, Valerie] Coll St Benedict, Dept Biochem, St Joseph, MN USA. RP Malakhova, M (reprint author), Univ Minnesota, Hormel Inst, Dept Cellular & Mol Biol, 801 16th Ave NE, Austin, MN 55912 USA. EM mailtozgdong@hi.umn.edu FU Hormel Foundation; National Institutes of Health (NIH) [CA027502, CA077646, CA120388, R37CA08164, ES016548] FX This work was funded by The Hormel Foundation and National Institutes of Health (NIH) grants CA027502, CA077646, CA120388, R37CA08164, and ES016548. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 59 TC 12 Z9 13 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 30 PY 2009 VL 4 IS 11 AR e8044 DI 10.1371/journal.pone.0008044 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 533MQ UT WOS:000272828400007 PM 19956600 ER PT J AU Goldman, N Reed, EJ Fried, LE AF Goldman, Nir Reed, Evan J. Fried, Laurence E. TI Quantum mechanical corrections to simulated shock Hugoniot temperatures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; equations of state; liquid structure; liquid theory; molecular dynamics method; organic compounds; vibrational modes; water ID GRUNEISEN-PARAMETER; MOLECULAR-DYNAMICS; DENSITY; PRESSURE; METHANE; WAVES; WATER; PSEUDOPOTENTIALS; DISSOCIATION; COMPRESSION AB We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Gruumlneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, postprocessing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism can be easily applied to a number of different shock compressed molecular liquids or solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems. C1 [Goldman, Nir; Reed, Evan J.; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM goldman14@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344.]; Laboratory Directed Research and Development Program at LLNL. [06-ERD-037] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The project 06-ERD-037 was funded by the Laboratory Directed Research and Development Program at LLNL. Computations were performed at LLNL using the following massively parallel computers: prism, MCR, Thunder, uP, and Blue Gene L (BG/L). NR 50 TC 23 Z9 23 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2009 VL 131 IS 20 AR 204103 DI 10.1063/1.3262710 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 534KG UT WOS:000272894500004 PM 19947671 ER PT J AU Berman, GP Bishop, AR Chernobrod, BM Gorshkov, VN Lizon, DC Moody, DI Nguyen, DC Torous, SV AF Berman, G. P. Bishop, A. R. Chernobrod, B. M. Gorshkov, V. N. Lizon, D. C. Moody, D. I. Nguyen, D. C. Torous, S. V. TI Reduction of laser intensity scintillations in turbulent atmospheres using time averaging of a partially coherent beam SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID SPACE OPTICAL COMMUNICATIONS; DIFFERENT WAVELENGTHS; RANDOM-MEDIA; COMMUNICATION; PROPAGATION; MODEL AB We demonstrate experimentally and numerically that the application of a partially coherent beam (PCB) in combination with time averaging leads to a significant reduction in the scintillation index. We use a simplified experimental approach in which the atmospheric turbulence is simulated by a phase diffuser. The role of the speckle size, the amplitude of the phase modulation and the strength of the atmospheric turbulence are examined. We obtain good agreement between our numerical simulations and our experimental results. This study provides a useful foundation for future applications of PCB-based methods of scintillation reduction in physical atmospheres. C1 [Berman, G. P.; Chernobrod, B. M.; Gorshkov, V. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bishop, A. R.] Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. [Gorshkov, V. N.; Torous, S. V.] Natl Tech Univ Ukraine KPI, UA-03056 Kiev, Ukraine. [Gorshkov, V. N.] Natl Acad Sci Ukraine, Inst Phys, UA-680028 Kiev, Ukraine. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, T-4 & CNLS,MS B213, Los Alamos, NM 87545 USA. EM gpb@lanl.gov RI Gorshkov, Vyacheslav/J-3329-2015; OI Gorshkov, Vyacheslav/0000-0002-7700-5649; Moody, Daniela/0000-0002-4452-8208; Nguyen, Dinh/0000-0001-8017-6599 FU National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396]; ONR FX We thank A A Chumak for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under contract no DE-AC52-06NA25396. GPB, BMC, VNG, DCL thank ONR for support. NR 15 TC 8 Z9 8 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 225403 DI 10.1088/0953-4075/42/22/225403 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700015 ER PT J AU Ludlow, JA Colgan, J Lee, TG Pindzola, MS Robicheaux, F AF Ludlow, J. A. Colgan, J. Lee, Teck-Ghee Pindzola, M. S. Robicheaux, F. TI Double photoionization of helium including quadrupole radiation effects SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; PHOTO-DOUBLE-IONIZATION AB Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at current synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maximum at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable. C1 [Ludlow, J. A.; Lee, Teck-Ghee; Pindzola, M. S.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ludlow, JA (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Lee, Teck Ghee/D-5037-2012; Robicheaux, Francis/F-4343-2014; OI Lee, Teck Ghee/0000-0001-9472-3194; Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU U. S. Department of Energy [DE-AC5206NA25396]; National Science Foundation FX We would like to thank Alan Landers for suggesting this problem and the referees for helpful suggestions. This work was supported in part by grants from the U. S. Department of Energy and the National Science Foundation. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC5206NA25396. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA. NR 17 TC 5 Z9 6 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 225204 DI 10.1088/0953-4075/42/22/225204 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700012 ER PT J AU Motomura, K Fukuzawa, H Foucar, L Liu, XJ Prumper, G Ueda, K Saito, N Iwayama, H Nagaya, K Murakami, H Yao, M Belkacem, A Nagasono, M Higashiya, A Yabashi, M Ishikawa, T Ohashi, H Kimura, H AF Motomura, K. Fukuzawa, H. Foucar, L. Liu, X-J Pruemper, G. Ueda, K. Saito, N. Iwayama, H. Nagaya, K. Murakami, H. Yao, M. Belkacem, A. Nagasono, M. Higashiya, A. Yabashi, M. Ishikawa, T. Ohashi, H. Kimura, H. TI Multiple ionization of atomic argon irradiated by EUV free-electron laser pulses at 62 nm: evidence of sequential electron strip SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID COHERENT RADIATION; HELIUM AB We have investigated multiple ionization of atomic argon by extreme-ultraviolet light pulses (62 nm, 100 fs in width, <2 x 10(14) W cm(-2)) at the free-electron laser facility in Japan, and observed highly charged ions with the charge state up to +6. The measured laser power dependence of the highly charged ions indicates that the multiple ionization proceeds via the sequential stripping of electrons. C1 [Motomura, K.; Fukuzawa, H.; Foucar, L.; Liu, X-J; Pruemper, G.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Motomura, K.; Fukuzawa, H.; Foucar, L.; Liu, X-J; Pruemper, G.; Ueda, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Murakami, H.; Yao, M.; Nagasono, M.; Higashiya, A.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.] RIKEN, XFEL, Project Head Off, Sayo, Hyogo 6795148, Japan. [Foucar, L.] Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. [Saito, N.] AIST, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058568, Japan. [Iwayama, H.; Nagaya, K.; Murakami, H.; Yao, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ohashi, H.; Kimura, H.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. RP Motomura, K (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. EM ueda@tagen.tohoku.ac.jp RI Ishikawa, Tetsuya/I-4775-2012; Yabashi, Makina/A-2832-2015; Saito, Norio/E-2890-2014 OI Ishikawa, Tetsuya/0000-0002-6906-9909; Yabashi, Makina/0000-0002-2472-1684; FU Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Japan Society for the Promotion of Science (JSPS); IMRAM FX We are grateful to the SCSS Test Accelerator Operation Group at RIKEN for continuous support, to the staff of the technical service section in IMRAM, Tohoku University, for their assistance in constructing the apparatus, to A Czasch for his contributions in constructing the software, and to A Rudenko, J Ullrich and R Dorner for discussion. This study was supported by the X-ray Free Electron Laser Utilization Research Project of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), by the Japan Society for the Promotion of Science (JSPS), and by the IMRAM project. NR 25 TC 25 Z9 25 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 221003 DI 10.1088/0953-4075/42/22/221003 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700003 ER PT J AU Gatti-Bono, C Colella, P AF Gatti-Bono, Caroline Colella, Phillip TI An all-speed projection and filtering method for gravity-stratified flows SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE non-hydrostatic atmospheric model; embedded-boundary method; all-speed; gravity waves; normal-mode analysis; filtering AB Gravity waves arise in gravitationally stratified compressible flows at low Mach and Froude numbers, and these waves impose a sharp restriction on the time step. This paper presents a filtering strategy for the fully compressible equations based on normal-mode analysis that is used throughout the simulation to compute the fast dynamics and is able to damp only chosen modes. This method is based on an asymptotic analysis and respects the dynamics of gravity waves for thin layers. Finally, the filtering method is tested on a series of examples. C1 [Gatti-Bono, Caroline] Lawrence Livermore Natl Lab, Livermore, CA 94566 USA. [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gatti-Bono, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-560, Livermore, CA 94566 USA. EM caroline.bono@gmail.com NR 4 TC 1 Z9 1 U1 0 U2 0 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 28 PY 2009 VL 367 IS 1907 BP 4543 EP 4558 DI 10.1098/rsta.2009.0169 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 507OQ UT WOS:000270864400005 PM 19840980 ER PT J AU Pau, GSH Almgren, AS Bell, JB Lijewski, MJ AF Pau, George S. H. Almgren, Ann S. Bell, John B. Lijewski, Michael J. TI A parallel second-order adaptive mesh algorithm for incompressible flow in porous media SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE adaptive mesh refinement; Darcy flow; porous media ID HYPERBOLIC CONSERVATION-LAWS; REFINEMENT; SIMULATION AB In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method. C1 [Pau, George S. H.; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Pau, George Shu Heng/F-2363-2015 OI Pau, George Shu Heng/0000-0002-9198-6164 NR 24 TC 13 Z9 14 U1 1 U2 15 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 28 PY 2009 VL 367 IS 1907 BP 4633 EP 4654 DI 10.1098/rsta.2009.0160 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 507OQ UT WOS:000270864400010 PM 19840985 ER PT J AU Whitaker, MJ Bordowitz, JR Montgomery, BL AF Whitaker, Melissa J. Bordowitz, Juliana R. Montgomery, Beronda L. TI CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Bilin lyase; Complementary chromatic adaptation; Morphology; Photosensing; Phycobiliprotein ID COMPLEMENTARY CHROMATIC ADAPTATION; SUBUNIT PHYCOCYANOBILIN LYASE; CYANOBACTERIAL ISCA HOMOLOG; HEAT-REPEATS; BILIN ATTACHMENT; PHYCOERYTHRIN; PROTEIN; GENES; LIGHT; GREEN AB Cyanobacteria harvest light for photosynthesis using photosynthetic light-harvesting complexes called phycobilisomes (PBSs). Lyases are enzymes responsible for covalent attachment of light-absorbing chromophores to the phycobiliproteins (PBPs) contained in PBSs. We isolated a pigmentation mutant in the filamentous cyanobacterium Fremyella diplosiphon and determined that it possesses an insertional mutation in cpcF, which encodes one component of a heterodimeric phycocyanin lyase. Here, we discuss the implications of the mutation in cpcF on light-dependent pigmentation and Morphology responses characteristic of complementary chromatic adaptation in F diplosiphon. Although cpcF encodes a phycocyanin lyase, significant decreases in the levels of all classes of PBPs are associated with CpcF deficiency in F. diplosiphon. Notably, CpcF deficiency has a limited effect on the shape of F diplosiphon cells, but significantly impacts filament length. Possible mechanisms for the broad impact of CpcF deficiency on pigmentation and filament morphology are discussed. (C) 2009 Elsevier Inc. All rights reserved. C1 [Whitaker, Melissa J.; Bordowitz, Juliana R.; Montgomery, Beronda L.] Michigan State Univ, Plant Res Lab, DOE, E Lansing, MI 48824 USA. [Bordowitz, Juliana R.; Montgomery, Beronda L.] Michigan State Univ, Cell & Mol Biol Grad Program, E Lansing, MI 48824 USA. [Montgomery, Beronda L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Montgomery, BL (reprint author), Michigan State Univ, Plant Res Lab, DOE, 106 Plant Biol Bldg, E Lansing, MI 48824 USA. EM montg133@msu.edu FU National Science Foundation [MCB-0643516]; U.S. Department of Energy [DE-FG02-91ER20021] FX This work was supported by a CAREER award from the National Science Foundation (Grant No. MCB-0643516 to B.L.M.) and by the U.S. Department of Energy (Chemical Sciences, Geosciences and Bicisciences Division, Office of Basic Energy Sciences, Office of Science, Grant No. DE-FG02-91ER20021 to B.L.M.). The authors would like to thank Bagmi Pattanaik and Sankalpi Warnasooriya for critically reading and commenting on the manuscript. NR 37 TC 9 Z9 9 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD NOV 27 PY 2009 VL 389 IS 4 BP 602 EP 606 DI 10.1016/j.bbrc.2009.09.030 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 511GE UT WOS:000271151100008 PM 19748483 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Stratification in the preferential attachment network SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID GROWING NETWORKS; TREES AB We study structural properties of trees grown by preferential attachment. In this mechanism, nodes are added sequentially and attached to existing nodes at a rate that is strictly proportional to the degree. We classify nodes by their depth n, defined as the distance from the root of the tree, and find that the network is strongly stratified. Most notably, the distribution f(k)((n)) of nodes with degree k at depth n has a power-law tail, f(k)((n)) similar to k(-gamma(n)). The exponent grows linearly with depth, gamma(n) = 2 + n-1/< n-1 > , where the brackets denote an average over all nodes. Therefore, nodes that are closer to the root are better connected, and moreover, the degree distribution strongly varies with depth. Similarly, the in-component size distribution has a power-law tail and the characteristic exponent grows linearly with depth. Qualitatively, these behaviors extend to a class of networks that grow by redirection. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE [DE-AC5206NA25396]; NSF [CCF-0829541] FX We thank Sergei Dorogovtsev for collaboration on the in-component distribution in the first layer, equation (21). We are grateful for financial support from DOE grant DE-AC5206NA25396 and NSF grant CCF-0829541. NR 24 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD NOV 27 PY 2009 VL 42 IS 47 AR 475001 DI 10.1088/1751-8113/42/47/475001 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 521DM UT WOS:000271900200006 ER PT J AU Khare, A Saxena, A Law, KJH AF Khare, Avinash Saxena, Avadh Law, Kody J. H. TI Mapping between generalized nonlinear Schrodinger equations and neutral scalar field theories and new solutions of the cubic-quintic NLS equation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID SOLITONS AB We highlight an interesting mapping between the moving breather solutions of the generalized nonlinear Schrodinger (NLS) equations and the static solutions of neutral scalar field theories. Using this connection, we then obtain several new moving breather solutions of the cubic-quintic NLS equation both with and without uniform phase in space. The stability of some stationary solutions is investigated numerically and the results are confirmed via dynamical evolution. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Law, Kody J. H.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. EM avadh@lanl.gov RI Law, Kody/A-6375-2010; OI Law, Kody/0000-0003-3133-2537 NR 20 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD NOV 27 PY 2009 VL 42 IS 47 AR 475404 DI 10.1088/1751-8113/42/47/475404 PG 23 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 521DM UT WOS:000271900200032 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel SO PHYSICAL REVIEW LETTERS LA English DT Article ID P(P)OVER-BAR COLLISIONS; TEV; PHYSICS AB We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Neubauer, M. S.; Norniella, O.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Jeon, E. J.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Marino, C. P.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Moon, Chang-Seong/J-3619-2014; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 26 TC 10 Z9 10 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 221801 DI 10.1103/PhysRevLett.103.221801 PG 8 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000013 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Botner, O Bradley, L Braun, J Breder, D Carson, M Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lundberg, J Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miyamoto, H Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Toale, PA Tooker, J Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Botner, O. Bradley, L. Braun, J. Breder, D. Carson, M. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demirors, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miyamoto, H. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Toale, P. A. Tooker, J. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wiedemann, A. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. CA IceCube Collaboration TI Extending the Search for Neutrino Point Sources with IceCube above the Horizon SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAYS; TELESCOPE; DETECTOR; JETS AB Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies. C1 [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Bissok, M.; Boersma, D. J.; Euler, S.; Huelss, J.-P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.; Tooker, J.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tooker, J.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Homeier, A.; Kemming, N.; Kolanoski, H.; Lehmann, R.; Panknin, S.; van Santen, J.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Kowalski, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; van Eijndhoven, N.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dreyer, J.; Milke, N.; Pieloth, D.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demirors, L.; Ribordy, M.; Terranova, C.; Tilav, S.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Xu, C.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Gozzini, R.; Griesel, T.; Kenny, P.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Maruyama, R.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Maruyama, R.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.] Univ Utrecht, SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. RP Lauer, R (reprint author), DESY, D-15735 Zeuthen, Germany. EM elisa.bernardini@desy.de; robert.lauer@desy.de RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013 OI Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Ter-Antonyan, Samvel/0000-0002-5788-1369; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Program; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council; Swedish Polar Research Secretariat; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; SNF (Switzerland); EU Marie Curie; Capes Foundation; Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Program, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; M. Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and A. Gross acknowledge support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledge support by the Capes Foundation, Ministry of Education of Brazil. E. B. thanks A. M. Atoyan, C. Dermer, A. Reimer for useful discussion and A. Marscher for providing multi-wavelength data on 3C279. NR 25 TC 26 Z9 26 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 221102 DI 10.1103/PhysRevLett.103.221102 PG 6 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000012 PM 20366087 ER PT J AU Knudson, MD Desjarlais, MP AF Knudson, M. D. Desjarlais, M. P. TI Shock Compression of Quartz to 1.6 TPa: Redefining a Pressure Standard SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; HYDROGEN; ALUMINUM; DENSITY AB Evaluation of models and theory of high-pressure material response is largely made through comparison with shock wave data, which rely on impedance match standards. The recent use of quartz as a shock wave standard has prompted a need for improved data. We report here on measurements of the quartz Hugoniot curve from 0.1-1.6 TPa. The new data, in agreement with our ab initio calculations, reveal substantial errors in the standard and have immediate ramifications for the equations of state of deuterium, helium, and carbon at pressures relevant to giant planets and other high-energy density conditions. C1 [Knudson, M. D.; Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knudson, MD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U. S. Department of Energy's National Nuclear Securities Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge the large team at Sandia that contributed to the design, fabrication, and fielding of the Z experiments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 96 Z9 98 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 225501 DI 10.1103/PhysRevLett.103.225501 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000029 PM 20366104 ER PT J AU Nascimento, VB Freeland, JW Saniz, R Moore, RG Mazur, D Liu, H Pan, MH Rundgren, J Gray, KE Rosenberg, RA Zheng, H Mitchell, JF Freeman, AJ Veltruska, K Plummer, EW AF Nascimento, V. B. Freeland, J. W. Saniz, R. Moore, R. G. Mazur, D. Liu, H. Pan, M. H. Rundgren, J. Gray, K. E. Rosenberg, R. A. Zheng, H. Mitchell, J. F. Freeman, A. J. Veltruska, K. Plummer, E. W. TI Surface-Stabilized Nonferromagnetic Ordering of a Layered Ferromagnetic Manganite SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLANE-WAVE METHOD; MAGNETORESISTIVE OXIDES; INSULATOR-TRANSITION; CRYSTAL; CHARGE; SPIN AB An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state. C1 [Nascimento, V. B.; Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Freeland, J. W.; Rosenberg, R. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Saniz, R.; Freeman, A. J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Moore, R. G.; Liu, H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Mazur, D.; Gray, K. E.; Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pan, M. H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rundgren, J.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Veltruska, K.] Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, CR-18000 Prague 8, Czech Republic. RP Nascimento, VB (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM vnascimento@lsu.edu RI Rosenberg, Richard/K-3442-2012; Mazur, Daniel/B-8303-2014 OI Mazur, Daniel/0000-0003-2524-5226 FU Distinguished Scientist Program at UTK-ORNL; NSF; DOE (DMSE) [NSF-DMR-0451163]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U. S. DOE [DE-FG02-88ER45372] FX V. B. N. acknowledges support from the Distinguished Scientist Program at UTK-ORNL (E. W. P.). Part of this work, performed at the University of Tennessee and ORNL, has received support from NSF and DOE (DMS&E) (Grant No. NSF-DMR-0451163). Work at Argonne, including the Advanced Photon Source, is supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Work at Northwestern University is supported by the U. S. DOE under Grant No. DE-FG02-88ER45372 and a grant of computer time at the National Energy Research Scientific Computing Center. NR 24 TC 7 Z9 7 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 227201 DI 10.1103/PhysRevLett.103.227201 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000047 PM 20366122 ER PT J AU Qin, H Chung, M Davidson, RC AF Qin, Hong Chung, Moses Davidson, Ronald C. TI Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-Intensity Beams in a Coupled Transverse Focusing Lattice SO PHYSICAL REVIEW LETTERS LA English DT Article AB In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Chung, Moses] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. NR 19 TC 19 Z9 19 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 224802 DI 10.1103/PhysRevLett.103.224802 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000024 PM 20366099 ER PT J AU Sprinkle, M Siegel, D Hu, Y Hicks, J Tejeda, A Taleb-Ibrahimi, A Le Fevre, P Bertran, F Vizzini, S Enriquez, H Chiang, S Soukiassian, P Berger, C de Heer, WA Lanzara, A Conrad, EH AF Sprinkle, M. Siegel, D. Hu, Y. Hicks, J. Tejeda, A. Taleb-Ibrahimi, A. Le Fevre, P. Bertran, F. Vizzini, S. Enriquez, H. Chiang, S. Soukiassian, P. Berger, C. de Heer, W. A. Lanzara, A. Conrad, E. H. TI First Direct Observation of a Nearly Ideal Graphene Band Structure SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXIAL GRAPHENE; GRAPHITE AB Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(0001) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K point. Each cone corresponds to an individual macroscale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults. C1 [Sprinkle, M.; Hu, Y.; Hicks, J.; Berger, C.; de Heer, W. A.; Conrad, E. H.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Siegel, D.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Siegel, D.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tejeda, A.] Univ Nancy, UPV Metz, CNRS, Inst Jean Lamour, F-54506 Vandoeuvre Les Nancy, France. [Taleb-Ibrahimi, A.] URI, CNRS, Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Vizzini, S.; Enriquez, H.; Chiang, S.; Soukiassian, P.] CEA, SIMA, DSM, IRAMIS,SPCSI, F-91191 Gif Sur Yvette, France. [Vizzini, S.; Enriquez, H.; Soukiassian, P.] Univ Paris 11, Dept Phys, F-91405 Orsay, France. [Chiang, S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Berger, C.] CNRS, Inst Neel, F-38042 Grenoble, France. RP Sprinkle, M (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. RI Vizzini, Sebastien/F-8063-2012; BERTRAN, Francois/B-7515-2008; Tejeda, Antonio/C-4711-2014 OI BERTRAN, Francois/0000-0002-2416-0514; Tejeda, Antonio/0000-0003-0125-4603 FU W. M. Keck Foundation; French Embassy; NSF [DMR-0820382]; ANR Foundation (France); U. S. DOE through Ames Lab [W-7405-Eng-82]; DMS; U. S. DOE [DEAC03-76SF00098] FX This research was supported by the W. M. Keck Foundation, the Partner University Fund from the French Embassy and the NSF under Grant No. DMR-0820382, and the ANR Foundation (France). The mu CAT beam line is supported by the U. S. DOE through Ames Lab under Contract No. W-7405-Eng-82. ARPES measurements at UC Berkeley and LBNL were supported by the DMS and Engineering of the U. S. DOE under Contract No. DEAC03-76SF00098. Both the ALS and APS are operated by the DOE's Office of BES. NR 28 TC 242 Z9 242 U1 6 U2 99 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 226803 DI 10.1103/PhysRevLett.103.226803 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000044 PM 20366119 ER PT J AU Zhu, WG Qiu, XF Iancu, V Chen, XQ Pan, H Wang, W Dimitrijevic, NM Rajh, T Meyer, HM Paranthaman, MP Stocks, GM Weitering, HH Gu, BH Eres, G Zhang, ZY AF Zhu, Wenguang Qiu, Xiaofeng Iancu, Violeta Chen, Xing-Qiu Pan, Hui Wang, Wei Dimitrijevic, Nada M. Rajh, Tijana Meyer, Harry M., III Paranthaman, M. Parans Stocks, G. M. Weitering, Hanno H. Gu, Baohua Eres, Gyula Zhang, Zhenyu TI Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; N-DOPED TIO2; PHOTOCATALYSIS; NANOPARTICLES; PRINCIPLES; DIOXIDE; ORIGIN; CELLS; FILMS; WATER AB "Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO(2) by narrowing its band gap. The concept embodies two crucial ingredients: The electrostatic attraction within the n-p dopant pair enhances both the thermodynamic and kinetic solubilities, and the noncompensated nature ensures the creation of tunable intermediate bands that effectively narrow the band gap. The concept is demonstrated using first-principles calculations, and is validated by direct measurements of band gap narrowing using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in the visible-light region. This concept is broadly applicable to the synthesis of other advanced functional materials that demand optimal dopant control. C1 [Zhu, Wenguang; Chen, Xing-Qiu; Meyer, Harry M., III; Stocks, G. M.; Weitering, Hanno H.; Eres, Gyula; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhu, Wenguang; Iancu, Violeta; Weitering, Hanno H.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Qiu, Xiaofeng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Pan, Hui; Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhu, WG (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Gu, Baohua/B-9511-2012; Paranthaman, Mariappan/N-3866-2015; Stocks, George Malcollm/Q-1251-2016; Iancu, Violeta/B-7657-2008; Zhu, Wenguang/F-4224-2011; Wang, Wei/B-5924-2012; Eres, Gyula/C-4656-2017; Pan, Hui/A-2702-2009; Krausnick, Jennifer/D-6291-2013 OI Gu, Baohua/0000-0002-7299-2956; Paranthaman, Mariappan/0000-0003-3009-8531; Stocks, George Malcollm/0000-0002-9013-260X; Iancu, Violeta/0000-0003-1146-2959; Zhu, Wenguang/0000-0003-0819-595X; Eres, Gyula/0000-0003-2690-5214; Pan, Hui/0000-0002-6515-4970; FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy; ORNL; DOE [DE-AC02-06CH11357] FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy, and in part by the LDRD Program of ORNL. The calculations were performed at NERSC of DOE. The EPR experiments were performed at Argonne under DOE BES Contract No. DE-AC02-06CH11357. NR 36 TC 207 Z9 213 U1 15 U2 146 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 226401 DI 10.1103/PhysRevLett.103.226401 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000039 PM 20366114 ER PT J AU Schmid, B Flynn, CJ Newsom, RK Turner, DD Ferrare, RA Clayton, MF Andrews, E Ogren, JA Johnson, RR Russell, PB Gore, WJ Dominguez, R AF Schmid, Beat Flynn, Connor J. Newsom, Rob K. Turner, David D. Ferrare, Richard A. Clayton, Marian F. Andrews, Elisabeth Ogren, John A. Johnson, Roy R. Russell, Philip B. Gore, Warren J. Dominguez, Roseanne TI Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INTENSIVE OBSERVATION PERIODS; SOUTHERN GREAT-PLAINS; RAMAN LIDAR; SUN PHOTOMETER; COLUMN CLOSURE; OPTICAL DEPTH; ACE-ASIA; RADIOMETERS; AIRBORNE; CALIBRATION AB The accuracy with which vertical profiles of aerosol extinction sigma(ep)(lambda) can be measured using routine Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) measurements and was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e., sigma(ep)(lambda) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman lidar, micropulse lidar (MPL), and in situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth tau(p)(lambda), from which the profiles of sigma(ep)(lambda) are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14); these data were used as benchmark in this evaluation. The ACRF IAP sigma(ep)(550 nm) were lower by 11% (during AIOP) and higher by 1% (during ALIVE) when compared to AATS-14. The ACRF MPL sigma(ep)(523 nm) measurements were higher by 24% (AIOP) and 19-21% (ALIVE) compared to AATS-14, but the correlation improved significantly during ALIVE. In the AIOP, a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman lidar sigma(ep)(355 nm) measurements were larger by 54% (AIOP) and by 6% (ALIVE) compared to AATS-14. The large bias in the Raman lidar measurements during AIOP stemmed from a gradual loss of Raman lidar sensitivity starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data processing algorithm led to the significant improvement and very small bias in ALIVE. Finally, we find that during ALIVE the Raman lidar water vapor densities rho(w) are 8% larger when compared to AATS-14, whereas in situ measured rho(w) aboard two different aircraft are smaller than the AATS-14 values by 0.3-3%. C1 [Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, David D.] Univ Wisconsin, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Clayton, Marian F.] NASA, Langley Res Ctr, SSAI, Hampton, VA 23681 USA. [Andrews, Elisabeth] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Ogren, John A.] NOAA, ESRL, Boulder, CO 80305 USA. [Dominguez, Roseanne] Univ Calif Santa Cruz, Univ Affiliated Res Ctr, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Schmid, B (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM beat.schmid@pnl.gov; connor.flynn@pnl.gov; rob.newsom@pnl.gov; dturner@ssec.wisc.edu; richard.a.ferrare@nasa.gov; marian.b.clayton@nasa.gov; betsy.andrews@noaa.gov; john.a.ogren@noaa.gov; roy.r.johnson@nasa.gov; philip.b.russell@nasa.gov; warren.j.gore@nasa.gov; roseanne.dominguez@nasa.gov RI Ogren, John/M-8255-2015 OI Ogren, John/0000-0002-7895-9583 FU DOE ARM [DE-FG02-08ER64538] FX The Atmospheric Radiation Measurement Program (ARM) is sponsored by the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research. The success of ALIVE and AIOP was due to the hard work and dedicated efforts from a large team of scientists and engineers; CIRPAS Twin Otter, Sky Research Jetstream 31, and Cessna pilots, crew, and support personnel; SGP site personnel; ARM infrastructure support; weather forecasters; and support from Greenwood Aviation at Ponca City airport. We thank ARM for the support of these campaigns. Support from NASA's Radiation Science and Airborne Science Programs is also greatly acknowledged. Work at the University of Wisconsin-Madison was supported by the DOE ARM grant DE-FG02-08ER64538. NR 38 TC 12 Z9 12 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 26 PY 2009 VL 114 AR D22207 DI 10.1029/2009JD012682 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MI UT WOS:000272147000005 ER PT J AU Maggi, F Riley, WJ AF Maggi, Federico Riley, William J. TI Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NITROUS-OXIDE; CHEMICAL-REACTIONS; ACTIVATED COMPLEX; NITRIFICATION AB The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable (15)N-N(2)O enrichment during N(2)O production and inverse isotope fractionation during N(2)O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics. C1 [Maggi, Federico] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. [Maggi, Federico; Riley, William J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Maggi, F (reprint author), Univ Sydney, Sch Civil Engn, Bldg J05, Sydney, NSW 2006, Australia. EM f.maggi@usyd.edu.au RI Riley, William/D-3345-2015 OI Riley, William/0000-0002-4615-2304 FU Laboratory Directed Research and Development (LDRD); Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Christof Meile and Bruce Hungate for their comments and suggestions on the first development of the models. This work was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 21 TC 13 Z9 13 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 26 PY 2009 VL 114 AR G04012 DI 10.1029/2008JG000878 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 524ML UT WOS:000272147300001 ER PT J AU Lin, W Pringle, WC Novick, SE Blake, TA AF Lin, Wei Pringle, Wallace C. Novick, Stewart E. Blake, Thomas A. TI Microwave Spectrum of the Argon-Tropolone van der Waals Complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID S-1 STATE; PROTON; CLUSTERS AB The rotational spectrum of the argon-tropolone van der Waals complex in the ground vibrational state has been measured in the frequency range of 6-17 GHz using a pulsed-jet, Balle-Flygare-type Fourier transform microwave spectrometer. Eighty-six transitions for the complex (Ar-(C7H6O2)-C-12-O-16) were observed, assigned, and fit using a Watson A-reduction Hamiltonian giving the rotational and centrifugal distortion constants A = 1080.4365(3) MHz, B = 883.4943(3) MHz, C = 749.057](2) MHz, Delta(J) = 2.591(2) kHz, Delta(JK) = -3.32(1) kHz, Delta(K) = 5.232(9) kHz, delta(J) = 0.944(1) kHz, and delta(K) = -0.028(8) kHz. The tunneling motion of the hydroxyl proton in the tropolone moiety is quenched in the ground electronic state by complexation with argon. The coordinates of the argon atom in the monomer's principal axis system are a = 0.43 angstrom, b = 0.23 angstrom, and c 3.48 angstrom. C1 [Blake, Thomas A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lin, Wei] Univ St Mary, Dept Nat Sci & Math, Leavenworth, KS 66048 USA. [Pringle, Wallace C.; Novick, Stewart E.] Wesleyan Univ, Dept Chem, Middletown, CT 06459 USA. RP Blake, TA (reprint author), Pacific NW Natl Lab, MS K8-88,POB 999, Richland, WA 99352 USA. EM ta.blake@pnl.gov RI lin, wei/D-3591-2009 FU Petroleum Research Fund; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; [DE-AC05-76RLO 1830] FX This work is supported by the Petroleum Research Fund in the form of research grants (to S.E.N.). T.A.B. is a scientific consultant with the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under contract DE-AC05-76RLO 1830. NR 14 TC 1 Z9 1 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13076 EP 13080 DI 10.1021/jp901086a PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800003 PM 19441806 ER PT J AU Haber, LH Doughty, B Leone, SR AF Haber, Louis H. Doughty, Benjamin Leone, Stephen R. TI Photoelectron Angular Distributions and Cross Section Ratios of Two-Color Two-Photon Above Threshold Ionization of Argon SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRONS; PHOTOIONIZATION; SCATTERING; LIGHT; WAVE AB Anisotropy parameters and cross section ratios of two-color two-photon above threshold ionization sidebands from argon are measured using photoelectron velocity map imaging with the selected 13th or 15th high-order harmonics in a perturbative 800 nm dressing field. A new data analysis technique determines accurate anisotropy parameters of the photoelectron angular distributions for each sideband by subtracting a sequence of percentages of the single-photon ionization background from the above threshold ionization signal to correct for the angular averaging of overlapping photoelectron energies. The results provide a fundamental test of theoretical predictions based on second-order perturbation theory with a one-electron model and the soft-photon approximation and show agreement with theory for the cross section ratios. However, discrepancies between the theoretically predicted and experimentally determined photoelectron angular distributions demonstrate the need for a more comprehensive theoretical description of two-color two-photon above threshold ionization. C1 [Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. RI Haber, Louis/A-6762-2013; Doughty, Benjamin /M-5704-2016 OI Doughty, Benjamin /0000-0001-6429-9329 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation Engineering Research Center, Extreme Ultraviolet Science and Technology [EEC-0310717]; Weizmann Institute of Science FX The authors thank Daniel Strasser and Frederic Fournier for their helpful discussions. The authors gratefully acknowledge financial support by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are also grateful for related support for high-order harmonic generation studies from the National Science Foundation Engineering Research Center, Extreme Ultraviolet Science and Technology, EEC-0310717. Stephen Leone gratefully acknowledges the generous support of a Morris Belkin Visiting Professorship at the Weizmann Institute of Science. Stephen Leone also gratefully acknowledges the constant support and friendship of Bob Field throughout our entire careers. NR 28 TC 20 Z9 20 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13152 EP 13158 DI 10.1021/jp903231n PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800012 PM 19610629 ER PT J AU Hause, ML Hall, GE Sears, TJ AF Hause, Michael L. Hall, Gregory E. Sears, Trevor J. TI Sub-Doppler Stark Spectroscopy in the A-X (1,0) Band of CN SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRIC-DIPOLE-MOMENT; STATES; TRANSITION; MOLECULE; 2PI; RED AB The effect of external electric fields has been measured in hyperfine-resolved sub-Doppler transitions in the A (2)Pi-X (2)Sigma (1,0) band of the CN radical near 10 900 cm(-1). Static electric fields less than 1 kV/cm are sufficient to mix the most closely spaced Lambda-dpublets in the A state, leading to Stark spectra with both new and shifted resonances. Simulations of the saturation-dip Stark spectral line profiles allow extraction of the A-state permanent electric dipole moment with a magnitude of 0.06 +/- 0.02 D. C1 [Hause, Michael L.; Hall, Gregory E.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. RP Sears, TJ (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555,POB 5000, Upton, NY 11793 USA. EM gehall@bnl.gov; sears@bnl.gov RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, & Biosciences within the Office of Basic Energy Science FX This work was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, & Biosciences within the Office of Basic Energy Sciences. NR 15 TC 6 Z9 6 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13342 EP 13346 DI 10.1021/jp906085e PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800032 PM 19645435 ER PT J AU Yang, ZZ Xu, T Ito, YS Welp, U Kwoko, WK AF Yang, Zhenzhen Xu, Tao Ito, Yasuo Welp, Ulrich Kwoko, Wai Kwong TI Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Rough Metal Anode SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CHARGE-COLLECTION; NANOTUBE ARRAYS; NANOWIRE ARRAYS; TIO2 NANOTUBES; WORK FUNCTION; ZINC-OXIDE; EFFICIENCY; RECOMBINATION; INJECTION AB Many efforts have been directed toward the enhancement of electron transport in dye-sensitized solar cells (DSSC) using one-dimensional nanoarchitectured semiconductors. However, the improvement resulting from these ordered 1-D nanostructured electrodes is often offset or diminished by the deterioration in other device parameters intrinsically associated with the use of these 1-D nanostrucutres, such as the two-sided effect of the length of the nanowires impacting the series resistance and roughness factor. In this work, we mitigate this problem by allocating part of the roughness factor to the collecting anode instead of imparting all the roughness factors onto the semiconductor layer attached to the anode. A microscopically rough Zn microtip array is used as ail electron-collecting anode on which ZnO nanotips are grown to serve as the semiconductor component of the DSSC. For the same surface roughness factor, our Zn-microtip vertical bar ZnO-nanotip DSSC exhibits an enhanced fill factor compared with DSSCs that have ZnO nanowires Supported by a planar anode. In addition, the open-circuit voltage of the Zn-microtip vertical bar ZnO-nanotip DSSC is also improved due to a favorable band shift at the Zn-ZnO interface, which raises the Fermi level of the semiconductor and consequently enlarges the energy gap between the quasi-Fermi level of ZnO and the redox species. With these improvements, the overall efficiency becomes 1.4% with ail open-circuit voltage of 770 mV, while the surface roughness factor of ZnO is approximately 60. Electrochemical impedance spectroscopic study reveals that the electron collection time is much shorter than the electron lifetime, suggesting that fast electron collection occurs in our device due to the significantly reduced electron collection distance along the short ZnO nanotips. The overall improvement demonstrates a new approach to enhance the efficiency of dye-sensitized solar cells. C1 [Yang, Zhenzhen; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Ito, Yasuo] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Welp, Ulrich; Kwoko, Wai Kwong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. EM txu@niu.edu RI Yang, Zhenzhen/A-5904-2012 FU American Chemical Society Petroleum Research Fund [46374-G10]; U.S. Department of Energy [DE-AC02-06CH11357] FX We acknowledge the financial support from the American Chemical Society Petroleum Research Fund (Type G 46374-G10) and the U.S. Department of Energy, under contract No. DE-AC02-06CH11357. TX is grateful for the stimulating discussions with Dr. Alex B. F. Martinson at the Materials Science Division, Argonne National Laboratory. NR 43 TC 51 Z9 52 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 26 PY 2009 VL 113 IS 47 BP 20521 EP 20526 DI 10.1021/jp908678x PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 520FM UT WOS:000271826100058 ER PT J AU Peers, G Truong, TB Ostendorf, E Busch, A Elrad, D Grossman, AR Hippler, M Niyogi, KK AF Peers, Graham Truong, Thuy B. Ostendorf, Elisabeth Busch, Andreas Elrad, Dafna Grossman, Arthur R. Hippler, Michael Niyogi, Krishna K. TI An ancient light-harvesting protein is critical for the regulation of algal photosynthesis SO NATURE LA English DT Article ID CARBON-CONCENTRATING MECHANISM; CHLAMYDOMONAS-REINHARDTII; PHOTOOXIDATIVE STRESS; BIOENERGETIC PATHWAYS; ENERGY-DISSIPATION; IRON-DEFICIENCY; GENOME REVEALS; GENES; CYCLE; EXPRESSION AB Light is necessary for photosynthesis, but its absorption by pigment molecules such as chlorophyll can cause severe oxidative damage and result in cell death. The excess absorption of light energy by photosynthetic pigments has led to the evolution of protective mechanisms that operate on the timescale of seconds to minutes and involve feedback-regulated de-excitation of chlorophyll molecules in photosystem II (qE). Despite the significant contribution of eukaryotic algae to global primary production(1), little is known about their qE mechanism, in contrast to that in flowering plants(2,3). Here we show that a qE-deficient mutant of the unicellular green alga Chlamydomonas reinhardtii, npq4, lacks two of the three genes encoding LHCSR (formerly called LI818). This protein is an ancient member of the light-harvesting complex superfamily, and orthologues are found throughout photosynthetic eukaryote taxa(4), except in red algae and vascular plants. The qE capacity of Chlamydomonas is dependent on environmental conditions and is inducible by growth under high light conditions. We show that the fitness of the npq4 mutant in a shifting light environment is reduced compared to wild-type cells, demonstrating that LHCSR is required for survival in a dynamic light environment. Thus, these data indicate that plants and algae use different proteins to dissipate harmful excess light energy and protect the photosynthetic apparatus from damage. C1 [Peers, Graham; Truong, Thuy B.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Truong, Thuy B.; Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ostendorf, Elisabeth; Busch, Andreas; Hippler, Michael] Univ Munster, Inst Plant Biochem & Biotechnol, D-48143 Munster, Germany. [Elrad, Dafna; Grossman, Arthur R.] Carnegie Inst, Dept Plant Biol, Stanford, CA 94305 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM mhippler@uni-muenster.de; niyogi@berkeley.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy; Deutsche Forschungsgemeinschaft; National Science Foundation FX We thank M. Guertin for providing the anti-LHCSR (LI818) antibody. This work was supported by grants from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy ( K. K. N.), the Deutsche Forschungsgemeinschaft ( M. H.), and the National Science Foundation ( A. R. G.). NR 33 TC 271 Z9 275 U1 11 U2 119 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 26 PY 2009 VL 462 IS 7272 BP 518 EP U215 DI 10.1038/nature08587 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 524LG UT WOS:000272144200047 PM 19940928 ER PT J AU Ong, DCT Ho, YM Rudduck, C Chin, K Kuo, WL Lie, DKH Chua, CLM Tan, PH Eu, KW Seow-Choen, F Wong, CY Hong, GS Gray, JW Lee, ASG AF Ong, D. C. T. Ho, Y. M. Rudduck, C. Chin, K. Kuo, W-L Lie, D. K. H. Chua, C. L. M. Tan, P. H. Eu, K. W. Seow-Choen, F. Wong, C. Y. Hong, G. S. Gray, J. W. Lee, A. S. G. TI LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer SO ONCOGENE LA English DT Article DE LARG; tumor suppressor; breast cancer; colorectal cancer ID NUCLEOTIDE-EXCHANGE FACTORS; LEUKEMIA-ASSOCIATED RHOGEF; CELL LUNG-CANCER; PDZ DOMAINS; HETEROZYGOSITY; IDENTIFICATION; CARCINOMA; GENE; PROTEINS; DELETION AB Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, using both loss of heterozygosity analysis and customized microarray comparative genomic hybridization. LARG (leukemia-associated Rho guanine-nucleotide exchange factor) (also called ARHGEF12), identified from the analysed region, is frequently underexpressed in breast and colorectal carcinomas with a reduced expression observed in all breast cancer cell lines (n = 11), in 12 of 38 (32%) primary breast cancers, 5 of 10 (50%) colorectal cell lines and in 20 of 37 (54%) primary colorectal cancers. Underexpression of the LARG transcript was significantly associated with genomic loss (P = 0.00334). Hypermethylation of the LARG promoter was not detected in either breast or colorectal cancer, and treatment of four breast and four colorectal cancer cell lines with 5-aza-2'-deoxycytidine and/or trichostatin A did not result in a reactivation of LARG. Enforced expression of LARG in breast and colorectal cancer cells by stable transfection resulted in reduced cell proliferation and colony formation, as well as in a markedly slower cell migration rate in colorectal cancer cells, providing functional evidence for LARG as a candidate tumor suppressor gene. Oncogene (2009) 28, 4189-4200; doi: 10.1038/onc.2009.266; published online 7 September 2009 C1 [Lee, A. S. G.] Natl Canc Ctr, Div Med Sci, Mol Oncol Lab, Singapore 169610, Singapore. [Rudduck, C.; Tan, P. H.] Singapore Gen Hosp, Dept Pathol, Singapore 0316, Singapore. [Chin, K.; Kuo, W-L; Gray, J. W.] Univ Calif San Francisco, UCSF Comprehens Canc Ctr, San Francisco, CA 94143 USA. [Kuo, W-L; Gray, J. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Eu, K. W.; Seow-Choen, F.] Singapore Gen Hosp, Dept Colorectal Surg, Singapore 0316, Singapore. [Wong, C. Y.; Hong, G. S.] Singapore Gen Hosp, Dept Gen Surg, Singapore 0316, Singapore. [Lee, A. S. G.] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Microbiol, Singapore 117595, Singapore. RP Lee, ASG (reprint author), Natl Canc Ctr, Div Med Sci, Mol Oncol Lab, Singapore 169610, Singapore. EM dmslsg@nccs.com.sg FU National Medical Research Council (NMRC) of Singapore [NMRC/0076/1995, NMRC/0440/2000, NMRC/0570/2001, NMRC/0843/2004]; SingHealth Foundation [SHF/FG235P/2005]; Singapore Cancer Society; SGH Research Fund; Cancer Research Education Fund; NCC and Department of Clinical Research, SGH; US Department of Energy [DE-AC02-05CH11231, USAMRMC BC 061995]; National Institutes of Health, National Cancer Institute [P50 CA 58207, P50 CA 83639, P30 CA 82103, U54 CA 112970, U24 CA 126477, P01 CA 64602]; National Human Genome Research Institute [U24 CA 126551]; SmithKline Beecham Corporation FX We thank Dr Glenn Koh for assistance with review of case notes; YC Seo, Angela Chang, S Tohari, Irene HK Lim and Gan Yar Chze for excellent technical assistance; and Dr Eric Yap for helpful discussions. This study was supported by Grants from the National Medical Research Council (NMRC) of Singapore (NMRC/0076/1995, NMRC/0440/2000, NMRC/0570/2001, NMRC/0843/2004); SingHealth Foundation (SHF/FG235P/2005); the Singapore Cancer Society, SGH Research Fund, Cancer Research Education Fund, NCC and Department of Clinical Research, SGH, to AL. We gratefully acknowledge the grant support from the US Department of Energy under Contract No. DE-AC02-05CH11231, USAMRMC BC 061995; National Institutes of Health, National Cancer Institute (P50 CA 58207, P50 CA 83639, P30 CA 82103, U54 CA 112970, U24 CA 126477 P01 CA 64602); National Human Genome Research Institute (U24 CA 126551) and SmithKline Beecham Corporation, to JWG. NR 42 TC 14 Z9 15 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD NOV 26 PY 2009 VL 28 IS 47 BP 4189 EP 4200 DI 10.1038/onc.2009.266 PG 12 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 534DQ UT WOS:000272876100005 PM 19734946 ER PT J AU Pan, H Qiu, XF Ivanovc, IN Meyer, HM Wang, W Zhu, WG Paranthaman, MP Zhang, ZY Eres, G Gu, BH AF Pan, Hui Qiu, Xiaofeng Ivanovc, Ilia N. Meyer, Harry M. Wang, Wei Zhu, Wenguang Paranthaman, M. Parans Zhang, Zhenyu Eres, Gyula Gu, Baohua TI Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Brookite; TiO2; Water splitting; Catalysis; Bandgap; Photoenergy ID TITANIUM-DIOXIDE; NANOCRYSTALLINE TIO2; PHOTOCATALYTIC ACTIVITY; NANOTUBE ARRAYS; SOLAR-CELLS; BAND-GAP; PHASE; PERFORMANCE; OXIDATION; PARTICLES AB We report that mild oxidation of Ti foils in air results in brookite-rich titanium oxide (TiO2) films with similar spectral response to that of dye-sensitized TiO2. X-ray powder diffraction and Raman spectroscopy show that the onset of brookite formation occurs at 500 degrees C, and the material is characterized by a strong absorption band in the visible spectral range. The first-principle calculations show that enhanced visible light absorption correlates with the presence of Ti interstitials. Photocurrent density measurements of water splitting reveal that the brookite-rich TiO2 exhibits the highest photocatalytic performance among the different forms of TiO2 produced by oxidation of Ti foils. With increasing oxidation temperature transformation to the rutile phase accompanied by declining visible range photoactivity is observed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pan, Hui; Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Qiu, Xiaofeng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ivanovc, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Meyer, Harry M.; Zhang, Zhenyu; Eres, Gyula] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhu, Wenguang; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov RI Zhu, Wenguang/F-4224-2011; Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; Dom, Rekha/B-7113-2012; Pan, Hui/A-2702-2009; Paranthaman, Mariappan/N-3866-2015; Eres, Gyula/C-4656-2017; OI Zhu, Wenguang/0000-0003-0819-595X; Gu, Baohua/0000-0002-7299-2956; Pan, Hui/0000-0002-6515-4970; Paranthaman, Mariappan/0000-0003-3009-8531; Eres, Gyula/0000-0003-2690-5214; ivanov, ilia/0000-0002-6726-2502 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This work was sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL) and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE). ORNL is managed by UT-Battelle LLC for DOE under contract No. DE-AC05-00OR22725. The DFT calculations were performed at Computational Center of Science (CCS) of ORNL. NR 42 TC 29 Z9 31 U1 3 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD NOV 25 PY 2009 VL 93 IS 1-2 BP 90 EP 95 DI 10.1016/j.apcatb.2009.09.016 PG 6 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 525XR UT WOS:000272251600011 ER PT J AU Ouellet, M Adams, PD Keasling, JD Mukhopadhyay, A AF Ouellet, Mario Adams, Paul D. Keasling, Jay D. Mukhopadhyay, Aindrila TI A rapid and inexpensive labeling method for microarray gene expression analysis SO BMC BIOTECHNOLOGY LA English DT Article ID QUALITY-CONTROL MAQC; PCR; QUANTIFICATION; CDNA AB Background: Global gene expression profiling by DNA microarrays is an invaluable tool in biological research. However, existing labeling methods are time consuming and costly and therefore often limit the scale of microarray experiments and sample throughput. Here we introduce a new, fast, inexpensive method for direct random-primed fluorescent labeling of eukaryotic cDNA for gene expression analysis and compare the results obtained on the NimbleGen microarray platform with two other widely-used labeling methods, namely the NimbleGen-recommended double-stranded cDNA protocol and the indirect (aminoallyl) method. Results: Two total RNA samples were labeled with each method and hybridized to NimbleGen expression arrays. Although all methods tested here provided similar global results and biological conclusions, the new direct random-primed cDNA labeling method provided slightly better correlation between replicates compared to the other methods and thus increased ability to find statistically significant differentially expressed genes. Conclusion: The new direct random-primed cDNA labeling method introduced here is suitable for gene expression microarrays and provides a rapid, inexpensive alternative to existing methods. Using NimbleGen microarrays, the method produced excellent results comparable to those obtained with other methods. However, the simplicity and cost-effectiveness of the new method allows for increased sample throughput in microarray experiments and makes the process amenable to automation with a relatively simple liquid handling system. C1 [Ouellet, Mario; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila] Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Emeryville, CA USA. [Ouellet, Mario; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Mukhopadhyay, A (reprint author), Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Emeryville, CA USA. EM mouellet@lbl.gov; pdadams@lbl.gov; keasling@berkeley.edu; amukhopadhyay@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute http://www.jbei.org supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 15 TC 11 Z9 12 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6750 J9 BMC BIOTECHNOL JI BMC Biotechnol. PD NOV 25 PY 2009 VL 9 AR 97 DI 10.1186/1472-6750-9-97 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 532XC UT WOS:000272782700001 PM 19939278 ER PT J AU Sato, A Isaac, B Phillips, CM Rillo, R Carlton, PM Wynne, DJ Kasad, RA Dernburg, AF AF Sato, Aya Isaac, Berith Phillips, Carolyn M. Rillo, Regina Carlton, Peter M. Wynne, David J. Kasad, Roshni A. Dernburg, Abby F. TI Cytoskeletal Forces Span the Nuclear Envelope to Coordinate Meiotic Chromosome Pairing and Synapsis SO CELL LA English DT Article ID C-ELEGANS MEIOSIS; FISSION YEAST; CAENORHABDITIS-ELEGANS; SACCHAROMYCES-CEREVISIAE; BOUQUET FORMATION; PROPHASE; RECOMBINATION; MOVEMENT; PROTEIN; MICROTUBULES AB During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online. C1 [Sato, Aya; Rillo, Regina; Wynne, David J.; Kasad, Roshni A.; Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. [Sato, Aya; Phillips, Carolyn M.; Rillo, Regina; Wynne, David J.; Kasad, Roshni A.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Sato, Aya; Isaac, Berith; Rillo, Regina; Wynne, David J.; Kasad, Roshni A.; Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Isaac, Berith] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. [Carlton, Peter M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. RP Dernburg, AF (reprint author), Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. EM afdernburg@lbl.gov RI Phillips, Carolyn/E-8305-2011; OI Phillips, Carolyn/0000-0002-6228-6468; Carlton, Peter/0000-0002-5320-6024; Dernburg, Abby/0000-0001-8037-1079 FU Japan Society for the Promotion of Science; National Science Foundation; Keck Laboratory for Advanced Microscopy at the University of California, San Francisco; American Cancer Society [RSG-07-187-01-GMC]; National Institutes of Health/National Institute of General Medical Sciences [R01 GM065591] FX This work was supported by graduate research fellowships from the Japan Society for the Promotion of Science (A. S.) and the National Science Foundation (C. M. P., D. J. W and R. K.), by a research grant from the Keck Laboratory for Advanced Microscopy at the University of California, San Francisco, to P. M. C, and by research grants from the American Cancer Society (RSG-07-187-01-GMC) and the National Institutes of Health/National Institute of General Medical Sciences (R01 GM065591) to A. F. D. We are grateful to John Sedat for the use of the OMX microscope and to Kent McDonald for expert assistance with EM sample preparation. We thank Chris Malone, Miles Pfaff, Verena Jantsch, Tito Fojo, Eva Nogales, Bruce Bowerman, Yossi Gruenbaum, Pierre Gonczy, Ahna Skop, Anthony Hyman, Anne Villeneuve, and the Caenorhabditis Genetic Center for providing antibodies, strains, reagents, and technical assistance. We thank Dan Starr, Aaron Severson, Anne Villeneuve, and members of the Dernburg lab for helpful discussions. NR 47 TC 121 Z9 144 U1 0 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD NOV 25 PY 2009 VL 139 IS 5 BP 907 EP 919 DI 10.1016/j.cell.2009.10.039 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 524UR UT WOS:000272169400015 PM 19913287 ER PT J AU Zeidler, A Drewitt, JWE Salmon, PS Barnes, AC Crichton, WA Klotz, S Fischer, HE Benmore, CJ Ramos, S Hannon, AC AF Zeidler, Anita Drewitt, James W. E. Salmon, Philip S. Barnes, Adrian C. Crichton, Wilson A. Klotz, Stefan Fischer, Henry E. Benmore, Chris J. Ramos, Silvia Hannon, Alex C. TI Establishing the structure of GeS2 at high pressures and temperatures: a combined approach using x-ray and neutron diffraction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID MEDIUM RANGE ORDER; LIQUID GESE2; CHALCOGENIDE GLASSES; CRYSTAL-STRUCTURE; DISORDERED MATERIALS; RAMAN-SCATTERING; ABSORPTION-EDGE; BINARY-ALLOYS; GERMANIUM; INTERMEDIATE AB The change in structure of glassy GeS2 with pressure increasing to similar or equal to 5 GPa at ambient temperature was explored by using in situ neutron and x-ray diffraction. Under ambient conditions, the glass structure is made from a mixture of corner-and edge-sharing Ge(S-1/2)(4) tetrahedra where 47(5)% of the Ge atoms are involved in edge-sharing configurations. The network formed by these tetrahedra orders on an intermediate range as manifested by the appearance of a pronounced first sharp diffraction peak in the measured total structure factors at a scattering vector k = 1.02(2) angstrom(-1) which has a large contribution from Ge-Ge correlations. The intermediate range order breaks down when the pressure on the glass increases above approximate to 2 GPa but there does not appear to be a significant alteration of the Ge-S coordination number or corresponding bond length with increasing density. The results for the glass are consistent with a densification mechanism in which there is a replacement of edge-sharing by corner-sharing Ge centred tetrahedral motifs and/or a reduction in the Ge-(S) over cap -Ge bond angle between corner-sharing tetrahedral motifs with increasing pressure. The change in structure with increasing temperature at a pressure of similar or equal to 5 GPa was also investigated by means of in situ x-ray diffraction as the glass crystallized and then liquefied. At 5.2(1) GPa and 828(50) K the system forms a tetragonal crystal, with space group I (4) over bar 2d and cell parameters a = b = 4.97704(12) and c = 9.5355(4) angstrom, wherein corner-sharing Ge(S-1/2)(4) tetrahedra pack to form a dense three-dimensional network. A method is described for correcting x-ray diffraction data taken in situ under high pressure, high temperature conditions for a cylindrical sample, container and gasket geometry with a parallel incident beam and with a scattered beam that is defined using an oscillating radial collimator. A method is also outlined for obtaining coordination numbers from direct integration of the peaks in measured x-ray total pair distribution functions. C1 [Zeidler, Anita; Drewitt, James W. E.; Salmon, Philip S.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Barnes, Adrian C.] HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Crichton, Wilson A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Klotz, Stefan] Univ Paris 06, IMPMC, F-75252 Paris, France. [Fischer, Henry E.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Benmore, Chris J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ramos, Silvia] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Hannon, Alex C.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Zeidler, A (reprint author), Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. RI Drewitt, James/A-1631-2010; Salmon, Philip/Q-9512-2016; Klotz, Stefan/D-6497-2017; Fischer, Henry/D-5299-2012; OI Drewitt, James/0000-0002-3510-4155; Salmon, Philip/0000-0001-8671-1011; Fischer, Henry/0000-0002-1204-0750; Zeidler, Anita/0000-0001-6501-8525; Benmore, Chris/0000-0001-7007-7749; Hannon, Alex/0000-0001-5914-1295 NR 106 TC 42 Z9 43 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 25 PY 2009 VL 21 IS 47 AR 474217 DI 10.1088/0953-8984/21/47/474217 PG 22 WC Physics, Condensed Matter SC Physics GA 516CL UT WOS:000271519200019 PM 21832496 ER PT J AU Somorjai, GA Frei, H Park, JY AF Somorjai, Gabor A. Frei, Heinz Park, Jeong Y. TI Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID SUM-FREQUENCY GENERATION; FT-IR SPECTROSCOPY; SCANNING-TUNNELING-MICROSCOPY; CATALYTIC CO OXIDATION; BLODGETT MONOLAYER FORMATION; OXYGEN-EVOLVING CATALYST; SINGLE-CRYSTAL SURFACES; VIBRATIONAL SPECTROSCOPY; MESOPOROUS SILICA; PLATINUM NANOPARTICLES AB The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs, can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge Wenyu Huang for his help. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences, and Division of Materials Sciences and Engineering of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 127 TC 293 Z9 298 U1 18 U2 319 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 25 PY 2009 VL 131 IS 46 BP 16589 EP 16605 DI 10.1021/ja9061954 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 525AL UT WOS:000272185400001 PM 19919130 ER PT J AU Luther, JM Zheng, HM Sadtler, B Alivisatos, AP AF Luther, Joseph M. Zheng, Haimei Sadtler, Bryce Alivisatos, A. Paul TI Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COLLOIDAL SEMICONDUCTOR NANORODS; QUANTUM DOTS; SHAPE CONTROL; INORGANIC NANOCRYSTALS; CDSE NANOCRYSTALS; SOLAR-CELLS; NANOPARTICLES; RODS; SIZE; RELAXATION AB We show that nanocrystals (NCs) with well-established synthetic protocols for high shape and size monodispersity can be used as templates to independently control the NC composition through successive cation exchange reactions. Chemical transformations like cation exchange reactions overcome a limitation in traditional colloidal synthesis, where the NC shape often reflects the inherent symmetry of the underlying lattice. Specifically we show that full or partial interconversion between wurtzite CdS, chalcocite Cu(2)S, and rock salt PbS NCs can occur while preserving anisotropic shapes unique to the as-synthesized materials. The exchange reactions are driven by disparate solubilites between the two cations by using ligands that preferentially coordinate to either monovalent or divalent transition metals. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong two-dimensional quantum confinement, as well as for optoelectronic applications. In NC heterostructures containing segments of different materials, the exchange reaction can be made highly selective for just one of the components of the heterostructure. Thus, through precise control over ion insertion and removal, we can obtain interesting CdSlPbS heterostructure nanorods, where the spatial arrangement of materials is controlled through an intermediate exchange reaction. C1 [Alivisatos, A. Paul] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94705 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94705 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC02-05CH11231] FX Acknowledgment. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge the National Center for Electron Microscopy for providing the advanced electron microscopy facilities for this work. J.M.L. thanks Jon Owen for helpful discussion. NR 48 TC 218 Z9 219 U1 20 U2 208 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 25 PY 2009 VL 131 IS 46 BP 16851 EP 16857 DI 10.1021/ja906503w PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 525AL UT WOS:000272185400056 PM 19863102 ER PT J AU Sun, X Choi, KS Soulami, A Liu, WN Khaleel, MA AF Sun, X. Choi, K. S. Soulami, A. Liu, W. N. Khaleel, M. A. TI On key factors influencing ductile fractures of dual phase (DP) steels SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Dual phases; Ductility; Finite element analysis (FEA); Fracture; Phase inhomogeneity ID FINITE-ELEMENT-ANALYSIS; DEFORMATION-BEHAVIOR; MICROSTRUCTURE; DAMAGE; LOCALIZATION; MARTENSITE AB In this paper, we examine the key factors influencing ductile failure of various grades of dual phase (DP) steels using the microstructure-based modeling approach. Various microstructure-based finite element models are generated based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite phase and also the influence of voids introduced in the ferrite phase on the overall ductility of DP steels. It is found that with volume fraction of martensite in the microstructure less than 15%, the overall ductility of the DP steels strongly depends on the ductility of the ferrite matrix, hence pre-existing micro-voids in the microstructure significantly reduce the overall ductility of the steel. When the volume fraction of martensite is above 15%, the pre-existing voids in the ferrite matrix does not significantly reduce the overall ductility of the DP steels, and the overall ductility is more influenced by the mechanical property disparity between the two phases. The applicability of the phase inhomogeneity driven ductile failure of DIP steels is then discussed based on the obtained computational results for various grades of DP steels, and the experimentally obtained scanning electron microscopy (SEM) pictures of the corresponding grades of DP steels near fracture surface are used as evidence for result validations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sun, X.; Choi, K. S.; Soulami, A.; Liu, W. N.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM xin.sun@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU Department of Energy Office of FreedomCAR and Vehicle Technologies [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was funded by the Department of Energy Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Dr. Joseph Carpenter. The authors would like to acknowledge the help of Mr. John Serkowski and Mr. Tao Fu for their help in generating the finite element mesh. NR 26 TC 77 Z9 78 U1 6 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2009 VL 526 IS 1-2 BP 140 EP 149 DI 10.1016/j.msea.2009.08.010 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 514AW UT WOS:000271366700023 ER PT J AU Young, ML Rao, R Almer, JD Haeffner, DR Lewis, JA Dunand, DC AF Young, M. L. Rao, R. Almer, J. D. Haeffner, D. R. Lewis, J. A. Dunand, D. C. TI Effect of ceramic preform geometry on load partitioning in Al2O3-Al composites with three-dimensional periodic architecture SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Metal matrix composites (MMC); Synchrotron radiation; X-ray diffraction (XRD); Aluminum; Compression test ID SYNCHROTRON X-RAY; PHASE-CONTRAST MICROTOMOGRAPHY; IN-SITU; INTERPENETRATING NETWORKS; ALUMINUM COMPOSITES; DUCTILE PARTICLES; THERMAL-EXPANSION; MICROSTRUCTURE; DIFFRACTION; DEFORMATION AB Interpenetrating Al2O3/Al composites were created by liquid-metal infiltration of 3D periodic ceramic preforms with face-centered-tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the ceramic phase of the composite were measured by synchrotron X-ray diffraction for various levels of uniaxial compression stresses. Load transfer is found to occur from the metal phase to the ceramic phase, and the magnitude of the effect is in general agreement with simple rule-of-mixtures models. Spatially resolved diffraction measurements show variations in load transfer at two different positions within the composite for the elastic- and damage-deformation regimes, the latter being observed using phase-enhanced synchrotron imaging. The mechanical behavior of these interpenetrating Al2O3/Al composites with face-centered-tetragonal symmetry are compared with previous interpenetrating Al2O3/Al composites with simple-tetragonal symmetry. (C) 2009 Elsevier B.V. All rights reserved. C1 [Young, M. L.; Dunand, D. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Rao, R.; Lewis, J. A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Almer, J. D.; Haeffner, D. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Young, ML (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM marcus.young@rub.de RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX The authors thank Drs. Ulrich Lienert, Kamel Fezzaa, and Wah-Keat Lee at the APS (SRI-CAT) and Dr. Mark Beno and Chuck Kurtz at the APS (BESSRC-CAT) at ANL for experimental assistance. Dr. Jennifer A. Lewis and Ranjeet Rao acknowledge funding provided by NSF Grant # (DMR01-17792). The robocasting apparatus used in this work was designed and built by J. Cesarano, and customized software for 3D fabrication was developed by J.E. Smay. Dr. Deming Shu at the APS built the compression rig. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under contract number DE-AC02-06CH11357. NR 46 TC 6 Z9 7 U1 6 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2009 VL 526 IS 1-2 BP 190 EP 196 DI 10.1016/j.msea.2009.07.033 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 514AW UT WOS:000271366700030 ER PT J AU Jiang, DE Chen, XQ Luo, WD Shelton, WA AF Jiang, De-en Chen, Xing-Qiu Luo, Weidong Shelton, William A. TI From trans-polyacetylene to zigzag-edged graphene nanoribbons SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; CARBON NANOTUBES; HALF-METALLICITY; GROUND-STATE; BASIS-SET; POLYACENE; GRAPHITE; POLYMERS AB A zigzag-edged graphene nanoribbon (ZGNR) can be indexed by a width, N, which is the number of parallel trans-polyacetylene-like chains comprising the ribbon. Although ZGNRs with N = 4 or greater have been found to have an antiferromagnetic ground state and a ferromagnetic metastable state, how the ribbon makes the transition from N = 1 (namely, trans-polyacetylene-a one-dimensional, nonmagnetic semiconductor) to the wider ones is unclear. Using hybrid density functional theory, we show that N = 2 (polyacene) can be considered the narrowest ZGNR with an antiferromagnetic insulating ground state and a metastable, metallic ferromagnetic state. (C) 2009 Published by Elsevier B.V. C1 [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Chen, Xing-Qiu; Luo, Weidong] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Shelton, William A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov; sheltonwajr@ornl.gov RI Jiang, De-en/D-9529-2011; Luo, Weidong/A-8418-2009 OI Jiang, De-en/0000-0001-5167-0731; Luo, Weidong/0000-0003-3829-1547 FU Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725] FX This work was supported by Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 39 TC 20 Z9 20 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 24 PY 2009 VL 483 IS 1-3 BP 120 EP 123 DI 10.1016/j.cplett.2009.10.061 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 519IA UT WOS:000271758000023 ER PT J AU Li, LY King, DL Liu, J Huo, QS Zhu, KK Wang, CM Gerber, M Stevens, D Wang, Y AF Li, Liyu King, David L. Liu, Jun Huo, Qisheng Zhu, Kake Wang, Chongmin Gerber, Mark Stevens, Don Wang, Yong TI Stabilization of Metal Nanoparticles in Cubic Mesostructured Silica and Its Application in Regenerable Deep Desulfurization of Warm Syngas SO CHEMISTRY OF MATERIALS LA English DT Article ID MESOPOROUS SILICA; SUPPORTED NICKEL; SULFUR CHEMISORPTION; CATALYTIC-ACTIVITY; PORE STRUCTURE; H2S REMOVAL; HOT-GAS; COPOLYMER; ZNO; THERMODYNAMICS AB Metal and metal oxide nanoparticles supported on high surface area materials are widely used in industry for fuel and chemical production and for environmental pollution control, but preventing nanosized particle sintering has remained a great challenge. In this paper, we report that Ni-Cu alloy nanoparticles can be effectively stabilized in cubic mesostructured silica (SBA-16) following a conventional impregnation and thermal treatment process. The three-dimensional interconnected cage structure of the mesoporous SBA-16 allows good accessibility of reactant gas molecules to the metal nanoparticles and confines these particles within its nanosized cages. This confinement hinders metal nanoparticle migration and sintering under harsh conditions. A new class of regenerable metal-based adsorbents which can remove sulfur impurities from warm syngas stream down to less than 60 parts per billion by volume (ppbv) is described. This same confinement strategy is expected to have impact for minimizing sintering or particle coarsening of nanosized materials employed in other applications. C1 [Li, Liyu; King, David L.; Liu, Jun; Huo, Qisheng; Zhu, Kake; Wang, Chongmin; Gerber, Mark; Stevens, Don; Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Li, LY (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99354 USA. EM liyu.li@pnl.gov RI Wang, Yong/C-2344-2013 FU Laboratory Directed Research and Development Program at the PNNL; U.S. Department of Energy FX This work was performed in part at the Interfacial and Nano Science Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the orrice or Biological and Environmental Research of the U.S. Department of Energy and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle. The authors wish to acknowledge Financial support from the Laboratory Directed Research and Development Program at the PNNL and the Biomass Energy Technology Program or the U.S. Department of Energy. L.L. thanks Dr. F. Gao (PNNL) for preparing Figure 2. NR 33 TC 22 Z9 23 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 24 PY 2009 VL 21 IS 22 BP 5358 EP 5364 DI 10.1021/cm901227e PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 519HR UT WOS:000271756400002 ER PT J AU Oh, JH Sun, YS Schmidt, R Toney, MF Nordlund, D Konemann, M Wurthner, F Bao, ZA AF Oh, Joon Hak Sun, Ya-Sen Schmidt, Ruediger Toney, Michael F. Nordlund, Dennis Koenemann, Martin Wuerthner, Frank Bao, Zhenan TI Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives SO CHEMISTRY OF MATERIALS LA English DT Article ID THIN-FILM TRANSISTORS; SELF-ASSEMBLED MONOLAYERS; ABSORPTION FINE-STRUCTURE; CHARGE-TRANSPORT; SEMICONDUCTORS; MOBILITY; PENTACENE; GROWTH; ELECTRONICS; DEPENDENCE AB The effects of the interplay between energetic and kinetic factors on the air stability of n-channel organic thin-film transistors (OTFTs) were studied using two perylene diimide (PDI) compounds with distinctly different lowest unoccupied molecular orbital (LUMO) levels. On the basis of the empirical energy level windows, one compound (N,N'-bis(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-3,4:9,10-tetracarboxylic acid diimide (PDI-F): -3.84 eV) is at the onset region for air stability, whereas the other (N,N'-bis(cyclohexyl)-1,7-dicyano-perylene-3,4:9,10-tetracarboxylic acid diimide (PDI-CN2): -4.33 eV) is in the air-stable region. Charge-transport behaviors under an inert atmosphere and in air were investigated as a function of active layer thickness. Charge transport in air was greatly affected by the active layer thickness for both compounds, an effect that has been overlooked so far. The ambient stability of the air-unstable PDI-F TFTs increased significantly for thicknesses over similar to 10 monolayers (ML). Surprisingly, the previously considered "air-stable" PDI-CN2 TFTs were not stable in air if the active layer thickness was less than similar to 4 ML. The molecular packing and orientation of the PDI thin Films were investigated using grazing incidence X-ray diffraction (GIXD) and near-edge X-ray absorption fine structure (NEXAFS). We found that the minimum thickness required for air stability is closely related to the LUMO level, film morphology, and film growth mode. C1 [Oh, Joon Hak; Sun, Ya-Sen; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.; Nordlund, Dennis] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Schmidt, Ruediger; Wuerthner, Frank] Univ Wurzburg, Inst Organ Chem, D-97074 Wurzburg, Germany. [Schmidt, Ruediger; Wuerthner, Frank] Rontgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany. [Koenemann, Martin] BASF SE, GVP C, D-67056 Ludwigshafen, Germany. RP Bao, ZA (reprint author), Stanford Univ, Dept Chem Engn, 381 North South Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Oh, Joon Hak/F-1454-2010; Nordlund, Dennis/A-8902-2008; Wurthner, Frank/K-5181-2015 OI Oh, Joon Hak/0000-0003-0481-6069; Nordlund, Dennis/0000-0001-9524-6908; Wurthner, Frank/0000-0001-7245-0471 FU BASF SE [NSC-095-SAF-1-564-626-TMS]; NSF-DMR; Sloan Research Fellowship FX Y.S.S. acknowledges financial support from the Taiwan Merit scholarship (NSC-095-SAF-1-564-626-TMS). Z.B. acknowledges financial support from BASF SE, the NSF-DMR solid state chemistry, and the Sloan Research Fellowship. F.W. acknowledges financial support from BASF SE and DFG. We also thank the Center for Polymeric Interfaces and Macromolecular Assemblies (NSF-Center MRSEC) for providing characterization facilities. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences, NR 58 TC 50 Z9 50 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 24 PY 2009 VL 21 IS 22 BP 5508 EP 5518 DI 10.1021/cm902531d PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 519HR UT WOS:000271756400019 ER PT J AU Fan, JW Yuan, TL Comstock, JM Ghan, S Khain, A Leung, LR Li, ZQ Martins, VJ Ovchinnikov, M AF Fan, Jiwen Yuan, Tianle Comstock, Jennifer M. Ghan, Steven Khain, Alexander Leung, L. Ruby Li, Zhanqing Martins, Vanderlei J. Ovchinnikov, Mikhail TI Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PART I; ATMOSPHERIC AEROSOLS; PRECIPITATION; MICROPHYSICS; CLIMATE; MODEL; SENSITIVITY; SIMULATION; POLLUTION; IMPACT AB Aerosol-cloud interaction is recognized as one of the key factors influencing cloud properties and precipitation regimes across local, regional, and global scales and remains one of the largest uncertainties in understanding and projecting future climate changes. Deep convective clouds (DCCs) play a crucial role in the general circulation, energy balance, and hydrological cycle of our climate system. The complex aerosol-DCC interactions continue to be puzzling as more "aerosol effects'' unfold, and systematic assessment of such effects is lacking. Here we systematically assess the aerosol effects on isolated DCCs based on cloud-resolving model simulations with spectral bin cloud microphysics. We find a dominant role of vertical wind shear in regulating aerosol effects on isolated DCCs, i.e., vertical wind shear qualitatively determines whether aerosols suppress or enhance convective strength. Increasing aerosols always suppresses convection under strong wind shear and invigorates convection under weak wind shear until this effect saturates at an optimal aerosol loading. We also found that the decreasing rate of convective strength is greater in the humid air than that in the dry air when wind shear is strong. Our findings may resolve some of the seemingly contradictory results among past studies by considering the dominant effect of wind shear. Our results can provide the insights to better parameterize aerosol effects on convection by adding the factor of wind shear to the entrainment term, which could reduce uncertainties associated with aerosol effects on climate forcing. C1 [Fan, Jiwen; Comstock, Jennifer M.; Ghan, Steven; Leung, L. Ruby; Ovchinnikov, Mikhail] Pacific NW Natl Lab, Climate Phys Grp, Richland, WA 99352 USA. [Yuan, Tianle; Martins, Vanderlei J.] NASA, Goddard Space Flight Ctr, Climate Branch, Greenbelt, MD 20771 USA. [Yuan, Tianle; Martins, Vanderlei J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Khain, Alexander] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Li, Zhanqing] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA. [Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Climate Phys Grp, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM jiwen.fan@pnl.gov RI Li, Zhanqing/F-4424-2010; Yuan, Tianle/D-3323-2011; Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011 OI Li, Zhanqing/0000-0001-6737-382X; Ghan, Steven/0000-0001-8355-8699 FU PNNL Aerosol Climate Initiative (ACI); NASA [NNX08AH71G]; DOE [527055]; Binational U.S.-Israel Science Foundation (BSF) [2006437] FX This work was supported by PNNL Aerosol Climate Initiative (ACI) and grants from NASA (NNX08AH71G) and DOE (527055). A. Khain was supported by the Binational U.S.-Israel Science Foundation (BSF), grant 2006437. We thank the reviewers of the paper for their helpful comments. NR 49 TC 96 Z9 99 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 24 PY 2009 VL 114 AR D22206 DI 10.1029/2009JD012352 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MG UT WOS:000272146800004 ER PT J AU Riley, WJ Biraud, SC Torn, MS Fischer, ML Billesbach, DP Berry, JA AF Riley, W. J. Biraud, S. C. Torn, M. S. Fischer, M. L. Billesbach, D. P. Berry, J. A. TI Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NET PRIMARY PRODUCTION; CARBON-DIOXIDE FLUXES; WATER-VAPOR; VEGETATION DISTRIBUTION; ENVIRONMENTAL CONTROLS; PARAMETERIZATION SIB2; ATMOSPHERIC GCMS; CLIMATE SYSTEM; BOREAL FOREST; LAND MODEL AB Characterizing net ecosystem exchanges (NEE) of CO2 and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km "macrocells'' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO2 exchange with the local atmosphere was -240, -340, and -270 gC m(-2) yr(-1) (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in predicted weekly average regional latent heat fluxes were smaller than for NEE, but larger than for either ecosystem respiration or assimilation alone. However, spatial and diurnal variations of hundreds of W m(-2) in latent heat fluxes were common. We conclude that, in this heterogeneous system, characterizing vegetation cover type and LAI at the scale of spatial variation are necessary for accurate estimates of bottom-up, regional NEE and surface energy fluxes. C1 [Riley, W. J.; Biraud, S. C.; Torn, M. S.; Fischer, M. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Berry, J. A.] Carnegie Inst Washington, Dept Plant Biol, Stanford, CA 94305 USA. [Billesbach, D. P.] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68588 USA. RP Riley, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM wjriley@lbl.gov RI Berry, Joseph/B-8211-2009; Biraud, Sebastien/M-5267-2013; Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Berry, Joseph/0000-0002-5849-6438; Biraud, Sebastien/0000-0001-7697-933X; Riley, William/0000-0002-4615-2304; FU Office of Science, Office of Biological and Environmental Research, Climate Change Research Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate Change Research Division, of the U.S. Department of Energy under contract DE-AC02-05CH11231. This study was also part of the North American Carbon Program. The MTI image was provided by the Office of Nonproliferation and National Security of the U.S. Department of Energy. We also thank the groups making their MCI inversion results available: CarbonTracker 2008 results provided by NOAA ESRL, Boulder, Colorado, USA, from the website at http://carbontracker.noaa.gov; UT results provided by J. Chen, University of Toronto, Canada; and LSCE results provided by F. Chevallier, Laboratoire des Sciences du Climat et de l'Environnement, France. NR 74 TC 15 Z9 15 U1 4 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 24 PY 2009 VL 114 AR G04009 DI 10.1029/2009JG001003 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 524MJ UT WOS:000272147100002 ER PT J AU Knychala, P Banaszak, M Park, MJ Balsara, NP AF Knychala, P. Banaszak, M. Park, M. J. Balsara, N. P. TI Microphase Separation in Sulfonated Block Copolymers Studied by Monte Carlo Simulations SO MACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMER; COMPUTER-SIMULATION; STRONG-SEGREGATION; PHASE-BEHAVIOR; MELTS; SYSTEMS; BLENDS; MODEL; POLYSTYRENE; TRANSITIONS AB The underpinnings of microphase separation in symmetric poly(styrenesulfonate-block-methylbutylene) (PSS-PMB) copolymer melts were examined by Monte Carlo lattice simulations. The main challenge is understanding the effect of ion pairs in the PSS block on thermodynamics. We assume that experimentally determined Flory-Huggins interaction parameters are adequate for describing intermonomer interactions. Our model does not account for either electrostatic or dipolar interactions. This enables comparisons between simulated and experimentally observed microphases reported by Park and Balsara [Macromolecules 2008, 41, 3678] without resorting to any adjustable parameters. The PSS block in both experiments and theory is partially sulfonated. We quantified the effect of sequence distribution on phase behavior by using alternating and blocky PSS chains in the simulations. Depending on temperature and sequence distribution, simulations show performed lamellae, gyroid, and hexagonally packed cylinders in addition to the lamellar phase found in simple symmetric block copolymers that do not contain ions. This is driven by extremely repulsive interactions between styrenesulfonate monomers and the uncharged species in the melts. The symmetry of the microphases and the locations of the order-disorder and order-order phase transitions are in qualitative agreement with experimental observations. C1 [Knychala, P.; Banaszak, M.] Adam Mickiewicz Univ Poznan, Fac Phys, PL-61614 Poznan, Poland. [Park, M. J.] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. [Park, M. J.] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Balsara, N. P.] Univ Calif Berkeley, Dept Chem Engn, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Banaszak, M (reprint author), Adam Mickiewicz Univ Poznan, Fac Phys, Ul Umultowska 85, PL-61614 Poznan, Poland. EM mbanasz@amu.edu.pl RI Banaszak, Michal /A-9411-2010; Park, Moon Jeong/F-5752-2013 OI Banaszak, Michal /0000-0003-0106-632X; FU National Science Foundation [CTS 0625785]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation FX P.K. and M.B. gratefully acknowledge the computational grant from the Supercomputing and Networking Center (PCSS) in Poznan, Poland. M.J.P. and N.P.B. were supported by a grant from the National Science Foundation (CTS 0625785) and the Electron Microscopy of Soft Matter Program at Lawrence Berkeley National Laboratory (LBNL) supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, This work was initiated at a joint Poland-U.S. workshop on nanomaterials organized by Dr. Robert M. Wellek and sponsored by the U.S. National Science Foundation. NR 34 TC 25 Z9 27 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 24 PY 2009 VL 42 IS 22 BP 8925 EP 8932 DI 10.1021/ma901647b PG 8 WC Polymer Science SC Polymer Science GA 519HS UT WOS:000271756500049 ER PT J AU Koerner, H Kelley, J George, J Drummy, L Mirau, P Bell, NS Hsu, JWP Vaia, RA AF Koerner, Hilmar Kelley, John George, Justin Drummy, Lawrence Mirau, Peter Bell, Nelson S. Hsu, Julia W. P. Vaia, Richard A. TI ZnO Nanorod-Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance SO MACROMOLECULES LA English DT Article ID POLYMER NANOCOMPOSITES; ZINC-OXIDE; BEHAVIOR; COMPOSITES; CRYSTALLIZATION; NANOPARTICLES; DEFORMATION; ELASTOMERS; PARTICLES; COPOLYMER AB The impact of dispersed alkylthiol-modified ZnO nanorods, as a function of rod aspect ratio and concentration, on the shape memory character of a thermoplastic polyurethane with low hard-segment density (LHS-TPU) is examined relative to the enhanced performance occurring for carbon nanofiber (CNF) dispersion. Solution blending resulted in uniform dispersion within the LHS-TPU of the ZnO nanorods at low volume (weight) fractions (< 2.9% v/v (17.75% w/w)). Tensile modulus enhancements were modest though, comparable to values observed for spherical nanofillers. Shape memory characteristics, which in this LHS-TPU result when strain-induced crystallites retard the entropic recovery of the deformed chains, were unchanged for these low volume fraction ZnO nanocomposites. Higher ZnO loadings (12% v/v (50% w/w)) exhibited clustering of ZnO nanorods into a mesh-like structure. Here, tensile modulus and shape recovery characteristics were improved, although not as great as seen for comparable CNF addition. Wide angle X-ray diffraction and NMR revealed that the addition of ZnO nanorods did not impact the inherent strain induced crystallization of the LHS-TPU, which is in contrast to the impact of CNFs and emphasizes the impact of interactions at the polymer-nanoparticle interface. Overall, these findings reinforce the hypothesis that the shape memory properties of polymer nanocomposites are governed by the extent to which nanoparticle addition, via nanoparticle aspect ratio, hierarchical morphology, and interfacial interactions, impacts the molecular mechanism responsible for trapping elastic strain. C1 [Koerner, Hilmar; Kelley, John; George, Justin; Drummy, Lawrence; Mirau, Peter; Vaia, Richard A.] USAF, Res Lab, RXBN, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Bell, Nelson S.; Hsu, Julia W. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Koerner, Hilmar] Universal Technol Corp, Dayton, OH 45432 USA. RP Vaia, RA (reprint author), USAF, Res Lab, RXBN, Mat & Mfg Directorate, 2941 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM richard.vaia@wpafb.af.mil FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Center for Integrated Nanotechnologies FX The authors are very grateful to the Air Force Office of Scientific Research and the Air Force Research Laboratory, Materials and Manufacturing Directorate, for funding. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). The authors would like to thank Gary Price for assistance in X-ray experiments and Lixia Rong at beamline X27C of the National Synchrotron Light Source at Brookhaven for help with the in situ X-ray experiments. NR 60 TC 23 Z9 23 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 24 PY 2009 VL 42 IS 22 BP 8933 EP 8942 DI 10.1021/ma901671v PG 10 WC Polymer Science SC Polymer Science GA 519HS UT WOS:000271756500050 ER PT J AU Lokitz, BS Messman, JM Hinestrosa, JP Alonzo, J Verduzco, R Brown, RH Osa, M Ankner, JF Kilbey, SM AF Lokitz, Bradley S. Messman, Jamie M. Hinestrosa, Juan Pablo Alonzo, Jose Verduzco, Rafael Brown, Rebecca H. Osa, Masashi Ankner, John F. Kilbey, S. Michael, II TI Dilute Solution Properties and Surface Attachment of RAFT Polymerized 2-Vinyl-4,4-dimethyl Azlactone (VDMA) SO MACROMOLECULES LA English DT Article ID LIVING RADICAL POLYMERIZATION; MACROMOLECULAR ANCHORING LAYER; HYDRODYNAMIC RADIUS; CLICK CHEMISTRY; MOLECULAR-WEIGHT; BRUSHES; POLYSTYRENES; COPOLYMERS; AGENTS AB We report the controlled radical polymerization of 2-vinyl-4,4-dimethyl azlactone (VDMA), a 2-alkenyl-2-oxazolin-5-one monomer that contains a polymerizable vinyl moiety and a highly reactive, pendant azlactone, as well as dilute solution properties and surface attachment and functionalization. Reversible addition-fragmentation chain transfer (RAFT) was used to polymerize VDMA in benzene at 65 degrees C using either 2-(2-cyanopropyl) dithiobenzoate (CPDB) or 2-dodecylsulfanylthiocarbotlylsulfanyl-2-methylpropionic acid (DMP) as RAFT chain transfer agents (CTAs). The pseudo-first-order kinetics and resultant well-defined polymers of low polydispersity indicate that both CTAs afford control over the RAFT polymerization of VDMA. Dynamic and static light scattering and small-angle neutron scattering (SANS) were performed to determine the weight-average molecular weight, radius of gyration, and second virial coefficient of VDMA homopolymers in THF. Additionally, well-defined polymers of VDMA containing carboxyl end groups were covalently attached to epoxy-modified silicon wafers via esterification to produce polymeric scaffolds that can be subsequently functionalized for various bio-inspired applications. C1 [Lokitz, Bradley S.; Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Messman, Jamie M.; Verduzco, Rafael; Osa, Masashi; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hinestrosa, Juan Pablo] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. [Alonzo, Jose] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Brown, Rebecca H.] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. [Osa, Masashi] Kyoto Univ, Dept Polymer Chem, Kyoto 6158510, Japan. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Lokitz, BS (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lokitzbs@ornl.gov RI Lokitz, Bradley/Q-2430-2015; OI Lokitz, Bradley/0000-0002-1229-6078; Ankner, John/0000-0002-6737-5718 FU Oak Ridge National Laboratory by the Scientific User Facilities Division; U.S. Department of Energy [DE-AC05-00OR22725]; ORNL's Laboratory Directed Research and Development Program [D07-138]; National Institute of Standards and Technology; U.S. Department of Commerce FX This research was conducted at the Center for Nanophase Materials Sciences and Spallation Neutron Source, which are sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy, (under contract DE-AC05-00OR22725), and enabled through ORNL's Laboratory Directed Research and Development Program, Project No. D07-138. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities for the SANS used in this work. Jim Browning and Candice Halbert of ORNL are acknowledged for their help with reflectivity measurements. NR 49 TC 31 Z9 32 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 24 PY 2009 VL 42 IS 22 BP 9018 EP 9026 DI 10.1021/ma9015399 PG 9 WC Polymer Science SC Polymer Science GA 519HS UT WOS:000271756500060 ER PT J AU Mavromatis, K Chu, K Ivanova, N Hooper, SD Markowitz, VM Kyrpides, NC AF Mavromatis, Konstantinos Chu, Ken Ivanova, Natalia Hooper, Sean D. Markowitz, Victor M. Kyrpides, Nikos C. TI Gene Context Analysis in the Integrated Microbial Genomes (IMG) Data Management System SO PLOS ONE LA English DT Article ID PROTEIN FAMILIES; FUSION EVENTS AB Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov. C1 [Mavromatis, Konstantinos; Ivanova, Natalia; Hooper, Sean D.; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Genome Biol Program, Walnut Creek, CA USA. [Chu, Ken; Markowitz, Victor M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. RP Mavromatis, K (reprint author), Joint Genome Inst, Dept Energy, Genome Biol Program, Walnut Creek, CA USA. EM KMavrommatis@lbl.gov RI Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU US Department of Energy; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 18 TC 36 Z9 36 U1 2 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 24 PY 2009 VL 4 IS 11 AR e7979 DI 10.1371/journal.pone.0007979 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 533MH UT WOS:000272827500010 PM 19956731 ER PT J AU Erbil, WK Price, MS Wemmer, DE Marletta, MA AF Erbil, W. Kaya Price, Mark S. Wemmer, David E. Marletta, Michael A. TI A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hemoprotein; nitric oxide; signaling; NMR; phosphorylation ID SOLUBLE GUANYLATE-CYCLASE; NUCLEAR-MAGNETIC-RESONANCE; NMR-SPECTROSCOPY; NITRIC-OXIDE; HEME-PROTEINS; MYOGLOBIN; BINDING; MODELS; LIGAND; DOMAIN AB Heme nitric oxide/oxygen (H-NOX) proteins are found in eukaryotes where they are typically part of a larger protein such as soluble guanylate cyclase and in prokaryotes where they are often found in operons with a histidine kinase, suggesting that H-NOX proteins serve as sensors for NO and O(2) in signaling pathways. The Fe(II)-NO complex of the H-NOX protein from Shewanella oneidensis inhibits the autophosphorylation of the operon-associated histidine kinase, whereas the ligand-free H-NOX has no effect on the kinase. NMR spectroscopy was used to determine the structures of the Fe(II)-CO complex of the S. oneidensis H-NOX and the Fe(II)-CO complex of the H103G H-NOX mutant as a mimic of the ligand-free and kinase-inhibitory Fe(II)-NO H-NOX, respectively. The results provide a molecular glimpse into the ligand-induced conformational changes that may underlie kinase inhibition and the subsequent control of downstream signaling. C1 [Erbil, W. Kaya; Wemmer, David E.; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Price, Mark S.; Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wemmer, David E.; Marletta, Michael A.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. [Wemmer, David E.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU National Institutes of Health (NIH) [GM68933, GM070671, GM08295, RR 15756]; NSF [BBS 01-19304] FX We thank Joey Davis (MIT) for help with protein preparations; Douglas Mitchell (University of Illinois) for help with mass spectrometry; Milton Werner (Rockefeller University, New York) for help with RDC measurements; and James Chou (Harvard Medical School, Boston) for help with RDC measurements and structure calculations. We thank Dr. Jeff Pelton (University of California, Berkeley) and the Central California 900 MHz Facility (supported by NIH-GM68933) for experimental resources and assistance. This work was supported by National Institutes of Health Grant GM070671. W. K. E. was supported in part by NIH Training Grant GM08295. We also thank the NSF (BBS 01-19304) and the NIH (RR 15756) for funding for the 800 MHz NMR spectrometer. NR 39 TC 45 Z9 45 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 24 PY 2009 VL 106 IS 47 BP 19753 EP 19760 DI 10.1073/pnas.0911645106 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 524YS UT WOS:000272180900005 PM 19918063 ER PT J AU Nam, CY Su, D Black, CT AF Nam, Chang-Yong Su, Dong Black, Charles T. TI High-Performance Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; CHARGE-LIMITED CURRENT; OPEN-CIRCUIT VOLTAGE; OPTICAL-PROPERTIES; SELF-ORGANIZATION; THIN-FILMS; MORPHOLOGY; EFFICIENCY; OXYGEN; POLY(3-HEXYLTHIOPHENE) AB High photovoltaic device performance is demonstrated in ambient-air-processed bulk heterojunction solar cells having an active blend layer of organic poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1% which is comparable to state-of-the-art bulk heterojunction devices fabricated in air-free environments. High-resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post-fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an similar to 4 nm aluminum oxide hole-blocking layer present at the electron-collecting contact interface. C1 [Nam, Chang-Yong; Su, Dong; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Nam, CY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM cynam@bnl.gov RI Su, Dong/A-8233-2013; Nam, Chang-Yong/D-4193-2009 OI Su, Dong/0000-0002-1921-6683; Nam, Chang-Yong/0000-0002-9093-4063 FU U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; Brookhaven National Laboratory FX This research was supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under contract no. DE-AC02-98CH10886. CYN acknowledges the generous support by Goldhaber Distinguished Fellowship of Brookhaven National Laboratory. Supporting Information is available online from Wiley InterScience or from the author. NR 52 TC 59 Z9 60 U1 3 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 23 PY 2009 VL 19 IS 22 BP 3552 EP 3559 DI 10.1002/adfm.200900311 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 529GG UT WOS:000272503500004 ER PT J AU Lin, ZJ Wang, L Zhang, JZ Mao, HK Zhao, YS AF Lin, Zhijun Wang, Lin Zhang, Jianzhong Mao, Ho-kwang Zhao, Yusheng TI Nanocrystalline tungsten carbide: As incompressible as diamond SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; compressibility; density functional theory; elastic moduli; nanostructured materials; synchrotron radiation; X-ray diffraction ID ELASTIC-MODULI AB We investigate the compressibility of nanocrystalline tungsten carbide (nano-WC) using synchrotron x-ray diffraction. Nano-WC displays a bulk modulus (452 GPa) comparable to that of diamond; it is 10%-15% larger than previously reported values for bulk WC. This finding is consistent with a generalized model of nanocrystal with a compressed surface layer. The linear bulk moduli of nano-WC along a- and c-axes were determined to be 407 and 546 GPa, respectively. First-principles density functional theory (DFT) calculations confirm the experimental observations of an anisotropic linear compressibility and a lower bulk modulus for microsized WC. C1 [Lin, Zhijun; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Wang, Lin; Mao, Ho-kwang] Carnegie Inst Sci, HPSynC, Argonne, IL 60439 USA. [Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. RP Lin, ZJ (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA. EM zlin@lanl.gov; yzhao@lanl.gov RI Lujan Center, LANL/G-4896-2012; WANG, LIN/G-7884-2012; Lin, Zhijun/A-5543-2010; OI Zhang, Jianzhong/0000-0001-5508-1782 FU DOE [DE-AC52-06NA25396, DE-SC0001057E, DE-AC02-06CH11357]; NSF; W. M. Keck Foundation FX This research is supported by the Los Alamos National Laboratory under DOE Contract No. DE-AC52-06NA25396. This work is also supported as part of the EFree, an Energy Frontier Research Center funded by the DOE, Office of Science, and Office of Basic Energy Sciences under Award No. DE-SC0001057E. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. Use of the APS was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under No. DE-AC02-06CH11357. NR 16 TC 22 Z9 22 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 23 PY 2009 VL 95 IS 21 AR 211906 DI 10.1063/1.3268457 PG 3 WC Physics, Applied SC Physics GA 534KL UT WOS:000272895100014 ER PT J AU Spoerke, ED Lloyd, MT McCready, EM Olson, DC Lee, YJ Hsu, JWP AF Spoerke, Erik D. Lloyd, Matthew T. McCready, Erica M. Olson, Dana C. Lee, Yun-Ju Hsu, Julia W. P. TI Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide SO APPLIED PHYSICS LETTERS LA English DT Article DE band structure; cadmium compounds; II-VI semiconductors; nanostructured materials; photoconductivity; polymers; power conversion; semiconductor thin films; semiconductor-insulator boundaries; solar cells; wide band gap semiconductors; zinc compounds ID HETEROJUNCTION SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; THIN-LAYER; POLYMER; DEVICES; RECOMBINATION; EFFICIENCY; NANORODS; FILMS AB To improve zinc oxide/poly(3-hexylthiophene) (ZnO/P3HT) hybrid solar cell performance, we introduce a nanocrystalline cadmium sulfide (CdS) film at the ZnO/P3HT heterojunction, creating a cascading energy band structure. Current-voltage characteristics under AM1.5 illumination show that, compared to unmodified ZnO/P3HT devices, CdS modification leads to an approximate doubling of the open-circuit voltage and a mild increase in fill factor, without sacrificing any short-circuit current. These characteristics double the power conversion efficiency for devices with an interfacial CdS layer. External quantum efficiency spectra reveal definite photocurrent contributions from the CdS layer, confirming the cascading band structure. The mechanisms behind open-circuit voltage increase are discussed. C1 [Spoerke, Erik D.; Lloyd, Matthew T.; McCready, Erica M.; Olson, Dana C.; Lee, Yun-Ju; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87109 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Albuquerque, NM 87109 USA. EM edspoer@sandia.gov FU AOP PV Program; Department of Energy [DE-AC04-94AL85000] FX The authors acknowledge Dr. Y-B. Jiang for transmission electron microscopy, and Dr. M. Brumbach for insightful technical discussions. This work was supported by the AOP PV Program through the Energy Efficiency and Renewable Energy within the Department of Energy, Sandia's Laboratory Directed Research and Development program, and the Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 29 TC 49 Z9 50 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 23 PY 2009 VL 95 IS 21 AR 213506 DI 10.1063/1.3232231 PG 3 WC Physics, Applied SC Physics GA 534KL UT WOS:000272895100050 ER PT J AU Yu, HCY Argyros, A Leon-Saval, SG Fuerbach, A Efimov, A Barton, GW AF Yu, Helmut C. Y. Argyros, Alexander Leon-Saval, Sergio G. Fuerbach, Alex Efimov, Anatoly Barton, Geoff W. TI Emission properties of quantum dots in polymer optical fibres SO OPTICS EXPRESS LA English DT Article ID SENSORS AB CdSe/ZnS core-shell quantum dots have been embedded within microstructured polymer optical fibres. The emission properties of quantum dots within fibres have been explored to show that variation in concentration, sample length and pumping regimes effects the emission characteristics of these quantum dots. (C) 2009 Optical Society of America C1 [Yu, Helmut C. Y.; Argyros, Alexander; Leon-Saval, Sergio G.] Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Sydney, NSW 2006, Australia. [Yu, Helmut C. Y.; Barton, Geoff W.] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia. [Fuerbach, Alex; Efimov, Anatoly] Macquarie Univ, MQPhoton Res Ctr, Ctr Ultrahigh Bandwidth Devices Opt Syst, N Ryde, NSW 2109, Australia. Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Yu, HCY (reprint author), Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Sydney, NSW 2006, Australia. EM h.yu@usyd.edu.au RI Argyros, Alexander/C-1140-2008; OI Argyros, Alexander/0000-0002-2278-6273; Efimov, Anatoly/0000-0002-5559-4147 FU The National Collaborative Research Infrastructure Strategy (NCRIS) FX This work was partly supported by The National Collaborative Research Infrastructure Strategy (NCRIS). The authors would also like to thank Richard Lwin for the assistance in fibre fabrication and John McGuire for his discussions on quantum dots. NR 19 TC 3 Z9 3 U1 0 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 23 PY 2009 VL 17 IS 24 BP 21344 EP 21349 DI 10.1364/OE.17.021344 PG 6 WC Optics SC Optics GA 525PU UT WOS:000272229400001 PM 19997374 ER PT J AU Cense, B Gao, WH Brown, JM Jones, SM Jonnal, RS Mujat, M Park, BH de Boer, JF Miller, DT AF Cense, Barry Gao, Weihua Brown, Jeffrey M. Jones, Steven M. Jonnal, Ravi S. Mujat, Mircea Park, B. Hyle de Boer, Johannes F. Miller, Donald T. TI Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics SO OPTICS EXPRESS LA English DT Article ID NERVE-FIBER LAYER; IN-VIVO; HIGH-RESOLUTION; HUMAN SKIN; BIREFRINGENCE; THICKNESS; OCT; GLAUCOMA; TISSUE AB Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25 degrees/mu m to 0.65 degrees/mu m were found in the birefringent nerve fiber layer at 6 eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. (C) 2009 Optical Society of America C1 [Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jonnal, Ravi S.; Miller, Donald T.] Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA. [Jones, Steven M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mujat, Mircea] Phys Sci Inc, Andover, MA 01810 USA. [Park, B. Hyle] Univ Calif Riverside, Riverside, CA 92521 USA. [de Boer, Johannes F.] Rotterdam Ophthalm Inst, Rotterdam, Netherlands. [de Boer, Johannes F.] Vrije Univ Amsterdam, Amsterdam, Netherlands. RP Cense, B (reprint author), Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA. EM bcense@indiana.edu RI de Boer, Johannes/B-7590-2012; OI de Boer, Johannes/0000-0003-1253-4950; Jonnal, Ravi/0000-0002-9545-1837 FU National Eye Institute [5R01 EY014743, 1R01 EY018339]; National Science Foundation Science and Technology Center; University of California at Santa Cruz [AST-9876783] FX The authors are indebted to the subjects who volunteered for this study. They also thank Daniel Jackson and William Monette for machining and electronic support. Furthermore, fruitful discussions with Drs Robert Knighton and Steve Burns are acknowledged. Financial support was provided by the National Eye Institute grants 5R01 EY014743 and 1R01 EY018339. This work was also supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783. NR 36 TC 36 Z9 37 U1 4 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 23 PY 2009 VL 17 IS 24 BP 21634 EP 21651 DI 10.1364/OE.17.021634 PG 18 WC Optics SC Optics GA 525PU UT WOS:000272229400032 PM 19997405 ER PT J AU Aquila, A Salmassi, F Liu, YW Gullikson, EM AF Aquila, A. Salmassi, F. Liu, Yanwei Gullikson, E. M. TI Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light SO OPTICS EXPRESS LA English DT Article ID SUB-QUARTERWAVE MULTILAYERS; REFLECTANCE ENHANCEMENT; ABSORBING MATERIALS; X-RAYS; MIRRORS; DESIGN AB Magnesium/silicon carbide (Mg/SiC) multilayers have been fabricated with normal incidence reflectivity in the vicinity of 40% to 50% for wavelengths in the 25 to 50 nm wavelength range. However many applications, for example solar telescopes and ultrafast studies using high harmonic generation sources, desire larger bandwidths than provided by high reflectivity Mg/SiC multilayers. We investigate introducing a third material, Scandium, to create a tri-material Mg/Sc/SiC multilayer allowing an increase the bandwidth while maintaining high reflectivity. (C) 2009 Optical Society of America C1 [Aquila, A.; Salmassi, F.; Liu, Yanwei; Gullikson, E. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Aquila, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM ALAquila@lbl.gov FU National Science Foundation Engineering Research Center (NSF ERC); EUV Science and Technology; U. S. Department of Energy (DOE) FX This work was supported by the National Science Foundation Engineering Research Center (NSF ERC) or EUV Science and Technology, and by the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors would also like to thank Eberhard Spiller for suggesting the linearity relation for the index of refraction and wavelength as an explanation to the asymmetry. NR 18 TC 13 Z9 13 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 23 PY 2009 VL 17 IS 24 BP 22102 EP 22107 DI 10.1364/OE.17.022102 PG 6 WC Optics SC Optics GA 525PU UT WOS:000272229400083 PM 19997456 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behr, J Behrens, U Blohm, C Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, IJ Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Tomaszewska, J Wolf, G Wrona, K Yagues-Molina, AG Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kuprash, O Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Zolko, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M del Peso, J Ron, E Terron, J Uribe-Estrada, C Corriveau, F Schwartz, J Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Sola, V Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H-P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behr, J. Behrens, U. Blohm, C. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. J. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I-A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Tomaszewska, J. Wolf, G. Wrona, K. Yaguees-Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kuprash, O. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Zolko, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. del Peso, J. Ron, E. Terron, J. Uribe-Estrada, C. Corriveau, F. Schwartz, J. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Sola, V. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Measurement of the longitudinal proton structure function at HERA SO PHYSICS LETTERS B LA English DT Article ID CENTRAL TRACKING DETECTOR; PHYSICS EVENT GENERATION; INELASTIC EP SCATTERING; ZEUS BARREL CALORIMETER; CROSS-SECTIONS; QCD ANALYSIS; LOW-X; PERTURBATION-THEORY; DESIGN; CONSTRUCTION AB The reduced cross sections for ep, deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q(2), the proton structure (f)unctions F(L) and F(2) have been extracted in the region 5 x 10(-4) < x < 0.007 and 20 < Q(2) < 130 GeV(2). (C) 2009 Elsevier B.V. All rights reserved. C1 [Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. J.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I-A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H-P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Univ Catholique Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Turin, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, P.; Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH UST, FPACS, Krakow, Poland. [Gialas, I.] DESY, Hamburg, Germany. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Haas, T (reprint author), Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. EM tobias.haas@desy.de RI Tassi, Enrico/K-3958-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Gladilin, Leonid/B-5226-2011; Doyle, Anthony/C-5889-2009; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Fazio, Salvatore /G-5156-2010; Ferrando, James/A-9192-2012 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Gladilin, Leonid/0000-0001-9422-8636; Doyle, Anthony/0000-0001-6322-6195; Wiggers, Leo/0000-0003-1060-0520; Ferrando, James/0000-0002-1007-7816 NR 63 TC 49 Z9 49 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 23 PY 2009 VL 682 IS 1 BP 8 EP 22 DI 10.1016/j.physletb.2009.10.050 PG 15 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 525OU UT WOS:000272226600002 ER PT J AU Larmat, CS Guyer, RA Johnson, PA AF Larmat, C. S. Guyer, R. A. Johnson, P. A. TI Tremor source location using time reversal: Selecting the appropriate imaging field SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPECTRAL-ELEMENT; ADJOINT METHODS; CALIFORNIA; EARTHQUAKES; SEISMOLOGY; JAPAN AB Studying triggered Non Volcanic Tremor (NVT) is important because it may help to map the depth of the locked zones of faults associated with high seismic risk. The success of this mapping depends on precisely locating the depth of tremor. Tremor, like other long-lived signals (e. g., Earth hum) lacks distinct sharp timing features making it impossible to locate with classical approaches. Time Reversal has the advantage of exploiting the full waveform with no a priori assumption regarding the source or the observed signal. We perform a synthetic study of time reversal location of a long-lasting source in the Los Angeles basin with a realistic 3D velocity model and sparse station set. We show that, the key to successfully locating NVT, is application of suitable imaging fields, such as the wave divergence, curl and energy current. Citation: Larmat, C. S., R. A. Guyer, and P. A. Johnson (2009), Tremor source location using time reversal: Selecting the appropriate imaging field, Geophys. Res. Lett., 36, L22304, doi:10.1029/2009GL040099. C1 [Larmat, C. S.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Geophys Grp, EES 17, Los Alamos, NM 87544 USA. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Larmat, CS (reprint author), Los Alamos Natl Lab, Geophys Grp, EES 17, POB 1663, Los Alamos, NM 87544 USA. EM carene@lanl.gov RI Larmat, Carene/B-4686-2011; OI Larmat, Carene S/0000-0002-3607-7558; Johnson, Paul/0000-0002-0927-4003 FU Institutional Support (LDRD) at Los Alamos National Laboratory FX This work was supported by Institutional Support (LDRD) at Los Alamos National Laboratory. NR 23 TC 17 Z9 17 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 21 PY 2009 VL 36 AR L22304 DI 10.1029/2009GL040099 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 522KA UT WOS:000271995300001 ER PT J AU Artyomov, MN Mathur, M Samoilov, MS Chakraborty, AK AF Artyomov, Maxim N. Mathur, Manikandan Samoilov, Michael S. Chakraborty, Arup K. TI Stochastic bimodalities in deterministically monostable reversible chemical networks due to network topology reduction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE Fokker-Planck equation; master equation; network topology; reaction kinetics; stochastic processes ID BISTABILITY; PHOSPHORYLATION; CASCADES; CYCLES; NOISE AB Recently, stochastic simulations of networks of chemical reactions have shown distributions of steady states that are inconsistent with the steady state solutions of the corresponding deterministic ordinary differential equations. One such class of systems is comprised of networks that have irreversible reactions, and the origin of the anomalous behavior in these cases is understood to be due to the existence of absorbing states. More puzzling is the report of such anomalies in reaction networks without irreversible reactions. One such biologically important example is the futile cycle. Here we show that, in these systems, nonclassical behavior can originate from a stochastic elimination of all the molecules of a key species. This leads to a reduction in the topology of the network and the sampling of steady states corresponding to a truncated network. Surprisingly, we find that, in spite of the purely discrete character of the topology reduction mechanism revealed by "exact" numerical solutions of the master equations, this phenomenon is reproduced by the corresponding Fokker-Planck equations. C1 [Artyomov, Maxim N.; Chakraborty, Arup K.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Mathur, Manikandan] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Samoilov, Michael S.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Samoilov, Michael S.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chakraborty, Arup K.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Chakraborty, Arup K.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. RP Artyomov, MN (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM arupc@mit.edu OI Samoilov, Michael/0000-0003-3559-5326 FU NIH [IPO1/AI071195/01] FX We would like to acknowledge helpful discussions with Jayajit Das, Jason Locasale, and Adam Arkin. Funding provided through NIH Director's Pioneer Award to A. K. C. and Contract No. IPO1/AI071195/01 (A.K.C.). NR 17 TC 10 Z9 10 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 195103 DI 10.1063/1.3264948 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200041 PM 19929080 ER PT J AU Cook, PL Liu, XS Yang, WL Himpsel, FJ AF Cook, Peter L. Liu, Xiaosong Yang, Wanli Himpsel, F. J. TI X-ray absorption spectroscopy of biomimetic dye molecules for solar cells SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biomimetics; dyes; molecular electronic states; oxidation; solar cells; XANES ID MAGNETIC-CIRCULAR-DICHROISM; PHOTOELECTRON VALENCE-BAND; ELECTRONIC-STRUCTURE; PHTHALOCYANINE COMPOUNDS; PHOTOEMISSION-SPECTROSCOPY; METAL PHTHALOCYANINES; COPPER PHTHALOCYANINE; FINE-STRUCTURE; CYTOCHROME-C; NEAR-EDGE AB Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate the electronic structure of a variety of porphyrins and phthalocyanines. As a biological model system we use the heme group in cytochrome c which plays a role in biological charge transfer processes. X-ray absorption spectroscopy of the N 1s and C 1s edges reveals the unoccupied molecular orbitals and the orientation of the molecules in thin films. The transition metal 2p edges reflect the oxidation state of the central metal atom, its spin state, and the ligand field of the surrounding N atoms. The latter allows tuning of the energy position of the lowest unoccupied orbital by several tenths of an eV by tailoring the molecules and their deposition. Fe and Mn containing phthalocyanines oxidize easily from +2 to +3 in air and require vacuum deposition for obtaining a reproducible oxidation state. Chlorinated porphyrins, on the other hand, are reduced from +3 to +2 during vacuum deposition at elevated temperatures. These findings stress the importance of controlled thin film deposition for obtaining photovoltaic devices with an optimum match between the energy levels of the dye and those of the donor and acceptor electrodes, together with a molecular orientation for optimal overlap between the pi orbitals in the direction of the carrier transport. C1 [Cook, Peter L.; Liu, Xiaosong; Himpsel, F. J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Yang, Wanli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Cook, PL (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM fhimpsel@wisc.edu RI Liu, Xiaosong/D-7564-2011; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU NSF [DMR-0520527, DMR-008440]; DOE [DE-FG02-01ER45917, DE-AC03-76SF00098] FX X. L. acknowledges support by a pre-doctoral fellowship at the ALS. This work was supported by the NSF under Award Nos. DMR-0520527 (MRSEC) and DMR-0084402 (SRC) and by the DOE under Contract Nos. DE-FG02-01ER45917 and DE-AC03-76SF00098 (ALS). NR 66 TC 37 Z9 38 U1 0 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194701 DI 10.1063/1.3257621 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200026 PM 19929065 ER PT J AU Cunsolo, A Formisano, F Ferrero, C Bencivenga, F Finet, S AF Cunsolo, A. Formisano, F. Ferrero, C. Bencivenga, F. Finet, S. TI Pressure dependence of the large-scale structure of water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE hydrogen bonds; liquid structure; liquid theory; water; X-ray scattering ID X-RAY-SCATTERING; SUPERCOOLED WATER; DENSITY-FLUCTUATIONS; LOW-TEMPERATURES; BEHAVIOR; VELOCITY; LIQUID; H2O; D2O AB We report on small-angle x-ray scattering measurements on liquid water aimed at characterizing the pressure evolution of its large-scale structure. Diffraction profiles have been fitted assuming a Lorentzian dependence on the exchanged momentum. As a result, we observe an anomalous behavior of the diffracted intensity that tends to disappear, increasing either the pressure or the temperature. This effect is discussed in detail and imputed to the ability of hydrostatic pressure to weaken hydrogen bonds. C1 [Cunsolo, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Formisano, F.] Ctr Ric & Sviluppo SOFT, CNR, INFM, I-00185 Rome, Italy. [Formisano, F.] OGG, F-38043 Grenoble, France. [Ferrero, C.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Bencivenga, F.] Sincrotrone Trieste, I-34012 Trieste, Italy. [Finet, S.] Univ Paris 06, CNRS, F-75252 Paris 05, France. RP Cunsolo, A (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM acunsolo@bnl.gov RI Cunsolo, Alessandro/C-7617-2013; Formisano, Ferdinando/G-8888-2013 NR 25 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194502 DI 10.1063/1.3259882 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200016 PM 19929055 ER PT J AU Griffin, GB Young, RM Ehrler, OT Neumark, DM AF Griffin, Graham B. Young, Ryan M. Ehrler, Oli T. Neumark, Daniel M. TI Electronic relaxation dynamics in large anionic water clusters: (H2O)(n)- and (D2O)(n)- (n=25-200) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE deuterium compounds; excited states; ground states; molecular clusters; negative ions; nonradiative transitions; photoelectron spectra; radiative lifetimes; solvent effects; time resolved spectra; water ID PHOTOEXCITED HYDRATED ELECTRON; PUMP-PROBE SPECTROSCOPY; EXCESS ELECTRONS; SOLVATED ELECTRON; PHOTOELECTRON-SPECTROSCOPY; ABSORPTION-SPECTRA; COMPUTER-SIMULATION; QUANTUM SIMULATION; LIQUID WATER; REAL-TIME AB Electronic relaxation dynamics subsequent to s -> p excitation of the excess electron in large anionic water clusters, (H2O)(n)- and (D2O)(n)- with 25 < n < 200, were investigated using time-resolved photoelectron imaging. Experimental improvements have enabled considerably larger clusters to be probed than in previous work, and the temporal resolution of the instrument has been improved. New trends are seen in the size-dependent p-state lifetimes for clusters with n >= 70, suggesting a significant change in the electron-water interaction for clusters in this size range. Extrapolating the results for these larger clusters to the infinite-size limit yields internal conversion lifetimes tau(IC) of 60 and 160 fs for electrons dissolved in H2O and D2O, respectively. In addition, the time-evolving spectra show evidence for solvent relaxation in the excited electronic state prior to internal conversion and in the ground state subsequent to internal conversion. Relaxation in the excited state appears to occur on a time scale similar to that of internal conversion, while ground state solvent dynamics occur on a similar to 1 ps time scale, in reasonable agreement with previous measurements on water cluster anions and electrons solvated in liquid water. C1 [Griffin, Graham B.; Young, Ryan M.; Ehrler, Oli T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, B64 Latimer Hall, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Ehrler, Oli/B-6215-2008; Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU National Science Foundation [CHE-0649647]; Alexander von Humboldt foundation (Germany) FX This research was supported by the National Science Foundation under Grant No. CHE-0649647. O.T.E. is thankful to the Alexander von Humboldt foundation (Germany) for support through a Feodor Lynen fellowship. NR 79 TC 20 Z9 20 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194302 DI 10.1063/1.3263419 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200007 PM 19929046 ER PT J AU Hong, L Gujrati, PD Novikov, VN Sokolov, AP AF Hong, L. Gujrati, P. D. Novikov, V. N. Sokolov, A. P. TI Molecular cooperativity in the dynamics of glass-forming systems: A new insight SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE glass structure; glass transition; nuclear magnetic resonance; vibrational modes ID SUPERCOOLED LIQUIDS; RAMAN-SCATTERING; VIBRATIONAL EXCITATIONS; STRUCTURAL RELAXATION; PROPYLENE-GLYCOL; LENGTH SCALE; RANGE ORDER; BOSON PEAK; TRANSITION; TEMPERATURE AB The mechanism behind the steep slowing down of molecular motions upon approaching the glass transition remains a great puzzle. Most of the theories relate this mechanism to the cooperativity in molecular motion. In this work, we estimate the length scale of molecular cooperativity xi for many glass-forming systems from the collective vibrations (the so-called boson peak). The obtained values agree well with the dynamic heterogeneity length scale estimated using four-dimensional NMR. We demonstrate that xi directly correlates to the dependence of the structural relaxation on volume. This dependence presents only one part of the mechanism of slowing down the structural relaxation. Our analysis reveals that another part, the purely thermal variation in the structural relaxation (at constant volume), does not have a direct correlation with molecular cooperativity. These results call for a conceptually new approach to the analysis of the mechanism of the glass transition and to the role of molecular cooperativity. C1 [Hong, L.; Gujrati, P. D.; Sokolov, A. P.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Novikov, V. N.] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia. [Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sokolov, A. P.] ORNL, Div Chem Sci, Oak Ridge, TN 37837 USA. RP Sokolov, AP (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM sokolov@utk.edu RI hong, liang/D-5647-2012 FU NSF [DMR-0804571]; RFBR FX The authors thank M. Ediger, K. Schweizer, and J. Douglas for helpful discussions and acknowledge funding from the NSF, Polymer program (Grant No. DMR-0804571), and from the RFBR. NR 59 TC 40 Z9 40 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194511 DI 10.1063/1.3266508 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200025 PM 19929064 ER PT J AU McGraw, R Lewis, ER AF McGraw, Robert Lewis, Ernie R. TI Deliquescence and efflorescence of small particles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorbed layers; chemical potential; free energy; humidity; nanoparticles; nucleation; phase transformations; surface energy ID SODIUM-CHLORIDE PARTICLES; NUCLEATION THEORY; HYGROSCOPIC GROWTH; FREE-ENERGY; WATER; SURFACES; NUCLEUS; THEOREM; SIZE AB We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem. C1 [McGraw, Robert; Lewis, Ernie R.] Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. RP McGraw, R (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. EM rlm@bnl.gov FU DOE FX This research was supported by the DOE Atmospheric Sciences Program. The authors thank DOE GCEP fellow Mackenzie Smith, Dr. Amanda Mifflin, Dr. George Biskos, and Professor Scot Martin of Harvard University for sharing results from their measurements prior to publication. Discussions with Dr. Susan Oatis during the early stages of this work are greatly appreciated. NR 30 TC 14 Z9 14 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194705 DI 10.1063/1.3251056 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200030 PM 19929069 ER PT J AU Widmer-Cooper, A Perry, H Harrowell, P Reichman, DR AF Widmer-Cooper, Asaph Perry, Heidi Harrowell, Peter Reichman, David R. TI Localized soft modes and the supercooled liquid's irreversible passage through its configuration space SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE glass transition; liquid structure; liquid theory; localised modes; supercooling ID FREQUENCY VIBRATIONAL-MODES; GLASS-TRANSITION; HETEROGENEOUS DYNAMICS; SPHERE GLASS; RELAXATION; DIFFUSION; MOTION AB Using computer simulations, we show that the localized low frequency normal modes of a configuration in a supercooled liquid are strongly correlated with the irreversible structural reorganization of the particles within that configuration. Establishing this correlation constitutes the identification of the aspect of a configuration that determines the heterogeneity of the subsequent motion. We demonstrate that the spatial distribution of the summation over the soft local modes can persist in spite of particle reorganization that produces significant changes in individual modes. Along with spatial localization, the persistent influence of soft modes in particle relaxation results in anisotropy in the displacements of mobile particles over the time scale referred to as beta-relaxation. C1 [Widmer-Cooper, Asaph] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Widmer-Cooper, Asaph; Harrowell, Peter] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Perry, Heidi; Reichman, David R.] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Widmer-Cooper, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM peter@chem.usyd.edu.au RI Widmer-Cooper, Asaph/E-6923-2010 OI Widmer-Cooper, Asaph/0000-0001-5459-6960 FU NSF; Australian Research Council FX We would like to thank L. Berthier, G. Biroli, J. P. Bouchaud, A. Heuer, C. O'Hern, and L. O. Hedges for useful discussions. H. P. and D. R. R. would like to thank P. Verrocchio for providing the equilibrated 3D configurations and the NSF for financial support. A. W. and P. H. acknowledge the support of the Australian Research Council. NR 56 TC 42 Z9 42 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194508 DI 10.1063/1.3265983 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200022 PM 19929061 ER PT J AU Lee, SH Lee, S Ha, JS Lee, HJ Lee, JW Lee, JY Hong, SK Goto, T Cho, MW Yao, T AF Lee, Sang Hyun Lee, Seogwoo Ha, Jun-Seok Lee, Hyo-Jong Lee, Jae Wook Lee, Jeong Yong Hong, Soon-Ku Goto, Takenari Cho, Meoung Whan Yao, Takafumi TI Structural and stimulated emission characteristics of diameter-controlled ZnO nanowires using buffer structure SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ROOM-TEMPERATURE; CARBON NANOTUBE; NANOROD ARRAYS; ORDERED ARRAYS; TRANSISTOR; GROWTH; LASERS AB The diameter of ZnO nanowires grown by chemical vapour deposition was controlled by employing CrN buffer structures on the c-Al(2)O(3) substrate. The nanosized CrN islands with different morphologies were prepared by nitridation of thickness-controlled Cr film in NH(3) atmosphere. The ZnO nanowires grew normal to the surface of the CrN/c-Al(2)O(3) templates due to reduction in the lattice mismatch between ZnO and c-Al(2)O(3) by the CrN buffer layer. Investigation of the interface between CrN and ZnO by high resolution transmission electron microscopy revealed the presence of reactive layers such as ZnCr(2)O(4) and Cr(2)O(3). The diameter of nanowires significantly affected their stimulated emission characteristics. At room temperature, the threshold intensity for stimulated emission increased from 35 to above 500kW cm(-2) as the diameter of ZnO nanowires decreases from 223 to 77 nm. This dependence of threshold intensity for stimulated emission from nanowires is caused by an increase in the surface recombination and/or enhanced leakage of optical field in narrower nanowires. C1 [Lee, Sang Hyun; Lee, Seogwoo; Ha, Jun-Seok; Lee, Hyo-Jong; Goto, Takenari; Cho, Meoung Whan; Yao, Takafumi] Tohoku Univ, Interdisciplinary Res Ctr, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Lee, Jae Wook; Lee, Jeong Yong] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Hong, Soon-Ku] Chungnam Natl Univ, Dept Nano Informat Syst Engn, Taejon 305764, South Korea. RP Lee, SH (reprint author), Oak Ridge Natl Lab, POB 2008,MS6201, Oak Ridge, TN 37831 USA. EM shlee7579@gmail.com RI Lee, Jeong Yong/C-8864-2011; Lee, Junyoung/D-5463-2012 OI Lee, Junyoung/0000-0001-6689-2759 FU Japan Society for the Promotion of Science (JSPS) FX A part of this work is supported by the Research Fellowships for Young Scientists Program of the Japan Society for the Promotion of Science (JSPS). NR 25 TC 4 Z9 4 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD NOV 21 PY 2009 VL 42 IS 22 AR 225403 DI 10.1088/0022-3727/42/22/225403 PG 6 WC Physics, Applied SC Physics GA 516CJ UT WOS:000271519000042 ER PT J AU Lee, HY Giorgi, EE Keele, BF Gaschen, B Athreya, GS Salazar-Gonzalez, JF Pham, KT Goepfert, PA Kilby, JM Saag, MS Delwart, EL Busch, MP Hahn, BH Shaw, GM Korber, BT Bhattacharya, T Perelson, AS AF Lee, Ha Youn Giorgi, Elena E. Keele, Brandon F. Gaschen, Brian Athreya, Gayathri S. Salazar-Gonzalez, Jesus F. Pham, Kimmy T. Goepfert, Paula A. Kilby, J. Michael Saag, Michael S. Delwart, Eric L. Busch, Michael P. Hahn, Beatrice H. Shaw, George M. Korber, Bette T. Bhattacharya, Tanmoy Perelson, Alan S. TI Modeling sequence evolution in acute HIV-1 infection SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Review DE HIV-1; Population dynamics; Viral evolution ID IMMUNODEFICIENCY-VIRUS TYPE-1; IN-VIVO; NEUTRALIZING ANTIBODY; POPULATION-DYNAMICS; VIRAL DYNAMICS; MUTATION-RATE; STOCHASTIC-MODEL; RHESUS MACAQUES; MONTE-CARLO; TRANSMISSION AB We describe a mathematical model and Monte Carlo( MC) simulation of viral evolution during acute infection. We consider both synchronous and a synchronous processes of viral infection of new target cells. The model enables an assessment of the expected sequence diversity in new HIV-1 infections originating from a single transmitted viral strain, estimation of the most recent common ancestor (MRCA) of the transmitted viral lineage, and estimation of the time to coalesce back to the MRCA. We also calculate the probability of the MRCA being the transmitted virus or an evolved variant. Excluding insertions and deletions, we assume HIV-1 evolves by base substitution without selection pressure during the earliest phase of HIV-1 infection prior to the immune response. Unlike phylogenetic methods that follow a lineage backwards to coalescence, we compare the observed data to a model of the diversification of a viral population forward in time. To illustrate the application of these methods, we provide detailed comparisons of the model and simulations results to 306 envelope sequences obtained from eight newly infected subjects at a single time point. The data from 6/8 patients were in good agreement with model predictions, and hence compatible with a single-strain infection evolving under no selection pressure. The diversity of the samples from the other two patients was too great to be explained by the model, suggesting multiple HIV-1-strains were transmitted. The model can also be applied to longitudinal patient data to estimate within-host viral evolutionary parameters. Published by Elsevier Ltd. C1 [Lee, Ha Youn; Giorgi, Elena E.; Gaschen, Brian; Athreya, Gayathri S.; Korber, Bette T.; Bhattacharya, Tanmoy; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Ha Youn] Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA. [Giorgi, Elena E.] Univ Massachusetts, Amherst, MA 01002 USA. [Keele, Brandon F.; Salazar-Gonzalez, Jesus F.; Pham, Kimmy T.; Goepfert, Paula A.; Kilby, J. Michael; Saag, Michael S.; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Birmingham, AL 35223 USA. [Delwart, Eric L.; Busch, Michael P.] Blood Syst Res Inst, San Francisco, CA 94118 USA. [Korber, Bette T.; Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Delwart, Eric/0000-0002-6296-4484; Korber, Bette/0000-0002-2026-5757 FU US Department of Energy [DE-AC52-06NA25396]; Center for HIV/AIDS Vaccine Immunology [AI67854]; Bill & Melinda Gates Foundation Grand Challenges Program [37874]; University of Alabama at Birmingham Center for AIDS Research [AI27767]; University of Rochester Developmental Center for AIDS Research [P30-AI078498]; NIH [AI083115, AI028433, RR06555] FX Portions of this work were done under the auspices of the US Department of Energy under Contract DE-AC52-06NA25396 and supported in part by the Center for HIV/AIDS Vaccine Immunology (AI67854), the Bill & Melinda Gates Foundation Grand Challenges Program (37874), the University of Alabama at Birmingham Center for AIDS Research (AI27767), the University of Rochester Developmental Center for AIDS Research (P30-AI078498) and NIH Grants AI083115, AI028433, and RR06555. We thank Marcus Daniels for technical assistance. NR 75 TC 82 Z9 86 U1 1 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD NOV 21 PY 2009 VL 261 IS 2 BP 341 EP 360 DI 10.1016/j.jtbi.2009.07.038 PG 20 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 559CU UT WOS:000274798900017 PM 19660475 ER PT J AU Battaglia, M Bisello, D Contarato, D Giubilato, P Pantano, D Tessaro, M AF Battaglia, M. Bisello, D. Contarato, D. Giubilato, P. Pantano, D. Tessaro, M. TI A DAQ system for pixel detectors R&D SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MAPS; DAQ; Pixels; Data acquisition AB Pixel detector R&D for HEP and imaging applications require an easily configurable and highly versatile DAQ system able to drive and read out many different chip designs in a transparent way, with different control logics and/or clock signals. An integrated, real-time data collection and analysis environment is essential to achieve fast and reliable detector characterization. We present a DAQ system developed to fulfill these specific needs, able to handle multiple devices at the same time while providing a convenient, ROOT based data display and online analysis environment. (C) 2009 Elsevier B V. All rights reserved. C1 [Bisello, D.; Giubilato, P.; Pantano, D.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Battaglia, M.; Contarato, D.; Giubilato, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bisello, D.; Tessaro, M.] Ist Nazl Fis Nucl Padova, I-35131 Padua, Italy. RP Giubilato, P (reprint author), Univ Padua, Dept Phys, I-35131 Padua, Italy. OI Giubilato, Piero/0000-0003-4358-5355 FU Office of Science, of the US Department of energy; University of Padova FX This work was supported by the Director, Office of Science, of the US Department of energy under contract ##### and by the University of Padova. NR 3 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2009 VL 611 IS 1 BP 105 EP 110 DI 10.1016/j.nima.2009.09.008 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 534VW UT WOS:000272926600012 ER PT J AU Balitsky, I Chirilli, GA AF Balitsky, Ian Chirilli, Giovanni A. TI NLO evolution of color dipoles in N=4 SYM SO NUCLEAR PHYSICS B LA English DT Article DE High-energy asymptotics; Evolution of Wilson lines; Conformal invariance ID SMALL-X; BFKL POMERON; HIGH-ENERGY; QCD; EQUATION; SATURATION; SCATTERING AB High-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal N = 4 SYM theory. We define the "composite dipole operators" with the rapidity cutoff preserving conformal invariance. The resulting Mobius-invariant kernel for these operators agrees with the forward NLO BFKL calculation of [A.V. Kotikov. L.N. Lipatov, Nucl. Phys. B 582 (2000) 19; A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 661 (2003) 19; A.V. Kotikov, L.N. Lipatov. Nucl. Phys. B 685 (2004) 405, Erratum]. (C) 2009 Elsevier B.V. All rights reserved. C1 [Balitsky, Ian; Chirilli, Giovanni A.] Jlab, Theory Grp, Newport News, VA 23606 USA. [Balitsky, Ian; Chirilli, Giovanni A.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Balitsky, I (reprint author), Jlab, Theory Grp, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM balitsky@jlab.org; chirilli@jlab.org NR 41 TC 46 Z9 46 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2009 VL 822 IS 1-2 BP 45 EP 87 DI 10.1016/j.nuclphysb.2009.07.003 PG 43 WC Physics, Particles & Fields SC Physics GA 496QS UT WOS:000269990900002 ER PT J AU Kim, KY Liao, JF AF Kim, Keun-young Liao, Jinfeng TI On the baryonic density and susceptibilities in a holographic model of QCD SO NUCLEAR PHYSICS B LA English DT Article DE Holographic QCD; AdS/CFT; Baryonic susceptibilities ID QUARK-GLUON PLASMA; STRING/GAUGE THEORY CORRESPONDENCE; CHIRAL-SYMMETRY RESTORATION; COLOR SUPERCONDUCTIVITY; HIGH-TEMPERATURE; PHYSICS; MATTER AB In this paper, we calculate analytically the baryonic density and susceptibilities, which are sensitive probes to the fermionic degrees of freedom, in a holographic model of QCD both in its hot QGP phase and in its cold dense phase. Interesting patterns due to strong coupling dynamics will be shown and valuable lessons for QCD will be discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liao, Jinfeng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Kim, Keun-young] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Liao, JF (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jliao@lbl.gov NR 84 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2009 VL 822 IS 1-2 BP 201 EP 218 DI 10.1016/j.nuclphysb.2009.07.013 PG 18 WC Physics, Particles & Fields SC Physics GA 496QS UT WOS:000269990900008 ER PT J AU Ellis, RK Giele, WT Kunszt, Z Melnikov, K AF Ellis, R. Keith Giele, Walter T. Kunszt, Zoltan Melnikov, Kirill TI Masses, fermions and generalized D-dimensional unitarity SO NUCLEAR PHYSICS B LA English DT Article ID ONE-LOOP AMPLITUDES; SUPER-YANG-MILLS; QCD; COLLISIONS; CUT AB We extend the generalized D-dimensional Unitarity method for numerical evaluation of one-loop amplitudes by incorporating massive particles. The issues related to extending the spinor algebra to higher dimensions. treatment of external self-energy diagrams and mass renormalization are discussed within the context of the D-dimensional unitarity method. To validate our approach, we calculate in QCD the one-loop scattering amplitudes of a massive quark pair with up to three additional gluons for arbitrary spin states of the external quarks and gluons. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kunszt, Zoltan] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Ellis, R. Keith; Giele, Walter T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Melnikov, Kirill] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. RP Kunszt, Z (reprint author), ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. EM ellis@fnal.gov; giele@fnal.gov; kunszt@itp.phys.ethz.ch; kirill@phys.hawaii.edu RI Kunszt, Zoltan/G-3420-2013 FU DOE [DE-FG03-94ER-40833] FX K.M. is supported in part by the DOE grant DE-FG03-94ER-40833 NR 41 TC 85 Z9 85 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2009 VL 822 IS 1-2 BP 270 EP 282 DI 10.1016/j.nuclphysb.2009.07.023 PG 13 WC Physics, Particles & Fields SC Physics GA 496QS UT WOS:000269990900012 ER PT J AU Mauche, CW AF Mauche, Christopher W. TI CHANDRA HIGH-ENERGY TRANSMISSION GRATING SPECTRUM OF AE AQUARII SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; novae, cataclysmic variables; stars: individual (AE Aquarii); X-rays: binaries ID STATIONARY RADIATION HYDRODYNAMICS; MAGNETIC WHITE-DWARFS; X-RAY PULSATIONS; HELIUM-LIKE IONS; CATACLYSMIC VARIABLES; CIRCULAR-POLARIZATION; ROSAT OBSERVATIONS; LINE INTENSITIES; EX-HYDRAE; AQR AB The nova-like cataclysmic binary AE Aqr, which is currently understood to be a former supersoft X-ray binary and current magnetic propeller, was observed for over two binary orbits (78 ks) in 2005 August with the High-Energy Transmission Grating (HETG) on board the Chandra X-ray Observatory. The long, uninterrupted Chandra observation provides a wealth of details concerning the X-ray emission of AE Aqr, many of which are new and unique to the HETG. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy from sigma approximate to 1 eV (510 km s(-1)) for O VIII to sigma approximate to 5.5 eV (820 km s(-1)) for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T (K) = 7.16, has a width sigma = 0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d = 100 pc, the total emission measure EM = 8.0 x 10(53) cm(-3) and the 0.5-10 keV luminosity L(X) = 1.1 x 10(31) erg s(-1). Second, based on the f/(i + r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the He alpha triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spectrometer spectrum and those of O VII, Ne IX, Mg XI, and Si XIII in the Chandra HETG spectrum, either the electron density of the plasma increases with temperature by over three orders of magnitude, from n(e) approximate to 6 x 10(10) cm(-3) for N VI [log T(K) approximate to 6] to n(e) approximate to 1 x 10(14) cm(-3) for Si XIII [log T(K) approximate to 7], and/or the plasma is significantly affected by photoexcitation. Third, the radial velocity of the X-ray emission lines varies on the white dwarf spin phase, with two oscillations per spin cycle and an amplitude K approximate to 160 km s(-1). These results appear to be inconsistent with the recent models of Itoh et al., Ikhsanov, and Venter & Meintjes of an extended, low-density source of X-rays in AE Aqr, but instead support earlier models in which the dominant source of X-rays is of high density and/or in close proximity to the white dwarf. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mauche, CW (reprint author), Lawrence Livermore Natl Lab, L-473,7000 East Ave, Livermore, CA 94550 USA. EM mauche@cygnus.llnl.gov FU NASA [GO5-6020X, NAS8-03060]; U.S. Department of Energy [DE-AC52-07NA27344] FX Facility: CXO (HETG) NR 56 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 130 EP 141 DI 10.1088/0004-637X/706/1/130 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900012 ER PT J AU Cushing, MC Roellig, TL Marley, MS Saumon, D Leggett, SK Kirkpatrick, JD Wilson, JC Sloan, GC Mainzer, AK Van Cleve, JE Houck, JR AF Cushing, Michael C. Roellig, Thomas L. Marley, Mark S. Saumon, D. Leggett, S. K. Kirkpatrick, J. Davy Wilson, John C. Sloan, G. C. Mainzer, Amy K. Van Cleve, Jeff E. Houck, James R. TI A SPITZER INFRARED SPECTROGRAPH SPECTRAL SEQUENCE OF M, L, AND T DWARFS (vol 648, pg 614, 2006) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Roellig, Thomas L.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, D.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87544 USA. [Leggett, S. K.] Joint Astron Ctr, Hilo, HI 96720 USA. [Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wilson, John C.] Univ Virginia, Charlottesville, VA 22903 USA. [Sloan, G. C.; Houck, James R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Mainzer, Amy K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Cleve, Jeff E.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Cushing, Michael C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Cushing, MC (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM michael.cushing@gmail.com; thomas.l.roellig@nasa.gov; mmarley@mail.arc.nasa.gov; dsaumon@lanl.gov; s.leggett@jach.hawaii.edu; davy@ipac.caltech.edu; jcw6z@virginia.edu; sloan@isc.astro.cornell.edu; amainzer@jpl.nasa.gov; jvanclev@ball.com; jrh13@cornell.edu RI Marley, Mark/I-4704-2013 NR 1 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 923 EP 923 DI 10.1088/0004-637X/706/1/923 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900076 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burrows, DN Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S d'Elia, V Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Fishman, G Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Goldstein, A Granot, J Greiner, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Komin, N Kouveliotou, C Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paciesas, WS Paneque, D Panetta, JH Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roming, PWA Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spinelli, P Stamatikos, M Stecker, FW Stratta, G Strickman, MS Suson, DJ Swenson, CA Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burrows, D. N. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. d'Elia, V. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Fishman, G. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Goldstein, A. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Komin, N. Kouveliotou, C. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paciesas, W. S. Paneque, D. Panetta, J. H. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roming, P. W. A. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spinelli, P. Stamatikos, M. Stecker, F. W. Stratta, G. Strickman, M. S. Suson, D. J. Swenson, C. A. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Yamazaki, R. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: bursts ID GAMMA-RAY BURST; HIGH-ENERGY; BATSE OBSERVATIONS; REDSHIFT; BEHAVIOR; PHOTONS; 080514B; MISSION; 080916C; ESCAPE AB We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below similar to 50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t(-1.5). The LAT detected a photon with the highest energy so far measured from a GRB, 33.4(-3.5)(+ 2.7) GeV. This event arrived 82 s after the GBM trigger and similar to 50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Tibaldo, L.] Univ Paris Diderot, CNRS, CEA IRFU, Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Goldstein, A.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Huntsville, AL 35899 USA. [Bissaldi, E.; Greiner, J.; McBreen, S.; Orlando, E.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burrows, D. N.; Gehrels, N.; Meszaros, P.; Roming, P. W. A.; Swenson, C. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Komin, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; d'Elia, V.; Stratta, G.] ASI Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RI Komin, Nukri/J-6781-2015; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Stratta, Maria Giuliana/L-3045-2016; Torres, Diego/O-9422-2016; Thompson, David/D-2939-2012; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012 OI Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; D'Elia, Valerio/0000-0002-7320-5862; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Stratta, Maria Giuliana/0000-0003-1055-7980; Torres, Diego/0000-0002-1522-9065; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888 FU NASA and DOE in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and INFN in Italy; MEXT, KEK, and JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council and the National Space Board in Sweden; INAF in Italy; CNES in France FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 49 TC 249 Z9 252 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L138 EP L144 DI 10.1088/0004-637X/706/1/L138 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200029 ER PT J AU Fitzgerald, MP Kalas, PG Graham, JR AF Fitzgerald, Michael P. Kalas, Paul G. Graham, James R. TI ORBITAL CONSTRAINTS ON THE beta Pic INNER PLANET CANDIDATE WITH KECK ADAPTIVE OPTICS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; planetary systems; stars: individual (HD 39060) ID PICTORIS CIRCUMSTELLAR DISK; FALLING EVAPORATING BODIES; DUST DISK; CORONAGRAPHIC OBSERVATIONS; SYSTEM; ASYMMETRIES; L' AB A point source observed 8 AU in projection from beta Pictoris in L' (3.8 mu m) imaging in 2003 has been recently presented as a planet candidate. Here we show the results of L'-band adaptive optics imaging obtained at Keck Observatory in 2008. We do not detect beta Pic b beyond a limiting radius of 0.'' 29, or 5.5 AU in projection, from the star. If beta Pic b is an orbiting planet, then it has moved >= 0.'' 12 (2.4 AU in projection) closer to the star in the five years separating the two epochs of observation. We examine the range of orbital parameters consistent with the observations, including likely bounds from the locations of previously inferred planetesimal belts. We find a family of low-eccentricity orbits with semimajor axes similar to 8-9 AU that are completely allowed, as well as a broad region of orbits with e less than or similar to 0.2, a greater than or similar to 10 AU that are allowed if the apparent motion of the planet was toward the star in 2003. We compare this allowed space with predictions of the planetary orbital elements from the literature. Additionally, we show how similar observations in the next several years can further constrain the space of allowed orbits. Non-detections of the source through 2013 will exclude the interpretation of the candidate as a planet orbiting between the 6.4 and 16 AU planetesimal belts. C1 [Fitzgerald, Michael P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Fitzgerald, Michael P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kalas, Paul G.; Graham, James R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Fitzgerald, MP (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, L-413,7000 East Ave, Livermore, CA 94550 USA. EM mpfitz@ucla.edu RI Fitzgerald, Michael/C-2642-2009 OI Fitzgerald, Michael/0000-0002-0176-8973 FU Michelson Fellowship Program, under contract with JPL; NASA; DOE [DE-AC52-07NA27344]; NSF Center for Adaptive Optics [AST-0909188]; University of California at Santa Cruz under cooperative agreement [AST-9876783]; University of California Research Program [09-LR-01-118057-GRAJ] FX We thank Bruce Macintosh and Herve Beust for helpful discussions. M. P. F. acknowledges support from the Michelson Fellowship Program, under contract with JPL, funded by NASA. Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344. P. G. K. and J.R.G. are supported in part by the NSF Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783. This work was supported in part by the University of California Research Program 09-LR-01-118057-GRAJ and NSF AST-0909188. NR 29 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L41 EP L45 DI 10.1088/0004-637X/706/1/L41 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200009 ER PT J AU Yu, HG AF Yu, Hua-Gen TI PRODUCT BRANCHING RATIOS OF THE REACTION OF CO WITH H-3(+) AND H2D+ SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; ISM: molecules; methods: numerical; stars: abundances ID DENSE INTERSTELLAR CLOUDS; PROTON-TRANSFER REACTIONS; ABUNDANCE RATIO; MOLECULAR CLOUDS; AB-INITIO; HOC+; H-2; DYNAMICS; AFFINITY; COMPLEX AB The reaction of CO with H-3(+) and H2D+ has been studied to investigate thermal rate coefficients and product branching ratios in the temperature range [20, 350] K, by using a direct ab initio molecular dynamics method. In trajectory simulations, the energies and forces are calculated using a scaling all correlation second-order M phi ller-Plesset perturbation theory (SAC-MP2) method with the correlation consistent polarized valence triplet-zeta basis (cc-pVTZ). Results show that total thermal rate coefficients for both the CO + H-3(+) and the CO + H2D+ reactions have a weakly positive temperature dependence. At room temperature, the rate coefficients are predicted to be (1.42 +/- 0.03) x10(-9) cm(3) molecule(-1) s(-1) with a product branching ratio of [HOC+]/[HCO+] = 0.36 +/- 0.01 for the CO + H-3(+) reaction, and (1.26 +/- 0.03) x 10(-9) cm(3) molecule(-1) s(-1) with the product branching ratios: 0.37 +/- 0.01 (([HOC+] + [DOC+])/([HCO+] + [DOC+])), 0.54 +/- 0.02 ([DCO+]/[HCO+]), and 0.49 +/- 0.02 ([DOC+]/[HOC+]) for CO + H2D+. The product branching ratios have a noticeable temperature dependence as well as a pronounced isotopic effect for the H/DOC+ product channel. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Yu, Hua-Gen/N-7339-2015 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Division of Chemical Sciences, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The author thanks Dr. Hui Li and Prof. Robert Le Roy for many discussions. This work was performed at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L52 EP L55 DI 10.1088/0004-637X/706/1/L52 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200011 ER PT J AU Kenoyer, AL Press, OW Park, SI Back, T Hamlin, DK Wilbur, DS Fisher, DR Wilbur, SM Axtman, A Orgun, N Lin, Y Gopal, AK Shenoi, J Green, DJ Appelbaum, FR Pagel, JM AF Kenoyer, Aimee L. Press, Oliver W. Park, Steven I. Back, Tom Hamlin, Donald K. Wilbur, D. Scott Fisher, Darrell R. Wilbur, Shani M. Axtman, Amanda Orgun, Nural Lin, Yukang Gopal, Ajay K. Shenoi, Jaideep Green, Damian J. Appelbaum, Frederick R. Pagel, John M. TI Anti-CD45 Ab Pretargeted Radioimmunotherapy Using An Alpha Emitting Radionuclide (213Bi) Delivers Selective Radiation to Human Myeloid Leukemias in a Mouse Xenograft Model and Results in High Rates of Complete Remission and Long Term Survival. SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Kenoyer, Aimee L.; Wilbur, Shani M.; Axtman, Amanda; Orgun, Nural; Lin, Yukang] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Appelbaum, Frederick R.; Pagel, John M.] Univ Washington, Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98195 USA. [Back, Tom] Univ Gothenburg, Inst Clin Sci, Dept Radiat Phys, Sahlgrenska Acad, Gothenburg, Sweden. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 428 EP 428 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725801215 ER PT J AU Park, SI Shenoi, J Pagel, JM Hamlin, DK Orgun, N Kenoyer, AL Wilbur, SM Axtman, A Wilbur, DS Lin, YK Fisher, DR Gopal, AK Green, DJ Press, OW AF Park, Steven I. Shenoi, Jaideep Pagel, John M. Hamlin, Donald K. Orgun, Nural Kenoyer, Aimee L. Wilbur, Shani M. Axtman, Amanda Wilbur, D. Scott Lin, Yukang Fisher, Darrell R. Gopal, Ajay K. Green, Damian J. Press, Oliver W. TI Conventional and Pretargeted Radioimmunotherapy with Bismuth-213 to Target and Treat CD20-Expressing Non-Hodgkin Lymphoma: A Preclinical Model for Consolidation Therapy to Eradicate Minimal Residual Disease. SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Park, Steven I.; Shenoi, Jaideep; Pagel, John M.; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.] Univ Washington, Fred Hutchinson Canc Res Ctr, Seattle, WA 98195 USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1059 EP 1059 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725803260 ER PT J AU Green, R Miller, JW Lee, KS Sutter, S Allen, LH Buchholz, BA Dueker, S AF Green, Ralph Miller, Joshua W. Lee, Kyung-Seon Sutter, Syrukh Allen, Lindsay H. Buchholz, Bruce A. Dueker, Stephen TI Oral Administration of Carbon-14 Labeled Cyanocobalamin (14C-Cbl) Reveals Variable Degradation of Vitamin B12 in the Gastrointestinal Tract That Impacts Vitamin B12 Absorption and Status SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Green, Ralph; Miller, Joshua W.; Lee, Kyung-Seon] Univ Calif Davis, Sacramento, CA 95817 USA. [Sutter, Syrukh; Allen, Lindsay H.] USDA ARS, Western Human Nutr Res Ctr, Davis, CA USA. [Sutter, Syrukh; Allen, Lindsay H.] Univ Calif Davis, Davis, CA 95616 USA. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Dueker, Stephen] Vitalea Sci, Davis, CA USA. RI Buchholz, Bruce/G-1356-2011 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1176 EP 1176 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725803573 ER PT J AU An, XL Liu, J Chen, K Heck, S Chasis, JA Mohandas, N AF An, Xiuli Liu, Jing Chen, Ke Heck, Sussane Chasis, Joel Anne Mohandas, Narla TI Dynamic Changes in Membrane Protein Expression During Murine and Human Erythropoiesis: Resolving the Distinct Stages in Terminal Erythroid Differentiation SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Heck, Sussane] New York Blood Ctr, Flowcytometry Lab, New York, NY 10021 USA. [Chasis, Joel Anne] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1549 EP 1550 PG 2 WC Hematology SC Hematology GA 532DS UT WOS:000272725804703 ER PT J AU Parra, MK Mohandas, N Conboy, JG AF Parra, Marilyn K. Mohandas, Narla Conboy, John G. TI Splicing Mechanisms That Generate Distinct Isoforms of Protein 4.1R During Terminal Erythroid Differentiation SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Parra, Marilyn K.; Conboy, John G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Mohandas, Narla] New York Blood Ctr, New York, NY 10021 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1549 EP 1549 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725804700 ER PT J AU Chen, LJ Bortnik, J Thorne, RM Horne, RB Jordanova, VK AF Chen, Lunjin Bortnik, Jacob Thorne, Richard M. Horne, Richard B. Jordanova, Vania K. TI Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DISCRETE CHORUS EMISSIONS; RADIATION; ORIGIN; HISS AB A three dimensional ray tracing of whistler-mode chorus is performed in a realistic magnetosphere using the HOTRAY code. A variety of important propagation characteristics are revealed associated with azimuthal density gradients and a plasmaspheric plume. Specifically, whistler mode chorus originating from a broad region on the dayside can propagate into the plasmasphere. After entry into the plasmasphere, waves can propagate eastward in MLT and merge to form hiss. This explains how chorus generated on the dayside can contribute to plasmaspheric hiss in the dusk sector. A subset of waves entering the plasmasphere can even propagate globally onto the nightside. Citation: Chen, L., J. Bortnik, R. M. Thorne, R. B. Horne, and V. K. Jordanova (2009), Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume, Geophys. Res. Lett., 36, L22101, doi:10.1029/2009GL040451. C1 [Chen, Lunjin; Bortnik, Jacob; Thorne, Richard M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. [Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, LJ (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. EM clj@atmos.ucla.edu RI Chen, Lunjin/L-1250-2013; OI Chen, Lunjin/0000-0003-2489-3571; Horne, Richard/0000-0002-0412-6407; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNX08A135G, NNH08AJ01I] FX This research was supported by the NASA grants NNX08A135G and NNH08AJ01I. NR 17 TC 35 Z9 35 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 20 PY 2009 VL 36 AR L22101 DI 10.1029/2009GL040451 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 522JZ UT WOS:000271995200002 ER PT J AU Hodges, MKV Link, PK Fanning, CM AF Hodges, Mary K. V. Link, Paul Karl Fanning, C. Mark TI The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Track of the Yellowstone Hotspot held at the Annual Meeting of the Geological-Society-of-America CY OCT, 2007 CL Denver, CO SP Geol Soc Amer DE Idaho; detrital zircon; Big Lost River; Snake River Plain; Neogene; Axial Volcanic Zone; Cryogenian magmatism; drainage disruption; INL ID YELLOWSTONE HOTSPOT; CRETACEOUS STRATA; SILICIC VOLCANISM; IDAHO; PLAIN; PROVENANCE; EVOLUTION; MIOCENE; BASIN; QUATERNARY AB SHRIMP analysis of U/Pb ages of detrital zircons in twelve late Miocene to Pleistocene sand samples from six drill cores on the Snake River Plain (SRP), Idaho, suggests that an ancestral Lost River system was drained westward along the northern side of the SRP. Neoproterozoic (650 to 740 Ma, Cryogenian) detrital zircon grains from the Wildhorse Creek drainage of the Pioneer Mountains core complex, with a source in 695 Ma orthogneiss, and which are characteristic of the Big Lost River system, are found in Pliocene sand from cores drilled in the central SRP (near Wendell) and western SRP (at Mountain Home). In addition to these Neoproterozoic grains, fluvial sands sourced from the northern margin of the SRP contain detrital zircons with the following ages: 42 to 52 Ma from the Challis magmatic belt, 80 to 100 Ma from the Atlanta lobe of the Idaho batholith, and mixed Paleozoic and Proterozoic ages (1400 to 2000 Ma). In contrast, sands in the Mountain Home Air Base well (MHAB) that contain 155-Ma Jurassic detrital grains with a source in northern Nevada are interpreted to represent an integrated Snake River, with provenance on the southern, eastern and northern sides of the SRP. We propose that late Pliocene and early Pleistocene construction of basaltic volcanoes and rhyolitic domes of the Axial Volcanic Zone of the eastern SRP and the northwest-trending Arco Volcanic Rift Zone (including the Craters of the Moon volcanic center), disrupted the paleo-Lost River drainage, confining it to the Big Lost Trough, a volcanically dammed basin of internal drainage on the Idaho National Laboratory (INL). After the Axial Volcanic Zone and Arco Volcanic Rift Zone were constructed to form a volcanic eruptive and intrusive highland to the southwest, sediment from the Big Lost River was trapped in the Big Lost Trough instead of being delivered by surface streams to the western SRP. Today, water from drainages north of the SRP enters the Snake River Plain regional aquifer through sinks in the Big Lost Trough, and the water resurfaces at Thousand Springs, Idaho, about 195 km to the southwest. Holocene to latest Pliocene samples from drill core in the Big Lost Trough reveal interplay between the glacio-fluvial outwash of the voluminous Big Lost River system and the relatively minor Little Lost River system. A mixed provenance signature is recognized in fine-grained sands deposited in a highstand of a Pleistocene pluvial-lake system. (C) 2009 Elsevier B.V. All rights reserved. C1 [Link, Paul Karl] Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. [Hodges, Mary K. V.] US Geol Survey, Idaho Natl Lab, Project Off, Idaho Falls, ID 83415 USA. [Fanning, C. Mark] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. RP Link, PK (reprint author), Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. EM linkpaul@isu.edu RI Fanning, C. Mark/I-6449-2016 OI Fanning, C. Mark/0000-0003-3331-3145 NR 74 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 20 PY 2009 VL 188 IS 1-3 SI SI BP 237 EP 249 DI 10.1016/j.jvolgeores.2009.08.019 PG 13 WC Geosciences, Multidisciplinary SC Geology GA 540YP UT WOS:000273377600018 ER PT J AU Al-Hassanieh, KA Batista, CD Ortiz, G Bulaevskii, LN AF Al-Hassanieh, K. A. Batista, C. D. Ortiz, G. Bulaevskii, L. N. TI Field-Induced Orbital Antiferromagnetism in Mott Insulators SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; QUANTUM; CHAINS; SPIN; CHIRALITY; LADDER AB We report on a new electromagnetic phenomenon that emerges in Mott insulators. The phenomenon manifests as antiferromagnetic ordering due to orbital electric currents which are spontaneously generated from the coupling between spin currents and an external homogenous magnetic field. This novel spin-charge-current effect provides the mechanism to measure the so-far elusive spin currents by means of unpolarized neutron scattering, nuclear magnetic resonance or muon spectroscopy. We illustrate this mechanism by solving a half-filled Hubbard model on a frustrated ladder. C1 [Al-Hassanieh, K. A.; Batista, C. D.; Bulaevskii, L. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ortiz, G.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RP Al-Hassanieh, KA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016 FU U. S. DOE [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U. S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 20 TC 17 Z9 17 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 216402 DI 10.1103/PhysRevLett.103.216402 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300038 PM 20366056 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, J Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of B -> K-*(892)gamma Branching Fractions and CP and Isospin Asymmetries SO PHYSICAL REVIEW LETTERS LA English DT Article ID K-ASTERISK-GAMMA; TO-LEADING ORDER; DECAYS AB We present an analysis of the decays B-0 -> K-*0(892)gamma and B+-> K*+(892)gamma using a sample of about 383x10(6) BB events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions B(B-0 -> K-*0 gamma)=(4.47 +/- 0.10 +/- 0.16)x10(-5) and B(B+-> K*+gamma)=(4.22 +/- 0.14 +/- 0.16)x10(-5). We constrain the direct CP asymmetry to be -0.033 < A(B -> K-*gamma)< 0.028 and the isospin asymmetry to be 0.017 K+pi(-)pi(0) Decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present evidence of D-0-D-0 mixing using a time-dependent amplitude analysis of the decay D-0 -> K+pi(-)pi(0) in a data sample of 384 fb(-1) collected with the BABAR detector at the PEP-II e(+)e(-) collider at the Stanford Linear Accelerator Center. Assuming CP conservation, we measure the mixing parameters x(K pi pi)(0')=[2.61(-0.68)(+0.57)(stat)+/- 0.39(syst)]%, y(K pi pi)(0')=[-0.06(-0.64)(+0.55)(stat)+/- 0.34(syst)]%. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. We find no evidence of CP violation in mixing. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 17 TC 31 Z9 31 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 211801 DI 10.1103/PhysRevLett.103.211801 PG 8 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300009 ER PT J AU Froula, DH Clayton, CE Doppner, T Marsh, KA Barty, CPJ Divol, L Fonseca, RA Glenzer, SH Joshi, C Lu, W Martins, SF Michel, P Mori, WB Palastro, JP Pollock, BB Pak, A Ralph, JE Ross, JS Siders, CW Silva, LO Wang, T AF Froula, D. H. Clayton, C. E. Doeppner, T. Marsh, K. A. Barty, C. P. J. Divol, L. Fonseca, R. A. Glenzer, S. H. Joshi, C. Lu, W. Martins, S. F. Michel, P. Mori, W. B. Palastro, J. P. Pollock, B. B. Pak, A. Ralph, J. E. Ross, J. S. Siders, C. W. Silva, L. O. Wang, T. TI Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA-WAVES; BEAMS; PULSES AB A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Delta theta(FWHM) of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 mu m laser. While maintaining a nearly constant plasma density (3x10(18) cm(-3)), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P(cr) for relativistic self-focusing and saturates around 100 pC for P/P(cr)> 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations. C1 [Froula, D. H.; Doeppner, T.; Barty, C. P. J.; Divol, L.; Glenzer, S. H.; Michel, P.; Palastro, J. P.; Pollock, B. B.; Ralph, J. E.; Ross, J. S.; Siders, C. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Clayton, C. E.; Marsh, K. A.; Joshi, C.; Lu, W.; Mori, W. B.; Pak, A.; Ralph, J. E.; Wang, T.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Pollock, B. B.; Ross, J. S.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Fonseca, R. A.; Martins, S. F.; Silva, L. O.] Inst Super Tecn, Inst Plasmas & Fusao Nucl, GoLP, Lisbon, Portugal. RP Froula, DH (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. EM froula1@llnl.gov RI Fonseca, Ricardo/B-7680-2009; Michel, Pierre/J-9947-2012; Lu, Wei/F-2504-2016 OI Fonseca, Ricardo/0000-0001-6342-6226; FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy [DEFG03-92ER40727]; Laboratory Directed Research and Development Program [08-LW-070] FX We would like to thank B. Stuart, D. Price, S. Maricle, and J. Bonlie for their contributions to upgrading the Callisto Laser System for this experiment. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and a Department of Energy Grant No. DEFG03-92ER40727 (UCLA) and was partially funded by the Laboratory Directed Research and Development Program under project tracking code 08-LW-070. NR 29 TC 91 Z9 91 U1 6 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 215006 DI 10.1103/PhysRevLett.103.215006 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300030 ER PT J AU Gotchev, OV Chang, PY Knauer, JP Meyerhofer, DD Polomarov, O Frenje, J Li, CK Manuel, MJE Petrasso, RD Rygg, JR Seguin, FH Betti, R AF Gotchev, O. V. Chang, P. Y. Knauer, J. P. Meyerhofer, D. D. Polomarov, O. Frenje, J. Li, C. K. Manuel, M. J. -E. Petrasso, R. D. Rygg, J. R. Seguin, F. H. Betti, R. TI Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID INERTIAL-CONFINEMENT-FUSION; FIELDS; IGNITION AB The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly , Opt. Commun. 133, 495 (1997)] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (> 50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D(3)He target. Line-averaged magnetic fields between 30 and 40 MG were observed. C1 [Gotchev, O. V.; Chang, P. Y.; Knauer, J. P.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Gotchev, O. V.; Chang, P. Y.; Knauer, J. P.; Meyerhofer, D. D.; Polomarov, O.; Frenje, J.; Li, C. K.; Manuel, M. J. -E.; Petrasso, R. D.; Seguin, F. H.; Betti, R.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Gotchev, O. V.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Chang, P. Y.; Meyerhofer, D. D.; Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Frenje, J.; Li, C. K.; Manuel, M. J. -E.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Rygg, J. R.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Gotchev, OV (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Chang, Po-Yu/A-9004-2013; Manuel, Mario/L-3213-2015; Chang, Po-Yu/L-5745-2016 OI Manuel, Mario/0000-0002-5834-1161; FU U. S. Department of Energy [DE-FG02-04ER54768, DE-FC02-ER54789, DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority FX The authors would like to thank Dr. F. Y. Thio and Dr. A. Velikovich for many illuminating discussions and for their encouragement in pursuing these novel experiments. This work was supported by the U. S. Department of Energy under Grant No. DE-FG02-04ER54768 and Cooperative Agreement Nos. DE-FC02-ER54789 and DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. NR 23 TC 27 Z9 33 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 215004 DI 10.1103/PhysRevLett.103.215004 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300028 PM 20366046 ER PT J AU Moller, P Sierk, AJ Bengtsson, R Sagawa, H Ichikawa, T AF Moeller, Peter Sierk, Arnold J. Bengtsson, Ragnar Sagawa, Hiroyuki Ichikawa, Takatoshi TI Global Calculation of Nuclear Shape Isomers SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROUND-STATE; MASS NUCLEI; COEXISTENCE; ISOTOPES AB To determine which nuclei may exhibit shape isomerism, we use a well-benchmarked macroscopic-microscopic model to calculate potential-energy surfaces as functions of spheroidal (epsilon(2)), hexadecapole (epsilon(4)), and axial-asymmetry (gamma) shape coordinates for 7206 nuclei from A=31 to A=290. We analyze these and identify the deformations and energies of all minima deeper than 0.2 MeV. These minima may correspond to characteristic experimentally observable shape-isomeric states. Shape isomers mainly occur in the A=80 region, the A=100 region, and in an extended region centered around (208)Pb. We compare our model to experimental results for Kr isotopes. Moreover, in a plot versus N and Z we show for each of the 7206 nuclei the calculated number of minima. The results reveal one fairly unexplored region of shape isomerism, which is experimentally accessible, namely the region northeast of (208)(82)Pb. C1 [Moeller, Peter; Sierk, Arnold J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bengtsson, Ragnar] Lund Inst Technol, Dept Math Phys, SE-22100 Lund, Sweden. [Sagawa, Hiroyuki] Univ Aizu Aizu Wakamatsu, Ctr Math Sci, Fukushima 96580, Japan. [Ichikawa, Takatoshi] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; P. M. to JUSTIPEN at RIKEN [DE-FG02-06ER41407] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and a travel grant for P. M. to JUSTIPEN at RIKEN (Japan-U. S. Theory Institute for Physics with Exotic Nuclei) under Grant No. DE-FG02-06ER41407 (U. Tennessee). NR 23 TC 24 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 212501 DI 10.1103/PhysRevLett.103.212501 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300012 PM 20366030 ER PT J AU Nomura, K Ryu, S Lee, DH AF Nomura, Kentaro Ryu, Shinsei Lee, Dung-Hai TI Field-Induced Kosterlitz-Thouless Transition in the N=0 Landau Level of Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID METALLIC CARBON NANOTUBES; MAGNETIC-FIELDS; LATTICE DISTORTION; SOLITONS AB At the charge neutral point, graphene exhibits a very unusual high-resistance metallic state and a transition to a complete insulating phase in a strong magnetic field. We propose that the current carriers in this state are the charged vortices of the XY valley-pseudospin order parameter, a situation which is dual to a conventional thin superconducting film. We study energetics and the stability of this phase in the presence of disorder. C1 [Nomura, Kentaro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Ryu, Shinsei; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Nomura, K (reprint author), Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. RI nomura, kentaro/C-1414-2009 FU MEXT [20740167]; DOE [DE-AC02-05CH11231] FX We are grateful to N. P. Ong and Y. Zhang for useful discussions. K. N. thanks R. Saito and K. Sasaki for helpful arguments on electron-phonon coupling, and A. H. MacDonald and J. Sinova on the HF calculation. K. N. was supported by MEXT Grant-in-Aid No. 20740167. D. H. L. was supported by DOE Grant No. DE-AC02-05CH11231. S. R. thanks the Center for Condensed Matter Theory at University of California, Berkeley for its support. NR 35 TC 52 Z9 52 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 216801 DI 10.1103/PhysRevLett.103.216801 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300041 PM 20366059 ER PT J AU Pinto-Tomas, AA Anderson, MA Suen, G Stevenson, DM Chu, FST Cleland, WW Weimer, PJ Currie, CR AF Pinto-Tomas, Adrian A. Anderson, Mark A. Suen, Garret Stevenson, David M. Chu, Fiona S. T. Cleland, W. Wallace Weimer, Paul J. Currie, Cameron R. TI Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants SO SCIENCE LA English DT Article ID TROPICAL RAIN-FOREST; ATTA-CEPHALOTES; CUTTING ANTS; DIVERSITY; ABUNDANCE; COLOMBICA; TERMITES; REFUSE; PLANTS; NESTS AB Bacteria-mediated acquisition of atmospheric N(2) serves as a critical source of nitrogen in terrestrial ecosystems. Here we reveal that symbiotic nitrogen fixation facilitates the cultivation of specialized fungal crops by leaf-cutter ants. By using acetylene reduction and stable isotope experiments, we demonstrated that N(2) fixation occurred in the fungus gardens of eight leaf-cutter ant species and, further, that this fixed nitrogen was incorporated into ant biomass. Symbiotic N(2)-fixing bacteria were consistently isolated from the fungus gardens of 80 leaf-cutter ant colonies collected in Argentina, Costa Rica, and Panama. The discovery of N(2) fixation within the leaf-cutter ant-microbe symbiosis reveals a previously unrecognized nitrogen source in neotropical ecosystems. C1 [Pinto-Tomas, Adrian A.; Suen, Garret; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Pinto-Tomas, Adrian A.] Univ Costa Rica, Dept Bioquim, Fac Med, San Jose, Costa Rica. [Pinto-Tomas, Adrian A.] Univ Costa Rica, Ctr Invest Estruct Microscop, San Jose, Costa Rica. [Anderson, Mark A.; Chu, Fiona S. T.; Cleland, W. Wallace] Univ Wisconsin, Dept Biochem, Inst Enzyme Res, Madison, WI 53726 USA. [Suen, Garret; Currie, Cameron R.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Stevenson, David M.; Weimer, Paul J.] ARS, USDA, US Dairy Forage Res Ctr, Madison, WI 53706 USA. RP Currie, CR (reprint author), Univ Wisconsin, Dept Bacteriol, 1550 Linden Dr, Madison, WI 53706 USA. EM currie@bact.wisc.edu OI Suen, Garret/0000-0002-6170-711X FU NSF [MCB-0731822, MCB-0702025, DEB-0747002]; NIH [GM 18938]; OTS; U. S. Department of Energy's Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; U. S. Department of Agriculture-Agricultural Research Service Current Research Information System [3655-41000-005-00D] FX We thank R. Steffensen, L. Schwab, L. Uribe, M. Mora, B. Matarrita, D. Brenes, R. Araya, H. Read, J. Mentzer, D. Maly, and G. Pine for technical assistance; Y. Zhang, E. Pohlmann, and G. Roberts for assistance with acetylene reduction assays; A. Little, S. Price, and U. Mueller for leaf-cutter ant colony collection; M. Rogel-Hernandez and E. Martinez-Romero for providing isolate K. variicola F2R9; B. Ma, A. Charkowski, and N. Perna for assistance with phylogenetic analyses; E. Sanchez, R. Moreira, and T. Escalante for assistance with microscopic analyses; N. Keuler for statistical advice; the sequencing and production teams at the Joint Genome Institute; and S. Adams, F. Aylward, E. Caldera, N. Gerardo, H. Goodrich-Blair, K. Grubbs, S. Marsh, M. Poulsen, K. Raffa, G. Roberts, E. Ruby, T. Schultz, and J. Scott for comments on the manuscript. We acknowledge the Organization for Tropical Studies (OTS) and the Ministerio de Ambiente y Energia in Costa Rica, the Autoridad Nacional del Ambiente in Panama, and the Government of Argentina for facilitating the research and granting collecting permits. This work was funded by NSF grants MCB-0731822, MCB-0702025, and DEB-0747002 to C. R. C.; NIH grant GM 18938 to W. W. C., and an OTS research fellowship to A. A. P.-T. G. S. and C. R. C. were supported by the U. S. Department of Energy's Great Lakes Bioenergy Research Center under contract DE-FC02-07ER64494; D. M. S. and P. J. W. were supported by U. S. Department of Agriculture-Agricultural Research Service Current Research Information System project 3655-41000-005-00D. DNA sequence data were deposited in GenBank under accession numbers FJ593730 to FJ593840 and GQ342603 to GQ342604. NR 27 TC 101 Z9 103 U1 7 U2 96 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 20 PY 2009 VL 326 IS 5956 BP 1120 EP 1123 DI 10.1126/science.1173036 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521UW UT WOS:000271951000047 PM 19965433 ER PT J AU Khain, AP Leung, LR Lynn, B Ghan, S AF Khain, A. P. Leung, L. R. Lynn, B. Ghan, S. TI Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STOCHASTIC COLLECTION EQUATION; CLOUD-RESOLVING MODEL; PART I; MESOSCALE MODEL; CUMULUS CLOUD; EXPLICIT FORECASTS; NUMERICAL-SOLUTION; CONVECTIVE CLOUDS; DROPLET SPECTRUM; ICE-NUCLEATION AB A new spectral bin microphysical scheme (SBM) was implemented into the Weather Research and Forecasting model referred to as Fast- SBM, which uses a smaller number of size distribution functions than the original version of the scheme referred to as Exact- SBM. It was shown that both schemes produced similar dynamical and microphysical structure of a squall line simulated. An excellent agreement in the simulated precipitation amounts between the schemes was found within a range of cloud condensation nuclei concentrations from 100 to 3000 cm(-3). The Fast- SBM requires about 40% of the computing power of the Exact- SBM, allowing it to be used for "real-time" simulations over limited domains. The results obtained using the SBM simulations have been compared with those using a modified version of the Thompson bulk parameterization scheme. The main extension of the bulk scheme was the implementation of the process of drop nucleation, so that drop concentration is no longer prescribed a priori but rather calculated using the prescribed aerosol concentration. This scheme is referred to as the Drop scheme. A large set of sensitivity studies have been performed, in which microphysical parameters and precipitation, droplet nucleation above cloud base, etc., have been compared with those obtained from SBM. The SBM scheme produces more realistic dynamical and microphysical structure of the squall line. The Drop scheme did relatively little to change the cloud structures simulated by the bulk scheme. Unlike the SBM simulations that show different precipitation sensitivities to aerosol concentrations in relatively dry and humid environments, the Drop scheme indicates monotonic decrease in precipitation with increasing aerosol concentrations. C1 [Khain, A. P.; Lynn, B.] Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. [Leung, L. R.; Ghan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Khain, AP (reprint author), Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. EM khain@vms.huji.ac.il RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU Israel Science Foundation [140/07]; U.S. National Aeronautic and Space Administration (NASA) Energy and Water Cycle Studies (NEWS); U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO1830] FX The study has been performed under support of the Israel Science Foundation (grant 140/07) and the U.S. National Aeronautic and Space Administration (NASA) Energy and Water Cycle Studies (NEWS). PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO1830. NR 67 TC 17 Z9 18 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 19 PY 2009 VL 114 AR D22203 DI 10.1029/2009JD011902 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 522KG UT WOS:000271996000001 ER PT J AU Yu, HG Francisco, JS AF Yu, Hua-Gen Francisco, Joseph S. TI Ab Initio and RRKM Study of the Reaction of ClO with HOCO Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; UNIMOLECULAR RATE THEORY; RATE-CONSTANT; PRESSURE-DEPENDENCE; TRANS-HOCO; TEMPERATURE-DEPENDENCE; PRODUCT FORMATION; HO2+CLO REACTION; HO2 RADICALS; BASIS-SETS AB The reaction pathways for the ClO + HOCO reaction have been explored using the coupled-cluster method to locate and optimize the critical points on the ground-state potential-energy surface. Results show that the ClO + HOCO reaction can produce Cl + HOC(O)O, HOCl + CO(2), HCl + CO(3), and HClO + CO(2) via an addition or a direct hydrogen abstraction reaction mechanism. The reaction kinetics has been studied using the variational RRKM theory. It is found that the ClO + HOCO reaction is fast and has a negative temperature dependence at low temperatures. At room temperature, the thermal rate coefficient is obtained as 4.26 x 10(-12) cm(3) molecules(-1) s(-1) with product branching fractions of Cl (0.518), HOCl (0.469), HCl (0.01), and HClO (0.003) at zero pressure, The Cl + HOC(O)O products are major, compared to the HOCl + CO(2) products, because of the loose transition state along the dissociation pathway to eliminate Cl. In addition, the RRKM/master equation simulations indicate that the stabilization of the HOC(O)OCl intermediates is noticeable at moderate pressures as its thermal rate constants reach about 6.0 x 10(-13) cm(3) molecules(-1) s(-1). In contrast, the other product branching ratios for the ClO + HOCO reaction are weakly dependent on pressure. C1 [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Yu, Hua-Gen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM francisc@purdue.edu RI Yu, Hua-Gen/N-7339-2015 FU Brookhaven National Laboratory, U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Office of Basic Energy Sciences FX This work was performed at Brookhaven National Laboratory under contract no. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. NR 69 TC 9 Z9 9 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 19 PY 2009 VL 113 IS 46 BP 12932 EP 12941 DI 10.1021/jp9040088 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 516ZT UT WOS:000271583100023 PM 19831339 ER PT J AU Winoto, W Shen, YQ Radosz, M Hong, KL Mays, JW AF Winoto, Winoto Shen, Youqing Radosz, Maciej Hong, Kunlun Mays, Jimmy W. TI Deuteration Impact on Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SMALL-ANGLE NEUTRON; ANIONIC-POLYMERIZATION; MODEL POLYDIENES; SCATTERING; TEMPERATURE; POLYOLEFINS; SYSTEMS AB The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyreneblock-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems. C1 [Winoto, Winoto; Shen, Youqing; Radosz, Maciej] Univ Wyoming, Soft Mat Lab, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Radosz, M (reprint author), Univ Wyoming, Soft Mat Lab, Dept Chem & Petr Engn, Laramie, WY 82071 USA. EM radosz@uwyo.edu RI Shen, Youqing/E-6144-2011; Hong, Kunlun/E-9787-2015 OI Shen, Youqing/0000-0003-1837-7976; Hong, Kunlun/0000-0002-2852-5111 FU National Science Foundation [CTS-0625338]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2006-114] FX This work is funded by a National Science Foundation Grant (CTS-0625338) at the University of Wyoming. Part of this research was done at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, through User Project CNMS2006-114. A preliminary account of the paper, presented at AIChE Annual Meeting 2007, was entitled: Pressure-Induced Micellization of Polystyrene-block-polybutadiene, Polystyrene-block-polyisoprene and Their Deuterated Analogs in Near Critical Propane. NR 18 TC 1 Z9 1 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 19 PY 2009 VL 113 IS 46 BP 15156 EP 15161 DI 10.1021/jp904917w PG 6 WC Chemistry, Physical SC Chemistry GA 516YY UT WOS:000271580700006 PM 19860441 ER PT J AU Schlau-Cohen, GS Calhoun, TR Ginsberg, NS Read, EL Ballottari, M Bassi, R van Grondelle, R Fleming, GR AF Schlau-Cohen, Gabriela S. Calhoun, Tessa R. Ginsberg, Naomi S. Read, Elizabeth L. Ballottari, Matteo Bassi, Roberto van Grondelle, Rienk Fleming, Graham R. TI Pathways of Energy Flow in LHCII from Two-Dimensional Electronic Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIGHT-HARVESTING-COMPLEX; PHOTOSYSTEM-II; HIGHER-PLANTS; PEAK SHIFT; DYNAMICS; PHOTOSYNTHESIS; ABSORPTION; RESOLUTION; BINDING; PROTEIN AB Photosynthetic light-harvesting complexes absorb energy and guide photoexcitations to reaction centers with speed and efficacy that produce near-perfect efficiency, Light harvesting complex II (LHCII) is the most abundant light-harvesting complex and is responsible for absorbing the majority of light energy in plants. We apply two-dimensional electronic spectroscopy to examine energy flow in LHCII. This technique allows for direct mapping of excitation energy pathways as a function of absorption and emission wavelength. The experimental and theoretical results reveal that excitation energy transfers through the complex on three time scales: previously unobserved sub-100 fs relaxation through spatially overlapping states, several hundred femtosecond transfer between nearby chlorophylls, and picosecond energy transfer steps between layers of pigments. All energy is observed to collect into the energetically lowest and most delocalized states, which serve as exit sites. We examine the angular distribution of optimal energy transfer produced by this delocalized electronic structure and discuss how it facilitates the exit step in which the energy moves from LHCII to other complexes toward the reaction center. C1 [Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Read, Elizabeth L.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Read, Elizabeth L.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dipartimento Biotecnol, Fac Sci, I-37134 Verona, Italy. [van Grondelle, Rienk] Vrije Univ Amsterdam, Dept Biophys, Div Phys & Astron, Fac Sci, NL-1081 HV Amsterdam, Netherlands. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. OI Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 FU Chemical Sciences [DE-AC03-76SF000098]; Geosciences and Biosciences Division; Office of Basic Energy Sciences; Office of Science; U.S. Department of Energy; Glenn T. Seaborg Fellowship from LBNL FX The authors thank Gregory S. Engel for helpful discussions. This work was supported by Grant No. DE-AC03-76SF000098 from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy to G.R.F. N.S.G. acknowledges support from a Glenn T. Seaborg Fellowship from LBNL. NR 39 TC 96 Z9 97 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 19 PY 2009 VL 113 IS 46 BP 15352 EP 15363 DI 10.1021/jp9066586 PG 12 WC Chemistry, Physical SC Chemistry GA 516YY UT WOS:000271580700031 PM 19856954 ER PT J AU Lambert, TN Chavez, CA Hernandez-Sanchez, B Lu, P Bell, NS Ambrosini, A Friedman, T Boyle, TJ Wheeler, DR Huber, DL AF Lambert, Timothy N. Chavez, Carlos A. Hernandez-Sanchez, Bernadette Lu, Ping Bell, Nelson S. Ambrosini, Andrea Friedman, Thomas Boyle, Timothy J. Wheeler, David R. Huber, Dale L. TI Synthesis and Characterization of Titania-Graphene Nanocomposites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EXFOLIATED GRAPHITE OXIDE; CARBON NANOTUBES; AQUEOUS DISPERSIONS; SURFACE-AREA; ANATASE TIO2; SHEETS; NANOPARTICLES; COMPOSITES; NANOSTRUCTURES; NANOSHEETS AB In this work, the synthesis and physiochemical characterization of titanium oxide nanoparticle-graphene oxide (TiO(2)-GO) and titanium oxide nanoparticle-reduced graphene oxide (TiO(2)-RGO) composites was undertaken. TiO(2)-GO materials were prepared via the hydrolysis of TiF(4) at 60 degrees C for 24 h in the presence of air aqueous dispersion of graphene oxide (GO). The reaction proceeded to yield an insoluble material that is composed of TiO(2) and GO. Composites were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, N(2) adsorption-desorption, and thermal gravimetric analysis/differential thermal analysis (TGA/DTA). This approach yielded highly faceted anatase nanocrystals with petal-like morphologies on and embedded between the graphene sheets. At higher GO concentrations with no stirring of the reaction media, a long-range ordered assembly for TiO(2)-GO sheets was observed due to self-assembly. GO-TiO(2) composites formed colloidal dispersions at low concentrations (similar to 0.75 mg/mL) in water and ethanol but were not amenable to forming graphene papers via filtration through Anodisc membranes (0.2 mu M pore diameter) due to their high titania concentration. Zeta potential measurements and particle size distributions from dynamic light scattering (DLS) experiments on these materials explain the stability of the TiO(2)-GO colloidal solutions. Chemical and thermal methods were also used to reduce TiO(2)-GO to give TiO(2)-RGO materials. C1 [Lambert, Timothy N.; Chavez, Carlos A.; Ambrosini, Andrea] Sandia Natl Labs, Dept Mat Devices & Energy Technol, Albuquerque, NM 87185 USA. [Hernandez-Sanchez, Bernadette; Boyle, Timothy J.] Sandia Natl Labs, Dept Ceram Proc & Inorgan Mat, Albuquerque, NM 87185 USA. [Lu, Ping] Sandia Natl Labs, Dept Mat Characterizat, Albuquerque, NM 87185 USA. [Bell, Nelson S.] Sandia Natl Labs, Dept Nanostructured & Elect Mat, Albuquerque, NM 87185 USA. [Friedman, Thomas] Sandia Natl Labs, Dept Nanomat Sci, Albuquerque, NM 87185 USA. [Wheeler, David R.] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Huber, Dale L.] Sandia Natl Labs, Dept CINT Sci, Albuquerque, NM 87185 USA. RP Lambert, TN (reprint author), Sandia Natl Labs, Dept Mat Devices & Energy Technol, POB 5800, Albuquerque, NM 87185 USA. EM tnlambe@sandia.gov RI Huber, Dale/A-6006-2008 OI Huber, Dale/0000-0001-6872-8469 FU Sandia's Laboratory Directed Research and Development program; Sandia Corporation; Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Professor Rod Ruoff (UT - Austin) and Dr. Sungjin Park (UT - Austin) are thanked for technical assistance with the initial graphene oxide preparation. NR 59 TC 255 Z9 259 U1 51 U2 360 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 19812 EP 19823 DI 10.1021/jp905456f PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600008 ER PT J AU Florez, E Feria, L Vines, F Rodriguez, JA Illas, F AF Florez, Elizabeth Feria, Leticia Vines, Francesc Rodriguez, Jose A. Illas, Francesc TI Effect of the Support on the Electronic Structure of Au Nanoparticles Supported on Transition Metal Carbides: Choice of the Best Substrate for Au Activation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE CO OXIDATION; GAS SHIFT ACTIVITY; GOLD CATALYSTS; CHEMOSELECTIVE HYDROGENATION; SUBSTITUTED NITROAROMATICS; CHARGE POLARIZATION; MOLECULAR-MECHANISM; ACTIVE-SITES; 001 SURFACE; SIZE AB Periodic density functional theory calculations on large supercells have been carried out to investigate the atomic and electronic structure of small gold particles (Au(2), Au(4), Au(9), Au(13), and Au(14)) supported on the (001) surface of various transition metal carbides (TiC, ZrC, VC, and delta-MoC). All the supported Au particles exhibited strong interactions with the C sites of the metal-carbide surfaces. Nevertheless, the interactions between adsorbed Au atoms were attractive, thus ultimately facilitating nucleation of two- or three-dimensional metal particles. The presence of the underlying carbide strongly modified the electronic structure and charge density of the supported metal particles resulting in the experimentally proven improved catalytic performance of the resulting systems as compared with cases where the support is an oxide. The electronic perturbations were quite strong for two-dimensional gold particles directly in contact with the carbide substrates and gradually decreased for two-layer and three-layer thick supported particles. While all the metal carbides examined induced a qualitatively similar perturbation on the supported Au particles, the effect is significantly larger for ZrC thus suggesting that the resulting model catalyst would perform even better than the already tried Au/TiC system. C1 [Florez, Elizabeth; Feria, Leticia; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Florez, Elizabeth; Feria, Leticia; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac, E-08028 Barcelona, Spain. [Florez, Elizabeth] Univ Chile, Dept Fis, Santiago, Chile. [Vines, Francesc] Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem, D-91058 Erlangen, Germany. [Vines, Francesc] Univ Erlangen Nurnberg, Interdisciplinary Ctr Interface Controlled Proc, D-91058 Erlangen, Germany. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Florez, Elizabeth/0000-0002-8301-8550; Vines, Francesc/0000-0001-9987-8654 FU ICyTDF; Alexander von Humboldt Foundation; Spanish MICINN [FIS2008-02238]; Generalitat de Catalunya [2009SGR1041]; Chile Fondecyt Grant [3080033]; U.S. Department of Energy (Chemical Sciences Division) [DE-AC02-98CH10886]; Divisions of Chemical and Materials Science of the U.S. Department of Energy FX E.F. would like to thank Colciencias and the University of Antioquia (Colombia) for her scholarship. L.F. is grateful to ICyTDF for a Postdoctoral Fellowship. F.V. is grateful to the Alexander von Humboldt Foundation for a Postdoctoral Fellowship. Financial support has been provided by the Spanish MICINN (grant FIS2008-02238), Generalitat de Catalunya (grants 2009SGR1041 and XRQTC), and Chile Fondecyt Grant 3080033. Computational time provided by the Barcelona Supercomputing Center (BSC) is gratefully acknowledged. The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). The National Synchrotron Light Source (NSLS) is supported by the Divisions of Chemical and Materials Science of the U.S. Department of Energy. NR 66 TC 13 Z9 13 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 19994 EP 20001 DI 10.1021/jp907043g PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600032 ER PT J AU Kim, YK Zhang, ZR Parkinson, GS Li, SC Kay, BD Dohnalek, Z AF Kim, Yu Kwon Zhang, Zhenrong Parkinson, Gareth S. Li, Shao-Chun Kay, Bruce D. Dohnalek, Zdenek TI Reactivity of FeO(111)/Pt(111) with Alcohols SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SURFACE-CHEMISTRY; (WO3)(3) CLUSTERS; OXIDE-FILMS; MGO FILMS; TERMINATED FEO(111); THERMAL-DESORPTION; WATER-ADSORPTION; CO DISSOCIATION; LOW-TEMPERATURE; PT(111) AB We report on the reactivity of a FeO(111) monolayer grown on Pt(111) toward aliphatic alcohols. Using a combination of temperature-programmed desorption, infrared reflection-absorption spectroscopy, and scanning tunneling microscopy techniques, we show that the alcohols dissociate primarily at FeO(111) step edges and their oxidation leads to the removal of the FeO(111) film. Upon annealing, FeO(111) lattice oxygen is incorporated into the reaction products, and reduced iron left behind dissolves into the underlying Pt(111) substrate. Ethanol is employed in a more detailed spectroscopic study to follow the reaction products and surface intermediates as the removal of FeO(111) proceeds. The ethoxy species formed upon dissociative adsorption of ethanol at the FeO(111) step edges undergo partial oxidation to acetaldehyde and a complete oxidation to CO and H(2)O. Other products, CH(4) and H(2), associated with the reactions occurring oil Pt(111) are also observed as the bare Pt(111) surface appears. A similar etching process was also observed for n-decane. C1 [Kim, Yu Kwon; Zhang, Zhenrong; Parkinson, Gareth S.; Li, Shao-Chun; Kay, Bruce D.; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kay, BD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Bruce.Kay@pnl.gov; Zdenek.Dohnalek@pnl.gov OI Parkinson, Gareth/0000-0003-2457-8977; Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division; Robert A. Welch Foundation [F-0032]; National Science Foundation [CHE-0412609]; W. R. Wiley Environmental Molecular Science Laboratory; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL) FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division, the Robert A. Welch Foundation (F-0032), and the National Science Foundation (CHE-0412609), and performed at W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute tinder Contract DE-AC06-76RLO 1830. NR 46 TC 13 Z9 13 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 20020 EP 20028 DI 10.1021/jp907844j PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600035 ER PT J AU Luo, WF Cowgill, DF Causey, RA AF Luo, Weifang Cowgill, Donald F. Causey, Rion A. TI Equilibrium Isotope Effect for Hydrogen Absorption in Palladium SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DEUTERIUM; EXCHANGE; SYSTEM; PD AB Absorption isotherms at 323 K for the H-D-Pd system were measured by introducing H(2) and D(2) into Pd in sequence. The method using addition of isotopes to the system in sequence to investigate isotope exchange effects has not been previously reported. The equilibrium absorption pressure in the plateau region of the mixed-isotope system varies with the ratio of HID in the solid phase. It lies between those of the single-isotope systems of H-Pd and D-Pd. Higher equilibrium pressures are associated with high D/H ratios in the solid phase. A model proposed previously (Luo, W.; Cowgill, D.; Causey, R.; Stewart, K. J. Phys. Chem., B 2008, 112, 8099) for mixed isotope hydride desorption, which correlates the equilibrium plateau pressure of the mixed H-D system with the fractions of D and H in the solid and the equilibrium plateau pressures of the single-isotope systems, is also successfully applied to absorption, When D(2) is introduced into the H-Pd system in the plateau region, both the H-D exchange processes in the gas phase and net H (D) absorption take place. The former does not result in a total pressure change, but the latter creates a total pressure decrease. These reactions produce a D concentration increase in both the bulk Pd and the gaseous phase, as expected. Curiously, however, they also result in a counterintuitive small H concentration increase in bulk Pd and a decrease in gaseous H. Analogous results are obtained when the order of D(2)-H(2) introduction is reversed. In the plateau region, isotope displacement does not take place. Once in the beta-phase, isotope displacement does take place. The equilibrium isotope H-D partitions in the gas phase, H(2), HD, and D(2), are controlled by the equilibrium constant, K(HD), and their equilibrium partitions among H and D between gas and bulk Pd are controlled by the separation factor, alpha. C1 [Luo, Weifang; Cowgill, Donald F.; Causey, Rion A.] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94551 USA. RP Luo, WF (reprint author), Sandia Natl Labs, Dept Hydrogen & Met Sci, 7011 E Ave, Livermore, CA 94551 USA. EM wluo@sandia.gov FU Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. W. Luo thanks Prof. T. B. Flanagan at University of Vermont for valuable suggestions and advice. The authors thank Mr. K. Stewart for technical support for experimental setup design. NR 15 TC 7 Z9 7 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 20076 EP 20080 DI 10.1021/jp905614x PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600042 ER PT J AU Vijayakumar, M Kerisit, S Yang, ZG Graff, GL Liu, J Sears, JA Burton, SD Rosso, KM Hu, JZ AF Vijayakumar, M. Kerisit, Sebastien Yang, Zhenguo Graff, Gordon L. Liu, Jun Sears, Jesse A. Burton, Sarah D. Rosso, Kevin M. Hu, Jianzhi TI Combined Li-6,Li-7 NMR and Molecular Dynamics Study of Li Diffusion in Li2TiO3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; SOLID-STATE NMR; ELECTRICAL-CONDUCTIVITY; ATOMISTIC SIMULATION; EXCHANGE PROCESSES; THERMAL-PROPERTIES; LITHIUM BATTERIES; NANO-CRYSTALLINE; SHELL-MODEL; SPECTROSCOPY AB Understanding lithium diffusion properties in electrode materials is important for designing rechargeable lithium-ion batteries with improved performance. In this work, the lithium dynamics in layered Li2TiO3 were characterized using a combination of Li-6,Li-7 nuclear magnetic resonance (NMR) over a wide temperature range (150-500 K) and molecular dynamics (MD) simulations. The Li-7 static NMR and stimulated echo experiments show slow and partial lithium diffusion in Li2TiO3. The high-field (21.1 T) Li-6 magic-angle spinning NMR shows a new tetrahedral lithium site along with the three crystallographic octahedral sites in Li2TiO3 sample. MD simulations predict that lithium can occupy a tetrahedral site if two or more vacancies exist in the vicinity, which may result, for example, from the presence of a Ti defect in the LiTi2 layer. Li-6 two-dimensional (2D) exchange NMR experiments show evidence of lithium diffusion between the pure Li and LiTi2 layers along the c axis. Although the 2D exchange NMR data are not sensitive to lithium diffusion in the ab plane, MD simulations show that lithium diffusion in the pure Li layer is equally probable. Combining these results, a detailed picture of the lithium diffusion pathways in Li2TiO3 is presented. C1 [Vijayakumar, M.; Kerisit, Sebastien; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Sears, Jesse A.; Burton, Sarah D.; Rosso, Kevin M.; Hu, Jianzhi] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rosso, KM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM kevin.rosso@pnl.gov; jianzhi.hu@pnl.gov RI Murugesan, Vijayakumar/C-6643-2011; Hu, Jian Zhi/F-7126-2012 OI Murugesan, Vijayakumar/0000-0001-6149-1702; FU Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL); Office of Basic Energy Sciences (BES); U.S. Department of Energy (DOE); DOE's Office of Biological and Environmental Research (BER); Battelle Memorial Institute for the Department of Energy [DE-AC05-76RL01830] FX This work is supported by the Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) and by the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). The NMR work was carried out at the Environmental and Molecular Science Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER). PNNL is a multiprogram, laboratory operated by Battelle Memorial Institute for the Department of Energy under contract DE-AC05-76RL01830. NR 53 TC 48 Z9 50 U1 7 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 20108 EP 20116 DI 10.1021/jp9072125 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600046 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Bloom, ED Bonamente, E Bonnell, J Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chaplin, V Charles, E Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Fishman, G Focke, WB Foschini, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Gibby, L Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grondin, MH Grove, JE Grupe, D Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hoversten, EA Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Kouveliotou, C Kuehn, F Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Raino, S Ramirez-Ruiz, E Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stamatikos, M Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Toma, K Torres, DF Tosti, G Troja, E Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Bloom, E. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Chaplin, V. Charles, E. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Fishman, G. Focke, W. B. Foschini, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Gibby, L. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grondin, M. -H. Grove, J. E. Grupe, D. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hoversten, E. A. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kouveliotou, C. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Raino, S. Ramirez-Ruiz, E. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Toma, K. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Ylinen, T. Ziegler, M. TI A limit on the variation of the speed of light arising from quantum gravity effects SO NATURE LA English DT Article ID GAMMA-RAY BURSTS; HIGH-ENERGY; VIOLATION; EMISSION; PHOTONS; LORENTZ; TESTS; FOAM AB A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light. C1 [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Abdo, A. A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.; Troja, E.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ramirez-Ruiz, E.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM,CEA IRFU,CNRS, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Chaplin, V.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; Greiner, J.; McBreen, S.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bonnell, J.; Celik, Oe; Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Troja, E.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; Gehrels, N.; Moiseev, A. A.; Spinelli, P.] Univ Maryland, College Pk, MD 20742 USA. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, F-34095 Montpellier 5, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Foschini, L.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gibby, L.] Jacobs Technol, Huntsville, AL 35806 USA. [Grupe, D.; Hoversten, E. A.; Meszaros, P.; Toma, K.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [McBreen, S.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Wu, X. F.] Chinese Acad Sci, Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210008, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Granot, J (reprint author), Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England. EM j.granot@herts.ac.uk; sylvain.guiriec@nasa.gov; ohno@astro.isas.jaxa.jp; pelassa@lpta.in2p3.fr RI Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Foschini, Luigi/H-3833-2012; Nolan, Patrick/A-5582-2009; Torres, Diego/O-9422-2016; OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Foschini, Luigi/0000-0001-8678-0324; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726 FU Royal Society Wolfson Research Merit Award; NASA United States; DRL Germany; Royal Swedish Academy of Sciences; K. A. Wallenberg Foundation; Canon Foundation in Europe FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy for science analysis during the operations phase is also acknowledged. J. Granot gratefully acknowledges a Royal Society Wolfson Research Merit Award. The Fermi GBM Collaboration acknowledges the support of NASA in the United States and DRL in Germany. J. Conrad is a Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation. E. T. is a NASA Postdoctoral Program Fellow and a Canon Foundation in Europe Fellow. A. J. v. d. H. is a NASA Postdoctoral Program Fellow. We thank J. Ellis for comments. NR 25 TC 267 Z9 272 U1 5 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 19 PY 2009 VL 462 IS 7271 BP 331 EP 334 DI 10.1038/nature08574 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521DF UT WOS:000271899300039 PM 19865083 ER PT J AU Pearson, T Giffard, P Beckstrom-Sternberg, S Auerbach, R Hornstra, H Tuanyok, A Price, EP Glass, MB Leadem, B Beckstrom-Sternberg, JS Allan, GJ Foster, JT Wagner, DM Okinaka, RT Sim, SH Pearson, O Wu, ZN Chang, J Kaul, R Hoffmaster, AR Brettin, TS Robison, RA Mayo, M Gee, JE Tan, P Currie, BJ Keim, P AF Pearson, Talima Giffard, Philip Beckstrom-Sternberg, Stephen Auerbach, Raymond Hornstra, Heidie Tuanyok, Apichai Price, Erin P. Glass, Mindy B. Leadem, Benjamin Beckstrom-Sternberg, James S. Allan, Gerard J. Foster, Jeffrey T. Wagner, David M. Okinaka, Richard T. Sim, Siew Hoon Pearson, Ofori Wu, Zaining Chang, Jean Kaul, Rajinder Hoffmaster, Alex R. Brettin, Thomas S. Robison, Richard A. Mayo, Mark Gee, Jay E. Tan, Patrick Currie, Bart J. Keim, Paul TI Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer SO BMC BIOLOGY LA English DT Article ID SINGLE-NUCLEOTIDE POLYMORPHISMS; SEQUENCE TYPING DATA; BURKHOLDERIA-PSEUDOMALLEI; ESCHERICHIA-COLI; NEISSERIA-MENINGITIDIS; STAPHYLOCOCCUS-AUREUS; CLINICAL PRESENTATION; POPULATION-STRUCTURE; NORTHERN AUSTRALIA; BACILLUS-ANTHRACIS AB Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of > 14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among > 1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. C1 [Pearson, Talima; Beckstrom-Sternberg, Stephen; Auerbach, Raymond; Hornstra, Heidie; Tuanyok, Apichai; Price, Erin P.; Leadem, Benjamin; Foster, Jeffrey T.; Wagner, David M.; Okinaka, Richard T.; Keim, Paul] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. [Giffard, Philip; Mayo, Mark; Currie, Bart J.] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Kelvin Grove, Australia. [Giffard, Philip] Charles Darwin Univ, Menzies Sch Hlth Res, Darwin, NT 0909, Australia. [Beckstrom-Sternberg, Stephen; Price, Erin P.; Beckstrom-Sternberg, James S.; Keim, Paul] Translat Genom Res Inst, Pathogen Genom Div, Phoenix, AZ USA. [Glass, Mindy B.; Hoffmaster, Alex R.; Gee, Jay E.] Ctr Dis Control & Prevent, Bacterial Zoonoses Branch, Div Foodborne Bacterial & Mycot Dis, Natl Ctr Zoonot Vector Borne & Enter Dis, Atlanta, GA USA. [Allan, Gerard J.] No Arizona Univ, Dept Biol Sci, Environm Genet & Genom Facil, Flagstaff, AZ 86011 USA. [Okinaka, Richard T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sim, Siew Hoon; Tan, Patrick] Def Med & Environm Res Inst, Singapore, Singapore. [Pearson, Ofori] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Wu, Zaining; Chang, Jean; Kaul, Rajinder] Univ Washington, Genome Ctr, Seattle, WA 98195 USA. [Wu, Zaining; Chang, Jean; Kaul, Rajinder] Univ Washington, Div Med Genet, Dept Med, Seattle, WA 98195 USA. [Brettin, Thomas S.] Los Alamos Natl Lab, DOE, Joint Genome Inst, Biosci Div, Los Alamos, NM USA. [Robison, Richard A.] Brigham Young Univ, Dept Mol Biol & Microbiol, Provo, UT 84602 USA. [Tan, Patrick] Genome Inst Singapore, Singapore, Singapore. [Currie, Bart J.] Royal Darwin Hosp, No Terr Clin Sch, Darwin, NT, Australia. [Auerbach, Raymond] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT USA. RP Keim, P (reprint author), No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. EM Talima.Pearson@NAU.edu; Phil.Giffard@menzies.edu.au; sbeckstrom@tgen.org; Raymond.Auerbach@yale.edu; Heidie.Hornstra-ONeill@nau.edu; apichai.tuanyok@nau.edu; Erin.price@nau.edu; wzg0@cdc.gov; bleadem1@jhu.edu; jbeckstrom@tgen.org; Gery.allan@nau.edu; jeff.foster@nau.edu; dave.wagner@nau.edu; Richard.Okinaka@nau.edu; ssiewhoo@dso.org.sg; opearson@usgs.gov; znwu@u.washington.edu; mspiggy1@u.washington.edu; rkkaul@u.washington.edu; amh9@cdc.gov; brettin@lanl.gov; richard_robison@byu.edu; Mark.mayo@menzies.edu.au; xzg4@cdc.gov; gmstanp@nus.edu.sg; bart@menzies.edu.au; paul.keim@nau.edu RI Wagner, David/A-5125-2010; Keim, Paul/A-2269-2010; Giffard, Philip/N-2293-2013; Price, Erin/N-2336-2013; OI Price, Erin/0000-0002-1079-4882; Robison, Richard/0000-0002-4324-5169; Foster, Jeffrey/0000-0001-8235-8564 FU U.S. Department of Homeland Security S&T CB Division Bioforensics R&D Program, NIH-NIAID [U54AI-56359, U01AI-075568]; Australian National Health and Medical Research Council [383504] FX We would like to thank Richard Lenski for helpful comments on a previous version of this manuscript. This work was supported by the U.S. Department of Homeland Security S&T CB Division Bioforensics R&D Program, NIH-NIAID grants U54AI-56359 and U01AI-075568, and Project Grant (no. 383504) from the Australian National Health and Medical Research Council. Use of products/names does not constitute endorsement by DHS of USG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 79 TC 67 Z9 68 U1 2 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1741-7007 J9 BMC BIOL JI BMC Biol. PD NOV 18 PY 2009 VL 7 AR 78 DI 10.1186/1741-7007-7-78 PG 14 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 526ZW UT WOS:000272336500001 PM 19922616 ER PT J AU Pan, D Zhu, QW Luo, KX AF Pan, Deng Zhu, Qingwei Luo, Kunxin TI SnoN functions as a tumour suppressor by inducing premature senescence SO EMBO JOURNAL LA English DT Article DE p53; PML (promyelocytic leukaemia); senescence; SnoN; tumour suppressor ID GROWTH-FACTOR-BETA; ONCOGENE-INDUCED SENESCENCE; ANAPHASE-PROMOTING COMPLEX; LEUKEMIA NUCLEAR-BODIES; TGF-BETA; CELLULAR SENESCENCE; PROGNOSTIC MARKER; MURINE HOMOLOG; CDNA-CLONES; P53 AB SnoN represses TGF-beta signalling to promote cell proliferation and has been defined as a proto-oncogene partly due to its elevated expression in many human cancer cells. Although the anti-tumourigenic activity of SnoN has been suggested, the molecular basis for this has not been defined. We showed here that high levels of SnoN exert anti-oncogenic activity by inducing senescence. SnoN interacts with the promyelocytic leukaemia (PML) protein and is recruited to the PML nuclear bodies where it stabilizes p53, leading to premature senescence. Furthermore, overexpression of SnoN inhibits oncogenic transformation induced by Ras and Myc in vitro and significantly blocks papilloma development in vivo in a carcinogen-induced skin tumourigenesis model. The few papillomas that were developed displayed high levels of senescence and spontaneously regressed. Our study has revealed a novel Smad-independent pathway of SnoN function that mediates its anti-oncogenic activity. The EMBO Journal (2009) 28, 3500-3513. doi:10.1038/emboj.2009.250; Published online 10 September 2009 C1 [Pan, Deng; Zhu, Qingwei; Luo, Kunxin] Univ Calif Berkeley, Dept Mol Cell Biol, Berkeley, CA 94720 USA. [Luo, Kunxin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Luo, KX (reprint author), Univ Calif Berkeley, Dept Mol Cell Biol, 16 Barker Hall,MC3204, Berkeley, CA 94720 USA. EM kluo@berkeley.edu RI Pan, Deng/F-8418-2012 FU NIH [RO1 CA101891]; Philip Morris External Research Program [019016]; DOE BCRP FX We thank Drs Ellen Solomon and Kun-Sang Chang for PML cDNA, Hitoshi Nishimura and Dragana Cado for generating the knock-in mice, and William Skarnes for advice. We are grateful to Dr Rosemary Akhurst and Marie Lee for assistance on carcinogen-induced skin tumourigenesis. We also thank Dr Judy Campisi for discussions. This study is supported funds from NIH RO1 CA101891, Philip Morris External Research Program grant 019016 to KL, and DOE BCRP pre-doctoral fellowship to DP. NR 70 TC 22 Z9 22 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD NOV 18 PY 2009 VL 28 IS 22 BP 3500 EP 3513 DI 10.1038/emboj.2009.250 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 521AR UT WOS:000271891700005 PM 19745809 ER PT J AU Van Essendelft, DT Schobert, HH AF Van Essendelft, Dirk T. Schobert, Harold H. TI Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 2. Detailed Investigation and Model Development SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CO2 MINERAL SEQUESTRATION; SULFURIC-ACID; KAOLINITE; DISSOLUTION; ADSORPTION; EXTRACTION; MOLECULES; OXIDE; DYES AB The rapid extraction of magnesium from serpentine is critical to novel low-pressure mineral carbonation methodology. Though almost any acid can dissolve the magnesium, the rate plays a critical role in the industrialization of the process. It has been demonstrated that including a low-energy, attrition-type grinding with the chemical attack of the acid can more than double the extraction rate. In part I of this investigation, it was found that a model that accounts for surface reaction, Surface speciation, the electrical double layer, particle size distribution, and ash layer diffusion can adequately describe the kinetics of the dissolution of serpentine with concurrent grinding. However, the model did not account for changes in temperature, concentration, and grinding energy input. We report here the model developments and changes as well as a detailed experimental investigation to provide validation for the model. C1 [Van Essendelft, Dirk T.; Schobert, Harold H.] Penn State Univ, Energy Inst, University Pk, PA 16802 USA. RP Van Essendelft, DT (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM dirk.vanessendelft@netl.doe.gov NR 25 TC 6 Z9 6 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 18 PY 2009 VL 48 IS 22 BP 9892 EP 9901 DI 10.1021/ie9005832 PG 10 WC Engineering, Chemical SC Engineering GA 516TU UT WOS:000271566700016 ER PT J AU Russell, RL Billing, JM Smith, HD Peterson, RA AF Russell, R. L. Billing, J. M. Smith, H. D. Peterson, R. A. TI Validation of Ultrafilter Performance Model Based on Systematic Simulant Evaluation SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID FLOW MEMBRANE FILTRATION; CONCENTRATION POLARIZATION; LAYER AB Because of limited availability of test data with actual Hanford tank-waste samples, a method was developed to estimate expected filtration performance based on physical characterization data for the Hanford Tank Waste Treatment and Immobilization Plant. This method relies upon the similarity between the gel concentration measured during crossflow filtration and the slurry concentration measured after a sample is centrifuged. Testing was performed to determine the centrifuged-solids concentration, and then a subset of simulants was tested to determine the gel concentration during crossflow filtration. These two approaches produced identical results, indicating the centrifuged-solids concentration call be used to represent the gel concentration for filtration. This substitution will allow the expected filtration performance to be characterized at a significantly reduced cost. C1 [Russell, R. L.; Billing, J. M.; Smith, H. D.; Peterson, R. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Russell, RL (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM renee.russell@pnl.gov OI Peterson, Reid/0000-0003-3368-1896 FU U.S. Department of Energy [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. This work was funded by the U.S. Department of Energy through the Office of Environmental Management and under the guidance of Bechtel National, Inc. NR 14 TC 3 Z9 3 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 18 PY 2009 VL 48 IS 22 BP 10077 EP 10086 DI 10.1021/ie901042w PG 10 WC Engineering, Chemical SC Engineering GA 516TU UT WOS:000271566700037 ER PT J AU Grest, GS Oshanin, G Webb, EB AF Grest, Gary S. Oshanin, Gleb Webb, Edmund B., III TI Dynamics of wetting PREFACE SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Editorial Material C1 [Grest, Gary S.] Sandia Natl Labs, Surface & Interface Sci, Livermore, CA 94550 USA. [Oshanin, Gleb] Univ Paris 06, Theoret Condensed Matter Lab, F-75252 Paris 05, France. [Oshanin, Gleb] Independent Univ Moscow, JV Poncelet Lab, Moscow, Russia. RP Grest, GS (reprint author), Sandia Natl Labs, Surface & Interface Sci, Livermore, CA 94550 USA. NR 9 TC 0 Z9 0 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 18 PY 2009 VL 21 IS 46 AR 460302 DI 10.1088/0953-8984/21/46/460302 PG 2 WC Physics, Condensed Matter SC Physics GA 512RR UT WOS:000271268400002 ER PT J AU Sun, Y Webb, EB AF Sun, Y. Webb, E. B., III TI The atomistic mechanism of high temperature contact line advancement: results from molecular dynamics simulations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID EMBEDDED-ATOM-METHOD; SURFACE-DIFFUSION; SOLID-SURFACE; PB; KINETICS; METALS; FILMS; AG; CU; SYSTEM AB Atomic scale phenomena driving contact line advancement during the wetting of a solid by a liquid are investigated via molecular dynamics simulations of Ag(1) drops spreading on Ni substrates. For the homologous temperature similar to 5% above melting for Ag, essentially non-reactive wetting is observed with relatively high spreading velocity. Analyzing atomic positions with time, including computing flow fields, permits investigation of atomic scale transport mechanisms associated with advancement of the contact line. Delivery of material to the contact line occurs preferentially along the liquid/vapor interface. Ag(1) atoms transported along the liquid/vapor interface become new droplet edge material, effectively displacing existing edge material. Evidence is also shown of a prominent transport and flow mechanism more typically associated with the molecular kinetic theory of spreading: some portion of Ag(1) atoms move along the solid/liquid interface to eventually occupy the contact line region. Selected atomic trajectories are shown to illustrate atoms moving with the contact line, detaching and re-attaching at sites along the solid/liquid interface. However, this latter solid/liquid interface transport mechanism contributed a lower percentage of new material to the advancing contact line compared to the liquid/vapor interface transport mechanism. Features of the AgNi system that may contribute to the dominance of a liquid/vapor interface transport mechanism are highlighted, including a relatively low liquid/vapor surface tension. C1 [Sun, Y.] Drexel Univ, Philadelphia, PA 19104 USA. [Webb, E. B., III] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sun, Y (reprint author), Drexel Univ, Philadelphia, PA 19104 USA. EM ysun@coe.drexel.edu; ebwebb@sandia.gov FU National Science Foundation [DMR-0606408] FX This work was supported in part by the National Science Foundation under Grant No. DMR-0606408. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 6 Z9 6 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 18 PY 2009 VL 21 IS 46 AR 464135 DI 10.1088/0953-8984/21/46/464135 PG 13 WC Physics, Condensed Matter SC Physics GA 512RR UT WOS:000271268400039 ER PT J AU Wang, XB Wang, YL Yang, J Xing, XP Li, J Wang, LS AF Wang, Xue-Bin Wang, Yi-Lei Yang, Jie Xing, Xiao-Peng Li, Jun Wang, Lai-Sheng TI Evidence of Significant Covalent Bonding in Au(CN)(2)(-) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; ELECTROSPRAY-IONIZATION; ELECTRONIC-STRUCTURE; GOLD; COMPLEXES; SPECTRA; CHEMISTRY; KAU(CN)2; ELEMENTS; AUCN AB The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is stilt lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoetectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability. C1 [Wang, Yi-Lei; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Wang, Xue-Bin; Yang, Jie; Xing, Xiao-Peng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Yang, Jie; Xing, Xiao-Peng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wang, Yi-Lei; Li, Jun] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Wang, Lai-Sheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. EM junli@tsinghua.edu.cn; lai-sheng_wang@brown.edu RI Li, Jun/E-5334-2011 OI Li, Jun/0000-0002-8456-3980 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; National Science Foundation [CRE-0749496]; DOE's Office of Biological and Environmental Research; NKBRSF [2006CB932305, 2007CB815200]; NSFC in China [20525104, 20933003] FX The experimental work carried out in Richland was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, and by the National Science Foundation (CRE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. The theoretical work was supported by NKBRSF (2006CB932305, 2007CB815200) and NSFC (20525104, 20933003) in China. ne calculations were per-formed using an HP Itanium2 cluster at Tsinghua National Laboratory for Information Science and Technology and at Shanghai Supercomputing Center. NR 26 TC 89 Z9 89 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 18 PY 2009 VL 131 IS 45 BP 16368 EP + DI 10.1021/ja908106e PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 518VK UT WOS:000271723000019 PM 19860420 ER PT J AU Lee, B Podsiadlo, P Rupich, S Talapin, DV Rajh, T Shevchenko, EV AF Lee, Byeongdu Podsiadlo, Paul Rupich, Sara Talapin, Dmitri V. Rajh, Tijana Shevchenko, Elena V. TI Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MONODISPERSE FEPT NANOPARTICLES; PBS NANOCRYSTALS; GOLD NANOPARTICLES; LIGAND SHELL; IN-SITU; CRYSTAL; TRANSITION; MICROSCOPY; MONOLAYERS; DISORDER AB We evaluated the difference between randomly packed NCs (disordered films), periodic films, and three-dimensional crystals in terms of their lattice structure and interparticle spacing using time-resolved small-angle X-ray scattering (SAXS) technique. The work was performed on nanocrystal solids formed by 7 nm PbS nanocrystals capped with oleic acid. We have found that interparticle spacing in faceted three-dimensional crystals is similar to 25% smaller as compared with three-dimensional films formed by solvent evaporation. We showed that interparticle spacing in faceted three-dimensional crystals is significantly smaller than the length of a fully extended molecule of oleic acid, and hence, full interdigitation of molecules from neighboring particle is doubtful. Also we demonstrated that postpreparative mild thermal treatment allows further manipulation of interparticle spacing. C1 [Podsiadlo, Paul; Talapin, Dmitri V.; Rajh, Tijana; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rupich, Sara; Talapin, Dmitri V.] Univ Chicago, Chicago, IL 60637 USA. RP Shevchenko, EV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM eshevchenko@anl.gov OI Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; University of Chicago; NSF MRSEC Program [DMR-0213745] FX The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. D.V.T. acknowledges financial support from the University of Chicago and NSF MRSEC Program under Award Number DMR-0213745. NR 35 TC 35 Z9 35 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 18 PY 2009 VL 131 IS 45 BP 16386 EP + DI 10.1021/ja906632b PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 518VK UT WOS:000271723000025 PM 19863066 ER PT J AU Hiraoka, Y Dernburg, AF AF Hiraoka, Yasushi Dernburg, Abby F. TI The SUN Rises on Meiotic Chromosome Dynamics SO DEVELOPMENTAL CELL LA English DT Review ID SPINDLE POLE BODY; NUCLEAR-MEMBRANE PROTEIN; FISSION YEAST; BUDDING YEAST; C-ELEGANS; BOUQUET FORMATION; SACCHAROMYCES-CEREVISIAE; CAENORHABDITIS-ELEGANS; ANCHOR TELOMERES; DOMAIN PROTEINS AB Recent studies in diverse eukaryotes have implicated a family of nuclear envelope proteins containing SUN domains as key components of meiotic nuclear organization and chromosome dynamics. In many cases, these transmembrane proteins are also known to contribute to centrosome or spindle pole body function in mitotically dividing cells. During meiotic prophase, the apparent role of these SUN-domain proteins, together with their partner KASH-domain proteins, is to connect chromosomes through the intact nuclear envelope to force-generating mechanisms in the cytoplasm. C1 [Hiraoka, Yasushi] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan. [Hiraoka, Yasushi] Natl Inst Informat & Commun Technol, Kobe Adv ICT Res Ctr, Nishi Ku, Kobe, Hyogo 6512492, Japan. [Dernburg, Abby F.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Hiraoka, Y (reprint author), Osaka Univ, Grad Sch Frontier Biosci, 1-3 Yamadaoka, Suita, Osaka 5650871, Japan. EM hiraoka@fbs.osaka-u.ac.jp; afdernburg@lbl.gov RI Hiraoka, Yasushi/B-5111-2009; OI Hiraoka, Yasushi/0000-0001-9407-8228; Dernburg, Abby/0000-0001-8037-1079 FU Howard Hughes Medical Institute NR 71 TC 120 Z9 120 U1 1 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1534-5807 J9 DEV CELL JI Dev. Cell PD NOV 17 PY 2009 VL 17 IS 5 BP 598 EP 605 DI 10.1016/j.devcel.2009.10.014 PG 8 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 523US UT WOS:000272100700005 PM 19922865 ER PT J AU del Campo, V Cisternas, E Taub, H Vergara, I Corrales, T Soza, P Volkmann, UG Bai, MJ Wang, SK Hansen, FY Mo, HD Ehrlich, SN AF del Campo, Valeria Cisternas, Edgardo Taub, Haskell Vergara, Ignacio Corrales, Tomas Soza, Pamela Volkmann, Ulrich G. Bai, Mengjun Wang, Siao-Kwan Hansen, Flemming Y. Mo, Haiding Ehrlich, Steven N. TI Structure and Growth of Vapor-Deposited n-Dotriacontane Films Studied by X-ray Reflectivity SO LANGMUIR LA English DT Article ID ALKANE FILMS; SIO2 SURFACE; MONOLAYERS; GRAPHITE AB We have used synchrotron X-ray reflectivity measurements to investigate the structure n-dotriacontane (n-C32H66 or C32) films deposited from the vapor phase onto it SiO2-coated Si(100) surface. Our primary motivation was to determine whether the structure and growth mode of these films differ from those deposited from solution on the same substrate. The vapor-deposited films had it thickness of similar to 50 angstrom thick as monitored to red in situ by high-resolution ellipsometry and were stable in air. Similar to the case of solution-deposited C32 films, we find that film growth ill vacuum begins with a nearly complete bilayer adjacent to file SiO2 surface formed by C32 molecules aligned with their long axis parallel to the interface followed by one or more partial layers of perpendicular molecules. These molecular layers coexist with bulk particles at higher coverages. Furthermore, after thermally cycling our vapor-deposited samples at atmospheric pressure above the bulk C32 melting point, we find the structure odour Films as a function of temperature to be consistent with it phase diagram inferred previously for similarly treated solution-deposited films. Our results resolve Some Of the discrepancies that Basu and Satija (Basu, S.: Satija, S. K. Langmuir 2007, 23, 8331) found between the structure of vapor-deposited and solution-deposited films of intermediate-length alkanes at room temperature. C1 [Taub, Haskell; Bai, Mengjun; Wang, Siao-Kwan] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Taub, Haskell; Bai, Mengjun; Wang, Siao-Kwan] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO 65211 USA. [del Campo, Valeria; Cisternas, Edgardo; Vergara, Ignacio; Corrales, Tomas; Soza, Pamela; Volkmann, Ulrich G.] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile. [Hansen, Flemming Y.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. [Mo, Haiding] Adv Optowave Corp, Holbrook, NY 11741 USA. [Ehrlich, Steven N.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Taub, H (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RI Corrales, Tomas/I-1969-2013; Volkmann, Ulrich/H-1802-2014; Corrales, Tomas/F-1717-2016 FU Chilean government [1060628]; CONICYT scholarships [7080105]; U.S. National Science Foundation [DMR-0705974] FX This work was supported by the Chilean government through FONDECYT Grant Nos. 1060628 and 7080105 by CONICYT scholarships (VA.C., E.C., and P.S.), and by the U.S. National Science Foundation under Grant No. DMR-0705974. NR 15 TC 11 Z9 11 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 17 PY 2009 VL 25 IS 22 BP 12962 EP 12967 DI 10.1021/la901808t PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 516DV UT WOS:000271522800020 PM 19583228 ER PT J AU Christine, CW Starr, A Larson, PS Eberling, JL Jagust, WJ Hawkins, RA VanBrocklin, HF Wright, JF Bankiewicz, KS Aminoff, MJ AF Christine, C. W. Starr, P. A. Larson, P. S. Eberling, J. L. Jagust, W. J. Hawkins, R. A. VanBrocklin, H. F. Wright, J. F. Bankiewicz, K. S. Aminoff, M. J. TI Safety and tolerability of putaminal AADC gene therapy for Parkinson disease SO NEUROLOGY LA English DT Article ID PHASE-I TRIAL; ADENOASSOCIATED VIRUS; MOTOR FLUCTUATIONS; OPEN-LABEL; AAV-HAADC; DELIVERY; INFUSION; PRIMATES; MONKEYS; VECTOR AB Background: In Parkinson disease (PD), the benefit of levodopa therapy becomes less marked over time, perhaps because degeneration of nigrostrial neurons causes progressive loss of aromatic L-amino acid decarboxylase (AADC), the enzyme that converts levodopa into dopamine. In a primate model of PD, intrastriatal infusion of an adeno-associated viral type 2 vector containing the human AADC gene (AAV-hAADC) results in robust response to low-dose levodopa without the side effects associated with higher doses. These data prompted a clinical trial. Methods: Patients with moderately advanced PD received bilateral intraputaminal infusion of AAV-hAADC vector. Low-dose and high-dose cohorts (5 patients in each) were studied using standardized clinical rating scales at baseline and 6 months. PET scans using the AADC tracer [18F] fluoro-L-m-tyrosine (FMT) were performed as a measure of gene expression. Results: The gene therapy was well tolerated, but 1 symptomatic and 2 asymptomatic intracranial hemorrhages followed the operative procedure. Total and motor rating scales improved in both cohorts. Motor diaries also showed increased on-time and reduced off-time without increased "on" time dyskinesia. At 6 months, FMT PET showed a 30% increase of putaminal uptake in the low-dose cohort and a 75% increase in the high-dose cohort. Conclusion: This study provides class IV evidence that bilateral intrastriatal infusion of adeno-associated viral type 2 vector containing the human AADC gene improves mean scores on the Unified Parkinson's Disease Rating Scale by approximately 30% in the on and off states, but the surgical procedure may be associated with an increased risk of intracranial hemorrhage and self-limited headache. Neurology (R) 2009; 73: 1662-1669 C1 [Christine, C. W.; Bankiewicz, K. S.; Aminoff, M. J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Starr, P. A.; Larson, P. S.; Bankiewicz, K. S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA. [Hawkins, R. A.; VanBrocklin, H. F.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Eberling, J. L.] Michael J Fox Fdn Parkinsons Res, New York, NY USA. [Jagust, W. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Jagust, W. J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Wright, J. F.] Univ Penn, Sch Med, Philadelphia, PA 19104 USA. RP Aminoff, MJ (reprint author), Univ Calif San Francisco, Dept Neurol, 505 Parnassus Ave,Room 795-M, San Francisco, CA 94143 USA. EM aminoffm@neurology.ucsf.edu FU NIH [NINDS 5U10NS044460, RO1NS046487, AG027859, AG027984, AG 024904, AG030241, R01 CA119414, R01 CA135626, R01 CA135358, S10 RR023051, R01 CA94253-01, R01 EB000482-01, U54 CA90788, U10 NS044460, R01 NS37167]; Avigen, Inc.; Genzyme Corporation; Dystonia Medical Research Foundation FX Aminoff served as Editor-in-Chief of Muscle & Nerve (1998-2007); receives royalties from publishing Neurology & General Medicine (Elsevier, 2008), Electrodiagnosis in Clinical Neurology (Elsevier, 2005), Clincal Neurology (McGraw-Hill, 2009), chapters in Cecil Textbook of Medicine (W. B. Saunders; 2004 and 2008), Harrison's Principles of Internal Medicine (McGraw-Hill, 1994-2008), Handbook of Clinical Neurology (Elsevier; 2003-2009), and Current Medical Diagnosis & Treatment (McGraw-Hill, 1985-2009); has received honoraria for lectures or educational activities not funded by industry; serves as Editor-in-chief, Neurology section, Up-to-Date, for which he receives royalties; and receives research support from Genzyme Corporation, the NIH [NINDS 5 U10 NS044460 (Site PI) and R01 NS37167 (Site PI)] and the University of Rochester. NR 20 TC 162 Z9 167 U1 4 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0028-3878 J9 NEUROLOGY JI Neurology PD NOV 17 PY 2009 VL 73 IS 20 BP 1662 EP 1669 DI 10.1212/WNL.0b013e3181c29356 PG 8 WC Clinical Neurology SC Neurosciences & Neurology GA 520FD UT WOS:000271824800010 PM 19828868 ER PT J AU Dobrzhinetskaya, LF Wirth, R Yang, JS Hutcheon, ID Weber, PK Green, HW AF Dobrzhinetskaya, Larissa F. Wirth, Richard Yang, Jingsui Hutcheon, Ian D. Weber, Peter K. Green, Harry W., II TI High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE boron nitride; coesite after stishovite; Luobasa chromitite; TiO(2) II; titanium nitride-osbornite ID CARBON ISOTOPIC COMPOSITION; LUOBUSA OPHIOLITE; PERIDOTITE MASSIF; 300 KILOMETERS; UPPER-MANTLE; SUTURE ZONE; NITROGEN; STISHOVITE; COESITE; GARNET AB The deepest rocks known from within Earth are fragments of normal mantle (approximate to 400 km) and metamorphosed sediments (approximate to 350 km), both found exhumed in continental collision terranes. Here, we report fragments of a highly reduced deep mantle environment from at least 300 km, perhaps very much more, extracted from chromite of a Tibetan ophiolite. The sample consists, in part, of diamond, coesite-after-stishovite, the high-pressure form of TiO(2), native iron, high-pressure nitrides with a deep mantle isotopic signature, and associated SiC. This appears to be a natural example of the recently discovered disproportionation of Fe2(+) at very high pressure and consequent low oxygen fugacity (fO(2)) in deep Earth. Encapsulation within chromitite enclosed within upwelling solid mantle rock appears to be the only vehicle capable of transporting these phases and preserving their low-fO(2) environment at the very high temperatures of oceanic spreading centers. C1 [Dobrzhinetskaya, Larissa F.; Green, Harry W., II] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA. [Dobrzhinetskaya, Larissa F.; Green, Harry W., II] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA. [Wirth, Richard] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. [Yang, Jingsui] Inst Geol, Key Lab Continental Dynam, Beijing 100037, Peoples R China. [Hutcheon, Ian D.; Weber, Peter K.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. RP Dobrzhinetskaya, LF (reprint author), Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA. EM larissa@ucr.edu FU Chinese National Science Foundation; University of California Lab Fees Research Program [09LR-05-116946DOBL] FX We thank W. Heinrich (GeoForschungsZentrum Potsdam), A. Navrotsky (University of California, Davis), and A. El Goresy (Bayreuth Geoinstitute, Bayreuth, Germany) for discussions of nitrogen significance for Earth's deep interior; L. Nittler for assistance with image processing; and two anonymous reviewers for their fruitful comments on the manuscript. This work was supported by the Chinese National Science Foundation (to J.Y.) and a GeoForschungsZentrum travel grant (to L. F. D.) L. F. D.'s research was partly supported by University of California Lab Fees Research Program Grant 09LR-05-116946DOBL. NR 39 TC 52 Z9 55 U1 3 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 17 PY 2009 VL 106 IS 46 BP 19233 EP 19238 DI 10.1073/pnas.0905514106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521GC UT WOS:000271907400005 PM 19880742 ER PT J AU Gelinas, AD Paschini, M Reyes, FE Heroux, A Batey, RT Lundblad, V Wuttke, DS AF Gelinas, Amy D. Paschini, Margherita Reyes, Francis E. Heroux, Annie Batey, Robert T. Lundblad, Victoria Wuttke, Deborah S. TI Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE end capping; Stn1; Ten1; Cdc13; t-RPA ID SINGLE-STRANDED-DNA; CRYSTAL-STRUCTURE; END-PROTECTION; MAMMALIAN TELOMERES; RAD9 CHECKPOINT; BINDING; CDC13; RECOGNITION; COMPLEX; MUTANTS AB Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity. C1 [Gelinas, Amy D.; Reyes, Francis E.; Batey, Robert T.; Wuttke, Deborah S.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Paschini, Margherita; Lundblad, Victoria] Salk Inst Biol Studies, Mol & Cell Biol Lab, La Jolla, CA 92037 USA. [Paschini, Margherita] Univ Calif San Diego, Div Biol Sci, La Jolla, CA USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Wuttke, DS (reprint author), Univ Colorado, Dept Chem & Biochem, UCB 215, Boulder, CO 80309 USA. EM deborah.wuttke@colorado.edu RI Batey, Robert/A-8265-2009 OI Batey, Robert/0000-0002-1384-6625 FU National Science Foundation [0617956]; University of Colorado Cancer Center Pilot Award; National Institutes of Health (NIH) [GM083953]; Mathers Charitable Foundation; NIH Training Appointment [T32 GM-008732] FX We thank Dr. David McKay for assistance with crystallography, Dr. PeterBaumannfor providing a S. pombecDNAlibrary, and Sarah Altschuler for valuable comments on the manuscript. This work was supported by the National Science Foundation Grant 0617956 (to D. S. W.), University of Colorado Cancer Center Pilot Award (to D. S. W.), National Institutes of Health (NIH) Grant GM083953 (to R. T. B.), the G. Harold and Leila Y. Mathers Charitable Foundation (to V. L.), and NIH Training Appointment T32 GM-008732 (to A. D. G.). NR 36 TC 41 Z9 41 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 17 PY 2009 VL 106 IS 46 BP 19298 EP 19303 DI 10.1073/pnas.0909203106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521GC UT WOS:000271907400016 PM 19884503 ER PT J AU Uchida, M McDermott, G Wetzler, M Le Gros, MA Myllys, M Knoechel, C Barron, AE Larabell, CA AF Uchida, Maho McDermott, Gerry Wetzler, Modi Le Gros, Mark A. Myllys, Markko Knoechel, Christian Barron, Annelise E. Larabell, Carolyn A. TI Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID ANTIMICROBIAL PEPTIDES; DRUG DISCOVERY; SACCHAROMYCES-CEREVISIAE; SPATIAL-RESOLUTION; FUNGAL-INFECTIONS; CELLS; EPIDEMIOLOGY; MICROSCOPY; RESISTANCE; NUCLEOLUS AB The opportunistic pathogen Candida albicans can undergo phenotypic switching between a benign, unicellular phenotype and an invasive, multicellular form that causes candidiasis. Increasingly, strains of Candida are becoming resistant to antifungal drugs, making the treatment of candidiasis difficult, especially in immunocompromised or critically ill patients. Consequently, there is a pressing need to develop new drugs that circumvent fungal drug-resistance mechanisms. In this work we used soft X-ray tomography to image the subcellular changes that occur as a consequence of both phenotypic switching and of treating C. albicans with antifungal peptoids, a class of candidate therapeutics unaffected by drug resistance mechanisms. Peptoid treatment suppressed formation of the pathogenic hyphal phenotype and resulted in striking changes in cell and organelle morphology, most dramatically in the nucleus and nucleolus, and in the number, size, and location of lipidic bodies. In particular, peptoid treatment was seen to cause the inclusion of lipidic bodies into the nucleus. C1 [Uchida, Maho; McDermott, Gerry; Myllys, Markko; Knoechel, Christian; Larabell, Carolyn A.] Univ Calif San Francisco, Sch Med, Dept Anat, San Francisco, CA 94143 USA. [Wetzler, Modi; Barron, Annelise E.] Stanford Univ, Dept Bioengn, Palo Alto, CA 94304 USA. [Le Gros, Mark A.; Larabell, Carolyn A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Myllys, Markko] Univ Jyvaskyla, Dept Phys, SF-40351 Jyvaskyla, Finland. RP Larabell, CA (reprint author), Univ Calif San Francisco, Sch Med, Dept Anat, San Francisco, CA 94143 USA. EM carolyn.larabell@ucsf.edu RI Uchida, Maho/E-1637-2011; Barron, Annelise/B-7639-2009 FU Department of Energy Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Institutes of Health (NIH) National Institute for Allergy and Infectious Diseases [GM072666]; NIH National Center for Research Resources [RR019664] FX We thank Zeny Serrano for her skillful assistance with cell culture and peptoid treatment; Drs. Weiwei Gu and Dula Parkinson for assistance in the processing and alignment of the projection images and in the calculation of the tomographic reconstructions; and Tyler M. Miller for help with the peptoid synthesis. This work was funded by the Department of Energy Office of Biological and Environmental Research Grant DE-AC02-05CH11231, the National Institutes of Health (NIH) National Institute for Allergy and Infectious Diseases Grant GM072666, and the NIH National Center for Research Resources Grant RR019664. NR 42 TC 63 Z9 65 U1 5 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 17 PY 2009 VL 106 IS 46 BP 19375 EP 19380 DI 10.1073/pnas.0906145106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521GC UT WOS:000271907400029 PM 19880740 ER PT J AU Guzman, J Shin, SJ Liao, CY Yuan, CW Stone, PR Dubon, OD Yu, KM Beeman, JW Watanabe, M Ager, JW Chrzan, DC Haller, EE AF Guzman, J. Shin, S. J. Liao, C. Y. Yuan, C. W. Stone, P. R. Dubon, O. D. Yu, K. M. Beeman, J. W. Watanabe, M. Ager, J. W., III Chrzan, D. C. Haller, E. E. TI Photoluminescence enhancement of Er-doped silica containing Ge nanoclusters SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; erbium; germanium; ion implantation; nanostructured materials; optical films; photoluminescence; silicon compounds ID RARE-EARTH IONS; SI NANOCRYSTALS; ENERGY-TRANSFER; ERBIUM; EXCITATION; SIO2-FILMS AB The photoluminescence (PL) of Er-doped silica films containing Ge nanoclusters synthesized by ion implantation was investigated. The area of the 1540 nm Er3+ PL peak was enhanced by up to a factor of 200 by the addition of Ge nanoclusters. The PL enhancement was found to be proportional to the concentration of Ge atoms. Control experiments with argon ion implantation were used to show that the enhancement is due to the presence of Ge and not radiation damage. Furthermore, the Er3+ PL was found to be strongly influenced by the postgrowth annealing and the crystallinity of the Ge nanoclusters. C1 [Guzman, J.; Shin, S. J.; Liao, C. Y.; Yuan, C. W.; Stone, P. R.; Dubon, O. D.; Chrzan, D. C.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Guzman, J.; Shin, S. J.; Liao, C. Y.; Yuan, C. W.; Stone, P. R.; Dubon, O. D.; Yu, K. M.; Beeman, J. W.; Ager, J. W., III; Chrzan, D. C.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Watanabe, M.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Guzman, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM eehaller@lbl.gov RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 FU Berkeley Graduate Fellowship; National Science Foundation; National Defense Science and Engineering; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U. S. Department of Energy [DE-AC02-05CH11231]; U. S. NSF [DMR-0405472, DMR-0902179] FX J.G. acknowledges support from the Berkeley Graduate Fellowship. P. R. S. acknowledges support from the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship. This work is supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and in part by U. S. NSF Grant No. DMR-0405472 and DMR-0902179. NR 17 TC 4 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 201904 DI 10.1063/1.3266846 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200025 ER PT J AU Highstrete, C Lee, M Talin, AA Vance, AL AF Highstrete, Clark Lee, Mark Talin, A. Alec Vance, Andrew L. TI Microwave conductance spectra of single-walled carbon nanotube arrays SO APPLIED PHYSICS LETTERS LA English DT Article DE carbon nanotubes; high-frequency effects ID TRANSPORT; CONTACTS; SILICON; MODEL AB Complex conductance spectra of single-walled carbon nanotube (SWCNT) arrays have been measured from 0.1 to 50 GHz at temperatures between 4 and 293 K. Using purely capacitive contacts to separate contact effects from the NTs' response, the intrinsic SWCNT array conductance increased with frequency as f(s) with exponent s=0.67 +/- 0.08 regardless of array size and temperature. The spectra are consistent with the behavior found in many strongly inhomogeneous electronic systems. The origin of disorder in these arrays is likely topological rather than energetic. C1 [Highstrete, Clark; Lee, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Talin, A. Alec; Vance, Andrew L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Highstrete, C (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mlee1@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported from the Sandia Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 5 Z9 5 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 203111 DI 10.1063/1.3263708 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200058 ER PT J AU Li, HQ Misra, A Baldwin, JK Picraux, ST AF Li, Hongqi Misra, Amit Baldwin, Jon K. Picraux, S. T. TI Synthesis and characterization of nanoporous Pt-Ni alloys SO APPLIED PHYSICS LETTERS LA English DT Article DE elastic constants; foams; hardness; nanopatterning; nanoporous materials; nickel alloys; platinum alloys; thermal stability ID THIN-FILMS; MECHANICAL-BEHAVIOR; GOLD; PLATINUM; AU AB Two nanoporous Pt-Ni alloys were synthesized by dealloying ternary amorphous Si-Pt-Ni precursors. Both foams have nearly the same composition, ligament diameter size, and density. However, their ligament patterns are different, depending on the microstructure of precursors. The difference in morphology is shown to have a profound effect on mechanical properties. The structure with well-aligned long nanoligaments exhibited over 50% higher hardness and stiffness than the structure with short random-oriented nanoligaments. These nanoporous Pt-Ni structures are thermally stable at 300 degrees C. C1 [Li, Hongqi; Misra, Amit; Baldwin, Jon K.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Li, HQ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM hongqi2007@gmail.com RI Li, Hongqi/B-6993-2008; Misra, Amit/H-1087-2012 FU DOE; Office of Science, Office of Basic Energy Sciences FX This study was supported by the DOE, Office of Science, Office of Basic Energy Sciences. The work was performed at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. NR 28 TC 14 Z9 14 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 201902 DI 10.1063/1.3265744 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200023 ER PT J AU Nordberg, EP Stalford, HL Young, R Eyck, GA Eng, K Tracy, LA Childs, KD Wendt, JR Grubbs, RK Stevens, J Lilly, MP Eriksson, MA Carroll, MS AF Nordberg, E. P. Stalford, H. L. Young, R. Ten Eyck, G. A. Eng, K. Tracy, L. A. Childs, K. D. Wendt, J. R. Grubbs, R. K. Stevens, J. Lilly, M. P. Eriksson, M. A. Carroll, M. S. TI Charge sensing in enhancement mode double-top-gated metal-oxide-semiconductor quantum dots SO APPLIED PHYSICS LETTERS LA English DT Article DE MIS structures; point contacts; semiconductor quantum dots ID SINGLE-ELECTRON SPIN; BLOCKADE AB Laterally coupled charge sensing of quantum dots is highly desirable because it enables measurement even when conduction through the quantum dot itself is suppressed. In this work, we demonstrate such charge sensing in a double-top-gated metal-oxide-semiconductor system. The current through a point contact constriction integrated near a quantum dot shows sharp 2% changes corresponding to charge transitions between the dot and a nearby lead. We extract the coupling capacitance between the charge sensor and the quantum dot, and we show that it agrees well with a three-dimensional capacitance model of the integrated sensor and quantum dot system. C1 [Nordberg, E. P.; Lilly, M. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Nordberg, E. P.; Eriksson, M. A.] Univ Wisconsin, Madison, WI 53706 USA. [Stalford, H. L.] Univ Oklahoma, Norman, OK 73019 USA. RP Nordberg, EP (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. EM epnordberg@wisc.edu FU Sandia National Laboratories Directed Research; Sandia National Laboratories; Sandia Corporation; Lockheed-Martin Co.; U. S. Department of Energy [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. DOE, Office of Basic Energy Sciences user facility. The work at both Sandia National Laboratories and the University of Wisconsin was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 21 TC 24 Z9 24 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 202102 DI 10.1063/1.3259416 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200029 ER PT J AU Parashar, ND Keavney, DJ Wessels, BW AF Parashar, N. D. Keavney, D. J. Wessels, B. W. TI Electronic structure of substitutional Mn in epitaxial In0.965Mn0.035Sb film SO APPLIED PHYSICS LETTERS LA English DT Article DE electronic structure; ferromagnetic materials; III-V semiconductors; indium compounds; magnetic circular dichroism; magnetic epitaxial layers; magnetic structure; magnetisation; manganese compounds; semimagnetic semiconductors; X-ray absorption spectra ID 2P ABSORPTION-SPECTRA; FERROMAGNETIC SEMICONDUCTOR; MAGNETIC SEMICONDUCTOR; TRANSITION; DICHROISM; ORDER AB The magnetic and electronic structure of Mn in In0.965Mn0.035Sb ferromagnetic semiconductor thin film was studied by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. Comparison with atomic multiplet calculations suggests that manganese substitutes on sites with tetrahedral symmetry. Strong magnetic dichroism was observed from 5 to 300 K, at an applied field of 2 T. The temperature dependence of dichroism indicates presence of two magnetic Mn species having very similar spectral features. A high temperature species dominates the dichroic response over 50-300 K and a low temperature species is observed below 50 K. C1 [Parashar, N. D.; Wessels, B. W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Parashar, N. D.; Wessels, B. W.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Keavney, D. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Parashar, ND (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM b-wessels@northwestern.edu RI Wessels, Bruce/B-7541-2009 FU National Science Foundation (NSF) [DMR-0804479]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06 CH11357] FX The authors thank Qing Ma from DND-CAT, Argonne National Laboratory for technical discussion regarding EXAFS experiments. This work is supported by the National Science Foundation (NSF) under Grant No. DMR-0804479. Use of the Advanced Photon Source at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06 CH11357. NR 24 TC 6 Z9 6 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 201905 DI 10.1063/1.3256192 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200026 ER PT J AU Selinsky, RS Keavney, DJ Bierman, MJ Jin, S AF Selinsky, Rachel S. Keavney, David J. Bierman, Matthew J. Jin, Song TI Element-specific magnetometry of EuS nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article DE europium compounds; ferromagnetic materials; magnetic circular dichroism; magnetic moments; magnetic semiconductors; magnetometers; nanofabrication; nanostructured materials; wide band gap semiconductors; X-ray absorption spectra ID MAGNETIC-PROPERTIES; NANOPARTICLES; SEMICONDUCTORS; SPINTRONICS; ELECTRONICS; GDS AB A soft x-ray absorption and x-ray magnetic circular dichroism (XMCD) study of the ferromagnetism in solution-grown EuS nanocrystals (NCs) is reported. The absorption edges of Eu M(5) and M(4), S K, O K, and P K were probed to determine elementally specific contributions to the magnetism of EuS NCs. Differential spin absorption was observed by XMCD at the Eu M(5,4) edges confirming the presence of a magnetic moment on the Eu(2+) 4f shell. No dichroic signal was observed for S, O, or P. Vibrating sample magnetometry of ensembles of NCs shows ferromagnetic properties consistent with the XMCD studies. C1 [Selinsky, Rachel S.; Bierman, Matthew J.; Jin, Song] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Keavney, David J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jin, S (reprint author), Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. EM jin@chem.wisc.edu RI Jin, Song/B-4300-2008; Bierman, Matthew/C-2657-2013 OI Bierman, Matthew/0000-0002-9053-6356 FU NSF [DMR-0548232]; NIH [CA126701]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work is supported by NSF (Grant No. DMR-0548232) and NIH (Grant No. CA126701). S. J. also thanks Research Corporation Cottrell Scholar award, Sloan Research Fellowship, and Dupont Young Professor Grant for support. Use of the Advance Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC0206CH11357. We would like to thank Dr. Michel van Veenendaal for his assistance with atomistic multiplet calculations. See EPAPS supplementary material at Ref. 27 for details on structure and magnetic property characterization of EuS NCs. NR 26 TC 9 Z9 9 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 202501 DI 10.1063/1.3251777 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200037 PM 20011248 ER PT J AU Zhang, GX Weeks, B Gee, R Maiti, A AF Zhang, Gengxin Weeks, Brandon Gee, Richard Maiti, Amitesh TI Fractal growth in organic thin films: Experiments and modeling SO APPLIED PHYSICS LETTERS LA English DT Article DE atomic force microscopy; dendrites; desorption; fractals; organic compounds; silicon; solidification; surface diffusion; thin films ID DIFFUSION-LIMITED AGGREGATION; NITRATE ESTERS; SURFACE AB Optical microscopy and atomic force microscopy were used to investigate the solidification process of the organic energetic material pentaerythritol tetranitrate thermally deposited on a silicon surface. The metastable films spontaneously undergo dendrite formation where the measured fractal dimensions indicate a diffusion-limited-aggregation mechanism. The branch growth rate was investigated as a function of temperature and fitted by a theoretical model that takes into account competing thermally activated processes of surface diffusion and molecular desorption. Consideration of the internal molecular degrees of freedom is shown to be essential for quantitative consistency between theory and experiment. C1 [Zhang, Gengxin; Weeks, Brandon] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. [Weeks, Brandon] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Gee, Richard; Maiti, Amitesh] Lawrence Livermore Natl Lab, Livermore, CA 94451 USA. RP Weeks, B (reprint author), Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. EM brandon.weeks@ttu.edu; amaiti@llnl.gov RI Weeks, Brandon/P-6331-2014 OI Weeks, Brandon/0000-0003-2552-4129 FU NSF CAREER [CBET-0644832]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank finical support from NSF CAREER (Grant No. CBET-0644832). The work at LLNL was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 23 TC 9 Z9 9 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 204101 DI 10.1063/1.3238316 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200078 ER PT J AU Mayer, BP Chinn, SC Maxwell, RS Reimer, JA AF Mayer, Brian P. Chinn, Sarah C. Maxwell, Robert S. Reimer, Jeffrey A. TI Modeling H-1 NMR transverse magnetization decay in polysiloxane-silica composites SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Polymers; Soft solids; NMR; Residual dipolar coupling; Mathematical modeling; Parameter identification ID MULTIPLE-QUANTUM NMR; POLY(DIMETHYLSILOXANE) NETWORK; CHAIN DYNAMICS; ELASTOMERS AB Nuclear magnetic resonance (NMR) spectroscopy has been used effectively in the analysis of elastomeric, soft materials and has been proven to be both sensitive to micro- and macroscopic changes associated with "aging" mechanisms. Traditional analyses, however, rely on empirical formulae containing a large number of (often arbitrary) independent variables. The resulting ambiguity can be circumvented largely by developing models of NMR observables that are based on basic polymer physics. We compare two such models, one previously published and one derived herein, along with two empirical expressions that describe the proton transverse magnetization decay associated with complex polymer networks. One particular extracted parameter, the proton-proton residual dipolar coupling (RDC), can be directly related to network topology, and a comparison of the extracted RDCs reveals high consistency among the models. An expression derived from the properties of a static Gaussian chain can minimize the number of parameters necessarily to describe the solid-like, networked proton population to a single independent parameter, the average RDC, D,,. The distribution of RDCs derived via this methodology is qualitatively similar to those derived from previously published multiple quantum techniques, although quantitative differences between the derived RDCs persist, suggesting that further analysis is necessary. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Mayer, Brian P.; Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Chinn, Sarah C.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reimer, JA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM reimer@berkeley.edu RI Chinn, Sarah/E-1195-2011 FU Lawrence Livermore National Laboratory,; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This work is supported by the Lawrence Livermore National Laboratory, which is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 12 TC 11 Z9 11 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4684 EP 4692 DI 10.1016/j.ces.2009.01.020 PG 9 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200026 ER PT J AU Hall, DM Lookman, T Banerjee, S AF Hall, David M. Lookman, Turab Banerjee, Sanjoy TI Non-equilibrium particle-field simulations of polymer-nanocomposite dynamics SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Nanocomposites; SCFT; HSCFT; DSCFT; Block copolymers; Nanorods; Complex fluids ID NANOPARTICLES; COMPOSITES; TRANSPORT; HYBRID AB We present a theoretical framework for simulating dynamic processes in polymeric fluids with embedded nanoparticles. The method couples an Eulerian, field-theoretic description of polymer hydrodynamics with a Lagrangian technique for tracking particles of arbitrary shape and size. Results are presented which reproduce nanoparticle localization in diblock nanosphere composites and interfacial jamming in homopolymer blend nanocomposites. Some of the method's unique capabilities are demonstrated by simulating systems containing non-spherical particles, particles of multiple sizes, and surface driven self-assembly. Published by Elsevier Ltd. C1 [Hall, David M.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Banerjee, Sanjoy] CUNY, Inst Sustainable Energy Technol, New York, NY 10031 USA. RP Hall, DM (reprint author), Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. EM halldm2000@gmail.com RI Hall, David/F-2342-2011; OI Hall, David/0000-0002-0961-1196; Hall, David/0000-0003-4663-2508; Lookman, Turab/0000-0001-8122-5671 NR 18 TC 5 Z9 5 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4754 EP 4757 DI 10.1016/j.ces.2009.07.031 PG 4 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200034 ER PT J AU McGrath, P Fojas, AM Reimer, JA Cairns, EJ AF McGrath, Patrick Fojas, Aurora Marie Reimer, Jeffrey A. Cairns, Elton J. TI Electro-oxidation kinetics of adsorbed CO on platinum electrocatalysts SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Electrocatalysis; Carbon monoxide; Platinum; Fuel cells; Adsorption ID SINGLE-CRYSTAL SURFACES; CARBON-MONOXIDE; FUEL-CELL; H-2/CO MIXTURES; 1ST PRINCIPLES; ACID-SOLUTIONS; SULFURIC-ACID; ONLINE DEMS; OXIDATION; METHANOL AB We describe the voltammetric measurement of the full oxidation of adsorbed CO on unsupported platinum electrocatalysts, with concomitant cyclic voltammetry of the hydrogen adsorption and desorption. The hydrogen region of platinum is used to parse the platinum surface into sites associated with weakly bound (WB) hydrogen and strongly bound (SB) hydrogen. By monitoring changes in the hydrogen region while following the two observed CO oxidation peaks, we are able to identify the WB sites as being the most active sites for CO(ads) electro-oxidation. The full oxidation peak is fitted to a model based on a modified Butler-Volmer equation that includes the two families of sites. Excellent agreement with experimental results is obtained, and the resulting fits yield the kinetic parameters for the two families of sites. When combined with coulometry, these kinetic analyses also show the importance of linear- and bridged-CO(ads) species in the electro-oxidation process. Limitations of the model and the role of CO(ads), dynamics amongst the various surface sites are discussed. (C) 2009 Elsevier Ltd. All rights reserved. C1 [McGrath, Patrick; Fojas, Aurora Marie; Reimer, Jeffrey A.; Cairns, Elton J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McGrath, Patrick; Fojas, Aurora Marie; Reimer, Jeffrey A.; Cairns, Elton J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Cairns, EJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM EJCairns@lbl.gov RI Cairns, Elton/E-8873-2012 OI Cairns, Elton/0000-0002-1179-7591 FU US Army Research Laboratory; US Army Research Office [48713CH] FX This material is based upon work supported by the US Army Research Laboratory and the US Army Research Office under contract/Grant no. 48713CH. NR 43 TC 4 Z9 4 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4765 EP 4771 DI 10.1016/j.ces.2009.05.053 PG 7 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200036 ER PT J AU Newman, J AF Newman, John TI Stefan-Maxwell mass transport SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Multicomponent diffusion ID LIMITING CURRENTS; DIFFUSION; MIGRATION; ELECTRODES; CONVECTION; EQUATIONS; COPPER; FLOWS AB Stefan-Maxwell multicomponent transport equations have a lot of appeal because of their symmetry and because the diffusion coefficients are independent of composition for ideal gases. A simple numerical solution method, which can easily be extended to more components, is illustrated for the popular chemical-engineering film, penetration, and boundary-layer models with a particular example of evaporation of acetone and methanol through air. Extension of each model to other geometries and chemical systems is discussed. In the boundary-layer model there is no need to assume that both total concentration and density are constant. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Newman, John] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Newman, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Newman, J (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM newman@newman.cchem.berkeley.edu RI Newman, John/B-8650-2008 OI Newman, John/0000-0002-9267-4525 NR 31 TC 6 Z9 6 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 EI 1873-4405 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4796 EP 4803 DI 10.1016/j.ces.2009.07.002 PG 8 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200039 ER PT J AU Monroe, CW Newman, J AF Monroe, Charles W. Newman, John TI Onsager's shortcut to proper forces and fluxes SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Transport phenomena; Mass transfer; Diffusion; Statistical thermodynamics; Onsager reciprocal relations; Extended Stefan-Maxwell equation ID RECIPROCAL RELATIONS; IRREVERSIBLE-PROCESSES AB In his 1931 papers, Onsager mentioned that his diffusion driving forces and fluxes, when multiplied and added pairwise, summed to the entropy generation. In 1945 he stated a minimum-dissipation principle, that any set of forces and fluxes which yield the entropy generation when so added would also yield a symmetric transport matrix. This last statement has been criticized by Coleman and Truesdell. This work discusses how to construct a transport formulation with a symmetric matrix and how to connect Onsager's forces and fluxes with gradients of mole fractions and species velocity differences. More general sets of forces and fluxes can be expressed in terms of those given here. (C) 2009 Published by Elsevier Ltd. C1 [Newman, John] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Monroe, Charles W.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Newman, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Newman, J (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM newman@newman.cchem.berkeley.edu RI Newman, John/B-8650-2008 OI Newman, John/0000-0002-9267-4525 NR 9 TC 4 Z9 4 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4804 EP 4809 DI 10.1016/j.ces.2009.05.009 PG 6 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200040 ER PT J AU Zhang, GX Spycher, N Sonnenthal, E Steefel, C AF Zhang, Guoxiang Spycher, Nicolas Sonnenthal, Eric Steefel, Carl TI Modeling acid-gas generation from boiling chloride brines SO GEOCHEMICAL TRANSACTIONS LA English DT Article ID YUCCA MOUNTAIN; THERMODYNAMIC PROPERTIES; CALCIUM-CHLORIDE; DEGREES-C; SYSTEM CACL2-H2O; NATURAL-WATERS; TRANSPORT; NEVADA; FLOW; PREDICTION AB Background: This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results: Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 degrees C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion: The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 degrees C). C1 [Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, GX (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM GXzhang@lbl.gov; NSpycher@lbl.gov; ELSonnenthal@lbl.gov; CISteefel@lbl.gov RI Steefel, Carl/B-7758-2010; Spycher, Nicolas/E-6899-2010; Sonnenthal, Eric/A-4336-2009 FU Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors would like to thank three anonymous reviewers for their careful and helpful reviews. We also thank John Apps for a very useful internal review of this paper, and Daniel Hawkes for editorial support. This manuscript has been authored by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U. S. Department of Energy. The views and opinions of authors expressed in this article do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 38 TC 3 Z9 3 U1 0 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD NOV 16 PY 2009 VL 10 BP 1 EP 10 AR 11 DI 10.1186/1467-4866-10-11 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 525MF UT WOS:000272219500001 PM 19917082 ER PT J AU Silva, GWC Yeamans, CB Sattelberger, AP Hartmann, T Cerefice, GS Czerwinski, KR AF Silva, G. W. Chinthaka Yeamans, Charles B. Sattelberger, Alfred P. Hartmann, Thomas Cerefice, Gary S. Czerwinski, Kenneth R. TI Reaction Sequence and Kinetics of Uranium Nitride Decomposition SO INORGANIC CHEMISTRY LA English DT Article ID (U,PU)N FUEL PELLETS; X-RAY; THERMODYNAMIC PROPERTIES; CARBOTHERMIC SYNTHESIS; OXIDATIVE AMMONOLYSIS; NITROGEN SYSTEM; FABRICATION; SESQUINITRIDE AB The reaction mechanism and kinetics of the thermal decomposition of uranium dinitride/uranium sesquinitride to uranium mononitride under inert atmosphere at elevated temperature were studied. An increase in the lattice parameter of the UN(2)/alpha-U(2)N(3) phase was observed as the reaction temperature increased, corresponding to a continuous removal of nitrogen. Electron density calculations for these two compounds using XRD powder patterns of the samples utilizing charge-flipping technique were performed for the first time to visualize the decrease in nitrogen level as a function of temperature. Complete decomposition of UN(2) into alpha-U(2)N(3) at 675 degrees C and the UN formation after a partial decomposition of alpha-U(2)N(3) at 975 degrees C were also identified in this study. The activation energy for the decomposition of the UN(2)/alpha-U(2)N(3) phase into UN, 423.8 +/- 0.3 kJ/mol (101.3 kcal/mol), was determined under an inert argon atmosphere and is reported here experimentally for the first time. C1 [Silva, G. W. Chinthaka; Sattelberger, Alfred P.; Hartmann, Thomas; Cerefice, Gary S.; Czerwinski, Kenneth R.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Yeamans, Charles B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Sci & Engn Directorate, Argonne, IL 60439 USA. RP Czerwinski, KR (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Box 454009,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM czerwin2@univ.nevada.edu RI Silva, Chinthaka/E-1416-2017 OI Silva, Chinthaka/0000-0003-4637-6030 FU U.S. Department of Energy [DE-FG07-OIAL67358] FX We thank Dr. Anthony Hechanova for administrating the UNLV Transmutation Research Program under the financial support of the U.S. Department of Energy (Grant DE-FG07-OIAL67358). We are indebted to Tom O'Dou and Trevor LoNA, for Outstanding laboratory management and radiation safety. NR 35 TC 31 Z9 32 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 16 PY 2009 VL 48 IS 22 BP 10635 EP 10642 DI 10.1021/ic901165j PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 514XC UT WOS:000271428600022 PM 19845318 ER PT J AU Jakubikova, E Chen, WZ Dattelbaum, DM Rein, FN Rocha, RC Martin, RL Batista, ER AF Jakubikova, Elena Chen, Weizhong Dattelbaum, Dana M. Rein, Francisca N. Rocha, Reginaldo C. Martin, Richard L. Batista, Enrique R. TI Electronic Structure and Spectroscopy of [Ru(tpy)(2)](2+), [Ru(tpy)(bpy)(H2O)](2+), and [Ru(tpy)(bpy)(Cl)](+) SO INORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; POLYPYRIDYL COMPLEXES; EXCITATION-ENERGIES; ABSORPTION-SPECTRA; TIO2 FILMS; RUTHENIUM; OXIDATION; MOLECULES; FORCE; NANOCRYSTALLINE AB We use a combined, theoretical and experimental, approach to investigate the spectroscopic properties and electronic structure of three ruthenium polypyridyl complexes, [Ru(tpy)(2)](2+), [Ru(tpy)(bpy)(H2O)](2+), and [Ru(tpy)(bpy)(Cl)](+) (tpy = 2,2':6,2 ''-terpyridine and bpy = 2,2'-bipyridine) in acetone, dichloromethane, and water. All three complexes display strong absorption bands in the visible region corresponding to a metal-to-ligand-charge-transfer (MLCT) transition, as well as the emission bands arising from the lowest lying (MLCT)-M-3 state. [Ru(tpy)(bpy)(Cl)](+) undergoes substitution of the Cl- ligand by H2O in the presence of water. Density functional theory (DFT) calculations demonstrate that the triplet potential energy surfaces of these molecules are complicated, with several metal-centered ((MC)-M-3) and (MLCT)-M-3 states very close in energy. Solvent effects are included in the calculations via the polarizable continuum model as well as explicitly, and it is shown that they are critical for proper characterization of the triplet excited states of these complexes. C1 [Jakubikova, Elena; Chen, Weizhong; Dattelbaum, Dana M.; Rein, Francisca N.; Rocha, Reginaldo C.; Martin, Richard L.; Batista, Enrique R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rocha, RC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rcrocha@lanl.gov; erb@lanl.gov FU Laboratory Directed Research and Development (LDRD); Los Alamos National Laboratory is operated by Los Alamos National Security; U.S. Department of Energy [DE-AC52-06NA25396] FX We would like to thank Drs. Gabriel Montano and Andrew Dattelbaum for help with emission measurements and Dr. Sergei Tretial, for providing us with a program for Computing the Huang-Rhys factors. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory, Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 36 TC 57 Z9 57 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 16 PY 2009 VL 48 IS 22 BP 10720 EP 10725 DI 10.1021/ic901477m PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 514XC UT WOS:000271428600032 PM 19842666 ER PT J AU McIntyre, A AF McIntyre, Annie TI Final institute report refines, forecasts cyber-security issues SO OIL & GAS JOURNAL LA English DT Article C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McIntyre, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM amcinty@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Homeland Security under the auspices of the Institute for Information Infrastructure Protection (I3P) [2006-CS-001-000001] FX Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; This material is based upon work supported by the US Department of Homeland Security under Grant Award Number 2006-CS-001-000001, under the auspices of the Institute for Information Infrastructure Protection (I3P) research program. The I3P is managed by Dartmouth College. NR 8 TC 0 Z9 0 U1 0 U2 0 PU PENNWELL PUBL CO ENERGY GROUP PI TULSA PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA SN 0030-1388 J9 OIL GAS J JI Oil Gas J. PD NOV 16 PY 2009 VL 107 IS 43 BP 52 EP 57 PG 6 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 670XQ UT WOS:000283463800016 ER PT J AU Shifman, M Unsal, M AF Shifman, M. Uensal, M. TI Multiflavor QCD* on R-3 x S-1: Studying transition from Abelian to non-Abelian confinement SO PHYSICS LETTERS B LA English DT Article ID CHIRAL-SYMMETRY BREAKING; DUALITY AB The center-stabilized multiflavor QCD* theories formulated on R-3 x S-1 exhibit both Abelian and non-Abelian confinement as a function of the S, radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r(S-1), we show Occurrence of a mass gap ill gauge fluctuations, and linear confinement. This is a regime of confinement without Continuous chiral symmetry breaking (chi SB). Unlike one-flavor theories where there is no phase transition in r(S-1), the multiflavor theories possess a single phase transition associated with breaking of the continuous chi S. We conjecture that the scale of the chi SB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shifman, M.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Uensal, M.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Uensal, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Shifman, M (reprint author), Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. EM shifman@umn.edu FU DOE [DE-FG02-94ER-40823]; US Department of Energy [DE-AC02-76SF00515] FX We are grateful to E. Poppitz for useful discussions. M.S. is supported in part by DOE Grant DE-FG02-94ER-40823. The work of M.U. is supported by the US Department of Energy Grant DE-AC02-76SF00515. NR 10 TC 10 Z9 10 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 16 PY 2009 VL 681 IS 5 BP 491 EP 494 DI 10.1016/j.physletb.2009.10.060 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 523WC UT WOS:000272104300020 ER PT J AU Roman, MO Schaaf, CB Woodcock, CE Strahler, AH Yang, XY Braswell, RH Curtis, PS Davis, KJ Dragoni, D Goulden, ML Gu, LH Hollinger, DY Kolb, TE Meyers, TP Munger, JW Privette, JL Richardson, AD Wilson, TB Wofsy, SC AF Roman, Miguel O. Schaaf, Crystal B. Woodcock, Curtis E. Strahler, Alan H. Yang, Xiaoyuan Braswell, Rob H. Curtis, Peter S. Davis, Kenneth J. Dragoni, Danilo Goulden, Michael L. Gu, Lianhong Hollinger, David Y. Kolb, Thomas E. Meyers, Tilden P. Munger, J. William Privette, Jeffrey L. Richardson, Andrew D. Wilson, Tim B. Wofsy, Steven C. TI The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; BRDF; Surface albedo; Validation; Spatial analysis; Remote sensing; AmeriFlux; FLUXNET; EOS Land Validation Core Sites; ETM; 6S; Geostatistics ID LAND-SURFACE ALBEDO; BROAD-BAND CONVERSIONS; BIDIRECTIONAL REFLECTANCE; NADIR REFLECTANCE; NORTHERN ARIZONA; CARBON STORAGE; NARROW-BAND; BRDF MODELS; VALIDATION; VEGETATION AB A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel. (C) 2009 Elsevier Inc. All rights reserved. C1 [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD USA. [Roman, Miguel O.; Schaaf, Crystal B.; Woodcock, Curtis E.; Strahler, Alan H.; Yang, Xiaoyuan] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Braswell, Rob H.] Complex Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH USA. [Curtis, Peter S.] Ohio State Univ, Dept Evolut Ecol & Organism Biol, Columbus, OH 43210 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Dragoni, Danilo] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Goulden, Michael L.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hollinger, David Y.] USDA Forest Serv, No Res Stn, Durham, NH USA. [Kolb, Thomas E.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. [Meyers, Tilden P.; Wilson, Tim B.] NOAA, Atmospher Turbulence & Diffus Div, Oak Ridge, IN USA. [Munger, J. William; Wofsy, Steven C.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Privette, Jeffrey L.] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Roman, MO (reprint author), NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD USA. EM romanm@ieee.org RI Goulden, Michael/B-9934-2008; Privette, Jeffrey/G-7807-2011; Richardson, Andrew/F-5691-2011; Hollinger, David/G-7185-2012; Roman, Miguel/D-4764-2012; Meyers, Tilden/C-6633-2016; Braswell, Bobby/D-6411-2016; Munger, J/H-4502-2013; Gu, Lianhong/H-8241-2014 OI Privette, Jeffrey/0000-0001-8267-9894; Richardson, Andrew/0000-0002-0148-6714; Roman, Miguel/0000-0003-3953-319X; Braswell, Bobby/0000-0002-4061-9516; Munger, J/0000-0002-1042-8452; Gu, Lianhong/0000-0001-5756-8738 FU National Aeronautics and Space Administration [NASA-NNX07AT35H, NASA-NNX08AE94A]; U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program [DOE-DEFG02-06ER64178]; Office of Science (BER); U.S. Department of Energy [DE-FG0207ER64371] FX The authors would like to thank the anonymous reviewers whose close reading and suggestions led to a better organized and stronger paper. Support for this research was provided by the National Aeronautics and Space Administration under grants NASA-NNX07AT35H and NASA-NNX08AE94A; and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program under grant DOE-DEFG02-06ER64178. Research at the MMSF site was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG0207ER64371. NR 71 TC 91 Z9 105 U1 6 U2 50 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 16 PY 2009 VL 113 IS 11 BP 2476 EP 2498 DI 10.1016/j.rse.2009.07.009 PG 23 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 506DW UT WOS:000270754800019 ER PT J AU Polsky, R Washburn, CM Montano, G Liu, HQ Edwards, TL Lopez, DM Harper, JC Brozik, SM Wheeler, DR AF Polsky, Ronen Washburn, Cody M. Montano, Gabriel Liu, Haiqing Edwards, Thayne L. Lopez, DeAnna M. Harper, Jason C. Brozik, Susan M. Wheeler, David R. TI Reactive Ion Etching of Gold-Nanoparticle-Modified Pyrolyzed Photoresist Films SO SMALL LA English DT Article DE carbon electrodes; electrodeposition; nanoparticles; reactive ion etching ID GLASSY-CARBON ELECTRODES; FABRICATION; SYSTEMS; SURFACE C1 [Polsky, Ronen; Washburn, Cody M.; Edwards, Thayne L.; Lopez, DeAnna M.; Harper, Jason C.; Brozik, Susan M.; Wheeler, David R.] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Montano, Gabriel; Liu, Haiqing] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Brozik, SM (reprint author), Sandia Natl Labs, Dept Biosensors & Nanomat, POB 5800,MS-0892, Albuquerque, NM 87185 USA. EM smbrozi@sandia.gov; drwheel@sandia.gov FU United States Department of Energy [DE-AC04-94AL8500]; Lockheed Martin Shared Vision Program FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL8500. This work was partially funded under the Lockheed Martin Shared Vision Program. We also thank Bonnie McKenzie for SEM imaging. NR 18 TC 5 Z9 5 U1 2 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV 16 PY 2009 VL 5 IS 22 BP 2510 EP 2513 DI 10.1002/smll.200901007 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 525OB UT WOS:000272224400002 PM 19714735 ER PT J AU Sun, W Wang, GF Fang, N Yeung, ES AF Sun, Wei Wang, Gufeng Fang, Ning Yeung, Edward S. TI Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells SO ANALYTICAL CHEMISTRY LA English DT Article ID SURFACE-PLASMON RESONANCE; PENETRATING PEPTIDES; SINGLE; SPECTROSCOPY AB Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging. C1 [Fang, Ning] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM nfang@iastate.edu RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011 FU U.S. Department of Energy by Iowa State University [DE-AC020-7CH11358]; Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC020-7CH11358. This work was supported by the Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. The first two authors contributed equally to this work. NR 22 TC 37 Z9 37 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2009 VL 81 IS 22 BP 9203 EP 9208 DI 10.1021/ac901623b PG 6 WC Chemistry, Analytical SC Chemistry GA 518AQ UT WOS:000271662400001 PM 19788254 ER PT J AU Du, D Wang, J Smith, JN Timchalk, C Lin, YH AF Du, Dan Wang, Jun Smith, Jordan N. Timchalk, Charles Lin, Yuehe TI Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection SO ANALYTICAL CHEMISTRY LA English DT Article ID CHEMICAL WARFARE NERVE; IN-VITRO; ACETYLCHOLINESTERASE BIOSENSOR; SALIVARY CHOLINESTERASE; PESTICIDES; ASSAY; INHIBITION; MECHANISM; OXIMES; MATRIX AB A portable, rapid, and sensitive assessment of subclinical organophosphorus (OP) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Because of the extent of interindividual ChE activity variability, ChE biomonitoring often requires an initial baseline determination (noninhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript describes an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (after reactivation by an oxime, i.e., pralidoxime iodide) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity (5% ChE inhibition) and selectivity. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experimental parameters, e.g., inhibition and reactivation time, have been optimized such that 92-95% of ChE reactivation can be achieved over a broad range of ChE inhibition (5-94%) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements. On the basis of the double determinations of enzyme activity, this flow-injection device has been successfully used to detect paraoxon inhibition efficiency in saliva samples (95% of ChE activity is due to butyrylcholinesterase), which demonstrated its promise as a sensitive monitor of OP exposure in biological fluids. Since it excludes inter- or intraindividual variation in the normal levels of ChE, this new CNT-based electrochemical sensor thus provides a sensitive and quantitative tool for point-of-care assessment and noninvasive biomonitoring of the exposure to OP pesticides and chemical nerve agents. C1 [Du, Dan; Wang, Jun; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Du, Dan; Lin, Yuehe] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU CDC/NIOSH [R01 OH008173-01]; National Institute of Neurological Disorders and Stroke, NIH [U01 NS058161-01]; National Natural Science Foundation of China [20705010]; Research Fund for the Doctoral Program of Higher Education of China [20070511015]; DOE [DE-AC05-76RL01830] FX The work was done at Pacific Northwest National Laboratory (PNNL) and supported partially by CDC/NIOSH Grant R01 OH008173-01 and Grant Number U01 NS058161-01 from the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke, NIH. This work was also supported partially by the National Natural Science Foundation of China (Grant 20705010) and the Research Fund for the Doctoral Program of Higher Education of China (Grant 20070511015). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 44 TC 56 Z9 60 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2009 VL 81 IS 22 BP 9314 EP 9320 DI 10.1021/ac901673a PG 7 WC Chemistry, Analytical SC Chemistry GA 518AQ UT WOS:000271662400015 PM 19839597 ER PT J AU Martin, AN Farquar, GR Steele, PT Jones, AD Frank, M AF Martin, Audrey N. Farquar, George R. Steele, Paul T. Jones, A. Daniel Frank, Matthias TI Use of Single Particle Aerosol Mass Spectrometry for the Automated Nondestructive Identification of Drugs in Multicomponent Samples SO ANALYTICAL CHEMISTRY LA English DT Article ID DESORPTION ELECTROSPRAY-IONIZATION; PHARMACEUTICAL SAMPLES; AMBIENT CONDITIONS; TABLETS; ELECTROPHORESIS; PRODUCTS; SECONDS AB In this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles. Active ingredients were identified from the parent ions and fragment ions formed from each sample, and alarm files were developed for each active ingredient, allowing successful automated identification of each compound in a mixture. The alarm algorithm developed for SPAMS correctly identified all drug compounds in all single-ingredient and multi-ingredient tablets studied. A further study demonstrated the ability of this technique to identify the active ingredient in a single tablet analyzed in the presence of several other nonidentical tablets. In situ measurements were also made by sampling directly from a drug sample in its original bottle. A single tablet embedded in 11 identical tablets of different composition was detected in this manner. Overall, this work demonstrates the ability of the SPAMS technique to detect a target drug compound both in complex tablets, i.e., multidrug ingredient tablets, and complex sampling environments, i.e., multitablet sampling sources. The technique is practically nondestructive, leaving the characteristic shape, color, and imprint of a tablet intact for further analysis. Applications of this technique may include forensic and pharmaceutical analysis. C1 [Martin, Audrey N.; Farquar, George R.; Steele, Paul T.; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Martin, Audrey N.; Jones, A. Daniel] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Martin, Audrey N.; Jones, A. Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Farquar, GR (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM gfarquar@llnl.gov RI Jones, Arthur/C-2670-2013; Frank, Matthias/O-9055-2014 OI Jones, Arthur/0000-0002-7408-6690; FU LLNL; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The original development of the SPAMS system at LLNL was partially funded through the LLNL Laboratory Directed Research and Development (LDRD) program and through DARPA and TSWG of the Department of Defense. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 34 TC 5 Z9 5 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2009 VL 81 IS 22 BP 9336 EP 9342 DI 10.1021/ac901208h PG 7 WC Chemistry, Analytical SC Chemistry GA 518AQ UT WOS:000271662400018 PM 19842633 ER PT J AU Qafoku, NP Kukkadapu, RK McKinley, JP Arey, BW Kelly, SD Wang, CM Resch, CT Long, PE AF Qafoku, Nikolla P. Kukkadapu, Ravi K. McKinley, James P. Arey, Bruce W. Kelly, Shelly D. Wang, Chongmin Resch, Charles T. Long, Philip E. TI Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; CONTAMINATED AQUIFER; SULFIDE MINERALS; IRON SULFIDE; ADSORPTION; SURFACE; U(VI); COMPLEXATION; REDUCTION; GOETHITE AB Samples of a naturally bioreduced, U-contaminated alluvial sediment were characterized with various microscopic and spectroscopic techniques and wet chemical extraction methods. The objective was to investigate U association and interaction with minerals of the sediment. Bioreduced sediment comprises similar to 10% of an alluvial aquifer adjacent to the Colorado River, in Rifle, CO, that was the site of a former U milling operation. Past and ongoing research has demonstrated that bioreduced sediment is elevated in solid-associated U, total organic carbon, and acid-volatile sulfide, and depleted in bioavailable Fe(III) confirming that sulfate and Fe(III) reduction have occurred naturally in the sediment SEM/EDS analyses demonstrated that framboidal pyrites (FeS2) of different sizes (similar to 10-20 mu m in diameter), and of various microcrystal morphology, degree of surface weathering, and internal porosity were abundant in the <53 mu m fraction (silt + clay) of the sediment and absent in adjacent sediments that were not bioreduced. SEM-EMPA, XRF, EXAFS, and XANES measurements showed elevated U was present in framboidal pyrite as both U(VI) and U(M. This result indicates that U may be sequestered in situ under conditions of microbially driven sulfate reduction and pyrite formation. Conversely, such pyrites in alluvial sediments provide a long-term source of U under conditions of slow oxidation, contributing to the persistence of U of some U plumes. These results may also help in developing remedial measures for U-contaminated aquifers. C1 [Qafoku, Nikolla P.; McKinley, James P.; Arey, Bruce W.; Wang, Chongmin; Resch, Charles T.; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kelly, Shelly D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Qafoku, NP (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM nik.qafoku@pnl.gov RI ID, MRCAT/G-7586-2011; Long, Philip/F-5728-2013; OI Long, Philip/0000-0003-4152-5682; Qafoku, Nikolla P./0000-0002-3258-5379 FU U.S. Department of Energy (DOE), Office of Science [DE-AC06-76RLO 1830, DE-AC02-06CH11357] FX N.P.Q. and R.K.K. contributed equally to this work. This research was supported by the U.S. Department of Energy (DOE), Office of Science, Environmental Remediation Sciences Program (ERSP), through the Integrated Field Research Challenge Site (IFRC) at Rifle, CO. Pacific Northwest National Laboratory is operated for the Department of Energy (DOE) by Battelle Memorial Institute under the Contract DE-AC06-76RLO 1830. The research presented in this paper was conducted in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory in Richland, WA. Use of the Advanced Photon Source (APS) at the Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We acknowledge the contribution made by Soma Chattopadyay and Tomohiro Shibata to the EXAFS and XANES measurements made at APS, and Herbert T. Schaef (PNNL) for the XRD analysis. NR 42 TC 42 Z9 42 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8528 EP 8534 DI 10.1021/es9017333 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400013 PM 20028047 ER PT J AU Miller, CL Southworth, G Brooks, S Liang, LY Gu, BH AF Miller, Carrie L. Southworth, George Brooks, Scott Liang, Liyuan Gu, Baohua TI Kinetic Controls on the Complexation between Mercury and Dissolved Organic Matter in a Contaminated Environment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REDUCED SULFUR GROUPS; WASTE-WATER EFFLUENT; HUMIC SUBSTANCES; FLORIDA EVERGLADES; METHYL MERCURY; NATURAL-WATERS; STRONG HG(II); BINDING; SOIL; CONSTANTS AB The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems have often been overlooked, We examined the rates of Hg-NOM complexation both in a contaminated Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using reducible Hg (Hg(R)) measurements and C(18) solid phase extraction techniques. Of the filterable Hg at the headwaters of UEFPC, >90% was present as HgR and this fraction decreased downstream but remained >29% of the filterable Hg at all sites. The presence of higher HgR concentrations than would be predicted under equilibrium conditions in UEFPC and in experiments with a NOM isolate suggests that kinetic reactions are controlling the complexation between Hg and NOM. The slow formation of Hg-NOM complexes is attributed to competitive ligand exchange among various moieties and functional groups in NOM with a range of binding strengths and configurations. This study demonstrates the need to consider the effects of Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning. C1 [Miller, Carrie L.; Southworth, George; Brooks, Scott; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Miller, CL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM millercl@ornl.gov; gub1@ornl.gov RI Gu, Baohua/B-9511-2012; Miller, Carrie/B-8943-2012; Liang, Liyuan/O-7213-2014 OI Gu, Baohua/0000-0002-7299-2956; Liang, Liyuan/0000-0003-1338-0324 FU Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This research is part of the Science Focus Area (SFA) at Oak Ridge National Laboratory (ORNL) supported by the Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE). ORNL is managed by UT-Battelle LLC for the U.S. DOE under contract DE-AC05-00OR22725. NR 32 TC 50 Z9 52 U1 1 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8548 EP 8553 DI 10.1021/es901891t PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400016 PM 20028050 ER PT J AU Zheng, JY Shao, M Che, WW Zhang, LJ Zhong, LJ Zhang, YH Streets, D AF Zheng, Junyu Shao, Min Che, Wenwei Zhang, Lijun Zhong, Liuju Zhang, Yuanhang Streets, David TI Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation Potential in the Pearl River Delta, China SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; LIQUEFIED PETROLEUM GAS; NONMETHANE HYDROCARBONS; SOURCE APPORTIONMENT; REGION AB The Pearl River Delta region (PRD) of China has long suffered from severe ground-level ozone pollution. Knowledge of the sources of volatile organic compounds (VOCs) is essential for ozone chemistry. In this work, a speciated VOC emission inventory was established on the basis of updated emissions and local VOC source profiles. The top 10 species, in terms of ozone formation potentials (OFPs), consisted of isoprene, mp-xylene, toluene, ethylene, propene, o-xylene, 1,2,4-trimethylbenzene, 2-methyl-2-butene, 1-butene, and alpha-pinene. These species contributed only 35.9% to VOCs emissions but accounted for 64.1% of the OFP in the region. The spatial patterns of the VOC source inventory agreed well with city-based source apportionment results, especially for vehicle emissions and industry plus VOC product-related emissions. Mapping of the UPS and measured ozone concentrations indicated that the formation of higher ozone in the south and southeast of the PRD region differed from that in the Conghua area, a remote area in the north of the PRD. We recommend that the priorities for the control of VOC sources include motorcycles, gasoline vehicles, and solvent use because of their larger OFP contributions. C1 [Shao, Min; Zhang, Yuanhang] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. [Zheng, Junyu; Che, Wenwei; Zhang, Lijun] S China Univ Technol, Univ Town, Coll Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China. [Zhong, Liuju] Guangzhou Environm Monitoring Ctr, Guangzhou 510045, Guangdong, Peoples R China. [Streets, David] Argonne Natl Lab, Argonne, IL 60439 USA. RP Shao, M (reprint author), Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. EM mshao@pku.edu.cnUH RI Zhang, Yuanhang/F-7038-2011; SHAO, Min/C-7351-2014; OI Streets, David/0000-0002-0223-1350 FU Ministry of Science and Technology of China [2006AA06A305, 2006AA06A308, 2006AA06A309] FX This work was supported by the Ministry of Science and Technology of China (2006AA06A305, 2006AA06A308, and 2006AA06A309). NR 32 TC 68 Z9 94 U1 24 U2 151 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8580 EP 8586 DI 10.1021/es901688e PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400021 PM 20028055 ER PT J AU Savarese, F Davila, A Nechanitzky, R De La Rosa-Velazquez, I Pereira, CF Engelke, R Takahashi, K Jenuwein, T Kohwi-Shigematsu, T Fisher, AG Grosschedl, R AF Savarese, Fabio Davila, Amparo Nechanitzky, Robert De La Rosa-Velazquez, Inti Pereira, Carlos F. Engelke, Rudolf Takahashi, Keiko Jenuwein, Thomas Kohwi-Shigematsu, Terumi Fisher, Amanda G. Grosschedl, Rudolf TI Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression SO GENES & DEVELOPMENT LA English DT Article DE Embryonic stem cells; pluripotency; differentiation; Satb1; Satb2; Nanog ID MAR-BINDING PROTEIN; SELF-RENEWAL; ES CELLS; CHROMATIN-STRUCTURE; FACTOR OCT4; PLURIPOTENCY; TRANSCRIPTION; GENES; CIRCUITRY; LOCUS AB Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog high cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-) Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency. C1 [Savarese, Fabio; Davila, Amparo; Nechanitzky, Robert; Engelke, Rudolf; Grosschedl, Rudolf] Max Planck Inst Immunobiol, Dept Cellular & Mol Immunol, D-79108 Freiburg, Germany. [De La Rosa-Velazquez, Inti; Jenuwein, Thomas] Max Planck Inst Immunobiol, Dept Epigenet, D-79108 Freiburg, Germany. [Pereira, Carlos F.; Fisher, Amanda G.] Univ London Imperial Coll Sci Technol & Med, MRC, Ctr Clin Sci, London W12 ONN, England. [Takahashi, Keiko; Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Grosschedl, R (reprint author), Max Planck Inst Immunobiol, Dept Cellular & Mol Immunol, D-79108 Freiburg, Germany. EM grosschedl@immunbio.mpg.de RI Pereira, Carlos/B-8438-2013; OI Pereira, Carlos/0000-0002-9724-1382; Engelke, Rudolf/0000-0001-6773-0655 FU Max Planck Society; German Research Foundation [SFB746] FX We thank Marcel Dautzenberg and Albert Grunder for assistance in the generation of the ES cell lines, Steffie Fietze for assistance in the genotyping of the established cell lines, and Hye-Jung Han for discussions. We are grateful to Austin Smith for providing the Oct4-IRES-HygTKpA vector and valuable discussions, and to Erwin Wagner for comments on the manuscripts. F. S. is the recipient by a FWF Erwin Schroedinger fellowship. This work was supported by funds of the Max Planck Society and a grant of the German Research Foundation (SFB746). NR 55 TC 69 Z9 71 U1 0 U2 9 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0890-9369 J9 GENE DEV JI Genes Dev. PD NOV 15 PY 2009 VL 23 IS 22 BP 2625 EP 2638 DI 10.1101/gad.1815709 PG 14 WC Cell Biology; Developmental Biology; Genetics & Heredity SC Cell Biology; Developmental Biology; Genetics & Heredity GA 519XT UT WOS:000271803900007 PM 19933152 ER PT J AU Prietzel, J Tyufekchieva, N Eusterhues, K Kogel-Knabner, I Thieme, J Paterson, D McNulty, I de Jonge, M Eichert, D Salome, M AF Prietzel, Joerg Tyufekchieva, Nora Eusterhues, Karin Koegel-Knabner, Ingrid Thieme, Juergen Paterson, David McNulty, Ian de Jonge, Martin Eichert, Diane Salome, Murielle TI Anoxic versus oxic sample pretreatment: Effects on the speciation of sulfur and iron in well-aerated and wetland soils as assessed by X-ray absorption near-edge spectroscopy (XANES) SO GEODERMA LA English DT Article DE S speciation; Fe speciation; Freshwater wetlands; Cambisol; Stagnosol; Histosol ID FRESH-WATER WETLAND; ACID SULFATE SOILS; ORGANIC SULFUR; FORESTED CATCHMENT; SULFIDE OXIDATION; HUMIC SUBSTANCES; PEAT; REDUCTION; SEDIMENTS; CLUSTERS AB For a toposequence with increasing groundwater influence (Cambisol, Stagnosol, Histosol) and with different groundwater regimes (Histosols 1 and 2) in a forested watershed in the Fichtelgebirge (Germany), the speciation of sulfur (S) and iron (Fe) in the soils was assessed by X-ray absorption near-edge spectroscopy (XANES) after anoxic and conventional oxic sample pretreatments. For samples with anoxic pretreatment, the contribution of reduced inorganic S compounds (monosulfide, pyrite) to total S increased with soil depth for the Cambisol and the Stagnosol, but decreased for the Histosols; the opposite trend was noticed for the contribution of reduced organic S (organic mono- and disulfides, thiols). The contribution of reduced S to the soil S pool increased and the contribution of oxidized S compounds decreased in the sequence Cambisol-Stagnosol-Histosol 1 (permanently anoxic). Histosol 2 (seasonally oxic) showed a markedly larger contribution of oxidized and intermediate S compounds to total S than Histosol 1. The dominating Fe-bearing phases in the Cambisol were Fe(III) oxyhydroxides; the contribution of sulfide-bound Fe was < 5% of total Fe in all horizons. In Histosol 1, the contribution of sulfide-bound Fe increased with soil depth up to 50% in the Cr horizon, whereas in Histosol 2 Fe(III) phases strongly dominated in all horizons. After conventional oxic sample pretreatment, the contribution of reduced inorganic S to total S was markedly decreased in all soils. In the organic surface horizons, the contribution of reduced organic S was increased to the same extent: the contribution of oxidized S (sulfate) remained more or less unchanged. In the mineral soil, the contribution of sulfate and the mean oxidation state of sulfur (MOS) were strongly increased after oxic sample preparation. In Histosol 1, oxic sample pretreatment resulted in oxidation of labile Fe(II) compounds, probably sulfides or Fe(II)-S-org-complexes, to Fe(III). Our study shows that for anoxic wetland soils which contain inorganic sulfide and/or divalent Fe, the exclusion Of O(2) during the entire period between sampling and analysis is crucial for a correct S and Fe speciation. Only after appropriate sample preparation, clear relationships between the mean oxidation states of S and Fe (MOFe) on one hand and soil hydrological conditions on the other become evident: a concomitant systematic decrease of MOS and MOFe from the well-aerated Cambisol to the permanently anoxic Histosol 1, and larger MOS and MOFe in the seasonally oxic Histosol 2 than in Histosol 1 indicate a close coupling of S and Fe cycling in the soils. Finally, the results of our study suggest that in organic horizons of wetland soils inorganic sulfide S is overestimated and reduced organic S is underestimated by S K-edge XANES, if a significant portion of the thiol groups in reduced organic S is complex-bound to Fe(2+) or other chalcophilic metal cations. This is supported by the observation that synthetic organic compounds (cysteine; 1,3,5-trimer-captotriazine [TMT]; ferredoxin) after addition of Fe show spectra with pre-edge peaks at energies <2472 eV that are typical for inorganic sulfide. (C) 2009 Elsevier B.V. All rights reserved. C1 [Prietzel, Joerg; Tyufekchieva, Nora; Eusterhues, Karin; Koegel-Knabner, Ingrid] Tech Univ Munich, Lehrstuhl Bodenkunde, D-85354 Freising Weihenstephan, Germany. [Thieme, Juergen] Univ Gottingen, Inst Rontgenphys, D-37077 Gottingen, Germany. [Paterson, David; McNulty, Ian; de Jonge, Martin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Eichert, Diane; Salome, Murielle] European Synchrotron Radiat Facil, Xray Microscopy Beamline ID 21, F-38043 Grenoble, France. RP Prietzel, J (reprint author), Tech Univ Munich, Lehrstuhl Bodenkunde, Hochanger 2, D-85354 Freising Weihenstephan, Germany. EM prietzel@wzw.tum.de RI de Jonge, Martin/C-3400-2011; Thieme, Juergen/D-6814-2013; Kogel-Knabner, Ingrid/A-7905-2008; OI Kogel-Knabner, Ingrid/0000-0002-7216-8326; Eusterhues, Karin/0000-0003-1754-2298 FU Deutsche Forschungsgerneinschaft (DFG); U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31 109-Eng-38] FX We gratefully acknowledge the assistance of Mrs. B. Angres and Mrs. G. Harrington during sample preparation and analysis. The study was funded by the Deutsche Forschungsgerneinschaft (DFG); grant Pr 534/4. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science under Contract No. W-31 109-Eng-38. NR 55 TC 13 Z9 13 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 J9 GEODERMA JI Geoderma PD NOV 15 PY 2009 VL 153 IS 3-4 BP 318 EP 330 DI 10.1016/j.geoderma.2009.08.015 PG 13 WC Soil Science SC Agriculture GA 516SF UT WOS:000271562200004 ER PT J AU Ao, T Knudson, MD Asay, JR Davis, JP AF Ao, T. Knudson, M. D. Asay, J. R. Davis, J. -P. TI Strength of lithium fluoride under shockless compression to 114 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELASTIC PRECURSOR DECAY; X-RAY-DIFFRACTION; ISENTROPIC COMPRESSION; CONSTITUTIVE MODEL; LIF; ALUMINUM; INTERFEROMETER; VELOCITIES; CRYSTALS; SOLIDS AB A magnetic loading technique was used to ramp load single-crystal [100] lithium fluoride specimens to peak stresses of 5-114 GPa. Wave analysis of in situ particle velocity profiles was used to estimate the compressive strength of LiF at peak stress. It was found that the strength increased with peak stress and showed two distinct regions of hardening; the first is believed to be governed by strain hardening and the second by pressure hardening. The quasielastic strain obtained from the initial part of the unloading was shown to saturate at about 1.3% for peak stresses greater than approximately 30 GPa. Over the studied pressure range, the measured strength of LiF varied from its initial value of 0.08 to about 1.1 GPa at the highest compressed state of 114 GPa. Comparison of the measured strength to results from two strength models showed good agreement. It was demonstrated that the strength of LiF introduces systematic error of about 10% when used as an interferometer window for measurements of material strength in isentropic compression experiments. (C) 2009 American Institute of Physics. [doi:10.1063/1.3259387] C1 [Ao, T.; Knudson, M. D.; Asay, J. R.; Davis, J. -P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ao, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tao@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank the operational crews of both the Z and Veloce machines for performing the isentropic compression experiments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 55 TC 14 Z9 17 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103507 DI 10.1063/1.3259387 PG 12 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300019 ER PT J AU Barron, SC Noginov, MM Werder, D Schneemeyer, LF van Dover, RB AF Barron, S. C. Noginov, M. M. Werder, D. Schneemeyer, L. F. van Dover, R. B. TI Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ULTRAVIOLET OZONE OXIDATION; HAFNIUM OXIDE; THIN-FILMS; ELECTRICAL CHARACTERISTICS; INTERFACIAL LAYER; HUMIDITY SENSOR; METAL-FILMS; MICROSTRUCTURE; ADSORPTION; SILICON AB We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90 degrees off-axis substrates with an applied substrate bias. Capacitive measurements of Ta(2)O(5) deposited on unbiased off-axis substrates indicate low frequency dielectric constants as high as epsilon(r) similar to 300. Low frequency loss tangents are high, tan delta > 0.5, and have a pronounced frequency dependence. Deposition of the film off-axis with sufficient applied rf bias to the substrate (negative bias >-70 V) recovers the on-axis properties typical of Ta(2)O(5), e.g., epsilon(r) similar to 22 and tan delta similar to 0.02. The recovery of normal dielectric behavior is attributed to the ion bombardment of the growing film under substrate bias, similar to on-axis depositions but absent from depositions on off-axis substrates with no applied substrate bias. We suggest that insufficiently bombarded films develop a Maxwell-Wagner type polarization along columnar voids. The void structure and the associated dielectric response vary with distance from the sputtering source due to variations in ion density and angle from the sputtering source. A similar dielectric response is observed in depositions on on-axis substrates as a function of angle from the central sputter gun axis. Our results suggest that ion bombardment is necessary for good quality sputtered dielectric films but that a controlled Ar(+) flux is essentially equivalent to the uncontrolled O(2)(-)/O(2-) flux of on-axis reactive sputtering. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253719] C1 [Barron, S. C.; van Dover, R. B.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Noginov, M. M.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Werder, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schneemeyer, L. F.] Montclair State Univ, Dept Chem & Biochem, Montclair, NJ 07043 USA. RP Barron, SC (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM vandover@cornell.edu RI van Dover, Robert/B-6362-2011 OI van Dover, Robert/0000-0002-6166-5650 FU U.S. Department of Energy [DE-FG02-06ER06-15]; National Science Foundation [ECS-0335765]; National Science Foundation Materials Research Science and Engineering Center [DMR-0520404] FX This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-06ER06-15. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation under Grant No. ECS-0335765. Additionally, this work made use of the AFM facility of the Cornell Center for Materials Research with support from the National Science Foundation Materials Research Science and Engineering Center program under Grant No. DMR-0520404. Initial studies were performed at Bell Laboratories, Lucent Technologies. NR 44 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 104110 DI 10.1063/1.3253719 PG 9 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300096 ER PT J AU Farshchi, R Hwang, DJ Chopdekar, RV Ashby, PD Grigoropoulos, CP Dubon, OD AF Farshchi, R. Hwang, D. J. Chopdekar, R. V. Ashby, P. D. Grigoropoulos, C. P. Dubon, O. D. TI Ultrafast pulsed-laser dissociation of Mn-H complexes in GaAs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SEMICONDUCTOR; SPINTRONICS; GA1-XMNXAS; (GA,MN)AS; HYDROGEN; METAL AB We demonstrate direct writing of ferromagnetism in hydrogenated Ga(0.96)Mn(0.04)As using femtosecond laser pulses. Tight beam focusing results in the local dissociation of Mn-H defect complexes with sub-500 nm resolution and no detected surface damage. Dot, line, and Hall-bar patterns were drawn in the hydrogenated films by translating the sample during laser irradiation. Magnetotransport measurements on the Hall-bar patterns reveal recovery of hole-mediated ferromagnetism with a Curie temperature of 50 K while magnetic anisotropy is similar to prehydrogenated Ga(0.96)Mn(0.04)As. Interruption of the laser beam during writing leads to the formation of a paramagnetic gap with controllable conductance separating two ferromagnetic line segments. These features, along with the laser tunability of magnetic and electrical properties in the activated regions, represent a planar approach to defining all-semiconductor spintronic structures for device applications. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253724] C1 [Farshchi, R.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Farshchi, R.; Chopdekar, R. V.; Dubon, O. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hwang, D. J.; Grigoropoulos, C. P.] Univ Calif Berkeley, Dept Mech Engn, Laser Thermal Lab, Berkeley, CA 94720 USA. [Grigoropoulos, C. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Farshchi, R (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rfarshchi@berkeley.edu; oddubon@berkeley.edu RI Chopdekar, Rajesh/D-2067-2009; Han, Kyuhee/B-6201-2009; Schaff, William/B-5839-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501; FU National Science Foundation [DMR-0526330]; U.S. Department of Energy [DE-AC02-05CH11231]; Intel Fellowship FX The authors acknowledge R R. Stone, J. W. Beeman, and E. E. Haller for ion implantation. This work was supported in part by the National Science Foundation under Contract No. DMR-0526330. Film synthesis and characterization were supported by the Director, Office of Science,. Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.F. acknowledges support from an Intel Fellowship. NR 21 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103918 DI 10.1063/1.3253724 PG 4 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300075 ER PT J AU Kobayashi, M Thareja, G Ishibashi, M Sun, Y Griffin, P McVittie, J Pianetta, P Saraswat, K Nishi, Y AF Kobayashi, Masaharu Thareja, Gaurav Ishibashi, Masato Sun, Yun Griffin, Peter McVittie, Jim Pianetta, Piero Saraswat, Krishna Nishi, Yoshio TI Radical oxidation of germanium for interface gate dielectric GeO2 formation in metal-insulator-semiconductor gate stack SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CYCLOTRON-RESONANCE PLASMA; INVERSION LAYER MOBILITY; THERMAL-OXIDATION; ELECTRICAL-PROPERTIES; MOS DEVICES; SILICON; OXYGEN; PASSIVATION; TRANSITION; DENSITY AB GeO2 was grown by a slot-plane-antenna (SPA) high density radical oxidation, and the oxidation kinetics of radical oxidation GeO2 was examined. By the SPA radical oxidation, no substrate orientation dependence of growth rate attributed to highly reactive oxygen radicals with low oxidation activation energy was demonstrated, which is highly beneficial to three-dimensional structure devices, such as multigate field-effect transistors, to form conformal gate dielectrics. The electrical properties of an aluminum oxide (Al2O3) metal-oxide-semiconductor gate stack with a GeO2 interfacial layer were investigated, showing very low interface state density (D-it), 1.4 x 10(11) cm(-2) eV(-1). By synchrotron radiation photoemission spectroscopy, the conduction and the valence band offsets of GeO2 with respect to Ge were estimated to be 1.2 +/- 0.3 and 3.6 +/- 0.1 eV, which are sufficiently high to suppress gate leakage. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3259407] C1 [Kobayashi, Masaharu; Thareja, Gaurav; Ishibashi, Masato; Griffin, Peter; McVittie, Jim; Saraswat, Krishna; Nishi, Yoshio] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Sun, Yun; Pianetta, Piero] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94305 USA. RP Kobayashi, M (reprint author), Stanford Univ, Dept Elect Engn, 420 Via Palou Mall, Stanford, CA 94305 USA. EM masaharu@stanford.edu NR 36 TC 52 Z9 52 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 104117 DI 10.1063/1.3259407 PG 7 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300103 ER PT J AU Liang, LY Li, YL Chen, LQ Hu, SY Lu, GH AF Liang, Linyun Li, Y. L. Chen, Long-Qing Hu, S. Y. Lu, Guang-Hong TI Thermodynamics and ferroelectric properties of KNbO3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FREE PIEZOELECTRIC CERAMICS; NIOBATE SINGLE-CRYSTALS; POTASSIUM NIOBATE; HIGH-PRESSURE; SPONTANEOUS POLARIZATION; ORTHORHOMBIC KNBO3; OPTICAL-PROPERTIES; PHASE-TRANSITIONS; TEMPERATURE-DEPENDENCE; REFRACTIVE-INDEXES AB The Landau-Ginzburg-Devonshire phenomenological theory is employed to model and predict the ferroelectric phase transitions and properties of single-domain potassium niobate (KNbO3). Based on the LGD theory and the experimental data of KNbO3 single crystal, an eighth-order polynomial of free energy function is proposed. The fitted coefficients are validated by comparing to a set of experimental measured values including phase transition temperatures, spontaneous polarization, dielectric constants, and lattice constants. The effects of hydrostatic pressure and external electric field on phase transition temperatures and piezoelectric coefficients are investigated. The free energy function may be used to predict ferroelectric domain structures and properties of KNbO3 bulk and films by phase-field approach. (C) 2009 American Institute of Physics. [doi:10.1063/1.3260242] C1 [Liang, Linyun; Lu, Guang-Hong] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China. [Li, Y. L.; Hu, S. Y.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Lu, GH (reprint author), Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China. EM lgh@buaa.edu.cn RI Chen, LongQing/I-7536-2012; OI Chen, LongQing/0000-0003-3359-3781; HU, Shenyang/0000-0002-7187-3082 NR 47 TC 16 Z9 16 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 104118 DI 10.1063/1.3260242 PG 9 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300104 ER PT J AU Yang, ST Matthews, MJ Elhadj, S Draggoo, VG Bisson, SE AF Yang, Steven T. Matthews, Manyalibo J. Elhadj, Selim Draggoo, Vaughn G. Bisson, Scott E. TI Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE-TEMPERATURE MEASUREMENT; LASER-BEAM; GLASS; CONDUCTIVITY; DEPENDENCE; RADIATION; EMISSIVITY AB In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 mu m CO2 laser were obtained using an infrared radiation thermometer based on a mercury cadmium telluride camera. Laser spot sizes ranged from 250 to 1000 mu m diameter with peak axial irradiance levels of 0.13-16 kW/cm(2). For temperatures below 2800 K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident. laser irradiance. The effective thermal conductivity estimated over this range was approximately 2 W/m-K, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000 K yielded thermal diffusivity, values which were close to reported values of 7 x 10(-7) m(2)/s. Above similar to 2800 K, the fused silica surface temperature asymptotically approaches 3 100 K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T-3 temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800 K heat transport due to evaporation must also be considered. The thermal transport in fused silica up to 2800 K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties. (C) 2009 American Institute of Physics. [doi:10.1063/1.3259419] C1 [Yang, Steven T.; Matthews, Manyalibo J.; Elhadj, Selim; Draggoo, Vaughn G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bisson, Scott E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Elhadj, S (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM elhadj2@llnl.gov FU Department of Energy [W-7405-Eng-48] FX The authors would like to acknowledge Dr. Jarnes Stolken, Dr. Jeffrey Bude, and Dr. Michael Feit for stimulating discussions and insights into evaluating heat transport mechanisms. Thanks are due to Dr. Michael A. Johnson for gracious use of laboratory equipment and suggesting use of thermal lacquer. This work was supported by the Department of Energy under Contract No. W-7405-Eng-48. NR 37 TC 33 Z9 33 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103106 DI 10.1063/1.3259419 PG 7 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300006 ER PT J AU Yu, KM Novikov, SV Broesler, R Demchenko, IN Denlinger, JD Liliental-Weber, Z Luckert, F Martin, RW Walukiewicz, W Foxon, CT AF Yu, K. M. Novikov, S. V. Broesler, R. Demchenko, I. N. Denlinger, J. D. Liliental-Weber, Z. Luckert, F. Martin, R. W. Walukiewicz, W. Foxon, C. T. TI Highly mismatched crystalline and amorphous GaN1-xAsx alloys in the whole composition range SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; BAND-GAP ENERGY; SOLAR-CELLS; ION-IMPLANTATION; RICH SIDE; GAINNAS; STATES; EVOLUTION; HYDROGEN AB Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17 < x < 0.75 and crystalline outside this region. The amorphous films have smooth morphology, homogeneous composition, and sharp, well defined optical absorption edges. The band gap energy varies in a broad energy range from similar to 3.4 eV in GaN to similar to 0.8 eV at x similar to 0.85. The reduction in the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x > 0.2, and to the upward movement of the valence band for alloys with x < 0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices. (C) 2009 American Institute of Physics. [doi:10.1063/1.3259434] C1 [Yu, K. M.; Broesler, R.; Liliental-Weber, Z.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Broesler, R.] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. [Demchenko, I. N.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Demchenko, I. N.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Demchenko, I. N.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Luckert, F.; Martin, R. W.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. RP Yu, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; martin, rob/A-7127-2010 OI Yu, Kin Man/0000-0003-1350-9642; martin, rob/0000-0002-6119-764X FU U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC [EP/G007160/1, EP/D051487/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at the University of Nottingham was undertaken with support from the EPSRC (Grant Nos. EP/G007160/1 and EP/D051487/1). NR 39 TC 46 Z9 47 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103709 DI 10.1063/1.3259434 PG 8 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300047 ER PT J AU Sankaran, B Bonnett, SA Shah, K Gabriel, S Reddy, R Schimmel, P Rodionov, DA de Crecy-Lagard, V Helmann, JD Iwata-Reuyl, D Swairjo, MA AF Sankaran, Banumathi Bonnett, Shilah A. Shah, Kinjal Gabriel, Scott Reddy, Robert Schimmel, Paul Rodionov, Dmitry A. de Crecy-Lagard, Valerie Helmann, John D. Iwata-Reuyl, Dirk Swairjo, Manal A. TI Zinc-Independent Folate Biosynthesis: Genetic, Biochemical, and Structural Investigations Reveal New Metal Dependence for GTP Cyclohydrolase IB SO JOURNAL OF BACTERIOLOGY LA English DT Article ID FEEDBACK REGULATORY PROTEIN; BACILLUS-SUBTILIS; GUANOSINE TRIPHOSPHATE; REACTION-MECHANISM; ESCHERICHIA-COLI; TETRAHYDROBIOPTERIN; REFINEMENT; SEQUENCE; BINDING; SYSTEM AB GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in similar to 25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e. g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn(2+)-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn(2+) starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and activesite architecture. While GCYH-IA is a unimodular, homodecameric, Zn(2+)-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development. C1 [Bonnett, Shilah A.; Iwata-Reuyl, Dirk] Portland State Univ, Dept Chem, Portland, OR 97207 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Shah, Kinjal; Swairjo, Manal A.] Western Univ Hlth Sci, Coll Osteopath Med Pacific, Dept Basic Med Sci, Pomona, CA 91766 USA. [Gabriel, Scott; Helmann, John D.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. [Reddy, Robert; Schimmel, Paul] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Chem, La Jolla, CA 92037 USA. [Reddy, Robert; Schimmel, Paul] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Mol Biol, La Jolla, CA 92037 USA. [Rodionov, Dmitry A.] Burnham Inst Med Res, La Jolla, CA 92037 USA. [de Crecy-Lagard, Valerie] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA. RP Iwata-Reuyl, D (reprint author), Portland State Univ, Dept Chem, POB 751, Portland, OR 97207 USA. EM iwatareuyld@pdx.edu; mswairjo@burnham.org OI Rodionov, Dmitry/0000-0002-0939-390X; Helmann, John/0000-0002-3832-3249 FU National Institutes of Health [GM70641, GM059323, GM15539]; National Foundation for Cancer Research; Department of Energy; National Institutes of Health; National Institute of General Medical Sciences; National Institutes of Health (NIGMS) FX This work was partly supported by National Institutes of Health grants GM70641 to D. I.-R. and V.d.C.-L., GM059323 to J.D.H., and GM15539 to P. S. and by a fellowship from the National Foundation for Cancer Research. The Stanford Synchrotron Research Laboratory Structural Molecular Biology Program is supported by the Department of Energy, National Institutes of Health, and the National Institute of General Medical Sciences. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health (NIGMS). NR 55 TC 21 Z9 21 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV 15 PY 2009 VL 191 IS 22 BP 6936 EP 6949 DI 10.1128/JB.00287-09 PG 14 WC Microbiology SC Microbiology GA 511UO UT WOS:000271195300019 PM 19767425 ER PT J AU Muller, MG Forsberg, LS Keating, DH AF Mueller, Maike G. Forsberg, Lennart S. Keating, David H. TI The rkp-1 Cluster Is Required for Secretion of Kdo Homopolymeric Capsular Polysaccharide in Sinorhizobium meliloti Strain Rm1021 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID LIPO-OLIGOSACCHARIDE SIGNALS; ROOT-NODULE ORGANOGENESIS; GRAM-NEGATIVE BACTERIA; RHIZOBIUM-MELILOTI; ESCHERICHIA-COLI; LIPOPOLYSACCHARIDE MUTANT; GENE-CLUSTER; K-ANTIGENS; AZORHIZOBIUM-CAULINODANS; SURFACE POLYSACCHARIDES AB Under conditions of nitrogen stress, leguminous plants form symbioses with soil bacteria called rhizobia. This partnership results in the development of structures called root nodules, in which differentiated endosymbiotic bacteria reduce molecular dinitrogen for the host. The establishment of rhizobium-legume symbioses requires the bacterial synthesis of oligosaccharides, exopolysaccharides, and capsular polysaccharides. Previous studies suggested that the 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo) homopolymeric capsular polysaccharide produced by strain Sinorhizobium meliloti Rm1021 contributes to symbiosis with Medicago sativa under some conditions. However, a conclusive symbiotic role for this polysaccharide could not be determined due to a lack of mutants affecting its synthesis. In this study, we have further characterized the synthesis, secretion, and symbiotic function of the Kdo homopolymeric capsule. We showed that mutants lacking the enigmatic rkp-1 gene cluster fail to display the Kdo capsule on the cell surface but accumulate an intracellular polysaccharide of unusually high M(r). In addition, we have demonstrated that mutations in kdsB2, smb20804, and smb20805 affect the polymerization of the Kdo homopolymeric capsule. Our studies also suggest a role for the capsular polysaccharide in symbiosis. Previous reports have shown that the overexpression of rkpZ from strain Rm41 allows for the symbiosis of exoY mutants of Rm1021 that are unable to produce the exopolysaccharide succinoglycan. Our results demonstrate that mutations in the rkp-1 cluster prevent this phenotypic suppression of exoY mutants, although mutations in kdsB2, smb20804, and smb20805 have no effect. C1 [Mueller, Maike G.; Keating, David H.] Loyola Univ Chicago, Dept Microbiol & Immunol, Maywood, IL 60153 USA. [Forsberg, Lennart S.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. RP Keating, DH (reprint author), Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, 3552 Microbial Sci,1550 Linden Dr, Madison, WI 53706 USA. EM dkeating@glbrc.wisc.edu FU U.S. Department of Agriculture [2005-35319-15304]; Department of Energy [DEFG02-93ER20097] FX This work was funded by Award 2005-35319-15304 from the U.S. Department of Agriculture. The Complex Carbohydrate Research Center was supported in part by Department of Energy grant DEFG02-93ER20097. NR 81 TC 10 Z9 10 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV 15 PY 2009 VL 191 IS 22 BP 6988 EP 7000 DI 10.1128/JB.00466-09 PG 13 WC Microbiology SC Microbiology GA 511UO UT WOS:000271195300024 PM 19734304 ER PT J AU Kouvelis, VN Saunders, E Brettin, TS Bruce, D Detter, C Han, C Typas, MA Pappas, KM AF Kouvelis, Vassili N. Saunders, Elizabeth Brettin, Thomas S. Bruce, David Detter, Chris Han, Cliff Typas, Milton A. Pappas, Katherine M. TI Complete Genome Sequence of the Ethanol Producer Zymomonas mobilis NCIMB 11163 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PROTEIN FAMILIES; FUEL ETHANOL; RNA GENES; DATABASE; TOOL AB Zymomonas mobilis is an ethanol-producing alphaproteobacterium currently considered a major candidate organism for bioethanol production. Here we report the finished and annotated genome sequence of Z. mobilis subsp. mobilis strain NCIMB 11163, a British ale-infecting isolate. This is the first Z. mobilis strain whose genome, chromosomal and plasmid, is presented in its entirety. C1 [Kouvelis, Vassili N.; Typas, Milton A.; Pappas, Katherine M.] Univ Athens, Dept Genet & Biotechnol, Fac Biol, Athens 15701, Greece. [Saunders, Elizabeth; Brettin, Thomas S.; Detter, Chris; Han, Cliff] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Bruce, David] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pappas, KM (reprint author), Univ Athens, Dept Genet & Biotechnol, Fac Biol, Athens 15701, Greece. EM kmpappas@biol.uoa.gr FU NKUA Research Committee [70/4/7809] FX K. M. P. acknowledges the NKUA Research Committee for providing award 70/4/7809. NR 22 TC 24 Z9 29 U1 1 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV 15 PY 2009 VL 191 IS 22 BP 7140 EP 7141 DI 10.1128/JB.01084-09 PG 2 WC Microbiology SC Microbiology GA 511UO UT WOS:000271195300041 PM 19767433 ER PT J AU Zhang, T Sun, DZ Neale, R Rasch, PJ AF Zhang, Tao Sun, De-Zheng Neale, Richard Rasch, Philip J. TI An Evaluation of ENSO Asymmetry in the Community Climate System Models: A View from the Subsurface SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; EL-NINO; LA-NINA; ATMOSPHERE MODEL; NATIONAL-CENTER; EQUATORIAL PACIFIC; TROPICAL PACIFIC; WATER-VAPOR; OCEAN; CONVECTION AB The asymmetry between El Nino and La Nina is a key aspect of ENSO that needs to be simulated well by models in order to fully capture the role of ENSO in the climate system. Here the asymmetry between the two phases of ENSO in five successive versions of the Community Climate System Model (CCSM1, CCSM2, CCSM3 at T42 resolution, CCSM3 at T85 resolution, and the latest CCSM3 + NR, with the Neale and Richter convection scheme) is evaluated. Different from the previous studies, not only is the surface signature of ENSO asymmetry examined, but so too is its subsurface signature. By comparing the differences among these models as well as the differences between the models and the observations, an understanding of the causes of the ENSO asymmetry is sought. An underestimate of the ENSO asymmetry is noted in all of the models, but the latest version with the Neale and Richter scheme (CCSM3 + NR) is getting closer to the observations than the earlier versions. The net surface heat flux is found to damp the asymmetry in the SST field in both the models and observations, but the damping effect in the models is weaker than that in the observations, thus excluding a role of the surface heat flux in contributing to the weaker asymmetry in the SST anomalies associated with ENSO. Examining the subsurface signatures of ENSO-the thermocline depth and the associated subsurface temperature for the western and eastern Pacific-reveals the same bias; that is, the asymmetry in the models is weaker than that in the observations. The analysis of the corresponding Atmospheric Model Intercomparison Project (AMIP) runs in conjunction with the coupled runs suggests that the weaker asymmetry in the subsurface signatures in the models is related to the lack of asymmetry in the zonal wind stress over the central Pacific, which in turn is due to a lack of sufficient asymmetry in deep convection (i.e., the nonlinear dependence of the deep convection on SST). In particular, the lack of a westward shift in the deep convection in the models in response to a cold phase SST anomaly is found as a common factor that is responsible for the weak asymmetry in the models. It is also suggested that a more eastward extension of the deep convection in response to a warm phase SST anomaly may also help to increase the asymmetry of ENSO. The better performance of CCSM3 + NR is apparently linked to an enhanced convection over the eastern Pacific during the warm phase of ENSO. Apparently, either a westward shift of deep convection in response to a cold phase SST anomaly or an increase of convection over the eastern Pacific in response to a warm phase SST anomaly leads to an increase in the asymmetry of zonal wind stress and therefore an increase in the asymmetry of subsurface signal, favoring an increase in ENSO asymmetry. C1 [Zhang, Tao; Sun, De-Zheng] Univ Colorado, CIRES, Boulder, CO 80305 USA. [Zhang, Tao; Sun, De-Zheng] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA. [Neale, Richard] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, T (reprint author), Univ Colorado, CIRES, 325 Broadway,R-PSD1, Boulder, CO 80305 USA. EM tao.zhang@noaa.gov FU NOAA's Climate Dynamics and Environmental Prediction Program; NSF [ATM-9912434, ATM-0331760, ATM 0553111] FX This research was supported by NOAA's Climate Dynamics and Environmental Prediction Program, and by NSF's Climate Dynamics Program under ATM-9912434, ATM-0331760, and ATM 0553111. The leading author would like to thank Jon K. Eischeid for providing the t-test code. NR 52 TC 13 Z9 13 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2009 VL 22 IS 22 BP 5933 EP 5961 DI 10.1175/2009JCLI2933.1 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521PM UT WOS:000271934200010 ER PT J AU Gilbert, B Ono, RK Ching, KA Kim, CS AF Gilbert, Benjamin Ono, Reyn K. Ching, Kristen A. Kim, Christopher S. TI The effects of nanoparticle aggregation processes on aggregate structure and metal uptake SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Adsorption; Aggregation; Desorption; EXAFS; Nanoparticle; SAXS ID HYDROUS FERRIC-OXIDE; SURFACE COMPLEXATION MODEL; SMALL-ANGLE SCATTERING; IRON OXYHYDROXIDE; EXAFS SPECTROSCOPY; FRACTAL DIMENSION; SORPTION KINETICS; LEAD SORPTION; FERRIHYDRITE; ADSORPTION AB Adsorption at the mineral-water interface is ail important process governing metal ion concentration and mobility in aqueous systems. Ferric iron oxyhydroxide nanoparticles possess a large capacity for the adsorption of heavy metals but quantification of metal uptake and sequestration is challenging due to the tendency of natural nanoparticles to aggregate in natural waters. We studied the effects of aggregation via pH, ionic strength, drying, and freezing on the uptake and release of copper from ferrihydrite nanoparticles employing small-angle X-ray scattering (SAXS) studies of aggregate morphology, macroscopic Cu(II) sorption and desorption batch experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopic studies of copper sorption geometries. Results show that the mechanism of aggregation has a large effect upon aggregate morphology and consequently on the net sorption/retention of ions from solution. While aggregation reduces the total amount of copper that can be adsorbed, it also may introduce physical constraints to desorption and/or increased proportions of higher strength binding sites that lead to greater retention, and hence more effective sequestration, of metal ion contaminants. (C) 2009 Elsevier Inc. All rights reserved. C1 [Gilbert, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gilbert, Benjamin] Chapman Univ, Schmid Coll Sci, Dept Chem, Orange, CA 92866 USA. RP Gilbert, B (reprint author), Chapman Univ, Schmid Coll Sci, Dept Chem, 1 Univ Dr, Orange, CA 92866 USA. EM cskim@chapman.edu RI Gilbert, Benjamin/E-3182-2010 FU US Department of Energy [DE-AC02-05CH11231]; American Chemical Society - Petroleum Research [PRF 44721-GB10]; Research Corporation [6940]; National Science Foundation; Division of Earth Sciences [061821711] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231, the American Chemical Society - Petroleum Research Grant, PRF #44721-GB10, Cottrell College Science Award #6940 from the Research Corporation, and the National Science Foundation, Division of Earth Sciences, Grant #061821711. Small-angle X-ray scattering experiments were performed on beamline 1-4 and the EXAFS experiments on beamline 11-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) and we thank John Pople and Joe Rogers, respectively, for their assistance. We also thank Bridget Ingham and Mike Toney for advice on the generation of pore morphologies from SAXS data. Thanks also to Chapman University Environmental Geochemistry Lab members Megan McKee and Lauryn DeGreeff for their earlier studies on pH-dependent Cu(II) uptake to ferrihydrite nanoparticles which aided in the design of the macroscopic uptake experiments, Chris Lentini for help acquiring SAXS data at beamline 1-4, and James Dale for assistance in fitting of the EXAFS data and measuring the uncertainties in copper sorption experiments. NR 57 TC 87 Z9 90 U1 8 U2 100 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD NOV 15 PY 2009 VL 339 IS 2 BP 285 EP 295 DI 10.1016/j.jcis.2009.07.058 PG 11 WC Chemistry, Physical SC Chemistry GA 506BR UT WOS:000270748500002 PM 19709669 ER PT J AU Estep, D Pernice, M Pham, D Tavener, S Wang, HY AF Estep, Don Pernice, Michael Pham, Du Tavener, Simon Wang, Haiying TI A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE A posteriori error analysis; Adjoint problem; Cell-centered finite volume method; Convection-diffusion-reaction problem; Mixed finite element method; Quadrature error; Residual error ID DIFFERENTIAL-EQUATIONS AB In this paper, we conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme for a semilinear elliptic problem. The a posteriori error analysis is based on variational analysis, residual errors and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choice of quadrature. Published by Elsevier B.V. C1 [Estep, Don; Pham, Du; Tavener, Simon; Wang, Haiying] Colorado State Univ, Dept Math, Ft Collins, CO 80524 USA. [Estep, Don] Colorado State Univ, Dept Stat, Ft Collins, CO 80524 USA. [Pernice, Michael] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wang, HY (reprint author), Colorado State Univ, Dept Math, Ft Collins, CO 80524 USA. EM estep@math.colostate.edu; Michael.Pernice@inl.gov; pham@math.colostate.edu; tavener@math.colostate.edu; wangh@math.colostate.edu NR 29 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD NOV 15 PY 2009 VL 233 IS 2 BP 459 EP 472 DI 10.1016/j.cam.2009.07.046 PG 14 WC Mathematics, Applied SC Mathematics GA 504MC UT WOS:000270619900034 ER PT J AU Sherrill, CD Sumpter, BG Sinnokrot, MO Marshall, MS Hohenstein, EG Walker, RC Gould, IR AF Sherrill, C. David Sumpter, Bobby G. Sinnokrot, Mutasem O. Marshall, Michael S. Hohenstein, Edward G. Walker, Ross C. Gould, Ian R. TI Assessment of Standard Force Field Models Against High-Quality Ab Initio Potential Curves for Prototypes of pi-pi, CH/pi, and SH/pi Interactions SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE quantum chemistry; electronic structure; coupled cluster theory; molecular mechanics; computational chemistry ID MOLECULAR-MECHANICS; NUCLEIC-ACIDS; STACKING INTERACTIONS; SEMIEMPIRICAL METHODS; BENZENE DIMERS; BASIS-SETS; ENERGY; PROTEINS; SIMULATION; SANDWICH AB Several popular force fields, namely, CHARMM, AMBER, OPLS-AA, and MM3, have been tested for their ability to reproduce highly accurate quantum mechanical potential energy curves for noncovalent interactions in the benzene dimer, the benzene-CH(4) complex, and the benzene-H(2)S complex. All of the force fields are semi-quantitatively correct, but none of them is consistently reliable quantitatively. Re-optimization of Lennard-Jones parameters and symmetry-adapted perturbation theory analysis for the benzene dimer suggests that better agreement cannot be expected unless more flexible functional forms (particularly for the electrostatic contributions) are employed for the empirical force fields. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 30: 2187-2193, 2009 C1 [Sherrill, C. David; Marshall, Michael S.; Hohenstein, Edward G.] Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sinnokrot, Mutasem O.] Univ Jordan, Dept Chem, Fac Sci, Amman 11942, Jordan. [Walker, Ross C.] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. [Gould, Ian R.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. RP Sherrill, CD (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. EM sherrill@gatech.edu RI Sumpter, Bobby/C-9459-2013 OI Sumpter, Bobby/0000-0001-6341-0355 FU National Science Foundation [CHE-0715268, 0438741]; CRIF [CHE-04-43564]; Petroleum Research Fund [44262-AC6]; Division of Scientific User Facilities; U.S. Department of Energy; SDSC Strategic Applications Collaborations program FX Contract/grant sponsor: National Science Foundation: contract/grant number: CHE-0715268 Contract/grant sponsor: CRIF: contract/grant number: CHE-04-43564 Contract/grant sponsor: Petroleum Research Fund of the ACS: contract/grant number: 44262-AC6 Contract/grant sponsor: Division of Scientific User Facilities,. U.S. Department of Energy Contract/grant sponsor: SDSC Strategic Applications Collaborations program and National Science Foundation: contract/grant number: 0438741 NR 50 TC 77 Z9 77 U1 1 U2 33 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD NOV 15 PY 2009 VL 30 IS 14 BP 2187 EP 2193 DI 10.1002/jcc.21226 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 496AL UT WOS:000269939600004 PM 19242959 ER PT J AU Ostwal, M Lau, JM Orme, CJ Stewart, FF Way, JD AF Ostwal, Mayur Lau, Joshua M. Orme, Christopher J. Stewart, Frederick F. Way, J. Douglas TI The influence of temperature on the sorption and permeability of CO2 in poly(fluoroalkoxyphosphazene) membranes SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Permeability; Sorption; Carbon dioxide; Polymer membranes; Poly(fluoroalkoxyphosphazene); Nitrogen; CO2/N-2 separation; Polyphosphazene ID POLYPHOSPHAZENE MEMBRANES; GAS PERMEATION; POLY(DIMETHYLSILOXANE); DIFFUSION AB This paper reports the transport and sorption properties of poly(fluoroalkoxyphosphazene) (PFAP) membranes for carbon dioxide and nitrogen in both pure and mixed gas experiments. The CO2 permeability decreased from 336 to 142 Barters with an increase in the CO2/N-2 ideal separation factor from 12 to 21 as the membrane temperature was decreased from 303 K to 258 K at feed pressure of 2.9 bars. At lower feed pressure (1.5 bars) the CO2 permeability decreased from 327 to 140 Barrers, while the CO2/N-2 ideal separation factor increased from 13 to 22 over the same temperature range. CO2 sorption isotherms were measured using the pressure decay equilibrium method. Solubility of CO2 was determined using the sorption isotherms and the diffusion coefficients were calculated from CO2 permeabilities and solubilities. Sorption isotherms were linear at each temperature for the pressure range studied and the enthalpy of sorption was -5.8 kcal/mol. The solubility coefficient values for CO2 increased from 0.95 to 5.43 cm(3) CO2(STP)/cm(3) polymer atm whereas the diffusion coefficient decreased from 2.71 x 10(-6) to 0.19 x 10(-6) cm(2)/s as the temperature decreased from 303 K to 258 K. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ostwal, Mayur; Lau, Joshua M.; Way, J. Douglas] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Orme, Christopher J.; Stewart, Frederick F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Way, JD (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM dway@mines.edu FU U.S. Department of Energy [DE-FG36-05GO15093]; DOE Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U.S. Department of Energy; Office of Nuclear Energy; DOE Idaho Operations Office [DE-AC07-05ID14517] FX The authors gratefully acknowledge financial support from the U.S. Department of Energy through Grant #DE-FG36-05GO15093 from the DOE Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division as well as the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 15 TC 4 Z9 4 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 15 PY 2009 VL 344 IS 1-2 BP 199 EP 203 DI 10.1016/j.memsci.2009.08.002 PG 5 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 505LF UT WOS:000270694200025 ER PT J AU Tombola, F Ulbrich, MH Isacoff, EY AF Tombola, Francesco Ulbrich, Maximilian H. Isacoff, Ehud Y. TI Architecture and gating of Hv1 proton channels SO JOURNAL OF PHYSIOLOGY-LONDON LA English DT Article ID SHAKER K+ CHANNEL; VOLTAGE SENSOR; CHLORIDE CHANNEL; SODIUM-CHANNELS; MOLECULAR-BASIS; ION-PERMEATION; PORE; CURRENTS; DOMAIN; REVEALS AB Voltage-gated proton channels have been described in different cells and organisms since the early '80s, but the first member of the family, Hv1, was cloned only recently. The Hv1 channel was found to contain a voltage-sensing domain (VSD), similar to those of voltage-gated sodium, potassium and calcium channels. All these other channels also contain a pore domain, which forms a central pore at the interface of the four subunits. The pore domain is missing in Hv1. This raised several questions on the location of the proton pore and on the mechanism of gating. Here, we briefly review our effort to understand the structural organization of Hv1 channels and discuss the relationship between the gating of Hv1 and the gating of ion-conducting pores recently discovered in the VSDs of mutant voltage-gated potassium and sodium channels. C1 [Isacoff, Ehud Y.] Univ Calif Berkeley, MCB, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Tombola, Francesco] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, MCB, Dept Mol & Cell Biol, 271 Life Sci Addit, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Tombola, Francesco/C-7311-2011 FU National Institutes of Health [R01NS035549]; American Heart Association WSA [09BGIA2160044]; American Heart Association; Deutsche Forschungsgesellschaft FX The research was supported by the National Institutes of Health (R01NS035549 to E.Y.I.), by the American Heart Association WSA (09BGIA2160044 to F.T.) and by postdoctoral fellowships from the American Heart Association and Deutsche Forschungsgesellschaft (to M.H.U.). NR 41 TC 12 Z9 13 U1 1 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3751 J9 J PHYSIOL-LONDON JI J. Physiol.-London PD NOV 15 PY 2009 VL 587 IS 22 BP 5325 EP 5329 DI 10.1113/jphysiol.2009.180265 PG 5 WC Neurosciences; Physiology SC Neurosciences & Neurology; Physiology GA 517VM UT WOS:000271647000008 PM 19915215 ER PT J AU Cady, CM Gray, GT Liu, C Lovato, ML Mukai, T AF Cady, C. M. Gray, G. T., III Liu, C. Lovato, M. L. Mukai, T. TI Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Aluminum foam; High-strain rate; Closed-cell foam ID ENERGY-ABSORPTION; ALLOY FOAMS; ELEVATED-TEMPERATURES; RATE SENSITIVITY; HEAT-TREATMENT; DEFORMATION; BEHAVIOR AB The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s(-1)) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated. (C) 2009 Published by Elsevier B.V. C1 [Cady, C. M.; Gray, G. T., III; Liu, C.; Lovato, M. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mukai, T.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. RP Cady, CM (reprint author), Los Alamos Natl Lab, MST 8 MS G755, Los Alamos, NM 87545 USA. EM cady@lanl.gov RI Mukai, Toshiji/F-9570-2014; Totsukawa, Nobuhisa/D-2028-2017 OI Mukai, Toshiji/0000-0002-9628-5762; FU LANS, LLC [DE-AC52-06NA25396]; Joint DoD/DOE Munitions Technology Development Program FX Los Alamos National Laboratory is operated by LANS, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This work has been performed under the auspices of the United States Department of Energy and was supported by the Joint DoD/DOE Munitions Technology Development Program. NR 31 TC 42 Z9 48 U1 4 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2009 VL 525 IS 1-2 BP 1 EP 6 DI 10.1016/j.msea.2009.07.007 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 504QY UT WOS:000270633400001 ER PT J AU Zhao, YH Guo, YZ Wei, Q Topping, TD Dangelewicz, AM Zhu, YT Langdon, TG Lavernia, EJ AF Zhao, Y. H. Guo, Y. Z. Wei, Q. Topping, T. D. Dangelewicz, A. M. Zhu, Y. T. Langdon, T. G. Lavernia, E. J. TI Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Strain measurements; Tensile testing; Finite element modeling (FEM); Miniature specimens; Stress-strain curves ID ULTRAFINE-GRAINED METALS; NANOSTRUCTURED METALS; CRYSTAL PLASTICITY; MECHANICAL-PROPERTIES; ULTRAHIGH STRENGTH; LENGTH SCALES; DUCTILITY; SIZE; NANOCRYSTALLINE; BEHAVIOR AB Miniature tensile specimens, having various sizes and geometries, are often used to measure the mechanical properties of bulk nanostructured materials. However, these samples are generally too small for use with conventional extensometers so that the strains are usually calculated from the crosshead displacements. This study uses experimental results and finite element modeling (FEM) to critically evaluate the influence of the specimen dimensions and strain measurement methods on the tensile curves obtained from miniature specimens. Using coarse-grained Cu as a model material, the results demonstrate that the values of strain obtained from the crosshead displacement are critically influenced by the specimen dimensions such that the uniform elongation and the post-necking elongation both increase with decreasing gauge length and increasing specimen thickness. The results provide guidance on the optimum procedures for the tensile testing of miniature specimens of both coarse-grained and nanostructured materials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhao, Y. H.; Topping, T. D.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Guo, Y. Z.; Wei, Q.] Univ N Carolina, Dept Mech Engn, Charlotte, NC 28223 USA. [Guo, Y. Z.] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China. [Dangelewicz, A. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. RP Zhao, YH (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM yhzhao@ucdavis.edu; qwei@uncc.edu RI Zhu, Yuntian/B-3021-2008; Wei, Qiuming/B-7579-2008; Langdon, Terence/B-1487-2008; Zhao, Yonghao/A-8521-2009; Lujan Center, LANL/G-4896-2012; Lavernia, Enrique/I-6472-2013; Guo, Yazhou/E-3318-2016 OI Zhu, Yuntian/0000-0002-5961-7422; Lavernia, Enrique/0000-0003-2124-8964; FU Office of Naval Research [N00014-08-1-0405] FX Y.H. Zhao and E.J. Lavernia would like to acknowledge support by the Office of Naval Research (Grant number N00014-08-1-0405) with Dr. Lawrence Kabacoff as program officer. NR 48 TC 96 Z9 98 U1 7 U2 53 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2009 VL 525 IS 1-2 BP 68 EP 77 DI 10.1016/j.msea.2009.06.031 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 504QY UT WOS:000270633400010 ER PT J AU Sun, PL Zhao, YH Cooley, JC Kassner, ME Horita, Z Langdon, TG Lavernia, EJ Zhu, YT AF Sun, Pei-Ling Zhao, Y. H. Cooley, J. C. Kassner, M. E. Horita, Z. Langdon, T. G. Lavernia, E. J. Zhu, Y. T. TI Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Ductility; High-pressure torsion; Severe plastic deformation; Stacking fault energy; Strength ID SEVERE PLASTIC-DEFORMATION; ULTRAFINE-GRAINED ALUMINUM; HIGH-TENSILE DUCTILITY; MECHANICAL-PROPERTIES; FCC METALS; BOUNDARY STRUCTURE; COPPER; BEHAVIOR; PRECIPITATION; TEMPERATURE AB The effect of stacking fault energy (SFE) on the mechanical properties was investigated in Ni-Co alloys which have minimum solution hardening effects. Cobalt reduces the SFE in nickel and this promotes grain refinement during processing and increases the dislocation and twin densities. A reduction in SFE increases strength and tensile ductility. The higher strength is due to grain refinement and higher dislocation and pre-existing twin densities whereas the higher ductility is attributed to a higher work hardening rate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sun, Pei-Ling] Feng Chia Univ, Dept Mat Sci & Engn, Taichung 407, Taiwan. [Zhao, Y. H.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kassner, M. E.; Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Horita, Z.] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Sun, PL (reprint author), Feng Chia Univ, Dept Mat Sci & Engn, Taichung 407, Taiwan. EM plsun@fcu.edu.tw RI Lavernia, Enrique/I-6472-2013; U-ID, Kyushu/C-5291-2016; Lujan Center, LANL/G-4896-2012; Zhu, Yuntian/B-3021-2008; Langdon, Terence/B-1487-2008; Zhao, Yonghao/A-8521-2009; Cooley, Jason/E-4163-2013 OI Lavernia, Enrique/0000-0003-2124-8964; Zhu, Yuntian/0000-0002-5961-7422; FU National Science Council of ROC [NSC-96-2218-E-035-008]; Office of Naval Research [N00014-08-1-0405] FX This work was supported by the National Science Council of ROC under contract NSC-96-2218-E-035-008. Y.H. Zhao and E.J. Lavernia would like to acknowledge support by the Office of Naval Research (Grant number N00014-08-1-0405) with Dr. Lawrence Kabacoff as program officer. NR 35 TC 37 Z9 40 U1 3 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2009 VL 525 IS 1-2 BP 83 EP 86 DI 10.1016/j.msea.2009.06.030 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 504QY UT WOS:000270633400012 ER PT J AU Yang, ZY Anheier, NC Qiao, HA Lucas, P AF Yang, Zhiyong Anheier, Norman C., Jr. Qiao, Hong A. Lucas, Pierre TI Sub-wavelength imaging of photo-induced refractive index pattern in chalcogenide glass films SO OPTICS COMMUNICATIONS LA English DT Article ID NEAR-FIELD MEASUREMENTS; WAVE-GUIDES; AS2S3 GLASS; OPTICS; FORCE AB Mapping of refractive index patterns with sub-wavelength resolution is achieved using Near-field Scanning Optical Microscopy (NSOM) in reflection mode. Imaging of index pattern is performed on surface gratings photo-imprinted in As(2)S(3) films. The NSOM is adapted with a near infrared laser which wavelength (785 nm) is chosen to be within the transparency window of the glass film therefore allowing consistent measure of reflected light. Quantitative measurements of photo-induced index changes can then be obtained from knowledge of the initial film index. Images of gratings with a period of 0.5 micron are easily collected therefore demonstrating sub-wavelength spatial resolution. The technique permits to concurrently obtain a topographic image and index image of the gratings thereby permitting to quantify the extent of photodarkening and photoexpansion simultaneously. It is shown that relief gratings tend to vanish in films aged in air for several months however the index gratings remain. (c) 2009 Elsevier B.V. All rights reserved. C1 [Yang, Zhiyong; Lucas, Pierre] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85712 USA. [Anheier, Norman C., Jr.; Qiao, Hong A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lucas, P (reprint author), Univ Arizona, Dept Mat Sci & Engn, 4715 E Ft Lowell Rd, Tucson, AZ 85712 USA. EM Pierre@u.arizona.edu RI Yang, Zhiyong/H-1309-2013 FU DOE [DE-FG52-06NA27501] FX This work was supported by DOE Grant DE-FG52-06NA27501. NR 22 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD NOV 15 PY 2009 VL 282 IS 22 BP 4370 EP 4373 DI 10.1016/j.optcom.2009.08.014 PG 4 WC Optics SC Optics GA 514BE UT WOS:000271367500011 ER PT J AU Wu, H Wang, J Kang, XH Wang, CM Wang, DH Liu, J Aksay, IA Lin, YH AF Wu, Hong Wang, Jun Kang, Xinhuang Wang, Chongmin Wang, Donghai Liu, Jun Aksay, Ilhan A. Lin, Yuehe TI Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film SO TALANTA LA English DT Article DE Graphene; Platinum nanoparticles; Nanocomposite; Biosensor; Glucose ID FUNCTIONALIZED GRAPHENE; CARBON NANOTUBES; GRAPHITE; SHEETS; SENSOR AB The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing is described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with a detection limit of 0.6 mu M glucose was achieved. The biosensor also has good reproducibility, long-term stability and negligible interfering signals from ascorbic acid and uric acid comparing with the response to glucose. The large surface area and good electrical conductivity of graphene suggests that graphene is a potential candidate as a sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications. (C) 2009 Published by Elsevier B.V. C1 [Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chongmin; Wang, Donghai; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Aksay, Ilhan/B-9281-2008; Lin, Yuehe/D-9762-2011; Wang, Donghai/L-1150-2013 OI Lin, Yuehe/0000-0003-3791-7587; Wang, Donghai/0000-0001-7261-8510 FU Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; Army Research Office (ARO)/Multidisciplinary Research Initiative (MURI) [W911NF-04-1-0170]; Directed Technologies, Inc FX This work was supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). The work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy (DOE) and located at PNNL PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. Ilhan A. Aksay acknowledges support from Army Research Office (ARO)/Multidisciplinary Research Initiative (MURI) under grant number W911NF-04-1-0170 and the Directed Technologies, Inc. NR 19 TC 227 Z9 233 U1 16 U2 187 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD NOV 15 PY 2009 VL 80 IS 1 BP 403 EP 406 DI 10.1016/j.talanta.2009.06.054 PG 4 WC Chemistry, Analytical SC Chemistry GA 509YR UT WOS:000271055700059 PM 19782243 ER PT J AU Chernyak, VY Sinitsyn, NA AF Chernyak, V. Y. Sinitsyn, N. A. TI Robust quantization of a molecular motor motion in a stochastic environment SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSPORT AB We explore quantization of the response of a molecular motor to periodic modulation of control parameters. We formulate the pumping-quantization theorem (PQT) that identifies the conditions for robust integer quantized behavior of a periodically driven molecular machine. Implication of PQT on experiments with catenane molecules are discussed. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263821] C1 [Chernyak, V. Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Chernyak, V. Y.; Sinitsyn, N. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Chernyak, VY (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM nsinitsyn@lanl.gov RI Sinitsyn, nikolai/B-5617-2009; Chernyak, Vladimir/F-5842-2016 OI Chernyak, Vladimir/0000-0003-4389-4238 FU NSF [CHE-0808910, ECCS-0925618] FX We are grateful to M. Chertkov, J. R. Klein, and J. Horowitz for useful discussions. This material is based upon work supported by NSF under Grant Nos. CHE-0808910 and ECCS-0925618. NR 9 TC 14 Z9 14 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2009 VL 131 IS 18 AR 181101 DI 10.1063/1.3263821 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 528NY UT WOS:000272454500001 PM 19916586 ER PT J AU Pindzola, MS Ludlow, JA Robicheaux, F Colgan, J Griffin, DC AF Pindzola, M. S. Ludlow, J. A. Robicheaux, F. Colgan, J. Griffin, D. C. TI Electron-impact double ionization of magnesium SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID MULTIPLE IONIZATION; SINGLE; STATES; MG; HELIUM; IONS AB Theory and experiment are compared for the electron-impact double ionization of Mg. Direct ionization cross sections, involving the simultaneous ionization of both 3s electrons, are calculated using a non-perturbative time-dependent close-coupling method. Indirect ionization cross sections, involving the ionization of either a 2p or 2s electron followed by autoionization, are calculated using a perturbative time-independent distorted-wave method. At low energies the direct ionization cross sections are found to be in good agreement with experiments, while at the higher energies the indirect ionization cross sections are also found to be in good agreement with experiments. C1 [Pindzola, M. S.; Ludlow, J. A.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Griffin, D. C.] Rollins Coll, Dept Phys, Winter Pk, FL 32789 USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Robicheaux, Francis/F-4343-2014; OI Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU US Department of Energy; US National Science Foundation FX This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California and at the National Center for Computational Sciences in Oak Ridge, Tennessee. NR 21 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 14 PY 2009 VL 42 IS 21 AR 215204 DI 10.1088/0953-4075/42/21/215204 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 511FS UT WOS:000271149900007 ER PT J AU Zhang, H Mudryk, Y Zou, M Pecharsky, VK Gschneidner, KA Long, Y AF Zhang, H. Mudryk, Ya. Zou, M. Pecharsky, V. K. Gschneidner, K. A., Jr. Long, Y. TI Phase relationships and crystallography of annealed alloys in the Ce5Si4-Ce5Ge4 pseudobinary system SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth compounds; Crystal structure; Phase diagram; Ce5Si4; Ce5Ge4; Ce5Si4-Ce5Ge4 pseudobinary system ID CRYSTAL-STRUCTURE; SILICON; GD5SI4-GD5GE4 AB The phase relationships of annealed alloys in the Ce5Si4-xGex system were determined by X-ray powder diffraction (XRD). Two structurally distinct terminal phase regions were observed in this system: the Ce5Si4-based solid solution (0 <= x < 2.85) crystallizing in the Zr(5)si(4)-type tetragonal structure with space group P4(1)2(1)2, and the Ce5Ge4-based solid solution (3.35 < x <= 4) crystallizing in the Sm5Ge4-type orthorhombic structure with space group Prima. An intermediate phase, which has a narrow composition range with the monoclinic Gd5Si2Ge2-type structure, space group P112(1)/a, was found to exist at x=2.95 +/- 0.05. The Rietveld powder diffraction profile fitting technique was used to refine the crystal structures, lattice parameters, and the atomic positions. The phase relationships of the Ce5Si4-xGex pseudobinary system after heat treatment were established from these data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, H.; Mudryk, Ya.; Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Zhang, H.; Long, Y.] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM cagey@ameslab.gov FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences; Materials Sciences Division of the Office of Science.; National Science Foundation of China; National High Technology Research and Development program of China; National Basic Research Program of China FX The Ames Laboratory is operated by Iowa State University of Science and Technology for the U.S. Department of Energy under contract No. DE-AC02-07CH11358. Work at Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science. H.Z.'s work at the Ames Laboratory was also supported by the National Science Foundation of China, the National High Technology Research and Development program of China, and the National Basic Research Program of China. NR 20 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 13 PY 2009 VL 487 IS 1-2 BP 98 EP 102 DI 10.1016/j.jallcom.2009.07.131 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 529MR UT WOS:000272521900026 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Higgs Bosons Predicted in Two-Higgs-Doublet Models via Decays to Tau Lepton Pairs in 1.96 TeV pp Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID BENCHMARK SCENARIOS; BROKEN SYMMETRIES AB We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 fb(-1) of integrated luminosity of pp collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional space of tan beta versus m(A) (the ratio of the vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson, respectively). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Aurisano, A.; Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank A. Belyaev, M. Carena, J. Gunion, T. Han, S. Heinemeyer, W. Kilgore, S. Mrenna, M. Spira, C. Wagner, G. Weiglein, and S. Willenbrock for illuminating discussions on the theory of MSSM Higgs production and decays. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 26 TC 34 Z9 34 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 201801 DI 10.1103/PhysRevLett.103.201801 PG 8 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600012 ER PT J AU Aczel, AA Kohama, Y Marcenat, C Weickert, F Jaime, M Ayala-Valenzuela, OE McDonald, RD Selesnic, SD Dabkowska, HA Luke, GM AF Aczel, A. A. Kohama, Y. Marcenat, C. Weickert, F. Jaime, M. Ayala-Valenzuela, O. E. McDonald, R. D. Selesnic, S. D. Dabkowska, H. A. Luke, G. M. TI Field-Induced Bose-Einstein Condensation of Triplons up to 8 K in Sr3Cr2O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM CRITICAL-POINT; NOBEL LECTURE; TLCUCL3; MAGNONS; MODEL AB Single crystals of the spin dimer system Sr3Cr2O8 have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of H-c1 similar to 30.4 T and H-c2 similar to 62 T. This field-induced order persists up to T-c(max)similar to 8 K at H similar to 44 T, the highest observed in any quantum magnet where H-c2 is experimentally accessible. We fit the temperature-field phase diagram boundary close to H-c1 using the expression T-c=A(H-H-c1)(nu). The exponent nu=0.65(2), obtained at temperatures much smaller than T-c(max), is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that Sr3Cr2O8 is a new realization of a triplon BEC where the universal regimes corresponding to both H-c1 and H-c2 are accessible at He-4 temperatures. C1 [Aczel, A. A.; Selesnic, S. D.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Kohama, Y.; Jaime, M.; Ayala-Valenzuela, O. E.; McDonald, R. D.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Marcenat, C.] SPSMS LATEQS, Inst Nanosci & Cryognie, CEA, F-38054 Grenoble 9, France. [Weickert, F.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Dabkowska, H. A.; Luke, G. M.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Aczel, AA (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI McDonald, Ross/H-3783-2013; Weickert, Franziska/F-3557-2015; Jaime, Marcelo/F-3791-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI McDonald, Ross/0000-0002-0188-1087; Weickert, Franziska/0000-0002-1545-9645; Jaime, Marcelo/0000-0001-5360-5220; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173; Mcdonald, Ross/0000-0002-5819-4739 FU NSERC; CIFAR; National Science Foundation; Department of Energy; State of Florida FX We acknowledge useful discussions with C. D. Batista and technical or experimental assistance from A. B. Dabkowski, F. Balakirev, and N. Harrison. Research at McMaster University is supported by NSERC and CIFAR. Research at NHMFL is supported by the National Science Foundation, the Department of Energy, and the State of Florida. NR 26 TC 40 Z9 40 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 207203 DI 10.1103/PhysRevLett.103.207203 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600044 PM 20366007 ER PT J AU Cusanno, F Urciuoli, GM Acha, A Ambrozewicz, P Aniol, KA Baturin, P Bertin, PY Benaoum, H Blomqvist, KI Boeglin, WU Breuer, H Brindza, P Bydzovsky, P Camsonne, A Chang, CC Chen, JP Choi, S Chudakov, EA Cisbani, E Colilli, S Coman, L Craver, BJ De Cataldo, G de Jager, CW De Leo, R Deur, AP Ferdi, C Feuerbach, RJ Folts, E Fratoni, R Frullani, S Garibaldi, F Gayou, O Giuliani, F Gomez, J Gricia, M Hansen, JO Hayes, D Higinbotham, DW Holmstrom, TK Hyde, CE Ibrahim, HF Iodice, M Jiang, X Kaufman, LJ Kino, K Kross, B Lagamba, L LeRose, JJ Lindgren, RA Lucentini, M Margaziotis, DJ Markowitz, P Marrone, S Meziani, ZE McCormick, K Michaels, RW Millener, DJ Miyoshi, T Moffit, B Monaghan, PA Moteabbed, M Camacho, CM Nanda, S Nappi, E Nelyubin, VV Norum, BE Okasyasu, Y Paschke, KD Perdrisat, CF Piasetzky, E Punjabi, VA Qiang, Y Raue, B Reimer, PE Reinhold, J Reitz, B Roche, RE Rodriguez, VM Saha, A Santavenere, F Sarty, AJ Segal, J Shahinyan, A Singh, J Sirca, S Snyder, R Solvignon, PH Sotona, M Subedi, R Sulkosky, VA Suzuki, T Ueno, H Ulmer, PE Veneroni, P Voutier, E Wojtsekhowski, BB Zheng, X Zorn, C AF Cusanno, F. Urciuoli, G. M. Acha, A. Ambrozewicz, P. Aniol, K. A. Baturin, P. Bertin, P. Y. Benaoum, H. Blomqvist, K. I. Boeglin, W. U. Breuer, H. Brindza, P. Bydzovsky, P. Camsonne, A. Chang, C. C. Chen, J. -P. Choi, Seonho Chudakov, E. A. Cisbani, E. Colilli, S. Coman, L. Craver, B. J. De Cataldo, G. de Jager, C. W. De Leo, R. Deur, A. P. Ferdi, C. Feuerbach, R. J. Folts, E. Fratoni, R. Frullani, S. Garibaldi, F. Gayou, O. Giuliani, F. Gomez, J. Gricia, M. Hansen, J. O. Hayes, D. Higinbotham, D. W. Holmstrom, T. K. Hyde, C. E. Ibrahim, H. F. Iodice, M. Jiang, X. Kaufman, L. J. Kino, K. Kross, B. Lagamba, L. LeRose, J. J. Lindgren, R. A. Lucentini, M. Margaziotis, D. J. Markowitz, P. Marrone, S. Meziani, Z. E. McCormick, K. Michaels, R. W. Millener, D. J. Miyoshi, T. Moffit, B. Monaghan, P. A. Moteabbed, M. Camacho, C. Munoz Nanda, S. Nappi, E. Nelyubin, V. V. Norum, B. E. Okasyasu, Y. Paschke, K. D. Perdrisat, C. F. Piasetzky, E. Punjabi, V. A. Qiang, Y. Raue, B. Reimer, P. E. Reinhold, J. Reitz, B. Roche, R. E. Rodriguez, V. M. Saha, A. Santavenere, F. Sarty, A. J. Segal, J. Shahinyan, A. Singh, J. Sirca, S. Snyder, R. Solvignon, P. H. Sotona, M. Subedi, R. Sulkosky, V. A. Suzuki, T. Ueno, H. Ulmer, P. E. Veneroni, P. Voutier, E. Wojtsekhowski, B. B. Zheng, X. Zorn, C. CA Jefferson Lab Hall Collaboration TI High-Resolution Spectroscopy of N-16(Lambda) by Electroproduction SO PHYSICAL REVIEW LETTERS LA English DT Article ID HALL-A SPECTROMETERS; JEFFERSON-LAB; LAMBDA-HYPERNUCLEI; RICH DETECTOR; KAON PHYSICS; JLAB HALL; P-SHELL; STRANGENESS; PERFORMANCE AB An experimental study of the O-16(e,e(')K(+))(Lambda)N-16 reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e(')K(+))Lambda,Sigma(0) exclusive reactions and a precise calibration of the energy scale. A ground-state binding energy of 13.76 +/- 0.16 MeV was obtained for N-16(Lambda) with better precision than previous measurements on the mirror hypernucleus O-16(Lambda). Precise energies have been determined for peaks arising from a Lambda in s and p orbits coupled to the p(1/2) and p(3/2) hole states of the N-15 core nucleus. C1 [Cusanno, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Acha, A.; Ambrozewicz, P.; Boeglin, W. U.; Coman, L.; Markowitz, P.; Moteabbed, M.; Raue, B.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Aniol, K. A.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Baturin, P.; Jiang, X.; McCormick, K.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Bertin, P. Y.; Camsonne, A.; Ferdi, C.; Hyde, C. E.] Univ Clermont Ferrand, IN2P3, F-63177 Aubiere, France. [Benaoum, H.] Syracuse Univ, Syracuse, NY 13244 USA. [Blomqvist, K. I.] Johannes Gutenberg Univ Mainz, Mainz, Germany. [Breuer, H.; Chang, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Brindza, P.; Chen, J. -P.; Chudakov, E. A.; de Jager, C. W.; Feuerbach, R. J.; Folts, E.; Gomez, J.; Hansen, J. O.; Higinbotham, D. W.; Kross, B.; LeRose, J. J.; Michaels, R. W.; Nanda, S.; Reitz, B.; Saha, A.; Segal, J.; Wojtsekhowski, B. B.; Zorn, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Bydzovsky, P.; Sotona, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Choi, Seonho; Meziani, Z. E.; Solvignon, P. H.] Temple Univ, Philadelphia, PA 19122 USA. [Cisbani, E.; Colilli, S.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Veneroni, P.] Ist Nazl Fis Nucl, Sez Roma, Grp Collegato Sanita, I-00161 Rome, Italy. [Cisbani, E.; Colilli, S.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Veneroni, P.] Ist Super Sanita, I-00161 Rome, Italy. [Craver, B. J.; Deur, A. P.; Lindgren, R. A.; Nelyubin, V. V.; Norum, B. E.; Singh, J.; Snyder, R.] Univ Virginia, Charlottesville, VA 22904 USA. [De Cataldo, G.; De Leo, R.; Lagamba, L.; Marrone, S.; Nappi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Cataldo, G.; De Leo, R.; Lagamba, L.; Marrone, S.; Nappi, E.] Univ Bari, I-70126 Bari, Italy. [Gayou, O.; Monaghan, P. A.; Qiang, Y.] MIT, Cambridge, MA 02139 USA. [Hayes, D.; Hyde, C. E.; Ibrahim, H. F.; Ulmer, P. E.] Old Dominion Univ, Norfolk, VA 23508 USA. [Holmstrom, T. K.; Moffit, B.; Perdrisat, C. F.; Sulkosky, V. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Iodice, M.] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy. [Kaufman, L. J.; Paschke, K. D.] Univ Massachusetts, Amherst, MA 01003 USA. [Kino, K.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Millener, D. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Miyoshi, T.; Okasyasu, Y.; Suzuki, T.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Camacho, C. Munoz] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Piasetzky, E.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Punjabi, V. A.] Norfolk State Univ, Norfolk, VA 23504 USA. [Reimer, P. E.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Roche, R. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Rodriguez, V. M.] Univ Houston, Houston, TX 77204 USA. [Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Subedi, R.] Kent State Univ, Kent, OH 44242 USA. [Ueno, H.] Yamagata Univ, Yamagata 9908560, Japan. [Voutier, E.] Univ Grenoble 1, LPSC, CNRS, INPG,IN2P3, F-38026 Grenoble, France. RP Cusanno, F (reprint author), Ist Nazl Fis Nucl, Sez Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy. RI Cisbani, Evaristo/C-9249-2011; kino, koichi/D-6173-2012; Reimer, Paul/E-2223-2013; Singh, Jaideep/H-2346-2013; Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014 OI Cisbani, Evaristo/0000-0002-6774-8473; Singh, Jaideep/0000-0002-4810-4824; Higinbotham, Douglas/0000-0003-2758-6526 FU U.S. DOE [DE-AC05-84ER40150]; Southeastern Universities Research Association (SURA); Italian Istituto Nazionale di Fisica Nucleare; Grant Agency of the Czech Republic [202/08/0984]; French CEA; CNRS/IN2P3; U.S. National Science Foundation [DE-AC02-06CH11357, DE-FG02-99ER41110, DE-AC02-98CH10886] FX We acknowledge the Jefferson Lab Physics and Accelerator Division staff for the outstanding efforts that made this work possible. This work was supported by U.S. DOE Contract No. DE-AC05-84ER40150, Modification No. 175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility, by the Italian Istituto Nazionale di Fisica Nucleare and by the Grant Agency of the Czech Republic under Grant No. 202/08/0984, by the French CEA and CNRS/IN2P3, and by the U.S. DOE under Contracts No. DE-AC02-06CH11357, No. DE-FG02-99ER41110, and No. DE-AC02-98CH10886, and by the U.S. National Science Foundation. NR 30 TC 33 Z9 33 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 202501 DI 10.1103/PhysRevLett.103.202501 PG 5 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600016 PM 20365979 ER PT J AU Giedt, J Thomas, AW Young, RD AF Giedt, Joel Thomas, Anthony W. Young, Ross D. TI Dark Matter, Constrained Minimal Supersymmetric Standard Model, and Lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIGMA-TERM; PARTICLE PHYSICS; BENCHMARKS; SYMMETRY; MASSES AB Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches. C1 [Giedt, Joel] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Thomas, Anthony W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, Anthony W.] Univ Adelaide, Sch Chem & Phys, Special Res Ctr Subat Struct Matter, Adelaide, SA 5005, Australia. [Young, Ross D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Giedt, J (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012 OI Thomas, Anthony/0000-0003-0026-499X; FU U.S. Department of Energy [DE-AC05-06OR23177]; Jefferson Science Associates, LLC operates Jefferson Laboratory [DEAC02-06CH11357]; UChicago Argonne, LLC, operates Argonne National Laboratory FX We thank Keith Olive for discussions and the use of a version of his collaborations' RGE code in order to perform comparisons to SOFTSUSY. J.G. was supported by Rensselaer faculty development funds. This work was supported by the U.S. Department of Energy contracts DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory and DEAC02-06CH11357, under which UChicago Argonne, LLC, operates Argonne National Laboratory. NR 34 TC 134 Z9 134 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 201802 DI 10.1103/PhysRevLett.103.201802 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600013 PM 20365976 ER PT J AU McDevitt, CJ Diamond, PH Gurcan, OD Hahm, TS AF McDevitt, C. J. Diamond, P. H. Gurcan, O. D. Hahm, T. S. TI Toroidal Rotation Driven by the Polarization Drift SO PHYSICAL REVIEW LETTERS LA English DT Article ID WAVE TURBULENCE; TOKAMAKS; REVERSAL; PLASMA AB Starting from a phase space conserving gyrokinetic formulation, a systematic derivation of parallel momentum conservation uncovers a novel mechanism by which microturbulence may drive intrinsic rotation. This mechanism, which appears in the gyrokinetic formulation through the parallel nonlinearity, emerges due to charge separation induced by the polarization drift. The derivation and physical discussion of this mechanism will be pursued throughout this Letter. C1 [McDevitt, C. J.; Diamond, P. H.; Gurcan, O. D.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [McDevitt, C. J.; Diamond, P. H.; Gurcan, O. D.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP McDevitt, CJ (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM cmcdevitt@ucsd.edu RI Gurcan, Ozgur/A-1362-2013; OI Gurcan, Ozgur/0000-0002-2278-1544; McDevitt, Christopher/0000-0002-3674-2909 FU U.S. Department of Energy [DE-FG02-04ER54738, DEFC02-08ER54959, DE-FC02-08ER54983] FX This research was supported by U.S. Department of Energy Contracts No. DE-FG02-04ER54738, No. DEFC02-08ER54959,and No. DE-FC02-08ER54983. NR 32 TC 26 Z9 27 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 205003 DI 10.1103/PhysRevLett.103.205003 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600024 PM 20365987 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI Relating the Proca Photon Mass and Cosmic Vector Potential via Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; PHYSICS; LIMITS AB The effect of the Proca photon mass m(ph) and cosmic vector potential A(C) on the dynamics of solar wind is considered. For large-enough values of the parameter A(C)m(ph)(2), the solar wind structure at a distance of similar to 40 AU from the Sun should change significantly with respect to the actual observed flow. The absence of such deviations gives an upper bound on the parameter A(C)m(ph)(2) 9 orders of magnitude less than in laboratory experiments measuring torque on a toroidal magnet. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU LLNL [DE-AC5207NA27344] FX Prepared by LLNL under Contract No. DE-AC5207NA27344. NR 23 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 201803 DI 10.1103/PhysRevLett.103.201803 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600014 PM 20365977 ER PT J AU Seely, J Daniel, A Gaskell, D Arrington, J Fomin, N Solvignon, P Asaturyan, R Benmokhtar, F Boeglin, W Boillat, B Bosted, P Bruell, A Bukhari, MHS Christy, ME Clasie, B Connell, S Dalton, MM Day, D Dunne, J Dutta, D El Fassi, L Ent, R Fenker, H Filippone, BW Gao, H Hill, C Holt, RJ Horn, T Hungerford, E Jones, MK Jourdan, J Kalantarians, N Keppel, CE Kiselev, D Kotulla, M Lee, C Lung, AF Malace, S Meekins, DG Mertens, T Mkrtchyan, H Navasardyan, T Niculescu, G Niculescu, I Nomura, H Okayasu, Y Opper, AK Perdrisat, C Potterveld, DH Punjabi, V Qian, X Reimer, PE Roche, J Rodriguez, VM Rondon, O Schulte, E Segbefia, E Slifer, K Smith, GR Tadevosyan, V Tajima, S Tang, L Testa, G Trojer, R Tvaskis, V Vulcan, WF Wesselmann, FR Wood, SA Wright, J Yuan, L Zheng, X AF Seely, J. Daniel, A. Gaskell, D. Arrington, J. Fomin, N. Solvignon, P. Asaturyan, R. Benmokhtar, F. Boeglin, W. Boillat, B. Bosted, P. Bruell, A. Bukhari, M. H. S. Christy, M. E. Clasie, B. Connell, S. Dalton, M. M. Day, D. Dunne, J. Dutta, D. El Fassi, L. Ent, R. Fenker, H. Filippone, B. W. Gao, H. Hill, C. Holt, R. J. Horn, T. Hungerford, E. Jones, M. K. Jourdan, J. Kalantarians, N. Keppel, C. E. Kiselev, D. Kotulla, M. Lee, C. Lung, A. F. Malace, S. Meekins, D. G. Mertens, T. Mkrtchyan, H. Navasardyan, T. Niculescu, G. Niculescu, I. Nomura, H. Okayasu, Y. Opper, A. K. Perdrisat, C. Potterveld, D. H. Punjabi, V. Qian, X. Reimer, P. E. Roche, J. Rodriguez, V. M. Rondon, O. Schulte, E. Segbefia, E. Slifer, K. Smith, G. R. Tadevosyan, V. Tajima, S. Tang, L. Testa, G. Trojer, R. Tvaskis, V. Vulcan, W. F. Wesselmann, F. R. Wood, S. A. Wright, J. Yuan, L. Zheng, X. TI New Measurements of the European Muon Collaboration Effect in Very Light Nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID INELASTIC ELECTRON-SCATTERING; DEPENDENCE AB New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2)approximate to 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment. C1 [Arrington, J.; Solvignon, P.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Seely, J.; Clasie, B.; Gao, H.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Daniel, A.; Bukhari, M. H. S.; Hungerford, E.; Kalantarians, N.; Okayasu, Y.; Rodriguez, V. M.] Univ Houston, Houston, TX USA. [Gaskell, D.; Bosted, P.; Bruell, A.; Ent, R.; Fenker, H.; Horn, T.; Jones, M. K.; Lung, A. F.; Meekins, D. G.; Roche, J.; Smith, G. R.; Vulcan, W. F.; Wood, S. A.] Thomas Jefferson Natl Lab, Newport News, VA USA. [Fomin, N.; Connell, S.; Dalton, M. M.; Day, D.; Hill, C.; Rondon, O.; Slifer, K.; Tajima, S.; Wesselmann, F. R.; Wright, J.] Univ Virginia, Charlottesville, VA USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Benmokhtar, F.; Horn, T.] Univ Maryland, College Pk, MD 20742 USA. [Boeglin, W.] Florida Int Univ, Miami, FL 33199 USA. [Boillat, B.; Jourdan, J.; Kiselev, D.; Kotulla, M.; Mertens, T.; Testa, G.; Trojer, R.] Univ Basel, Basel, Switzerland. [Christy, M. E.; Keppel, C. E.; Malace, S.; Segbefia, E.; Tang, L.; Tvaskis, V.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Dunne, J.; Dutta, D.] Mississippi State Univ, Jackson, MS USA. [Dutta, D.; Gao, H.; Qian, X.] Duke Univ, Triangle Univ Nucl Lab, Durham, NC USA. [Filippone, B. W.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Lee, C.] Univ Witwatersrand, Johannesburg, South Africa. [Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Nomura, H.; Okayasu, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Opper, A. K.] Ohio Univ, Athens, OH 45701 USA. [Perdrisat, C.] Coll William & Mary, Williamsburg, VA USA. [Punjabi, V.] Norfolk State Univ, Norfolk, VA USA. RP Arrington, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM johna@anl.gov RI Dalton, Mark/B-5380-2016; Gao, Haiyan/G-2589-2011; Arrington, John/D-1116-2012; Rondon Aramayo, Oscar/B-5880-2013; Holt, Roy/E-5803-2011; Reimer, Paul/E-2223-2013; Mertens, Thomas/E-9826-2013; Day, Donal/C-5020-2015 OI Dalton, Mark/0000-0001-9204-7559; Arrington, John/0000-0002-0702-1328; Bukhari, Masroor/0000-0003-3604-3152; Day, Donal/0000-0001-7126-8934 FU NSF; DOE [DE-AC02-06CH11357, DE-AC05-06OR23177]; South African National Research Foundation FX This work was supported in part by the NSF and DOE, including DOE Contract No. DE-AC02-06CH11357, DOE Contract No. DE-AC05-06OR23177 under which JSA, LLC operates JLab, and the South African National Research Foundation. NR 18 TC 72 Z9 72 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 202301 DI 10.1103/PhysRevLett.103.202301 PG 5 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600015 PM 20365978 ER PT J AU Wilkins, SB Forrest, TR Beale, TAW Bland, SR Walker, HC Mannix, D Yakhou, F Prabhakaran, D Boothroyd, AT Hill, JP Hatton, PD McMorrow, DF AF Wilkins, S. B. Forrest, T. R. Beale, T. A. W. Bland, S. R. Walker, H. C. Mannix, D. Yakhou, F. Prabhakaran, D. Boothroyd, A. T. Hill, J. P. Hatton, P. D. McMorrow, D. F. TI Nature of the Magnetic Order and Origin of Induced Ferroelectricity in TbMnO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCHANGE SCATTERING; POLARIZATION AB The magnetic structures which endow TbMnO3 with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions (Mn L-2 edge, Mn 3d moments; Tb M-4 edge, Tb 4f moments), while its variation with azimuth provided information on the moment direction of distinct Fourier components. When the data are combined with a detailed group theory analysis, a new picture emerges of the ferroelectric transition at 28 K. Instead of being driven by the transition from a collinear to a noncollinear magnetic structure, as has previously been supposed, it is shown to occur between two noncollinear structures. C1 [Wilkins, S. B.; Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Forrest, T. R.; Walker, H. C.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Beale, T. A. W.; Bland, S. R.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Walker, H. C.; Yakhou, F.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Mannix, D.] UJF, CNRS, Inst Neel, F-38042 Grenoble, France. [Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Wilkins, SB (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI McMorrow, Desmond/C-2655-2008; Walker, Helen/C-4201-2011; Hill, John/F-6549-2011; Hatton, Peter/J-8445-2014 OI McMorrow, Desmond/0000-0002-4947-7788; Walker, Helen/0000-0002-7859-5388; FU Office of Science, U. S. Department of Energy [DE-AC02-98CH10886]; UCL; EPSRC; Royal Society; Durham and Oxford FX The authors would like to thank S. J. Billinge, E. S. Boz. in, B. Detlefs, C. Detlefs, W. Ku, and A. Wills for many stimulating discussions. The work at Brookhaven National Laboratory is supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-98CH10886. Work at UCL was supported by the EPSRC and the Royal Society and in Durham and Oxford by the EPSRC. NR 27 TC 34 Z9 35 U1 4 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 207602 DI 10.1103/PhysRevLett.103.207602 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600050 PM 20366013 ER PT J AU Gibson, JM AF Gibson, J. Murray TI Viewing the Seeds of Crystallization SO SCIENCE LA English DT Editorial Material ID MEDIUM-RANGE ORDER; FLUCTUATION MICROSCOPY C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gibson, JM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM jmgibson@aps.anl.gov RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 NR 14 TC 12 Z9 13 U1 1 U2 13 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 942 EP 943 DI 10.1126/science.1182817 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300020 PM 19965499 ER PT J AU McComas, DJ Allegrini, F Bochsler, P Bzowski, M Christian, ER Crew, GB DeMajistre, R Fahr, H Fichtner, H Frisch, PC Funsten, HO Fuselier, SA Gloeckler, G Gruntman, M Heerikhuisen, J Izmodenov, V Janzen, P Knappenberger, P Krimigis, S Kucharek, H Lee, M Livadiotis, G Livi, S MacDowall, RJ Mitchell, D Mobius, E Moore, T Pogorelov, NV Reisenfeld, D Roelof, E Saul, L Schwadron, NA Valek, PW Vanderspek, R Wurz, P Zank, GP AF McComas, D. J. Allegrini, F. Bochsler, P. Bzowski, M. Christian, E. R. Crew, G. B. DeMajistre, R. Fahr, H. Fichtner, H. Frisch, P. C. Funsten, H. O. Fuselier, S. A. Gloeckler, G. Gruntman, M. Heerikhuisen, J. Izmodenov, V. Janzen, P. Knappenberger, P. Krimigis, S. Kucharek, H. Lee, M. Livadiotis, G. Livi, S. MacDowall, R. J. Mitchell, D. Moebius, E. Moore, T. Pogorelov, N. V. Reisenfeld, D. Roelof, E. Saul, L. Schwadron, N. A. Valek, P. W. Vanderspek, R. Wurz, P. Zank, G. P. TI Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) SO SCIENCE LA English DT Article ID WIND TERMINATION SHOCK; SOLAR-WIND; MAGNETIC-FIELD; HELIOSHEATH; VOYAGER-1 AB The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere. C1 [McComas, D. J.; Allegrini, F.; Livadiotis, G.; Livi, S.; Valek, P. W.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.; Allegrini, F.; Livi, S.; Valek, P. W.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Bochsler, P.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Christian, E. R.; MacDowall, R. J.; Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Crew, G. B.; Vanderspek, R.] MIT, Cambridge, MA 02139 USA. [DeMajistre, R.; Krimigis, S.; Mitchell, D.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Fahr, H.] Univ Bonn, D-53115 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, D-44780 Bochum, Germany. [Frisch, P. C.] Univ Chicago, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gloeckler, G.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gruntman, M.] Univ Calif Los Angeles, Los Angeles, CA 90089 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Huntsville, AL 35805 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Moscow 119899, Russia. [Izmodenov, V.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Inst Problems Mech, Moscow 117526, Russia. [Janzen, P.; Reisenfeld, D.] Univ Montana, Missoula, MT 59812 USA. [Knappenberger, P.] Adler Planetarium, Chicago, IL 60605 USA. [Krimigis, S.] Acad Athens, Off Space Res & Technol, Athens 10679, Greece. [Kucharek, H.; Lee, M.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP McComas, DJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.org RI MacDowall, Robert/D-2773-2012; Moore, Thomas/D-4675-2012; Christian, Eric/D-4974-2012; Izmodenov, Vladislav/K-6073-2012; Funsten, Herbert/A-5702-2015; Gruntman, Mike/A-5426-2008 OI Valek, Philip/0000-0002-2318-8750; Moore, Thomas/0000-0002-3150-1137; Christian, Eric/0000-0003-2134-3937; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633; Izmodenov, Vladislav/0000-0002-1748-0982; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X FU NASA [NNG05EC85C] FX We thank all the men and women who made the IBEX mission possible. IBEX was primarily funded by NASA as a part of the Explorers Program ( contract NNG05EC85C); foreign investigators were supported by their respective national agencies and institutions. NR 28 TC 277 Z9 278 U1 0 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 959 EP 962 DI 10.1126/science.1180906 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300028 PM 19833923 ER PT J AU Fuselier, SA Allegrini, F Funsten, HO Ghielmetti, AG Heirtzler, D Kucharek, H Lennartsson, OW McComas, DJ Mobius, E Moore, TE Petrinec, SM Saul, LA Scheer, JA Schwadron, N Wurz, P AF Fuselier, S. A. Allegrini, F. Funsten, H. O. Ghielmetti, A. G. Heirtzler, D. Kucharek, H. Lennartsson, O. W. McComas, D. J. Moebius, E. Moore, T. E. Petrinec, S. M. Saul, L. A. Scheer, J. A. Schwadron, N. Wurz, P. TI Width and Variation of the ENA Flux Ribbon Observed by the Interstellar Boundary Explorer SO SCIENCE LA English DT Article AB The dominant feature in Interstellar Boundary Explorer ( IBEX) sky maps of heliospheric energetic neutral atom (ENA) flux is a ribbon of enhanced flux that extends over a broad range of ecliptic latitudes and longitudes. It is narrow (similar to 20 degrees average width) but long ( extending over 300 in the sky) and is observed at energies from 0.2 to 6 kilo-electron volts. We demonstrate that the flux in the ribbon is a factor of 2 to 3 times higher than that of the more diffuse, globally distributed heliospheric ENA flux. The ribbon is most pronounced at similar to 1 kilo-electron volt. The average width of the ribbon is nearly constant, independent of energy. The ribbon is likely the result of an enhancement in the combined solar wind and pickup ion populations in the heliosheath. C1 [Fuselier, S. A.; Ghielmetti, A. G.; Lennartsson, O. W.; Petrinec, S. M.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Allegrini, F.; McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Allegrini, F.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Saul, L. A.; Scheer, J. A.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Schwadron, N.] Boston Univ, Boston, MA 02215 USA. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU NASA through sub-contract from Southwest Research Institute FX These results from the IBEX mission are a tribute to the hard work of many scientists and engineers. Work at Lockheed Martin was funded by NASA through sub-contract from Southwest Research Institute. NR 6 TC 110 Z9 112 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 962 EP 964 DI 10.1126/science.1180981 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300029 PM 19833916 ER PT J AU Funsten, HO Allegrini, F Crew, GB DeMajistre, R Frisch, PC Fuselier, SA Gruntman, M Janzen, P McComas, DJ Mobius, E Randol, B Reisenfeld, DB Roelof, EC Schwadron, NA AF Funsten, H. O. Allegrini, F. Crew, G. B. DeMajistre, R. Frisch, P. C. Fuselier, S. A. Gruntman, M. Janzen, P. McComas, D. J. Moebius, E. Randol, B. Reisenfeld, D. B. Roelof, E. C. Schwadron, N. A. TI Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps SO SCIENCE LA English DT Article ID TERMINATION SHOCK; SOLAR-WIND AB The Interstellar Boundary Explorer ( IBEX) has obtained all-sky images of energetic neutral atoms emitted from the heliosheath, located between the solar wind termination shock and the local interstellar medium (LISM). These flux maps reveal distinct nonthermal (0.2 to 6 kilo-electron volts) heliosheath proton populations with spectral signatures ordered predominantly by ecliptic latitude. The maps show a globally distributed population of termination-shock-heated protons and a superimposed ribbonlike feature that forms a circular arc in the sky centered on ecliptic coordinate (longitude lambda, latitude beta) = (221 degrees, 39 degrees), probably near the direction of the LISM magnetic field. Over the IBEX energy range, the ribbon's nonthermal ion pressure multiplied by its radial thickness is in the range of 70 to 100 picodynes per square centimeter AU ( AU, astronomical unit), which is significantly larger than the 30 to 60 picodynes per square centimeter AU of the globally distributed population. C1 [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Allegrini, F.; McComas, D. J.; Randol, B.] SW Res Inst, San Antonio, TX 78228 USA. [Allegrini, F.; McComas, D. J.; Randol, B.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Crew, G. B.] MIT, Cambridge, MA 02139 USA. [DeMajistre, R.; Roelof, E. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Frisch, P. C.] Univ Chicago, Chicago, IL 60637 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol ogy Ctr, Palo Alto, CA 94304 USA. [Gruntman, M.] Univ So Calif, Los Angeles, CA 90089 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA. [Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP Funsten, HO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hfunsten@lanl.gov RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008 OI Moebius, Eberhard/0000-0002-2745-6978; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X FU NASA Explorer Program; U. S. Department of Energy FX We thank all the IBEX team members, who enabled the success of IBEX through their individual talents, dedication, and hard work. This work was funded by the NASA Explorer Program. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy. NR 15 TC 139 Z9 141 U1 2 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 964 EP 966 DI 10.1126/science.1180927 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300030 PM 19833918 ER PT J AU Schwadron, NA Bzowski, M Crew, GB Gruntman, M Fahr, H Fichtner, H Frisch, PC Funsten, HO Fuselier, S Heerikhuisen, J Izmodenov, V Kucharek, H Lee, M Livadiotis, G McComas, DJ Moebius, E Moore, T Mukherjee, J Pogorelov, NV Prested, C Reisenfeld, D Roelof, E Zank, GP AF Schwadron, N. A. Bzowski, M. Crew, G. B. Gruntman, M. Fahr, H. Fichtner, H. Frisch, P. C. Funsten, H. O. Fuselier, S. Heerikhuisen, J. Izmodenov, V. Kucharek, H. Lee, M. Livadiotis, G. McComas, D. J. Moebius, E. Moore, T. Mukherjee, J. Pogorelov, N. V. Prested, C. Reisenfeld, D. Roelof, E. Zank, G. P. TI Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models SO SCIENCE LA English DT Article ID TERMINATION SHOCK; MAGNETIC-FIELD; HELIOSHEATH; VOYAGER-1; REGION; WIND AB Simulations of energetic neutral atom (ENA) maps predict flux magnitudes that are, in some cases, similar to those observed by the Interstellar Boundary Explorer ( IBEX) spacecraft, but they miss the ribbon. Our model of the heliosphere indicates that the local interstellar medium (LISM) magnetic field (B-LISM) is transverse to the line of sight (LOS) along the ribbon, suggesting that the ribbon may carry its imprint. The force-per-unit area on the heliopause from field line draping and the LISM ram pressure is comparable with the ribbon pressure if the LOS similar to 30 to 60 astronomical units and B-LISM similar to 2.5 microgauss. Although various models have advantages in accounting for some of the observations, no model can explain all the dominant features, which probably requires a substantial change in our understanding of the processes that shape our heliosphere. C1 [Schwadron, N. A.; Prested, C.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Crew, G. B.] MIT, Kavli Inst, Cambridge, MA 02139 USA. [Gruntman, M.] Univ So Calif, Astron Engn Div, Los Angeles, CA 90089 USA. [Fahr, H.] Univ Bonn, Inst Astrophys & Extraterr Forsch, D-53115 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, Inst Theoret Phys 4, D-44780 Bochum, Germany. [Frisch, P. C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Dept Aeromech & Gas Dynam, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Inst Problems Mech, Moscow 117997, Russia. [Kucharek, H.; Lee, M.; Moebius, E.] Univ New Hampshire, Dept Phys, Ctr Space Sci, Durham, NH 03824 USA. [Livadiotis, G.; McComas, D. J.; Mukherjee, J.] SW Res Inst, Dept Space Sci & Engn, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX 78249 USA. [Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reisenfeld, D.] Univ Montana, Dept Phys, Missoula, MT 59812 USA. [Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Schwadron, NA (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM nathanas@bu.edu RI Moore, Thomas/D-4675-2012; Gruntman, Mike/A-5426-2008; Izmodenov, Vladislav/K-6073-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015 OI Moore, Thomas/0000-0002-3150-1137; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633; Izmodenov, Vladislav/0000-0002-1748-0982; Funsten, Herbert/0000-0002-6817-1039; FU IBEX program FX We thank the many dedicated people who have made IBEX a success. Special thanks to K. Goodrich, J. Siegel, K. Maynard, and M. Schwadron for their help. This work was primarily supported by the IBEX program. NR 18 TC 147 Z9 149 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 966 EP 968 DI 10.1126/science.1180986 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300031 PM 19833915 ER PT J AU Mobius, E Bochsler, P Bzowski, M Crew, GB Funsten, HO Fuselier, SA Ghielmetti, A Heirtzler, D Izmodenov, VV Kubiak, M Kucharek, H Lee, MA Leonard, T McComas, DJ Petersen, L Saul, L Scheer, JA Schwadron, N Witte, M Wurz, P AF Moebius, E. Bochsler, P. Bzowski, M. Crew, G. B. Funsten, H. O. Fuselier, S. A. Ghielmetti, A. Heirtzler, D. Izmodenov, V. V. Kubiak, M. Kucharek, H. Lee, M. A. Leonard, T. McComas, D. J. Petersen, L. Saul, L. Scheer, J. A. Schwadron, N. Witte, M. Wurz, P. TI Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer SO SCIENCE LA English DT Article ID TERMINATION SHOCK; NEUTRAL GAS; SOLAR-WIND; PICKUP ION; HYDROGEN; PARAMETERS; HELIUM; ORIGIN AB Neutral gas of the local interstellar medium flows through the inner solar system while being deflected by solar gravity and depleted by ionization. The dominating feature in the energetic neutral atom Interstellar Boundary Explorer ( IBEX) all-sky maps at low energies is the hydrogen, helium, and oxygen interstellar gas flow. The He and O flow peaked around 8 February 2009 in accordance with gravitational deflection, whereas H dominated after 26 March 2009, consistent with approximate balance of gravitational attraction by solar radiation pressure. The flow distributions arrive from a few degrees above the ecliptic plane and show the same temperature for He and O. An asymmetric O distribution in ecliptic latitude points to a secondary component from the outer heliosheath. C1 [Moebius, E.; Bochsler, P.; Heirtzler, D.; Kucharek, H.; Lee, M. A.; Leonard, T.; Petersen, L.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.; Bochsler, P.; Heirtzler, D.; Kucharek, H.; Lee, M. A.; Leonard, T.; Petersen, L.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Bochsler, P.; Saul, L.; Scheer, J. A.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Bzowski, M.; Kubiak, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Crew, G. B.] MIT, Cambridge, MA 02139 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.; Ghielmetti, A.] Lockheed Martin Adv Technol Lab, Palo Alto, CA USA. [Izmodenov, V. V.] Moscow MV Lomonosov State Univ, Moscow 119899, Russia. [Izmodenov, V. V.] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Schwadron, N.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Witte, M.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Mobius, E (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM Eberhard.moebius@unh.edu RI Funsten, Herbert/A-5702-2015; Izmodenov, Vladislav/K-6073-2012 OI Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978; Izmodenov, Vladislav/0000-0002-1748-0982 FU NASA [NNG05EC85C]; Swiss National Science Foundation; Programme de Developpement d'Experiences Scientifiques (PRODEX); Space Research Centre of the Polish Academy of Sciences; Russian Federation FX We thank the many individuals who made this mission possible. This work is supported by NASA under contract NNG05EC85C, by the Swiss National Science Foundation, the Programme de Developpement d'Experiences Scientifiques (PRODEX), the Space Research Centre of the Polish Academy of Sciences, and the Russian Federation. NR 20 TC 71 Z9 73 U1 0 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 969 EP 971 DI 10.1126/science.1180971 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300032 PM 19833917 ER PT J AU Zeches, RJ Rossell, MD Zhang, JX Hatt, AJ He, Q Yang, CH Kumar, A Wang, CH Melville, A Adamo, C Sheng, G Chu, YH Ihlefeld, JF Erni, R Ederer, C Gopalan, V Chen, LQ Schlom, DG Spaldin, NA Martin, LW Ramesh, R AF Zeches, R. J. Rossell, M. D. Zhang, J. X. Hatt, A. J. He, Q. Yang, C. -H. Kumar, A. Wang, C. H. Melville, A. Adamo, C. Sheng, G. Chu, Y. -H. Ihlefeld, J. F. Erni, R. Ederer, C. Gopalan, V. Chen, L. Q. Schlom, D. G. Spaldin, N. A. Martin, L. W. Ramesh, R. TI A Strain-Driven Morphotropic Phase Boundary in BiFeO3 SO SCIENCE LA English DT Article ID THIN-FILMS; POLARIZATION; CRYSTAL; MECHANISM; ORIGIN AB Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications. C1 [Zeches, R. J.; Zhang, J. X.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Rossell, M. D.; Erni, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Hatt, A. J.; Spaldin, N. A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [He, Q.; Yang, C. -H.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kumar, A.; Melville, A.; Adamo, C.; Sheng, G.; Ihlefeld, J. F.; Gopalan, V.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Melville, A.; Adamo, C.; Ihlefeld, J. F.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Wang, C. H.; Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Ederer, C.] Univ Dublin Trinity Coll, Sch Phys, Coll Green, Dublin 2, Ireland. [Martin, L. W.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61822 USA. RP Zeches, RJ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rzeches@berkeley.edu RI Rossell, Marta/E-9785-2017; Ederer, Claude/F-5420-2010; Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; YANG, CHAN-HO/C-2079-2011; Spaldin, Nicola/A-1017-2010; Sheng, Guang/C-2043-2012; Kumar, Amit/C-9662-2012; Martin, Lane/H-2409-2011; Schlom, Darrell/J-2412-2013; Chen, LongQing/I-7536-2012; Ihlefeld, Jon/B-3117-2009; Hatt, Alison/B-4652-2010; Erni, Rolf/P-7435-2014 OI Ying-Hao, Chu/0000-0002-3435-9084; Spaldin, Nicola/0000-0003-0709-9499; Kumar, Amit/0000-0002-1194-5531; Martin, Lane/0000-0003-1889-2513; Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781; Erni, Rolf/0000-0003-2391-5943 FU Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; National Science Council, R. O. C. [98-2119-M-009-016]; National Science Foundation [DMR-0820404, DMR-0507146, NIRT-0609377]; Science Foundation of Ireland [SFI-07/YI2/I1051]; Department of Energy Basic Sciences [DE- FG02-07ER46417] FX The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy under contract DE-AC02-05CH11231. The authors from Berkeley acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. Y. H. C. also acknowledges the support of the National Science Council, R. O. C., under contract NSC 98-2119-M-009-016. V. G. and D. G. S. acknowledge support from National Science Foundation grants DMR-0820404 and DMR-0507146. A. H. and N. S. acknowledge support from the National Science Foundation under DMR-0820404 and NIRT-0609377. Theoretical work used the SGI Altix [ Cobalt] system and the TeraGrid Linux Cluster [ Mercury] at the National Center for Supercomputing Applications under grant DMR-0940420. C. E. acknowledges support from the Science Foundation of Ireland ( grant SFI-07/YI2/I1051).The work of G. S. and L. Q. C. is supported by Department of Energy Basic Sciences under contract DE- FG02-07ER46417. NR 27 TC 510 Z9 519 U1 46 U2 475 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 977 EP 980 DI 10.1126/science.1177046 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300035 PM 19965507 ER PT J AU Pradhan, AK Nahar, SN Montenegro, M Yu, Y Zhang, HL Sur, C Mrozik, M Pitzer, RM AF Pradhan, Anil K. Nahar, Sultana N. Montenegro, Maximiliano Yu, Yan Zhang, H. L. Sur, Chiranjib Mrozik, Michael Pitzer, Russell M. TI Resonant X-ray Enhancement of the Auger Effect in High-Z Atoms, Molecules, and Nanoparticles: Potential Biomedical Applications SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GOLD NANOPARTICLES; LASER; DNA; RADIOSENSITIZATION; IONIZATION; GENERATION; ELECTRONS; RADIATION; PLATINUM; SPECTRA AB It is shown that X-ray absorption can be considerably enhanced at resonant energies corresponding to K-shell excitation into higher shells with electron vacancies following Auger emissions in high-Z elements and compounds employed in biomedical applications. We calculate Auger resonant probabilities and cross sections to obtain total mass attenuation coefficients with resonant cross sections and detailed resonance structures corresponding to K alpha, K beta, K gamma, K delta, and K eta complexes lying between 6.4-7.1 keV in iron and 67-80 keV in gold. The basic parameters were computed using the relativistic atomic structure codes and the R-matrix codes. It is found that the average enhancement at resonant energies is up to a factor of 1000 or more for associated K -> L, M, N, O, P transitions. The resonant energies in high-Z elements such as gold are sufficiently high to ensure significant penetration in body tissue, and hence the possibility of achieving X-radiation dose reduction commensurate with resonant enhancements for cancer theranostics using high-Z nanoparticles and molecular radiosensitizing agents embedded in malignant tumors. The in situ deposition of X-ray energy, followed by secondary photon and electron emission, will be localized at the tumor site. We also note the relevance of this work to the development of novel monochromatic or narrow-band X-ray emission sources for medical diagnostics and therapeutics. C1 [Pradhan, Anil K.; Nahar, Sultana N.; Montenegro, Maximiliano; Sur, Chiranjib] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Pradhan, Anil K.] Ohio State Univ, Chem Phys Program, Columbus, OH 43210 USA. [Yu, Yan] Thomas Jefferson Univ, Dept Radiat Oncol, Philadelphia, PA 19107 USA. [Zhang, H. L.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Mrozik, Michael; Pitzer, Russell M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. RP Pradhan, AK (reprint author), Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. EM pradhan@astronomy.ohio-state.edu FU Office of Research; College of Mathematical and Physical Sciences; Department of Astronomy at the Ohio State University FX This work was partially supported by a Large Interdisciplinary Grant award by the Office of Research, the College of Mathematical and Physical Sciences, and the Department of Astronomy at the Ohio State University. The computational work was carried out at the Ohio Supercomputer Center in Columbus Ohio. NR 35 TC 42 Z9 45 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12356 EP 12363 DI 10.1021/jp904977z PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100004 PM 19888772 ER PT J AU Balasubramanian, K Cao, ZJ AF Balasubramanian, K. Cao, Zhiji TI Spectroscopic Properties and Potential Energy Surfaces for Curium Hydrides: CmH2, CmH2+, CmH, and CmH+ SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LASER FLUORESCENCE SPECTROSCOPY; GAS-PHASE CHEMISTRY; CONCENTRATED ELECTROLYTE-SOLUTIONS; RELATIVISTIC EFFECTIVE POTENTIALS; SPIN-ORBIT OPERATORS; CARBONATE COMPLEXATION; AB-INITIO; HYDROCARBON ACTIVATION; CYCLIC HYDROCARBONS; LANTHANIDE CATIONS AB A relativistic complete active space multiconfigurational self-consistent field followed by multireference singles + doubles configuration interaction computations are carried out on the potential energy surfaces of electronic states of CmH2 and CmH2+ for the insertion reaction of Cm and Cm+ into H-2. We have also carried out corresponding computations on several electronic states of CmH and CmH+, Moreover, multireference relativistic configuration interaction computations including spin-orbit coupling were carried out on 75 electronic states of CmH+, which were found to be below the 45 000 cm(-1) region. We have computed the first ionization energy of Cm as 5.94 eV in excellent agreement with experimental value of 5.99 eV. Our computations reveal barriers for the insertion of Cm and Cm+ in their ground electronic states into H-2, but once the barriers are surmounted, both Cm + H-2 and Cm+ + H-2 form stable products, The potential energy curves of CmH and CmH+ reveal the existence of several low-lying open-shell excited states with varied Lambda quantum numbers and spin multiplicities. The excited states of these species exhibit intermediate coupling, although the spin-orbit splittings of the (9)Sigma(-) and (8)Sigma(-) ground states of CmH and CmH+ are small, exhibiting nearly inverted multiplets. C1 [Balasubramanian, K.; Cao, Zhiji] Calif State Univ, Coll Sci, Hayward, CA 94542 USA. [Balasubramanian, K.] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. [Balasubramanian, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Balasubramanian, K (reprint author), Calif State Univ, Coll Sci, Hayward, CA 94542 USA. EM balu@llnl.gov RI Cao, Zhiji/A-5957-2010 FU U.S. Department of Energy [DE-FG02-04ER15546] FX This research was supported by the U.S. Department of Energy tinder Grant No. DE-FG02-04ER15546. The work at LLNL was performed under the auspices of US Department of Energy. The authors would like to acknowledge computational support on Lawrence Livermore's supercomputer comprising 992 processors supported by DOE's accelerated supercomputing initiative program. NR 84 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12512 EP 12524 DI 10.1021/jp903795q PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100024 PM 19736953 ER PT J AU Schoendorff, G Windus, TL de Jong, WA AF Schoendorff, George Windus, Theresa L. de Jong, Wibe A. TI Density Functional Studies on the Complexation and Spectroscopy of Uranyl Ligated with Acetonitrile and Acetone Derivatives SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ENERGY-ADJUSTED PSEUDOPOTENTIALS; COLLISION-INDUCED DISSOCIATION; EFFECTIVE CORE POTENTIALS; GAS-PHASE; HYDROXIDE COMPLEXES; PARAMETER SETS; CHEMISTRY; OXIDATION; HYDRATION; DICATION AB The coordination of nitrite (acetonitrile, propionitrile, and benzonitrile) and carbonyl (formaldehyde, acetaldehyde, and acetone) ligands to the Uranyl dication (UO(2)(2+)) has been examined using density functional theory (DFT) utilizing relativistic effective core potentials (RECPs). Complexes containing LIP to Six ligands have been modeled in the gas phase for all ligands except formaldehyde, for which no minimum could be found. A comparison of relative binding energies indicates that 5-coordinate complexes are predominant, while 6-coordinate complexes involving propionitrile and acetone ligands might be possible. Additionally, the relative binding energy and the weakening of the uranyl bond is related to the size of the ligand, and ill general, nitrites bind more strongly to uranyl than carbonyls. C1 [Schoendorff, George; Windus, Theresa L.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Schoendorff, George; Windus, Theresa L.] Ames Lab, Ames, IA 50011 USA. [de Jong, Wibe A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Windus, TL (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM twindus@iastate.edu; bert.dejong@pnl.gov RI DE JONG, WIBE/A-5443-2008; OI DE JONG, WIBE/0000-0002-7114-8315; Schoendorff, George/0000-0001-8624-5217 FU U.S. Department of Energy's Office of Biological and Environmental Research at the Pacific Northwest National Laboratory; Iowa State University; NSF FX This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research, located at the Pacific Northwest National Laboratory, and operated for the Department of Energy by Battelle. Funding has been provided by Iowa State University and an NSF grant in petascale applications to T.L. Windus. NR 35 TC 12 Z9 12 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12525 EP 12531 DI 10.1021/jp9038623 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100025 PM 19572680 ER PT J AU Jakubikova, E Snoeberger, RC Batista, VS Martin, RL Batista, ER AF Jakubikova, Elena Snoeberger, Robert C., III Batista, Victor S. Martin, Richard L. Batista, Enrique R. TI Interfacial Electron Transfer in TiO2 Surfaces Sensitized with Ru(II)-Polypyridine Complexes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOINDUCED CHARGE SEPARATION; RUTHENIUM DIIMINE COMPLEXES; DENSITY-FUNCTIONAL THEORY; EFFECTIVE CORE POTENTIALS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; WATER-OXIDATION; SOLAR-CELLS; PHOSPHONIC ACID; MN(II)-TERPYRIDINE COMPLEXES AB Studies of interfacial electron transfer (IET) in TiO2 surfaces functionalized with (1) pyridine-4-phosphonic acid, (2) [Ru(tpy)(tpy(PO3H2))](2+), and (3) [Ru(tpy)(bpy)(H2O)-Ru(tpy)(tpy(PO3H2))](4+) (tpy = 2,2':6,2 ''-terpyridine; bpy = 2,2'-bipyridine) are reported. We characterize the electronic excitations, electron injection time scales, and interfacial electron transfer (IET) mechanisms through phosphonate anchoring groups. These are promising alternatives to the classic carboxylates of conventional dye-sensitized solar cells since they bind more strongly to TiO2 surfaces and form stable covalent bonds that are unaffected by humidity. Density functional theory calculations and quantum dynamics simulations of IET indicate that electron injection in 1-TiO2 can be up to 1 order of magnitude faster when 1 is attached to TiO2 in a bidentate mode (tau similar to 60 fs) than when attached in a monodentate motif (r similar to 460 fs). The JET time scale also depends strongly on the properties of the sensitizer as well as on the nature of the electronic excitation initially localized in the adsorbate molecule. We show that JET triggered by the visible light excitation of 2-TiO2 takes 1-10 ps when 2 is attached in a bidentate mode, a time comparable to the lifetime of the excited electronic state. IET due to visible-light photoexcitation of 3-TiO2 is slower, since the resulting electronic excitation remains localized in the tpy-tpy bridge that is weakly Coupled to the electronic states of the conduction band of TiO2. These results are particularly valuable to elucidate the possible origin of IET efficiency drops during photoconversion in solar cells based oil Ru(II)-polypyridine complexes covalently attached to TiO2 thin films with phosphonate linkers. C1 [Jakubikova, Elena; Martin, Richard L.; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Snoeberger, Robert C., III; Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. RP Batista, ER (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B268, Los Alamos, NM 87545 USA. EM erb@lanl.gov FU Center for Nonlinear Studies at Los Alamos National Laboratory; Laboratory Directed Research and Development (LDRD) program; U.S. Department of Energy [DE-AC52-06NA25396, DOE grant DE-FG02-07ER15909]; NSF [ECCS-0404191] FX R.S. thanks the Center for Nonlinear Studies at Los Alamos National Laboratory for summer research fellowship. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. V.S.B. acknowledges supercomputer time from NERSC and support from the DOE grant DE-FG02-07ER15909 and the NSF grant ECCS-0404191. NR 76 TC 59 Z9 59 U1 1 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12532 EP 12540 DI 10.1021/jp903966n PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100026 PM 19594155 ER PT J AU Marcalo, J Gibson, JK AF Marcalo, Joaquim Gibson, John K. TI Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; IONIZATION-POTENTIALS; PHYSICAL-PROPERTIES; URANYL DICATION; BOND-ENERGIES; ION; THERMOCHEMISTRY; CHEMISTRY; OXIDATION; WATER AB An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium. neptunium, plutonium, americium, and curium is presented A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry. C1 [Marcalo, Joaquim] Inst Tecnol & Nucl, Unidade Ciencias Quim & Radiofarmaceut, P-2686953 Sacavem, Portugal. [Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Marcalo, J (reprint author), Inst Tecnol & Nucl, Unidade Ciencias Quim & Radiofarmaceut, P-2686953 Sacavem, Portugal. RI Marcalo, Joaquim/J-5476-2013; PTMS, RNEM/C-1589-2014 OI Marcalo, Joaquim/0000-0001-7580-057X; FU Fundacao para a Ciencia e a Tecnologia; U.S. Department of Energy FX The contributions front the co-workers, whose names are listed in the references. to our studies of the actinide oxides in the gas phase are gratefully acknowledged Our joint work has benefited from the continued financial support from Fundacao para a Ciencia e a Tecnologia and the Director, Office of Science. Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy NR 52 TC 38 Z9 38 U1 5 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12599 EP 12606 DI 10.1021/jp904862a PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100034 PM 19725530 ER PT J AU Beck, EV Brozell, SR Blaudeau, JP Burggraf, LW Pitzer, RM AF Beck, Eric V. Brozell, Scott R. Blaudeau, Jean-Philippe Burggraf, Larry W. Pitzer, Russell M. TI Assessment of the Accuracy of Shape-Consistent Relativistic Effective Core Potentials Using Multireference Spin-Orbit Configuration Interaction Singles and Doubles Calculations of the Ground and Low-Lying Excited States of U4+ and U5+ SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID UNITARY-GROUP APPROACH; AB-INITIO; ELECTRONIC-STRUCTURE; BASIS-SETS; MOLECULAR CALCULATIONS; QUANTUM-CHEMISTRY; URANYL-ION; ACTINIDE COMPLEXES; PROGRAM SYSTEM; COMPOUNDS XUY AB Multireference spin-orbit configuration interaction calculations were used to determine the accuracy of 60-, 68, and 78-electron shape-consistent relativistic effective core potentials (RECPs) for uranium V and VI ground and low-lying excited states. Both 5f(n) and (5f6d)(n), (n = 1, 2) reference spaces were investigated using correlation-consistent double-zeta quality basis sets. Accuracy was assessed against gas-phase experimental spectra. The 68-electron RECP calculations yielded low relative and rms errors and predicted the empirical ordering of states most consistently. C1 [Brozell, Scott R.] Ohio Supercomp Ctr, Columbus, OH 43212 USA. [Beck, Eric V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Blaudeau, Jean-Philippe] USA, High Performance Technol Inc, Res Lab, Aberdeen Proving Ground, MD 21005 USA. [Burggraf, Larry W.] USAF, Dept Engn, Inst Technol, ENP, Wright Patterson AFB, OH 45433 USA. [Pitzer, Russell M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. RP Brozell, SR (reprint author), Ohio Supercomp Ctr, 1224 Kinnear Rd, Columbus, OH 43212 USA. EM srb@osc.edu FU U.S. Department of Energy FX The authors thank Phil Christiansen for developing several RECPs. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United State Air Force, Department of Defense or the U.S. Government. This work was made possible in par; through a grant by the U.S. Department of Energy Nuclear Engineering Education Reasearch (NEER) Program. Additional support was provided by Mr. James Grey and Mr. David Doaks at the Air Force Institute of Technology. Rajni Tyagi, with the Ohio State University Department of Chemistry, provided invaluable insights and assistance for this work. S.R.B. acknowledges the use of computional facilities at the Ohio Supercomputer Center and The Ohio State University. NR 72 TC 5 Z9 5 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12626 EP 12631 DI 10.1021/jp9049846 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100037 PM 19888778 ER PT J AU Hartono, A Lu, QD Henretty, T Krishnamoorthy, S Zhang, HJ Baumgartner, G Bernholdt, DE Nooijen, M Pitzer, R Ramanujam, J Sadayappan, P AF Hartono, Albert Lu, Qingda Henretty, Thomas Krishnamoorthy, Sriram Zhang, Huaijian Baumgartner, Gerald Bernholdt, David E. Nooijen, Marcel Pitzer, Russell Ramanujam, J. Sadayappan, P. TI Performance Optimization of Tensor Contraction Expressions for Many-Body Methods in Quantum Chemistry SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID COUPLED-CLUSTER; IMPLEMENTATION; EQUATIONS; ENGINE AB Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions Transformations using algebraic properties of commutativity and associativity call be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions The first part of tire paper describes art effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations oil modern processors A number of considerations, such as minimization of cache masses and utilization of multimedia vector instructions. are discussed A library for efficient index permutation of multidimensional tensors is described. and experimental performance data is provided that demonstrates its effectiveness. C1 [Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Pitzer, Russell; Sadayappan, P.] Ohio State Univ, Columbus, OH 43210 USA. [Baumgartner, Gerald; Ramanujam, J.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Bernholdt, David E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Nooijen, Marcel] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. RP Sadayappan, P (reprint author), Ohio State Univ, Columbus, OH 43210 USA. FU U.S. National Science Foundation [0121676, 0121706, 0403342, 0508245, 0509442, 0509467, 0541409, 0811457, 0811781, 0926687, 0926688]; Oak Ridge National Laboratory (ORNL); Discovery Grant [262942-03]; Natural Sciences and Engineering Research Council of Canada; U.S. Department of Energy [DE-AC-05-00OR22725] FX We thank the referees for their valuable feedback This work has been supported in part by the U.S. National Science Foundation through Grants 0121676, 0121706, 0403342, 0508245, 0509442, 0509467, 0541409. 0811457, 0811781, 0926687, and 0926688. the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), and a Discovery Grant, 262942-03, from the Natural Sciences and Engineering Research Council of Canada ORNL is managed by UT-Battelle. LLC. for the U.S. Department of Energy under contract DE-AC-05-00OR22725 NR 28 TC 10 Z9 10 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12715 EP 12723 DI 10.1021/jp9051215 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100048 PM 19888780 ER PT J AU Brozell, SR Shepard, R AF Brozell, Scott R. Shepard, Ron TI Evaluation of the Spin-Orbit Interaction within the Graphically Contracted Function Method SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID NONLINEAR-WAVE FUNCTIONS; UNITARY-GROUP APPROACH; PROGRESS REPORT; PARAMETERS; OPERATORS; MATRIX; CORE AB The graphically contracted function (GCF) method is extended to include an effective one-electron spin-orbit (SO) operator in the Hamiltonian matrix construction Our initial implementation is based on a multiheaded Shavitt graph approach that allows for the efficient simultaneous computation of entire blocks of Hamiltonian matrix elements Two algorithms air implemented The SO-GCF method expands the spin-orbit wave function in the basis of GCFs and results in a Hamiltonian matrix of dimension N(dim) = N(alpha)((S(max) + 1)(2) - S(min)(2)) N(alpha) is the number of sets of nonlinear arc factor parameters, and S(min) and S(max), tire respectively the minimum and maximum values of an allowed spin range in the wave function expansion The SO-SCGCF (SO spin contracted GCF) method expands the wave function in a basis of spin contracted functions and results in a Hamiltonian matrix of dimension N(dim) = N(alpha) ror a given N(alpha) and spin range. the number of parameters defining the wave function is the same in the two methods after accounting for normalization The full Hamiltonian matrix construction with both approaches scales formally as O(N(alpha)(2)omega n(4)) for n molecular orbitals The omega factor depends on the complexity of the Shavitt graph and includes factors such as the number of electrons, N, and the number of interacting spin states Timings are given for Hamiltonian matrix construction for both algorithms for it range of wave functions with up to N = n = 128 and that correspond to an underlying linear full-CI CSF expansion dimension of over 10(75) CSFs. many orders of magnitude larger than can be considered using traditional CSF-based spin-orbit CI approaches For Hamiltonian matrix construction. the SO-SCGCF method is slightly faster than the SO-GCF method for a given N(alpha) and spin range. The SO-GCF method may be more suitable for describing multiple states, whereas the SO-SCGCF method may be more suitable for describing single states C1 [Brozell, Scott R.; Shepard, Ron] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Shepard, R (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Basic Energy Sciences; Division of Chemical Sciences; U.S Department of Energy [DE-AC02-06CH11357] FX We thank Professor Russell M Pitzer and Dr Zhiyong Zhang for helpful discussions S R B acknowledges the use of computational facilities at the Ohio Supercomputer Center. This work was supported by the office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S Department of Energy, and in part through the SerDAC project "Advanced Software for the Calculation of Thermochemistry, Kinetics, and Dynamics," tinder contract number DE-AC02-06CH11357 NR 27 TC 7 Z9 7 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12741 EP 12747 DI 10.1021/jp9059032 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100051 PM 19736962 ER PT J AU Wang, Y Hong, L Tapriyal, D Kim, IC Paik, IH Crosthwaite, JM Hamilton, AD Thies, MC Beckman, EJ Enick, RM Johnson, JK AF Wang, Yang Hong, Lei Tapriyal, Deepak Kim, In Chul Paik, Ik-Hyeon Crosthwaite, Jacob M. Hamilton, Andrew D. Thies, Mark C. Beckman, Eric J. Enick, Robert M. Johnson, J. Karl TI Design and Evaluation of Nonfluorous CO2-Soluble Oligomers and Polymers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CARBON-DIOXIDE MICROEMULSIONS; PHASE-BEHAVIOR; SUPERCRITICAL CO2; SOLUBILITY; WATER; CO2-PHILES; COPOLYMERS; MOLECULES; HYDROGEN; CHARGES AB Ab initio molecular modeling is used to design nonfluorous polymers that are potentially soluble in liquid CO2. We have used calculations to design three nonfluorous compounds meant to model the monomeric repeat units of polymers that exhibit multiple favorable binding sites for CO2. These compounds are methoxy isopropyl acetate, 2-methoxy ethoxy-propane, and 2-methoxy methoxy-propane. We have synthesized oligomers or polymers based on these small compounds and have tested their solubility in CO,). All three of these exhibit appreciable solubility ill CO2. At 25 degrees C, oligo(3-acetoxy oxetane)6 is 5 wt % soluble at 25 MPa, the random copolymer (vinyl methoxymethyl ether(30)-co-vinyl acetate(9)) is 5 wt % soluble at 70 MPa and random copolymer (vinyl 1-methoxyethyl ether(30)-co-vinyl acetate(9)) is 3 wt % soluble at 120 MPa. These oligomers and polymers represent new additions to the very short list of nonfluorous CO2-soluble polymers. However, none of these are more soluble than poly(vinyl acetate), which exhibits the highest CO2 solubility of any known polymer containing only the elements C, H, and O. C1 [Wang, Yang; Hong, Lei; Tapriyal, Deepak; Beckman, Eric J.; Enick, Robert M.; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Kim, In Chul; Paik, Ik-Hyeon; Hamilton, Andrew D.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Crosthwaite, Jacob M.; Thies, Mark C.] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. [Enick, Robert M.; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU U.S. Department of Energy [DE-FC-04NT-15533]; National Science Foundation [CHE0131477] FX The University of Pittsburgh and Yale University acknowledge the financial support of the U.S. Department of Energy (DE-FC-04NT-15533) and National Science Foundation (CHE0131477). Calculations were performed at the University of Pittsburgh Center for Molecular and Materials Simulations. NR 51 TC 28 Z9 30 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 12 PY 2009 VL 113 IS 45 BP 14971 EP 14980 DI 10.1021/jp9073812 PG 10 WC Chemistry, Physical SC Chemistry GA 514WY UT WOS:000271428200018 PM 19845375 ER PT J AU Wang, C van der Vilet, D Chang, KC You, HD Strmcnik, D Schlueter, JA Markovic, NM Stamenkovic, VR AF Wang, Chao van der Vilet, Dennis Chang, Kee-Chul You, Hoydoo Strmcnik, Dusan Schlueter, John A. Markovic, Nenad M. Stamenkovic, Vojislav R. TI Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PEM FUEL-CELLS; PARTICLE-SIZE; ELECTRONIC-STRUCTURE; COPT3 NANOCRYSTALS; OPTICAL-PROPERTIES; ALLOY CATALYSTS; PLATINUM; ELECTROCATALYSTS; SUPERLATTICES; SURFACES AB Monodisperse Pt3Co nanoparticles with size controlled from 3 to 9 nm have been synthesized through an organic solvothermal approach and applied as electrocatalysts for the oxygen reduction reaction. Electrochemical study shows that the Pt3CO rianoparticles are highly active for the oxygen reduction reaction and the activity is size-dependent. The optimal size for maximal mass activity was established to be around 4.5 nm by balancing the electrochemically active surface area and specific activity, C1 [Wang, Chao; van der Vilet, Dennis; Chang, Kee-Chul; You, Hoydoo; Strmcnik, Dusan; Schlueter, John A.; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrstamenkovic@anl.gov RI Wang, Chao/F-4558-2012; Chang, Kee-Chul/O-9938-2014; van der Vliet, Dennis/P-2983-2015; You, Hoydoo/A-6201-2011 OI Wang, Chao/0000-0001-7398-2090; Chang, Kee-Chul/0000-0003-1775-2148; van der Vliet, Dennis/0000-0002-2524-527X; You, Hoydoo/0000-0003-2996-9483 FU University of Chicago and Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy FX The work was supported by the contract (DE-AC02-06CH11357) between the University of Chicago and Argonne, LLC, and the U.S. Department of Energy. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 39 TC 112 Z9 114 U1 10 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 12 PY 2009 VL 113 IS 45 BP 19365 EP 19368 DI 10.1021/jp908203p PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 514WZ UT WOS:000271428300002 ER PT J AU Lee, SH Lee, HJ Ino, K Shiku, H Yao, T Matsue, T AF Lee, Sang Hyun Lee, Hyun Jung Ino, Kosuke Shiku, Hitoshi Yao, Takafumi Matsue, Tomokazu TI Microfluid-Assisted Dielectrophoretic Alignment and Device Characterization of Single ZnO Wires SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOWIRES; GROWTH; PERFORMANCE; NANOBELTS; NANORODS; ARRAYS AB Individual ZnO wires were deposited on two closely spaced electrodes in a microfluidic channel by using the positive dielectrophoretic (p-DEP) alignment technique. By using the p-DEP technique in the presence of a microfluidic force, efficient and rapid alignment of single wires was achieved; this was a result of spatial confinement, uniform wire orientation in the channel, and the competition between microfluidic and DEP forces. The technique helped achieve a capturing efficiency of up to 86% within a few tens of seconds. In addition, we fabricated an electrochemically gated field-effect transistor (EC-FET) using single ZnO wires. The conductivity of the as-aligned wire was enhanced by carrying out post-treatments such as the deposition of metal layers at both ends of the wire, annealing, and functionalization with dodecanedioic acid. By applying a voltage across the electrolyte, it was confirmed that the fabricated EC-FET had stable n-channel FET characteristics. C1 [Lee, Sang Hyun; Lee, Hyun Jung; Ino, Kosuke; Shiku, Hitoshi; Matsue, Tomokazu] Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, Sendai, Miyagi 9808579, Japan. [Yao, Takafumi] Tohoku Univ, Interdisciplinary Res Ctr, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Lee, SH (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM lees3@ornl.gov; matsue@bioinfo.che.tohoku.ac.jp RI Matsue, Tomokazu/F-9688-2010 FU Japan Society for the Promotion of Science (JSPS) FX A part of this work was supported by the Research Fellowships for Young Scientists Program of the Japan Society for the Promotion of Science (JSPS). NR 34 TC 7 Z9 7 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 12 PY 2009 VL 113 IS 45 BP 19376 EP 19381 DI 10.1021/jp908161v PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 514WZ UT WOS:000271428300005 ER PT J AU Xu, F Volkov, V Zhu, YM Bai, HY Rea, A Valappil, NV Su, W Gao, XY Kuskovsky, IL Matsui, H AF Xu, Fen Volkov, Vyacheslav Zhu, Yimei Bai, Hanying Rea, Anthony Valappil, Nikesh V. Su, Wei Gao, Xueyun Kuskovsky, Igor L. Matsui, Hiroshi TI Long Electron-Hole Separation of ZnO-CdS Core-Shell Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INVERTED CORE/SHELL NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; HETEROSTRUCTURES; COMPOSITE; MECHANISM; ZNTE AB The tunability of electronic and optical properties of semiconductor nanocrystal quantum dots (QDs) has been an important subject in nanotechnology. While control of the emission property of QDs in wavelength has been studied extensively, control of the emission lifetime of QDs has not been explored in depth. In this report, ZnO-CdS core-shell QDs were synthesized in a two-step process, in which we initially synthesized ZnO core particles, and then stepwise slow growth of CdS shells followed. The coating of a CdS shell on a ZnO core increased the exciton lifetime more than 100 times that of the core ZnO QD, and the lifetime was further extended as the thickness of shell increased. This long electron-hole recombination lifetime is due to a unique staggered hand alignment between the ZnO core and CdS shell, so-called type II band alignment, where the carrier excitation holes and electrons are spatially separated at the core and shell, and the exciton lifetime becomes extremely sensitive to the thickness of the shell. Here, we demonstrated that the emission lifetime becomes controllable with the thickness of the shell in ZnO-CdS core-shell QDs. The longer excitonic lifetime of type II QDs could be beneficial in fluorescence-based sensors, medical imaging, solar cells photovoltaics, and lasers, C1 [Xu, Fen; Bai, Hanying; Su, Wei; Gao, Xueyun; Matsui, Hiroshi] CUNY Hunter Coll, Dept Chem & Biochem, New York, NY 10065 USA. [Rea, Anthony; Valappil, Nikesh V.; Kuskovsky, Igor L.] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. [Volkov, Vyacheslav; Zhu, Yimei] Brookhaven Natl Lab, CMP Mat Sci Dept, Upton, NY 11973 USA. RP Kuskovsky, IL (reprint author), CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. EM Igor.Kuskovsky@qc.cuny.edu; hmatsui@hunter.cuny.edu RI Volkov, Vyacheslav/D-9786-2016; OI Vellu Valappil, Nikesh/0000-0002-9518-8557 FU U.S. Department of Energy [DE-FG-02-01 ER45935]; U.S. DOE, Division of Materials, Office of Basic Energy Science [DE-AC02-98CH10886]; National Institutes of Health [G12-RR003037-245476] FX This work was supported by the U.S. Department of Energy under Award DE-FG-02-01 ER45935 and the U.S. DOE, Division of Materials, Office of Basic Energy Science, Contract DE-AC02-98CH10886. Htinter College infrastructure is supported by the National Institutes of Health, the RCMI program (G12-RR003037-245476). F.X. thanks professor Glen Kowach and Mr. Chum-ning Feng for the use of the glovebox. H.M. and FX also thank Dr. Jorge Morales for the assistance of TEM. NR 27 TC 40 Z9 43 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 12 PY 2009 VL 113 IS 45 BP 19419 EP 19423 DI 10.1021/jp903813h PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 514WZ UT WOS:000271428300013 ER PT J AU Letant, SE Maiti, A Jones, TV Herberg, JL Maxwell, RS Saab, AP AF Letant, Sonia E. Maiti, Amitesh Jones, Ticora V. Herberg, Julie L. Maxwell, Robert S. Saab, Andrew P. TI Polyhedral Oligomeric Silsesquioxane (POSS)-Stabilized Pd Nanoparticles: Factors Governing Crystallite Morphology and Secondary Aggregate Structure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CROSS-COUPLING REACTIONS; PALLADIUM NANOPARTICLES; CARBON NANOTUBES; HYDROGEN; SHAPE; TRANSISTORS; NUCLEATION; MOLECULES; CATALYSIS; POLYMERS AB Polyhedral oligomeric silsesquioxane (POSS)-based amine ligands are used as capping agents in the reductive growth of Pd nanocrystallites, and the effects of the specific form of the ligand on the structure of both the secondary aggregate and the primary metal nanoparticle are explored. Secondary aggregates of the ligand capped Pd particles are seen to form a uniform structure only if (a) the POSS ligand is totally functionalized with amine groups and (b) the amine groups are in the hydrochloride form. By casting these results in the context of density functional theory calculations, we show that the morphology of Pd core-shell nanomaterials is determined by the ratio of self-interaction potentials of the ligands to their interaction with solvent. The structures of the primary metal crystallites are also shown to be sensitive to the amine ligand in the hydrochloride form. Our results further show that the POSS versions of a ligand will frequently form precipitating capped metal nanoparticle structures, where the discrete molecular forms produce no isolable metal nanoparticles at all on the time scale of the experiments. A study of the diffusion rates of the reactive species in the Pd/POSS-ligand system shows a correlation between the growth of observable metal crystallites and sufficiently slow ligand diffusion kinetics. Finally, we illustrate through a TEM time series that Pd nucleation seems to happen without a prior formation of observable self-assembled POSS ligand templates. C1 [Letant, Sonia E.; Maiti, Amitesh; Jones, Ticora V.; Herberg, Julie L.; Maxwell, Robert S.; Saab, Andrew P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Saab, AP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM saab2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [06-SI-005] FX We thank Dr. Warren Moberlychan for the help he provided with high-resolution TEM imaging. We also thank Dr. Theodore Baumann for assistance with the synthetic procedures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by Laboratory Directed Research and Development Grant 06-SI-005. NR 31 TC 11 Z9 11 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 12 PY 2009 VL 113 IS 45 BP 19424 EP 19431 DI 10.1021/jp903866f PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 514WZ UT WOS:000271428300014 ER PT J AU Senanayake, SD Stacchiola, D Liu, P Mullins, CB Hrbek, J Rodriguez, JA AF Senanayake, Sanjaya D. Stacchiola, Dario Liu, Ping Mullins, C. Buddie Hrbek, Jan Rodriguez, Jose A. TI Interaction of CO with OH on Au(111): HCOO, CO3, and HOCO as Key Intermediates in the Water-Gas Shift Reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN PRECOVERED AU(111); ATOMIC OXYGEN; AU NANOPARTICLES; COVERED AU(111); SELECTIVE OXIDATION; CATALYTIC-OXIDATION; FORMIC-ACID; SURFACES; GOLD; ADSORPTION AB We have investigated the role of formate (HCOO), carbonate (CO3) and carboxyl (HOCO) species as possible intermediates in the OHads + COgas -> CO2,gas + O.5H(2,gas) reaction on Au(111) using synchrotron-based core level photoemission, near-edge X-ray absorption fine structure (NEXAFS), and infrared absorption spectroscopy (IR). Adsorbed HCOO, CO3, and OH species were prepared by adsorbing formic acid, carbon dioxide, and water on a Au(111) surface precovered with similar to 0.2 ML of atomic oxygen, respectively. HCOOH interacts weakly with An(111), but on O/Au(111) it dissociates its acidic H to yield adsorbed formate. The results of NEXAFS, IR, and density-functional calculations indicate that the formate adopts a bidentate configuration on Au(111). Since the HCOO groups are stable on Au(111) up to temperatures near 350 K, it is not likely that formate is a key intermediate for the OHads + COgas -> CO2,gas + 0.5H(2,gas) reaction at low temperatures. In fact. the formation of this species could lead eventually to Surface poisoning. When compared to a formate species, a carbonate species formed by the reaction of CO2 with O/Au(111) has low stability, decomposing at temperatures between 100 and 125 K, and should not poison the gold surface. Neither HCOO nor CO3 was detected during the reaction of CO with OH on Au(111) at 90-120 K. The results of photoemission and IR spectroscopy point to HO <-> CO interactions, consistent with the formation of an unstable HOCO intermediate which has a very short lifetime on the gold surface. The possible mechanism for the low-temperature watergas shift oil gold catalysts is discussed in light of these results. C1 [Senanayake, Sanjaya D.; Stacchiola, Dario; Liu, Ping; Hrbek, Jan; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Stacchiola, Dario] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. [Mullins, C. Buddie] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Mullins, C. Buddie] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Senanayake, Sanjaya/D-4769-2009; Stacchiola, Dario/B-1918-2009; Hrbek, Jan/I-1020-2013 OI Senanayake, Sanjaya/0000-0003-3991-4232; Stacchiola, Dario/0000-0001-5494-3205; FU US Department of Energy [DE-AC02-98CH 10886, DE-FG02-04ER15587] FX The authors are grateful to J. Hanson. X. Wang, and W. Wen for thought-provoking conversations about the behavior of Au-based catalysts in the WGS. The research carried Out at Brookhaven National Laboratory was supported by the US Department of Energy (Chemical Sciences Division, DE-AC02-98CH 10886). C.B.M. acknowledges support from the Department of Energy (DE-FG02-04ER15587). NR 49 TC 62 Z9 63 U1 4 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 12 PY 2009 VL 113 IS 45 BP 19536 EP 19544 DI 10.1021/jp908169s PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 514WZ UT WOS:000271428300030 ER PT J AU Argyris, D Cole, DR Striolo, A AF Argyris, Dimitrios Cole, David R. Striolo, Alberto TI Dynamic Behavior of Interfacial Water at the Silica Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHASE LIQUID-CHROMATOGRAPHY; MONTE-CARLO-SIMULATION; MOLECULAR-DYNAMICS; HYDROPHILIC SURFACES; VIBRATIONAL-SPECTRA; HYDRATION WATER; ADSORPTION; MODEL; CONFINEMENT; GROMACS AB Molecular dynamics simulations were employed to study the dynamic properties of water at the silica-liquid interface at ambient temperature. Three different degrees of hydroxylation of a crystalline silica surface were used, To assess the water dynamic properties we calculated the residence probability and in-plane meansquare displacement as a function of distance from the surface, The data indicate that water molecules at the fully hydroxylated surface remain longer, on average, in the interfacial region than in the other cases. By assessing the dynamics of molecular dipole moment and hydrogen-hydrogen vector an anisotropic reorientation was discovered for interfacial water in contact with any of the surfaces considered. However, the features of the anisotropic reorientation observed for water molecules depend strongly on the relative orientation of interfacial water molecules and their interactions with surface hydroxyl groups. On the partially hydroxylated surface, where water molecules with hydrogen-down and hydrogen-up orientation are both found, those water molecules associated with surface hydroxyl groups remain at the adsorbed locations longer and reorient more slowly than the other water molecules. A number of equilibrium properties, including density profiles, hydrogen bond networks, charge densities, and dipole moment densities, are also reported to explain the dynamics results. C1 [Argyris, Dimitrios; Striolo, Alberto] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. [Cole, David R.] Oak Ridge Natl Lab, Geochem & Interfacial Sci Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Striolo, A (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; OU Supercornputing Center for Education and Research (OSCER) at the University of Oklahoma; National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory FX Financial support was provided, in part, by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, by contract no. DE-AC05-00OR22725 to Oak Ridge National Laboratory (managed and operated by UT-Battelle, LLC), and from the Oklahoma State Regents for Higher Education. Generous allocations of computing time were provided by the OU Supercornputing Center for Education and Research (OSCER) at the University of Oklahoma and by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. NR 51 TC 65 Z9 65 U1 7 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 12 PY 2009 VL 113 IS 45 BP 19591 EP 19600 DI 10.1021/jp906150n PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 514WZ UT WOS:000271428300036 ER PT J AU Agoston, P Erhart, P Klein, A Albe, K AF Agoston, Peter Erhart, Paul Klein, Andreas Albe, Karsten TI Geometry, electronic structure and thermodynamic stability of intrinsic point defects in indium oxide SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELASTIC BAND METHOD; 1ST-PRINCIPLES CALCULATIONS; OPTICAL-PROPERTIES; SADDLE-POINTS; SOLAR-CELLS; BASIS-SET; IN2O3; SEMICONDUCTORS AB Intrinsic point defects in indium oxide, including vacancies, interstitials as well as antisites, are studied by means of first-principles calculations within density functional theory using the generalized gradient approximation together with on-site corrections. Finite-size effects are corrected by an extrapolation procedure in order to obtain defect formation energies at infinite dilution. The results show that all intrinsic donor defects have shallow states and are capable of producing free electrons in the conduction band. This applies in particular to the oxygen vacancy. Since it has also a low formation energy, we find that the oxygen vacancy should be the major donor in this material explaining the n-type conductivity as well as the non-stoichiometry of indium oxide. In addition, we show that there are a wealth of oxygen dumbbell-like defects which are thermodynamically relevant under oxidizing conditions. Finally, we discuss defect induced changes of the electronic structure. C1 [Agoston, Peter; Klein, Andreas; Albe, Karsten] Tech Univ Darmstadt, Inst Mat Wissensch, D-64287 Darmstadt, Germany. [Erhart, Paul] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Agoston, P (reprint author), Tech Univ Darmstadt, Inst Mat Wissensch, Petersenstr 23, D-64287 Darmstadt, Germany. RI Klein, Andreas/E-6081-2010; Albe, Karsten/F-1139-2011; Erhart, Paul/G-6260-2011 OI Klein, Andreas/0000-0001-7463-1495; Erhart, Paul/0000-0002-2516-6061 FU Deutsche Forschungsgemeinschaft FX We acknowledge the financial support through the Sonderforschungsbereich 595 'Fatigue of functional materials' of the Deutsche Forschungsgemeinschaft. Moreover, this work was made possible by grants for computing time on HHLR supercomputers at HRZ (TU-Darmstadt) and JSC at FZ-Julich. NR 52 TC 35 Z9 36 U1 3 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 11 PY 2009 VL 21 IS 45 AR 455801 DI 10.1088/0953-8984/21/45/455801 PG 11 WC Physics, Condensed Matter SC Physics GA 510LO UT WOS:000271090200019 PM 21694019 ER PT J AU Martinho, H Rettori, C Dalpian, GM da Silva, JLF Fisk, Z Oseroff, SB AF Martinho, H. Rettori, C. Dalpian, G. M. da Silva, J. L. F. Fisk, Z. Oseroff, S. B. TI Evidence for a subtle structural symmetry breaking in EuB6 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MAGNETIC ORDER; DIFFRACTION; SCATTERING; TRANSPORT; RAMAN; SMB6 AB This work presents a systematic Raman scattering study and first-principles calculations for the EuB6 system. Evidence for the presence of an incipient (similar to 1x10(-4) angstrom) tetragonal symmetry break of its crystalline structure was found. Forbidden Raman modes at omega(fRm(1)) similar to 1170 cm(-1), omega(fRm(2)) similar to 1400 cm(-1), and omega(fRm(3)) similar to 1500 cm(-1) were observed. The tetragonal symmetry of omega(fRm(2)) and omega(fRm(3)) together with spin-polarized first-principles simulations of the structural and magnetic properties fully support such a break of symmetry. Our data and calculations explain the occurrence of ferromagnetism in Eu hexaborides, previously reported. C1 [Martinho, H.; Dalpian, G. M.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Sao Paulo, Brazil. [Rettori, C.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [da Silva, J. L. F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Fisk, Z.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Oseroff, S. B.] San Diego State Univ, San Diego, CA 92182 USA. [Oseroff, S. B.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. RP Martinho, H (reprint author), Univ Fed ABC, Ctr Ciencias Nat & Humanas, Rua Santa Adelia 166, BR-09210170 Sao Paulo, Brazil. EM herculano.martinho@ufabc.edu.br RI Rettori, Carlos/C-3966-2012; Dalpian, Gustavo/B-9746-2008; Martinho, Herculano/F-4684-2015; Da Silva, Juarez L. F./D-1779-2011; Optica e Eletronica, Laboratorio/A-8669-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Rettori, Carlos/0000-0001-6692-7915; Dalpian, Gustavo/0000-0001-5561-354X; Da Silva, Juarez L. F./0000-0003-0645-8760; FU Brazilian Agencies CNPq; FAPESP; Raices 2009, Argentina FX This work was supported by the Brazilian Agencies CNPq and FAPESP. SBO was partially supported by Raices 2009, Argentina. NR 33 TC 2 Z9 2 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 11 PY 2009 VL 21 IS 45 AR 456007 DI 10.1088/0953-8984/21/45/456007 PG 5 WC Physics, Condensed Matter SC Physics GA 510LO UT WOS:000271090200028 PM 21694027 ER PT J AU Qin, W Lu, WC Zhao, LZ Zang, QJ Wang, CZ Ho, KM AF Qin, Wei Lu, Wen-Cai Zhao, Li-Zhen Zang, Qing-Jun Wang, C. Z. Ho, K. M. TI Stabilities and fragmentation energies of Si-n clusters (n=2-33) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MOLECULAR-ORBITAL CALCULATIONS; ION MOBILITY MEASUREMENTS; SMALL SILICON CLUSTERS; SIMPLE METAL-CLUSTERS; GERMANIUM CLUSTERS; GROWTH-PATTERNS; SEMICONDUCTOR CLUSTERS; IONIZATION-POTENTIALS; GE; TRANSITION AB The structures of Si-n (n = 2-33) were confirmed by genetic algorithm (GA)/tight binding (TB) search and ab initio calculations at the B3LYP/6-311++G(2d) and PW91/6-311++G(2d) level, respectively. The fragmentation energies, binding energies, second differences in energy, and highest occupied molecular orbital ( HOMO)-lowest unoccupied molecular orbital (LUMO) gaps in the size range 2 <= n <= 33 were calculated and analyzed systematically. We extended the cluster size involved in the fragmentation analyses up to Si-33, and studied the multi-step fragmentations of Si-n. The calculated result is similar to the fragmentation behavior of small silicon clusters studied previously, showing that Si-6, Si-7, and Si-10 have relatively larger stabilities and appear more frequently in the fragmentation products of large silicon clusters, which is in good agreement with the experimental observations. C1 [Qin, Wei; Lu, Wen-Cai] Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai; Zhao, Li-Zhen] Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Peoples R China. [Lu, Wen-Cai; Zhao, Li-Zhen] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China. [Zang, Qing-Jun] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Qin, W (reprint author), Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 FU National Natural Science Foundation of China [20773047, 60028403] FX This work was supported by the National Natural Science Foundation of China ( nos 20773047 and 60028403). Ames Laboratory is operated for the US Department NR 53 TC 32 Z9 32 U1 3 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 11 PY 2009 VL 21 IS 45 AR 455501 DI 10.1088/0953-8984/21/45/455501 PG 7 WC Physics, Condensed Matter SC Physics GA 510LO UT WOS:000271090200013 PM 21694013 ER PT J AU Singh, NK Kumar, P Mao, Z Paudyal, D Neu, V Suresh, KG Pecharsky, VK Gschneidner, KA AF Singh, Niraj K. Kumar, Pramod Mao, Z. Paudyal, Durga Neu, V. Suresh, K. G. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Magnetic, magnetocaloric and magnetoresistance properties of Nd7Pd3 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB Magnetic, magnetocaloric and magnetoresistance properties of the intermetallic compound Nd7Pd3 have been investigated. It exhibits a first-order magnetic phase transition at its ferromagnetic ordering temperature (T-C = 34 K). Just above the T-C, the magnetization isotherms exhibit a metamagnetic transition from the paramagnetic to a ferromagnetic state. In the immediate vicinity of T-C, a field change of only 10 kOe leads to the giant magnetocaloric effect of 13 J mol(-1) K-1. For a field change of 50 kOe a large magnetoresistance of similar to 21% is observed near T-C. First-principles electronic structure calculations indicate that the first-order phase transition in Nd7Pd3 may originate from the peculiar nature of the density of states near the Fermi level. C1 [Singh, Niraj K.; Kumar, Pramod; Suresh, K. G.] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India. [Singh, Niraj K.; Paudyal, Durga; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA USA. [Kumar, Pramod; Neu, V.] IFW Dresden, Inst Met Mat, D-01069 Dresden, Germany. [Kumar, Pramod; Mao, Z.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Suresh, KG (reprint author), Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India. EM suresh@phy.iitb.ac.in FU ISRO, Government of India; Office of Basic Energy Sciences of the Office of Science of the US Department of Energy [DE-AC02-07CH11358, DE-FG02-07ER46358] FX One of the authors (KGS) thanks ISRO, Government of India for providing financial support for this work. The work at Ames Laboratory, US Department of Energy is supported by the Office of Basic Energy Sciences of the Office of Science of the US Department of Energy under contract no. DE-AC02-07CH11358 with Iowa State University of Science and Technology. The work at Tulane University is supported by the DOE under grant DE-FG02-07ER46358. NR 30 TC 1 Z9 1 U1 1 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 11 PY 2009 VL 21 IS 45 AR 456004 DI 10.1088/0953-8984/21/45/456004 PG 5 WC Physics, Condensed Matter SC Physics GA 510LO UT WOS:000271090200025 ER PT J AU Wooten, AJ Werder, DJ Williams, DJ Casson, JL Hollingsworth, JA AF Wooten, Alfred J. Werder, Donald J. Williams, Darrick J. Casson, Joanna L. Hollingsworth, Jennifer A. TI Solution-Liquid-Solid Growth of Ternary Cu-In-Se Semiconductor Nanowires from Multiple- and Single-Source Precursors SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SILICON NANOWIRES; CRYSTAL-STRUCTURE; QUANTUM DOTS; SOLAR-CELLS; CUINSE2; NANOPARTICLES; NANOCRYSTALS; ROUTE; COST AB Ternary CuInSe(2) nanowires were synthesized for the first time by the solution-liquid-solid (SLS) mechanism. Here, both metal-organic multiple-and single-source molecular precursors were thermally decomposed in the presence of molten metal nanoparticles and coordinating ligands. The nature of the precursor-multiple-compared to single-source (wherein Cu-Se-In bonds are effectively preformed)-as well as the choice of coordinating ligands, reaction temperature, and reactant order-of-addition strongly affected the morphology and composition of the reaction product obtained. Crystalline, straight, and nearly stoichiometric CuInSe(2) nanowires were most readily achieved using the single-source precursor; however, careful tuning of reaction conditions could also be used to obtain high-quality nanowires from multiple-source precursor systems. The CuInSe(2) nanowires are strong light absorbers from the near-infrared through the visible and ultraviolet spectral regions and, thereby, comprise new soluble and processable "building blocks" for applications in solar-light harvesting. C1 [Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM jenn@lanl.gov FU LANL LDRD through a DOECINT FX We thank Dr. Han Htoon and Dr. Michael Janicke, Los Alamos National Laboratory (LANL), for helpful discussions and NMR support, respectively. We acknowledge Arizona State University TEM facility for contributions to NW compositional analysis. This work was performed, in part, at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Funding was provided in part by LANL LDRD funds and through a DOECINT postdoctoral fellowship (A.J.W.). NR 44 TC 53 Z9 56 U1 6 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 11 PY 2009 VL 131 IS 44 BP 16177 EP 16188 DI 10.1021/ja905730n PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 516AJ UT WOS:000271513700052 PM 19839616 ER PT J AU Bognar, Z Paparo, M Bradley, PA Bischoff-Kim, A AF Bognar, Zs. Paparo, M. Bradley, P. A. Bischoff-Kim, A. TI Characterizing the pulsations of the ZZ Ceti star KUV 02464+3239 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; stars: individual: KUV 02464+3239; stars: oscillations; white dwarfs ID WHOLE EARTH TELESCOPE; WHITE-DWARF STARS; GD 154; ASTEROSEISMOLOGY; DISCOVERY; G117-B15A; EVOLUTION; MODELS; GD358; MASS AB We present the results on period search and modelling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long-period pulsation modes, and has a strongly non-sinusoidal light curve. We determined six frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fitting models resulting from a grid search, we selected three that gave l = 1 solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and 0.680 M(circle dot). The three 'favoured' models have M(H) between 2.5 x 10(-5) and 6.3 x 10(-6) M(*) and give 14.2-14.8 mas seismological parallax. The 0.645 M(circle dot) (11 400 K) model also matches the spectroscopic log g and T (eff) within 1 sigma. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required. C1 [Bognar, Zs.; Paparo, M.] Hungarian Acad Sci, Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Bradley, P. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bischoff-Kim, A.] Georgia Coll & State Univ, Dept Chem Phys & Astron, Milledgeville, GA 31061 USA. RP Bognar, Z (reprint author), Hungarian Acad Sci, Konkoly Observ Budapest, POB 67, H-1525 Budapest, Hungary. EM bognar@konkoly.hu OI Bradley, Paul/0000-0001-6229-6677 FU HSO [98022] FX The authors would like to thank the referee, S. O. Kepler, for his helpful comments and suggestions. This research was partly supported by HSO project No. 98022. NR 43 TC 7 Z9 7 U1 1 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2009 VL 399 IS 4 BP 1954 EP 1963 DI 10.1111/j.1365-2966.2009.15438.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 515KP UT WOS:000271469000018 ER PT J AU Qiu, XF Howe, JY Cardoso, MB Polat, O Heller, WT Paranthaman, MP AF Qiu, Xiaofeng Howe, Jane Y. Cardoso, Mateus B. Polat, Ozgur Heller, William T. Paranthaman, M. Parans TI Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism SO NANOTECHNOLOGY LA English DT Article ID ANODIC POROUS ALUMINA; HIGH-PURITY ALUMINUM; TIO2 NANOTUBES; ELECTROCHEMICAL ANODIZATION; MAGNETIC-PROPERTIES; PULSE ANODIZATION; HAFNIUM OXIDE; SOLAR-CELLS; FABRICATION; FILMS AB Highly ordered HfO2 nanotube arrays were prepared through an electrochemical anodization in the presence of NH4F and ethylene glycol. The voltage-dependent pore size, wall thickness and porosity were studied using scanning electron microscopy and a wall thickness to pore size ratio was proposed on the basis of the results to serve as a boundary condition additional to the 10% porosity rule introduced by the Gosele group. The average distributions of the tube sizes and wall thicknesses of the nanotubes prepared at 20 V were determined from the small-angle x-ray scattering data using a simple polydisperse core-shell cylinder model fit. Temperature-dependent x-ray diffraction measurements show that the as-grown amorphous nanotube arrays can be converted into crystalline nanotube arrays at a temperature above 500 degrees C. Transmission electron microscopy study of the dimple layer under the as-grown nanotube arrays reveals the presence of a layer of ordered HfO2 nanocrystals. Further microscopic investigation of the nanotube root region indicates that the nanotubes develop from bulbs produced during anodization. A possible gas bubble initiated growth mechanism based on these observations was proposed. C1 [Qiu, Xiaofeng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Mat Chem Grp, Oak Ridge, TN 37831 USA. [Howe, Jane Y.; Polat, Ozgur] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Cardoso, Mateus B.; Heller, William T.] Oak Ridge Natl Lab, Div Chem Sci, Macromol Struct Grp, Oak Ridge, TN 37831 USA. RP Qiu, XF (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Mat Chem Grp, Oak Ridge, TN 37831 USA. EM paranthamanm@ornl.gov RI Cardoso, Mateus/A-7926-2015; Paranthaman, Mariappan/N-3866-2015; Howe, Jane/G-2890-2011 OI Cardoso, Mateus/0000-0003-2102-1225; Paranthaman, Mariappan/0000-0003-3009-8531; FU US DOE; Office of Science; Office of BES-DMSE; ORNL Laboratory Directed Research and Development Program; Office of BER [KP1102010]; Division of Scientific User Facilities; ORISE postdoctoral fellowship FX This work was sponsored by the US DOE, Office of Science, Office of BES-DMSE, the ORNL Laboratory Directed Research and Development Program, Project KP1102010 of the Office of BER, and ORNL SHaRE User Facility supported by the Division of Scientific User Facilities. Dr X Qiu acknowledges the support of the ORISE postdoctoral fellowship. NR 54 TC 10 Z9 10 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 11 PY 2009 VL 20 IS 45 AR 455601 DI 10.1088/0957-4484/20/45/455601 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 508CL UT WOS:000270904600017 PM 19822933 ER PT J AU Meier, E Biedron, SG LeBlanc, G Morgan, MJ Wu, J AF Meier, E. Biedron, S. G. LeBlanc, G. Morgan, M. J. Wu, J. TI Electron beam energy and bunch length feed forward control studies using an artificial neural network at the Linac coherent light source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Linac; Energy control; Bunch length control; Jitter; Neural networks AB This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-Integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally. (C) 2009 Elsevier B.V. All rights reserved. C1 [Meier, E.; Morgan, M. J.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Meier, E.; LeBlanc, G.] Australian Synchrotron, Clayton, Vic 3168, Australia. [Meier, E.; Biedron, S. G.] Sincrotrone Trieste, FERMI Elettra, I-34012 Trieste, Italy. [Biedron, S. G.] Argonne Natl Lab, Dept Def Project Off, Argonne, IL 60439 USA. [Wu, J.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. RP Meier, E (reprint author), Monash Univ, Sch Phys, Wellington Rd, Clayton, Vic 3800, Australia. EM evelyne.meier@synchrotron.org.au; biedron@anl.gov; Greg.LeBlanc@synchrotron.org.au; Michael.Morgan@sci.monash.edu.au; jhwu@slac.stanford.edu NR 10 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2009 VL 610 IS 3 BP 629 EP 635 DI 10.1016/j.nima.2009.09.048 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 538AY UT WOS:000273157600001 ER PT J AU Aleshin, AE Gramatikova, S Hura, GL Bobkov, A Strongin, AY Stec, B Tainer, JA Liddington, RC Smith, JW AF Aleshin, Alexander E. Gramatikova, Svetlana Hura, Gregory L. Bobkov, Andrey Strongin, Alex Y. Stec, Boguslaw Tainer, John A. Liddington, Robert C. Smith, Jeffrey W. TI Crystal and Solution Structures of a Prokaryotic M16B Peptidase: an Open and Shut Case SO STRUCTURE LA English DT Article ID INSULIN-DEGRADING ENZYME; MITOCHONDRIAL PROCESSING PEPTIDASE; CYTOCHROME BC(1) COMPLEX; SUBSTRATE RECOGNITION; SIGNAL SEQUENCES; SCATTERING SAXS; IN-VIVO; PROTEINS; CLEAVAGE; SUBUNIT AB The M16 family of zinc peptidases comprises a pair of homologous domains that form two halves of a "clam-shell" surrounding the active site. The M16A and M16C subfamilies form one class ("peptidasomes"): they degrade 30-70 residue peptides, and adopt both open and closed conformations. The eukaryotic M16B subfamily forms a second class ("processing proteases"): they adopt a single partly-open conformation that enables them to cleave signal sequences from larger proteins. Here, we report the solution and crystal structures of a prokaryotic M16B peptidase, and demonstrate that it has features of both classes: thus, it forms stable "open" homodimers; in solution that resemble the processing proteases; but the clam-shell closes upon binding substrate, a feature of the M16A/C peptidasomes. Moreover, clam-shell closure is required for proteolytic activity. We predict that other prokaryotic M16B family members will form dimeric peptidasomes, and propose a model for the evolution of the M16 family. C1 [Aleshin, Alexander E.; Gramatikova, Svetlana; Bobkov, Andrey; Strongin, Alex Y.; Stec, Boguslaw; Liddington, Robert C.; Smith, Jeffrey W.] Burnham Inst Med Res, La Jolla, CA 92037 USA. [Hura, Gregory L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Liddington, RC (reprint author), Burnham Inst Med Res, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM rlidding@burnham.org; jsmith@burnham.org OI Strongin, Alex/0000-0003-3765-3016 FU NIH [AI061139] FX This work was supported by grant NIH AI061139 (to A.Y.S., J,W.S., and R.C.L.). We would like to thank Sheryl Harvey for her assistance with the purification of B. halodurans pepticase and Laurie Bankston for helpful discussions. We are also grateful to the staff at the Stanford Synchrotron Radiation Laboratory and the Advanced Light Source at the Lawrence Berkeley National Laboratory (national facilities supported by the NIH and DOE) for beamline maintenance and assistance during data collection. NR 37 TC 12 Z9 12 U1 0 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV 11 PY 2009 VL 17 IS 11 BP 1465 EP 1475 DI 10.1016/j.str.2009.09.009 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 522PX UT WOS:000272011500008 PM 19913481 ER PT J AU Chollet, EE Giacalone, J Skoug, RM Steinberg, JT Gosling, JT AF Chollet, E. E. Giacalone, J. Skoug, R. M. Steinberg, J. T. Gosling, J. T. TI SPATIAL OFFSETS OF INTERPLANETARY ION AND ELECTRON SOURCE REGIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; interplanetary medium; Sun: magnetic fields; Sun: particle emission ID ADVANCED COMPOSITION EXPLORER; MAGNETIC-FIELD; SOLAR-FLARES; PARTICLES; WIND; SPACECRAFT; ULYSSES; RHESSI; RADIO AB Observations of impulsive solar energetic particles provide unique insight into the process of particle acceleration in the solar atmosphere. X-ray and gamma-ray observations of precipitating particles from solar flares have shown offsets between the ion and the electron emission. We present Advanced Composition Explorer (ACE) observations of interplanetary energetic ion and suprathermal electron events with intensity variations related to connection or lack thereof to the particle source. These results indicate an offset between the acceleration regions of ions and electrons of the same order of magnitude as that observed in the gamma-ray events. However, if the particle event originates at the magnetic footpoints of an interplanetary coronal mass ejection, the ACE observations do not exhibit this offset, suggesting that different magnetic geometry or acceleration processes may be present in those regions. C1 [Chollet, E. E.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Chollet, E. E.; Giacalone, J.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Skoug, R. M.; Steinberg, J. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. RP Chollet, EE (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. FU NSF [ATM0447354] FX Much of this work was performed at the University of Arizona, as part of the first author's doctoral work. This work was supported, in part, by the NSF under grant ATM0447354. NR 22 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1492 EP 1495 DI 10.1088/0004-637X/705/2/1492 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700036 ER PT J AU Marzari, F Nelson, AF AF Marzari, F. Nelson, Andrew F. TI INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planetary systems: formation ID ISOTHERMAL GASEOUS DISK; FORMING JOVIAN PLANETS; A NUMERICAL CODE; 3-DIMENSIONAL INTERACTION; PROTOPLANETARY DISKS; EARLY EVOLUTION; MIGRATION; SYSTEMS; SCATTERING; ACCRETION AB We investigate the dynamical evolution of a Jovian-mass planet injected into an orbit highly inclined with respect to its nesting gaseous disk. Planet-planet scattering induced by convergent planetary migration and mean motion resonances may push a planet into such an out-of-plane configuration with inclinations as large as 20 degrees-30 degrees. In this scenario, the tidal interaction of the planet with the disk is more complex and, in addition to the usual Lindblad and corotation resonances, it also involves inclination resonances responsible for bending waves. We have performed three-dimensional hydrodynamic simulations of the disk and of its interactions with the planet with a smoothed particle hydrodynamics code. A main result is that the initial large eccentricity and inclination of the planetary orbit are rapidly damped on a timescale of the order of 10(3) yr, almost independently of the initial semimajor axis and eccentricity of the planet. The disk is warped in response to the planet perturbations and it precesses. Inward migration also occurs when the planet is inclined, and it has a drift rate that is intermediate between type I and type II migration. The planet is not able to open a gap until its inclination becomes lower than similar to 10 degrees, when it also begins to accrete a significant amount of mass from the disk. C1 [Marzari, F.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Nelson, Andrew F.] Los Alamos Natl Lab, HPC 5, Los Alamos, NM 87544 USA. RP Marzari, F (reprint author), Univ Padua, Dipartimento Fis, Via Marzolo 8, I-35131 Padua, Italy. EM francesco.marzari@pd.infn.it; andy.nelson@lanl.gov FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396, LA-UR09-03432] FX We thank an anonymous referee for his useful comments and suggestions. Parts of this work were carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, for which this is publication number LA-UR09-03432. NR 36 TC 26 Z9 26 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1575 EP 1583 DI 10.1088/0004-637X/705/2/1575 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700044 ER PT J AU Walsh, A Da Silva, JLF Wei, SH AF Walsh, Aron Da Silva, Juarez L. F. Wei, Su-Huai TI Interplay between Order and Disorder in the High Performance of Amorphous Transparent Conducting Oxides SO CHEMISTRY OF MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; THIN-FILMS; SEMICONDUCTORS; DEFECTS; ROUTE; IN2O3; SNO2; GAP; ZNO AB We demonstrate, using First-principles calculations, that the exceptional behavior of amorphous transparent conducting oxides formed from In, Zn, Ga, and Al cations arises from the preservation of local crystal order in the cation Centered polyhedra, which is maintained due to the strong charge transfer to oxygen. While tails of localized states may be created above the valence band, the highly delocalized conduction band remains unperturbed, offering effective n-type conduction despite the existence or long-range structural disorder. This is in direct contrast to the paradigm set by amorphous covalent semiconductors. C1 [Walsh, Aron] UCL, Dept Chem, London WC1E 6BT, England. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Da Silva, Juarez L. F.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. RP Walsh, A (reprint author), UCL, Dept Chem, 3rd Floor,Kathleen Lonsdale Bldg, London WC1E 6BT, England. RI Walsh, Aron/A-7843-2008; Da Silva, Juarez L. F./D-1779-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016 OI Walsh, Aron/0000-0001-5460-7033; Da Silva, Juarez L. F./0000-0003-0645-8760; FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308, DE-AC02-05CH11231] FX We would like to thank Yanfa Yan and Yong-Hyun Kim for useful discussions The work is funded by the U.S. Department of Energy (DOE), under Contract No. DE-AC36-08GO28308. Computing resources of the National Energy Research Scientific Computing Center were employed, which is supported by DOE under Contract No. DE-AC02-05CH11231 NR 62 TC 52 Z9 52 U1 1 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 10 PY 2009 VL 21 IS 21 BP 5119 EP 5124 DI 10.1021/cm9020113 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 512GM UT WOS:000271234300017 ER PT J AU Banks, JW Shadid, JN AF Banks, J. W. Shadid, J. N. TI An Euler system source term that develops prototype Z-pinch implosions intended for the evaluation of shock-hydro methods SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE shock hydrodynamics; Euler system; Z-pinch implosions; multi-block mapped overlapped grids; verification; benchmark problems ID FLUX-CORRECTED TRANSPORT; ENERGY DENSITY PHYSICS; OVERLAPPING GRIDS; JETS; FLOW; CONVERGENCE; ALGORITHMS; SCHEMES AB In this paper, a phenomenological model for a magnetic drive Source term for the momentum and total energy equations of the Euler system is described. This body force term is designed to produce a Z-pinch like implosion that can be used in the development and evaluation of shock-hydrodynamics algorithms that are intended to be used in Z-pinch simulations. The model uses a J x B Lorentz force, motivated by a O-D analysis of a thin shell (or liner implosion), as a source term in the equations and allows for arbitrary current drives to be simulated. An extension that would include the multi-physics aspects of a proposed combined radiation hydrodynamics (rad-hydro) capability is also discussed. The specific class of prototype problems that are developed is intended to illustrate aspects of liner implosions into a near vacuum and with idealized pre-fill plasma effects. In this work, a high-resolution flux-corrected-transport method implemented on structured overlapping meshes is used to demonstrate the application of such a model to these idealized shock-hydrodynamic Studies. The presented results include an asymptotic solution based on a limiting-case thin-shell analytical approximation in both (x, y) and (r, z). Additionally, a set of more realistic implosion problems that include density profiles approximating plasma pre-fill and a set of perturbed liner geometries that excite a hydro-magnetic like Rayleigh-Taylor instability in the implosion dynamics are demonstrated. Finally, as a demonstration of including and evaluating multiphysics effects in the Euler system, a simple radiation model is included and self-convergence results for two types of (r, z) implosions are presented. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Banks, J. W.; Shadid, J. N.] Sandia Natl Labs, Computat Sci R&D Grp, Elect & Microsyst Modeling Dept, Albuquerque, NM 87185 USA. RP Shadid, JN (reprint author), Sandia Natl Labs, Computat Sci R&D Grp, Elect & Microsyst Modeling Dept, POB 5800, Albuquerque, NM 87185 USA. EM jnshadi@sandia.gov RI Banks, Jeffrey/A-9718-2012 FU DOE NNSA ASC ALC; DOE Office of Science AMR FX Contract/grant sponsor: DOE NNSA ASC ALC Contract/grant sponsor: DOE Office of Science AMR NR 28 TC 1 Z9 1 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD NOV 10 PY 2009 VL 61 IS 7 BP 725 EP 751 DI 10.1002/fld.1976 PG 27 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 513WF UT WOS:000271354100002 ER PT J AU Musculus, MPB AF Musculus, Mark P. B. TI Entrainment waves in decelerating transient turbulent jets SO JOURNAL OF FLUID MECHANICS LA English DT Article ID SUDDEN VELOCITY DECREASE; FIELD; SUBJECT; SPRAYS; FLOW AB A simplified one-dimensional partial differential equation for the integral axial momentum flux during the deceleration phase of single-pulsed transient incompressible jets is derived and solved analytically. The wave speed of the derived first-order nonlinear wave equation shows that the momentum flux transient from the deceleration phase propagates downstream at twice the initial jet penetration rate. Transient-jet velocity data from the existing literature is shown to be consistent with this derivation, and an algebraic analytical solution matches the measured timing and decay of axial velocity after the deceleration transient. The solution also shows that a wave of increased entrainment accompanies the deceleration transient as it travels downstream through the jet. In the long-time limit, the peak entrainment rate at the leading edge of this 'entrainment wave' approaches all asymptotic value or three times that of the initial steady jet. The rate of approach to the asymptotic behaviour is controlled by the deceleration rate, which suggests that rate-shaping may be tailored to achieve a desired mixing state at a given time after the end of a single-pulsed jet. In the wake of the entrainment wave, the absolute entrainment rate eventually decays to zero. The local injected fluid concentration also decays, however, so that entrainment rate relative to the local concentration of injected fluid remains higher than in the initial steady jet. An analysis of diesel engine fuel-jets is provided as one example of a transient-jet application in which the considerable increase in the mixing rate after the deceleration phase has important implications. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Musculus, MPB (reprint author), Sandia Natl Labs, MS 9053,POB 969, Livermore, CA 94551 USA. EM mpmuscu@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000] FX This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for Publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 38 TC 26 Z9 26 U1 2 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD NOV 10 PY 2009 VL 638 BP 117 EP 140 DI 10.1017/S0022112009990826 PG 24 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 522EB UT WOS:000271979500007 ER PT J AU Short, M Kessler, DA AF Short, Mark Kessler, David A. TI Asymptotic and numerical study of variable-density premixed flame propagation in a narrow channel SO JOURNAL OF FLUID MECHANICS LA English DT Article ID HEAT-LOSS; COMBUSTION; TUBES; DUCTS; ACCELERATION; DYNAMICS; THIN AB The influence of thermal expansion on the dynamics of thick to moderately thick premixed flames (flame thickness less than or comparable to the channel height) for a variable-density flow in a narrow, rectangular channel is explored. The study is conducted within the framework of the zero-Mach-number, variable-density Navier-Stokes equations. Both adiabatic and non-adiabatic channel walls are considered. A small Peclet number asymptotic solution is developed for steady, variable-density flame propagation in the narrow channel. The dynamics of channel flames are also examined numerically for O(1) Peclet numbers in configurations which include flame propagation in a semi-closed channel from the closed to the open end of the channel, flame propagation in a semi-closed channel towards the closed end of the channel and flame propagation in an open channel in which a Poiseuille flow (flame assisting or flame opposing) is imposed at the channel inlet. Comparisons of the finite-Peclet-number dynamics are made with the behaviour of the small-Peclet-number solutions. We also compare how thermal expansion modifies the flow dynamics from those determined by a constant-density model. The small-Peclet-number variable-density solution for a flame propagating in a circular pipe is given in the Appendix. C1 [Short, Mark] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. [Kessler, David A.] USN, Res Lab, Computat Phys & Fluid Dynam Lab, Washington, DC 20375 USA. RP Short, M (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM short1@lanl.gov NR 31 TC 13 Z9 13 U1 0 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD NOV 10 PY 2009 VL 638 BP 305 EP 337 DI 10.1017/S0022112009990966 PG 33 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 522EB UT WOS:000271979500014 ER PT J AU Cannata, A Hellweg, M Di Grazia, G Ford, S Alparone, S Gresta, S Montalto, P Patane, D AF Cannata, A. Hellweg, M. Di Grazia, G. Ford, S. Alparone, S. Gresta, S. Montalto, P. Patane, D. TI Long period and very long period events at Mt. Etna volcano: Characteristics, variability and causality, and implications for their sources SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE LP and VLP events; source location; moment tensors; Mt. Etna volcano ID BENEATH KILAUEA VOLCANO; WAVE-FORM INVERSION; FLUID-DRIVEN CRACK; POLARIZATION ANALYSIS; ACOUSTIC PROPERTIES; SOURCE MECHANISM; MOMENT TENSORS; MERAPI-VOLCANO; ASO VOLCANO; SIGNALS AB Almost 50,000 long period (LP) events were recorded at Mt. Etna from November 2003 to May 2006. We analysed these events, as well as very long period (VLP) events which were associated with some of them. During some intervals the spectral and wavefield features of LP events remained steady, with significant changes occurring between the intervals. Based on the times of the changes, we distinguish five different sub-periods. In particular, during sub-period III (June-November 2005) the wavefield at the stations nearest to the summit area was composed of P waves. Locations for 150 LP events occurring in sub-period Ill, determined using radial semblance, changed, at the same time as the events' spectral features changed. It was during this sub-period that many of the LP events were associated with VLP events. Based on similarity of the waveforms, we distinguished two families of VLP events, with gradually evolving waveforms. The two families are located in slightly different places, but near the sources of the LP events. The change between the families occurred at the same time as the spectra of the LP events changed. Finally the source of the VLP events was investigated by performing complete waveform moment tensor inversion of stacks of the two families. Synthetic Green's functions for the full moment tensor were calculated for a homogeneous half-space. For both families, the source region with the highest variance reduction lies approximately beneath the active craters, at 500 m below the altitudes of the stations. The solutions for both families are very similar with sources that are between 60 and 70% isotropic. Attempts to determine deviatoric moment tensors produced consistently poorer fits. The remaining energy is poorly constrained and is likely to be noise. In conclusion, these results highlight changes in the LP and VLP events at Mt. Etna over time, and the causal relationship between them. (c) 2009 Elsevier B.V. All rights reserved. C1 [Cannata, A.; Di Grazia, G.; Alparone, S.; Montalto, P.; Patane, D.] Ist Nazl Geofis & Vulcanol, Sez Catania, I-95123 Catania, Italy. [Hellweg, M.] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Ford, S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gresta, S.] Univ Catania, Dipartimento Sci Geol, I-95129 Catania, Italy. [Montalto, P.] Univ Catania, Dipartimento Ingn Elettr Elettron & Sistemi, I-95129 Catania, Italy. RP Cannata, A (reprint author), Ist Nazl Geofis & Vulcanol, Sez Catania, Piazza Roma 2, I-95123 Catania, Italy. EM andrea.cannata@unict.it RI Di Grazia, Giuseppe/G-1784-2015; Alparone, Salvatore/G-3548-2015; OI Di Grazia, Giuseppe/0000-0002-8153-9280; Alparone, Salvatore/0000-0003-1161-1512; Montalto, Placido/0000-0001-5023-0558; Cannata, Andrea/0000-0002-0028-5822; PATANE', Domenico/0000-0001-9410-5126 NR 50 TC 25 Z9 25 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 10 PY 2009 VL 187 IS 3-4 BP 227 EP + DI 10.1016/j.jvolgeores.2009.09.007 PG 19 WC Geosciences, Multidisciplinary SC Geology GA 522FW UT WOS:000271984300008 ER PT J AU Botiz, I Darling, SB AF Botiz, Ioan Darling, Seth B. TI Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material SO MACROMOLECULES LA English DT Article ID POLYMER SOLAR-CELLS; CONJUGATED POLYMERS; THIN-FILMS; CHARGE SEPARATION; PHOTOVOLTAIC CELLS; MOLECULAR-WEIGHT; MORPHOLOGY; DONOR; PERFORMANCE; NANOSTRUCTURES AB It is commonly accepted that in order to develop high-performance organic and/or hybrid organic-inotganic solar energy devices, it is necessary to use, among other components, fill active donor-acceptor layer with highly ordered nanoscale morphology In,in idealized morphology, the effectiveness of internal process including exciton generation and seperation and charge carrier migration is optimized, leading to all efficient conversion of photons to electricity. With this idea in mind, we have rationally designed and developed,in ordered nanoscale morphology consisting of self-assembled poly(3-hexylthiophene) donor domains of molecular dimension, each of them separated by fullerene C(60) hydroxide acceptor domains. A poly(3-hexylthiol)hene)-block-poly(L-lactide) block copolymer was used as a structure directing agent to pattern active material into ordered nanostructures Using this intimate morphological control. one can begin to probe structure-property relationships with unprecedented detail with the ultimate goal of maximizing the performance of future organic/hybrid photovoltaic devices. C1 [Botiz, Ioan; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Botiz, Ioan/I-3209-2012 OI Botiz, Ioan/0000-0002-8555-1084 NR 53 TC 97 Z9 101 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 10 PY 2009 VL 42 IS 21 BP 8211 EP 8217 DI 10.1021/ma901420h PG 7 WC Polymer Science SC Polymer Science GA 512GF UT WOS:000271233600032 ER PT J AU Hibbs, MR Fujimoto, CH Cornelius, CJ AF Hibbs, Michael R. Fujimoto, Cy H. Cornelius, Christopher J. TI Synthesis and Characterization of Poly(phenylene)-Based Anion Exchange Membranes for Alkaline Fuel Cells SO MACROMOLECULES LA English DT Article ID BLOCK-COPOLYMERS; STABILITY; POLYMERS; STATE; AMINATION; TRANSPORT; METHANOL; SERIES AB Cationic polymer membranes that conduct free anions comprise all enabling area of research for alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH The synthesis of anion exchange membranes based oil a poly(phenylene) backbone prepared by a Diels-Alder reaction is demonstrated The poly(phenylene)s have benzylic methyl groups that are converted to bromomethyl groups by a radical reaction. Cationic polymers result from conversion of the bromomethyl groups to ionic moieties by quaternization with trimethylamine in the solid state. The conversion to benzyltrimethylammonium groups is incomplete as evidenced by the differences between the IEC values measured by titration and the theoretical IECs based on (1)H NMR measurements The anion exchange membranes formed from these polymers have hydroxide ion conductivities as high as 50 mS/cm in liquid water, and they are stable under highly basic conditions at elevated temperatures. C1 [Hibbs, Michael R.; Fujimoto, Cy H.; Cornelius, Christopher J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hibbs, MR (reprint author), Sandia Natl Labs, POB 5800,Mailstop 0888, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr Michael Hickner for his assistance with the conductivity measurements Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 33 TC 236 Z9 242 U1 12 U2 149 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 10 PY 2009 VL 42 IS 21 BP 8316 EP 8321 DI 10.1021/ma901538c PG 6 WC Polymer Science SC Polymer Science GA 512GF UT WOS:000271233600043 ER PT J AU Akgun, B Ugur, G Brittain, WJ Majkrzak, CF Li, XF Wang, J Li, HM Wu, DT Wang, Q Foster, MD AF Akgun, Bulent Ugur, Goekce Brittain, William J. Majkrzak, Charles F. Li, Xuefa Wang, Jin Li, Huimin Wu, David T. Wang, Qiang Foster, Mark D. TI Internal Structure of Ultrathin Diblock Copolymer Brushes SO MACROMOLECULES LA English DT Article ID TRANSFER RADICAL POLYMERIZATION; X-RAY-SCATTERING; SELECTIVE SOLVENTS; TETHERED DIBLOCK; THIN-FILMS; INTERFACE; METHACRYLATE); TEMPERATURE; DEPENDENCE; SURFACES AB The internal structure of as-deposited, high grafting density, ultrathin (thickness < 25 lint) diblock copolynier brushes (DCBs) is resolved using neutron reflectivity (NR) and grazing incidence small-ray scattering (GISAXS) DCBs of various thicknesses containing deuterated polystyrene (dPS) angle X-ray scattering (GISAXS) DCBs of various thicknesses contianing deuterated polystrene (dPS) blocksand poly(methyl acrylate) (PMA) blocks with dPS (dPS-b-PMA) or with PMA(PMA-b-dPS)adajacent to the substrate were synthesized by atom transfer radical polymcrization (ATRP) For the th.nnest films, it model of two layers With a smooth interfacial gradient provides it good description of the data For thicker dPS-b-PMA samples of sufficiently asymmetric compostion, a third layer must be included. This is consistent with the presence of lateral ordering in the center of the brush, its evidenced by GISAXS data. For the thinnest DCBs, the gradient in composition perpendicular to the surface extends through nearly the entire thickness of the brush, consistent with the conjecture that the gradient is Imposed by the presence of the surface field and tethering oil it material that, in the absence of tethering, would be disordcred The Interface widths for brushes with it PMA block tethered 10 the Substrate are smaller than for brushes with a dPS block tethered to the substrate. In general. the region adjacent to the Substrate is found to have a substantial composition of the "top" block in contrast to expectations from theory Experimental interface width values me consistent with expectations from self-consistent Field theory for brushes with a dPS bottom block A scaling theory for the interfacial width in a DCB identifiesa crossover as (d/R(g))(2) > chi N frorn the classical Helfand-Tagami regime, where w approximate to/(chi(1/2)), to a new stretched interface regime, where w approximate to d/(chi N). The scaling theory provides insight into how interface width in the DCBs should vary with grafting density, interaction pdrarricter, and chain molecular weight and is qualitatively consistent with the experimental data and suggests directions for further work C1 [Akgun, Bulent; Ugur, Goekce; Brittain, William J.; Foster, Mark D.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Akgun, Bulent; Majkrzak, Charles F.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Akgun, Bulent] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Li, Xuefa; Wang, Jin] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Li, Huimin; Wu, David T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Li, Huimin; Wu, David T.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Wang, Qiang] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. RP Foster, MD (reprint author), Univ Akron, Dept Polymer Sci, 170 Univ Ave, Akron, OH 44325 USA. RI Akgun, Bulent/H-3798-2011; WANG, Qiang/H-5803-2011 NR 61 TC 9 Z9 9 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 10 PY 2009 VL 42 IS 21 BP 8411 EP 8422 DI 10.1021/ma9015449 PG 12 WC Polymer Science SC Polymer Science GA 512GF UT WOS:000271233600055 ER PT J AU Tilleman, H Kofman, O Nashelsky, L Livneh, U Roz, N Sillaber, I Biegon, A Rehavi, M Brodski, C AF Tilleman, H. Kofman, O. Nashelsky, L. Livneh, U. Roz, N. Sillaber, I. Biegon, A. Rehavi, M. Brodski, C. TI CRITICAL ROLE OF THE EMBRYONIC MID-HINDBRAIN ORGANIZER IN THE BEHAVIORAL RESPONSE TO AMPHETAMINE AND METHYLPHENIDATE SO NEUROSCIENCE LA English DT Article DE psychostimulants; isthmic organizer; hyperactivity; Otx2; dopamine; serotonin ID VENTRAL TEGMENTAL AREA; NUCLEUS-ACCUMBENS; DOPAMINERGIC-NEURONS; ISTHMIC ORGANIZER; NEURAL PLATE; RATS; EXPRESSION; SEROTONIN; OTX2; MOUSE AB The embryonic mid-hindbrain organizer, which is composed of a transient cell population in the brainstem, controls the development of dopaminergic and serotonergic neurons. Different genes determining the position and activity of this embryonic structure have been implicated in dopamine- and serotonin-associated disorders. Mouse mutants with a caudally shifted mid-hindbrain organizer, are hyperactive, show increased numbers of dopaminergic neurons and a reduction in serotonergic cells. In the present study we used these mutants to gain insights into the genetic and developmental mechanisms underlying motor activity and the response to psychostimulants. To this end, we studied the motor activity of these animals after exposure to methylphenidate and amphetamine and characterized their dopaminergic and serotonergic innervation. Saline-treated mutants showed increased locomotion, more stereotypic behavior and a decrease in rearing compared to wild-type mice. This baseline level of activity was similar to behaviors observed in wild-type animals treated with high doses of psychostimulants. In mutants methylphenidate (5 or 30 mg/kg) or amphetamine (2 or 4 mg/kg) did not further increase activity or even caused a decrease of locomotor activity, in contrast to wildtype mice. Fluoxetine (5 or 10 mg/kg) reduced hyperactivity of mutants to levels observed in wild-types. Transmitter measurements, dopamine and serotonin transporter binding assays and autoradiography, indicated a subtle increase in striatal dopaminergic innervation and a marked general decrease of serotonergic innervation in mutants. Taken together, our data suggest that mice with an aberrantly positioned mid-hindbrain organizer show altered sensitivity to psychostimulants and that an increase of serotonergic neurotransmission reverses their hyperactivity. We conclude that the mid-hindbrain organizer, by orchestrating the formation of dopaminergic and serotonergic neurons, is an essential developmental parameter of locomotor activity and psychostimulant response. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved. C1 [Tilleman, H.; Nashelsky, L.; Brodski, C.] Ben Gurion Univ Negev, Fac Hlth Sci, Div Basic Sci, Dept Morphol,Zlotowski Ctr Neurosci, IL-84105 Beer Sheva, Israel. [Kofman, O.; Livneh, U.] Ben Gurion Univ Negev, Zlotowski Ctr Neurosci, Dept Psychol, IL-84105 Beer Sheva, Israel. [Sillaber, I.] Affectis Pharmaceut, D-80804 Munich, Germany. [Biegon, A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Roz, N.; Rehavi, M.] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, IL-69978 Tel Aviv, Israel. RP Brodski, C (reprint author), Ben Gurion Univ Negev, Fac Hlth Sci, Div Basic Sci, Dept Morphol,Zlotowski Ctr Neurosci, IL-84105 Beer Sheva, Israel. EM claude@bgu.ac.il FU National Institute for Psychobiology in Israel [7-2004-5, 212-200708]; Israel Science Foundation [864105]; Israeli Ministry of Health, Chief Scientist's Office [3-00000-3546]; NIH [5RO1NS050285] FX This work was supported by research grants (to C.B.) from the National Institute for Psychobiology in Israel-Founded by the Charles E. Smith Family (7-2004-5, 212-200708), the Israel Science Foundation grant No. 864105, the Israeli Ministry of Health, Chief Scientist's Office (3-00000-3546) and (to A.B) from the NIH (5RO1NS050285). NR 52 TC 2 Z9 2 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4522 J9 NEUROSCIENCE JI Neuroscience PD NOV 10 PY 2009 VL 163 IS 4 BP 1012 EP 1023 DI 10.1016/j.neuroscience.2009.07.040 PG 12 WC Neurosciences SC Neurosciences & Neurology GA 518KL UT WOS:000271690200006 PM 19635527 ER PT J AU Pfuner, F Degiorgi, L Baturina, TI Vinokur, VM Baklanov, MR AF Pfuner, F. Degiorgi, L. Baturina, T. I. Vinokur, V. M. Baklanov, M. R. TI Optical properties of TiN thin films close to the superconductor-insulator transition SO NEW JOURNAL OF PHYSICS LA English DT Article ID HIGH-T-C; QUANTUM PHASE-TRANSITIONS AB We present the intrinsic optical properties over a broad spectral range of TiN thin films deposited on an Si/SiO(2) substrate. We analyze the measured reflectivity spectra of the film-substrate multilayer structure within a well-establish procedure based on the Fresnel equation and extract the real part of the optical conductivity of TiN. We identify the metallic contribution as well as the finite energy excitations and disentangle the spectral weight distribution among them. The absorption spectrum of TiN bears some similarities with the electrodynamic response observed in the normal state of the high-temperature superconductors. Particularly, a mid-infrared feature in the optical conductivity is quite reminiscent of a pseudogap-like excitation. C1 [Pfuner, F.; Degiorgi, L.] ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. [Baturina, T. I.] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. RP Pfuner, F (reprint author), ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. EM degiorgi@solid.phys.ethz.ch FU Swiss National Foundation for the Scientific Research within the NCCR MaNEP pool; Russian Academy of Sciences; Russian Foundation for Basic Research [09-02-01205]; US Department of Energy, Office of Basic Energy Science [DE-AC02-06CH11357] FX We thank A Kuzmenko and N P Armitage for fruitful discussions. This work was supported by the Swiss National Foundation for the Scientific Research within the NCCR MaNEP pool, the Program 'Quantum macrophysics' of the Russian Academy of Sciences, the Russian Foundation for Basic Research (grant no. 09-02-01205), and the US Department of Energy, Office of Basic Energy Science under contract no. DE-AC02-06CH11357. NR 16 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 10 PY 2009 VL 11 AR 113017 DI 10.1088/1367-2630/11/11/113017 PG 8 WC Physics, Multidisciplinary SC Physics GA 517WH UT WOS:000271649200002 ER PT J AU Drisdell, WS Saykally, RJ Cohen, RC AF Drisdell, Walter S. Saykally, Richard J. Cohen, Ronald C. TI On the evaporation of ammonium sulfate solution SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aerosol; clouds; aqueous; inorganic ID AEROSOL-PARTICLES; LIQUID WATER; TEMPERATURE-DEPENDENCE; ISOTOPE FRACTIONATION; MASS ACCOMMODATION; RAMAN-SCATTERING; CLOUD DROPLETS; GROWTH-RATE; CONDENSATION; COEFFICIENT AB Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. C1 [Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cohen, Ronald C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Drisdell, Walter S.; Saykally, Richard J.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Cohen, RC (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rccohen@berkeley.edu RI Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 FU National Science Foundation [0639847]; U. S. Department of Energy [AC02-05CH11231] FX W. S. D. thanks Robert M. Onorato and Dale E. Otten for enlightening discussions. This work was supported by National Science Foundation Grant ATM 0639847 and the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract DE- AC02-05CH11231. NR 40 TC 15 Z9 15 U1 2 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 10 PY 2009 VL 106 IS 45 BP 18897 EP 18901 DI 10.1073/pnas.0907988106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 517SJ UT WOS:000271637500007 PM 19861551 ER PT J AU Ivanova, MI Sievers, SA Sawaya, MR Wall, JS Eisenberg, D AF Ivanova, Magdalena I. Sievers, Stuart A. Sawaya, Michael R. Wall, Joseph S. Eisenberg, David TI Molecular basis for insulin fibril assembly SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE amyloid; fibril structure ID AMYLOID-FORMING PEPTIDE; ELECTRON-MICROSCOPY; APOLIPOPROTEIN-E; PROTEIN STRUCTURES; MONOMERIC INSULIN; MASS-SPECTROMETRY; BETA-PROTEIN; IN-VITRO; INHIBITION; ALPHA(1)-ANTICHYMOTRYPSIN AB In the rare medical condition termed injection amyloidosis, extracellular fibrils of insulin are observed. We found that the segment of the insulin B-chain with sequence LVEALYL is the smallest segment that both nucleates and inhibits the fibrillation of full-length insulin in a molar ratio-dependent manner, suggesting that this segment is central to the cross-beta spine of the insulin fibril. In isolation from the rest of the protein, LVEALYL forms microcrystalline aggregates with fibrillar morphology, the structure of which we determined to 1 angstrom resolution. The LVEALYL segments are stacked into pairs of tightly interdigitated beta-sheets, each pair displaying the dry steric zipper interface typical of amyloid-like fibrils. This structure leads to a model for fibrils of human insulin consistent with electron microscopic, x-ray fiber diffraction, and biochemical studies. C1 [Ivanova, Magdalena I.; Sievers, Stuart A.; Sawaya, Michael R.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Wall, Joseph S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Eisenberg, David/E-2447-2011 FU National Science Foundation; Department of Energy/Office of Biological and Environmental Research; National Institutes of Health; Howard Hughes Medical Institute; University of California Los Angeles National Science Foundation Integrative Graduate Education and Research Traineeship; Department of Energy/Office of Health and Environment Research FX We thank Drs. Andrew D. Miranker, Lukasz Salwinski, Ruben Diaz- Avalos, and Ivaylo Dinov for discussion; Dr. Martha Simon and Beth Lin of Brookhaven National Laboratory for making STEM measurements and preparing specimens; Dr. Helen Saibil for providing a cryo-EM reconstruction of insulin fibrils; Prof. Ehmke Pohl and the staff at the Swiss Light Source beamline X10SA for assistance in data collection; and the staff at the Advanced Photon Source beamline 24-ID-E. We thank the National Science Foundation, the Department of Energy/Office of Biological and Environmental Research, the National Institutes of Health, and Howard Hughes Medical Institute for support. S. A. S. was supported by a University of California Los Angeles National Science Foundation Integrative Graduate Education and Research Traineeship. BNL STEM is supported by Department of Energy/Office of Health and Environment Research. NR 46 TC 143 Z9 144 U1 2 U2 47 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 10 PY 2009 VL 106 IS 45 BP 18990 EP 18995 DI 10.1073/pnas.0910080106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 517SJ UT WOS:000271637500023 PM 19864624 ER PT J AU Gao, F Scearce, RM Alam, SM Hora, B Xia, SM Hohm, JE Parks, RJ Ogburn, DF Tomaras, GD Park, E Lomas, WE Maino, VC Fiscus, SA Cohen, MS Moody, MA Hahn, BH Korber, BT Liao, HX Haynes, BF AF Gao, Feng Scearce, Richard M. Alam, S. Munir Hora, Bhavna Xia, Shimao Hohm, Julie E. Parks, Robert J. Ogburn, Damon F. Tomaras, Georgia D. Park, Emily Lomas, Woodrow E. Maino, Vernon C. Fiscus, Susan A. Cohen, Myron S. Moody, M. Anthony Hahn, Beatrice H. Korber, Bette T. Liao, Hua-xin Haynes, Barton F. TI Cross-reactive monoclonal antibodies to multiple HIV-1 subtype and SIVcpz envelope glycoproteins SO VIROLOGY LA English DT Article DE Cross-reactivity; Monoclonal antibody; Subtype; Envelope glycoprotein; HIV-1 ID IMMUNODEFICIENCY-VIRUS TYPE-1; BROADLY NEUTRALIZING ANTIBODIES; COMPARATIVE IMMUNOGENICITY; IMMUNOLOGICAL RESPONSES; CLADE NEUTRALIZATION; VACCINE DEVELOPMENT; GENETIC DIVERSITY; MONOMERIC GP120; ENV CLONES; EPITOPE AB The extraordinarily high level of genetic variation of HIV-1 env genes poses a challenge to obtain antibodies that cross-react With multiple subtype Env glycoproteins. To determine if cross-reactive monoclonal antibodies (mAbs) to highly conserved epitopes in HIV-1 envelope glycoproteins can be induced, we immunized mice with wild-type or consensus HIV-1 Env proteins and characterized a panel of ten mAbs that reacted with varying breadth to subtypes A, B, C, D, F, G, CRF01_AE, and a highly divergent SIVcpzUS Env proteins by ELISA and Western blot analysis. Two mAbs (3B3 and 16H3) cross-reacted with all tested Env Proteins, including SIVcpzUS Env. Surface plasmon resonance analyses showed both 3B3 and 16H3 bound Env proteins with high affinity. However, neither neutralized primary HIV-1 pseudoviruses. These data indicate that broadly reactive non-neutralizing monoclonal antibodies can be elicited, but that the conserved epitopes that they recognize are not present on functional virion trimers. Nonetheless, such mAbs represent valuable reagents to study the biochemistry and structural biology of Env protein oligomers. (C) 2009 Elsevier Inc. All rights reserved C1 [Gao, Feng; Scearce, Richard M.; Alam, S. Munir; Hora, Bhavna; Xia, Shimao; Hohm, Julie E.; Parks, Robert J.; Ogburn, Damon F.; Tomaras, Georgia D.; Moody, M. Anthony; Liao, Hua-xin; Haynes, Barton F.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27710 USA. [Gao, Feng; Scearce, Richard M.; Alam, S. Munir; Hora, Bhavna; Xia, Shimao; Hohm, Julie E.; Parks, Robert J.; Ogburn, Damon F.; Moody, M. Anthony; Liao, Hua-xin; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. [Tomaras, Georgia D.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Tomaras, Georgia D.] Duke Univ, Med Ctr, Dept Immunol, Durham, NC 27710 USA. [Park, Emily; Lomas, Woodrow E.; Maino, Vernon C.] BD Biosci, San Jose, CA 95131 USA. [Fiscus, Susan A.; Cohen, Myron S.] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA. [Cohen, Myron S.] Univ N Carolina, Dept Med, Chapel Hill, NC 27599 USA. [Hahn, Beatrice H.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Hahn, Beatrice H.] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. [Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gao, F (reprint author), Duke Univ, Med Ctr, Duke Human Vaccine Inst, 3072B MSRB 2,DUMC 103020, Durham, NC 27710 USA. EM fgao@duke.edu RI Tomaras, Georgia/J-5041-2016; OI Korber, Bette/0000-0002-2026-5757; Moody, Tony/0000-0002-3890-5855 FU NIH [AI061734, AI067854, AI064518]; UNC Center for AIDS Research [P30AI50410]; Duke Center For AIDS Research [DK49381] FX We would like to thank Deanna Crossman, Wei Huang, and Vicki Ashley for technical assistance; NIH AIDS Research and Reference Reagent Program, Division of AIDS, MAID, NIH for HIV-1 envelope proteins (JRFL gp120, 11113 gpl20, SF162 gpl20, CN54 gp140, 93TH975 gpl 20, and CM235 gpl 20): and Simon Jeffs and the Programme EVA Centre for AIDS Reagents, NIBSC, UK, for CHO cell lines expressing HIV-1 envelope proteins (92UG037 gp140, 92UG021 gp140, and 93BR029 gpl40). We Would also like to thank the Center for HIV/AIDS Vaccine Immunology (CHAVI) clinical staff, patients, and volunteers for the contribution of the mucosal samples. This work was Supported by NIH grants AI061734, AI067854, AI064518, the UNC Center for AIDS Research P30AI50410 (SAF and MSC) the Duke Center For AIDS Research (FG, GDT, and BFH), and DK49381 (MSC). NR 47 TC 14 Z9 14 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD NOV 10 PY 2009 VL 394 IS 1 BP 91 EP 98 DI 10.1016/j.virol.2009.07.041 PG 8 WC Virology SC Virology GA 515AI UT WOS:000271438000012 PM 19744690 ER PT J AU Sanii, B Nguyen, K Radler, JO Parikh, AN AF Sanii, Babak Nguyen, Kathy Raedler, Joachim O. Parikh, Atul N. TI Evidence for Interleaflet Slip During Spreading of Single Lipid Bilayers at Hydrophilic Solids SO CHEMPHYSCHEM LA English DT Article DE fluorescence; friction; lipid bilayers; membranes; photobleaching ID PHOSPHOLIPID-MEMBRANES; VESICLES; MONOLAYERS; ASYMMETRY; DYNAMICS; MOBILITY; FLUID; SHAPE C1 [Nguyen, Kathy; Parikh, Atul N.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Sanii, Babak] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Raedler, Joachim O.] Univ Munich, Dept Phys, Munich, Germany. RP Parikh, AN (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. EM anparihk@ucdavis.edu RI PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 FU DOE [DE-FG02-04ER46173]; University of California [GREAT 2006-21] FX We thank A. W. Szmodis and S. Hsia for help, as well as A. Shreve, P.D. Ashby and S. Simon for discussions. We thank DOE (DE-FG02-04ER46173) for research support and the University of California (GREAT 2006-21) for student fellowship support (B. S). NR 22 TC 3 Z9 3 U1 1 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD NOV 9 PY 2009 VL 10 IS 16 BP 2787 EP 2790 DI 10.1002/cphc.200900372 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 524AC UT WOS:000272115200004 PM 19645000 ER PT J AU Nykypanchuk, D Hoagland, DA Strey, HH AF Nykypanchuk, Dmytro Hoagland, David A. Strey, Helmut H. TI Diffusion of Circular DNA in Two-Dimensional Cavity Arrays SO CHEMPHYSCHEM LA English DT Article DE cavity arrays; diffusion; DNA; fluorescence microscopy; polymers ID GEL-ELECTROPHORESIS; RING POLYMERS; SUPERHELICAL TURNS; CYCLIC POLYMERS; ENDONUCLEASE N.BSTNBI; MOLECULAR-WEIGHTS; MONTE-CARLO; DYNAMICS; BEHAVIOR; CONFORMATION AB Through a two-dimensional cavity array with connecting pores of submolecular size, diffusion of relaxed circular and linear DNA molecules is visualized by fluorescence microscopy. Across the entropic barriers transport regime, associated with spatially heterogeneous confinement of flexible polymers, circular DNA diffuses slower than linear DNA of the same length, a trend indicating that linear DNA preferably moves through connecting pores by the threading of an end rather than the looping of a midsection. C1 [Strey, Helmut H.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Hoagland, David A.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Nykypanchuk, Dmytro] Brookhaven Natl Labs, Ctr Funct Nonomat, Upton, NY 11973 USA. RP Strey, HH (reprint author), SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. EM hstrey@notes.cc.sunysb.edu RI Strey, Helmut/B-5456-2009 FU National Science Foundation through the University of Massachusetts, Amherst Materials Research Science and Engineering Center [DMR-0213695] FX This work was supported by the National Science Foundation through the University of Massachusetts, Amherst Materials Research Science and Engineering Center (DMR-0213695). NR 41 TC 1 Z9 1 U1 0 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD NOV 9 PY 2009 VL 10 IS 16 BP 2847 EP 2851 DI 10.1002/cphc.200900655 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 524AC UT WOS:000272115200013 PM 19821478 ER PT J AU Jia, JY AF Jia, Jiangyong TI Influence of the nucleon-nucleon collision geometry on the determination of the nuclear modification factor for nucleon-nucleus and nucleus-nucleus collisions SO PHYSICS LETTERS B LA English DT Article AB The influence of the underlying nucleon-nucleon collision geometry on evaluations of the nuclear overlap function (T(AB)) and number of binary collisions (N(coll)) is studied. A narrowing of the spatial distribution of the hard-partons with large light-cone fraction x in nucleons leads to a downward correction for N(coll) and T(AB), which in turn, results in an upward correction for the nuclear modification factor R(AB). The size of this correction is estimated for several experimentally motivated nucleon-nucleon overlap functions for hard-partons. it is found to be significant in peripheral nucleus-nucleus and nucleon-nucleus collisions, and is much larger at the LHC energy of root s = 5.5 TeV than for the RHIC energy of root s = 200 GeV. The implications for experimental measurements are also discussed. Published by Elsevier B.V. C1 [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Jia, JY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. EM jjia@bnl.gov NR 12 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 9 PY 2009 VL 681 IS 4 BP 320 EP 325 DI 10.1016/j.physletb.2009.10.044 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 521WJ UT WOS:000271956600004 ER PT J AU Weckner, O Brunk, G Epton, MA Silling, SA Askari, E AF Weckner, Olaf Brunk, Gerd Epton, Michael A. Silling, Stewart A. Askari, Ebrahim TI Green's functions in non-local three-dimensional linear elasticity SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE peridynamics; integro-differential equation; non-locality ID LONG-RANGE FORCES; PERIDYNAMIC MODEL; CONVERGENCE; UNIQUENESS; BAR; THERMOELASTICITY; DEFORMATION; MECHANICS; DYNAMICS; FRACTURE AB In this paper, we compare small deformations in an infinite linear elastic body due to the presence of point loads within the classical, local formulation to the corresponding deformations in the peridynamic, non-local formulation. Owing to the linearity of the problem, the response to a point load can be used to obtain the response to general body force loading functions by superposition. Using Laplace and Fourier transforms, we thus obtain an integral representation for the three-dimensional peridynamic solution with the help of Green's functions. We illustrate this new theoretical result by dynamic and static examples in one and three dimensions. In addition to this main result, we also derive the non-local three-dimensional jump conditions, as well as the weak formulation of peridynamics together with the associated finite element discretization. C1 [Weckner, Olaf; Epton, Michael A.; Askari, Ebrahim] Boeing Co, Appl Math, Seattle, WA 98124 USA. [Brunk, Gerd] Tech Univ Berlin, Inst Mech, D-1000 Berlin, Germany. [Silling, Stewart A.] Sandia Natl Labs, Multiscale Dynam Mat Modelling Dept, Livermore, CA 94550 USA. RP Weckner, O (reprint author), Boeing Co, Appl Math, POB 3707 MS 7L-25, Seattle, WA 98124 USA. EM olaf@weckner.de NR 49 TC 11 Z9 11 U1 1 U2 17 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P R SOC A JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2009 VL 465 IS 2111 BP 3463 EP 3487 DI 10.1098/rspa.2009.0234 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 500LF UT WOS:000270301500011 ER PT J AU Ford, SR Dreger, DS Walter, WR AF Ford, Sean R. Dreger, Douglas S. Walter, William R. TI Source analysis of the Memorial Day explosion, Kimchaek, North Korea SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID 9 OCTOBER 2006; MOMENT TENSOR; EARTHQUAKES AB A series of source inversions are performed for the 25 May 2009 (Memorial Day) North Korean seismic event using intermediate period (10-50 s) complete waveform modeling. An earthquake source is inconsistent with the data and the best-fit full seismic moment tensor is dominantly explosive (similar to 60%) with a moment magnitude (M(W)) of 4.5. A pure explosion solution yields a scalar seismic moment of 1.8 x 10(22) dyne-cm (M(W)4.1) and fits the data almost as well as the full solution. The difference between the full and explosion solutions is the predicted fit to observed tangential displacement, which requires some type of non-isotropic (non-explosive) radiation. Possible causes of the tangential displacement are additional tectonic sources, tensile failure at depth, and anisotropic wave propagation. Similar displacements may be hidden in the noise of the 2006 event. Future analyses of this type could be used to identify and characterize non-earthquake events such as explosions and mine collapses. Citation: Ford, S. R., D. S. Dreger, and W. R. Walter (2009), Source analysis of the Memorial Day explosion, Kimchaek, North Korea, Geophys. Res. Lett., 36, L21304, doi: 10.1029/2009GL040003. C1 [Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dreger, Douglas S.] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. RP Ford, SR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sean@llnl.gov RI Walter, William/C-2351-2013; Ford, Sean/F-9191-2011 OI Walter, William/0000-0002-0331-0616; Ford, Sean/0000-0002-0376-5792 FU National Nuclear Security Administration [DE-FC52-06NA27324] FX We are grateful for very helpful internal reviews by Artie Rodgers and Mike Pasyanos. This is LLNL contribution LLNL-JRNL-414641 and BSL contribution 09-21. DD was supported by the National Nuclear Security Administration, contract DE-FC52-06NA27324. NR 17 TC 13 Z9 13 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 7 PY 2009 VL 36 AR L21304 DI 10.1029/2009GL040003 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 516YN UT WOS:000271579600002 ER PT J AU Chai, JD Head-Gordon, M AF Chai, Jeng-Da Head-Gordon, Martin TI Long-range corrected double-hybrid density functionals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review DE density functional theory; electron correlations; free radicals; HF calculations; perturbation theory; positive ions ID PLESSET PERTURBATION-THEORY; EMPIRICAL DISPERSION TERM; DER-WAALS INTERACTIONS; RARE-GAS DIMERS; THERMOCHEMICAL KINETICS; NONCOVALENT INTERACTIONS; ELECTRONIC-STRUCTURE; INTERACTION ENERGIES; NONBONDED COMPLEXES; BENCHMARK DATABASE AB We extend the range of applicability of our previous long-range corrected (LC) hybrid functional, omega B97X [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)], with a nonlocal description of electron correlation, inspired by second-order Moller-Plesset (many-body) perturbation theory. This LC "double-hybrid" density functional, denoted as omega B97X-2, is fully optimized both at the complete basis set limit (using 2-point extrapolation from calculations using triple and quadruple zeta basis sets), and also separately using the somewhat less expensive 6-311++G(3df,3pd) basis. On independent test calculations (as well as training set results), omega B97X-2 yields high accuracy for thermochemistry, kinetics, and noncovalent interactions. In addition, owing to its high fraction of exact Hartree-Fock exchange, omega B97X-2 shows significant improvement for the systems where self-interaction errors are severe, such as symmetric homonuclear radical cations. C1 [Chai, Jeng-Da; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chai, Jeng-Da; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Chai, Jeng-Da] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jdchai@phys.ntu.edu.tw; mhg@cchem.berkeley.edu RI Chai, Jeng-Da/C-3897-2009 OI Chai, Jeng-Da/0000-0002-3994-2279 FU Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy [DE-AC0376SF00098]; National Taiwan University [98R0034-44, 98R0654] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract No. DE-AC0376SF00098. J. D. C. is grateful to the Start-up Funds (Grant No. 98R0034-44 and 98R0654) from National Taiwan University and is grateful to the Computer and Information Networking Center, National Taiwan University for the partial support of high-performance computing facilities. M. H. G. is a part-owner of Q-Chem Inc. NR 109 TC 126 Z9 127 U1 2 U2 43 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2009 VL 131 IS 17 AR 174105 DI 10.1063/1.3244209 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 518BI UT WOS:000271664500011 PM 19894996 ER PT J AU Stolte, WC Dumitriu, I Yu, SW Ohrwall, G Piancastelli, MN Lindle, DW AF Stolte, W. C. Dumitriu, I. Yu, S. -W. Ohrwall, G. Piancastelli, M. N. Lindle, D. W. TI Fragmentation properties of three-membered heterocyclic molecules by partial ion yield spectroscopy: C2H4O and C2H4S SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ionisation potential; organic compounds; photodissociation; Rydberg states ID CORE-LEVEL PHOTOEXCITATION; PHOTOELECTRON-SPECTROSCOPY; ETHYLENE SULFIDE; K EDGE; PHOTOFRAGMENTATION; EXCITATION; ANION; PHOTODISSOCIATION; PHOTOIONIZATION; THRESHOLDS AB We investigated the photofragmentation properties of two three-membered ring heterocyclic molecules, C2H4O and C2H4S, by total and partial ion yield spectroscopy. Positive and negative ions have been collected as a function of photon energy around the C 1s and O 1s ionization thresholds in C2H4O, and around the S 2p and C 1s thresholds in C2H4S. We underline similarities and differences between these two analogous systems. We present a new assignment of the spectral features around the C K-edge and the sulfur L-2,L-3 edges in C2H4S. In both systems, we observe high fragmentation efficiency leading to positive and negative ions when exciting these molecules at resonances involving core-to-Rydberg transitions. The system, with one electron in an orbital far from the ionic core, relaxes preferentially by spectator Auger decay, and the resulting singly charged ion with two valence holes and one electron in an outer diffuse orbital can remain in excited states more susceptible to dissociation. A state-selective fragmentation pattern is analyzed in C2H4S which leads to direct production of S2+ following the decay of virtual-orbital excitations to final states above the double-ionization threshold. C1 [Stolte, W. C.; Lindle, D. W.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Stolte, W. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Dumitriu, I.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Yu, S. -W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ohrwall, G.] Lund Univ, Max Lab, SE-22100 Lund, Sweden. [Piancastelli, M. N.] Uppsala Univ, Dept Phys & Mat Sci, SE-75121 Uppsala, Sweden. RP Stolte, WC (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM wcstolte@lbl.gov FU National Science Foundation under NSF [PHY-05-55699]; DOE [DE-AC03-76SF00098] FX The authors thank the staff of the ALS for their excellent support. Support from the National Science Foundation under NSF Grant No. PHY-05-55699 is gratefully acknowledged. M. N. P. thanks the Wenner-Gren Stiftelse for a grant to support her stay at the ALS. This work was performed at the Advanced Light Source, which is supported by DOE (Grant No. DE-AC03-76SF00098). NR 32 TC 5 Z9 5 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2009 VL 131 IS 17 AR 174306 DI 10.1063/1.3257685 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 518BI UT WOS:000271664500026 PM 19895011 ER PT J AU Sweet, CR Hampton, SS Skeel, RD Izaguirre, JA AF Sweet, Christopher R. Hampton, Scott S. Skeel, Robert D. Izaguirre, Jesus A. TI A separable shadow Hamiltonian hybrid Monte Carlo method SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE molecular dynamics method; Monte Carlo methods; sampling methods ID MOLECULAR-DYNAMICS; SIMULATIONS; ALGORITHMS; PROTEINS; SYSTEMS AB Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's performance is limited by the need to generate momenta for the MD step from a nonseparable shadow Hamiltonian. We introduce the separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) method based on a formulation of the leapfrog/Verlet integrator that corresponds to a separable shadow Hamiltonian, which allows efficient generation of momenta. S2HMC gives the acceptance rate of a fourth order integrator at the cost of a second-order integrator. Through numerical experiments we show that S2HMC consistently gives a speedup greater than two over HMC for systems with more than 4000 atoms for the same variance. By comparison, SHMC gave a maximum speedup of only 1.6 over HMC. S2HMC has the additional advantage of not requiring any user parameters beyond those of HMC. S2HMC is available in the program PROTOMOL 2.1. A Python version, adequate for didactic purposes, is also in MDL (http://mdlab.sourceforge.net/s2hmc). C1 [Sweet, Christopher R.; Izaguirre, Jesus A.] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA. [Hampton, Scott S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Skeel, Robert D.] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. RP Sweet, CR (reprint author), Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA. EM izaguirr@nd.edu FU National Science Foundation [DBI-0450067, CCF-0135195]; National Institute of General Medical Sciences [R01GM083605] FX This material is based upon the work supported by the National Science Foundation ( Grant Nos. DBI-0450067 and CCF-0135195) and the National Institute of General Medical Sciences (Grant No. R01GM083605) NR 24 TC 8 Z9 8 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2009 VL 131 IS 17 AR 174106 DI 10.1063/1.3253687 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 518BI UT WOS:000271664500012 PM 19894997 ER PT J AU Borovsky, JE Denton, MH AF Borovsky, Joseph E. Denton, Michael H. TI Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: The calm before the storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LIGHTNING-GENERATED WHISTLERS; ION-CYCLOTRON WAVES; GEOSYNCHRONOUS ORBIT; MIDDLE ATMOSPHERE; RELATIVISTIC ELECTRONS; ENERGETIC ELECTRONS; GEOMAGNETIC STORMS; MAGNETIC STORM; DUSKSIDE BULGE; MODE CHORUS AB Measurements from seven spacecraft in geosynchronous orbit are analyzed to determine the decay rate of the number density of the outer electron radiation belt prior to the onset of high-speed-stream-driven geomagnetic storms. Superposed-data analysis is used with a collection of 124 storms. When there is a calm before the storm, the electron number density decays exponentially before the storm with a 3.4-day e-folding time: beginning about 4 days before storm onset, the density decreases from similar to 4 x 10(-4) cm(-3) to similar to 1 x 10(-4) cm(-3). When there is not a calm before the storm, the number density decay is very small. The decay in the number density of radiation belt electrons is believed to be caused by pitch angle scattering of electrons into the atmospheric loss cone as the outer plasmasphere fills during the calms. This is confirmed by separately measuring the density decay rate for times when the outer plasmasphere is present or absent. While the radiation belt electron density decreases, the temperature of the electron radiation belt holds approximately constant, indicating that the electron precipitation occurs equally at all energies. Along with the number density decay, the pressure of the outer electron radiation belt decays, and the specific entropy increases. From the measured decay rates, the electron flux to the atmosphere is calculated, and that flux is 3 orders of magnitude less than thermal fluxes in the magnetosphere, indicating that the radiation belt pitch angle scattering is 3 orders weaker than strong diffusion. Energy fluxes into the atmosphere are calculated and found to be insufficient to produce visible airglow. C1 [Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Denton, Michael H.] Univ Lancaster, Dept Commun Syst, Lancaster LA1 4WA, England. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Mail Stop D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Denton, Michael/0000-0002-1748-3710 FU NASA Living with a Star TRT Program; Los Alamos National Laboratory LDRD Program FX The authors wish to thank Tom Cayton for providing the density-temperature fits for the SOPA energetic particle data set and to thank Reiner Friedel for his help. J. E. B. wishes to thank the Department of Communication Systems at Lancaster University for their hospitality, and M. H. D. wishes to thank the Space Science and Applications Group and LANL for their hospitality. This work was supported by the NASA Living with a Star TR&T Program and by the Los Alamos National Laboratory LDRD Program. NR 96 TC 27 Z9 29 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 7 PY 2009 VL 114 AR A11203 DI 10.1029/2009JA014063 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 517AL UT WOS:000271585000001 ER PT J AU Alava, MJ Nukala, PKVV Zapperi, S AF Alava, Mikko J. Nukala, Phani K. V. V. Zapperi, Stefano TI Size effects in statistical fracture SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID NOTCHED COMPOSITE LAMINA; FIBROUS MATERIALS; MATRIX COMPOSITES; BURST AVALANCHES; WEIBULL FIBERS; STRENGTH; MODELS; FAILURE; BUNDLES; MECHANICS AB We review statistical theories and numerical methods employed to consider the sample size dependence of the failure strength distribution of disordered materials. We first overview the analytical predictions of extreme value statistics and fibre bundle models and discuss their limitations. Next, we review energetic and geometric approaches to fracture size effects for specimens with a flaw. Finally, we overview the numerical simulations of lattice models and compare with theoretical models. C1 [Alava, Mikko J.] Helsinki Univ Technol, Dept Appl Phys, FIN-02015 Espoo, Finland. [Nukala, Phani K. V. V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zapperi, Stefano] Univ Modena & Reggio Emilia, Dipartimento Fis, CNR, INFM,S3, I-41100 Modena, Italy. [Zapperi, Stefano] ISI Fdn, I-10133 Turin, Italy. RP Alava, MJ (reprint author), Helsinki Univ Technol, Dept Appl Phys, FIN-02015 Espoo, Finland. RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 FU Academy of Finland; European Commissions NEST Pathfinder programme TRIGS [NEST-2005-PATH-COM-043386]; Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, US Department of Energy [DE-AC05-00OR22725] FX MJA would like to acknowledge the support of the Center of Excellence -programme of the Academy of Finland. MJA and SZ gratefully thank the financial support of the European Commissions NEST Pathfinder programme TRIGS under contract NEST-2005-PATH-COM-043386. PKKVN acknowledges support from Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, US Department of Energy under contract number DE-AC05-00OR22725 with UT-Battelle, LLC. NR 50 TC 24 Z9 24 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD NOV 7 PY 2009 VL 42 IS 21 AR 214012 DI 10.1088/0022-3727/42/21/214012 PG 10 WC Physics, Applied SC Physics GA 513LJ UT WOS:000271323500016 ER PT J AU Nomura, K Chen, YC Wang, WQ Kalia, RK Nakano, A Vashishta, P Yang, LH AF Nomura, Ken-ichi Chen, Yi-Chun Wang Weiqiang Kalia, Rajiv K. Nakano, Aiichiro Vashishta, Priya Yang, Lin H. TI Interaction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID SHARP DIFFRACTION PEAK; VITREOUS SILICA; STRUCTURAL CORRELATIONS; ATOMISTIC SIMULATIONS; SIO2 AB In this review, we present our recent results for atomistic mechanisms of damage nucleation and growth and dynamic fracture in silica glass. These results have been obtained with multimillion-to-billion atom, parallel, molecular dynamics simulations of (1) the interaction and coalescence of nanovoids in amorphous silica subjected to dilatational strain and (2) the nucleation, growth and healing of wing cracks and damage nanocavities in silica glass under impact loading. We also give an overview of our current efforts to perform dynamic fracture simulations over microsecond time scales and multiscale simulations of stress corrosion cracking in silica glass. C1 [Nomura, Ken-ichi; Chen, Yi-Chun; Wang Weiqiang; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya] Univ So Calif, Los Angeles, CA 90089 USA. [Yang, Lin H.] Lawrence Livermore Natl Lab, Phys Div H, Livermore, CA 94551 USA. RP Nomura, K (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. RI wang, Weiqiang/E-6026-2010 FU US Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Drs Elisabeth Bouchaud and Cindy Rountree for many useful discussions. This work was supported by a DOE-SciDAC grant. Simulations were performed on the 6,120-processor Linux cluster at the USC's Research Computing Facility and on the 2,048-processor Linux cluster at our Collaboratory for Advanced Computing and Simulations. Work performed by LHY was under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 5 Z9 5 U1 2 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD NOV 7 PY 2009 VL 42 IS 21 AR 214011 DI 10.1088/0022-3727/42/21/214011 PG 12 WC Physics, Applied SC Physics GA 513LJ UT WOS:000271323500015 ER PT J AU Choong, WS AF Choong, Woon-Seng TI The timing resolution of scintillation-detector systems: Monte Carlo analysis SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID TIME-OF-FLIGHT; POSITRON-EMISSION-TOMOGRAPHY; ENERGY-RESOLUTION; PET; EFFICIENT; CRYSTALS; YIELD AB Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Radiotracer Dev & Imaging Technol, Berkeley, CA 94720 USA. RP Choong, WS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Radiotracer Dev & Imaging Technol, 1 Cyclotron Rd,Mailstop 55R0121, Berkeley, CA 94720 USA. EM wschoong@lbl.gov FU Director, Office of Science, Office of Biological and Environmental Research, Medical Science Division of the US Department of Energy [DE-AC02-05CH11231]; National Institutes of Health; National Institute of Biomedical Imaging and Bioengineering [R21EB007081, R01EB006085]; United States Government FX The author would like to thank W W Moses for many useful discussions and his interest in this work. This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Medical Science Division of the US Department of Energy under contract no DE-AC02-05CH11231, and in part by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering under grant no R21EB007081 and R01EB006085. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 26 TC 32 Z9 32 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD NOV 7 PY 2009 VL 54 IS 21 BP 6495 EP 6513 DI 10.1088/0031-9155/54/21/004 PG 19 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 508VR UT WOS:000270966100005 PM 19820267 ER PT J AU Sleiman, M Maddalena, RL Gundel, LA Destaillats, H AF Sleiman, Mohamad Maddalena, Randy L. Gundel, Lara A. Destaillats, Hugo TI Rapid and sensitive gas chromatography-ion-trap tandem mass spectrometry method for the determination of tobacco-specific N-nitrosamines in secondhand smoke SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Indoor air; Tobacco; Secondhand smoke; Nitrosamines; Ion-trap; Gas chromatography; Tandem mass spectrometry ID MAINSTREAM CIGARETTE-SMOKE; QUANTITATIVE METHOD; INDOOR AIR; CARCINOGENS; CANCER; 4-(METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE; BIOCHEMISTRY; CHEMISTRY; RELEVANCE; URINE AB Tobacco-specific nitrosamines (TSNAs) are some of the most potent carcinogens in tobacco and cigarette smoke. Accurate quantification of these chemicals is needed to help assess public health risks. We developed and validated a specific and sensitive method to measure four TSNAs adsorbed to model surfaces and secondhand smoke (SHS) particles using gas chromatography-ion-trap tandem mass spectrometry. In an 18-m(3) room-sized chamber, a smoking machine generated realistic concentrations of SHS that were actively sampled on Teflon-coated fiberglass (TCFG) filters, and passively sampled on cellulose substrates. A simple solid-liquid extraction protocol using methanol as solvent was successfully applied to both substrates with recoveries ranging from 85 to 115%. For each TSNA, tandem MS parameters were optimized and the major fragmentation pathways were elucidated. The method showed excellent performance, with a linear dynamic range from 2 to 1000 ng mL(-1), low detection limits (S/N>3) of 30-300 pg mL(-1) and precision with experimental errors below 10% for all compounds. Moreover, no interfering peaks were observed, indicating a high selectivity of MS/MS without the need for a sample clean-up step. This method provides a suitable analytical tool to detect and quantify traces of TSNA in indoor environments polluted with SHS. Published by Elsevier B.V. C1 [Sleiman, Mohamad; Maddalena, Randy L.; Gundel, Lara A.; Destaillats, Hugo] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA. RP Sleiman, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Environm Energy Technol Div, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA 94720 USA. EM MSleiman@lbl.gov; HDestaillats@lbl.gov RI Destaillats, Hugo/B-7936-2013 FU LBNL Under U.S. DOE [DE-AC02-05CH11231]; University of California Tobacco-Related Diseases Research Program [16RT-0158] FX The authors thank A.T. Hodgson (Berkeley Analytical Assoc.) and R. Goth-Goldstein (LBNL) for their helpful comments on the manuscript, Prof. J.F. Pankow (Portland State Univ.) and P. Jacob III (University of California San Francisco) for helpful discussions, and M. L. Russell, F. Mizbani and Y. Carrasco for laboratory assistance. Experimental work was carried out at LBNL Under U.S. DOE Contract DE-AC02-05CH11231. This project was supported by the University of California Tobacco-Related Diseases Research Program (UC-TRDRP, project 16RT-0158). NR 31 TC 27 Z9 30 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD NOV 6 PY 2009 VL 1216 IS 45 BP 7899 EP 7905 DI 10.1016/j.chroma.2009.09.020 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 514PT UT WOS:000271408000038 PM 19800070 ER PT J AU Hall, A Sankaran, B Poole, LB Karplus, PA AF Hall, Andrea Sankaran, Banumathi Poole, Leslie B. Karplus, P. Andrew TI Structural Changes Common to Catalysis in the Tpx Peroxiredoxin Subfamily SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE thiol peroxidase; Tpx; peroxiredoxin; antioxidant; structural transitions ID THIOL PEROXIDASE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; MYCOBACTERIUM-TUBERCULOSIS; MACROMOLECULAR STRUCTURES; THIOREDOXIN PEROXIDASE; RADIATION-DAMAGE; SCAVENGASE P20; PROTEINS; REFINEMENT AB Thiol peroxidases (Tpxs) are dimeric 2-Cys peroxiredoxins from bacteria that preferentially reduce alkyl hydroperoxides. Catalysis requires two conserved residues' the peroxidatic cysteine and the resolving cysteine, which are located in helix alpha(2) and helix alpha(3), respectively. The partial unraveling of helices alpha(2) and alpha(3) during catalysis allows for the formation of an intramolecular disulfide between these two residues. Here, we present three structures of Escherichia coli Tpx representing the fully folded (peroxide binding site intact), locally unfolded (disulfide bond), and partially locally unfolded (transitional state) conformations. We also compare known Tpx crystal structures and analyze the sequence-conservation patterns among nearly 300 Tpx sequences. Twelve fully conserved Tpx-specific residues cluster at the active site and dimer interface, and an additional 37 highly conserved residues are mostly located in a cradle providing the environment for helix alpha(2). Using the structures determined here as representative fully folded, transitional, and locally unfolded Tpx conformations, we describe in detail the structural changes associated with catalysis in the Tpx subfamily. Key insights include the description of a conserved hydrophobic collar around the active site, a set of conserved packing interactions between helices alpha(2) and alpha(3) that allow the local unfolding of alpha(2) to trigger the partial unfolding of alpha(3), a conserved dimer interface that anchors the ends of helices alpha(2) and alpha(3) to stabilize the active site during structural transitions, and a conserved set of residues constituting a cradle that stabilizes the two discrete conformations of helix alpha(2) involved in catalysis. The involvement of the dimer interface in stabilizing active-site folding and in forming the hydrophobic collar implies that Tpx is an obligate homodimer and explains the high conservation of interface residues. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hall, Andrea; Karplus, P. Andrew] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Sankaran, Banumathi] Berkeley Ctr Struct Biol, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Poole, Leslie B.] Wake Forest Univ, Bowman Gray Sch Med, Dept Biochem, Winston Salem, NC 27157 USA. RP Karplus, PA (reprint author), Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. EM karplusp@science.oregonstate.edu OI Karplus, Paul/0000-0001-8725-6292 FU National Institutes of Health [R01 GM50389]; National Institute of Environmental Health Sciences [P30 ES00210]; National Institute of General Medical Sciences; Howard Hughes Medical Institute; Director, Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Laura Baker for protein preparation. This work was supported by a grant from the National Institutes of Health to L.B.P. with a subcontract to P.A.K. (R01 GM50389). The authors acknowledge the Proteins and Nucleic Acids Core facility of the Environmental Health Sciences Center at Oregon State University (National Institute of Environmental Health Sciences grant P30 ES00210). The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 49 TC 27 Z9 27 U1 0 U2 4 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD NOV 6 PY 2009 VL 393 IS 4 BP 867 EP 881 DI 10.1016/j.jmb.2009.08.040 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 516FV UT WOS:000271528300007 PM 19699750 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI First Observation of B-s(0)->(DsK -/+)-K-+/- and Measurement of the Ratio of Branching Fractions B(B-s(0)->(DsK -/+)-K-+/-)/B(B-s(0)-> D-s(+)pi(-)) SO PHYSICAL REVIEW LETTERS LA English DT Article ID CP VIOLATION; HADRONIC COLLISIONS; CROSS-SECTION; EXTRACTION; GAMMA; PHASE AB A combined mass and particle identification fit is used to make the first observation of the decay B-s(0)->(DsK -/+)-K-+/- and measure the branching fraction of B-s(0)->(DsK -/+)-K-+/- relative to B-s(0)-> D-s(+)pi(-). This analysis uses 1.2 fb(-1) integrated luminosity of pp collisions at s=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron collider. We observe a B-s(0)->(DsK -/+)-K-+/- signal with a statistical significance of 8.1 sigma and measure B(B-s(0)->(DsK -/+)-K-+/-)/B(B-s(0)-> D-s(+)pi(-))=0.097 +/- 0.018(stat)+/- 0.009(syst). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Castro, A.; Chen, Y. C.; Deninno, M.; Hou, S.; Jha, M. K.; Lu, R. -S.; Mazzanti, P.; Mitra, A.; Moggi, N.; Mussini, M.; Rimondi, F.; Teng, P. K.; Wang, S. M.; Yang, U. K.; Zucchelli, S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Chen, Y. C.; Deninno, M.; Hou, S.; Jha, M. K.; Lu, R. -S.; Mazzanti, P.; Mitra, A.; Moggi, N.; Mussini, M.; Rimondi, F.; Teng, P. K.; Wang, S. M.; Yang, U. K.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Wagner, P.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Moon, Chang-Seong/0000-0001-8229-7829; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 23 TC 17 Z9 17 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 191802 DI 10.1103/PhysRevLett.103.191802 PG 7 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200007 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of Dijet Angular Distributions at s=1.96 TeV and Searches for Quark Compositeness and Extra Spatial Dimensions SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDERS; DETECTOR; PHYSICS AB We present the first measurement of dijet angular distributions in pp collisions at s=1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7 fb(-1) collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV-1 scale extra dimensions. For all models considered, we set the most stringent direct limits to date. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Yip, Kin/D-6860-2013; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Perfilov, Maxim/E-1064-2012; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Shivpuri, R K/A-5848-2010; Mundim, Luiz/A-1291-2012; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Williams, Mark/0000-0001-5448-4213; Belanger-Champagne, Camille/0000-0003-2368-2617; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; FU DOE; NSF (USA); CEA; CNRS (France) [IN2P3]; FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 28 TC 60 Z9 60 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 191803 DI 10.1103/PhysRevLett.103.191803 PG 7 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200008 PM 20365918 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C Prado da Silva, WL Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Potter, C. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of the WW Production Cross Section with Dilepton Final States in pp Collisions at s=1.96 TeV and Limits on Anomalous Trilinear Gauge Couplings SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSON COUPLINGS; LEP AB We provide the most precise measurement of the WW production cross section in pp collisions to date at a center of mass energy of 1.96 TeV, and set limits on the associated trilinear gauge couplings. The WW -> l nu l(')nu (l, l(')=e, mu) decay channels are analyzed in 1 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron Collider. The measured cross section is sigma(pp -> WW)=11.5 +/- 2.1(stat+syst)+/- 0.7(lumi) pb. One- and two-dimensional 95% C.L. limits on trilinear gauge couplings are provided. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, D-3400 Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Ferbel, T.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Shivpuri, R K/A-5848-2010 OI Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213; Belanger-Champagne, Camille/0000-0003-2368-2617; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; FU DOE; NSF (USA); CEA; CNRS (France) [IN2P3]; FASI; Rosatom and RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 23 TC 28 Z9 28 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 191801 DI 10.1103/PhysRevLett.103.191801 PG 7 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200006 ER PT J AU Choi, S Lee, DH Louie, SG Clarke, J AF Choi, SangKook Lee, Dung-Hai Louie, Steven G. Clarke, John TI Localization of Metal-Induced Gap States at the Metal-Insulator Interface: Origin of Flux Noise in SQUIDs and Superconducting Qubits SO PHYSICAL REVIEW LETTERS LA English DT Article AB The origin of magnetic flux noise in superconducting quantum interference devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of 5x10(17) m(-2). We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density. C1 [Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Choi, SangKook; Lee, Dung-Hai; Louie, Steven G.; Clarke, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Choi, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jclarke@berkeley.edu FU U. S. Department of Energy [DE-AC02-05CH11231]; Samsung Foundation FX We thank R. McDermott and K. A. Moler for prepublication copies of their papers. S. C. and S. G. L. thank M. Jain and J. D. Sau for fruitful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. S. C. acknowledges support from the Samsung Foundation. NR 27 TC 54 Z9 54 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 197001 DI 10.1103/PhysRevLett.103.197001 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200035 PM 20365945 ER PT J AU Huang, XJ Nelson, J Kirz, J Lima, E Marchesini, S Miao, HJ Neiman, AM Shapiro, D Steinbrener, J Stewart, A Turner, JJ Jacobsen, C AF Huang, Xiaojing Nelson, Johanna Kirz, Janos Lima, Enju Marchesini, Stefano Miao, Huijie Neiman, Aaron M. Shapiro, David Steinbrener, Jan Stewart, Andrew Turner, Joshua J. Jacobsen, Chris TI Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell SO PHYSICAL REVIEW LETTERS LA English DT Article ID SACCHAROMYCES-CEREVISIAE; CRYOELECTRON TOMOGRAPHY; BIOLOGICAL SPECIMENS; ELECTRON-DIFFRACTION; COMPUTED-TOMOGRAPHY; SPATIAL-RESOLUTION; PHASE RETRIEVAL; RECONSTRUCTION AB We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 degrees C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics. C1 [Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kirz, Janos; Marchesini, Stefano; Shapiro, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Neiman, Aaron M.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Huang, XJ (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM Chris.Jacobsen@stonybrook.edu RI Marchesini, Stefano/A-6795-2009; Huang, Xiaojing/K-3075-2012; Jacobsen, Chris/E-2827-2015; Nelson Weker, Johanna/J-4159-2015 OI Huang, Xiaojing/0000-0001-6034-5893; Jacobsen, Chris/0000-0001-8562-0353; Nelson Weker, Johanna/0000-0001-6856-3203 FU National Institute for General Medical Services [5R21EB6134]; Materials Sciences and Engineering, Office of Basic Energy Sciences, at the Department of Energy [DE-FG02-07ER46128]; U.S. Department of Energy [DE-AC02-05CH11231] FX We wish to thank the National Institute for General Medical Services at the National Institutes for Health for support of the application of XDM to biological imaging under Contract No. 5R21EB6134. We also wish to thank the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, at the Department of Energy for support of XDM methods and instrumentation development under Contract No. DE-FG02-07ER46128. We thank the ALS staff for their excellent support. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Finally, we thank David Sayre for helpful suggestions and discussions, and thank Ken Downing and Eva Nogales for their help with specimen freezing. NR 51 TC 74 Z9 76 U1 3 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 198101 DI 10.1103/PhysRevLett.103.198101 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200045 PM 20365955 ER PT J AU Lee, DH AF Lee, Dung-Hai TI Surface States of Topological Insulators: The Dirac Fermion in Curved Two-Dimensional Spaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID BI2TE3; PHASE; CONE AB The surface of a topological insulator is a closed two-dimensional manifold. The surface states are described by the Dirac Hamiltonian in curved two-dimensional spaces. For a slablike sample with a magnetic field perpendicular to its top and bottom surfaces, there are chiral states delocalized on the four side faces. These "chiral sheets" carry both charge and spin currents. In strong magnetic fields, the quantized charge Hall effect [sigma(xy)=(2n+1)e(2)/h] will coexist with spin Hall effect. C1 [Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, DH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU DOE [DE-AC02-05CH11231] FX This research was stimulated by the discussion with Geoffrey Lee on the relation between the Riemann- Roch theorem and the Dirac equation. D. H. L. was supported by DOE Grant No. DE-AC02-05CH11231. NR 16 TC 56 Z9 56 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 196804 DI 10.1103/PhysRevLett.103.196804 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200033 PM 20365943 ER PT J AU Lima, E Wiegart, L Pernot, P Howells, M Timmins, J Zontone, F Madsen, A AF Lima, Enju Wiegart, Lutz Pernot, Petra Howells, Malcolm Timmins, Joanna Zontone, Federico Madsen, Anders TI Cryogenic X-Ray Diffraction Microscopy for Biological Samples SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE RETRIEVAL; TOMOGRAPHY; RESOLUTION; SPECIMENS; RADIATION AB X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast. C1 [Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Lima, E (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM elima@bnl.gov; amadsen@esrf.fr FU U.S. Department of Energy [DE-AC02-98CH10886] FX We thank D. Guilligay at EMBL, Grenoble, G. Schoehn at IBS, Grenoble for their support during the sample preparation as well as M. Mattenet, E. Papillon, and the staff of ID10A/C at ESRF, for technical support at the beam line. We thank F. Glassmeier for help in the test sample imaging. The data analysis was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 30 TC 41 Z9 42 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 198102 DI 10.1103/PhysRevLett.103.198102 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200046 PM 20365956 ER PT J AU McCutchan, EA Lister, CJ Wiringa, RB Pieper, SC Seweryniak, D Greene, JP Carpenter, MP Chiara, CJ Janssens, RVF Khoo, TL Lauritsen, T Stefanescu, I Zhu, S AF McCutchan, E. A. Lister, C. J. Wiringa, R. B. Pieper, Steven C. Seweryniak, D. Greene, J. P. Carpenter, M. P. Chiara, C. J. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Stefanescu, I. Zhu, S. TI Precise Electromagnetic Tests of Ab Initio Calculations of Light Nuclei: States in Be-10 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO CALCULATIONS; GAMMASPHERE; 1P-SHELL AB In order to test ab initio calculations of light nuclei, we have remeasured lifetimes in Be-10 using the Doppler shift attenuation method (DSAM) following the Li-7(Li-7,alpha)Be-10 reaction at 8 and 10 MeV. The new experiments significantly reduce systematic uncertainties in the DSAM technique. The J(pi)=2(1)(+) state at 3.37 MeV has tau=205 +/-(5)(stat)+/-(7)(sys) fs corresponding to a B(E2 down arrow) of 9.2(3)e(2) fm(4) in broad agreement with many calculations. The J(pi)=2(2)(+) state at 5.96 MeV was found to have a B(E2 down arrow) of 0.11(2)e(2) fm(4) and provides a more discriminating test of nuclear models. New Green's function Monte Carlo calculations for these states and transitions with a number of Hamiltonians are also reported and compared to experiment. C1 [McCutchan, E. A.; Lister, C. J.; Wiringa, R. B.; Pieper, Steven C.; Seweryniak, D.; Greene, J. P.; Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP McCutchan, EA (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Carpenter, Michael/E-4287-2015; Wiringa, Robert/M-4970-2015 OI Carpenter, Michael/0000-0002-3237-5734; FU DOE Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834, DE-FC02-07ER41457] FX This work was supported by the DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357, DE-FG02-94ER40834,and under SciDAC Grant No. DE-FC02-07ER41457. Calculations were performed on the SiCortex computer of the Argonne Mathematics and Computer Science Division. NR 27 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 192501 DI 10.1103/PhysRevLett.103.192501 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200009 PM 20365919 ER PT J AU Scholten, O Buitink, S Bacelar, J Braun, R de Bruyn, AG Falcke, H Singh, K Stappers, B Strom, RG al Yahyaoui, R AF Scholten, O. Buitink, S. Bacelar, J. Braun, R. de Bruyn, A. G. Falcke, H. Singh, K. Stappers, B. Strom, R. G. al Yahyaoui, R. TI Improved Flux Limits for Neutrinos with Energies above 10(22) eV from Observations with the Westerbork Synthesis Radio Telescope SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMIC-RAYS; EMISSION; SHOWERS; PULSES; MOON AB Particle cascades initiated by ultrahigh energy neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nanoseconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 h of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4x10(22) eV. C1 [Scholten, O.; Singh, K.; al Yahyaoui, R.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. [Buitink, S.; Falcke, H.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Buitink, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bacelar, J.] ASML Netherlands BV, NL-5500 AH Veldhoven, Netherlands. [Braun, R.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [de Bruyn, A. G.] Univ Groningen, Kapteyn Inst, NL-9747 AA Groningen, Netherlands. [de Bruyn, A. G.; Strom, R. G.] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Stappers, B.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Manchester M13 9PL, Lancs, England. [Strom, R. G.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. RP Scholten, O (reprint author), Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. RI Falcke, Heino/H-5262-2012; OI Falcke, Heino/0000-0002-2526-6724; Buitink, Stijn/0000-0002-6177-497X FU Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) FX This work was performed as part of the research programs of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) and of ASTRON, both with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). NR 27 TC 31 Z9 31 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 191301 DI 10.1103/PhysRevLett.103.191301 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200004 PM 20365914 ER PT J AU Yang, YF Urbano, R Curro, NJ Pines, D Bauer, ED AF Yang, Yi-feng Urbano, Ricardo Curro, Nicholas J. Pines, David Bauer, E. D. TI Magnetic Excitations in the Kondo Liquid: Superconductivity and Hidden Magnetic Quantum Critical Fluctuations SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report Knight-shift experiments on the superconducting heavy-electron material CeCoIn(5) that allow one to track with some precision the behavior of the heavy-electron Kondo liquid in the superconducting state with results in agreement with BCS theory. An analysis of the (115)In nuclear quadrupole resonance spin-lattice relaxation rate T(1)(-1) measurements under pressure reveals the presence of 2d magnetic quantum critical fluctuations in the heavy-electron component that are a promising candidate for the pairing mechanism in this material. Our results are consistent with an antiferromagnetic quantum critical point located at slightly negative pressure in CeCoIn(5) and provide additional evidence for significant similarities between the heavy-electron materials and the high-T(c) cuprates. C1 [Yang, Yi-feng; Urbano, Ricardo; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Urbano, Ricardo] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Curro, Nicholas J.; Pines, David] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Yang, YF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Urbano, Ricardo/F-5017-2012; Curro, Nicholas/D-3413-2009; OI Curro, Nicholas/0000-0001-7829-0237; Bauer, Eric/0000-0003-0017-1937 FU NSF Cooperative Agreement [DMR-0654118]; State of Florida FX Work at Los Alamos was performed under the auspices of the U. S. Department of Energy through the LANL-LDRD program. We thank our colleagues in the Aspen Center for Physics workshop on "Correlated Behavior & Quantum Criticality in Heavy Fermion and Related System'' for stimulating discussions and the Aspen Center for Physics for its hospitality during the writing of the Letter. Y.Y. thanks Joe Thompson for discussions and the ICAM program for its support. R. R. U. thanks the NSF Cooperative Agreement No. DMR-0654118 and the State of Florida. NR 11 TC 17 Z9 18 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2009 VL 103 IS 19 AR 197004 DI 10.1103/PhysRevLett.103.197004 PG 4 WC Physics, Multidisciplinary SC Physics GA 516UG UT WOS:000271568200038 PM 20365948 ER PT J AU Phuoc, TX Howard, BH Chyu, MK AF Phuoc, Tran X. Howard, Bret H. Chyu, Minking K. TI Synthesis and rheological properties of cation-exchanged Laponite suspensions SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS LA English DT Article DE Laser ablation; Laponite; Thixotropy; Rheology ID LASER-ABLATION; DRILLING FLUIDS; YIELD-STRESS; NANOPARTICLES; WATER AB In this paper we report our new approach to synthesize cation-exchanged Laponite suspensions. General observations of the prepared samples indicated that an aqueous suspension of 1 wt.% Laponite retained its free flowing liquid phase characteristics even after aging for several weeks. When bivalent cationic metals (Cu, Co, Ni) were ablated into the suspension, the strong charge of the crystal face was reduced and, on standing, the suspension gelled becoming highly viscous. This sol-gel transition was induced by the formation of a space-filled structure due to both van der Waals and electrostatic bonds between the positively charged rims and negatively charged faces. Rheological properties of such prepared suspensions were measured using a Brookfield DV-II Pro Viscometer with a small sample adapter (SSA18/13RPY). The yield strengths of 2.2 N/m(2), 3.2 N/m(2), and 1.7 N/m(2) were measured for Ni-, Co-, and Cu-modified Laponite suspensions, respectively. These yield strengths are sufficiently high for suspending weighting materials such as barite which requires the gel strength of about 0.5 N/m(2). C1 [Phuoc, Tran X.; Howard, Bret H.; Chyu, Minking K.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Phuoc, Tran X.; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Phuoc, TX (reprint author), Natl Energy Technol Lab, POB 10940,MS 84-340, Pittsburgh, PA 15236 USA. EM tran@netl.doe.gov FU DOE-NETL FX This work was supported by DOE-NETL under the EPact program. The TEM images supplied by Dr. Tae-Bong Hur of The Department of Mechanical Engineering and Material Science, University of Pittsburgh are acknowledged. NR 27 TC 6 Z9 6 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7757 J9 COLLOID SURFACE A JI Colloid Surf. A-Physicochem. Eng. Asp. PD NOV 5 PY 2009 VL 351 IS 1-3 BP 71 EP 77 DI 10.1016/j.colsurfa.2009.09.039 PG 7 WC Chemistry, Physical SC Chemistry GA 521JE UT WOS:000271916200011 ER PT J AU Lewicki, JL Hilley, GE AF Lewicki, Jennifer L. Hilley, George E. TI Eddy covariance mapping and quantification of surface CO2 leakage fluxes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAMMOTH MOUNTAIN; CALIFORNIA; VOLCANO; EMISSIONS; EXCHANGE; JAPAN AB We present eddy covariance measurements of net CO2 flux (F-c) made during a controlled release of CO2 (0.3 t d(-1) from 9 July to 7 August 2008) from a horizontal well similar to 100 m in length and similar to 2.5 m in depth located in an agricultural field in Bozeman, MT. We isolated fluxes arising from the release (F-cr) by subtracting fluxes corresponding to a model for net ecosystem exchange from F-c. A least-squares inversion of 611 F-cr and corresponding modeled footprint functions recovered the location, length, and magnitude of the surface CO2 flux leakage signal, although high wavenumber details of the signal were poorly resolved. The estimated total surface CO2 leakage rate (0.32 t d(-1)) was within 7% of the release rate. Citation: Lewicki, J. L., and G. E. Hilley (2009), Eddy covariance mapping and quantification of surface CO2 leakage fluxes, Geophys. Res. Lett., 36, L21802, doi: 10.1029/2009GL040775. C1 [Lewicki, Jennifer L.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hilley, George E.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. RP Lewicki, JL (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jllewicki@lbl.gov.ph FU U. S. Department of Energy [DE-AC02-05CH11231] FX We thank G. Chiodini and D. Vasco for valuable manuscript review, L. Dobeck and K. Gullickson for assistance in the field, and H. P. Schmid for the FSAM source code. This work was funded by the ZERT Project, Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 23 TC 17 Z9 17 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 5 PY 2009 VL 36 AR L21802 DI 10.1029/2009GL040775 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 516YL UT WOS:000271579400007 ER PT J AU Wang, C Kim, D Ekman, AML Barth, MC Rasch, PJ AF Wang, Chien Kim, Dongchul Ekman, Annica M. L. Barth, Mary C. Rasch, Phillip J. TI Impact of anthropogenic aerosols on Indian summer monsoon SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BLACK CARBON AEROSOLS; CLIMATE; DYNAMICS; ORIGIN AB Using an interactive aerosol-climate model we find that absorbing anthropogenic aerosols, whether coexisting with scattering aerosols or not, can significantly affect the Indian summer monsoon system. We also show that the influence is reflected in a perturbation to the moist static energy in the sub-cloud layer, initiated as a heating by absorbing aerosols to the planetary boundary layer. The perturbation appears mostly over land, extending from just north of the Arabian Sea to northern India along the southern slope of the Tibetan Plateau. As a result, during the summer monsoon season, modeled convective precipitation experiences a clear northward shift, coincidently in general agreement with observed monsoon precipitation changes in recent decades particularly during the onset season. We demonstrate that the sub-cloud layer moist static energy is a useful quantity for determining the impact of aerosols on the northward extent and to a certain degree the strength of monsoon convection. Citation: Wang, C., D. Kim, A. M. L. Ekman, M. C. Barth, and P. J. Rasch (2009), Impact of anthropogenic aerosols on Indian summer monsoon, Geophys. Res. Lett., 36, L21704, doi: 10.1029/2009GL040114. C1 [Wang, Chien; Kim, Dongchul] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Ekman, Annica M. L.] Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden. [Barth, Mary C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Rasch, Phillip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, C (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, E19-439K,77 Massachusetts Ave, Cambridge, MA 02139 USA. EM wangc@mit.edu RI Kim, Dongchul/H-2256-2012; OI Kim, Dongchul/0000-0002-5659-1394; , /0000-0002-3979-4747 FU NSF [ATM-0329759]; NASA [NNX07AI49G]; MIT Joint Program on the Science and Policy of Global Change FX This research was supported by the NSF (ATM-0329759), the NASA (NNX07AI49G), and the MIT Joint Program on the Science and Policy of Global Change. We thank Alan Plumb, Steve Ghan, William Lau, and Heiner Kornich for discussion and comment. The Climate and Global Dynamics Division (CGD) of the National Center for Atmospheric Research (NCAR) provided computer codes and related datasets of the CAM3. The NCAR is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation. We thank T. Mitchell and the Climate Research Unit (CRU) at the University of East Anglia for making the CRU TS 2.1 data available to us. We thank the two anonymous reviewers for providing constructive comments. NR 21 TC 81 Z9 82 U1 3 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 5 PY 2009 VL 36 AR L21704 DI 10.1029/2009GL040114 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 516YL UT WOS:000271579400003 ER PT J AU Red-Horse, JR Ghanem, RG AF Red-Horse, John R. Ghanem, Roger G. TI Elements of a function analytic approach to probability SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE functional analysis; probability; approximation ID GENERALIZED STOCHASTIC-PROCESSES; POLYNOMIAL CHAOS; RANDOM UNCERTAINTIES; KARHUNEN-LOEVE; MODELS; SPACES; REPRESENTATIONS; INFORMATION; EQUATIONS; SYSTEMS AB Three hundred-plus years of successful theoretical development and application of probability theory provide sufficient justification for it its the mathematical context in which to analyze the Uncertainty in the Performance of engineering and scientific systems. In this document. we propose,I joint probabilistic and deterministic function analytic approach its the means for the development of advanced techniques that feature it strong connection between classical deterministic and probabilistic methods We know of no other means to achieve simultaneous. balanced approximations across these two constituents We present foundational materials on the general approach to particular aspects of functional analysis., which are relevant to probability. and emphasize the common elements it shares. and the close connections it provides, 10 various classical deterministic mathematical analysis elements Finally. we describe how to use the joint approach as I means to augment deterministic analysis methods in a particular Hilbert space context, and thus enable a rigorous framework for commingling deterministic and probabilistic analysis tools In an application setting. Copyright (C) 2009 John Wiley & Soils, Ltd C1 [Red-Horse, John R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ghanem, Roger G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. RP Red-Horse, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Ghanem, Roger/B-8570-2008 OI Ghanem, Roger/0000-0002-1890-920X FU Sandia National Laboratories; National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded in part by Sandia National Laboratories. Albuquerque, N.M. Sandia is it multiprogram laboratory operated by Sandia Corporation, it Lockhead Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract. DE-AC04-94AL85000. NR 71 TC 2 Z9 2 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD NOV 5 PY 2009 VL 80 IS 6-7 SI SI BP 689 EP 716 DI 10.1002/nme.2643 PG 28 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 516RF UT WOS:000271559400003 ER PT J AU Lin, G Karniadakis, GE AF Lin, G. Karniadakis, G. E. TI Sensitivity analysis and stochastic simulations of non-equilibrium plasma flow SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE stochastic simulations; generalized polynomial chaos, collocation projection; two-fluid model ID PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; GENERALIZED POLYNOMIAL CHAOS; COLLOCATION METHOD; QUANTIFYING UNCERTAINTY; PARAMETRIC UNCERTAINTY; SOBOLEV SPACES; REPRESENTATIONS; SYSTEMS AB We study the parametric uncertainties involved in plasma flows and apply stochastic sensitivity analysis to rank the importance of all inputs to guide large-scale stochastic simulations. Specifically, we employ different gradient-based sensitivity methods, namely Morris, multi-element probabilistic collocation method on sparse grids. Quasi-Monte Carlo and Monte Carlo methods. These approaches go beyond the standard 'One-At-a-Time' sensitivity analysis and provide it measure of the non-linear interaction effects for the uncertain inputs. The objective is to perform systematic stochastic simulations of plasma flows treating only as stochastic processes the inputs with the highest sensitivity index, hence reducing substantially the computational cost. Two plasma flow examples are presented to demonstrate the capability and efficiency of the stochastic sensitivity analysis. The first one is a two-fluid model in a shock tube whereas the second one is a one-fluid/two-temperature model in flow past a cylinder Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Karniadakis, G. E.] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Lin, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Karniadakis, GE (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. RI Lin, Guang/D-1376-2011 FU Air Force Office of Scientific Research; National Science Foundation; U.S Department of Energy Office of Science; National Center for Supercomputing Applications (Urbana, IL); San Diego Supercomputer Center (San Diego, CA) FX This work was supported by the Computational Mathematics program of the Air Force Office of Scientific Research and the National Science Foundation (Program AMC-SS). We also want to thank Dr Pradya Premprancerach for helpful technical discussions The first author would like to acknowledge the support of the Advanced Scientific Computing Research Program of the U.S Department of Energy Office of Science. Computations were performed at the National Science Foundation supercomputing centers [Pittsburgh Supercomputing Center (Pittsburgh, PA). National Center for Supercomputing Applications (Urbana, IL) and San Diego Supercomputer Center (San Diego, CA)] NR 46 TC 10 Z9 10 U1 1 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD NOV 5 PY 2009 VL 80 IS 6-7 BP 738 EP 766 DI 10.1002/nme.2582 PG 29 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 516RF UT WOS:000271559400005 ER PT J AU Najm, HN Debusschere, BJ Marzouk, YA Widmer, S Le Maitre, OP AF Najm, H. N. Debusschere, B. J. Marzouk, Y. A. Widmer, S. Le Maitre, O. P. TI Uncertainty quantification in chemical systems SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE uncertainty quantification; polynomial chaos; multiwavelet, chemistry, ignition ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; GENERALIZED POLYNOMIAL CHAOS; RANDOM INPUT DATA; QUANTIFYING UNCERTAINTY; SENSITIVITY ANALYSIS; REACTION-MECHANISMS; PROJECTION METHOD; FINITE-ELEMENTS; FLUID-FLOW AB We demonstrate the use of multiwavelet spectral polynomial chaos techniques for uncertainty quantification in non-isothermal ignition of a methane-air system We employ Bayesian inference for identifying the probabilistic representation of the uncertain parameters and propagate tills uncertainty through the ignition process We analyze the time evolution of moments and probability density functions of the, solution We also examine the role and significance of dependence among the uncertain parameters We finish with a discussion of the role of non-linearity and the performance of the algorithm. Copyright 0 2009 John Wiley & Sons, Ltd C1 [Najm, H. N.; Debusschere, B. J.; Marzouk, Y. A.; Widmer, S.] Sandia Natl Labs, Livermore, CA 94551 USA. [Le Maitre, O. P.] CNRS, LIMSI, F-91403 Orsay, France. RP Najm, HN (reprint author), Sandia Natl Labs, POB 969,MS 9051, Livermore, CA 94551 USA. EM hnnajm@sandia.gov RI Le Maitre, Olivier/D-8570-2011 OI Le Maitre, Olivier/0000-0002-3811-7787 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Gcosciences; Biosciences. Sandia National Laboratories; US DOE [DE-AC04-94-AL85000] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Gcosciences, and Biosciences. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under contract DE-AC04-94-AL85000. NR 61 TC 47 Z9 47 U1 0 U2 14 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD NOV 5 PY 2009 VL 80 IS 6-7 BP 789 EP 814 DI 10.1002/nme.2551 PG 26 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 516RF UT WOS:000271559400007 ER PT J AU Stolterfoht, N Cabrera-Trujillo, R Krstic, PS Ohrn, Y Deumens, E Sabin, JR AF Stolterfoht, N. Cabrera-Trujillo, R. Krstic, P. S. Oehrn, Y. Deumens, E. Sabin, J. R. TI Stueckelberg Oscillations in the Charge Transfer into the n=2 and n=3 Shells of He2+ on Collision With H SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article DE ion-atom collisions; charge transfer; state selective; Stueckelberg oscillations ID ELECTRON-CAPTURE PROCESSES; HYDROGEN; EXCITATION; ENERGIES; SYSTEMS; AR AB Probabilities for charge transfer by He2+ impact on atomic H are calculated at low-collision energies using an ab initio theory, which solves the time-dependent Schrodinger equation. The charge transfer is interpreted in terms of radial and rotational couplings of molecular orbitals. Strong Stueckelberg oscillations for the charge transfer probability into the n = 2 shell of helium are observed over nearly the entire impact parameter range. The same oscillations are found for the charge transfer into the n = 3 shell in the impact parameter range from 2.5 a.u. upwards, whereas at impact parameters below 2.5 a.u. the oscillations disappear abruptly. This observation is associated with specific pathways along the potential curves, which are responsible for the charge transfer. Similarities with the interferences in Young's two-slit experiment are pointed out. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 109: 3063-3074, 2009 C1 [Stolterfoht, N.; Cabrera-Trujillo, R.; Oehrn, Y.; Deumens, E.; Sabin, J. R.] Univ Florida, Quantum Theory Project, Dept Phys, Gainesville, FL 32611 USA. [Stolterfoht, N.; Cabrera-Trujillo, R.; Oehrn, Y.; Deumens, E.; Sabin, J. R.] Univ Florida, Quantum Theory Project, Dept Chem, Gainesville, FL 32611 USA. [Stolterfoht, N.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Cabrera-Trujillo, R.] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico. [Krstic, P. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Stolterfoht, N (reprint author), Univ Florida, Quantum Theory Project, Dept Phys, Gainesville, FL 32611 USA. EM nico@stolterfoht.com RI Cabrera-Trujillo, Remigio/A-9389-2011 FU PAPIIT-UNAM [107108]; US DOE Office of Fusion Sciences (through ORNL) [DE-AC05-00OR22725]; NSF [00057476]; CONACyT-SNI FX Contract grant sponsor: PAPIIT-UNAM.; Contract grant number: 107108.; Contract grant sponsor: US DOE Office of Fusion Sciences (through ORNL).; Contract grant number: DE-AC05-00OR22725.; Contract grant sponsor: NSF.; \Contract grant number: 00057476.; Contract grant sponsor: CONACyT-SNI. NR 33 TC 7 Z9 7 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0020-7608 J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD NOV 5 PY 2009 VL 109 IS 13 SI SI BP 3063 EP 3074 DI 10.1002/qua.22149 PG 12 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 495WP UT WOS:000269926200030 ER PT J AU Wang, Y Long, CN Leung, LR Dudhia, J McFarlane, SA Mather, JH Ghan, SJ Liu, X AF Wang, Yi Long, C. N. Leung, L. R. Dudhia, J. McFarlane, S. A. Mather, J. H. Ghan, S. J. Liu, X. TI Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MADDEN-JULIAN OSCILLATION; CLIMATE MODELS; PART I; BULK PARAMETERIZATION; EXPLICIT FORECASTS; PHASE-III; PRECIPITATION; MICROPHYSICS; SENSITIVITY; CONVECTION AB Data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) were used to evaluate Weather Research and Forecasting (WRF) model simulations with foci on the performance of three six-class bulk microphysical parameterizations (BMPs). Before the comparison with data from TWP-ICE, a suite of WRF simulations were carried out under an idealized condition, in which the other physical parameterizations were turned off. The idealized simulations were intended to examine the interaction of BMP at a "cloud-resolving'' scale (250 m) with the nonhydrostatic dynamic core of the WRF model. The other suite of nested WRF simulations was targeted on the objective analysis of TWP-ICE at a "cloud-permitting'' scale (quasi-convective resolving, 4 km). Wide ranges of discrepancies exist among the three BMPs when compared with ground-based and satellite remote sensing retrievals for TWP-ICE. Although many processes and associated parameters may influence clouds, it is strongly believed that atmospheric processes fundamentally govern the cloud feedbacks through the interactions between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. Based on the idealized experiments, we suggest that the discrepancy is a result of the different treatment of ice-phase microphysical processes (e. g., cloud ice, snow, and graupel). Because of the turn-off of the radiation and other physical parameterizations, the cloud radiation feedback is not studied in idealized experiments. On the other hand, the "cloud-permitting'' experiments engage all physical parameterizations in the WRF model so that the radiative heating processes are considered together with other physical processes. Common features between these two experiment suites indicate that the major discrepancies among the three BMPs are similar. This strongly suggests the importance of ice-phase microphysics. To isolate the influence of cloud radiation feedback, we further carried out an additional suite of simulations, which turns off the interactions between cloud and radiation schemes. It is found that the cloud radiation feedback plays a secondary, but nonnegligible role in contributing to the wide range of discrepancies among the three BMPs. C1 [Wang, Yi; Long, C. N.; Leung, L. R.; McFarlane, S. A.; Mather, J. H.; Ghan, S. J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Wang, Yi; Liu, X.] Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710075, Peoples R China. [Dudhia, J.] Natl Ctr Atmospher Res, ESSL, Mesoscale & Microscale Meteorol Div, Boulder, CO 80301 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-24, Richland, WA 99354 USA. EM ywang699@gmail.com; chuck.long@pnl.gov; ruby.leung@pnl.gov; dudhia@ucar.edu; sally.mcfarlane@pnl.gov; jim.mather@pnl.gov; steve.ghan@pnl.gov; liuxd@loess.llqg.ac.cn RI Dudhia, Jimy/B-1287-2008; McFarlane, Sally/C-3944-2008; Liu, Xiaodong/E-9512-2011; Wang, Yi/F-2689-2011; Ghan, Steven/H-4301-2011 OI Dudhia, Jimy/0000-0002-2394-6232; Liu, Xiaodong/0000-0003-0355-5610; Ghan, Steven/0000-0001-8355-8699 FU Climate and Environmental Science Division of the U. S. Department of Energy (DOE); K. C. Wong Education Foundation of Chinese Academy of Sciences; NSFC National Excellent Young Scientists Fund [40825008]; U. S. DOE's Office of Biological and Environmental Research FX This work has been supported by the Climate and Environmental Science Division of the U. S. Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) Program. Y. Wang is supported also by K. C. Wong Education Foundation of Chinese Academy of Sciences. X. Liu is supported by the NSFC National Excellent Young Scientists Fund (40825008). Satellite retrieval of cloud ice water content is kindly provided by G. Liu. During the course of our research, we have benefited from discussions with S.-C. Xie, P. May, P. Minnis, S.-Y. Hong, G. Thompson, H. Morrison, and the WRF model developing team. The WRF model simulations were carried out at the National Energy Research Scientific Computing Center and Argonne Leadership Computing Facility of the U. S. DOE and at EMSL, a national scientific user facility sponsored by the U. S. DOE's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. NR 62 TC 22 Z9 22 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 5 PY 2009 VL 114 AR D21203 DI 10.1029/2009JD012729 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 516YU UT WOS:000271580300004 ER PT J AU Li, CB Yang, H Komatsuzaki, T AF Li, Chun-Biu Yang, Haw Komatsuzaki, Tamiki TI New Quantification of Local Transition Heterogeneity of Multiscale Complex Networks Constructed from Single-Molecule Time Series SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ENERGY LANDSCAPES; CONFORMATIONAL DYNAMICS; PROTEIN; PHOTON; TRAJECTORIES; STATISTICS; SURFACES AB A new measure is presented to quantify the local topographical feature, i.e., diversity in transitions from a state to the others, on complex networks. This measure is composed of two contributions: one is related to the number of outgoing links from a state (known as degree) and the other is related to heterogeneity in transition probabilities from a state to the others associated with the links. To illustrate the potential of the new measure, we apply it to the multiscale state space networks (SSNs) extracted directly from the single-molecule time series of protein fluctuation of the NADH:flavin oxidoreductase complex by using a recently developed technique [Li, C. B.; Yang, H.; Komatsuzaki, T. Proc. Natl. Acad, Sci. U.S.A. 2008, 105, 536]. We find that the multiscale SSN network structures dependent on the time scale of observation are not differentiated significantly in the topological feature of the SSNs where the connectivity pattern among the nodes is solely taken into account, but instead in the weighted properties of the network including the heterogeneous strengths of transitions and the resident probabilities of the nodes. The relationship of the transition heterogeneity with the anomalous diffusion observed in the single-molecule measurement is also discussed. C1 [Li, Chun-Biu; Komatsuzaki, Tamiki] Hokkaido Univ, Res Inst Elect Sci, Kita Ku, Sapporo, Hokkaido 0600812, Japan. [Li, Chun-Biu; Komatsuzaki, Tamiki] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan. [Yang, Haw] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Haw] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Komatsuzaki, T (reprint author), Hokkaido Univ, Res Inst Elect Sci, Kita Ku, Kita 12,Nishi 6, Sapporo, Hokkaido 0600812, Japan. EM tamiki@es.hokudai.ac.jp RI Komatsuzaki, Tamiki/D-9883-2012; OI Yang, Haw/0000-0003-0268-6352 NR 35 TC 12 Z9 12 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 5 PY 2009 VL 113 IS 44 BP 14732 EP 14741 DI 10.1021/jp9059483 PG 10 WC Chemistry, Physical SC Chemistry GA 510QM UT WOS:000271105600024 PM 19827784 ER PT J AU Wang, ZG Wang, SJ Li, JB Gao, F Weber, WJ AF Wang, Zhiguo Wang, Shengjie Li, Jingbo Gao, Fei Weber, William J. TI Structure and Electronic Properties of Saturated and Unsaturated Gallium Nitride Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; GAN NANOWIRES; PSEUDOPOTENTIALS; DIODES; GROWTH; ARRAYS AB The atomic and electronic structures of saturated and unsaturated GaN nanotubes along the [001] direction with (100) lateral facets are studied using first-principles calculations. Atomic relaxation of nanotubes shows that appreciable distortion occurs in the unsaturated nanotubes. All the nanotubes considered, including saturated and unsaturated ones, exhibit semiconducting, with a direct band gap Surface states arisen from the 3-fold-coordinated N and Ga atoms at the lateral facets exist inside the bulklike band gap. When the nanotubes are saturated with hydrogen, these dangling bond bands are removed from the band gap, but the band gap decreases with increasing the wall thickness of the nanotubes. C1 [Wang, Zhiguo; Wang, Shengjie] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences; U.S. Department of Energy [DE-AC05-76RL-01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (10704014) and the Young Scientists Foundation of Sichuan (09ZQ026-029) and UESTC (JX0731). J. Li gratefully acknowledges financial support from the "One-Hundred Talents Plan" of the Chinese Academy of Sciences. F. Gao and W J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-76RL-01830. NR 45 TC 11 Z9 12 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2009 VL 113 IS 44 BP 19281 EP 19285 DI 10.1021/jp907657z PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 510QL UT WOS:000271105500044 ER PT J AU Choi, YJ Lu, J Sohn, HY Fang, ZZG Ronnebro, E AF Choi, Young Joon Lu, Jun Sohn, Hong Yong Fang, Zhigang Zak Roennebro, Ewa TI Effect of Milling Parameters on the Dehydrogenation Properties of the Mg-Ti-H System SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE PROPERTIES; HIGH-PRESSURE TECHNIQUE; THIN-FILMS; DESORPTION PROPERTIES; MAGNESIUM HYDRIDE; CARBON NANOTUBES; ENERGY-STORAGE; COMPOSITE; KINETICS; ACTIVATION AB Magnesium-based alloys are promising candidates as potential hydrogen storage materials due to their inherent high hydrogen contents. Small particle size which can be achieved by milling and small amounts of transition-metal compounds as catalysts result in increased hydrogen release/uptake kinetics In this work, we examined the effects of various milling parameters and TiH(2) content on the dehydrogenation properties of the Mg-Ti-H system. The samples were prepared with different amounts of TiH(2) using various milling methods and conditions The activation energy and the enthalpy change of dehydrogenation of the milled samples were determined by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) The results indicated that, among a variety of MgH(2)/TiH(2), ratios and milling conditions, samples with 91 mol % TiH(2) milled in a dual-planetary high energy mill for 4 h under 15 MPa hydrogen pressure were found to be the optimal materials, displaying a substantially reduced activation energy and enthalpy change for MgH(2) dehydrogenation C1 [Choi, Young Joon; Lu, Jun; Sohn, Hong Yong; Fang, Zhigang Zak] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Roennebro, Ewa] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sohn, HY (reprint author), Univ Utah, Dept Met Engn, 135 S 1460 E Room 412, Salt Lake City, UT 84112 USA. RI Mahalingam, Arjun/G-8586-2011 FU U.S. Department of Energy (DOE) [DE-FC36-05GO15069] FX This research was supported by U.S. Department of Energy (DOE) under Contract No. DE-FC36-05GO15069. NR 45 TC 24 Z9 24 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2009 VL 113 IS 44 BP 19344 EP 19350 DI 10.1021/jp907218t PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 510QL UT WOS:000271105500053 ER PT J AU Marshall, NM Garner, DK Wilson, TD Gao, YG Robinson, H Nilges, MJ Lu, Y AF Marshall, Nicholas M. Garner, Dewain K. Wilson, Tiffany D. Gao, Yi-Gui Robinson, Howard Nilges, Mark J. Lu, Yi TI Rationally tuning the reduction potential of a single cupredoxin beyond the natural range SO NATURE LA English DT Article ID BLUE COPPER PROTEINS; PSEUDOMONAS-AERUGINOSA AZURIN; UNNATURAL AMINO-ACIDS; PI-PI-INTERACTION; ACTIVE-SITE; CRYSTAL-STRUCTURE; AXIAL METHIONINE; RUSTICYANIN; STELLACYANIN; MUTAGENESIS AB Redox processes are at the heart of numerous functions in chemistry and biology, from long-range electron transfer in photosynthesis and respiration to catalysis in industrial and fuel cell research. These functions are accomplished in nature by only a limited number of redox-active agents. A long-standing issue in these fields is how redox potentials are fine-tuned over a broad range with little change to the redox-active site or electron-transfer properties. Resolving this issue will not only advance our fundamental understanding of the roles of long-range, non-covalent interactions in redox processes, but also allow for design of redox-active proteins having tailor-made redox potentials for applications such as artificial photosynthetic centres(1,2) or fuel cell catalysts(3) for energy conversion. Here we show that two important secondary coordination sphere interactions, hydrophobicity and hydrogen-bonding, are capable of tuning the reduction potential of the cupredoxin azurin over a 700 mV range, surpassing the highest and lowest reduction potentials reported for any mononuclear cupredoxin, without perturbing the metal binding site beyond what is typical for the cupredoxin family of proteins. We also demonstrate that the effects of individual structural features are additive and that redox potential tuning of azurin is now predictable across the full range of cupredoxin potentials. C1 [Marshall, Nicholas M.; Garner, Dewain K.; Wilson, Tiffany D.; Gao, Yi-Gui; Nilges, Mark J.; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Lu, Y (reprint author), Univ Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA. EM yi-lu@illinois.edu RI Lu, Yi/B-5461-2010 OI Lu, Yi/0000-0003-1221-6709 FU US National Science Foundation [CHE 05-52008]; National Institutes of Health [5 T32 GM070421]; National Institute of General Medical Sciences FX This material is based on work supported by the US National Science Foundation under award no. CHE 05-52008. We thank E. Marshall, D. Poe, A. Huang and J. Li for discussions, and for help in protein expression and purification, and in spectroscopic and electrochemical data collection. N. M. M. is an NIH Predoctoral trainee, supported by the National Institutes of Health under Ruth L. Kirschstein National Research Service Award 5 T32 GM070421 from the National Institute of General Medical Sciences. NR 32 TC 134 Z9 135 U1 10 U2 74 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 5 PY 2009 VL 462 IS 7269 BP 113 EP U127 DI 10.1038/nature08551 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 514TT UT WOS:000271419200043 PM 19890331 ER PT J AU Roche, CM Dibble, CJ Stickel, JJ AF Roche, Christine M. Dibble, Clare J. Stickel, Jonathan J. TI Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID PRETREATED CORN STOVER; ACID PRETREATMENT; HYDROLYSIS; DIGESTIBILITY; OPPORTUNITIES; CHALLENGES; CELLULOSE; SLURRIES; ETHANOL; YIELDS AB Background: Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. Results: We identified roller bottle reactors (RBRs) as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. Conclusion: Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings. C1 [Roche, Christine M.; Dibble, Clare J.; Stickel, Jonathan J.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Stickel, JJ (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM croche@berkeley.edu; clare.dibble@nrel.gov; jonathan.stickel@nrel.gov FU US Department of Energy FX This work was funded by the US Department of Energy through the office of the Biomass Program. We would like to thank Dan Schell and Nick Nagle for providing the pretreated biomass used in this study and Jeff Wolfe for performing the biomass analysis. We would also like to thank Nancy DoweFarmer for providing the hand-mixed SF experimental data. NR 21 TC 46 Z9 46 U1 3 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 4 PY 2009 VL 2 AR 28 DI 10.1186/1754-6834-2-28 PG 11 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 523SY UT WOS:000272096000001 PM 19889202 ER PT J AU Bjorkas, C Juslin, N Timko, H Vortler, K Nordlund, K Henriksson, K Erhart, P AF Bjorkas, C. Juslin, N. Timko, H. Vortler, K. Nordlund, K. Henriksson, K. Erhart, P. TI Interatomic potentials for the Be-C-H system SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; FACING MATERIAL BERYLLIUM; TOTAL-ENERGY CALCULATIONS; EMBEDDED-ATOM POTENTIALS; AUGMENTED-WAVE METHOD; HCP METALS; BASIS-SET; PLASMA; SEMICONDUCTORS AB Analytical bond-order potentials for beryllium, beryllium carbide and beryllium hydride are presented. The reactive nature of the formalism makes the potentials suitable for simulations of non-equilibrium processes such as plasma-wall interactions in fusion reactors. The Be and Be-C potentials were fitted to ab initio calculations as well as to experimental data of several different atomic configurations and Be-H molecule and defect data were used in determining the Be-H parameter set. Among other tests, sputtering, melting and quenching simulations were performed in order to check the transferability of the potentials. The antifluorite Be(2)C structure is well described by the Be-C potential and the hydrocarbon interactions are modelled by the established Brenner potentials. C1 [Bjorkas, C.; Juslin, N.; Timko, H.; Vortler, K.; Nordlund, K.] Univ Helsinki, Dept Phys, EURATOM Tekes, FI-00014 Helsinki, Finland. [Henriksson, K.] Univ Helsinki, Dept Chem, FI-00014 Helsinki, Finland. [Erhart, P.] Lawrence Livermore Natl Lab, Chem Mat Environm & Life Sci Directorate, Livermore, CA 94550 USA. RP Bjorkas, C (reprint author), Univ Helsinki, Dept Phys, EURATOM Tekes, POB 43, FI-00014 Helsinki, Finland. EM carolina.bjorkas@helsinki.fi RI Henriksson, Krister/B-1414-2009; Erhart, Paul/G-6260-2011; Nordlund, Kai/L-8275-2014 OI Henriksson, Krister/0000-0002-6400-8074; Erhart, Paul/0000-0002-2516-6061; Nordlund, Kai/0000-0001-6244-1942 NR 80 TC 22 Z9 22 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 4 PY 2009 VL 21 IS 44 AR 445002 DI 10.1088/0953-8984/21/44/445002 PG 16 WC Physics, Condensed Matter SC Physics GA 507KW UT WOS:000270853100004 PM 21832461 ER PT J AU Lee, SW Chen, SO Sheng, WC Yabuuchi, N Kim, YT Mitani, T Vescovo, E Shao-Horn, Y AF Lee, Seung Woo Chen, Shuo Sheng, Wenchao Yabuuchi, Naoaki Kim, Yong-Tae Mitani, Tadaoki Vescovo, Elio Shao-Horn, Yang TI Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CO MONOLAYER OXIDATION; PARTICLE-SIZE; OXYGEN REDUCTION; PLATINUM; CATALYSTS; ELECTROCATALYSIS; ELECTRODES; MECHANISM; SITES; ADSORPTION AB Design of highly active nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. Increasing steps on single-crystal Pt surfaces is shown to enhance the activity of CO and methanol electro-oxidation up to several orders of magnitude. However, little is known about the surface atomic structure of nanoparticles with sizes of practical relevance, which limits the application of fundamental understanding in the reaction mechanisms established on single-crystal surfaces to the development of active, nanoscale catalysts. In this study, we reveal the surface atomic structure of Pt nanoparticles supported on multiwall carbon nanotubes, from which the amount of high-index surface facets on Pt nanoparticles is quantified. Correlating the surface steps on Pt nanoparticles with the electrochemical activity and stability clearly shows the significant role of surface steps in enhancing. intrinsic activity for CO and methanol electro-oxidation. Here, we show that increasing surface steps on Pt nanoparticles of similar to 2 nm can lead to enhanced intrinsic activity up to similar to 200% (current normalized to Pt surface area) for electro-oxidation of methanol. C1 [Chen, Shuo; Yabuuchi, Naoaki; Kim, Yong-Tae; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Lee, Seung Woo] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Sheng, Wenchao] MIT, Dept Chem, Cambridge, MA 02139 USA. [Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Lee, Seung Woo; Chen, Shuo; Sheng, Wenchao; Yabuuchi, Naoaki; Kim, Yong-Tae; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Kim, Yong-Tae; Mitani, Tadaoki] Japan Adv Inst Sci & Technol, Sch Mat Sci, Kanazawa, Ishikawa 9231292, Japan. [Vescovo, Elio] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Shao-Horn, Y (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Sheng, Wenchao/E-6196-2012; Chen, Shuo/H-2491-2011; Yabuuchi, Naoaki/F-8369-2012; Lee, Seung Woo/B-5820-2013 OI Chen, Shuo/0000-0002-7145-1269; Yabuuchi, Naoaki/0000-0002-9404-5693; Lee, Seung Woo/0000-0002-2695-7105 FU DOE Hydrogen Initiative program [DE-FG0205ER15728]; Toyota Motor Co; National Science Foundation [DMR 0213282]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported in part by the DOE Hydrogen Initiative program under award number DE-FG0205ER15728 and Toyota Motor Co. This work made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 0213282. S.W.L. acknowledges a Samsung Scholarship, Samsung Foundation of Culture. The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We would like to thank N. Marzari and H. A. Gasteiger at MIT for fruitful discussions. NR 42 TC 111 Z9 111 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 4 PY 2009 VL 131 IS 43 BP 15669 EP 15677 DI 10.1021/ja9025648 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 516AI UT WOS:000271513600036 PM 19824642 ER PT J AU Shkrob, IA Kaminski, MD Mertz, CJ Rickert, PG Derzon, MS Rahimian, K AF Shkrob, Ilya A. Kaminski, Michael D. Mertz, Carol J. Rickert, Paul G. Derzon, Mark S. Rahimian, Kamyar TI Sequestration, Fluorometric Detection, And Mass Spectroscopy Analysis of Lanthanide Ions Using Surface Modified Magnetic Microspheres for Microfluidic Manipulation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ASSISTED CHEMICAL-SEPARATION; WIDE RIM; EXTRACTION; ACTINIDES; CMPO; PARTICLES; COMPLEXES; FLUORESCENCE; EUROPIUM; DEVICES AB Several methods for rapid sequestration, fluorometric detection, and the subsequent mass spectroscopic analysis of lanthanide ions using surface modified polystyrene magnetic microspheres are demonstrated. Mixed-ligand antenna complexes of Eu(3+) in which one of the ligands is attached to the surface of the microspheres have been used as a means for the sequestration, immobilization, and detection of these ions. Using the ion-exchange properties of these microspheres, this scheme has been extended to the detection of nonluminescent ions. The principles of these assays form the basis for operation of a portable microfluidic device for general analytical and nuclear forensics applications and indicate the manner in which the established methods of analytical chemistry, such as liquid-liquid extraction and ion-exchange chromatography, can be adapted for such miniature devices. C1 [Shkrob, Ilya A.; Kaminski, Michael D.; Mertz, Carol J.; Rickert, Paul G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Derzon, Mark S.] Sandia Natl Labs, MEMS Technol, Albuquerque, NM 87185 USA. [Rahimian, Kamyar] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU Office of Science, Division of Chemical Science, US-DOE [DE-AC-02-06CH11357]; DTRA [08-43151] FX The work at Argonne was performed under the auspices of the Office of Science, Division of Chemical Science, US-DOE under Contract No. DE-AC-02-06CH11357 and DTRA Contract No. 08-43151. K.R. thanks S. P. Meserole, J. E. Reich, and A. Allen for their help with the mass spectrometry measurements. NR 32 TC 3 Z9 3 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 4 PY 2009 VL 131 IS 43 BP 15705 EP 15710 DI 10.1021/ja9035253 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 516AI UT WOS:000271513600040 PM 19813726 ER PT J AU Lu, J Choi, YJ Fang, ZZ Sohn, HY Ronnebro, E AF Lu, Jun Choi, Young Joon Fang, Zhigang Zak Sohn, Hong Yong Roennebro, Ewa TI Hydrogen Storage Properties of Nanosized MgH2-0.1TiH(2) Prepared by Ultrahigh-Energy-High-Pressure Milling SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MAGNESIUM HYDRIDE MGH2; DESORPTION PROPERTIES; NANOCRYSTALLINE MAGNESIUM; SYSTEM; NI; COMPOSITE; BEHAVIOR; SORPTION; ENERGETICS; KINETICS AB Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage applications. To improve the kinetics and thermodynamic properties of MgH2 during dehydrogenation-rehydrogenation cycles, a nanostructured MgH2-0.1TiH(2) material system prepared by ultrahigh-energy-high-pressure mechanical milling was investigated. High-resolution transmission electron microscope (TEM) and scanning TEM analysis showed that the grain size of the milled MgH2-0.1TiH(2) powder is approximately 5-10 nm with uniform distributions of TiH2 among MgH2 Particles. Pressure-composition-temperature (PCT) analysis demonstrated that both the nanosize and the addition of TiH2 contributed to the significant improvement of the kinetics of dehydrogenation and hydrogenation compared to commercial MgH2. More importantly, PCT cycle analysis demonstrated that the MgH2-0.1 TiH2 material system showed excellent cycle stability. The results also showed that the Delta H value for the dehydrogenation of nanostructured MgH2-0.1TiH(2) is significantly lower than that of commercial MgH2. However, the AS value of the reaction was also lower, which results in minimum net effects of the nanosize and the addition of TiH2 on the equilibrium pressure of dehydrogenation reaction of MgH2. C1 [Lu, Jun; Choi, Young Joon; Fang, Zhigang Zak; Sohn, Hong Yong] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Roennebro, Ewa] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fang, ZZ (reprint author), Univ Utah, Dept Met Engn, 135 South,1460 East,Room 412, Salt Lake City, UT 84112 USA. EM zak.fang@utah.edu RI Mahalingam, Arjun/G-8586-2011 FU U.S. Department of Energy (DOE) [DE-FC36-05GO15069] FX This research was supported by the U.S. Department of Energy (DOE) under contract number DE-FC36-05GO15069. The authors thank Mr. Vineet Kumar for his assistance with the TEM analysis. NR 53 TC 131 Z9 134 U1 3 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 4 PY 2009 VL 131 IS 43 BP 15843 EP 15852 DI 10.1021/ja906340u PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 516AI UT WOS:000271513600056 PM 19810732 ER PT J AU Lu, GH Ocola, LE Chen, JH AF Lu, Ganhua Ocola, Leonidas E. Chen, Junhong TI Reduced graphene oxide for room-temperature gas sensors SO NANOTECHNOLOGY LA English DT Article ID GRAPHITE OXIDE; CARBON NANOTUBES; LAYER GRAPHENE; LARGE-AREA; SHEETS; FILMS; NANOPARTICLES; CONDUCTIVITY; NANOCRYSTALS; TRANSPARENT AB We demonstrated high-performance gas sensors based on graphene oxide (GO) sheets partially reduced via low-temperature thermal treatments. Hydrophilic graphene oxide sheets uniformly suspended in water were first dispersed onto gold interdigitated electrodes. The partial reduction of the GO sheets was then achieved through low-temperature, multi-step annealing (100, 200, and 300 degrees C) or one-step heating (200 degrees C) of the device in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally-reduced GO showed p-type semiconducting behavior in ambient conditions and was responsive to low-concentration NO2 and NH3 gases diluted in air at room temperature. The sensitivity can be attributed mainly to the electron transfer between the reduced GO and adsorbed gaseous molecules (NO2/NH3). Additionally, the contact between GO and the Au electrode is likely to contribute to the overall sensing response because of the adsorbates-induced Schottky barrier variation. A simplified model is used to explain the experimental observations. C1 [Lu, Ganhua; Chen, Junhong] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Chen, Junhong] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China. RP Chen, JH (reprint author), Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. EM jhchen@uwm.edu RI Lu, Ganhua/B-4643-2010; OI Lu, Ganhua/0000-0003-3279-8427; Ocola, Leonidas/0000-0003-4990-1064 FU NSF [CMMI-0900509, CBET-0803142]; University of Wisconsin-Milwaukee Research Foundation; Center for Nanoscale Materials of Argonne National Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was financially supported by the NSF (CMMI-0900509 and CBET-0803142) and by a catalyst grant from the University of Wisconsin-Milwaukee Research Foundation. The authors thank R S Ruoff and D A Dikin for providing GO suspensions, M Gajdardziska-Josifovska for providing TEM access, and D Rosenmann for assistance in metal sputtering. The SEM imaging was conducted at the UWM Electron Microscope Laboratory. The e-beam lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory, which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 40 TC 219 Z9 223 U1 34 U2 256 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 4 PY 2009 VL 20 IS 44 AR 445502 DI 10.1088/0957-4484/20/44/445502 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 503TK UT WOS:000270562900014 PM 19809107 ER PT J AU Berg, E Fradkin, E Kivelson, SA Tranquada, JM AF Berg, Erez Fradkin, Eduardo Kivelson, Steven A. Tranquada, John M. TI Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates SO NEW JOURNAL OF PHYSICS LA English DT Review ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; DOPED ANTIFERROMAGNETS; NEUTRON-SCATTERING; PHASE-SEPARATION; UNDERDOPED BI2SR2CACU2O8+DELTA; TRANSPORT-PROPERTIES; II SUPERCONDUCTORS; MAGNETIC ORDER; SO(5) THEORY AB Recent transport experiments in the original cuprate high temperature superconductor, La2-xBaxCuO4, have revealed a remarkable sequence of transitions and crossovers that give rise to a form of dynamical dimensional reduction, in which a bulk crystal becomes essentially superconducting in two directions while it remains poorly metallic in the third. We identify these phenomena as arising from a distinct new superconducting state, the 'striped superconductor', in which the superconducting order is spatially modulated, so that its volume average value is zero. Here, in addition to outlining the salient experimental findings, we sketch the order parameter theory of the state, stressing some of the ways in which a striped superconductor differs fundamentally from an ordinary (uniform) superconductor, especially concerning its response to quenched randomness. We also present the results of density matrix renormalization group calculations on a model of interacting electrons in which sign oscillations of the superconducting order are established. Finally, we speculate concerning the relevance of this state to experiments in other cuprates, including recent optical studies of La2-xBaxCuO4 in a magnetic field, neutron scattering experiments in underdoped YBa2Cu3O6+x and a host of anomalies seen in STM and ARPES studies of Bi2Sr2CaCu2O8+delta. C1 [Berg, Erez; Kivelson, Steven A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Fradkin, Eduardo] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Tranquada, John M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Berg, E (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM kivelson@stanford.edu RI Tranquada, John/A-9832-2009; Fradkin, Eduardo/B-5612-2013 OI Tranquada, John/0000-0003-4984-8857; FU National Science Foundation [DMR 0758462, DMR 0531196]; Office of Science, US Department of Energy [DE-FG02-91ER45439, DE-FG02-06ER46287, DE-AC02-98CH10886] FX We thank Peter Abbamonte, Dimitri Basov, Hong Yao, Ruihua He, Srinivas Raghu, Aharon Kapitulnik, Eun-Ah Kim, Vadim Oganesyan, Gil Refael, Doug Scalapino, Dale Van Harlingen, Kun Yang and Shoucheng Zhang for great discussions. This work was supported in part by the National Science Foundation, under grants DMR 0758462 (EF) and DMR 0531196 (SAK), and by the Office of Science, US Department of Energy under Contracts DE-FG02-91ER45439 through the Frederick Seitz Materials Research Laboratory at the University of Illinois (EF), DE-FG02-06ER46287 through the Geballe Laboratory of Advanced Materials at Stanford University (SAK and EB), and DE-AC02-98CH10886 at Brookhaven (JMT). NR 157 TC 114 Z9 114 U1 8 U2 62 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 4 PY 2009 VL 11 AR 115004 DI 10.1088/1367-2630/11/11/115004 PG 38 WC Physics, Multidisciplinary SC Physics GA 517WI UT WOS:000271649300001 ER PT J AU van Gorsel, E Delpierre, N Leuning, R Black, A Munger, JW Wofsy, S Aubinet, M Feigenwinter, C Beringer, J Bonal, D Chen, BZ Chen, JQ Clement, R Davis, KJ Desai, AR Dragoni, D Etzold, S Grunwald, T Gu, LH Heinesch, B Hutyra, LR Jans, WWP Kutsch, W Law, BE Leclerc, MY Mammarella, I Montagnani, L Noormets, A Rebmann, C Wharton, S AF van Gorsel, Eva Delpierre, Nicolas Leuning, Ray Black, Andy Munger, J. William Wofsy, Steven Aubinet, Marc Feigenwinter, Christian Beringer, Jason Bonal, Damien Chen, Baozhang Chen, Jiquan Clement, Robert Davis, Kenneth J. Desai, Ankur R. Dragoni, Danilo Etzold, Sophia Gruenwald, Thomas Gu, Lianhong Heinesch, Bernhard Hutyra, Lucy R. Jans, Wilma W. P. Kutsch, Werner Law, B. E. Leclerc, Monique Y. Mammarella, Ivan Montagnani, Leonardo Noormets, Asko Rebmann, Corinna Wharton, Sonia TI Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2 SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Ecosystem respiration; Micrometeorology; Advection; u-star correction; Eddy covariance; Chamber; Process-based modelling ID EDDY COVARIANCE MEASUREMENTS; TEMPERATE DECIDUOUS FOREST; CARBON-DIOXIDE EXCHANGE; PONDEROSA PINE FORESTS; LONG-TERM MEASUREMENTS; DOUGLAS-FIR STAND; OLD-GROWTH FOREST; SOIL RESPIRATION; PACIFIC-NORTHWEST; DIFFICULT CONDITIONS AB Micrometeorological measurements of night time ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397-403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (F-C) and change in storage (F-S) of CO2 in the few hours after sundown. The sum of F-C and F-S reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration R-Rmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of F-c + F-s extrapolated to zero light, R-LRC, and (3) with a detailed process-based forest ecosystem model, R-cast. At most sites respiration rates estimated using the u*-filter, R-ust, were smaller than R-Rmax, and R-LRC. Agreement of our approach with independent measurements indicates that R-Rmax, provides an excellent estimate of nighttime ecosystem respiration. (C) 2009 Elsevier B.V. All rights reserved. C1 [van Gorsel, Eva; Leuning, Ray] CSIRO Marine & Atmospher Res, Canberra, ACT 2061, Australia. [van Gorsel, Eva; Leuning, Ray] CAWCR, Docklands, Australia. [Delpierre, Nicolas] Univ Paris 11, CNRS, AgroParisTech, Lab Ecol Systemat & Evolut, Orsay, France. [Black, Andy; Chen, Baozhang] Univ British Columbia, Fac Land & Food Syst, Biometeorol & Soil Phys Grp, Vancouver, BC V5Z 1M9, Canada. [Munger, J. William; Wofsy, Steven; Hutyra, Lucy R.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernhard] Fac Univ Sci Agronom Gembloux, Unite Phys Biosyst, Gembloux, Belgium. [Feigenwinter, Christian] Univ Basel, Inst Meteorol Climatol & Remote Sensing, Basel, Switzerland. [Beringer, Jason] Monash Univ, Sch Geog & Environm Sci, Clayton, Vic, Australia. [Bonal, Damien] INRA, UMR Ecofog, Kourou, French Guiana. [Chen, Jiquan] Univ Toledo, DES, Toledo, OH 43606 USA. [Clement, Robert] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Davis, Kenneth J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Desai, Ankur R.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA. [Dragoni, Danilo] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Etzold, Sophia] ETH, Inst Plant Sci, Zurich, Switzerland. [Gruenwald, Thomas] Tech Univ Dresden, Tharandt, Germany. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hutyra, Lucy R.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Jans, Wilma W. P.] Alterra Wageningen, Earth Syst Sci & Climate Change Grp, Wageningen, Netherlands. [Kutsch, Werner; Rebmann, Corinna] Max Planck Inst Biogeochem, Jena, Germany. [Law, B. E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Leclerc, Monique Y.] Univ Georgia, Lab Environm Phys, Griffin, GA USA. [Mammarella, Ivan] Univ Helsinki, Dept Phys, Helsinki, Finland. [Montagnani, Leonardo] Forest Serv, Bolzano, Italy. [Noormets, Asko] N Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA. [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. RP van Gorsel, E (reprint author), CSIRO Marine & Atmospher Res, POB 3023, Canberra, ACT 2061, Australia. EM Eva.vangorsel@csiro.au RI Beringer, Jason/B-8528-2008; Noormets, Asko/A-7257-2009; Chen, Jiquan/D-1955-2009; Feigenwinter, Christian/A-6151-2008; van Gorsel, Eva/A-1699-2012; Feigenwinter, Christian/A-4606-2012; Leuning, Ray/A-2793-2008; Cook, Bruce/M-4828-2013; Desai, Ankur/A-5899-2008; Mammarella, Ivan/E-7782-2016; Montagnani, Leonardo/F-1837-2016; Munger, J/H-4502-2013; Gu, Lianhong/H-8241-2014 OI Law, Beverly/0000-0002-1605-1203; Beringer, Jason/0000-0002-4619-8361; Noormets, Asko/0000-0003-2221-2111; Feigenwinter, Christian/0000-0003-2447-5492; van Gorsel, Eva/0000-0002-9939-7217; Cook, Bruce/0000-0002-8528-000X; Desai, Ankur/0000-0002-5226-6041; Mammarella, Ivan/0000-0002-8516-3356; Montagnani, Leonardo/0000-0003-2957-9071; Munger, J/0000-0002-1042-8452; Gu, Lianhong/0000-0001-5756-8738 NR 88 TC 45 Z9 45 U1 5 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 3 PY 2009 VL 149 IS 11 BP 1919 EP 1930 DI 10.1016/j.agrformet.2009.06.020 PG 12 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 504TJ UT WOS:000270640300013 ER PT J AU Doukov, T Li, HY Soltis, M Poulos, TL AF Doukov, Tzanko Li, Huiying Soltis, Michael Poulos, Thomas L. TI Single Crystal Structural and Absorption Spectral Characterizations of Nitric Oxide Synthase Complexed with N-omega-Hydroxy-L-arginine and Diatomic Ligands SO BIOCHEMISTRY LA English DT Article ID ELECTRON-TRANSFER; OXYGENASE DIMER; MECHANISM; HEME; SUBSTRATE; CRYSTALLOGRAPHY; OXIDATION; N(G)-HYDROXY-L-ARGININE; HYDROXYARGININE; CALMODULIN AB The X-ray structures of neuronal nitric oxide synthase (nNOS) with N-omega-hydroxy-L-arginine (L-NHA) and CO (or NO) bound have been determined at 1.91-2.2 angstrom resolution. Microspectrophotometric techniques confirmed reduced redox state and the status of diatomic ligand complexes during X-ray diffraction data collection. The structure of nNOS-NHA-NO, a close mimic to the dioxygen complex, provides a picture of the potential interactions between the heme-bound diatomic ligand, Substrate L-NHA, and the surrounding protein and solvent structure environment. The OH group of L-NHA in the X-ray structures deviates from the plane of the guanidinium moiety substantially, indicating that the OH-bearing, protonated guanidine N-omega nitrogen of L-NHA has substantial sp(3) hybridization character. This nitrogen geometry, different from that of the guanidinium N-omega nitrogen of L-arginine, allows a hydrogen bond to be donated to the proximal oxygen of the heme-bound dioxygen complex, thus preventing cleavage of the O-O bond. Instead, it favors the stabilization of the ferric-hydroperoxy intermediate, Fe3+-OOH-, which serves as the active oxidant in the conversion of L-NHA to NO and citrulline in the second reaction of the NOS. C1 [Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Chem & Pharmaceut Sci, Irvine, CA 92697 USA. [Doukov, Tzanko; Soltis, Michael] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Macromol Crystallog Grp, Stanford, CA 94309 USA. RP Poulos, TL (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM poulos@uci.edu FU Stanford University on behalf of U.S. Department of Energy; Office of Basic Energy Sciences; Department of Energy, Office of Biological and Environmental Research; National Institute of Health, National Cancer for Research Resources, Biomedical Technology Program; National Institute of General Medical Sciences; NIH [GM57353] FX Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL, Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institute of Health, National Cancer for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences. H.L. thanks Kelvin Nguyen for excellent technical assistance.; This work was supported by NIH Grant GM57353 (T.L.P.). NR 41 TC 11 Z9 11 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 3 PY 2009 VL 48 IS 43 BP 10246 EP 10254 DI 10.1021/bi9009743 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 509NA UT WOS:000271023500007 PM 19791770 ER PT J AU Breimyer, P Green, N Kumar, V Samatova, NF AF Breimyer, Paul Green, Nathan Kumar, Vinay Samatova, Nagiza F. TI BioDEAL: community generation of biological annotations SO BMC MEDICAL INFORMATICS AND DECISION MAKING LA English DT Article; Proceedings Paper CT International Workshop on Biomedical and Health Informatics CY NOV 03, 2008 CL Philadelphia, PA ID BIOMEDICAL LITERATURE AB Background: Publication databases in biomedicine (e.g., PubMed, MEDLINE) are growing rapidly in size every year, as are public databases of experimental biological data and annotations derived from the data. Publications often contain evidence that confirm or disprove annotations, such as putative protein functions, however, it is increasingly difficult for biologists to identify and process published evidence due to the volume of papers and the lack of a systematic approach to associate published evidence with experimental data and annotations. Natural Language Processing (NLP) tools can help address the growing divide by providing automatic high-throughput detection of simple terms in publication text. However, NLP tools are not mature enough to identify complex terms, relationships, or events. Results: In this paper we present and extend BioDEAL, a community evidence annotation system that introduces a feedback loop into the database-publication cycle to allow scientists to connect data-driven biological concepts to publications. Conclusion: BioDEAL may change the way biologists relate published evidence with experimental data. Instead of biologists or research groups searching and managing evidence independently, the community can collectively build and share this knowledge. C1 [Breimyer, Paul; Green, Nathan; Kumar, Vinay; Samatova, Nagiza F.] N Carolina State Univ, Raleigh, NC 27695 USA. [Breimyer, Paul; Green, Nathan; Kumar, Vinay; Samatova, Nagiza F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Samatova, NF (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM pwbreimy@ncsu.edu; ndgreen@ncsu.edu; vkumar3@ncsu.edu; samatovan@ornl.gov NR 18 TC 0 Z9 0 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6947 J9 BMC MED INFORM DECIS JI BMC Med. Inform. Decis. Mak. PD NOV 3 PY 2009 VL 9 SU 1 AR S5 DI 10.1186/1472-6947-9-S1-S5 PG 11 WC Medical Informatics SC Medical Informatics GA 587XW UT WOS:000277030800005 PM 19891799 ER PT J AU Bielicki, JK Asztalos, B Johansson, J Azhar, S AF Bielicki, John K. Asztalos, Bela Johansson, Jan Azhar, Salman TI The Novel Apolipoprotein Mimetic Peptide ATI-5261 Induces Pre beta-1 HDL Formation in Human Plasma via a Highly Specific Mechanism Involving Distinct alpha-HDL Subpopulations SO CIRCULATION LA English DT Meeting Abstract CT 82nd Scientific Session of the American-Heart-Association CY NOV 14-18, 2009 CL Orlando, FL SP Amer Heart Assoc C1 [Bielicki, John K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Asztalos, Bela] Tufts Univ, Boston, MA 02111 USA. [Johansson, Jan] Artery Therapeut Inc, Danville, CA USA. [Azhar, Salman] Stanford Univ, Palo Alto, CA 94304 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD NOV 3 PY 2009 VL 120 IS 18 SU 2 BP S445 EP S445 PG 1 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 520GV UT WOS:000271831500576 ER PT J AU Zhang, JA Ma, Z Jiao, J Yin, HF Yan, WF Hagaman, EW Yu, JH Dai, S AF Zhang, Jianan Ma, Zhen Jiao, Jian Yin, Hongfeng Yan, Wenfu Hagaman, Edward W. Yu, Jihong Dai, Sheng TI Layer-by-Layer Grafting of Titanium Phosphate onto Mesoporous Silica SBA-15 Surfaces: Synthesis, Characterization, and Applications SO LANGMUIR LA English DT Article ID SOL-GEL PROCESS; ION-EXCHANGE; ZIRCONIUM-PHOSPHATE; IRON PHOSPHATE; PARTIAL OXIDATION; HYDROGEN-PRODUCTION; ACIDIC PROPERTIES; OPEN-FRAMEWORK; IV PHOSPHATE; N-BUTANE AB Metal phosphates have many applications in catalysis, separation, and proton conduction, but their small surface areas and/or constrained pore structures limit their utilization. Here, we report two new methods for the liquid-phase grafting of titanium phosphate onto mesoporous silica (SBA-15) surfaces: (1) alternate grafting of Ti(OPr)(4) and then POCl3 and (2) one-pot grafting of titanium phosphate formed in situ by employing Ti(OPr)(4) (a base) and POCl3 (an acid) as,in appropriate "acid-base pair". Both the size of mesopores; and the content of titanium phosphate can be changed by increasing the number of modification cycles in a stepwise (or layer-by-layer) fashion. The obtained products were characterized by inductively coupled plasma optical emission spectroscopy, X-ray diffraction, N-2 adsorption-desorption, transmission electron microscopy, P-31 and Si-29 magic-angle spinning NMR, and NH3 temperature-programmed desorption, and their performance in acid catalysis and metal ion adsorption was investigated. This work provides new methodologies for the general synthesis of supported metal phosphates with large surface areas, ordered nanoporous structures, and acid properties. C1 [Zhang, Jianan; Yan, Wenfu; Yu, Jihong] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Coll Chem, Changchun 130012, Peoples R China. [Zhang, Jianan; Ma, Zhen; Jiao, Jian; Yin, Hongfeng; Hagaman, Edward W.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Yu, JH (reprint author), Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Coll Chem, Changchun 130012, Peoples R China. EM jihong@jlu.edu.cn; dais@ornl.gov RI Ma, Zhen/F-1348-2010; yu, jihong/C-1381-2011; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; yu, jihong/0000-0003-1991-2942; Dai, Sheng/0000-0002-8046-3931 NR 54 TC 30 Z9 31 U1 5 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 3 PY 2009 VL 25 IS 21 BP 12541 EP 12549 DI 10.1021/la9017486 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 510QW UT WOS:000271106600026 PM 19601566 ER PT J AU Aliaga-Alcalde, N George, SD Alfaro-Fuentes, I Cooper, GJT Barba-Behrens, N Bernes, S Reedijk, J AF Aliaga-Alcalde, Nuria George, Serena DeBeer Alfaro-Fuentes, Israel Cooper, Geoffrey J. T. Barba-Behrens, Norah Bernes, Sylvain Reedijk, Jan TI Physical characterization and biological studies of a (streptidine)((PtCl4)-Cl-II) compound SO POLYHEDRON LA English DT Article DE Streptidine; Platinum compound; XAS; Cytotoxic assays; Antimicrobial studies; Fluorescence studies ID PLATINUM ANTITUMOR CHEMISTRY; NMR-SPECTROSCOPY; IN-VITRO; DRUGS; STREPTOMYCIN; STREPTIDINE; DERIVATIVES; COMPLEXES; DNA; CISPLATIN AB The synthesis, characterization and biological properties of a novel platinum compound, (H(2)Std)PtCl4(H2O)(x) (1, where x = 1-4; H(2)Std stands for streptidine, the cationic sugar component of streptomycin), are reported in the solid state and in solution. Reaction of streptidine sulfate ((H(2)Std)SO4) With K2PtCl4, yields the sparingly soluble hydrated compound (H(2)Std)PtCl4. Structural information has been attained by a variety of spectroscopic techniques, as well as by using Pt L-3- and Cl K-edge X-ray absorption spectroscopy (XAS). The analyses of the data were completed by performing extended X-ray structural characterization of the free ligand as streptidine sulfate, which was found crucial to interpret the nature and structural arrangement of complex 1. In addition, this work also presents the biological activity of complex 1, i.e. cytotoxic assays, antimicrobial studies, DNA titration and fluorescence in vitro experiments. The studies presented in this paper contribute to our understanding of the synergy between platinum and pharmaceutically relevant compounds. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Alfaro-Fuentes, Israel; Barba-Behrens, Norah] Univ Nacl Autonoma Mexico, Fac Quim, Div Estudios Posgrad, Mexico City 04510, DF, Mexico. [Aliaga-Alcalde, Nuria] ICREA, Barcelona 08028, Spain. [Aliaga-Alcalde, Nuria] Univ Barcelona, Fac Quim, E-08028 Barcelona, Spain. [George, Serena DeBeer] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Aliaga-Alcalde, Nuria; Cooper, Geoffrey J. T.; Reedijk, Jan] Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, NL-2300 RA Leiden, Netherlands. [Bernes, Sylvain] Univ Autonoma Nuevo Leon, Fac Ciencias Quim, DEP, Monterrey 64570, NL Mexico, Mexico. RP Barba-Behrens, N (reprint author), Univ Nacl Autonoma Mexico, Fac Quim, Div Estudios Posgrad, Ciudad Univ, Mexico City 04510, DF, Mexico. EM reedijk@chem.leidenuniv.nl RI Reedijk, Jan/F-1992-2010; DeBeer, Serena/G-6718-2012; Bernes, Sylvain/C-4056-2013; Aliaga-Alcalde, Nuria/H-5886-2011 OI Reedijk, Jan/0000-0002-6739-8514; Bernes, Sylvain/0000-0001-9209-7580; Aliaga-Alcalde, Nuria/0000-0003-1080-3862 FU Netherlands Research Organisation (NWO) and its Chemical Council (CW) [700.53.310]; DOE; BES; NIH; NCRR [5 P41 1111001209]; BMTP; BER FX The authors wish to thank Johnson and Matthey (Reading, UK) for their generous loan of K2PtCl4. Continuous support from the Netherlands Research Organisation (NWO) and its Chemical Council (CW) is also gratefully acknowledged for the TOP grant with number 700.53.310. The authors gratefully acknowledge Dr. J.M. Perez (Universidad Autonoma de Madrid, Spain) for providing A2780 and A2780R cell lines.; SSRL operations are funded by DOE, BES. The SMB program is supported by NIH, NCRR (grant number 5 P41 1111001209), BMTP and by DOE, BER. NR 39 TC 3 Z9 3 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD NOV 3 PY 2009 VL 28 IS 16 BP 3459 EP 3466 DI 10.1016/j.poly.2009.07.022 PG 8 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 519QD UT WOS:000271781200008 ER PT J AU Weisgraber, TH Gee, RH Maiti, A Clague, DS Chinn, S Maxwell, RS AF Weisgraber, Todd H. Gee, Richard H. Maiti, Amitesh Clague, David S. Chinn, Sarah Maxwell, Robert S. TI A mesoscopic network model for permanent set in crosslinked elastomers SO POLYMER LA English DT Article DE Polymer physics; Polydimethylsiloxane; Aging ID MOLECULAR-DYNAMICS SIMULATIONS; STRESS-RELAXATION; POLYMER NETWORKS; SILICONE ELASTOMER; LINKING NETWORKS; ELASTICITY; RUBBER; STRAIN AB A mesoscopic computational model for polymer networks and composites is developed as a very coarse-grained representation of the network microstructure. Unlike more complex molecular dynamics simulations, the model network is static unless undergoing deformation. The elastic modulus, which depends only on the crosslink density and parameters in the bond potential, is consistent with rubber elasticity theory, and the network response satisfies the independent network hypothesis of Tobolsky. The model, when applied to a commercial filled silicone elastomer, quantitatively reproduces the experimental permanent set and stress-strain response due to changes in the crosslinked network from irradiation. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Weisgraber, Todd H.; Gee, Richard H.; Maiti, Amitesh; Chinn, Sarah; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Clague, David S.] Calif Polytech State Univ San Luis Obispo, Dept Biomed Engn, San Luis Obispo, CA 93407 USA. RP Weisgraber, TH (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave L-184, Livermore, CA 94551 USA. EM weisgraber2@llnl.gov RI Chinn, Sarah/E-1195-2011 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 22 TC 9 Z9 9 U1 1 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD NOV 3 PY 2009 VL 50 IS 23 BP 5613 EP 5617 DI 10.1016/j.polymer.2009.09.046 PG 5 WC Polymer Science SC Polymer Science GA 515TQ UT WOS:000271496200035 ER PT J AU Lee, CC Blank, MA Fay, AW Yoshizawa, JM Hu, YL Hodgson, KO Hedman, B Ribbe, MW AF Lee, Chi Chung Blank, Michael A. Fay, Aaron W. Yoshizawa, Janice M. Hu, Yilin Hodgson, Keith O. Hedman, Britt Ribbe, Markus W. TI Stepwise formation of P-cluster in nitrogenase MoFe protein SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE assembly; biosynthesis ID RAY-ABSORPTION SPECTROSCOPY; BRIDGED DOUBLE CUBANES; AZOTOBACTER-VINELANDII; FEMO-COFACTOR; IRON PROTEIN; DELTA-NIFB; CONVERSIONS; MATURATION; REACTIVITY; LIGAND AB The P-cluster of nitrogenase is one of the most complex biological metallocenters known to date. Despite the recent advances in the chemical synthesis of P-cluster topologs, the biosynthetic mechanism of P-cluster has not been well defined. Here, we present a combined biochemical, electron paramagnetic resonance, and Xray absorption spectroscopy/extended X-ray absorption fine-structure investigation of the maturation process of P-clusters in Delta nifH molybdenum-iron (MoFe) protein. Our data indicate that the previously identified, [Fe(4)S(4)]-like cluster pairs in Delta nifH MoFe protein are indeed the precursors to P-clusters, which can be reductively coupled into the mature [Fe(8)S(7)] structures in the presence of Fe protein, MgATP, and dithionite. Moreover, our observation of a biphasic maturation pattern of P-clusters in Delta nifH MoFe protein provides dynamic proof for the previously hypothesized, stepwise assembly mechanism of the two P-clusters in the alpha(2)beta(2)-tetrameric MoFe protein, i.e., one P-cluster is formed in one alpha beta dimer before the other in the second alpha beta dimer. C1 [Lee, Chi Chung; Fay, Aaron W.; Yoshizawa, Janice M.; Hu, Yilin; Ribbe, Markus W.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Blank, Michael A.; Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hodgson, Keith O.; Hedman, Britt] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Hu, YL (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM yilinh@uci.edu; hodgson@ssrl.slac.stanford.edu; hedman@ssrl.slac.stanford.edu; mribbe@uci.edu FU National Institute of General Medical Sciences and the National Center for Research Resources [GM 67626, RR 001209]; Department of Energy Basic Energy Sciences; National Institutes of Health National Center for Research Resources Biotechnology FX This work was supported by National Institutes of Health Grants GM 67626 (to M. W. R.) and RR 001209 (to K. O. H.) from the National Institute of General Medical Sciences and the National Center for Research Resources. Stanford Synchrotron Radiation Lightsource operations are funded by the Department of Energy Basic Energy Sciences, and the Stanford Synchrotron Radiation Lightsource Structural Molecular Biology Program is supported by the National Institutes of Health National Center for Research Resources Biotechnology Training Program and the Department of Energy Basic Energy Sciences. NR 31 TC 19 Z9 19 U1 1 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 3 PY 2009 VL 106 IS 44 BP 18474 EP 18478 DI 10.1073/pnas.0909149106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 514XM UT WOS:000271429800014 PM 19828444 ER PT J AU Gou, JY Yu, XH Liu, CJ AF Gou, Jin-Ying Yu, Xiao-Hong Liu, Chang-Jun TI A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE BAHD superfamily; wall-bound phenolics ID ACID O-HYDROXYCINNAMOYLTRANSFERASE; ALIPHATIC SUBERIN; POTATO SUBERIN; ABSCISIC-ACID; BIOSYNTHESIS; ACYLTRANSFERASES; COENZYME; CUTIN; DOMAIN; ACETYLTRANSFERASE AB Suberin, a polyester polymer in the cell wall of terrestrial plants, controls the transport of water and nutrients and protects plant from pathogenic infections and environmental stresses. Structurally, suberin consists of aliphatic and aromatic domains; p-hydroxycin-namates, such as ferulate, p-coumarate, and/or sinapate, are the major phenolic constituents of the latter. By analyzing the ``wall-bound'' phenolics of mutant lines of Arabidopsis deficient in a family of acyl-CoA dependent acyltransferase (BAHD) genes, we discovered that the formation of aromatic suberin in Arabidopsis, primarily in seed and root tissues, depends on a member of the BAHD superfamily of enzymes encoded by At5g41040. This enzyme exhibits an omega-hydroxyacid hydroxycinnamoyltransferase activity with an in vitro kinetic preference for feruloyl-CoA and 16-hydroxypalmitic acid. Knocking down or knocking out the At5g41040 gene in Arabidopsis reduces specifically the quantity of ferulate in suberin, but does not affect the accumulation of p-coumarate or sinapate. The loss of the suberin phenolic differentially affects the aliphatic monomer loads and alters the permeability and sensitivity of seeds and roots to salt stress. This highlights the importance of suberin aromatics in the polymer's function. PLANT BIOLOGY C1 [Gou, Jin-Ying; Yu, Xiao-Hong; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov RI Gou, Jin-Ying/G-7628-2012 FU Office of Basic Energy Science (DOE) [DEAC0298CH10886] FX We thank Drs. John Ralph and Benjamin Burr for the insightful comments and careful edits on our manuscript. We thank Drs. Fang Chen and Richard Dixon at the Samuel Roberts Noble Foundation for providing caffeoyl-CoA substrate. This work was initiated by the Department of Energy (DOE)/US Department of Agriculture joint Plant Feedstock Genomics program (project Bo-135). The chemical analysis was partially supported by Office of Basic Energy Science (DOE) project DEAC0298CH10886 (to C. J. L.). NR 36 TC 40 Z9 43 U1 0 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 3 PY 2009 VL 106 IS 44 BP 18855 EP 18860 DI 10.1073/pnas.0905555106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 514XM UT WOS:000271429800078 PM 19846769 ER PT J AU Im, MY Fischer, P Kim, DH Shin, SC AF Im, Mi-Young Fischer, Peter Kim, Dong-Hyun Shin, Sung-Chul TI Direct observation of individual Barkhausen avalanches in nucleation-mediated magnetization reversal processes SO APPLIED PHYSICS LETTERS LA English DT Article DE Barkhausen effect; chromium alloys; cobalt alloys; coercive force; magnetic domains; magnetic hysteresis; magnetic thin films; magnetisation reversal; metallic thin films; nucleation; perpendicular magnetic anisotropy; platinum alloys; X-ray microscopy ID SELF-ORGANIZED CRITICALITY; X-RAY MICROSCOPY; THIN-FILMS; BEHAVIOR; HYSTERESIS AB We report the scaling behavior of Barkhausen avalanches [H. Barkhausen, Z. Phys. 20, 401 (1919).] along the hysteresis loop of a CoCrPt alloy film with perpendicular magnetic anisotropy for every field step of 200 Oe. Individual Barkhausen avalanches are directly observed via soft x-ray microscopy with a spatial resolution of 15 nm. The Barkhausen avalanches exhibit a power-law scaling behavior, where the scaling exponent of the power-law distribution drastically changes from 1 +/- 0.04 to 1.47 +/- 0.03 as the applied field approaches the coercivity of the CoCrPt film. We infer that this is due to the coupling of adjacent domains. C1 [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Kim, Dong-Hyun] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [Im, Mi-Young; Shin, Sung-Chul] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Im, Mi-Young; Shin, Sung-Chul] Korea Adv Inst Sci & Technol, Ctr Nanospin Spintron Mat, Taejon 305701, South Korea. RP Im, MY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM scshin@kaist.ac.kr RI Shin, Sung-Chul/C-1992-2011; Fischer, Peter/A-3020-2010; Kim, Dong-Hyun/F-7195-2012; MSD, Nanomag/F-6438-2012 OI Fischer, Peter/0000-0002-9824-9343; FU Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy; National Research Laboratory Program [R0A-2007-000-20026-0]; Global Partnership Program [K20702000014-08E0200-01410]; Ministry of Education, Science and Technology [KRF-2007-331-C0097] FX We would like to thank C. S. Fadley (UC Davis) for proofreading the manuscript. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy. This work was also supported by the National Research Laboratory Program (Grant No. R0A-2007-000-20026-0), the Global Partnership Program (K20702000014-08E0200-01410), and the Basic Research Promotion Fund (KRF-2007-331-C0097) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. NR 21 TC 14 Z9 14 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2009 VL 95 IS 18 AR 182504 DI 10.1063/1.3256188 PG 3 WC Physics, Applied SC Physics GA 518CD UT WOS:000271666800046 ER PT J AU Kang, SH Kumar, CK Lee, Z Radmilovic, V Kim, ET AF Kang, Seung-Hee Kumar, Ch. Kiran Lee, Zonghoon Radmilovic, Velimir Kim, Eui-Tae TI Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film SO APPLIED PHYSICS LETTERS LA English DT Article DE cadmium compounds; charge injection; colloids; electron affinity; II-VI semiconductors; nanostructured materials; semiconductor quantum dots; titanium compounds; wide band gap semiconductors; zinc compounds ID QUANTUM DOTS AB Charge memory characteristics have been systematically studied based on colloidal CdSe/ZnS nanocrystal quantum dots (QDs) embedded in similar to 50 nm-thick TiO2 film. Ligand-capped QDs showed negligible electron charging effect, implying that the electron affinity of QDs was significantly decreased by surface dipole layer surrounding QDs. In contrast, the hole charging was affected by the carrier injection blocking effect of the surface ligands. Efficient electron and hole charging characteristics were realized by removing the surface ligands via H-2 plasma treatment. C1 [Kang, Seung-Hee; Kumar, Ch. Kiran; Kim, Eui-Tae] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. [Lee, Zonghoon; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kim, ET (reprint author), Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. EM etkim@cnu.ac.kr RI Lee, Zonghoon/G-1474-2011 OI Lee, Zonghoon/0000-0003-3246-4072 FU Korea government (MEST) [R01-2008-000-20756-0]; Korea Research Foundation [KRF-2009-013-D00056, KRF-2006-331-D00260]; National Center for Electron Microscopy; Lawrence Berkeley Laboratory; U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MEST) (Grant No. R01-2008-000-20756-0), and by the Korea Research Foundation under Grant Nos. KRF-2009-013-D00056 and KRF-2006-331-D00260. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, which is supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 13 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2009 VL 95 IS 18 AR 183111 DI 10.1063/1.3259929 PG 3 WC Physics, Applied SC Physics GA 518CD UT WOS:000271666800068 ER PT J AU Marginean, I Page, JS Kelly, RT Tang, KQ Smith, RD AF Marginean, Ioan Page, Jason S. Kelly, Ryan T. Tang, Keqi Smith, Richard D. TI Effect of pressure on electrospray characteristics SO APPLIED PHYSICS LETTERS LA English DT Article DE electric fields; electrohydrodynamics; sprays; vapour pressure ID IONIZATION-MASS-SPECTROMETRY; CHARGED DROPLETS; NANOFLOW REGIME; TAYLOR CONES; ION-SOURCE; LIQUIDS; INTERFACE; MIXTURES; EMISSION; POINTS AB An experimental study of pulsating electrosprays operated at subambient pressure is reported. The pressure domain that affords stable electrospray operation appears to be limited by the vapor pressure of the liquid. The voltage driving the electrospray is shown to have a logarithmic dependence on pressure. The observed scaling amends the relationship currently used to calculate the electric field at the tip of the meniscus of an electrified liquid. C1 [Marginean, Ioan; Page, Jason S.; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Marginean, I (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012; Kelly, Ryan/B-2999-2008 OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349; Kelly, Ryan/0000-0002-3339-4443 FU NIH National Center for Research Resources [RR018522]; Environmental Molecular Sciences Laboratory at PNNL; Battelle for the DOE [DE-AC05-76RLO 1830] FX This research was supported by the NIH National Center for Research Resources (Grant No. RR018522). Experimental portions were performed in the Environmental Molecular Sciences Laboratory at PNNL. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract No. DE-AC05-76RLO 1830. NR 35 TC 6 Z9 6 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2009 VL 95 IS 18 AR 184103 DI 10.1063/1.3258494 PG 3 WC Physics, Applied SC Physics GA 518CD UT WOS:000271666800090 PM 19997584 ER PT J AU Austin, J Wang, W Puttamadappa, S Shekhtman, A Camarero, JA AF Austin, Jeffrey Wang, Wan Puttamadappa, Swamy Shekhtman, Alexander Camarero, Julio A. TI Biosynthesis and Biological Screening of a Genetically Encoded Library Based on the Cyclotide MCoTI-I SO CHEMBIOCHEM LA English DT Article DE cyclotides; expressed protein ligation; genetically encoded libraries; inhibitors; protein splicing ID CYCLIC-CYSTINE-KNOT; COMBINATORIAL PEPTIDE TEMPLATE; POLYPEPTIDE KALATA B1; TRYPSIN-INHIBITOR; DRUG DESIGN; MOMORDICA-COCHINCHINENSIS; MACROCYCLIC PEPTIDES; CHEMICAL-SYNTHESIS; PROTEIN; CYCLIZATION C1 [Wang, Wan; Camarero, Julio A.] Univ So Calif, Dept Pharmacol & Pharmaceut Sci, Sch Pharm, Los Angeles, CA 90033 USA. [Austin, Jeffrey; Camarero, Julio A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Puttamadappa, Swamy; Shekhtman, Alexander] SUNY Albany, Dept Chem, Albany, NY 12222 USA. RP Camarero, JA (reprint author), Univ So Calif, Dept Pharmacol & Pharmaceut Sci, Sch Pharm, Los Angeles, CA 90033 USA. EM jcamarer@usc.edu RI Camarero, Julio/A-9628-2015 FU NIGMS NIH HHS [R01 GM090323, R01 GM090323-01] NR 34 TC 50 Z9 50 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4227 J9 CHEMBIOCHEM JI ChemBioChem PD NOV 2 PY 2009 VL 10 IS 16 BP 2663 EP 2670 DI 10.1002/cbic.200900534 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA 520CB UT WOS:000271816300015 PM 19780078 ER PT J AU Soo, HS Komor, AC Iavarone, AT Chang, CJ AF Soo, Han Sen Komor, Alexis C. Iavarone, Anthony T. Chang, Christopher J. TI A Hydrogen-Bond Facilitated Cycle for Oxygen Reduction by an Acid- and Base-Compatible Iron Platform SO INORGANIC CHEMISTRY LA English DT Article ID CYTOCHROME-C-OXIDASE; NONHEME OXOIRON(IV) COMPLEXES; ELECTRON-TRANSFER-REACTIONS; O-O BOND; DIOXYGEN ACTIVATION; FE-IV=O; METAL-IONS; OXO COMPLEXES; PHYSICAL-PROPERTIES; ACTIVE-SITES AB We report a hydrogen-bond functionalized N4Py ligand platform (N, N-bis(2-R-6-pyridylmethyl)-N-bis(2-pyridyl)methylamine; R = neopentyl-NH, N4py2(NpNH), g; R = phenyl-NH, N4Py(2PhNH), 10) and the ability of its iron(II)-triflate [(N4PyFeII)-Fe-2R(OTf)][OTf] complexes (R = NpNH, 11; R = PhNH, 12) to activate and reduce dioxygen in a synthetic cycle by coupled proton and electron transfer. A pair of iron(III)-hydroxide [N4Py(2R)Fe(III)(OH)][OTf](2) complexes (R = NpNH, 13; R = PhNH, 14) are isolated and structurally and spectroscopically characterized after exposure of the iron(II)-triflate precursors to 1 atm of O-2 at ambient temperature. The stability of this system to acids and bases allows regeneration of the labile iron(II)-triflate starting materials by sequential electron and proton transfer with cobaltocene and triflic acid, respectively, or through direct proton-coupled reduction with ascorbic acid. In the stepwise process, reduction of the iron(III)-hydroxide complexes with cobaltocene gives structurally homologous iron(II)-hydroxide [N4Py(2R)Fe(II)(OH)][OTf] congeners (R = NpNH, 15; R = PhNH, 16) that can be prepared independently from 11 and 12 with 20% aq. NaOH. Additions of triflic acid to complexes 15 and 16 furnish the starting compounds 11 and 12, respectively, to complete the synthetic cycle. The combined data establish a synthetic cycle for O-2 reduction by an iron platform that manages proton and electron transfer through its first and second coordination spheres. C1 [Soo, Han Sen; Komor, Alexis C.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Iavarone, Anthony T.] Univ Calif Berkeley, Chem Mass Spectrometry Facil QB3, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Soo, Han Sen; Chang, Christopher J.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu RI Soo Han Sen, Han Sen/B-7016-2011 FU University of California, Berkeley; Dreyfus, Beckman, Packard; Sloan Foundations; LBNL Chemical Sciences Division [403801]; LBNL/DOE Helios SERC [51HEI12B]; National Institutes of Health [1S10RR02239301] FX We thank the University of California, Berkeley, the Dreyfus, Beckman, Packard, and Sloan Foundations, the LBNL Chemical Sciences Division (403801), and the LBNL/DOE Helios SERC (51HEI12B) for funding this work. H.S.S. thanks Dr. Frederick Hollander and Dr. Allen Oliver for advice on X-ray crystallography as well as Prof. Robert Bergman and Mr. Shaun Wong for insightful discussions and suggestions. The mass spectrometer used in this study was acquired with support from the National Institutes of Health (1S10RR02239301). NR 99 TC 22 Z9 22 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2009 VL 48 IS 21 BP 10024 EP 10035 DI 10.1021/ic9006668 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 509BT UT WOS:000270987400017 PM 19780564 ER PT J AU Tian, GX Rao, LF Teat, SJ AF Tian, Guoxin Rao, Linfeng Teat, Simon J. TI Thermodynamics, Optical Properties, and Coordination Modes of Np(V) with Dipicolinic Acid SO INORGANIC CHEMISTRY LA English DT Article ID ORGANIC FRAMEWORK STRUCTURES; CRYSTAL-STRUCTURE; EXTRACTION; COMPLEX; NEPTUNIUM(V); LIGANDS; URANIUM(VI); HYDROLYSIS; EQUILIBRIA; ABSORPTION AB Complexation of NpO(2)(+) with dipicolinic acid (DPA) has been investigated in 1 M NaClO(4) at 25 degrees C. Two complexes, NpO(2)(DPA)(-) and NpO(2)(DPA)(2)(3-), were identified, and the stability constants (log beta(1) and log beta(2)) were determined to be 8.68 and 12.31, respectively, by spectrophotometry. The enthalpies of the complexation (Delta H(1) and Delta H(2)) were measured to be -25.2 and -45.9 kJ/mol by microcalorimetry. The entropies (Delta S(1), and Delta S(2)) were calculated to be 81.6 and 81.8 J/(K mol) accordingly. The strong complexation of NpO(2)(+) with DPA is driven by both positive entropies and highly exothermic enthalpies. The crystal structure of Na(3)NpO(2)(DPA)(2)(H(2)O)(6)(S) shows that, in the NpO(2)-(DPA)(2)(3-) complex, the Np atom sits at a center of inversion and the two DPA ligands symmetrically coordinate to Np in a tridentate mode. Due to the centrosymmetric structure of the NpO(2)(DPA)(2)(3-) complex, the f -> f transitions of Np(V) are forbidden, and the sharp bands originating from the f -> f transitions either disappear or become very weak in the optical absorption or diffuse reflectance spectra of the NpO(2)(DPA)(2)(3-) complex. C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM LRao@lbl.gov FU U.S. Department of Energy (DOE) [DE-AC02-05CH 11231] FX This research was supported by the Director, Office of Science, Office of Basic Energy Science of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH 11231 at Lawrence Berkeley National Laboratory (LBNL). The Advanced Light Source (ALS) was operated by LBNL for DOE. The authors are grateful to the anonymous reviewers whose comments have helped to significantly improve the manuscript. NR 42 TC 16 Z9 16 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2009 VL 48 IS 21 BP 10158 EP 10164 DI 10.1021/ic9011185 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 509BT UT WOS:000270987400031 PM 19810699 ER PT J AU Ye, XY Johann, DJ Hakami, RM Xiao, Z Meng, ZJ Ulrich, RG Issaq, HJ Veenstra, TD Blonder, J AF Ye, Xiaoying Johann, Donald J. Hakami, Ramin M. Xiao, Zhen Meng, Zhaojing Ulrich, Robert G. Issaq, Haleem J. Veenstra, Timothy D. Blonder, Josip TI Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS SO JOURNAL OF PROTEOMICS LA English DT Article DE CD14 monocyte; Membrane proteins; Solubilization; Methanol; Detergents; LC-MS/MS ID SPECTROMETRY-COMPATIBLE SURFACTANTS; TANDEM MASS-SPECTROMETRY; ENZYMATIC DIGESTION; CLEAVABLE DETERGENTS; RAT-LIVER; BACTERIORHODOPSIN; IDENTIFICATION; CELLS; EXPRESSION; METHANOL AB Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization. of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl) propane-1-sulfonate (PPS), iii) a combination of both agents (methanol+PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was similar to 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ye, Xiaoying; Xiao, Zhen; Meng, Zhaojing; Issaq, Haleem J.; Veenstra, Timothy D.; Blonder, Josip] NCI, Lab Prote & Analyt Technol, Adv Technol Program, SAIC Frederick Inc, Frederick, MD 21702 USA. [Johann, Donald J.] NCI, Ctr Canc Res, Bethesda, MD 20892 USA. [Hakami, Ramin M.] Oak Ridge Associated Univ, Fac Res Program, Belcamp, MD 21017 USA. [Ulrich, Robert G.] USA, Med Res Inst Infect Dis, Frederick, MD 21702 USA. RP Blonder, J (reprint author), NCI, Lab Prote & Analyt Technol, Adv Technol Program, SAIC Frederick Inc, Frederick, MD 21702 USA. EM blonder@ncifcrf.gov FU National Cancer Institute; National Institutes of Health [N01-CO-12400] FX This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organization imply endorsement by the United States Government. NR 62 TC 16 Z9 18 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-3919 J9 J PROTEOMICS JI J. Proteomics PD NOV 2 PY 2009 VL 73 IS 1 BP 112 EP 122 DI 10.1016/j.jprot.2009.08.008 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 522GL UT WOS:000271985800010 PM 19709643 ER PT J AU Zhang, J Zhang, K Xu, XK Tse, CK Small, M AF Zhang, Jie Zhang, Kai Xu, Xiao-ke Tse, Chi K. Small, Michael TI Seeding the Kernels in graphs: toward multi-resolution community analysis SO NEW JOURNAL OF PHYSICS LA English DT Article ID HIERARCHICAL ORGANIZATION; METABOLIC NETWORKS; COMPLEX NETWORKS; MODULARITY; SYSTEMS AB Current endeavors in community detection suffer from the resolution limit problem and can be quite expensive for large networks, especially those based on optimization schemes. We propose a conceptually different approach for multi-resolution community detection, by introducing the kernels from statistical literature into the graph, which mimic the node interaction that decays locally with the geodesic distance. The modular structure naturally arises as the patterns inherent in the interaction landscape, which can be easily identified by the hill climbing process. The range of node interaction, and henceforth the resolution of community detection, is controlled via tuning the kernel bandwidth in a systematic way. Our approach is computationally efficient and its effectiveness is demonstrated using both synthetic and real networks with multiscale structures. C1 [Zhang, Jie; Xu, Xiao-ke; Tse, Chi K.; Small, Michael] Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China. [Zhang, Kai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Xu, Xiao-ke] Qingdao Technol Univ, Sch Commun & Elect Engn, Qingdao 266520, Peoples R China. RP Zhang, J (reprint author), Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China. EM enzhangjie@eie.polyu.edu.hk RI Small, Michael/C-9807-2010; xu, xiaoke/G-5418-2011 OI Small, Michael/0000-0001-5378-1582; FU Hong Kong Polytechnic University [G-YX0N] FX This research was funded by the Hong Kong Polytechnic University Postdoctoral Fellowships Scheme 2007-2008 (G-YX0N). NR 31 TC 26 Z9 27 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 2 PY 2009 VL 11 AR 113003 DI 10.1088/1367-2630/11/11/113003 PG 12 WC Physics, Multidisciplinary SC Physics GA 513MA UT WOS:000271325200003 ER PT J AU Hall, J Hooper, D AF Hall, Jeter Hooper, Dan TI Distinguishing between dark matter and pulsar origins of the ATIC electron spectrum with atmospheric Cherenkov telescopes SO PHYSICS LETTERS B LA English DT Article ID RAY POSITRON FRACTION; PARTICLE; HALO AB Recent results from the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment have identified the presence of a spectral feature between approximately 300 and 800 GeV in the cosmic ray electron spectrum. This spectral feature appears to imply the existence of a local (less than or similar to 1 kpc) Source of high energy electrons. Emission from a local pulsar and dark matter annihilations have each been put forth as possible origins of this signal. In this Letter, we consider the sensitivity of ground based atmospheric Cherenkov telescopes to electrons and show that observatories such as HESS and VERITAS should be able to resolve this feature with sufficient precision to discriminate between the dark matter and pulsar hypotheses with considerably greater than 5 sigma significance, even for conservative assumptions regarding their performance. In addition, this feature provides an opportunity to perform an absolute calibration of the energy scale of ground based, gamma ray telescopes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hall, Jeter] Fermilab Natl Accelerator Lab, Fermi Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Hall, J (reprint author), Fermilab Natl Accelerator Lab, Fermi Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM jeter@fnal.gov; hooper@fnal.gov RI Hall, Jeter/F-6108-2013; Hall, Jeter/E-9294-2015 FU Fermi Research Alliance, LLC [DE-AC0-207CH11359]; US Department of Energy; NASA [NNX08AH34G] FX We would like to acknowledge Ted Baltz for suggesting that ACTs could resolve the cutoff in the electron spectrum predicted for selected dark matter candidates. DH is supported by the Fermi Research Alliance, LLC under Contract No. DE-AC0-207CH11359 with the US Department of Energy and by NASA grant NNX08AH34G. NR 33 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 2 PY 2009 VL 681 IS 3 BP 220 EP 223 DI 10.1016/j.physletb.2009.10.020 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 520MW UT WOS:000271849900004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancua, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancua, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. da Silva, W. L. Prado Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for pair production of first-generation leptoquarks in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID SCALAR LEPTOQUARKS; TEVATRON; PHYSICS AB A search for pair production of first-generation leptoquarks (LQ) is performed with data collected by the DO experiment in p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron Collider. In a sample of data corresponding to similar to 1 fb(-1) the search has been performed on the final states with two electrons and two jets or one electron, two jets and missing transverse energy. We find our data consistent with standard model expectations. The results are combined with those found in a previous analysis of events with two jets and missing transverse energy to obtain scalar LQ mass limits. We set 95% C.L. lower limits on a scalar LQ mass of 299 GeV. 284 GeV and 216 GeV for beta = 1, beta = 0.5 and beta = 0.02 respectively, where beta is the LQ branching ratio in the eq channel. This improves the results obtained with a lower luminosity sample from Run II of the Tevatron. Lower limits on vector LQ masses with different couplings from 357 GeV to 464 GeV for beta = 0.5 are also set using this analysis. (C) 2009 Elsevier B.V. All rights reserved. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Arnoud, Y.; Crepe-Renaudin, S.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France. [Arnoud, Y.; Crepe-Renaudin, S.; Sajot, G.; Stark, J.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Ancua, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Aoki, M.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Mundim, Luiz/A-1291-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012 OI Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); CFI, (Canada); NSERC (Canada); WestGrid Project (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS (China); CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic): CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland): The Swedish Research Council (Sweden); CAS and CNSF (China): and the Alexander von Humboldt Foundation (Germany). NR 23 TC 24 Z9 24 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 2 PY 2009 VL 681 IS 3 BP 224 EP 232 DI 10.1016/j.physletb.2009.10.016 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 520MW UT WOS:000271849900005 ER PT J AU Scandale, W Vomiero, A Bagli, E Baricordi, S Dalpiaz, P Fiorini, M Guidi, V Mazzolari, A Vincenzi, D Milan, R Della Mea, G Vallazza, E Afonin, AG Chesnokov, YA Maisheev, VA Yazynin, IA Golovatyuk, VM Kovalenko, AD Taratin, AM Denisov, AS Gavrikov, YA Ivanov, YM Lapina, LP Malyarenko, LG Skorobogatov, VV Suvorov, VM Vavilov, SA Bolognini, D Hasan, S Mattera, A Prest, M Shiraishi, S AF Scandale, W. Vomiero, A. Bagli, E. Baricordi, S. Dalpiaz, P. Fiorini, M. Guidi, V. Mazzolari, A. Vincenzi, D. Milan, R. Della Mea, Gianantonio Vallazza, E. Afonin, A. G. Chesnokov, Yu. A. Maisheev, V. A. Yazynin, I. A. Golovatyuk, V. M. Kovalenko, A. D. Taratin, A. M. Denisov, A. S. Gavrikov, Yu. A. Ivanov, Yu. M. Lapina, L. P. Malyarenko, L. G. Skorobogatov, V. V. Suvorov, V. M. Vavilov, S. A. Bolognini, D. Hasan, S. Mattera, A. Prest, M. Shiraishi, S. TI Observation of channeling and volume reflection in bent crystals for high-energy negative particles SO PHYSICS LETTERS B LA English DT Article ID DEFLECTION AB Deflection due to planar channeling and volume reflection in short bent silicon crystals was observed for the first time for 150 GeV/c negative particles, pi(-) mesons, at one of the secondary beams of the CERN SPS. The deflection efficiency was about 30% for channeling and higher than 80% for volume reflection. Volume reflection occurs, in spite of the attractive character of the forces acting between the particles and the crystal planes, in a wide angular range of the crystal orientations determined by the crystal bend angle. (C) 2009 Elsevier B.V. All rights reserved. C1 [Golovatyuk, V. M.; Kovalenko, A. D.; Taratin, A. M.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Scandale, W.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Vomiero, A.] INFM CNR, I-25133 Brescia, Italy. [Bagli, E.; Baricordi, S.; Dalpiaz, P.; Fiorini, M.; Guidi, V.; Mazzolari, A.; Vincenzi, D.] Univ Ferrara, Dipartmento Fis, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Milan, R.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, PD, Italy. [Della Mea, Gianantonio] Univ Trent, Dipartimento Ingn Mat & Tecnol Ind, I-38050 Trento, Italy. [Vallazza, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Afonin, A. G.; Chesnokov, Yu. A.; Maisheev, V. A.; Yazynin, I. A.] Inst High Energy Phys, RU-142284 Protvino, Russia. [Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; Suvorov, V. M.; Vavilov, S. A.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Bolognini, D.; Hasan, S.; Mattera, A.; Prest, M.] Univ Insubria, I-22100 Como, Italy. [Bolognini, D.; Hasan, S.; Mattera, A.; Prest, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Shiraishi, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Taratin, AM (reprint author), Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Moscow Region, Russia. EM alexander.taratin@cern.ch RI Vomiero, Alberto/F-7567-2010; Bagli, Enrico/E-5906-2012; Vincenzi, Donato/J-5064-2012; Fiorini, Massimiliano/A-5354-2015; Mazzolari, Andrea/A-1100-2017; OI Vomiero, Alberto/0000-0003-2935-1165; Bagli, Enrico/0000-0003-3913-7701; Fiorini, Massimiliano/0000-0001-6559-2084; Mazzolari, Andrea/0000-0003-0804-6778; MILAN, Riccardo/0000-0001-5863-8654; PREST, MICHELA/0000-0003-3161-4454; guidi, vincenzo/0000-0001-9726-8481 FU INFN NTA-HCCC; MIUR [2006028442]; INTAS program; Russian Foundation for Basic Research [05-02-17622, 06-02-16912]; RF President Foundation [SS-3057-2006-2]; Russian Academy of Sciences; [RFBR-CERN 08-02-91020] FX We are grateful to Professor L. Lanceri (INFN & University of Trieste) who provided the tracking detectors, to V. Carassiti and M. Melchiorri for the design and fabrication of the crystal holders. We acknowledge the partial support by the INFN NTA-HCCC and MIUR 2006028442 projects, the INTAS program, the Russian Foundation for Basic Research Grants 05-02-17622 and 06-02-16912, the RF President Foundation Grant SS-3057-2006-2, the "Fundamental Physics Program of Russian Academy of Sciences" and the grant RFBR-CERN 08-02-91020. NR 15 TC 32 Z9 33 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 2 PY 2009 VL 681 IS 3 BP 233 EP 236 DI 10.1016/j.physletb.2009.10.024 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 520MW UT WOS:000271849900006 ER PT J AU Chen, TL Kou, A Ofan, A Gaathon, O Osgood, RM Gang, O Vanamurthy, L Bakhru, S Bakhru, H AF Chen, Tsung-Liang Kou, Angela Ofan, Avishai Gaathon, Ophir Osgood, R. M., Jr. Gang, Oleg Vanamurthy, Lakshmanan Bakhru, Sasha Bakhru, Hassaram TI Oxide heterogrowth on ion-exfoliated thin-film complex oxide substrates SO THIN SOLID FILMS LA English DT Article DE Ion-implantation selective etching; Thin-film LiNbO(3); Atomic layer growth; Lift off ID LITHIUM-NIOBATE; LINBO3 FILM; FABRICATION; DEPOSITION; GROWTH AB Fabrication of a bilayer HfO(2)/single-crystal LiNbO(3) film is demonstrated using deep high-energy He(+) implantation in a LiNbO(3) wafer, followed by HfO(2) atomic layer deposition, and, then, selective etching exfoliation from the bulk LiNbO(3) crystal. The properties and morphology of these exfoliated bilayer films are characterized using a set of thin-film probes. Pre-exfoliation film patterning and one model application, in surface-refractive-index tuning of guided waves in a free-standing LiNbO(3) film, are also demonstrated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chen, Tsung-Liang; Kou, Angela; Ofan, Avishai; Gaathon, Ophir; Osgood, R. M., Jr.] Columbia Univ, Ctr Integrated Sci & Engn, New York, NY 10027 USA. [Gang, Oleg] Brookhaven Natl Lab, Upton, NY 11973 USA. [Vanamurthy, Lakshmanan; Bakhru, Sasha; Bakhru, Hassaram] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. RP Osgood, RM (reprint author), Columbia Univ, Ctr Integrated Sci & Engn, New York, NY 10027 USA. EM osgood@columbia.edu FU NSF; National Synchrotron Light Source, Brookhaven National Laboratory, DOE [DE-AC02-98CH10886]; NSF MRSEC [DMR-0213574]; NY Office of Science, Technology and Academic Research FX Our experiments were supported by NSF and carried out, in part, at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, DOE Contract #DE-AC02-98CH10886, using the shared experimental facilities of the NSF MRSEC, DMR-0213574, and the NY Office of Science, Technology and Academic Research. The authors thank Prof. Cevdet Noyan for assistance on our XRD measurements. NR 31 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 2 PY 2009 VL 518 IS 1 BP 269 EP 273 DI 10.1016/j.tsf.2009.06.004 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 504PI UT WOS:000270628800044 ER PT J AU Faulconer, L Parham, C Connor, DM Zhong, Z Kim, E Zeng, DL Livasy, C Cole, E Kuzmiak, C Koomen, M Pavic, D Pisano, E AF Faulconer, Laura Parham, Chris Connor, Dean M. Zhong, Zhong Kim, Eunhee Zeng, Donglin Livasy, Chad Cole, Elodia Kuzmiak, Cherie Koomen, Marcia Pavic, Dag Pisano, Etta TI Radiologist Evaluation of an X-ray Tube-Based Diffraction-Enhanced Imaging Prototype Using Full-Thickness Breast Specimens SO ACADEMIC RADIOLOGY LA English DT Article DE Diffraction-enhanced imaging; phase contrast; synchrotron; reader study; breast cancer ID PHASE-CONTRAST; CANCER SPECIMENS; MAMMOGRAPHY; HISTOPATHOLOGY; CALCIFICATIONS; IMPLEMENTATION; RADIOGRAPHY; HISTOLOGY; CT AB Rationale and Objectives. Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted, scattered, or refracted x-rays. Diffraction-enhanced imaging (DEI) allows for increased contrast with decreased radiation dose compared to conventional mammographic imaging because of monochromatic x-rays, its unique refraction-based contrast mechanism, and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. Materials and Methods. The authors' laboratory developed a DEI prototype (DEI-PR) using a readily available tungsten x-ray tube source and traditional DEI crystal optics, providing soft tissue images at 60 keV. Images of full-thickness human breast tissue specimens were acquired on synchrotron-based DEI (DEI-SR), DEI-PR, and digital mammographic systems. A panel of expert radiologists evaluated lesion feature visibility and correlation with pathology after receiving training on the interpretation of refraction contrast mammographic images. Results. For mammographic features (mass, calcification), no significant differences were detected between the DEI-SR and DEI-PR systems. Benign lesions were perceived as better seen by radiologists using the DEI-SR system than the DEI-PR system at the [111] reflectivity, with generalizations limited by small sample size. No significant differences between DEI-SR and DEI-PR were detected for any other lesion type (atypical, cancer) at either crystal reflectivity. Conclusions. Thus, except for benign lesion characterizations, the DEI-PR system's performance was roughly equivalent to that of the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications. C1 [Connor, Dean M.; Cole, Elodia; Pisano, Etta] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA. [Faulconer, Laura] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA. [Cole, Elodia] Univ N Carolina, Lineberger Canc Ctr, Chapel Hill, NC 27599 USA. [Kim, Eunhee; Zeng, Donglin] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA. [Livasy, Chad] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. [Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Pisano, Etta] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA. [Parham, Chris] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Pisano, E (reprint author), Univ N Carolina, Biomed Res Imaging Ctr, CB 7000,4030 Bondurant Hall, Chapel Hill, NC 27599 USA. EM etta_pisano@med.unc.edu OI Cole, Elodia/0000-0002-2301-7468 FU Breast Imaging Clinic at UNC Hospitals FX We would like to acknowledge Ann Sherman and the mammography technologists at the Breast Imaging Clinic at UNC Hospitals for their assistance with this project. NR 31 TC 23 Z9 23 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 J9 ACAD RADIOL JI Acad. Radiol. PD NOV PY 2009 VL 16 IS 11 BP 1329 EP 1337 DI 10.1016/j.acra.2009.05.006 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 513EA UT WOS:000271304000005 PM 19596593 ER PT J AU Armstrong, NR Veneman, PA Ratcliff, E Placencia, D Brumbach, M AF Armstrong, Neal R. Veneman, P. Alex Ratcliff, Erin Placencia, Diogenes Brumbach, Michael TI Oxide Contacts in Organic Photovoltaics: Characterization and Control of Near-Surface Composition in Indium-Tin Oxide (ITO) Electrodes SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID HETEROJUNCTION SOLAR-CELLS; LIGHT-EMITTING-DIODES; TITANYL PHTHALOCYANINE/C-60 HETEROJUNCTIONS; SELF-ASSEMBLED MONOLAYERS; THIN-FILMS; PHOTOELECTRON-SPECTROSCOPY; TRANSPARENT CONDUCTORS; PROBE MOLECULE; INTERFACES; PERFORMANCE AB The recent improvements in the power conversion efficiencies of organic photovoltaic devices (OPVs) promise to make these technologies increasingly attractive alternatives to more established photovoltaic technologies. OPVs typically consist of photoactive layers 20-100 nm thick sandwiched between both transparent oxide and metallic electrical contacts. Ideal OPVs rely on ohmic top and bottom contacts to harvest photogenerated charges without compromising the power conversion efficiency of the OPV. Unfortunately, the electrical contact materials (metals and metal oxides) and the active organic layers in OPVs are often incompatible and may be poorly optimized for harvesting photogenerated charges. Therefore, further optimization of the chemical and physical stabilities of these metal oxide materials with organic materials will be an essential component of the development of OPV technologies. The energetic and kinetic barriers to charge injection/collection must be minimized to maximize OPV power conversion efficiencies. In this Account, we review recent studies of one of the most common transparent conducting oxides (TCOs), indium-tin oxide ([TO), which is the transparent bottom contact in many OPV technologies. These studies of the surface chemistry and surface modification of [TO are also applicable to other TCO materials. Clean, freshly deposited ITO is intrinsically reactive toward H(2)O, CO, CO(2), etc. and is often chemically and electrically heterogeneous in the near-surface region. Conductive-tip atomic force microscopy (C-AFM) studies reveal significant spatial variability in electrical properties. We describe the use of acid activation, small-molecule chemisorption, and electrodeposition of conducting polymer films to tune the surface free energy, the effective work function, and electrochemical reactivity of ITO surfaces. Certain electrodeposited poly(thiophenes) show their own photovoltaic activity or can be used as electronically tunable substrates for other photoactive layers. For certain photoactive donor layers (phthalocyanines), we have used the polarity of the oxide surface to accelerate dewetting and "nanotexturing" of the donor layer to enhance OPV performance. These complex surface chemistries will make oxide/organic interfaces one of the key focal points for research in new OPV technologies. C1 [Armstrong, Neal R.; Veneman, P. Alex; Ratcliff, Erin; Placencia, Diogenes] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Brumbach, Michael] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Armstrong, NR (reprint author), Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. EM nra@email.arizona.edu NR 85 TC 109 Z9 109 U1 5 U2 186 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD NOV PY 2009 VL 42 IS 11 BP 1748 EP 1757 DI 10.1021/ar900096f PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 521NK UT WOS:000271928200008 PM 19728725 ER PT J AU Malchi, JY Foley, TJ Yetter, RA AF Malchi, Jonathan Y. Foley, Timothy J. Yetter, Richard A. TI Electrostatically Self-Assembled Nanocomposite Reactive Microspheres SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE electrostatic self-assembly; nanoenergetics; thermites; microspheres ID BINARY NANOPARTICLE SUPERLATTICES; ORGANIZED MOLECULAR ASSEMBLIES; OXIDIZED ALUMINUM SURFACE; NORMAL-ALKANOIC ACIDS; MONOLAYERS; ALKANETHIOLS; CRYSTALS; AL/MOO3; AU AB Nanocomposite reactive microspheres with diameters of similar to 1-5 mu m were created via electrostatic self-assembly of aluminum and cupric oxide nanoparticles. The ability to utilize this novel approach of bottom-up assembly to create these reactive materials allows for the potential for a more intimate mixture between the two nanoreactants and, thus, an overall more energetic combustion process. Experiments with the self-assembled material demonstrate the ability to achieve ignition and sustain a combustion wave in rectangular microchannels, which does not occur with material having similar amounts of organics mixed via the traditional sonication method. C1 [Malchi, Jonathan Y.; Yetter, Richard A.] Penn State Univ, University Pk, PA 16802 USA. [Foley, Timothy J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Malchi, JY (reprint author), 8162 Manitoba St 219, Playa Del Rey, CA 90293 USA. EM jymalchi@gmail.com; tfoley@lanl.gov; ray8@psu.edu FU U.S. Army Research Office [W911NF-04-1-0178]; Army Research Offic FX This work was sponsored by the U.S. Army Research Office under the Multi-University Research Initiative under Contract No. W911NF-04-1-0178. The support and encouragement provided by Dr. Ralph Anthenion of the Army Research Office is gratefully acknowledged. NR 20 TC 34 Z9 35 U1 5 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV PY 2009 VL 1 IS 11 BP 2420 EP 2423 DI 10.1021/am900521w PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 522ZR UT WOS:000272039700002 PM 20356109 ER PT J AU Yuhas, BD Habas, SE Fakra, SC Mokari, T AF Yuhas, Benjamin D. Habas, Susan E. Fakra, Sirine C. Mokari, Taleb TI Probing Compositional Variation within Hybrid Nanostructures SO ACS NANO LA English DT Article DE hybrid nanostructures; bimetallic nanoparticles; core-shell; magnetic characterization; X-ray absorption spectroscopy ID CORE-SHELL NANOPARTICLES; NIXPT1-X NANOPARTICLES; COLLOIDAL SYNTHESIS; COPT3 NANOCRYSTALS; SELECTIVE GROWTH; METAL TIPS; CLUSTERS; CARBON; SIZE; RU AB We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for Identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials. C1 [Fakra, Sirine C.; Mokari, Taleb] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yuhas, Benjamin D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Mokari, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tmokari@lbl.gov RI MOKARI, TALEB/F-1685-2012 FU Director, Office of Science, Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank J. Long for the use of the SQUID magnetometer, P. Alivisatos for the use of the TEM, and P. Yang and M. Marcus for helpful discussion. We also thank the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory for the use of their microscope facilities. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under Contract DE-AC02-05CH11231. NR 40 TC 19 Z9 19 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2009 VL 3 IS 11 BP 3369 EP 3376 DI 10.1021/nn901107p PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 521UY UT WOS:000271951200007 PM 19813744 ER PT J AU Wang, W Li, ZP Gu, BH Zhang, ZY Xu, HX AF Wang, Wei Li, Zhipeng Gu, Baohua Zhang, Zhenyu Xu, Hongxing TI Ag@SiO2 Core-Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering SO ACS NANO LA English DT Article DE Raman scattering; nanoparticles; silver; silica; spatial distribution; electromagnetic field enhancement ID SINGLE-MOLECULE; RHODAMINE 6G; SILICA NANOPARTICLES; DISTANCE DEPENDENCE; SPECTROSCOPY; SERS; ADSORPTION; MONOLAYERS; MECHANISM; FILMS AB We show that the spatial distribution of the electromagnetic (EM) field enhancement can be probed directly via dynamic evolution of surface-enhanced Raman scattering (SERS) of rhodamine 6G (R6G) molecules as they diffuse into Ag@SiO2 core-shell nanoparticles. The porous silica shell limits the diffusion of R6G molecules toward Inner Ag cores, thereby allowing direct observation and quantification of the spatial distribution of SERS enhancement as molecules migrate from the low to high EM fields inside the dielectric silica shell. Our experimental evidence is validated by the generalized Mie theory, and the approach can potentially offer a novel platform for further investigating the site and spatial distribution of the EM fields and the EM versus chemical enhancement of SERS due to molecular confinement within the Ag@SiO2 nanoshell. C1 [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Li, Zhipeng; Xu, Hongxing] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Xu, Hongxing] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov; hongxingxu@aphy.iphy.ac.cn RI li, zhipeng/D-3313-2009; Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; IoP, Nano Lab/B-9663-2013; zou, Ci/E-8559-2017 OI Gu, Baohua/0000-0002-7299-2956; FU National Natural Science Foundation of China [1062S418]; MOST [2006DFB02020, 2007CB936800]; UT-Battelle LLC for US DOE [DE-AC05-000R22725] FX This research was sponsored in part by the Laboratory Directed Research and Development (LDRD) Program at Oak Ridge National Laboratory (ORNL) and the DMSE program of Basic Energy Sciences, US Department of Energy (DOE). Xu was supported by National Natural Science Foundation of China under contract No. 1062S418, by MOST under contract No. 2006DFB02020 and 2007CB936800, and by the "Bairen" projects of CAS. ORNL is managed by UT-Battelle LLC for US DOE under contract DE-AC05-000R22725. NR 29 TC 68 Z9 70 U1 14 U2 142 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2009 VL 3 IS 11 BP 3493 EP 3496 DI 10.1021/nn9009533 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 521UY UT WOS:000271951200022 PM 19886639 ER PT J AU Botello-Mendez, AR Cruz-Silva, E Lopez-Urias, F Sumpter, BG Meunier, V Terrones, M Terrones, H AF Botello-Mendez, Andres R. Cruz-Silva, Eduardo Lopez-Urias, Florentino Sumpter, Bobby G. Meunier, Vincent Terrones, Mauricio Terrones, Humberto TI Spin Polarized Conductance in Hybrid Graphene Nanoribbons Using 5-7 Defects SO ACS NANO LA English DT Article DE graphene; nanoribbons; magnetism; quantum transport; half metallicity; ab initio ID ELECTRON-GAS; TRANSPORT; CARBON; PSEUDOPOTENTIALS; GRAPHITE; RIBBONS; STATES; MODEL AB We present a class of intramolecular graphene heterojunctions and use first-principles density functional calculations to describe their electronic, magnetic, and transport properties. The hybrid graphene and hybrid graphene nanoribbons have both armchair and zigzag features that are separated by an interface made up of pentagonal and heptagonal carbon rings. Contrary to conventional graphene sheets, the computed electronic density of states indicates that all hybrid graphene and nanoribbon systems are metallic. Hybrid nanoribbons are found to exhibit a remarkable width-dependent magnetic behavior and behave as spin polarized conductors. C1 [Botello-Mendez, Andres R.; Lopez-Urias, Florentino; Terrones, Mauricio; Terrones, Humberto] IPICYT, Lab Nanosci & Nanotechnol Res LINAN, San Luis Potosi 78216, Mexico. [Cruz-Silva, Eduardo; Sumpter, Bobby G.; Meunier, Vincent] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Terrones, M (reprint author), IPICYT, Lab Nanosci & Nanotechnol Res LINAN, Camino Presa San Jose 2055, San Luis Potosi 78216, Mexico. EM mterrones@ipicyt.edu.mx RI Cruz-Silva, Eduardo/B-7003-2009; Terrones, Mauricio/B-3829-2014; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013 OI Cruz-Silva, Eduardo/0000-0003-2877-1598; Botello Mendez, Andres/0000-0002-7317-4699; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355 FU CONACYT-Mexico [56787, 45762, 60218-F1, 45772, 41464, 42428, 2004-01-013/SALUD-CONACYT, PUE-2004-CO29, 63001 S-3908, 63072 S-3909]; Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities, U.S. Department of Energy; Division of Materials Science and Engineering, U.S. Department of Energy [DEAC05-00OR22725] FX The authors are grateful to D. Ramirez, G. Ramirez, and K. Gomez for technical assistance. This work was supported in part by CONACYT-Mexico grants: 56787 (Laboratory for Nanoscience and Nanotechnology Research-LINAN), 45762 (H.T.), 60218-F1 (F.L.-U.), 45772 (M.T.), 41464-Inter American Collaboration (MT.), 42428-Inter American Collaboration (M.T.), 2004-01-013/SALUD-CONACYT (M.T.), PUE-2004-CO29 Fondo Mixto de Puebla (M.T.), Fondo Mixto de San Luis Potosi 63001 S-3908 (M.T.), Fondo Mixto de San Luis Potosi 63072 S-3909 (H.T.), and Ph.D. Scholarship (A.R.B.-M.). V.M. and B.G.S. acknowledge work supported by the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy and by the Division of Materials Science and Engineering, U.S. Department of Energy under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC at Oak Ridge National Laboratory (ORNL). NR 51 TC 46 Z9 46 U1 8 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2009 VL 3 IS 11 BP 3606 EP 3612 DI 10.1021/nn900614x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 521UY UT WOS:000271951200036 PM 19863086 ER PT J AU Uzun, A Ortalan, V Hao, YL Browning, ND Gates, BC AF Uzun, Alper Ortalan, Volkan Hao, Yalin Browning, Nigel D. Gates, Bruce C. TI Nanoclusters of Gold on a High-Area Support: Almost Uniform Nanoclusters Imaged by Scanning Transmission Electron Microscopy SO ACS NANO LA English DT Article DE gold; nanoparticles; nanoclusters; aberration-corrected STEM ID RAY-ABSORPTION SPECTROSCOPY; CO OXIDATION; CATIONIC GOLD; CERIUM OXIDE; CLUSTERS; CATALYSTS; MGO; COMPLEXES; NANOPARTICLES; GENESIS AB Highly dispersed supported gold offers unprecedented catalytic properties. Determination of the dependence of the catalytic properties on the gold nanocluster size requires the preparation of size-controlled gold nanoclusters on support surfaces with a high degree of uniformity. Starting from site-isolated mononuclear gold complexes on high-area MgO, we demonstrate the preparation of gold clusters consisting of <10 atoms. These samples have been imaged with atomic resolution by aberration-corrected scanning transmission electron microscopy. The images show that treatment of the supported mononuclear complexes at 318 K in flowing helium caused aggregation of the gold into clusters of 2-6 atoms, present with unconverted individual site-isolated mononuclear gold species and in the absence of any larger nanoparticles. Treatment of the sample at a higher temperature (373 K) in flowing helium resulted in the formation of gold clusters with diameters of 0.58 +/- 0.15 nm (containing roughly 10 Au atoms), again in the absence of larger nanoparticles. Upon exposure of the supported nanoclusters to the electron beam, they underwent aggregation to gold clusters approximately 1 nm in average diameter, as shown in consecutive STEM images. C1 [Uzun, Alper; Ortalan, Volkan; Hao, Yalin; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu OI Uzun, Alper/0000-0001-7024-2900; Browning, Nigel/0000-0003-0491-251X FU DOE [DE-FG02-04ER15600, DE-FG02-04ER15513]; National Science Foundation (NSF) [CTS-0500511]; Division of Scientific User Facilities; Basic Energy Sciences FX This work was supported by DOE (A.U., Grant No. DE-FG02-04ER15600 and Y. H., Grant No. DE-FG02-04ER15513) and by the National Science Foundation (NSF) (V.O., Grant No. CTS-0500511). The STEM images were acquired at Oak Ridge National Laboratory's Shared Research Equipment User Facility, supported by the Division of Scientific User Facilities, Basic Energy Sciences, DOE. NR 36 TC 40 Z9 41 U1 4 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2009 VL 3 IS 11 BP 3691 EP 3695 DI 10.1021/nn9008142 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 521UY UT WOS:000271951200047 PM 19863069 ER PT J AU Wegeng, RS Mankins, JC AF Wegeng, Robert S. Mankins, John C. TI Space power systems: Producing transportation (and other chemical) fuels as an alternative to electricity generation SO ACTA ASTRONAUTICA LA English DT Article ID SOLAR; RECEIVER; REACTOR; METHANE AB While most studies on space power systems target electricity generation as the energy product, industrialized nations also have a need for chemicals 10 Support transportation and other purposes. This paper therefore describes an alternative target for the application of space power systems: the production of chemical fuels based on radiant energy beamed or reflected front orbiting platforms. If cost and efficiency targets can be achieved, Solar Thermochemical Plants-occupying a few square kilometers each-can potentially generate substantial quantities of transportation fuels. therefore enabling reductions in the consumption of petroleum and the emission of carbon dioxide. The specifics of the approach that are described in this paper include the concentration of radiant energy within ground-based systems so that high temperature heat is provided for thermochemical process networks. This scoping study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer-Tropsch fuels) as the Solar Fuel product of the plant. (C) 2009 Published by Elsevier Ltd. C1 [Wegeng, Robert S.] Battelle Mem Inst, Pacific NW Natl Lab, Columbus, OH 43201 USA. RP Wegeng, RS (reprint author), Battelle Mem Inst, Pacific NW Natl Lab, Columbus, OH 43201 USA. EM robert.wegeng@pnl.gov; john.c.mankins@artemisinnovation.com NR 27 TC 1 Z9 2 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2009 VL 65 IS 9-10 BP 1261 EP 1271 DI 10.1016/j.actaastro.2009.03.054 PG 11 WC Engineering, Aerospace SC Engineering GA 504UC UT WOS:000270642200010 ER PT J AU Varanasi, VG Saiz, E Loomer, PM Ancheta, B Uritani, N Ho, SP Tomsia, AP Marshall, SJ Marshall, GW AF Varanasi, V. G. Saiz, E. Loomer, P. M. Ancheta, B. Uritani, N. Ho, S. P. Tomsia, A. P. Marshall, S. J. Marshall, G. W. TI Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions SO ACTA BIOMATERIALIA LA English DT Article DE Bioactive glass ions; Osteogenesis; Osteoblasts; Silicon; Calcium ID CALCIUM-SENSING RECEPTOR; MAGNESIUM-STIMULATED ADHESION; TITANIUM IMPLANT ALLOYS; IN-VITRO; GENE-EXPRESSION; ASCORBIC-ACID; DISSOLUTION PRODUCTS; ORTHOPEDIC IMPLANTS; DIFFERENTIATION; COLLAGEN AB This study tested the hypothesis that bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system), used for implant coatings, enhanced the induction of collagen type I synthesis and in turn enhanced the expression of downstream markers alkaline phosphatase, Runx2 and osteocalcin during osteoblast differentiation. The ions from experimental bioactive glass (6P53-b) and commercial Bioglass (TM) (45S5) were added to osteoblast-like MC3T3-E1 subclone 4 cultures as a supplemented ion extract (glass conditioned medium (GCM)). Ion extracts contained significantly higher concentrations of Si and Ca (Si, 47.9 +/- 10.4 ppm; Ca, 69.8 +/- 14.0 for 45S5; Si, 33.4 +/- 3.8 ppm; Ca, 57.1 +/- 2.8 ppm for 6P53-b) compared with the control extract (Si < 0. 1 ppm, Ca 49.0 ppm in alpha-MEM) (ANOVA, p < 0.05). Cell proliferation rate was enhanced (1.5x control) within the first 3 days after adding 45S5 and 6P53-b GCM. MC3T3-E1 subclone 4 cultures were then studied for their response to the addition of test media (GCM and control medium along with ascorbic acid (AA; 50 ppm)). Each GCM + AA treatment enhanced collagen type I synthesis as observed in both gene expression results (day 1, Coll alpha 1, 45S5 GCM + AA: 3x control + AA; 6P53-b GCM + AA: 4x control + AA; day 5, Coll alpha 2, 45S5 GCM + AA: 3.15x control + AA; 6P53-b GCM + AA: 2.35x control + AA) and in histological studies (Picrosirius stain) throughout the time course of early differentiation. Continued addition of each GCM and AA treatment led to enhanced expression of alkaline phosphatase (1.4x control + AA after 5 days, 2x control + AA after 10 days), Runx2 (2x control + AA after 7 days) and osteocalcin gene (day 3, 45S5 GCM + AA: 14x control + AA; day 5, 6P53-b GCM + AA: 19x control + AA) and protein expression (40x-70x control + AA after 6 days). These results indicated the enhanced effect of bioactive glass ions on key osteogenic markers important for the bone healing process. (C) 2009 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Varanasi, V. G.; Loomer, P. M.; Ancheta, B.; Uritani, N.; Ho, S. P.; Marshall, S. J.; Marshall, G. W.] Univ Calif San Francisco, Div Biomat & Bioengn, San Francisco, CA 94143 USA. [Saiz, E.; Ho, S. P.; Tomsia, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Varanasi, VG (reprint author), Univ Calif San Francisco, Div Biomat & Bioengn, San Francisco, CA 94143 USA. EM venu.varanasi@ucsf.edu OI Ho, Sunita/0000-0001-9999-8226 FU National Institutes of Health/National Institute of Dental and Craniofacial Research [K25 DE018230, R01 DE11289] FX The authors would like to thank the following contributors to this paper: Tiffany Vallortigara, Janet Wong, Kelly Leong and Garrett Porteous. The authors would also like to thank the following for their kind advice related to the above work: Linda Prentice, Larry Watanabe, Grace Nonomura, Steven Lee, Michael Carillo, Dr. Stuart Gansky, Professor Pamela DenBeston, Dr. Yuan Zhang, Dr. James Chen, Dr. Stefan Habelitz, Dr. Kuniko Saeki and Dr. Huynh Tri. In addition, the authors thank UC Davis ICP-MS facility for solution and GCM analyses. Finally, the authors appreciate the financial support by the National Institutes of Health/National Institute of Dental and Craniofacial Research Grants K25 DE018230 Varanasi (PI) and R01 DE11289 Tomsia (PI). NR 54 TC 60 Z9 60 U1 5 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD NOV PY 2009 VL 5 IS 9 BP 3536 EP 3547 DI 10.1016/j.actbio.2009.05.035 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 520NX UT WOS:000271853300025 PM 19497391 ER PT J AU Gundiah, G Hanrahan, SM Hollander, FJ Bourret-Courchesne, ED AF Gundiah, Gautam Hanrahan, Stephen M. Hollander, Frederick J. Bourret-Courchesne, Edith D. TI Europium-doped barium bromide iodide SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID DIFFRACTION; SYSTEM AB Single crystals of Ba(0.96)Eu(0.04)BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl(2) structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +/- 0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement. C1 [Bourret-Courchesne, Edith D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gundiah, Gautam; Hanrahan, Stephen M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hollander, Frederick J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bourret-Courchesne, ED (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM EDBourret@lbl.gov FU US Department of Homeland Security; Department of Energy [DE-AC02-05CH11231] FX This work was supported by the US Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge useful discussions with Dr Stephen E. Derenzo and Dr Gregory Bizarri. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 14 TC 3 Z9 3 U1 2 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD NOV PY 2009 VL 65 BP I76 EP U179 DI 10.1107/S1600536809041105 PN 11 PG 9 WC Crystallography SC Crystallography GA 521FU UT WOS:000271906600004 PM 21578035 ER PT J AU Gschneidner, KA Ji, M Wang, CZ Ho, KM Russell, AM Mudryk, Y Becker, AT Larson, JL AF Gschneidner, K. A., Jr. Ji, Min Wang, C. Z. Ho, K. M. Russell, A. M. Mudryk, Ya. Becker, A. T. Larson, J. L. TI Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics SO ACTA MATERIALIA LA English DT Article DE Rare earth intermetallic compounds; CsCl-type structure; Ductility; Electronic structure; First-principle electron theory ID MECHANICAL-PROPERTIES; YCU; YAG AB The study of the ductile B2, CsCl-type AB intermetallic compounds has been expanded over the past few years in order to determine the underlying principles that account for their ductility. Using a global semi-empirical alloy theory approach together with first-principles band theory, we show that absence of d-band electrons near the Fermi level accounts for the observed ductility in over 90% of the phases studied to date. This model has been used to predict the ductile/brittle behavior in several other selected AB compounds. Considering the crystal structures of the known intermetallics, it is concluded that the existence of these ductile AB B2 compounds is an isolated situation because the von Mises criterion for ductility is met in the B2 materials, but not in other crystal structures. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Gschneidner, K. A., Jr.; Ji, Min; Wang, C. Z.; Ho, K. M.; Russell, A. M.; Mudryk, Ya.; Becker, A. T.; Larson, J. L.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Gschneidner, K. A., Jr.; Russell, A. M.; Becker, A. T.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM cagey@ameslab.gov RI Ji, Min/F-3503-2011; OI Russell, Alan/0000-0001-5264-0104 FU US Department of Energy, Iowa State University [DE-AC02-07CH 11358]; National Energy Research Supercomputing Center (NERSC) FX The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH 11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. NR 15 TC 47 Z9 48 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2009 VL 57 IS 19 BP 5876 EP 5881 DI 10.1016/j.actamat.2009.08.012 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 518CQ UT WOS:000271668200022 ER PT J AU Jin, H Glimm, J AF Jin, Hyeonseong Glimm, James TI WEAKLY COMPRESSIBLE TWO-PRESSURE TWO-PHASE FLOW SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE multiphase flow; asymptotic analysis; turbulence; perturbation ID RAYLEIGH-TAYLOR; MODELS; FLUIDS; LIMIT AB We analyze the limiting behavior of a compressible two-pressure two-phase flow model as the Mach number tends to zero. Formal asymptotic expansions are derived for the solutions of compressible two-phase equations. Expansion coefficients through second order are evaluated in closed form, Underdetermination of incompressible pressures is resolved by information supplied from the weakly compressible theory. The incompressible pressures are uniquely specified by certain details of the compressible fluids from which they are derived as a limit. This aspect of two phase flow in the incompressible limit appears to be new, and results basically from closures which satisfy single phase boundary conditions at the edges of the mixing zone. C1 [Jin, Hyeonseong] Cheju Natl Univ, Dept Math, Cheju 690756, South Korea. [Glimm, James] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Glimm, James] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11793 USA. RP Jin, H (reprint author), Cheju Natl Univ, Dept Math, Cheju 690756, South Korea. EM hjin@jejunu.ac.kr; glimm@ams.sunysb.edu FU Korean Government [2009-0059567] FX This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2009-0059567). NR 22 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD NOV PY 2009 VL 29 IS 6 BP 1497 EP 1540 PG 44 WC Mathematics SC Mathematics GA 543KG UT WOS:000273575300002 ER PT J AU Cheng, BL AF Cheng, Baolian TI REVIEW OF TURBULENT MIXING MODELS SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE hydrodynamic instabilities; turbulent mixing ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITIES; FUSION CAPSULE IMPLOSIONS; 2-PHASE FLOW MODEL; ACCELERATION; SIMILARITY; DEPENDENCE; TRANSPORT; FRONTS; FLUIDS AB Fluid mixing is an important phenomenon in many physical applications from supernova explosions to genetic structure formations. In this paper, we overview some theoretical and empirical dynamic mix models, which have been developed over the recent decades, in particular, the ensemble-average micro physical mix model, the multifluid interpenetration mix model, the phenomenological and hybrid turbulent mix models, the buoyancy drag mix model, the single fluid turbulence mix model, and the large eddy simulation mix model. The similarities, distinctions, and connections between these models and their applications are discussed. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cheng, BL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bcheng@lanl.gov FU Los Alamos National Laboratory [W-7.405-ENG-36] FX This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7.405-ENG-36. NR 57 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD NOV PY 2009 VL 29 IS 6 BP 1703 EP 1720 PG 18 WC Mathematics SC Mathematics GA 543KG UT WOS:000273575300013 ER PT J AU Xu, ZL Lin, G AF Xu, Zhiliang Lin, Guang TI SPECTRAL/HP ELEMENT METHOD WITH HIERARCHICAL RECONSTRUCTION FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE spectral/hp element method; hierarchical reconstruction; discontinuous Galerkin; hyperbolic conservation laws ID DISCONTINUOUS GALERKIN METHOD; NAVIER-STOKES EQUATIONS; ESSENTIALLY NONOSCILLATORY SCHEMES; SHOCK-CAPTURING SCHEMES; ONE-DIMENSIONAL SYSTEMS; STABLE PENALTY METHOD; EFFICIENT IMPLEMENTATION; DIFFERENCE SCHEME; COMPRESSIBLE FLOWS; UNSTRUCTURED GRIDS AB The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential non-oscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions. C1 [Xu, Zhiliang] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA. [Lin, Guang] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. RP Xu, ZL (reprint author), Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA. EM zxu2@nd.edu; guang.lin@pnl.gov RI Lin, Guang/D-1376-2011; Xu, Zhiliang/O-1718-2014 FU NSF [DMS-0800612]; US DOE Office of Advanced Scientific Computing Research; U.S. Department of Energy [DF-AC05-76RL01830] FX Research was supported in part by NSF grant DMS-0800612. Research was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing Research. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract; DF-AC05-76RL01830. NR 48 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 EI 1572-9087 J9 ACTA MATH SCI JI Acta Math. Sci. PD NOV PY 2009 VL 29 IS 6 BP 1737 EP 1748 PG 12 WC Mathematics SC Mathematics GA 543KG UT WOS:000273575300015 ER PT J AU Sun, B Yan, GH Xiao, Y Yang, TA AF Sun, Bo Yan, Guanhua Xiao, Yang Yang, T. Andrew TI Self-propagating mal-packets in wireless sensor networks: Dynamics and defense implications SO AD HOC NETWORKS LA English DT Article DE Wireless sensor networks; Mal-packets; Percolation; Propagation dynamics AB Self-propagating mal-packets have become an emergent threat against information confidentiality, integrity, and service availability in wireless sensor networks. While playing an important role for people to interact with surrounding environment, wireless sensor networks suffer from growing security concerns posed by mal-packets because of sensor networks' low physical security, lack of resilience and robustness of underlying operating systems, and the ever-increasing complexity of deployed applications. In this paper, we study the propagation of mal-packets in 802.15.4 based wireless sensor networks. Based on our proposed mal-packet self-propagation models, we use TOSSIM, a simulator for wireless sensor networks, to study their propagation dynamics. We also present a study of the feasibility of mal-packet defense in sensor networks. Specifically, we apply random graph theory and percolation theory to investigate the immunization of highly-connected nodes, i.e., nodes with high degrees of connectivity. Our goal is to partition the network into as many separate pieces as possible, thus preventing or slowing down the mal-packet propagation. We study the percolation thresholds of different network densities and the effectiveness of immunization in terms of connection ratio, remaining link ratio, and distribution of component sizes. We also present an analysis of the distribution of component sizes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sun, Bo] Lamar Univ, Dept Comp Sci, Beaumont, TX 77710 USA. [Yan, Guanhua] Los Alamos Natl Lab, Informat Sci CCS 3, Los Alamos, NM 87545 USA. [Xiao, Yang] Univ Alabama, Dept Comp Sci, Tuscaloosa, AL 35487 USA. [Yang, T. Andrew] Univ Houston Clear Lake, Div Comp & Math, Houston, TX 77058 USA. RP Sun, B (reprint author), Lamar Univ, Dept Comp Sci, Beaumont, TX 77710 USA. EM bsun@my.lamar.edu; ghyan@lanl.gov; yangxiao@ieee.org; yang@uhcl.edu NR 22 TC 10 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-8705 J9 AD HOC NETW JI Ad Hoc Netw. PD NOV PY 2009 VL 7 IS 8 BP 1489 EP 1500 DI 10.1016/j.adhoc.2009.04.003 PG 12 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 482WB UT WOS:000268919600006 ER PT J AU Jiang, F Qu, J Fan, GJ Jiang, WH Qiao, DC Freels, MW Liaw, PK Choo, H AF Jiang, Feng Qu, Jun Fan, Guojiang Jiang, Wenhui Qiao, Dongchun Freels, Matthew W. Liaw, Peter K. Choo, Hahn TI Tribological Studies of a Zr-Based Glass-Forming Alloy with Different States SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID BULK-METALLIC-GLASS; ABRASIVE WEAR; AMORPHOUS-ALLOYS; MECHANICAL-PROPERTIES; BEHAVIOR; RESISTANCE; EMBRITTLEMENT; RELAXATION; IRON AB The tribological characteristics of a glass-forming alloy, Zr(52.5)Cu(17.9)Ni(14.6)Al(10.0)Ti(5.0), in atomic percent (at.%, Vit 105), with different microstructural states have been investigated. Friction and wear studies were conducted using a ball-on-flat reciprocating sliding apparatus against an AISI E52100 bearing steel tinder dry condition. The observed wear resistance in an ascending order is: the deformed, creep-tested, and as-cast states, Wear analyses suggested that the wear processes of glass-forming alloys involved abrasion, adhesion, and oxidation. The differences in hardness, free volume, and brittleness in different states significantly affected the friction and wear behaviors of the glass-forming alloys. C1 [Jiang, Feng; Fan, Guojiang; Jiang, Wenhui; Qiao, Dongchun; Freels, Matthew W.; Liaw, Peter K.; Choo, Hahn] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Qu, Jun; Choo, Hahn] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jiang, F (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM fjiang3@utk.edu RI Choo, Hahn/A-5494-2009; OI Choo, Hahn/0000-0002-8006-8907; Qu, Jun/0000-0001-9466-3179 FU National Science Foundation (NSF) International Materials Institutes (IMI) Program [DMR-0231320]; US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy; High Temperature Materials Laboratory User Program [DE-AC05-00OR22725] FX F. J. is grateful to Peter J. Blau for his comments on the paper. The present work Was supported by the National Science Foundation (NSF) International Materials Institutes (IMI) Program (DMR-0231320). A portion of this research Was sponsored by the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Pragram, as a part of the High Temperature Materials Laboratory User Program, tinder contract DE-AC05-00OR22725 With the UT-Battelle LLC. NR 31 TC 6 Z9 7 U1 2 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD NOV PY 2009 VL 11 IS 11 BP 925 EP 931 DI 10.1002/adem.200900184 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 529BU UT WOS:000272491500010 ER PT J AU Battiato, I Tartakovsky, DM Tartakovsky, AM Scheibe, T AF Battiato, I. Tartakovsky, D. M. Tartakovsky, A. M. Scheibe, T. TI On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media SO ADVANCES IN WATER RESOURCES LA English DT Article DE Upscaling; Homogeneous reaction; Heterogeneous reaction; Reactive transport; Dissolution; Precipitation ID CRYSTAL DISSOLUTION; PORE-SCALE; BOUNDARY-CONDITIONS; TAYLOR DISPERSION; TRANSPORT; FLOW; PRECIPITATION; CONTINUUM; CALCITE; FRONTS AB Reactive transport in porous media is a complex nonlinear phenomenon that involves both homogeneous (bio-)chemical reactions between species dissolved in a fluid and heterogeneous reactions occurring on liquid-solid interfaces. We establish sufficient conditions under which macroscopic reaction-diffusion equations (RDEs) provide an adequate averaged description of pore-scale processes. These conditions are represented by a phase diagram in a two-dimensional space, which is spanned by Damkohler number and a scale-separation parameter. This phase diagram shows that highly localized phenomena in porous media, including precipitation on (and/or dissolution of) a porous matrix, do not lend themselves to macroscopic (upscaled) descriptions. To compute the predictive errors resulting from the use of macroscopic RDEs, we upscaled the pore-scale RDEs to the continuum (macroscopic) scale and used pore-scale numerical simulations to verify various upscaling assumptions. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Battiato, I.; Tartakovsky, D. M.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Tartakovsky, A. M.; Scheibe, T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tartakovsky, DM (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM dmt@ucsd.edu RI Scheibe, Timothy/A-8788-2008; Tartakovsky, Daniel/E-7694-2013 OI Scheibe, Timothy/0000-0002-8864-5772; NR 34 TC 53 Z9 53 U1 0 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD NOV PY 2009 VL 32 IS 11 BP 1664 EP 1673 DI 10.1016/j.advwatres.2009.08.008 PG 10 WC Water Resources SC Water Resources GA 518FW UT WOS:000271677100010 ER PT J AU Tartakovsky, AM Tartakovsky, GD Scheibe, TD AF Tartakovsky, A. M. Tartakovsky, G. D. Scheibe, T. D. TI Effects of incomplete mixing on multicomponent reactive transport SO ADVANCES IN WATER RESOURCES LA English DT Article DE Mixing; Reactive transport; Dilution index ID POROUS-MEDIA; HETEROGENEOUS MEDIA; DILUTION; BIODEGRADATION; AQUIFERS; MOMENTS AB Darcy-scale description of multicomponent reactive transport can significantly over-predict the extent of mixing-controlled reactions. Here we present a systematic pore- and Darcy-scale study of multicomponent reactive transport for various Peclet (Pe) and Damkohler (Da) numbers. We use pore-scale simulations to parameterize and validate Darcy-scale model. Our results reveal that for small Pe, the Darcy-scale model of mixing-controlled reactions is accurate, but its accuracy deteriorates with increasing Pe. The dilution index is calculated based on the pore-scale simulations as a measure of the degree of true solute mixing (dilution) for different Pe. We find that true mixing decreases with increasing Pe. A strong correlation is found between the magnitude of the dilution index and the error in the Darcy-scale model prediction. The error (over-prediction of the mass of a product of the mixing-controlled reaction) increases with decreasing dilution index (reduced dilution). (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tartakovsky, A. M.] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. [Tartakovsky, G. D.; Scheibe, T. D.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. EM alexandre.tartakovsky@pnl.gov RI Scheibe, Timothy/A-8788-2008 OI Scheibe, Timothy/0000-0002-8864-5772 FU US Department of Energy, Office of Science FX This work was supported by the Advanced Scientific Computing Research Program and the Environmental Management Science Program of the US Department of Energy, Office of Science. PNNL is operated by Battelle for the US Department of Energy. NR 19 TC 53 Z9 53 U1 0 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD NOV PY 2009 VL 32 IS 11 BP 1674 EP 1679 DI 10.1016/j.advwatres.2009.08.012 PG 6 WC Water Resources SC Water Resources GA 518FW UT WOS:000271677100011 ER PT J AU Bozoki, AC An, H Bozoki, ES Little, RJ AF Bozoki, Andrea C. An, Hyonggin Bozoki, Eva S. Little, Roderick J. TI The existence of cognitive plateaus in Alzheimer's disease SO ALZHEIMERS & DEMENTIA LA English DT Article DE Alzheimer's disease; Cognition; Dementia; Neuropsychology ID MINI-MENTAL-STATE; SENILE DEMENTIA; DECLINE; CONSORTIUM; ESTABLISH; REGISTRY; CERAD; EDUCATION; RATES AB Background: The objective of this study was to evaluate the existence of cognitive plateaus in some individuals during the course of Alzheimer's disease (AD). Methods: Data came from the historical patient group collected via the Consortium to Establish a Registry for Alzheimer's Disease (CERAD, Duke University, 1988-1996). Data reduction was performed by using principal components analysis to derive a single cognitive measure (F1), followed by application of a novel plateau-searching algorithm to individual patient data, looking for stable periods of 3 years or longer. To evaluate the time dependence of F1, we fitted a linear mixed model to the group and to individual data points. Results: Twenty-two percent of AD subjects (54/243) and 98% of healthy control subjects (253/258) exhibited a plateau. Within the AD plateau group, the most common pattern was a single plateau (mean, 3.6 years; range, 3 to 7 years) that extended for the entire measurement period (28/54 subjects). Briefer plateau durations were seen at the beginning or end of the measurement period. Initial cognitive function (F1) was slightly higher in the plateau group, which was also slightly older and less well-educated. Men and women were equally represented. Conclusions: In a patient sample predating the widespread use of cholinesterase inhibitors, we found that approximately one fifth of individuals with AD demonstrated periods of prolonged cognitive stability. This significant interindividual variability must be considered when providing prognostic information to families and when assessing individual patient responses to pharmacotherapy. We advise caution when assessing results of potentially disease-modifying agents at the individual patient level. (C) 2009 The Alzheimer's Association. All rights reserved. C1 [Bozoki, Andrea C.] Michigan State Univ, Dept Neurol, E Lansing, MI 48824 USA. [An, Hyonggin] Korea Univ, Coll Med, Dept Biostat, Seoul 136705, South Korea. [Bozoki, Eva S.] Brookhaven Natl Labs, Upton, NY USA. [Little, Roderick J.] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA. RP Bozoki, AC (reprint author), Michigan State Univ, Dept Neurol, E Lansing, MI 48824 USA. EM Andrea.Bozoki@ht.msu.edu NR 25 TC 7 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1552-5260 J9 ALZHEIMERS DEMENT JI Alzheimers. Dement. PD NOV PY 2009 VL 5 IS 6 BP 470 EP 478 DI 10.1016/j.jalz.2009.05.669 PG 9 WC Clinical Neurology SC Neurosciences & Neurology GA 523YB UT WOS:000272109900004 PM 19896586 ER PT J AU Greenlee, KJ Henry, JR Kirkton, SD Westneat, MW Fezzaa, K Lee, WK Harrison, JF AF Greenlee, Kendra J. Henry, Joanna R. Kirkton, Scott D. Westneat, Mark W. Fezzaa, Kamel Lee, Wah-Keat Harrison, Jon F. TI Synchrotron imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry SO AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY LA English DT Article DE development; insect; respiration; tracheae ID SCHISTOCERCA-AMERICANA; RESPIRATORY-FUNCTION; DIFFUSING-CAPACITY; LOCUST; INSECTS; OXYGEN; VENTILATION; HYPOTHESIS; ONTOGENY; VOLUME AB Greenlee KJ, Henry JR, Kirkton SD, Westneat MW, Fezzaa K, Lee W, Harrison JF. Synchrotron imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry. Am J Physiol Regul Integr Comp Physiol 297: R1343-R1350, 2009. First published August 26, 2009; doi: 10.1152/ajpregu.00231.2009.-As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure and function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O(2)) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O(2)), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton. C1 [Greenlee, Kendra J.] N Dakota State Univ, Dept Biol Sci, Fargo, ND 58108 USA. [Henry, Joanna R.; Harrison, Jon F.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Kirkton, Scott D.] Union Coll, Dept Biol Sci, Schenectady, NY 12308 USA. [Westneat, Mark W.] Field Museum Nat Hist, Dept Zool, Argonne, IL USA. [Fezzaa, Kamel; Lee, Wah-Keat] Argonne Natl Lab, Adv Photon Source, X Ray Sci Div, Argonne, IL USA. RP Greenlee, KJ (reprint author), N Dakota State Univ, Dept Biol Sci, Fargo, ND 58108 USA. EM kendra.greenlee@ndsu.edu FU National Science Foundation [IBN-9985857, IBN 0419704, EPA-U91616501, EPS-0447679]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NIH [2P20 RR015566] FX This research was supported by National Science Foundation Grants IBN-9985857 and IBN 0419704 (to J. F. Harrison) and EPA-U91616501 and EPS-0447679 (to K. J. Greenlee). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. This project was made possible, in part, by NIH Grant 2P20 RR015566 from the National Center for Research Resources. Its contents are solely the responsibility of the authors and do not necessarily reflect the views of the NIH. NR 30 TC 24 Z9 25 U1 2 U2 10 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6119 J9 AM J PHYSIOL-REG I JI Am. J. Physiol.-Regul. Integr. Comp. Physiol. PD NOV PY 2009 VL 297 IS 5 BP R1343 EP R1350 DI 10.1152/ajpregu.00231.2009 PG 8 WC Physiology SC Physiology GA 514CR UT WOS:000271371900014 PM 19710392 ER PT J AU Visser, RGF Bachem, CWB de Boer, JM Bryan, GJ Chakrabati, SK Feingold, S Gromadka, R van Ham, RCHJ Huang, S Jacobs, JME Kuznetsov, B de Melo, PE Milbourne, D Orjeda, G Sagredo, B Tang, XM AF Visser, Richard G. F. Bachem, Christian W. B. de Boer, Jan M. Bryan, Glenn J. Chakrabati, Swarup K. Feingold, Sergio Gromadka, Robert van Ham, Roeland C. H. J. Huang, Sanwen Jacobs, Jeanne M. E. Kuznetsov, Boris de Melo, Paulo E. Milbourne, Dan Orjeda, Gisella Sagredo, Boris Tang, Xiaomin TI Sequencing the Potato Genome: Outline and First Results to Come from the Elucidation of the Sequence of the World's Third Most Important Food Crop SO AMERICAN JOURNAL OF POTATO RESEARCH LA English DT Review DE Potato genome sequencing consortium; Cytogenetics; Genetics; Next generation sequencing; AFLP ID BROAD-SPECTRUM RESISTANCE; QUANTITATIVE TRAIT LOCI; LATE BLIGHT RESISTANCE; PHYTOPHTHORA-INFESTANS; SOLANUM-BULBOCASTANUM; DISEASE RESISTANCE; BACTERIAL WILT; GENE-CLUSTER; TOMATO; SYSTEM AB Potato is a member of the Solanaceae, a plant family that includes several other economically important species, such as tomato, eggplant, petunia, tobacco and pepper. The Potato Genome Sequencing Consortium (PGSC) aims to elucidate the complete genome sequence of potato, the third most important food crop in the world. The PGSC is a collaboration between 13 research groups from China, India, Poland, Russia, the Netherlands, Ireland, Argentina, Brazil, Chile, Peru, USA, New Zealand and the UK. The potato genome consists of 12 chromosomes and has a (haploid) length of approximately 840 million base pairs, making it a medium-sized plant genome. The sequencing project builds on a diploid potato genomic bacterial artificial chromosome (BAC) clone library of 78000 clones, which has been fingerprinted and aligned into similar to 7000 physical map contigs. In addition, the BAC-ends have been sequenced and are publicly available. Approximately 30000 BACs are anchored to the Ultra High Density genetic map of potato, composed of 10000 unique AFLP (TM) markers. From this integrated genetic-physical map, between 50 to 150 seed BACs have currently been identified for every chromosome. Fluorescent in situ hybridization experiments on selected BAC clones confirm these anchor points. The seed clones provide the starting point for a BAC-by-BAC sequencing strategy. This strategy is being complemented by whole genome shotgun sequencing approaches using both 454 GS FLX and Illumina GA2 instruments. Assembly and annotation of the sequence data will be performed using publicly available and tailor-made tools. The availability of the annotated data will help to characterize germplasm collections based on allelic variance and to assist potato breeders to more fully exploit the genetic potential of potato. C1 [Visser, Richard G. F.; Bachem, Christian W. B.; de Boer, Jan M.; Tang, Xiaomin] Univ Wageningen & Res Ctr, Wageningen UR Plant Breeding, NL-6700 AJ Wageningen, Netherlands. [Bryan, Glenn J.] SCRI, Genet Programme, Dundee DD2 5DA, Scotland. [Chakrabati, Swarup K.] Cent Potato Res Inst, Shimla 171001, Himachal Prades, India. [Feingold, Sergio] INTA, EEA Balcarce, Lab Agrobiotecnol, Balcarce, Argentina. [Gromadka, Robert] Polish Acad Sci, Inst Biochem & Biophys, PL-02106 Warsaw, Poland. [van Ham, Roeland C. H. J.] WUR, Plant Res Int Ctr BioSyst Genom, NL-6708 PB Wageningen, Netherlands. [Huang, Sanwen] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Beijing 100081, Peoples R China. [Jacobs, Jeanne M. E.] New Zealand Inst Plant & Food Res Ltd, Christchurch, New Zealand. [Kuznetsov, Boris] RAS, Ctr Bioengn, Moscow 117901, Russia. [de Melo, Paulo E.] EMBRAPA, BR-359970 Brasilia, DF, Brazil. [Milbourne, Dan] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. [Orjeda, Gisella] Univ Peruana Cayetano Heredia, Genom Res Unit, SMP, Lima, Peru. [Sagredo, Boris] INIA Rayentue, Rancagua, Chile. RP Bachem, CWB (reprint author), Univ Wageningen & Res Ctr, Wageningen UR Plant Breeding, POB 326, NL-6700 AJ Wageningen, Netherlands. EM Christian.Bachem@wur.nl RI Visser, Richard/B-3423-2012; OI Visser, Richard/0000-0002-0213-4016; Jacobs, Jeanne/0000-0002-1047-1039; Milbourne, Dan/0000-0002-8323-6195 FU Netherlands Technology Foundation (STW); Fund for Economic Structural Support (FES); Netherlands Genomics initiative (EZ) and Agriculture (LNV); Board of Wageningen University and Research Centre; Netherlands Ministries of Economic Affairs (EZ) and Agriculture (LNV); EU [APOPHYS EU-QLRT-2001-01849]; Indian Council of Agricultural Research, New Delhi, India; Organization of American States [SEDI/AE-305/07]; Programa Cooperativo para el Desarrollo Tecnologico Agroalimentario y Agroindustrial del Cono Sur (PROCISUR); Perez Guerrero Trust Fund (PGTF); Brazilian Corporation for Agricultural Research (Embrapa); Peruvian Fund for Innovation in Science and Technology (FINCYT); Peruvian Ministry of Agriculture (MINAG); Peruvian Council of Science and Technology (Concytec); Universidad Peruana Cayetano Heredia; Universidad Nacional San Cristobal de Huamanga; Peruvian Ministry of foreign affairs; National Commission of Scientific and Technologic Research (CONICYT); Foundation for the Innovation in Agriculture (FIA); Scottish Government Rural and Environment Research and Analysis Directorate (RERAD); Department for Environment Food and Rural Affairs (DEFRA); Potato Council; Teagasc (The Agriculture and Food Development Authority of Ireland); Polish Ministry of Science and Higher Education [47/PGS/2006/01]; New Zealand Institute for Plant & Food Research Ltd.; Ministry of Science and Technology [2007DFB30080]; Ministry of Agriculture [2007-Z5]; National Natural Science Foundation [30671319]; Federal Agency on Science and innovations [02.451.11.7013, 02.512.11.2099, 02 552 11 7010, 02 552 11 7045] FX The PGSC-NL was funded by grants from the Netherlands Technology Foundation (STW), the Fund for Economic Structural Support (FES), the Netherlands Genomics initiative (NGI) and additional support from the Board of Wageningen University and Research Centre, The Netherlands Ministries of Economic Affairs (EZ) and Agriculture (LNV). Background data making the project possible was kindly provided by the Centre for BioSystems Genomics (CBSG) and an EU-project (APOPHYS EU-QLRT-2001-01849).; The PGSC-Indian component is financed entirely by the Indian Council of Agricultural Research, New Delhi, India The PGSC-South America (Argentina, Brazil, Chile and Peru) was funded by grants from FEMCIDI from the Organization of American States (SEDI/AE-305/07), the Programa Cooperativo para el Desarrollo Tecnologico Agroalimentario y Agroindustrial del Cono Sur (PROCISUR), the Perez Guerrero Trust Fund (PGTF) and the Brazilian Corporation for Agricultural Research (Embrapa).; The PGSC-Peruvian team was funded by grants from the Peruvian Fund for Innovation in Science and Technology (FINCYT), the Peruvian Ministry of Agriculture (MINAG) and the Peruvian Council of Science and Technology (Concytec). Additional support was received from Universidad Peruana Cayetano Heredia, Universidad Nacional San Cristobal de Huamanga and the Peruvian Ministry of foreign affairs.; The PGSC-Chilean initiative has been supported by National Commission of Scientific and Technologic Research (CONICYT) and the Foundation for the Innovation in Agriculture (FIA).; Glenn J Bryan would like to acknowledge the financial support of Scottish Government Rural and Environment Research and Analysis Directorate (RERAD), Department for Environment Food and Rural Affairs (DEFRA) and the Potato Council. Dan Milbourne is supported by Teagasc (The Agriculture and Food Development Authority of Ireland).; We are indebted to the US groups for their contribution to the potato genome sequencing project and would also particularly like to thank Dr. Robin Buell her input and for the critical reading of the manuscript; The Polish part of the PGSC was supported by a grant from the Polish Ministry of Science and Higher Education with contract no. 47/PGS/2006/01.; The PGSC-NZ team is funded by The New Zealand Institute for Plant & Food Research Ltd. as a Strategic Science Initiative. Susan Thomson and Mark Fiers are greatly acknowledged for their contribution.; The PGSC-China was funded by Ministry of Science and Technology (2007DFB30080), Ministry of Agriculture ('948' Program: 2007-Z5) and National Natural Science Foundation (30671319).; The Centre for Bioengineering RAS, Moscow, Russia was funded by grants from Federal Agency on Science and innovations (state contracts 02.451.11.7013, 02.512.11.2099, 02 552 11 7010, 02 552 11 7045). NR 35 TC 43 Z9 44 U1 5 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1099-209X J9 AM J POTATO RES JI Am. J. Potato Res. PD NOV PY 2009 VL 86 IS 6 BP 417 EP 429 DI 10.1007/s12230-009-9097-8 PG 13 WC Agronomy SC Agriculture GA 576GD UT WOS:000276131500001 ER PT J AU Brodie, JD Case, BG Figueroa, E Dewey, SL Robinson, JA Wanderling, JA Laska, EM AF Brodie, Jonathan D. Case, Brady G. Figueroa, Emilia Dewey, Stephen L. Robinson, James A. Wanderling, Joseph A. Laska, Eugene M. TI Randomized, Double-Blind, Placebo-Controlled Trial of Vigabatrin for the Treatment of Cocaine Dependence in Mexican Parolees SO AMERICAN JOURNAL OF PSYCHIATRY LA English DT Article ID GAMMA-VINYL-GABA; NUCLEUS-ACCUMBENS DOPAMINE; VISUAL-FIELD LOSS; INDUCED INCREASES; DRUG-DEPENDENCE; METHAMPHETAMINE; ADDICTION; EFFICACY; THERAPY; SAFETY AB Objective: Cocaine dependence is associated with severe medical, psychiatric, and social morbidity, but no pharmacotherapy is approved for its treatment in the United States. The atypical antiepileptic vigabatrin (gamma-vinyl gamma-aminobutyric acid [GABA]) has shown promise in animal studies and open-label trials. The purpose of the present study was to assess the efficacy of vigabatrin for short-term cocaine abstinence in cocaine-dependent individuals. Method: Participants were treatment seeking parolees who were actively using cocaine and had a history of cocaine dependence. Subjects were randomly assigned to a fixed titration of vigabatrin (N=50) or placebo (N=53) in a 9-week double-blind trial and 4-week follow-up assessment. Cocaine use was determined by directly observed urine toxicology testing twice weekly. The primary endpoint was full abstinence for the last 3 weeks of the trial. Results: Full end-of-trial abstinence was achieved in 14 vigabatrin-treated subjects (28.0%) versus four subjects in the placebo arm (7.5%). Twelve subjects in the vigabatrin group and two subjects in the placebo group maintained abstinence through the follow-up period. The retention rate was 62.0% in the vigabatrin arm versus 41.5% in the placebo arm. Among subjects who reported prestudy alcohol use, vigabatrin, relative to placebo, was associated with superior self-reported full end-of-trial abstinence from alcohol (43.5% versus 6.3%). There were no differences between the two groups in drug craving, depressed mood, anxiety, or Clinical Global Impression scores, and no group differences in adverse effects emerged. Conclusions: This first randomized, double-blind, placebo-controlled trial supports the safety and efficacy of short-term vigabatrin treatment of cocaine dependence. C1 [Brodie, Jonathan D.] NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA. NYU, Sch Med, Dept Child & Adolescent Psychiat, New York, NY 10016 USA. Nathan S Kline Inst Psychiat Res, Div Stat, Orangeburg, NY 10962 USA. Nathan S Kline Inst Psychiat Res, Div Serv Res & Informat Sci, Orangeburg, NY 10962 USA. Clin Integral Tratamiento Adicc SA CV, Mexico City, DF, Mexico. Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Brodie, JD (reprint author), NYU, Sch Med, Dept Psychiat, 550 1st Ave,MLH HN519, New York, NY 10016 USA. EM jonathan.brodie@nyumc.org RI Case, Brady/M-1879-2015; OI Case, Brady/0000-0001-9512-0416; Laska, Eugene/0000-0001-6799-1361; Brodie, Jonathan/0000-0002-2254-8654 FU American Academy of Child and Adolescent Psychiatry (AACAP); Leon Levy Foundation; Biochemical Psychiatry Fund of the New York University School of Medicine; Catalyst Pharmaceutical Partners, Inc; U.S. Department of Energy Office of Biological Research [DE-AC02-98CH10886]; National Institute on Drug Abuse [DA 22,346] FX This investigator-initiated trial was approved by the Institutional Review Board of the New York University School of Medicine and the Federal Commission for Sanitary Risks Protection of Mexico. NR 39 TC 35 Z9 37 U1 1 U2 8 PU AMER PSYCHIATRIC PUBLISHING, INC PI ARLINGTON PA 1000 WILSON BOULEVARD, STE 1825, ARLINGTON, VA 22209-3901 USA SN 0002-953X J9 AM J PSYCHIAT JI Am. J. Psychiat. PD NOV PY 2009 VL 166 IS 11 BP 1269 EP 1277 DI 10.1176/appi.ajp.2009.08121811 PG 9 WC Psychiatry SC Psychiatry GA 514XL UT WOS:000271429600014 PM 19651710 ER PT J AU Dasch, GA Eremeeva, ME Robinson, LK Dirks, K White, FH Zambrano, ML Kato, C Tang, K Bruce, DC Munk, AC Detter, JC Brettin, TS AF Dasch, Gregory A. Eremeeva, Marina E. Robinson, Lauren K. Dirks, Kathryn White, Frankie H. Zambrano, Maria L. Kato, Cecilia Tang, Kevin Bruce, David C. Munk, A. Chris Detter, J. Chris Brettin, Thomas S. TI GENETIC RELATIONSHPS OF 364D AND HLP#2 SEROTYPES TO RICKETTSIA RICKETTSII SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Dasch, Gregory A.; Eremeeva, Marina E.; Robinson, Lauren K.; Dirks, Kathryn; White, Frankie H.; Zambrano, Maria L.; Kato, Cecilia; Tang, Kevin] Ctr Dis Control & Prevent, Atlanta, GA USA. [Bruce, David C.; Munk, A. Chris; Detter, J. Chris; Brettin, Thomas S.] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 414 BP 119 EP 119 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956700414 ER PT J AU Dasch, GA White, FH Eremeeva, ME Tang, K Bruce, DC Munk, AC Detter, JC Brettin, TS AF Dasch, Gregory A. White, Frankie H. Eremeeva, Marina E. Tang, Kevin Bruce, David C. Munk, A. Chris Detter, J. Chris Brettin, Thomas S. TI GENETIC RELATIONSHIPS AMONG THREE FAMILIES OF PLASMIDS IN RICKETTSIA SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Dasch, Gregory A.; White, Frankie H.; Eremeeva, Marina E.; Tang, Kevin] Ctr Dis Control & Prevent, Atlanta, GA USA. [Bruce, David C.; Munk, A. Chris; Detter, J. Chris; Brettin, Thomas S.] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 616 BP 175 EP 176 PG 2 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956701032 ER PT J AU Dong, HL Jaisi, DP Kim, J Zhang, GX AF Dong, Hailiang Jaisi, Deb P. Kim, Jinwook Zhang, Gengxin TI Microbe-clay mineral interactions SO AMERICAN MINERALOGIST LA English DT Review DE Bacteria; illite; mechanism; microbial Fe(III) reduction; nontronite; smectite ID DEEP-SEA SEDIMENTS; FE(III) OXIDE REDUCTION; TRANSMISSION ELECTRON-MICROSCOPY; REDUCED FERRUGINOUS SMECTITE; GREEN COLOR TRANSITION; TO-ILLITE REACTION; IRON REDUCTION; STRUCTURAL FE(III); MARINE-SEDIMENTS; BIOGENIC FE(II) AB Clays and clay minerals are common components in soils, sediments, and sedimentary rocks, and they play an important role in many environmental processes. Iron is ubiquitous in clays and clay minerals and its oxidation state, in part, controls the physical and chemical properties of these fine-grained minerals. The structural ferric iron in clay minerals can be reduced either chemically or biologically. Biological reductants include mesophilic and thermophilic microorganisms from diverse environments such as soils, sediments, sedimentary rocks, and hydrothermal hot springs. Multiple clay minerals have been used for microbial reduction studies, including dioctahedral smectite-illite series, palygorskite, chlorite, and their various mixtures in natural soils and sediments. All of these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible and illite the least. The rate and extent of bioreduction depends on many experimental factors, such as the type of microorganisms and clay minerals, solution chemistry, and temperature. Despite significant efforts, current understanding of the mechanisms of microbial reduction of ferric iron in clay minerals is still limited. Whereas some studies have presented evidence for a solid-state reduction mechanism, others argue that the clay mineral structure partially dissolves when the extent of reduction is high. This inconsistency may be related to several experimental conditions, and their specific effects are discussed in this paper. Whereas past experiments have been largely conducted in well-controlled laboratory systems, recent efforts have attempted to transfer knowledge to the field to improve our understanding of more complex soil systems for better agricultural practices. Biologically reduced clay minerals are also important agents in remediating inorganic and organic contaminants in soil and groundwater systems. This paper reviews the most recent developments and suggests some directions for future research. C1 [Dong, Hailiang] China Univ Geosci, Key Lab Biogeol & Environm Geol, Minist Educ, Wuhan 430074, Peoples R China. [Dong, Hailiang] China Univ Geosci, Geomicrobiol Lab, State Key Lab Geol Proc & Mineral Resources, Beijing 100083, Peoples R China. [Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Jaisi, Deb P.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Kim, Jinwook] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Zhang, Gengxin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dong, HL (reprint author), China Univ Geosci, Key Lab Biogeol & Environm Geol, Minist Educ, Wuhan 430074, Peoples R China. EM dongh@muohio.edu FU U.S. Department of Energy [DE-FG02-07ER64369]; NSF of China [40672079]; 111 projects of China [1307011, B08030]; 973 Project of China [2006CB701406]; China University of Geosciences-Beijing [GPMR2008K08B, GPMR200844] FX This work was supported by grants from the U.S. Department of Energy (DE-FG02-07ER64369), NSF of China (40672079), the 111 projects of China (nos. 1307011 and B08030), 973 Project of China (2006CB701406), and the Research Funds of the State Key Laboratory of Geological Processes and Mineral Resources of China University of Geosciences-Beijing (GPMR2008K08B and GPMR200844). The authors are grateful to Evgenya Shelobolina and all anonymous reviewer for their constructive comments that greatly improved the quality of this manuscript. NR 133 TC 95 Z9 104 U1 16 U2 157 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2009 VL 94 IS 11-12 BP 1505 EP 1519 DI 10.2138/am.2009.3246 PG 15 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 526GH UT WOS:000272275200001 ER PT J AU Prasad, S Tang, KQ Manura, D Papanastasiou, D Smith, RD AF Prasad, Satendra Tang, Keqi Manura, David Papanastasiou, Dimitris Smith, Richard D. TI Simulation of Ion Motion in FAIMS through Combined Use of SIMION and Modified SDS SO ANALYTICAL CHEMISTRY LA English DT Article ID ASYMMETRIC WAVE-FORM; DIFFERENTIAL MOBILITY SPECTROMETRY; PYROLYSIS-GAS CHROMATOGRAPHY; MASS-SPECTROMETRY; ATMOSPHERIC-PRESSURE; PHASE SEPARATIONS; IMS-IMS; FIELD; RESOLUTION; OPERATION AB A key application of field asymmetric waveform ion mobility spectrometry (FAIMS) has been in selectively transmitting trace analyte ions that are present in a complex ion mixture to a mass spectrometer (MS) for identification and quantification. The overall sensitivity of FAIMS-MS, however, still needs to be significantly improved through the optimization of ion transmission into FAIMS and at the FAIMS-MS interface. Processes that cause ion losses include diffusion, space charge, separation field in the FAIMS and fringe fields around the edges of the FAIMS electrodes. These were studied here by first developing an algorithm using SIMION as its core structure to compute ion trajectory at different ratios of electric field to buffer gas number density (E/N). The E/N was varied from a few Td to similar to 80 Td by using an asymmetric square waveform. The algorithm was then combined with statistical diffusion simulation (SDS) model, columbic repulsion, and a parabolic gas flow profile to realistically simulate current transmission and peak shape. The algorithm was validated using a FAIMS model identical to the Sionex Corporation SVAC model. Ions modeled included low mass ions with K, in the range of 2.17 (m = 55) to 1.39 cm(2).V(-1).s(-1) (m = 368). Good agreement was achieved between simulated and experimental CV (peak maxima) values, peak width (fwhm), and transmitted ion current I(output). The model was then used to study fringe fields in a simple arrangement where a 0.5 mm (w) gap was created between the FAIMS exit and a capillary inlet (i.d. = 0.5 mm). At an optimum CV (11.8 V), only similar to 17% (1.3 pA) of the total ion current that correlate to CV = 11.8 V, entered the capillary; bulk of the ion loss was caused by the fringe fields. Current transmission into the capillary was improved, however, by applying a 500 V DC bias across w (0.5 mm). C1 [Prasad, Satendra; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Manura, David] Sci Instrument Serv Inc, Ringoes, NJ 08551 USA. [Papanastasiou, Dimitris] Shimadzu Res Labs, Manchester, Lancs, England. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR018522]; DOE [DE-ACO5-76RLO 1830] FX We are grateful to Dr. Alexandre A. Shvartsburg for insightful discussions. This research was supported by the NIH National Center for Research Resources (RR018522). Computational studies were performed in the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility located at the PNNL in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-ACO5-76RLO 1830. NR 46 TC 20 Z9 20 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2009 VL 81 IS 21 BP 8749 EP 8757 DI 10.1021/ac900880v PG 9 WC Chemistry, Analytical SC Chemistry GA 577AL UT WOS:000276191900018 PM 19785446 ER PT J AU Feldberg, SW Campbell, JF AF Feldberg, Stephen W. Campbell, Jennifer F. TI The Quasicatalytic Mechanism: A Variation of the Catalytic (EC ') Mechanism SO ANALYTICAL CHEMISTRY LA English DT Article ID POTENTIAL STEP CHRONOAMPEROMETRY; ELECTRON-TRANSFER; DIFFUSIONAL PATHWAYS; CARBON NANOTUBES; DNA; ELECTROCATALYSIS; NANOPARTICLES; VOLTAMMETRY; OXIDATION; KINETICS AB The classic electrochemical catalytic mechanism, often referred to as the EC' mechanism, is traditionally represented by the two reactions A + e = B (Es, and B + P reversible arrow A + Q (K(eq), k(f), k(b)). Implicit in this mechanism is the additional heterogeneous electron transfer P + e reversible arrow (E(P/Q)(0), k(P/Q)(0), alpha(P/Q)). To observe EC' behavior, the following conditions must be met (we focus on cyclic voltammetric responses): (1) E(P/Q)(0) > E(A/B)(0) (ensuring that K(eq) > 1), (2) k(P/Q)(0)c(P) exp[ -alpha(P/Q)(F/RT)(E - E(P/Q)(0))]/(0.446cA(FD(A)vertical bar v vertical bar/RT)(1/2)) << 1 over the potential range of interest (ensuring that the reaction P + e = Q does not occur to any significant extent relative to the peak current for reaction A + e = B alone), (3) k(f)c(P)RT/F vertical bar v vertical bar > 1 (ensuring that the catalytic effect is significant). We offer arguments based on Marcus theory that when condition 2 is met, fulfilling condition 3 will be difficult. This could explain why EC' behavior is rare. In the present work we show that EC'-like cyclic voltammetric responses can be obtained even when P + e reversible arrow Q is facile if D(P,Q) (the diffusion coefficient for the substrate-couple species P and Q) is much smaller than D(A,B) (the diffusion coefficient for the mediator-couple species A and B). When D(P,Q)/D(A,B) is sufficiently small, the system behavior becomes identical to that seen for the classical EC' system. We suggest that this "quasicatalytic" behavior should be considered when EC'-like behavior is observed and when the electrochemical system involves a substrate couple whose diffusion coefficients are much smaller than those of the mediator couple. As has been known for some time, when the diffusion coefficients of species A, B, P, and Q are identical (an assumption commonly made to simplify theoretical analysis) and when both heterogeneous electron transfers are reversible, the homogeneous kinetics have no effect on the cyclic voltammetric response even though the distribution of species in the diffusion layer is dramatically altered. C1 [Feldberg, Stephen W.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Campbell, Jennifer F.] Univ N Carolina, Kenan Labs Chem, Chapel Hill, NC 27599 USA. RP Feldberg, SW (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. FU National Science Foundation; U.S. Department of Education FX We thank Royce W. Murray and H. Holden Thorp (Kenan Laboratories of Chemistry, University of North Carolina (UNC), Chapel Hill) for helpful discussion. S.W.F. thanks John Miller, Chemistry Department, Brookhaven National Laboratory (BNL), for support of a guest appointment at BNL and Royce W. Murray for support as a visiting scientist at UNC. J.F.C. thanks the National Science Foundation for a graduate research fellowship and the U.S. Department of Education for a GAANN fellowship. NR 21 TC 5 Z9 5 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2009 VL 81 IS 21 BP 8797 EP 8800 DI 10.1021/ac901309v PG 4 WC Chemistry, Analytical SC Chemistry GA 577AL UT WOS:000276191900024 PM 19813711 ER PT J AU Van Berkel, GJ Kertesz, V AF Van Berkel, Gary J. Kertesz, Vilmos TI Application of a Liquid Extraction Based Sealing Surface Sampling Probe for Mass Spectrometric Analysis of Dried Blood Spots and Mouse Whole-Body Thin Tissue Sections SO ANALYTICAL CHEMISTRY LA English DT Article ID PLANAR CHROMATOGRAPHY; LAYER-CHROMATOGRAPHY; SYSTEM; METABOLITES; CAFFEINE; DEVICE; AUTORADIOGRAPHY; QUANTIFICATION; PROPRANOLOL; INTERFACE AB The utility of a liquid extraction based sealing surface sampling probe (SSSP) for the direct mass spectrometric analysis of targeted drugs and metabolites in dried blood spots (DBSs) and whole mouse thin tissue sections was demonstrated. The accuracy and precision for the quantitative analysis of a minimum of 50 ng/mL sitamaquine or acetaminophen in DBSs on paper were well within the required 15% dictated by internationally recognized acceptance criteria for assay validations. Analysis of whole-body mouse thin tissue sections from animals dosed with propranolol, adhered to an adhesive tape substrate, provided semiquantitative information for propranolol and its hydroxyproranolol glucuronide metabolite within specific organs of the tissue. The relative abundances recorded for the two compounds in the brain, lung, kidney, and liver were in nominal agreement with previously reported amounts based on analysis using a liquid microjunction surface sampling probe (LMJ-SSP), whole-body autoradiography (WBA), and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). The ability to sample and analyze from tape-adhered tissue samples, which are generally employed in WBA analysis, presents the possibility of consecutive WBA and SSSP-MS analysis of the same tissue section. This would facilitate assignment, and possibly quantitation, of the different molecular forms of total drug related material detected in the WBA analysis. The flexibility to sample larger or smaller spot sizes, alternative probe sealing mechanisms, and a reduction in internal volumes and associated sample carryover issues will be among the first simple improvements necessary to make the SSSP-MS method a practical DBS and/or thin tissue section analysis tool or to expand its use to other surface sampling applications. C1 [Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov; kerteszv@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU U.S. Department of Energy [DE-AC05-00OR22725] FX Dr. Marissa Vavrek (Merck Research Laboratories, West Point, PA) is thanked for the whole-body mouse thin tissue sections. Dr. Neil Spooner and Dr. Paul Abu-Rabie (GlaxoSmithKline Research and Development, Ware, U.K.) are thanked for the dried blood spot samples. Dr. Eike Reich (CAMAG, Muttenz, Switzerland) is thanked for the loan of the TLC-MS interface. Study of the fundamentals of surface sampling using the sealing surface sampling probe employed here was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 39 TC 51 Z9 51 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2009 VL 81 IS 21 BP 9146 EP 9152 DI 10.1021/ac901712b PG 7 WC Chemistry, Analytical SC Chemistry GA 577AL UT WOS:000276191900068 PM 19817477 ER PT J AU Kuang, XY Shankar, TJ Bi, XTT Lim, CJ Sokhansanj, S Melin, S AF Kuang, Xingya Shankar, Tumuluru Jaya Bi, Xiaotao T. Lim, C. Jim Sokhansanj, Shahab Melin, Staffan TI Rate and Peak Concentrations of Off-Gas Emissions in Stored Wood Pellets-Sensitivities to Temperature, Relative Humidity, and Headspace Volume SO ANNALS OF OCCUPATIONAL HYGIENE LA English DT Article DE biomass; emission factors; headspace ratio; moisture effect; off-gassing emission; storage; temperature effect; wood pellets ID CARBON-MONOXIDE; STORAGE AB Wood pellets emit CO, CO(2), CH(4), and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture, and the relative size of storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-l plastic containers were used to study the effects of headspace ratio (25, 50, and 75% of container volume) and temperatures (10-50 degrees C). Another eight containers were set in uncontrolled storage relative humidity (RH) and temperature. Concentrations of CO(2), CO, and CH(4) were measured by gas chromatography (GC). The results showed that emissions of CO(2), CO, and CH(4) from stored wood pellets are more sensitive to storage temperature than to RH and the relative volume of headspace. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen associated with pellet decomposition. Increased RH in the enclosed container increases the rate of off-gas emissions of CO(2), CO, and CH(4) and oxygen depletion. C1 [Kuang, Xingya; Shankar, Tumuluru Jaya; Bi, Xiaotao T.; Lim, C. Jim; Sokhansanj, Shahab; Melin, Staffan] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Kuang, Xingya] Yangpu Dist Cent Hosp, Dept Occupat Med, Shanghai 200090, Peoples R China. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Bioenergy Resources & Engn Syst Grp, Oak Ridge, TN 37831 USA. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. RP Sokhansanj, S (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM shahabs@chbe.ubc.ca FU Natural Sciences and Engineering Research Council of Canada [NSERC-CRDPJ342219-06]; Wood Pellet Association of Canada [11R42500] FX Natural Sciences and Engineering Research Council of Canada (NSERC-CRDPJ342219-06); Wood Pellet Association of Canada (Grant 11R42500). NR 10 TC 23 Z9 24 U1 1 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0003-4878 J9 ANN OCCUP HYG JI Ann. Occup. Hyg. PD NOV PY 2009 VL 53 IS 8 BP 789 EP 796 DI 10.1093/annhyg/mep049 PG 8 WC Public, Environmental & Occupational Health; Toxicology SC Public, Environmental & Occupational Health; Toxicology GA 520BA UT WOS:000271813500003 PM 19656803 ER PT J AU Kuang, XY Shankar, TJ Sokhansanj, S Lim, CJ Bi, XTT Melin, S AF Kuang, Xingya Shankar, Tumuluru Jaya Sokhansanj, Shahab Lim, C. Jim Bi, Xiaotao T. Melin, Staffan TI Effects of Headspace and Oxygen Level on Off-gas Emissions from Wood Pellets in Storage SO ANNALS OF OCCUPATIONAL HYGIENE LA English DT Article DE biomass; emission factors; emission rate; off-gassing emission; oxygen level; storage space; wood pellets ID CARBON-MONOXIDE AB Few papers have been published in the open literature on the emissions from biomass fuels, including wood pellets, during the storage and transportation and their potential health impacts. The purpose of this study is to provide data on the concentrations, emission factors, and emission rate factors of CO(2), CO, and CH(4) from wood pellets stored with different headspace to container volume ratios with different initial oxygen levels, in order to develop methods to reduce the toxic off-gas emissions and accumulation in storage spaces. Metal containers (45 l, 305 mm diameter by 610 mm long) were used to study the effect of headspace and oxygen levels on the off-gas emissions from wood pellets. Concentrations of CO(2), CO, and CH(4) in the headspace were measured using a gas chromatograph as a function of storage time. The results showed that the ratio of the headspace ratios and initial oxygen levels in the storage space significantly affected the off-gas emissions from wood pellets stored in a sealed container. Higher peak emission factors and higher emission rates are associated with higher headspace ratios. Lower emissions of CO(2) and CO were generated at room temperature under lower oxygen levels, whereas CH(4) emission is insensitive to the oxygen level. Replacing oxygen with inert gases in the storage space is thus a potentially effective method to reduce the biomass degradation and toxic off-gas emissions. The proper ventilation of the storage space can also be used to maintain a high oxygen level and low concentrations of toxic off-gassing compounds in the storage space, which is especially useful during the loading and unloading operations to control the hazards associated with the storage and transportation of wood pellets. C1 [Kuang, Xingya; Shankar, Tumuluru Jaya; Sokhansanj, Shahab; Lim, C. Jim; Bi, Xiaotao T.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Kuang, Xingya] Yangpu Dist Cent Hosp, Dept Occupat Med, Shanghai 200090, Peoples R China. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. RP Bi, XTT (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM xbi@chbe.ubc.ca FU Natural Sciences and Engineering Research Council of Canada [CRDPJ 342219-06]; Wood Pellet Association of Canada FX Natural Sciences and Engineering Research Council of Canada CRDPJ 342219-06; Wood Pellet Association of Canada. NR 8 TC 23 Z9 24 U1 1 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0003-4878 J9 ANN OCCUP HYG JI Ann. Occup. Hyg. PD NOV PY 2009 VL 53 IS 8 BP 807 EP 813 DI 10.1093/annhyg/mep071 PG 7 WC Public, Environmental & Occupational Health; Toxicology SC Public, Environmental & Occupational Health; Toxicology GA 520BA UT WOS:000271813500005 PM 19805393 ER PT J AU McBride, MJ Xie, G Martens, EC Lapidus, A Henrissat, B Rhodes, RG Goltsman, E Wang, W Xu, J Hunnicutt, DW Staroscik, AM Hoover, TR Cheng, YQ Stein, JL AF McBride, Mark J. Xie, Gary Martens, Eric C. Lapidus, Alla Henrissat, Bernard Rhodes, Ryan G. Goltsman, Eugene Wang, Wei Xu, Jian Hunnicutt, David W. Staroscik, Andrew M. Hoover, Timothy R. Cheng, Yi-Qiang Stein, Jennifer L. TI Novel Features of the Polysaccharide-Digesting Gliding Bacterium Flavobacterium johnsoniae as Revealed by Genome Sequence Analysis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PORPHYROMONAS-GINGIVALIS W50; BACILLUS-CIRCULANS WL-12; FLEXIRUBIN-TYPE PIGMENTS; OUTER-MEMBRANE PROTEINS; GRAM-NEGATIVE BACTERIA; HUMAN GUT SYMBIONT; CYTOPHAGA-JOHNSONAE; BACTEROIDES-THETAIOTAOMICRON; CELL-SURFACE; RHODOTHERMUS-MARINUS AB The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the "motor" and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae. C1 [McBride, Mark J.] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA. [Xie, Gary] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Xie, Gary; Lapidus, Alla; Goltsman, Eugene] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Martens, Eric C.; Xu, Jian] Washington Univ, Sch Med, St Louis, MO USA. [Martens, Eric C.] Univ Michigan, Sch Med, Ann Arbor, MI USA. [Henrissat, Bernard] CNRS, UMR 6098, F-75700 Paris, France. [Henrissat, Bernard] Univ Aix Marseille 1, Marseille, France. [Henrissat, Bernard] Univ Aix Marseille 2, F-13284 Marseille 07, France. [Wang, Wei; Xu, Jian] Chinese Acad Sci, BioEnergy Genome Ctr, Qingdao Inst BioEnergy & Bioproc Technol, Qingdao, Peoples R China. [Hunnicutt, David W.] St Norbert Coll, De Pere, WI USA. [Staroscik, Andrew M.] Univ Rhode Isl, Kingston, RI 02881 USA. [Hoover, Timothy R.; Stein, Jennifer L.] Univ Georgia, Athens, GA 30602 USA. RP McBride, MJ (reprint author), Univ Wisconsin, Dept Biol Sci, 3209 N Maryland Ave,181 Lapham Hall, Milwaukee, WI 53211 USA. EM mcbride@uwm.edu RI Xu, Jian/G-8430-2012; Henrissat, Bernard/J-2475-2012; Lapidus, Alla/I-4348-2013; OI Xu, Jian/0000-0002-0548-8477; Lapidus, Alla/0000-0003-0427-8731; McBride, Mark/0000-0002-3798-6761; Hoover, Timothy/0000-0003-1101-8030; xie, gary/0000-0002-9176-924X FU National Science Foundation [MCB-0641366]; Chinese Academy of Sciences FX This work was performed under the auspices of the U.S. Department of Energy's Office of Science, Biological and Environmental Research Program and at the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48, at Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231, and at Los Alamos National Laboratory under contract DE-AC02-06NA25396. M.J.M. and R.G.R. were supported by National Science Foundation grant MCB-0641366. W.W. and J.X. were supported by a One Hundred Talents grant from the Chinese Academy of Sciences. NR 100 TC 94 Z9 332 U1 1 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV 1 PY 2009 VL 75 IS 21 BP 6864 EP 6875 DI 10.1128/AEM.01495-09 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 511KA UT WOS:000271161700029 PM 19717629 ER PT J AU Jiang, S Lee, JH Kim, MG Myung, NV Fredrickson, JK Sadowsky, MJ Hur, HG AF Jiang, Shenghua Lee, Ji-Hoon Kim, Min-Gyu Myung, Nosang V. Fredrickson, James K. Sadowsky, Michael J. Hur, Hor-Gil TI Biogenic Formation of As-S Nanotubes by Diverse Shewanella Strains SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DESULFOTOMACULUM AURIPIGMENTUM; SP HN-41; PRECIPITATION; RESPIRATION; ARSENATE; DETOXIFICATION; REDUCTION; BACTERIUM; SELENIUM; ANA-3 AB Shewanella sp. strain HN-41 was previously shown to produce novel, photoactive, As-S nanotubes via the reduction of As(V) and S(2)O(3)(2-) under anaerobic conditions. To determine if this ability was unique to this bacterium, 10 different Shewanella strains, including Shewanella sp. strain HN-41, Shewanella sp. strain PV-4, Shewanella alga BrY, Shewanella amazonensis SB2B, Shewanella denitrificans OS217, Shewanella oneidensis MR-1, Shewanella putrefaciens CN-32, S. putrefaciens IR-1, S. putrefaciens SP200, and S. putrefaciens W3-6-1, were examined for production of As-S nanotubes under standardized conditions. Of the 10 strains examined, three formed As-S nanotubes like those of strain HN-41. While Shewanella sp. strain HN-41 and S. putrefaciens CN-32 rapidly formed As-S precipitates in 7 days, strains S. alga BrY and S. oneidensis MR-1 reduced As(V) at a much lower rate and formed yellow As-S after 30 days. Electron microscopy, energy-dispersive X-ray spectroscopy, and extended X-ray absorption fine-structure spectroscopy analyses showed that the morphological and chemical properties of As-S formed by strains S. putrefaciens CN-32, S. alga BrY, and S. oneidensis MR-1 were similar to those previously determined for Shewanella sp. strain HN-41 As-S nanotubes. These studies indicated that the formation of As-S nanotubes is widespread among Shewanella strains and is closely related to bacterial growth and the reduction rate of As(V) and thiosulfate. C1 [Jiang, Shenghua; Lee, Ji-Hoon; Hur, Hor-Gil] Gwangju Inst Sci & Technol, Dept Environm Sci & Engn, Kwangju 500712, South Korea. [Hur, Hor-Gil] Gwangju Inst Sci & Technol, Int Environm Res Ctr, Kwangju 500712, South Korea. [Kim, Min-Gyu] Pohang Accelerator Lab, Pohang 790784, Gyeongbuk, South Korea. [Myung, Nosang V.] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Myung, Nosang V.] Univ Calif Riverside, Ctr Nanoscale Sci & Engn, Riverside, CA 92521 USA. [Fredrickson, James K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Sadowsky, Michael J.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. [Sadowsky, Michael J.] Univ Minnesota, Inst Biotechnol, St Paul, MN 55108 USA. RP Hur, HG (reprint author), Gwangju Inst Sci & Technol, Dept Environm Sci & Engn, Kwangju 500712, South Korea. EM hghur@gist.ac.kr RI Kim, Min-Gyu/D-8949-2013; Sadowsky, Michael/J-2507-2016 OI Kim, Min-Gyu/0000-0002-2366-6898; Sadowsky, Michael/0000-0001-8779-2781 FU 21C Frontier Microbial Genomics and Applications Center Program [M102KK010011-08K1101-01110]; Ministry of Education, Science and Technology, Republic of Korea; Korea Research Foundation (MOEHRD) [KRF-2007-357-D00141] FX Support for this work from the 21C Frontier Microbial Genomics and Applications Center Program (M102KK010011-08K1101-01110), Ministry of Education, Science and Technology, Republic of Korea, to H.-G. Hur and the Korea Research Foundation (MOEHRD) (KRF-2007-357-D00141), Ministry of Education, Science and Technology, Republic of Korea, to J.-H. Lee is gratefully acknowledged. NR 15 TC 19 Z9 22 U1 2 U2 35 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV 1 PY 2009 VL 75 IS 21 BP 6896 EP 6899 DI 10.1128/AEM.00450-09 PG 4 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 511KA UT WOS:000271161700033 PM 19717628 ER PT J AU Jansson, C Westerbergh, A Zhang, JM Hu, XW Sun, CX AF Jansson, Christer Westerbergh, Anna Zhang, Jiaming Hu, Xinwen Sun, Chuanxin TI Cassava, a potential biofuel crop in (the) People's Republic of China SO APPLIED ENERGY LA English DT Article DE Cassava; Bioethanol; Biofuel; Metabolic engineering; (the) People's Republic of China (PRC) ID ALTERNATIVE AUTOMOTIVE FUEL; SUGAR; TUBERIZATION; INHIBITION; METABOLISM; SUSIBA2; ETHANOL; BIOLOGY; POTATO AB Cassava ranks fifth among crops in global starch production. It is used as staple food in many tropical countries of Africa, Asia and Latin America. In (the) People's Republic of China, although not yet a staple food, cassava is of major economic importance for starch for a large area of southern (the) PRC, especially in the provinces of Guangdong, Guanxi, Yunnan and Hainan. Recently, cassava-derived bioethanol production has been increasing due to its economic benefits compared to other bioethanol-producing crops in the country. We discuss here the possible potentials of cassava for bioethanol production. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Jansson, Christer; Westerbergh, Anna; Sun, Chuanxin] Swedish Univ Agr Sci, Dept Plant Biol & Forest Genet, SE-75007 Uppsala, Sweden. [Jansson, Christer] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hu, Xinwen] Hainan Univ, Coll Agr & Life Sci, Haikou 570228, Peoples R China. RP Sun, CX (reprint author), Swedish Univ Agr Sci, Dept Plant Biol & Forest Genet, POB 7080, SE-75007 Uppsala, Sweden. EM chuanxin.sun@vbsg.slu.se FU Swedish International Development Cooperation Agency (Sida/SAREC); Sida/SAREC BIO-EARN Program; Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas): the Carl Trygger Foundation; US Department of Energy [DEAC02-05CH11231]; National Nonprofit Institute [CATAS-ITBB ZX2008-4-3] FX Funded by the Swedish International Development Cooperation Agency (Sida/SAREC); The Sida/SAREC BIO-EARN Program; the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas): the Carl Trygger Foundation; in part by US Department of Energy Contract DEAC02-05CH11231 with Lawrence Berkeley National Laboratory; and in part by National Nonprofit Institute Research Grant of CATAS-ITBB ZX2008-4-3, China. NR 29 TC 58 Z9 78 U1 2 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD NOV PY 2009 VL 86 BP S95 EP S99 DI 10.1016/j.apenergy.2009.05.011 PG 5 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 511MU UT WOS:000271170300011 ER PT J AU Bryan, CR Helean, KB Marshall, BD Brady, PV AF Bryan, Charles R. Helean, Katheryn B. Marshall, Brian D. Brady, Patrick V. TI Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada SO APPLIED GEOCHEMISTRY LA English DT Article ID RAY-DIFFRACTION PATTERNS; UNSATURATED ZONE; QUANTITATIVE INTERPRETATION; CHEMICAL AFFINITY; SECONDARY CALCITE; ALKALI FELDSPARS; PERCOLATION FLUX; SATURATION STATE; RELEASE RATES; TEMPERATURE AB Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (similar to 60 wt%) and quartz polymorphs (similar to 35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10(-16) to 10(-17) mol s(-1) kg tuff(-1) with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10(-15) to 10(-16) mol s(-1) kg tuff(-1) for percolation fluxes of 15 mm a(-1) and 1 mm a(-1), respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a(-1) or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (similar to 50 mg L(-1)) may inhibit feldspar dissolution. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Bryan, Charles R.; Helean, Katheryn B.; Brady, Patrick V.] Sandia Natl Labs, Albuquerque, NM 87145 USA. [Marshall, Brian D.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Bryan, CR (reprint author), Sandia Natl Labs, POB 5800,MS 0778, Albuquerque, NM 87145 USA. EM crbryan@sandia.gov OI Marshall, Brian/0000-0002-8093-0093 FU US Department of Energy [DEAC0494AL85000, A128-07RW12405] FX This manuscript has been authored by Sandia National Laboratories under Contract No. DEAC0494AL85000 with the US Department of Energy, and by the U.S. Geological Survey under Interagency Agreement DE-A128-07RW12405 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the United States Department of Energy or Sandia National Laboratories. NR 57 TC 3 Z9 3 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD NOV PY 2009 VL 24 IS 11 BP 2133 EP 2143 DI 10.1016/j.apgeochem.2009.09.003 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 523GI UT WOS:000272060100010 ER PT J AU Fan, CA Lee, PKH Ng, WJ Alvarez-Cohen, L Brodie, EL Andersen, GL He, JZ AF Fan, Caian Lee, Patrick K. H. Ng, Wun Jern Alvarez-Cohen, Lisa Brodie, Eoin L. Andersen, Gary L. He, Jianzhong TI Influence of trace erythromycin and erythromycin-H2O on carbon and nutrients removal and on resistance selection in sequencing batch reactors (SBRs) SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Antibiotics; Erythromycin (ERY); Dehydrated erythromycin (ERY-H2O); Sequencing batch reactors (SBRs); Nutrients removal ID TANDEM MASS-SPECTROMETRY; PHARMACEUTICAL WASTE-WATER; ACTIVATED-SLUDGE SYSTEMS; MACROLIDE ANTIBIOTICS; TREATMENT FACILITIES; AQUATIC ENVIRONMENT; TREATMENT PLANTS; SURFACE WATERS; PART I; CHINA AB Three sequencing batch reactors (SBRs) were operated in parallel to study the effects of trace erythromycin (ERY) and ERY-H2O on the treatment of a synthetic wastewater. Through monitoring (1) daily effluents and (2) concentrations of nitrogen (N) and phosphorous (P) in certain batch cycles of the three reactors operated from transient to steady states, the removal of carbon, N, and P was affected negligibly by ERY (100 A mu g/L) or ERY-H2O (50 A mu g/L) when compared with the control reactor. However, through analyzing microbial communities of the three steady state SBRs on high-density microarrays (PhyloChip), ERY, and ERY-H2O had pronounced effects on the community composition of bacteria related to N and P removal, leading to diversity loss and abundance change. The above observations indicated that resistant bacteria were selected upon exposure to ERY or ERY-H2O. Short-term batch experiments further proved the resistance and demonstrated that ammonium oxidation (56-95%) was inhibited more significantly than nitrite oxidation (18-61%) in the presence of ERY (100, 400, or 800 A mu g/L). Therefore, the presence of ERY or ERY-H2O (at A mu g/L levels) shifted the microbial community and selected resistant bacteria, which may account for the negligible influence of the antibiotic ERY or its derivative ERY-H2O (at A mu g/L levels) on carbon, N, and P removal in the SBRs. C1 [Fan, Caian; Ng, Wun Jern; He, Jianzhong] Natl Univ Singapore, Div Environm Sci & Engn, Singapore 117576, Singapore. [Lee, Patrick K. H.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Alvarez-Cohen, Lisa; Brodie, Eoin L.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP He, JZ (reprint author), Natl Univ Singapore, Div Environm Sci & Engn, Block EA 03-12,1 Engn Dr 3, Singapore 117576, Singapore. EM jianzhong.he@nus.edu.sg RI Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Lee, Patrick K H/L-1844-2016 OI Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Lee, Patrick K H/0000-0003-0911-5317 FU Singapore Ministry of Education [R-288-000-024-112/133, R-288-000-041-112] FX This research was supported by Academic Research Fund from Singapore Ministry of Education under project number R-288-000-024-112/133 and R-288-000-041-112. NR 33 TC 10 Z9 10 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD NOV PY 2009 VL 85 IS 1 BP 185 EP 195 DI 10.1007/s00253-009-2201-7 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 509NQ UT WOS:000271025100018 PM 19727707 ER PT J AU Seely, JF Kjomrattanawanich, B Bremer, JC Kowalski, M Feng, Y AF Seely, John F. Kjomrattanawanich, Benjawan Bremer, James C. Kowalski, Michael Feng, Yan TI Radiometry and metrology of a phase zone plate measured by extreme ultraviolet synchrotron radiation SO APPLIED OPTICS LA English DT Article ID OPTICAL-CONSTANTS AB The diffraction efficiency, focal length, and other radiometric and metrology properties of a phase zone plate were measured by using monochromatic synchrotron radiation in the 7-18.5 nm wavelength range. The zone plate was composed of molybdenum zones having a 4 mm outer diameter and 70 nm nominal thickness and supported on a 100 nm thick silicon nitride membrane. The diffraction efficiency was enhanced by the phase shift of the radiation passing through the zones. The measured first-order efficiency was in good agreement with the calculated efficiency. The properties of the zone plate, particularly the small variation of the efficiency with off-axis angle, make it suitable for use in a radiometer to accurately measure the absolutely calibrated extreme ultraviolet emission from the Sun. (C) 2009 Optical Society of America C1 [Seely, John F.; Kowalski, Michael] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Kjomrattanawanich, Benjawan] Brookhaven Natl Lab, Natl Synchrotron Light Source Beamline X24C, Univ Space Res Assoc, Upton, NY 11973 USA. [Bremer, James C.] Res Support Instruments Inc, Lanham, MD 20706 USA. [Feng, Yan] Xradia Inc, Concord, CA 94596 USA. RP Seely, JF (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM john.seely@nrl.navy.mil FU National Aeronautics and Space Administration (NASA) [NNH09A-K12I]; Office of Naval Research FX This work was supported by National Aeronautics and Space Administration (NASA) grant NNH09A-K12I and by the Office of Naval Research. We thank Michael Feser and Alan Lyon of Xradia Inc. for valuable discussions. We thank Glenn Holland for expert technical assistance. NR 8 TC 1 Z9 1 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 1 PY 2009 VL 48 IS 31 BP 5970 EP 5977 DI 10.1364/AO.48.005970 PG 8 WC Optics SC Optics GA 514DH UT WOS:000271374000038 PM 19881664 ER PT J AU Musunuru, K Orho-Melander, M Caulfield, MP Li, SG Salameh, WA Reitz, RE Berglund, G Hedblad, B Engstrom, G Williams, PT Kathiresan, S Melander, O Krauss, RM AF Musunuru, Kiran Orho-Melander, Marju Caulfield, Michael P. Li, Shuguang Salameh, Wael A. Reitz, Richard E. Berglund, Goran Hedblad, Bo Engstrom, Gunnar Williams, Paul T. Kathiresan, Sekar Melander, Olle Krauss, Ronald M. TI Ion Mobility Analysis of Lipoprotein Subfractions Identifies Three Independent Axes of Cardiovascular Risk SO ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY LA English DT Article DE lipids; lipoproteins; cardiovascular diseases; genetics ID LOW-DENSITY-LIPOPROTEIN; CORONARY-HEART-DISEASE; LDL PARTICLE-SIZE; MAGNETIC-RESONANCE-SPECTROSCOPY; FAMILIAL COMBINED HYPERLIPIDEMIA; ARTERY-DISEASE; MYOCARDIAL-INFARCTION; GENETIC-DETERMINANTS; INTERVENTION TRIAL; METABOLIC SYNDROME AB Objective-Whereas epidemiological studies show that levels of low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) predict incident cardiovascular disease (CVD), there is limited evidence relating lipoprotein subfractions and composite measures of subfractions to risk for CVD in prospective cohort studies. Methods and Results-We tested whether combinations of lipoprotein subfractions independently predict CVD in a prospective cohort of 4594 initially healthy men and women (the Malmo Diet and Cancer Study, mean follow-up 12.2 years, 377 incident cardiovascular events). Plasma lipoproteins and lipoprotein subfractions were measured at baseline with a novel high-resolution ion mobility technique. Principal component analysis (PCA) of subfraction concentrations identified 3 major independent (ie, zero correlation) components of CVD risk, one representing LDL-associated risk, a second representing HDL-associated protection, and the third representing a pattern of decreased large HDL, increased small/medium LDL, and increased triglycerides. The last corresponds to the previously described "atherogenic lipoprotein phenotype." Several genes that may underlie this phenotype-CETP, LIPC, GALNT2, MLXIPL, APOA1/A5, LPL-are suggested by SNPs associated with the combination of small/medium LDL and large HDL. Conclusion-PCA on lipoprotein subfractions yielded three independent components of CVD risk. Genetic analyses suggest these components represent independent mechanistic pathways for development of CVD. (Arterioscler Thromb Vasc Biol. 2009; 29:1975-1980.) C1 [Krauss, Ronald M.] Childrens Hosp Oakland, Res Inst, Oakland, CA 94609 USA. [Musunuru, Kiran; Kathiresan, Sekar] Massachusetts Gen Hosp, Div Cardiol, Cardiovasc Res Ctr, Boston, MA 02114 USA. [Musunuru, Kiran; Kathiresan, Sekar] Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA. [Musunuru, Kiran; Kathiresan, Sekar] Broad Inst MIT & Harvard, Cambridge, MA USA. [Orho-Melander, Marju; Berglund, Goran; Hedblad, Bo; Engstrom, Gunnar; Melander, Olle] Lund Univ, Malmo Univ Hosp, Malmo, Sweden. [Caulfield, Michael P.; Li, Shuguang; Salameh, Wael A.; Reitz, Richard E.] Quest Diagnost Nichols Inst, San Juan Capistrano, CA USA. [Williams, Paul T.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Krauss, RM (reprint author), Childrens Hosp Oakland, Res Inst, 5700 Martin Luther King Jr Way, Oakland, CA 94609 USA. EM rkrauss@chori.org OI Engstrom, Gunnar/0000-0002-8618-9152 FU United States National Institutes of Health (NIH) [U01HL069757]; Swedish Medical Research Council; Swedish Heart and Lung Foundation; Medical Faculty of Lund University; Malmo University Hospital; Albert Pahlsson Research Foundation; Crafoord foundation; Ernhold Lundstroms Research Foundation; Region Skane; Hulda and Conrad Mossfelt Foundation; King Gustaf V and Queen Victoria Foundation; Lennart Hanssons Memorial Fund; Doris Duke Charitable Foundation; Fannie E. Rippel Foundation; Donovan Family Foundation; Quest Diagnostics Inc FX K. M. is supported by a T32 grant in Cell and Molecular Training for Cardiovascular Biology from the United States National Institutes of Health (NIH). M.O.-M. and O.M. are supported by the Swedish Medical Research Council, the Swedish Heart and Lung Foundation, the Medical Faculty of Lund University, Malmo University Hospital, the Albert Pahlsson Research Foundation, the Crafoord foundation, the Ernhold Lundstroms Research Foundation, the Region Skane, the Hulda and Conrad Mossfelt Foundation, the King Gustaf V and Queen Victoria Foundation and the Lennart Hanssons Memorial Fund. S. K. is supported by a Doris Duke Charitable Foundation Clinical Scientist Development Award, a charitable gift from the Fannie E. Rippel Foundation, the Donovan Family Foundation, and a K23 career development award from the NIH. R. M. K. is supported by U01HL069757 from the NIH and has received research support from Quest Diagnostics Inc. For this study, ion mobility measurements of study participants were provided free of charge by Quest Diagnostics, which had no role in the analysis and interpretation of the data or in the preparation, review, or approval of the manuscript. NR 38 TC 76 Z9 78 U1 1 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1079-5642 EI 1524-4636 J9 ARTERIOSCL THROM VAS JI Arterioscler. Thromb. Vasc. Biol. PD NOV PY 2009 VL 29 IS 11 BP 1975 EP U628 DI 10.1161/ATVBAHA.109.190405 PG 10 WC Hematology; Peripheral Vascular Disease SC Hematology; Cardiovascular System & Cardiology GA 509EE UT WOS:000270996300041 PM 19729614 ER PT J AU Dieckmann, J McKenney, K Brodrick, J AF Dieckmann, John McKenney, Kurtis Brodrick, James TI Radiant Floor Cooling in Practice SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Dieckmann, John; McKenney, Kurtis] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TIAX LLC, Mech Syst Grp, Cambridge, MA USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD NOV PY 2009 VL 51 IS 11 BP 70 EP + PG 2 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 572DV UT WOS:000275808400024 ER PT J AU Vogel, MB Des Marais, DJ Turk, KA Parenteau, MN Jahnke, LL Kubo, MDY AF Vogel, Marilyn B. Des Marais, David J. Turk, Kendra A. Parenteau, Mary N. Jahnke, Linda L. Kubo, Michael D. Y. TI The Role of Biofilms in the Sedimentology of Actively Forming Gypsum Deposits at Guerrero Negro, Mexico SO ASTROBIOLOGY LA English DT Article DE Analogue; Astrobiology; Biosignatures; Endoliths; Sedimentary environments ID 16S RIBOSOMAL-RNA; ENDOEVAPORITIC MICROBIAL COMMUNITIES; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; EVAPORITE DEPOSITS; BURNS FORMATION; WATER ACTIVITY; DEATH-VALLEY; MARS; CYANOBACTERIA AB Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkhamudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of gypsum crystals with equant and distorted habits, and precipitation of trace carbonate and oxide phases. Fine-scale wrinkle structures visible in clastic surfaces of sabkha environments offered evidence of the biofilm's role in physical sedimentary processes. These findings are highly relevant to astrobiology because they expand and refine the known characteristics of gypsum deposits, including their biological components. C1 [Vogel, Marilyn B.; Turk, Kendra A.; Kubo, Michael D. Y.] SETI Inst, Mountain View, CA 94043 USA. [Des Marais, David J.; Jahnke, Linda L.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Parenteau, Mary N.] Oak Ridge Associated Univ, NASA, NPP, ARC,Astrobiol Branch, Moffett Field, CA USA. RP Vogel, MB (reprint author), SETI Inst, 415 N Whisman Rd, Mountain View, CA 94043 USA. EM marilyn.b.vogel@nasa.gov FU NASA; NASA Astrobiology Institute; Ames NAI team; Oak Associate Universities FX This work was funded by grants from the NASA Exobiology and Evolutionary Biology program and the NASA Astrobiology Institute to D.J.D. and the Ames NAI team. The authors thank N. Noffke and D. Bottjer for organizing this special volume. Two anonymous reviewers provided insightful feedback that enhanced the manuscript. M. B. V. acknowledges support from Oak Associate Universities NASA Postdoctoral Program. We also thank the staff of the Stanford/USGS SUMAC facility for microscopy support. S. Sabet of La Sierra University and N. Finke, Biologisk Institut, University of Southern Denmark, are both thanked for assistance in the field and images from the field site. NR 74 TC 8 Z9 8 U1 2 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2009 VL 9 IS 9 BP 875 EP 893 DI 10.1089/ast.2008.0325 PG 19 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 528QS UT WOS:000272462200006 PM 19968464 ER PT J AU Dawson, KS Aldering, G Amanullah, R Barbary, K Barrientos, LF Brodwin, M Connolly, N Dey, A Doi, M Donahue, M Eisenhardt, P Ellingson, E Faccioli, L Fadeyev, V Fakhouri, HK Fruchter, AS Gilbank, DG Gladders, MD Goldhaber, G Gonzalez, AH Goobar, A Gude, A Hattori, T Hoekstra, H Huang, X Ihara, Y Jannuzi, BT Johnston, D Kashikawa, K Koester, B Konishi, K Kowalski, M Lidman, C Linder, EV Lubin, L Meyers, J Morokuma, T Munshi, F Mullis, C Oda, T Panagia, N Perlmutter, S Postman, M Pritchard, T Rhodes, J Rosati, P Rubin, D Schlegel, DJ Spadafora, A Stanford, SA Stanishev, V Stern, D Strovink, M Suzuki, N Takanashi, N Tokita, K Wagner, M Wang, L Yasuda, N Yee, HKC AF Dawson, K. S. Aldering, G. Amanullah, R. Barbary, K. Barrientos, L. F. Brodwin, M. Connolly, N. Dey, A. Doi, M. Donahue, M. Eisenhardt, P. Ellingson, E. Faccioli, L. Fadeyev, V. Fakhouri, H. K. Fruchter, A. S. Gilbank, D. G. Gladders, M. D. Goldhaber, G. Gonzalez, A. H. Goobar, A. Gude, A. Hattori, T. Hoekstra, H. Huang, X. Ihara, Y. Jannuzi, B. T. Johnston, D. Kashikawa, K. Koester, B. Konishi, K. Kowalski, M. Lidman, C. Linder, E. V. Lubin, L. Meyers, J. Morokuma, T. Munshi, F. Mullis, C. Oda, T. Panagia, N. Perlmutter, S. Postman, M. Pritchard, T. Rhodes, J. Rosati, P. Rubin, D. Schlegel, D. J. Spadafora, A. Stanford, S. A. Stanishev, V. Stern, D. Strovink, M. Suzuki, N. Takanashi, N. Tokita, K. Wagner, M. Wang, L. Yasuda, N. Yee, H. K. C. CA Supernova Cosmology Project TI AN INTENSIVE HUBBLE SPACE TELESCOPE* SURVEY FOR z > 1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS SO ASTRONOMICAL JOURNAL LA English DT Review DE cosmology: observations; supernovae: general ID COLOR-MAGNITUDE RELATION; HIGH-REDSHIFT CLUSTERS; LIGHT-CURVE SHAPES; IRAC SHALLOW SURVEY; SIMILAR-TO 1; X-RAY; RED-SEQUENCE; SPECTROSCOPIC CONFIRMATION; LEGACY SURVEY; DARK ENERGY AB We present a new survey strategy to discover and study high-redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 < z < 1.5, we obtain a twofold improvement in the efficiency of finding SNe compared to an HST field survey and a factor of 3 improvement in the total yield of SN detections in relatively dust-free red-sequence galaxies. In total, sixteen SNe were discovered at z > 0.95, nine of which were in galaxy clusters. This strategy provides an SN sample that can be used to decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology. C1 [Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Dawson, K. S.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Goldhaber, G.; Linder, E. V.; Meyers, J.; Perlmutter, S.; Pritchard, T.; Rubin, D.; Schlegel, D. J.; Spadafora, A.; Strovink, M.; Suzuki, N.; Wagner, M.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Amanullah, R.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Gude, A.; Huang, X.; Meyers, J.; Munshi, F.; Perlmutter, S.; Pritchard, T.; Rubin, D.; Strovink, M.; Wagner, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Barrientos, L. F.] Pontificia Univ Catolica Chile, Dept Astron, Santiago, Chile. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Connolly, N.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Dey, A.; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Doi, M.; Ihara, Y.; Tokita, K.] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Donahue, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Eisenhardt, P.; Johnston, D.; Rhodes, J.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ellingson, E.] Univ Colorado, Ctr Astrophys & Space Astron, UCB 389, Boulder, CO 80309 USA. [Fadeyev, V.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 94064 USA. [Fruchter, A. S.; Panagia, N.; Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gilbank, D. G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Gladders, M. D.; Koester, B.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Goobar, A.; Stanishev, V.] Stockholm Univ, Albanova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Goobar, A.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Hattori, T.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Hoekstra, H.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 2Y2, Canada. [Hoekstra, H.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Johnston, D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kashikawa, K.; Morokuma, T.; Takanashi, N.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Koester, B.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Konishi, K.; Yasuda, N.] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Kowalski, M.] Humboldt Univ, Inst Phys, Berlin, Germany. [Lidman, C.] European So Observ, Santiago 19, Chile. [Lubin, L.; Stanford, S. A.] Univ Calif Davis, Davis, CA 95618 USA. [Mullis, C.] Wachovia Corp, Winston Salem, NC 27101 USA. [Oda, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Rhodes, J.] CALTECH, Pasadena, CA 91125 USA. [Rosati, P.] ESO, D-85748 Garching, Germany. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Stanishev, V.] Inst Super Tecn, CENTRA Ctr Multidisciplinar Astrofis, P-1049001 Lisbon, Portugal. [Wang, L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Yee, H. K. C.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Dawson, KS (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM kdawson@physics.utah.edu RI Donahue, Megan/B-5361-2012; Yasuda, Naoki/A-4355-2011; Kowalski, Marek/G-5546-2012; Stanishev, Vallery/M-8930-2013; Perlmutter, Saul/I-3505-2015; OI Stanishev, Vallery/0000-0002-7626-1181; Perlmutter, Saul/0000-0002-4436-4661; Meyers, Joshua/0000-0002-2308-4230; Hoekstra, Henk/0000-0002-0641-3231 NR 105 TC 45 Z9 46 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2009 VL 138 IS 5 BP 1271 EP 1283 DI 10.1088/0004-6256/138/5/1271 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 507KM UT WOS:000270852100007 ER PT J AU Nord, M Basu, K Pacaud, F Ade, PAR Bender, AN Benson, BA Bertoldi, F Cho, HM Chon, G Clarke, J Dobbs, M Ferrusca, D Halverson, NW Holzapfel, WL Horellou, C Johansson, D Kennedy, J Kermish, Z Kneissl, R Lanting, T Lee, AT Lueker, M Mehl, J Menten, KM Plagge, T Reichardt, CL Richards, PL Schaaf, R Schwan, D Spieler, H Tucker, C Weiss, A Zahn, O AF Nord, M. Basu, K. Pacaud, F. Ade, P. A. R. Bender, A. N. Benson, B. A. Bertoldi, F. Cho, H. -M. Chon, G. Clarke, J. Dobbs, M. Ferrusca, D. Halverson, N. W. Holzapfel, W. L. Horellou, C. Johansson, D. Kennedy, J. Kermish, Z. Kneissl, R. Lanting, T. Lee, A. T. Lueker, M. Mehl, J. Menten, K. M. Plagge, T. Reichardt, C. L. Richards, P. L. Schaaf, R. Schwan, D. Spieler, H. Tucker, C. Weiss, A. Zahn, O. TI Multi-frequency imaging of the galaxy cluster Abell 2163 using the Sunyaev-Zel'dovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: Abell 2163; cosmic microwave background; cosmology: observations ID MICROWAVE BACKGROUND-RADIATION; X-RAY; RADIO HALOS; APEX-SZ; 3-DIMENSIONAL STRUCTURE; INFRARED-EMISSION; GAS-DENSITY; XMM-NEWTON; HOT GAS; TEMPERATURE AB Context. Observations of the Sunyaev-Zel'dovich effect (SZE) from galaxy clusters are emerging as a powerful tool in cosmology. Besides large cluster surveys, resolved SZE images of individual clusters can shed light on the physics of the intra-cluster medium (ICM) and allow accurate measurements of the cluster gas and total masses. Aims. We used the APEX-SZ and LABOCA bolometer cameras on the APEX telescope to map both the decrement of the SZE at 150 GHz and the increment at 345 GHz toward the rich and X-ray luminous galaxy cluster Abell 2163 at redshift 0.203. The SZE images were used, in conjunction with archival XMM-Newton X-ray data, to model the radial density and temperature distribution of the ICM, as well as to derive the gas mass fraction in the cluster under the assumption of hydrostatic equilibrium. Methods. We describe the data analysis techniques developed to extract the faint and extended SZE signal. We used the isothermal beta model to fit the SZE decrement/increment radial profiles. We performed a simple, non-parametric de-projection of the radial density and temperature profiles, in conjunction with X-ray data, under the simplifying assumption of spherical symmetry. We combined the peak SZE signals derived in this paper with published SZE measurements of this cluster to derive the cluster line-of-sight bulk velocity and the central Comptonization, using priors on the ICM temperature. Results. We find that the best-fit isothermal model to the SZE data is consistent with the ICM properties implied by the X-ray data, particularly inside the central 1 Mpc radius. Inside a radius of similar to 1500 kpc from the cluster center, the mean gas temperature derived from our SZE/X-ray joint analysis is 10.4 +/- 1.4 keV. The error budget for the derived temperature profile is dominated by statistical errors in the 150 GHz SZE image. From the isothermal analysis combined with previously published data, we find a line-of-sight peculiar velocity consistent with zero; v(r) =-140 +/- 460 km s(-1), and a central Comptonization y(0) = 3.42 +/- 0.32 x 10(-4) for Abell 2163. Conclusions. Although the assumptions of hydrostatic equilibrium and spherical symmetry may not be optimal for this complex system, the results obtained under these assumptions are consistent with X-ray and weak-lensing measurements. This shows the applicability of the simple joint SZE and X-ray de-projection technique described in this paper for clusters with a wide range of dynamical states. C1 [Nord, M.; Basu, K.; Pacaud, F.; Bertoldi, F.; Chon, G.; Schaaf, R.] Univ Bonn, Argelander Inst Astron, D-5300 Bonn, Germany. [Nord, M.; Basu, K.; Chon, G.; Kneissl, R.; Menten, K. M.; Weiss, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Ade, P. A. R.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Bender, A. N.; Halverson, N. W.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Benson, B. A.; Clarke, J.; Ferrusca, D.; Holzapfel, W. L.; Kermish, Z.; Lee, A. T.; Lueker, M.; Mehl, J.; Plagge, T.; Reichardt, C. L.; Richards, P. L.; Schwan, D.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cho, H. -M.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Dobbs, M.; Kennedy, J.; Lanting, T.] McGill Univ, Dept Phys, Montreal, PQ H2T 2Y8, Canada. [Horellou, C.; Johansson, D.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Lanting, T.] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada. [Lee, A. T.; Spieler, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Nord, M (reprint author), Univ Bonn, Argelander Inst Astron, D-5300 Bonn, Germany. EM mnord@astro.uni-bonn.de RI Holzapfel, William/I-4836-2015; OI Reichardt, Christian/0000-0003-2226-9169; Tucker, Carole/0000-0002-1851-3918 FU DFG Priority Program [1177]; International Max Planck Research School (IMPRS); Universities of Bonn and Cologne; DfG Transregio Programme [TR33]; Alfred P. Sloan Research Fellowship; National Science Foundation [AST-0138348]; ESA Member States; USA (NASA); Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft-und Raumfahrt [FKZ 50 OX 0001]; Max-Planck Society; Heidenhain-Stiftung FX We thank the APEX staff. for their unfailing support during the APEX-SZ and LABOCA observations. We thank Wilhelm Altenhoff for fruitful discussions on the calibration of the millimeter data, and Fred Schuller for helping with the LABOCA data taking. This work has been partially supported by the DFG Priority Program 1177. M. N. acknowledges support for this research through a stipend from the International Max Planck Research School (IMPRS) for Radio and Infrared Astronomy at the Universities of Bonn and Cologne. F. P. acknowledges support from the DfG Transregio Programme TR33. N. W. H. acknowedges support from an Alfred P. Sloan Research Fellowship. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. APEX-SZ is funded by the National Science Foundation under Grant No. AST-0138348. XMM-Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The XMM-Newton project is supported in Germany by the Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft-und Raumfahrt (BMWI/DLR, FKZ 50 OX 0001), the Max-Planck Society and the Heidenhain-Stiftung. NR 69 TC 37 Z9 37 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2009 VL 506 IS 2 BP 623 EP 636 DI 10.1051/0004-6361/200911746 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 514DP UT WOS:000271374800013 ER PT J AU Heitmann, K Higdon, D White, M Habib, S Williams, BJ Lawrence, E Wagner, C AF Heitmann, Katrin Higdon, David White, Martin Habib, Salman Williams, Brian J. Lawrence, Earl Wagner, Christian TI THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE large-scale structure of universe; methods: statistical ID WEAK-LENSING SURVEYS; LATIN HYPERCUBES; COMPUTER EXPERIMENTS; PARAMETER-ESTIMATION; NEURAL-NETWORKS; CONSTRAINTS; BARYONS; SUPERNOVAE; NORMALIZATION; ANISOTROPIES AB The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the 1% level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state, "wCDM", cosmologies. In this paper, we demonstrate that a limited set of only 37 cosmological models-the "Coyote Universe" suite-can be used to predict the nonlinear matter power spectrum to 1% over a prior parameter range set by current cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies. C1 [Heitmann, Katrin] Los Alamos Natl Lab, ISR Div, ISR 1, Los Alamos, NM 87544 USA. [Higdon, David; Williams, Brian J.; Lawrence, Earl] Los Alamos Natl Lab, CCS Div, CCS 6, Los Alamos, NM 87545 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Habib, Salman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wagner, Christian] AIP, D-14482 Potsdam, Germany. RP Heitmann, K (reprint author), Los Alamos Natl Lab, ISR Div, ISR 1, POB 1663, Los Alamos, NM 87544 USA. RI White, Martin/I-3880-2015; OI White, Martin/0000-0001-9912-5070; Williams, Brian/0000-0002-3465-4972 NR 58 TC 83 Z9 83 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2009 VL 705 IS 1 BP 156 EP 174 DI 10.1088/0004-637X/705/1/156 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 508CA UT WOS:000270903200013 ER PT J AU Hartigan, P Foster, JM Wilde, BH Coker, RF Rosen, PA Hansen, JF Blue, BE Williams, RJR Carver, R Frank, A AF Hartigan, P. Foster, J. M. Wilde, B. H. Coker, R. F. Rosen, P. A. Hansen, J. F. Blue, B. E. Williams, R. J. R. Carver, R. Frank, A. TI LABORATORY EXPERIMENTS, NUMERICAL SIMULATIONS, AND ASTRONOMICAL OBSERVATIONS OF DEFLECTED SUPERSONIC JETS: APPLICATION TO HH 110 SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; ISM: Herbig-Haro objects; ISM: jets and outflows; methods: laboratory; shock waves ID HERBIG-HARO OBJECTS; HUBBLE-SPACE-TELESCOPE; X-RAY-EMISSION; T-TAURI STARS; STELLAR JETS; BOW SHOCK; HH-110 JET; ASTROPHYSICS; KINEMATICS; EVOLUTION AB Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. When these conditions apply, laboratory jets provide a means to study their astrophysical counterparts for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range in which the codes must perform well. In this paper, we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in three dimensions, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface. C1 [Hartigan, P.; Carver, R.] Rice Univ, Dept Phys & Astron, Houston, TX 77521 USA. [Foster, J. M.; Rosen, P. A.; Williams, R. J. R.] Atom Weap Estab, Reading RG7 4PR, Berks, England. [Wilde, B. H.; Coker, R. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hansen, J. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Blue, B. E.] Gen Atom, San Diego, CA 92121 USA. [Frank, A.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Hartigan, P (reprint author), Rice Univ, Dept Phys & Astron, 6100 S Main, Houston, TX 77521 USA. RI Williams, Robin/H-1637-2011 OI Williams, Robin/0000-0002-0486-0580 FU DOE; NNSA [DE-PS52-08NA28649, DE-FG52-07NA28056] FX We are grateful to Dean Jorgensen (Optimation Inc., Burr-Free Micro Hole Division, 6803 South 400 West, Midvale, Utah 84047, USA) for supplying the precision-machined titaniumalloy components for these experiments. We thank K. Dannenberg for her assistance in manufacturing the initial targets for these experiments, the staff of General Atomics for their dedication in developing new targets and delivering them on time, the staff at Omega for their efficient operation of the laser facility, and an anonymous referee for useful comments regarding scaling. This research was made possible by a DOE grant from NNSA as part of the NLUF programs DE-PS52-08NA28649 and DE-FG52-07NA28056. NR 56 TC 33 Z9 34 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2009 VL 705 IS 1 BP 1073 EP 1094 DI 10.1088/0004-637X/705/1/1073 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 508CA UT WOS:000270903200089 ER PT J AU Kessler, R Becker, AC Cinabro, D Vanderplas, J Frieman, JA Marriner, J Davis, TM Dilday, B Holtzman, J Jha, SW Lampeitl, H Sako, M Smith, M Zheng, C Nichol, RC Bassett, B Bender, R Depoy, DL Doi, M Elson, E Filippenko, AV Foley, RJ Garnavich, PM Hopp, U Ihara, Y Ketzeback, W Kollatschny, W Konishi, K Marshall, JL McMillan, RJ Miknaitis, G Morokuma, T Mortsell, E Pan, K Prieto, JL Richmond, MW Riess, AG Romani, R Schneider, DP Sollerman, J Takanashi, N Tokita, K van der Heyden, K Wheeler, JC Yasuda, N York, D AF Kessler, Richard Becker, Andrew C. Cinabro, David Vanderplas, Jake Frieman, Joshua A. Marriner, John Davis, Tamara M. Dilday, Benjamin Holtzman, Jon Jha, Saurabh W. Lampeitl, Hubert Sako, Masao Smith, Mathew Zheng, Chen Nichol, Robert C. Bassett, Bruce Bender, Ralf Depoy, Darren L. Doi, Mamoru Elson, Ed Filippenko, Alexei V. Foley, Ryan J. Garnavich, Peter M. Hopp, Ulrich Ihara, Yutaka Ketzeback, William Kollatschny, W. Konishi, Kohki Marshall, Jennifer L. McMillan, Russet J. Miknaitis, Gajus Morokuma, Tomoki Mortsell, Edvard Pan, Kaike Prieto, Jose Luis Richmond, Michael W. Riess, Adam G. Romani, Roger Schneider, Donald P. Sollerman, Jesper Takanashi, Naohiro Tokita, Kouichi van der Heyden, Kurt Wheeler, J. C. Yasuda, Naoki York, Donald TI FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmological parameters; cosmology: observations; distance scale; methods: data analysis; supernovae: general; surveys ID SOUTHERN SPECTROPHOTOMETRIC STANDARDS; HIGH-REDSHIFT SUPERNOVAE; IA SUPERNOVAE; DARK ENERGY; SPACE-TELESCOPE; ACCELERATING UNIVERSE; EXTINCTION CURVES; LEGACY SURVEY; K-CORRECTIONS; DATA RELEASE AB We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low-and high-redshift SN Ia surveys. Within the framework of the MLCS2K2 light-curve fitting method, we use the SDSS-II SN sample to infer the mean reddening parameter for host galaxies, R(V) = 2.18 +/- 0.14(stat) +/- 0.48(syst), and find that the intrinsic distribution of host-galaxy extinction is well fitted by an exponential function, P(Lambda(V)) = exp(-Lambda(V)/tau(V)), with tau(V) = 0.334 +/- 0.088 mag. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey (SNLS), the Hubble Space Telescope (HST), and a compilation of Nearby SN Ia measurements. A new feature in our analysis is the use of detailed Monte Carlo simulations of all surveys to account for selection biases, including those from spectroscopic targeting. Combining the SN Hubble diagram with measurements of baryon acoustic oscillations from the SDSS Luminous Red Galaxy sample and with cosmic microwave background temperature anisotropy measurements from the Wilkinson Microwave Anisotropy Probe, we estimate the cosmological parameters w and Omega M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. We also consider constraints upon Omega(M) and Omega(A) for a cosmological constant model (Lambda CDM) with w = -1 and non-zero spatial curvature. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +/- 0.07(stat)+/- 0.11(syst), Omega(M) = 0.307+/-0.019(stat)+/-0.023(syst) using MLCS2K2 and w = -0.96 +/- 0.06(stat) +/- 0.12(syst), Omega(M) = 0.265 +/- 0.016(stat) +/- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST SNe. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame U band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties: w = -0.92 +/- 0.13(stat)(-0.33)(+0.10)(syst) for MLCS2K2 and w = -0.92 +/- 0.11(stat)(-0.15)(+0.07) (syst) for SALT-II. C1 [Kessler, Richard; Frieman, Joshua A.; York, Donald] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Becker, Andrew C.; Vanderplas, Jake] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Cinabro, David] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Davis, Tamara M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Davis, Tamara M.; Sollerman, Jesper] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Dilday, Benjamin; Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Holtzman, Jon] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Smith, Mathew; Bassett, Bruce; Elson, Ed] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Zheng, Chen; Romani, Roger] Stanford Univ, Kavli Inst Particle Astrophys Cosmol, Stanford, CA 94305 USA. [Bassett, Bruce] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Bender, Ralf; Hopp, Ulrich] Univ Munich, Univ Sternwarte, D-80539 Munich, Germany. [Depoy, Darren L.; Marshall, Jennifer L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Doi, Mamoru; Ihara, Yutaka; Konishi, Kohki; Tokita, Kouichi] Univ Tokyo, Inst Astron, Mitaka, Tokyo 1810015, Japan. [Doi, Mamoru] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Filippenko, Alexei V.; Foley, Ryan J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Ihara, Yutaka; Tokita, Kouichi] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Ketzeback, William; McMillan, Russet J.; Pan, Kaike] Apache Point Observ, Sunspot, NM 88349 USA. [Kollatschny, W.] Univ Gottingen, Dept Astron, D-37077 Gottingen, Germany. [Miknaitis, Gajus] Ctr Neighborhood Technol, Chicago, IL 60647 USA. [Morokuma, Tomoki; Takanashi, Naohiro] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Mortsell, Edvard] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Prieto, Jose Luis] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Sollerman, Jesper] Stockholm Univ, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Wheeler, J. C.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Yasuda, Naoki] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [York, Donald] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Kessler, R (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM kessler@kicp.uchicago.edu RI Yasuda, Naoki/A-4355-2011; Davis, Tamara/A-4280-2008; OI Davis, Tamara/0000-0002-4213-8783; Sollerman, Jesper/0000-0003-1546-6615 FU JSPS Fellowship; NSF [AST-0607485]; DOE [DE-FG02-08ER41563]; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX All software used in this analysis is publicly available from our Web site (Kessler et al. 2009). We wish to thank J. Guy for retraining the SALT-II program and for consulting on its use and results. We thank Armin Rest for modifying the ESSENCE SN-search pipeline for use in the SDSS SN survey. We gratefully acknowledge support from the Kavli Institute for Cosmological Physics at the University of Chicago, the National Science Foundation atWayne State, the Japan Society for the Promotion of Science (JSPS), and the Department of Energy at Fermilab, the University of Chicago, and Rutgers University. R. J. F. is supported by a Clay Fellowship. Y. Ihara and T. Morokuma are supported by a JSPS Fellowship. A. V. F. is grateful for the support of NSF grant AST-0607485 and DOE grant DE-FG02-08ER41563. Funding for the creation and distribution of the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. NR 91 TC 416 Z9 420 U1 4 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2009 VL 185 IS 1 BP 32 EP 84 DI 10.1088/0067-0049/185/1/32 PG 53 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 514NZ UT WOS:000271402900003 ER PT J AU Aunan, K Berntsen, TK Myhre, G Rypdal, K Streets, DG Woo, JH Smith, KR AF Aunan, Kristin Berntsen, Terje K. Myhre, Gunnar Rypdal, Kristin Streets, David G. Woo, Jung-Hun Smith, Kirk R. TI Radiative forcing from household fuel burning in Asia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Solid fuel burning; Asia; Emissions; Radiative forcing; Air pollutants ID GLOBAL AEROSOL; AIR-POLLUTION; BLACK CARBON; EMISSIONS; CLIMATE; TRANSPORT; GASES; SOOT; REDUCTIONS; AEROCOM AB Household fuel use in developing countries, particularly as biomass and coal, is a major source of carbonaceous aerosols and other air pollutants affecting health and climate. Using state-of-the-art emission inventories, a global three-dimensional photochemical tracer/transport model of the troposphere, and a global radiative transfer model based on methods presented in the latest IPCC Assessment Report (2007-AR4), we estimate the radiative forcing (RF) attributable to household fuel combustion in Asia in terms of current global annual-mean RF and future global integrated RF for a one-year pulse of emissions (2000) over two time horizons (100 and 20 years). Despite the significant emissions of black carbon (BC) aerosols, these estimates indicate that shorter-lived (non-Kyoto) air pollutants from household fuel use in the region overall seem to exert a small net negative RF because of the strong influence of reflective aerosols. There are, however, major uncertainties in emission estimates for solid fuel burning, and about the sustainability of household fuel wood harvesting in Asia (the carbon neutrality of harvesting). In addition, there is still substantial uncertainty associated with the BC radiative forcing. As a result we find that the sign of the RF from household biomass burning in the region cannot be established. While recognizing the value of integrating climate change and air pollution policies, we are concerned that for a 'Kyoto style' post-Kyoto treaty (with global cap-and-trade and the Global Warming Potential as the metric) expanding the basket of components with a selection of short-lived species without also including the wider range of co-emitted species may lead to unintended consequences for global-scale climate. Additional measurement, modelling, and policy research is urgently needed to reduce the uncertainties so that the net impact on climate of emissions and mitigation measures in this sector can be accurately assessed. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Aunan, Kristin; Berntsen, Terje K.; Myhre, Gunnar; Rypdal, Kristin] CICERO, N-0318 Oslo, Norway. [Berntsen, Terje K.; Myhre, Gunnar] Univ Oslo, Dept Geosci, N-0315 Oslo, Norway. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Woo, Jung-Hun] Konkuk Univ, Dept Adv Technol Fus, Seoul 143701, South Korea. [Smith, Kirk R.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. RP Aunan, K (reprint author), CICERO, POB 1129, N-0318 Oslo, Norway. EM kristin.aunan@cicero.uio.no RI Myhre, Gunnar/A-3598-2008; OI Myhre, Gunnar/0000-0002-4309-476X; Streets, David/0000-0002-0223-1350 FU Research Council of Norway; Norwegian Ministry of Foreign Affairs FX We thank Hans Martin Seip, Jan S. Fuglestvedt, and Lynn P. Nygaard for discussions and helpful suggestions during the preparation of the manuscript, and Ragnhild Bieltvedt Skeie for running the Monte Carlo simulation. We also thank two anonymous referees for valuable comments and suggestions. This work was supported by the Research Council of Norway and the Norwegian Ministry of Foreign Affairs. NR 50 TC 17 Z9 18 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2009 VL 43 IS 35 BP 5674 EP 5681 DI 10.1016/j.atmosenv.2009.07.053 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 518DG UT WOS:000271669900013 ER PT J AU Delle Monache, L Weil, J Simpson, M Leach, M AF Delle Monache, Luca Weil, Jeffrey Simpson, Matthew Leach, Marty TI A new urban boundary layer and dispersion parameterization for an emergency response modeling system: Tests with the joint Urban 2003 data set SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Urban parameterization; Dispersion modeling; Emergency response ID PLUME DISPERSION; PLANT CANOPIES; OKLAHOMA-CITY; TURBULENCE; FIELD; OBSTACLES; SIMULATIONS; ARRAYS; INVERSION; TRANSPORT AB A new urban parameterization for a fast-running dispersion prediction modeling system suitable for emergency response situations is introduced. The parameterization represents the urban convective boundary layer in the dispersion prediction system developed by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory. The performance of the modeling system is tested with data collected during the field campaign joint Urban 2003 (JU03), held in July 2003 in Oklahoma City, Oklahoma. Tests were performed using data from three intense operating periods held during daytime slightly unstable to unstable conditions. The system was run in operational mode using the meteorological data that would be available operationally at NARAC to test its effectiveness in emergency response conditions. The new parameterization considerably improves the performance of the original modeling system, by producing a better degree of pattern of correspondence between predictions and observations (as measured by Taylor diagrams), considerably reducing bias, and better capturing directional effects resulting in plume predictions whose shape and size better resemble the observations (via the measure of effectiveness). Furthermore, the new parameterization shows similar skills to urban modeling systems of similar or greater complexity. The parameterization performs the best at the three JU03 sensor arcs (1, 2, and 4 km downwind the release points), with fractional bias values ranging from 0.13 to 0.4, correlation values from 0.45 to 0.71, and centered root-mean-square error being reduced more than 50% in most cases. The urban parameterization has been tested with grid increments of 125, 250, 500 and 1000 m, performing best at 250 and 500 m. Finally, it has been found that representing the point source by a Gaussian distribution with an initial spread of particles leads to a better representation of the initial spread induced by near-source buildings, resulting in lower bias and improved correlation in downtown Oklahoma City. (C) 2009 Elsevier Ltd. Ali rights reserved. C1 [Delle Monache, Luca] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA. [Delle Monache, Luca; Simpson, Matthew; Leach, Marty] Lawrence Livermore Natl Lab, Livermore, CA USA. [Weil, Jeffrey] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Delle Monache, L (reprint author), Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA. EM lucadm@ucar.edu FU Department of Homeland Security [DE-AC52-07NA27344] FX Field data provided by the following joint Urban 2003 (JU03) participants were invaluable for this research effort: NOAA/ARL/FRD, VOLPE, LBNL, WSU, UU, DPG, ANL, and PNNL. We are thankful to Steven Hanna (of Harvard School of Public Health) for helpful discussions on JU03 and fast-running modeling applications in urban environments. We thank John Leone (of LLNL) for his earlier effort to develop an urban parameterization for the ADAPT/LODI modeling system, that greatly facilitated the work presented here. We are also thankful to Hoyt Walker (of LLNL) for preparing all the urban morphological data used in this study, and to Julie Lundquist (of LLNL) for providing data collected at the crane. We are grateful to Carol Makowski (of NCAR) for proof-reading a version of this paper. Reviews by Gayle Sugiyama (of LLNL), Alberto Martilli (of CIEMAT), and two anonymous reviewers were valuable in strengthening the paper. The Department of Homeland Security sponsored the production of this material under the Department of Energy contract DE-AC52-07NA27344 for the management and operation of Lawrence Livermore National Laboratory. NR 53 TC 5 Z9 5 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2009 VL 43 IS 36 BP 5807 EP 5821 DI 10.1016/j.atmosenv.2009.07.051 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 523YJ UT WOS:000272110700011 ER PT J AU Safronova, UI Safronova, AS Beiersdorfer, P AF Safronova, U. I. Safronova, A. S. Beiersdorfer, P. TI Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Na-like W from Ne-like W SO ATOMIC DATA AND NUCLEAR DATA TABLES LA English DT Article ID X-RAY-SPECTRA; DOUBLE-ELECTRON CAPTURE; INNER-SHELL EXCITATION; ION-ATOM COLLISIONS; RATE COEFFICIENTS; RESONANCE LINE; THEORETICAL-ANALYSIS; 3LNL' STATES; BEAM-FOIL; FE-XVII AB Energy levels, radiative transition probabilities, and autoionization rates for 1s(2)2s(2)2p(5)3l'nl, 1s(2)2s(2)p(6)3l'nl (n = 3-7 l <= n - 1) and 1s(2)2s(2)2p(5)4l'nl, 1s(2)2s(2)p(6)4l'nl (n = 4-6 1 <= n - 1) states in Na-like tungsten (W(63+)) are calculated. Cowan's relativistic Hartree-Fock method, the relativistic multiconfiguration method implemented in the Hebrew University Lawrence Livermore Atomic Code, and the relativistic many-body perturbation theory method, are used. Autoionizing levels above the threshold 1s(2)2s(2)2p(6) are considered. It is found that configuration mixing [3sns + 3pnp + 3dnd], [3snp + 3pns + 3pnd + 3dnp] plays an important role for all atomic characteristics. Also strong mixing between states with 2s and 2p holes (1s(2)2s(2)2p(5)3l(1)nl(2) + 1s(2)2s2p(6)3l(3)nl(4)) Occurs. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the excited 1s(2)2s(2)2p(6)nl (n = 3-7, l <= n - 1) states. It is shown that the contribution of the highly excited states is very important for calculation of total DR rates. Contributions from the autoionizing states 1s(2)2s(2)2p(5)3l'nl, 1s(2)2s(2)p(6)3l'nl (n >= 8) and 1s(2)2s(2)2p(5)4l'nl, 1s(2)2s(2)2p(6)4l'nl (n >= 7) to the DR rate coefficients are estimated by extrapolation of all atomic parameters. The orbital angular momentum (l) distribution of the rate coefficients shows a peak at l = 2. The total DR rate coefficient is derived as a function of electron temperature. The dielectronic satellite spectra of W(63+) are important for L-shell diagnostics of very high-temperature laboratory plasmas such as future ITER fusion plasmas. (C) 2009 Elsevier Inc. All rights reserved. C1 [Safronova, U. I.; Safronova, A. S.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Safronova, UI (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. EM usafrono@nd.edu FU National Nuclear Security Administration [DE-FC52-06NA27588, DE-FG02-08ER54951]; DOE [DE-AC52-07NA2344] FX This research was sponsored by the National Nuclear Security Administration under Cooperative agreement DE-FC52-06NA27588 and in part by the Grant DE-FG02-08ER54951. Work at LLNL was performed under auspices of the DOE under Contract No. DE-AC52-07NA2344. We thank Dr. A. Kramida for guidance in the use of his version of the COWAN code. NR 61 TC 28 Z9 32 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0092-640X J9 ATOM DATA NUCL DATA JI Atom. Data Nucl. Data Tables PD NOV PY 2009 VL 95 IS 6 BP 751 EP 785 DI 10.1016/j.adt.2009.04.001 PG 35 WC Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Physics GA 523IB UT WOS:000272064900001 ER PT J AU Bitra, VSP Womac, AR Yang, YT Igathinathane, C Miu, PI Chevanan, N Sokhansanj, S AF Bitra, Venkata S. P. Womac, Alvin R. Yang, Yuechuan T. Igathinathane, C. Miu, Petre I. Chevanan, Nehru Sokhansanj, Shahab TI Knife mill operating factors effect on switchgrass particle size distributions SO BIORESOURCE TECHNOLOGY LA English DT Article DE Screen size; Mass feed rate; Mill speed; Size reduction; Rosin-Rammler equation ID CORN STOVER; BIOMASS; GRIND AB Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin-Rammler function fit the chopped switchgrass size distribution data with an R(2) > 0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced 'strongly fine skewed mesokurtic' particles with 12.7-25.4 mm screens and 'fine skewed mesokurtic' particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Bitra, Venkata S. P.; Womac, Alvin R.; Yang, Yuechuan T.; Miu, Petre I.; Chevanan, Nehru] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Igathinathane, C.] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Womac, AR (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman, Knoxville, TN 37996 USA. EM awomac@utk.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 FU USDA-DOE Biomass Research and Development Initiative [DE-PA36-04GO94002] FX This research was supported in part by USDA-DOE Biomass Research and Development Initiative DE-PA36-04GO94002 and DOE funding through the Southeastern Regional Still Grant Center. NR 31 TC 13 Z9 13 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2009 VL 100 IS 21 BP 5176 EP 5188 DI 10.1016/j.biortech.2009.02.072 PG 13 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 480NP UT WOS:000268742800037 PM 19559601 ER PT J AU Duguid, KB Montross, MD Radtke, CW Crofcheck, CL Wendt, LM Shearer, SA AF Duguid, K. B. Montross, M. D. Radtke, C. W. Crofcheck, C. L. Wendt, L. M. Shearer, S. A. TI Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover SO BIORESOURCE TECHNOLOGY LA English DT Article DE Cellulase; Harvest; Sugar; Digestibility ID BIOMASS; FEATURES; ETHANOL AB Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments. the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This Suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production Costs. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Duguid, K. B.; Montross, M. D.; Crofcheck, C. L.; Shearer, S. A.] Univ Kentucky, Dept Biosyst & Agr Engn, Lexington, KY 40546 USA. [Radtke, C. W.; Wendt, L. M.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Grp, Idaho Falls, ID 83415 USA. [Radtke, C. W.; Wendt, L. M.] Idaho Natl Lab, Biol Syst Grp, Idaho Falls, ID 83415 USA. RP Montross, MD (reprint author), Univ Kentucky, Dept Biosyst & Agr Engn, 128 CE Barnhart Bldg, Lexington, KY 40546 USA. EM montross@bae.uky.edu RI Shearer, Scott/C-8055-2012 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC07-05ID14517] FX The authors thank Alltech, Inc., for generously providing the cellulase and xylanase enzymes for the alkaline hydrolysis work, and Genencor International for providing the Spezyme-CP for use in ethanol SSF. The authors would also like to thank Wei Chen, Brad Blackwelder, Heather Silverman, Cindy Breckenridge, Dylan Laug, and Debby Bruhn for assisting with laboratory work and Dan Schell of the National Renewable Energy Laboratory (NREL) for generously supplying the dilute acid pretreated corn stover control material. The authors would also like to thank the assistance of University of Kentucky Animal Research Center for sample collection and nutrient analyses performed by the University of Kentucky Regulatory Services. This article is published with the approval of the Director of the Kentucky Agricultural Experiment Station and designated paper number 06-05-078. The INL work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 22 TC 24 Z9 25 U1 3 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2009 VL 100 IS 21 BP 5189 EP 5195 DI 10.1016/j.biortech.2009.03.082 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 480NP UT WOS:000268742800038 PM 19560347 ER PT J AU Semlitsch, RD Todd, BD Blomquist, SM Calhoun, AJK Gibbons, JW Gibbs, JP Graeter, GJ Harper, EB Hocking, DJ Hunter, ML Patrick, DA Rittenhouse, TAG Rothermel, BB AF Semlitsch, Raymond D. Todd, Brian D. Blomquist, Sean M. Calhoun, Aram J. K. Gibbons, J. Whitfield Gibbs, James P. Graeter, Gabrielle J. Harper, Elizabeth B. Hocking, Daniel J. Hunter, Malcolm L., Jr. Patrick, David A. Rittenhouse, Tracy A. G. Rothermel, Betsie B. TI Effects of Timber Harvest on Amphibian Populations: Understanding Mechanisms from Forest Experiments SO BIOSCIENCE LA English DT Article DE amphibian; clearcut; forest management; land use; vital rate ID TREEFROGS HYLA-VERSICOLOR; POND-BREEDING AMPHIBIANS; MISSOURI OZARK FORESTS; OAK-HICKORY FORESTS; BUFFER ZONES; PLETHODONTID SALAMANDERS; SILVICULTURAL TREATMENTS; TERRESTRIAL SALAMANDERS; SOUTHERN APPALACHIANS; AMBYSTOMA-TALPOIDEUM AB Harvesting timber is a common form of land use that has the potential to cause declines in amphibian populations. It is essential to understand the behavior and fate of individuals and the resulting consequences for vital rates (birth, death, immigration, emigration) under different forest management conditions. We report on experimental studies conducted in three regions of the United States to identify mechanisms of responses by pond-breeding amphibians to timber harvest treatments. Our studies demonstrate that life stages related to oviposition and larval performance in the aquatic stage are sometimes affected positively by clearcutting, whereas effects on juvenile and adult terrestrial stages are mostly negative. Partial harvest treatments produced both positive and weaker negative responses than clearcut treatments. Mitigating the detrimental effects of canopy removal, higher surface temperature, and loss of soil-litter moisture in terrestrial habitats surrounding breeding ponds is critical to maintaining viable amphibian populations in managed forested landscapes. C1 [Semlitsch, Raymond D.; Harper, Elizabeth B.; Hocking, Daniel J.; Rittenhouse, Tracy A. G.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. [Todd, Brian D.; Gibbons, J. Whitfield; Graeter, Gabrielle J.; Rothermel, Betsie B.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Blomquist, Sean M.; Calhoun, Aram J. K.; Hunter, Malcolm L., Jr.; Patrick, David A.] Univ Maine, Dept Wildlife Ecol, Orono, ME USA. [Gibbs, James P.] SUNY Coll Environm Sci & Forestry, Syracuse, NY 13210 USA. RP Semlitsch, RD (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. EM semlitschr@missouri.edu RI Hocking, Daniel/C-5701-2013; Rothermel, Betsie/L-6774-2013; OI Hocking, Daniel/0000-0003-1889-9184; Semlitsch, Raymond/0000-0002-7999-5762 FU Maine Agriculture and Forest Experiment Station; Missouri Department of Conservation and the US Forest Service Savannah River Site; Frank Thompson of the US Forest Service Central Research Office; National Science Foundation [DEB-0239915, DEB-0239943, DEB-0242874]; US Department of Energy [DE-FC09-07SR22506] FX We thank 33 field assistants for help in constructing fences and enclosures and checking drift fences. We thank Tom Luhring and John Faaborg for comments on this manuscript. This project was supported by the Maine Agriculture and Forest Experiment Station (publication no. 3083), Jeff Briggler and Gus Raeker of the Missouri Department of Conservation and the US Forest Service Savannah River Site, and Frank Thompson of the US Forest Service Central Research Office. Financial support was provided by the National Science Foundation collaborative grants DEB-0239915, DEB-0239943, and DEB-0242874; and by the US Department of Energy through Financial Assistance Award DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 75 TC 104 Z9 105 U1 7 U2 70 PU AMER INST BIOLOGICAL SCI PI WASHINGTON PA 1444 EYE ST, NW, STE 200, WASHINGTON, DC 20005 USA SN 0006-3568 J9 BIOSCIENCE JI Bioscience PD NOV PY 2009 VL 59 IS 10 BP 853 EP 862 DI 10.1525/bio.2009.59.10.7 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 514UB UT WOS:000271420000008 ER PT J AU Nolan, A Donnell, KMC Siurtain, MMC Carroll, JP Finnan, J Rice, B AF Nolan, A. Donnell, K. M. C. Siurtain, M. M. C. Carroll, J. P. Finnan, J. Rice, B. TI Conservation of miscanthus in bale form SO BIOSYSTEMS ENGINEERING LA English DT Article ID QUALITY AB Because of the increased interest in miscanthus as a new source of biomass for energy production and fibre, in 2007 a field experiment was established to determine the optimum storage conditions for miscanthus in round bale form (1.2 m diameter x 1.2 In long). Miscanthus bales were stored under three treatments, outdoor uncovered, outdoor covered and indoor. The miscanthus bales were selected from three stands at three initial moisture conditions (13%, 32% and 39%) wet basis (wb). The storage trial was arranged in a 3 x 3 factorial experiment with two replicates laid out as a completely randomised design. Bale percent moisture content was repeatedly measured. Uncovered bales stored outdoors gained on average 24% moisture (wb), with resultant degradation of the material quality. Bales stored outdoors covered or indoors lost on average 4.3% and 6.8% moisture (wb) respectively. The energy content of bales stored outdoors uncovered was considerably lower than that of bales stored outdoors covered or indoors. The average lower heating value (LHV) of bales stored outdoors uncovered was 9.34 MJ kg(-1) compared to a LHV 15.33 MJ kg(-1) for bales under covered storage. It is concluded that miscanthus bales must be stored under cover either indoors or outdoors using plastic or tarpaulins to prevent deterioration of the bales and for drying to occur. (C) 2009 IAgrE. Published by Elsevier Ltd. All rights reserved. C1 [Nolan, A.; Donnell, K. M. C.] Univ Coll Dublin, UCD Agr & Food Sci Ctr, Dept Biosyst Engn, Dublin 4, Ireland. [Siurtain, M. M. C.] Univ Coll Dublin, Forestry GIS, Dublin 4, Ireland. [Carroll, J. P.; Finnan, J.; Rice, B.] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. RP Nolan, A (reprint author), Univ Coll Dublin, UCD Agr & Food Sci Ctr, Dept Biosyst Engn, Dublin 4, Ireland. EM anthony.nolan@ucd.ie RI Finnan, John/D-1326-2016 NR 18 TC 14 Z9 14 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1537-5110 J9 BIOSYST ENG JI Biosyst. Eng. PD NOV PY 2009 VL 104 IS 3 BP 345 EP 352 DI 10.1016/j.biosystemseng.2009.06.025 PG 8 WC Agricultural Engineering; Agriculture, Multidisciplinary SC Agriculture GA 522TR UT WOS:000272022300007 ER PT J AU Bitra, VSP Womac, AR Yang, YT Miu, PI Igathinathane, C Sokhansanj, S AF Bitra, Venkata S. P. Womac, Aluin R. Yang, Yuechuan T. Miu, Petre I. Igathinathane, C. Sokhansanj, Shahab TI Mathematical model parameters for describing the particle size spectra of knife-milled corn stover SO BIOSYSTEMS ENGINEERING LA English DT Article ID SWITCHGRASS; BIOMASS; PRETREATMENT; GRIND; WHEAT AB Particle size distributions of Corn stover (Zea mays L.) created by a knife mill were determined using integral classifying screens with sizes from 12.7 to 50.8 mm, operating at speeds from 250 to 500 rpm, and mass input rates ranging from I to 9 kg min(-1). Particle distributions were classified using American Society of Agricultural and Biological Engineers (ASABE) standardised sieves for forage analysis that incorporated a horizontal sieving motion. The sieves were made from machined-aluminium with their thickness proportional to the sieve opening dimensions. A wide range of analytical descriptors that could be used to mathematically represent the range of particle sizes in the distributions were examined. The correlation coefficients between geometric mean length and screen size, feed rate, and speed were 0.980, 0.612, and -0.027, respectively. Screen size and feed rate directly influenced particle size, whereas operating speed had a weak indirect relation with particle size. The Rosin-Rammler equation fitted the chopped corn stover size distribution data with coefficient of determination (R(2)) > 0.978. This indicated that particle size distribution of corn stover was well-fit by the Rosin-Rammler function. This can be attributed to the fact that Rosin-Rammler expression was well suited to the skewed distribution of particle sizes. Skewed distributions occurred when significant quantities of particles, either finer or coarser, existed or were removed from region of the predominant size. The mass relative span was slightly greater than 1, which indicated that it was a 'borderline narrow to wide' distribution of particle sizes. The uniformity coefficient was <4.0 for 19.0-50.8 mm screens, which indicated particles of relatively uniform size. Knife mill chopping of corn stover produced 'fine-skewed mesokurtic' particles with 12.7-50.8 mm. screens. Size-related parameters, namely, geometric mean length, Rosin-Rammler size parameter, median length, effective length, and size guide number, were well predicted at R 2 values of 0.981, 0.982, 0.979, 0.950 and 0.978, respectively as a function of knife mill screen size, feed rate, and speed. Results of this analysis of particle sizes could be applied to the selection of knife mill operating parameters to produce a particular size of corn stover chop, and could serve as a guide for the relationships among various analytic descriptors of biomass particle distributions. (C) 2009 IAgrE. Published by Elsevier Ltd. All rights reserved. C1 [Bitra, Venkata S. P.; Womac, Aluin R.; Yang, Yuechuan T.; Miu, Petre I.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Igathinathane, C.] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Womac, AR (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA. EM awomac@utk.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 FU USDA-DOE Biomass Research and Development initiative [DE-PA36-04GO94002]; DOE funding through the South-eastem Regional Sun Grant Centre FX This research was supported in part by USDA-DOE Biomass Research and Development initiative DE-PA36-04GO94002 and DOE funding through the South-eastem Regional Sun Grant Centre. NR 30 TC 4 Z9 5 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1537-5110 J9 BIOSYST ENG JI Biosyst. Eng. PD NOV PY 2009 VL 104 IS 3 BP 369 EP 383 DI 10.1016/j.biosystemseng.2009.08.007 PG 15 WC Agricultural Engineering; Agriculture, Multidisciplinary SC Agriculture GA 522TR UT WOS:000272022300010 ER PT J AU Borole, AP Hamilton, CY Aaron, DS Tsouris, C AF Borole, Abhijeet P. Hamilton, Choo Y. Aaron, Douglas S. Tsouris, Costas TI Investigating Microbial Fuel Cell Bioanode Performance Under Different Cathode Conditions SO BIOTECHNOLOGY PROGRESS LA English DT Article DE biofuel cell; microbial fuel cell; biocatalyst; direct electron transfer; power density; internal resistance; bioanode; PSAV ratio ID SHEWANELLA-ONEIDENSIS DSP10; PROTON-EXCHANGE MEMBRANE; ELECTRICITY-GENERATION; IMPEDANCE SPECTROSCOPY; INTERNAL RESISTANCE; POWER-GENERATION; WASTE-WATER; PH; BIOCATHODE; TRANSPORT AB A compact, three-in-one, flow-through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm-dominated anode consortium enriched under a multimode, continuous-flow regime was used. The increase in the power density of the MFC Was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air-breathing cathode was 56 W/m(3) of net anode volume (590 mW/m(2)) and 203 W/m(3) (2.160 mW/m(2)) with a 50-mM ferricyanide-based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m(3) (3220 mW/m(2), with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5-6 Omega which supported the improved performance of the anode design. A new parameter de. tied as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area-based power densities and to enable comparison of various MFC configurations. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 25: 1630-1636, 2009 C1 [Borole, Abhijeet P.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Hamilton, Choo Y.] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA. [Aaron, Douglas S.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Tsouris, Costas] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Borole, AP (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM borolea@ornl.gov RI Borole, AP/F-3933-2011; Tsouris, Costas/C-2544-2016; OI Tsouris, Costas/0000-0002-0522-1027; Borole, Abhijeet/0000-0001-8423-811X FU Oak Ridge National Laboratory (ORNL); U. S. Department of Energy [DE AC05-00OR22725]; American Chemical Society Green Chemistry Institute (ACS-GCI) FX The authors thank Dr. Hugh O'Neill for his assistance in data collection and analysis. This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE AC05-00OR22725. Douglas Aaron was supported by the American Chemical Society Green Chemistry Institute (ACS-GCI) through a grant to Georgia Institute of Technology. NR 37 TC 9 Z9 9 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 8756-7938 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD NOV-DEC PY 2009 VL 25 IS 6 BP 1630 EP 1636 DI 10.1002/btpr.273 PG 7 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 537ZA UT WOS:000273152000010 PM 19731337 ER PT J AU Berg, LK Berkowitz, CM Ogren, JA Hostetler, CA Ferrare, RA Dubey, MK Andrews, E Coulter, RL Hair, JW Hubbe, JM Lee, YN Mazzoleni, C Olfert, J Springston, SR AF Berg, Larry K. Berkowitz, Carl M. Ogren, John A. Hostetler, Chris A. Ferrare, Richard A. Dubey, Manvendra K. Andrews, Elisabeth Coulter, Richard L. Hair, Johnathan W. Hubbe, John M. Lee, Yin-Nan Mazzoleni, Claudio Olfert, Jason Springston, Stephen R. TI OVERVIEW OF THE CUMULUS HUMILIS AEROSOL PROCESSING STUDY SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID MASS-SPECTROMETER; CLOUD; IMPACTS; FIELD; SIZE; SITE AB The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields in the vicinity of Oklahoma City during June 2007. CHAPS is one of few studies that have had an aerosol mass spectrometer (AMS) sampling downstream of a counterflow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of activated aerosols within the cumuli. The results from CHAPS provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during CHAPS, including the U. S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA Langley King Air B200, which carried the downward-looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol optical properties, profiles of aerosol backscatter, and meteorological conditions, including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of 8 research flights were made by the G-1 and 18 by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses. C1 [Berg, Larry K.; Berkowitz, Carl M.; Hubbe, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ogren, John A.; Andrews, Elisabeth] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Hostetler, Chris A.; Ferrare, Richard A.; Hair, Johnathan W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Dubey, Manvendra K.; Mazzoleni, Claudio] Los Alamos Natl Lab, Los Alamos, NM USA. [Andrews, Elisabeth] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Coulter, Richard L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Lee, Yin-Nan; Olfert, Jason; Springston, Stephen R.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Berg, LK (reprint author), POB 999,MSIN K9-30, Richland, WA 99352 USA. EM larry.berg@pnl.gov RI Dubey, Manvendra/E-3949-2010; Mazzoleni, Claudio/E-5615-2011; Ogren, John/M-8255-2015; Berg, Larry/A-7468-2016 OI Dubey, Manvendra/0000-0002-3492-790X; Ogren, John/0000-0002-7895-9583; Berg, Larry/0000-0002-3362-9492 NR 27 TC 23 Z9 23 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD NOV PY 2009 VL 90 IS 11 BP 1653 EP + DI 10.1175/2009BAMS2760.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 530XU UT WOS:000272627100005 ER PT J AU Dennis, KJ Rugolo, J Murray, LT Parrella, J Romps, DM Holmes, CD House, KZ Lee, BG Winkler, MT Krich, JJ van Nierop, EA AF Dennis, Kate J. Rugolo, Jason Murray, Lee T. Parrella, Justin Romps, David M. Holmes, Christopher D. House, Kurt Z. Lee, Benjamin G. Winkler, Mark T. Krich, Jacob J. van Nierop, Ernst A. TI Should the United States resume reprocessing? A pro and con SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article AB Last summer, 11 Harvard graduate students and postdocs went to France to investigate Areva's spent fuel reprocessing. on the trip, they debated whether the United States should reprocess as well. What resulted was the typical split that has followed this debate for decades. C1 [Dennis, Kate J.; Romps, David M.; Holmes, Christopher D.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [House, Kurt Z.] Cambridge Based C12 Energy, Cambridge, England. [Lee, Benjamin G.] Natl Renewable Energy Lab, Golden, CO USA. [Rugolo, Jason; Murray, Lee T.; Parrella, Justin] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Winkler, Mark T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Krich, Jacob J.] Harvard Univ, Ctr Environm, Cambridge, MA 02138 USA. [van Nierop, Ernst A.] C12 Energy Inc, Cambridge, MA 02141 USA. RP Dennis, KJ (reprint author), Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RI Krich, Jacob/B-4987-2009; Holmes, Christopher/C-9956-2014; Romps, David/F-8285-2011 OI Holmes, Christopher/0000-0002-2727-0954; NR 1 TC 1 Z9 1 U1 1 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD NOV-DEC PY 2009 VL 65 IS 6 BP 30 EP 41 DI 10.2968/065006003 PG 12 WC International Relations; Social Issues SC International Relations; Social Issues GA 624JH UT WOS:000279813200003 ER PT J AU Forsberg, C AF Forsberg, Charles TI The real path to green energy: Hybrid nuclear-renewable power SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article AB A targeted use of nuclear power could solve the major problems of renewable energy sources by providing carbon-emission-free power for biofuel refineries and backup energy for solar, wind, and other renewable sources. C1 [Forsberg, Charles] MIT, Nucl Fuel Cycle Project, Cambridge, MA 02139 USA. [Forsberg, Charles] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Forsberg, C (reprint author), MIT, Nucl Fuel Cycle Project, Cambridge, MA 02139 USA. NR 1 TC 1 Z9 1 U1 3 U2 5 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD NOV-DEC PY 2009 VL 65 IS 6 BP 65 EP 71 DI 10.2968/065006007 PG 7 WC International Relations; Social Issues SC International Relations; Social Issues GA 624JH UT WOS:000279813200007 ER PT J AU Luhrs, CC Garcia, D Tehrani, M Al-Haik, M Taha, MR Phillips, J AF Luhrs, Claudia C. Garcia, Daniel Tehrani, Mehran Al-Haik, Marwan Taha, Mahmoud Reda Phillips, Jonathan TI Generation of carbon nanofilaments on carbon fibers at 550 degrees C SO CARBON LA English DT Article ID LOW-TEMPERATURE SYNTHESIS; ETHYLENE OXIDATION; PLATINUM CATALYSTS; FRACTURE-TOUGHNESS; THIN-FILMS; FILAMENTOUS CARBON; HYDROGEN MIXTURES; NICKEL-CATALYSTS; NANOTUBE GROWTH; OXYGEN MIXTURES AB Employing a relatively new method, in which carbon structures are grown from fuel rich combustion mixtures using palladium particles as catalyst, multi-scale diameter nanometer - micrometer filament structures were grown from ethylene/oxygen mixtures at 550 degrees C on commercial PAN micrometer carbon fibers. The filaments formed had a diameter roughly equal to the palladium particle size. At sufficiently high metal loadings (>0.05 wt.%) a bimodal catalyst size distribution formed, hence a bimodal filament size distribution was generated. Relative short, densely spaced nanofilaments (ca. 10 nm diameter), and a slightly less dense layer of larger (ca. 100 nm diameter) faster growing fibers (ca. 10 mu m/h) were found to exist together to create a unique multi-scale structure. A protocol was developed such that only nano-scale fibers or a mixture of nano and submicron fibers could be produced. No large range order was evident in the filaments. This work demonstrates a unique ability to create a truly 'multi-scale' carbon structure on the surface of carbon fibers. This fiber structure potentially can enhance composite material strength, ductility and energy absorption characteristics. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Luhrs, Claudia C.; Garcia, Daniel; Tehrani, Mehran; Al-Haik, Marwan; Phillips, Jonathan] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Taha, Mahmoud Reda] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. [Phillips, Jonathan] Los Alamos Natl Labs, Los Alamos, NM 87544 USA. RP Luhrs, CC (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM ccluhrs@unm.edu RI Al-Haik, Marwan/L-7732-2014; Phillips, Jonathan/D-3760-2011 OI Al-Haik, Marwan/0000-0001-7465-0274; FU Defense Threat Reduction Agency (DTRA) [HDTRA1-08-1-0017 P00001]; National Science Foundation (NSF) [CMMI-0800249] FX This work has been supported by Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-08-1-0017 P00001 and the National Science Foundation (NSF) Award # CMMI-0800249. The authors gratefully acknowledge this support. The technical help from Dr. Steve Doorn, Los Alamos National Laboratory in performing Raman Spectroscopy is greatly appreciated. NR 48 TC 22 Z9 22 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD NOV PY 2009 VL 47 IS 13 BP 3071 EP 3078 DI 10.1016/j.carbon.2009.07.019 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 498GB UT WOS:000270124100017 ER PT J AU Zhang, YY Stan, L Xu, P Wang, HL Doorn, SK Htoon, H Zhu, YT Jia, QX AF Zhang, Yingying Stan, Liliana Xu, Ping Wang, Hsing-Lin Doorn, Stephen K. Htoon, Han Zhu, Yuntian Jia, Quanxi TI A double-layered carbon nanotube array with super-hydrophobicity SO CARBON LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; GROWTH; MULTILAYERS; ADHESIVES; FILMS AB The growth of double-layered vertical-aligned carbon nanotube (CNT) arrays by a single step chemical vapor deposition is reported. The deactivation and reactivation of catalyst particles may be the cause of such a growth process. An interesting morphology difference between the top and the bottom CNT layers was observed. In contrast to the smooth surface of the top CNT layer, the surface of the bottom layer shows hierarchical structures. The surface structures of the bottom CNT layer allow this surface to exhibit super-hydrophobic properties and excellent self-cleaning abilities. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, Yingying; Stan, Liliana; Xu, Ping; Wang, Hsing-Lin; Doorn, Stephen K.; Htoon, Han; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Zhang, YY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yyzhang@lanl.gov; qxjia@lanl.gov RI Zhu, Yuntian/B-3021-2008; Zhang, Yingying/A-7260-2009; Xu, Ping/I-1910-2013; Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; OI Zhu, Yuntian/0000-0002-5961-7422; Zhang, Yingying/0000-0002-8448-3059; Xu, Ping/0000-0002-1516-4986; Wang, Haiyan/0000-0002-7397-1209; Htoon, Han/0000-0003-3696-2896 FU US Department of Energy (DOE) FX We gratefully acknowledge the support of the US Department of Energy (DOE) through the LANL/LDRD Program. NR 30 TC 10 Z9 11 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD NOV PY 2009 VL 47 IS 14 BP 3332 EP 3336 DI 10.1016/j.carbon.2009.07.056 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 504PA UT WOS:000270627900027 ER PT J AU Somorjai, GA AF Somorjai, Gabor A. TI Heinz Heinemann. The Berkeley Years (1978-1993) SO CATALYSIS LETTERS LA English DT Biographical-Item DE Heinemann; Catalysis AB Heinz Heineman came to Berkeley in 1978 and stayed there for 15 years. This was the time of the energy crisis and we did not have anybody like him who had such a tremendous industrial experience with oil and coal conversion technology and science. He was interested in the conversion of coal to gaseous molecules and our studies with model catalysts appealed to him and attracted him. In a way, Heinz Heineman was bigger than life, since he played such a seminal role in the history of American catalysis science. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu NR 1 TC 0 Z9 0 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD NOV PY 2009 VL 133 IS 1-2 BP 232 EP 233 DI 10.1007/s10562-009-0152-3 PG 2 WC Chemistry, Physical SC Chemistry GA 515CD UT WOS:000271443200033 ER PT J AU Pitcher, HM AF Pitcher, Hugh M. TI Measuring income and projecting energy use SO CLIMATIC CHANGE LA English DT Article AB Energy is a key requirement for a healthy, productive life and a major driver of the emissions leading to an increasingly warm planet. The implications of a doubling and redoubling of per capita incomes over the remainder of this century for energy use are a critical input into understanding the magnitude of the carbon management problem. A substantial controversy about how the Special Report on Emissions Scenarios (SRES) measured income and the potential implications of how income was measured for long term levels of energy use is revisited again in the McKibbin, Pearce and Stegman article appearing elsewhere in this issue. The recent release of a new set of purchasing power estimates of national income, and the preparations for creating new scenarios to support the IPCC's fifth assessment highlight the importance of the issues which have arisen surrounding income and energy use. Comparing the 1993 and 2005 ICP results on Purchasing Power Parity (PPP) based measures of income reveals that not only do the 2005 ICP estimates share the same issue of common growth rates for real income as measured by PPP and US $, but the lack of coherence in the estimates of PPP incomes, especially for developing countries raises yet another obstacle to resolving the best way to measure income. Further, the common use of an income term to mediate energy demand (as in the Kaya identity) obscures an underlying reality about per capita energy demands, leading to unreasonable estimates of the impact of changing income measures and of the recent high GDP growth rates in India and China. Significant new research is required to create both a reasonable set of GDP growth rates and long term levels of energy use. C1 [Pitcher, Hugh M.] Joint Global Change Res Inst, College Pk, MD 20740 USA. [Pitcher, Hugh M.] Univ Maryland, Pacific NW Natl Lab, College Pk, MD 20742 USA. RP Pitcher, HM (reprint author), Joint Global Change Res Inst, 5825 Univ Res Court, College Pk, MD 20740 USA. EM hugh.pitcher@pnl.gov NR 16 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2009 VL 97 IS 1-2 BP 49 EP 58 DI 10.1007/s10584-009-9696-x PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 508ZM UT WOS:000270979600004 ER PT J AU Barlow, RS Ozarovsky, HC Karpetis, AN Lindstedt, RP AF Barlow, R. S. Ozarovsky, H. C. Karpetis, A. N. Lindstedt, R. P. TI Piloted jet flames of CH4/H-2/air: Experiments on localized extinction in the near field at high Reynolds numbers SO COMBUSTION AND FLAME LA English DT Article DE Turbulent jet flames; Piloted flames; Local extinction; Scalar measurements ID TURBULENT NONPREMIXED FLAMES; CONDITIONAL MOMENT CLOSURE; LARGE-EDDY SIMULATIONS; SCALAR DISSIPATION; DENSITY-FUNCTION; DIFFUSION FLAMES; PDF CALCULATIONS; LENGTH SCALES; COMBUSTION; CHEMISTRY AB Measurements of temperature and major species concentrations, based on the Simultaneous line-imaged Raman/Rayleigh/CO-LIF technique, are reported for piloted jet flames of CH4/H-2 fuel with varying amounts of partial premixing with air (jet equivalence ratios of phi(j) = 3.2. 2.5, 2.1 corresponding to stoichiometric mixture fraction values of xi(t) = 0.35, 0.43, 0.50, respectively) and varying degrees of localized extinction. Each jet flame is operated at a fixed and relatively high exit Reynolds number (60,000 or 67,000), and the probability of localized extinction is increased in several steps by Progressively decreasing the flow rate of the pilot flame. Dimensions of the piloted burner, originally developed at Sydney University, are the same as for previous studies. The present measurements complement previous results from piloted CH4/air jet flames as targets for combustion model calculations by extending to higher Reynolds number, including more steps in the progression of each flame from a fully burning state to a flame with high probability of local extinction, and adding the degree of partial premixing as an experimental parameter. Local extinction in these flames occurs close to the nozzle near a downstream location of four times the jet exit diameter. Consequently, these data provide the additional modeling challenge of accurately representing the initial development of the reacting jet and the near-field mixing processes. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Barlow, R. S.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Ozarovsky, H. C.; Lindstedt, R. P.] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. [Karpetis, A. N.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX USA. RP Barlow, RS (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM barlow@sandia.gov RI Barlow, Robert/C-2364-2013; OI Lindstedt, Rune/0000-0002-6176-2733 FU Division of Chemical Sciences, Geosciences and Biosciences; Office of Basic Energy Sciences, US Department of Energy; Sandia National Laboratories; Lockheed Martin Company; United States Department of Energy [DE-AC04-94-AL85000]; Imperial College [N00014-05-1-0160, N00014-07-1-0993] FX Work performed at Sandia was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Sandia National Laboratories is a multiprograrn laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. The work performed at Imperial College was supported by the Office of Naval Research under awards N00014-05-1-0160 and N00014-07-1-0993. The encouragement of Dr. G. Roy is gratefully acknowledged. NR 36 TC 13 Z9 13 U1 0 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2009 VL 156 IS 11 BP 2117 EP 2128 DI 10.1016/j.combustflame.2009.04.005 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 504CE UT WOS:000270590400008 ER PT J AU Hansen, N Miller, JA Westmoreland, PR Kasper, T Kohse-Hoinghaus, K Wang, J Cool, TA AF Hansen, Nils Miller, James A. Westmoreland, Phillip R. Kasper, Tina Kohse-Hoeinghaus, Katharina Wang, Juan Cool, Terrill A. TI Isomer-specific combustion chemistry in allene and propyne flames SO COMBUSTION AND FLAME LA English DT Article DE Low-pressure flame; Allene; Propyne; Flame modeling; Benzene formation ID PHOTOIONIZATION MASS-SPECTROMETRY; AROMATIC-HYDROCARBON FORMATION; FUEL-RICH FLAMES; STOICHIOMETRIC CYCLOHEXANE FLAME; PROPARGYL RADICALS; REACTION PATHWAYS; BENZENE FORMATION; MASTER EQUATION; ALIPHATIC FUELS; RATE CONSTANTS AB A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry inflames fueled by the C(3)H(4) isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O(2)/Ar flames are analyzed by means of a chemical kinetic model, The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C(6) aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C(3)H(5) potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstem, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Hansen, Nils; Miller, James A.; Kasper, Tina] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Westmoreland, Phillip R.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Kasper, Tina; Kohse-Hoeinghaus, Katharina] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Wang, Juan; Cool, Terrill A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. RP Hansen, N (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM nhansen@sandia.gov RI Kohse-Hoinghaus, Katharina/A-3867-2012; Hansen, Nils/G-3572-2012; Kasper, Tina/A-2975-2017 OI Kasper, Tina/0000-0003-3993-5316 FU Office of Basic Energy Sciences (BES); US Department of Energy (USDOE) [DE-FG02-91ER14192, DE-FG02-01ER1518 (TAC)]; Chemical Science Division, US Army Research Office (TAC); DFG [KO 1363/18-3]; Sandia Corporation [DE-AC04-94-AL85000]; US-DOE/BES [DE-AC02-05CH11231]; Ford Motor Company FX We thank Paul Fugazzi and Kevin Wilson for technical assistance. This work is supported by the Office of Basic Energy Sciences (BES), US Department of Energy (USDOE), under DE-FG02-91ER14192 (PRW) and DE-FG02-01ER1518 (TAC), the Chemical Science Division, US Army Research Office (TAC), and by the DFG under KO 1363/18-3 (KKH). Sandia is a multi-program laboratory operated by Sandia Corporation for NNSA under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by US-DOE/BES under DE-AC02-05CH11231. Ford Motor Company is gratefully acknowledged for supplying the propyne. NR 71 TC 66 Z9 67 U1 9 U2 59 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2009 VL 156 IS 11 BP 2153 EP 2164 DI 10.1016/j.combustflame.2609.07.014 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 504CE UT WOS:000270590400011 ER PT J AU Oehlschlaeger, MA Steinberg, J Westbrook, CK Pitz, WJ AF Oehlschlaeger, Matthew A. Steinberg, Justin Westbrook, Charles K. Pitz, William J. TI The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: Shock tube experiments and kinetic modeling SO COMBUSTION AND FLAME LA English DT Article DE Shock tube; Ignition; Iso-cetane; 2,2,4,4,6,8,8 heptamethylnonane; Kinetic modeling; Mechanism ID RAPID COMPRESSION MACHINE; IGNITION DELAY TIMES; N-HEPTANE; ISOOCTANE IGNITION; SELF-IGNITION; OXIDATION; FUELS; MIXTURES; COMBUSTION; ISOMERS AB Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C(16)H(34)) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in Surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for Phi = 0.5, 1.0, and 1.5 iso-cetane/air Mixtures at temperatures ranging from 879 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements for iso-cetane presented here are the first of their kind. (C) 2009 The Combustion Institute, Published by Elsevier Inc. All rights reserved. C1 [Oehlschlaeger, Matthew A.; Steinberg, Justin] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Westbrook, Charles K.; Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Oehlschlaeger, MA (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St,JEC 2049, Troy, NY 12180 USA. EM oehlsm@rpi.edu RI Oehlschlaeger, Matthew/C-5745-2009 OI Oehlschlaeger, Matthew/0000-0003-3174-9615 FU U.S. Air Force Office of Scientific Research [FA9550-07-1-0114]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The Rensselaer group was supported by the U.S. Air Force Office of Scientific Research (Grant No. FA9550-07-1-0114) with Dr. Julian Tishkoff as technical monitor. M.A.O. and J.S. are grateful to Michael Tung and Matthew Wilcox for assistance with the shock tube measurements. The computational work in this paper was performed under the auspices of the US Department of Energy, Office of Vehicle Technologies, by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, with Gurpreet Singh and Kevin Stork as program managers. NR 38 TC 45 Z9 47 U1 1 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2009 VL 156 IS 11 BP 2165 EP 2172 DI 10.1016/j.combustflame.2009.05.007 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 504CE UT WOS:000270590400012 ER PT J AU Hoisie, A Getov, V AF Hoisie, Adolfy Getov, Vladimir TI EXTREME-SCALE COMPUTING-WHERE 'JUST MORE OF THE SAME' DOES NOT WORK INTRODUCTION SO COMPUTER LA English DT Editorial Material AB In addition to enabling science through simulations at unprecedented size and fidelity, extreme-scale computing serves as an incubator of scientific and technological ideas for the computing area in general. C1 [Hoisie, Adolfy] Los Alamos Natl Lab, CAAUS, Los Alamos, NM 87545 USA. [Hoisie, Adolfy] Los Alamos Natl Lab, Comp Sci High Performance Comp Grp, Los Alamos, NM 87545 USA. [Getov, Vladimir] Univ Westminster, London W1R 8AL, England. RP Hoisie, A (reprint author), Los Alamos Natl Lab, CAAUS, Los Alamos, NM 87545 USA. EM hoisie@lanl.gov; v.s.getov@westminster.ac.uk NR 0 TC 1 Z9 1 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD NOV PY 2009 VL 42 IS 11 BP 24 EP 26 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 518TC UT WOS:000271715300012 ER PT J AU Barker, KJ Davis, K Hoisie, A Kerbyson, DJ Lang, M Pakin, S Sancho, JC AF Barker, Kevin J. Davis, Kei Hoisie, Adolfy Kerbyson, Darren J. Lang, Michael Pakin, Scott Carlos Sancho, Jose TI USING PERFORMANCE MODELING TO DESIGN LARGE-SCALE SYSTEMS SO COMPUTER LA English DT Article AB A methodology for accurately modeling large applications explores the performance of ultrascale systems at different stages in their life cycle, from early design through production use. C1 [Barker, Kevin J.; Davis, Kei; Kerbyson, Darren J.] Los Alamos Natl Lab, PAL, Comp Sci High Performance Comp Grp CCS I, Los Alamos, NM 87545 USA. [Hoisie, Adolfy] Los Alamos Natl Lab, Comp Sci HPC Grp, Los Alamos, NM 87545 USA. [Hoisie, Adolfy] Los Alamos Natl Lab, Ctr Adv Architectures & Usable Supercomp, Los Alamos, NM 87545 USA. [Lang, Michael] Los Alamos Natl Lab, PAL, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. RP Barker, KJ (reprint author), Los Alamos Natl Lab, PAL, Comp Sci High Performance Comp Grp CCS I, Los Alamos, NM 87545 USA. EM kjbarker@lanl.gov; kei@lanl.gov; hoisie@lanl.gov; djk@lanl.gov; mlang@lanl.gov; pakin@lanl.gov; jcsancho@lanl.gov RI Sancho , Jose Carlos/B-3125-2016; OI Sancho , Jose Carlos/0000-0002-6917-9155; Pakin, Scott/0000-0002-5220-1985 FU Advanced Simulation and Computing (ASC); Office of Science of the Department of Energy [DE-AC52-06NA25396] FX We thank Steve Louis at Lawrence Livermore National Laboratory for dedicated access to the Dawn Blue Gene/P system. This work was funded in part by the Advanced Simulation and Computing (ASC) program and the Office of Science of the Department of Energy. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the US Department of Energy under contract DE-AC52-06NA25396. NR 7 TC 17 Z9 17 U1 1 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD NOV PY 2009 VL 42 IS 11 BP 42 EP 49 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 518TC UT WOS:000271715300016 ER PT J AU Wilde, M Foster, I Iskra, K Beckman, P Zhang, Z Espinosa, A Hategan, M Clifford, B Raicu, I AF Wilde, Michael Foster, Ian Iskra, Kamil Beckman, Pete Zhang, Zhao Espinosa, Allan Hategan, Mihael Clifford, Ben Raicu, Ioan TI PARALLEL SCRIPTING FOR APPLICATIONS AT THE PETASCALE AND BEYOND SO COMPUTER LA English DT Article AB Scripting accelerates and simplifies the composition of existing codes to form more powerful applications. Parallel scripting extends this technique to allow for the rapid development of highly parallel applications that can run efficiently on platforms rang-ring from multicore workstations to petascale supercomputers. C1 [Wilde, Michael; Foster, Ian; Iskra, Kamil; Beckman, Pete; Hategan, Mihael; Clifford, Ben] Univ Chicago, Argonne Natl Lab, Computat Inst, Chicago, IL 60637 USA. [Wilde, Michael; Iskra, Kamil; Beckman, Pete] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Zhang, Zhao; Espinosa, Allan] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. RP Wilde, M (reprint author), Univ Chicago, Argonne Natl Lab, Computat Inst, Chicago, IL 60637 USA. EM wilde@mcs.anl.gov; foster@anl.gov; iskra@mcs.anl.gov; beckman@mcs.anl.gov; zhaozhang@wuchicago.edu; aespinosa@cs.uchicago.edu; hategan@mcs.anl.gov; benc@hawaga.org.uk; iraicu@eecs.northwestern.edu NR 16 TC 26 Z9 26 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD NOV PY 2009 VL 42 IS 11 BP 50 EP 60 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 518TC UT WOS:000271715300017 ER PT J AU Donofrio, D Oliker, L Shalf, J Wehner, MF Rowen, C Krueger, J Kamil, S Mohiyuddin, M AF Donofrio, David Oliker, Leonid Shalf, John Wehner, Michael F. Rowen, Chris Krueger, Jens Kamil, Shoaib Mohiyuddin, Marghoob TI ENERGY-EFFICIENT COMPUTING FOR EXTREME-SCALE SCIENCE SO COMPUTER LA English DT Article AB A many-core processor design for high-performance systems draws from embedded computing's low-power architectures and design processes, providing a radical alternative to cluster solutions. C1 [Donofrio, David; Oliker, Leonid; Wehner, Michael F.] Lawrence Berkeley Natl Lab, Future Technol Grp, Berkeley, CA USA. [Kamil, Shoaib; Mohiyuddin, Marghoob] Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA. [Mohiyuddin, Marghoob] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. RP Donofrio, D (reprint author), Lawrence Berkeley Natl Lab, Future Technol Grp, Berkeley, CA USA. EM ddonofrio@lbl.gov; loliker@lbl.gov; jshalf@lbl.gov; mfwehner@lbl.gov; rowen@tensilica.com; jtkrueger@lbl.gov; skamil@eecs.berkeley.edu; marghoob@eecs.berkeley.edu FU Office of Advanced Scientific Computing Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX We thank Mark Horowitz and the rest of the Smart Memories Team of Stanford University for early support and advice. We thank the Berkeley Wireless Research Center for early and ongoing assistance with the RAMP platform. We thank Dave Randall's modeling group in the Department of Atmospheric Science at Colorado State University for early access to their icosahedral model. Finally, we would like to acknowledge the Berkeley ParLab and the View from Berkeley discussion that led us to take this direction for HPC architecture. All authors from LBNL were supported by the Office of Advanced Scientific Computing Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231. NR 11 TC 24 Z9 24 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD NOV PY 2009 VL 42 IS 11 BP 62 EP 71 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 518TC UT WOS:000271715300018 ER PT J AU Huang, JF Jia, J Zhang, B AF Huang, Jingfang Jia, Jun Zhang, Bo TI FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Fast multipole method; Screened Coulomb potential; Yukawa potential; Diagonal translation; Exponential sums ID ELECTROSTATIC INTERACTIONS; 3 DIMENSIONS; ALGORITHM; COMPUTATION; SIMULATION; SYSTEMS AB A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of N particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at http://www.fastmultipole.org/. This paper is a brief review of the program and its performance. C1 [Huang, Jingfang; Zhang, Bo] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA. [Jia, Jun] Oak Ridge Natl Lab, Computat Math Grp, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Zhang, B (reprint author), Univ N Carolina, Dept Math, CB 3250,Phillips Hall, Chapel Hill, NC 27599 USA. EM zhangb@email.unc.edu FU NSF [NSF0811130, NSF0411920]; NSF Center of Theoretical Biological Physics; Institute for Mathematics and Its Applications; U.S. Department of Energy, the division of Basic Energy Science, Office of Science [DE-AC05-000R22725]; Office of Advanced Scientific Computing, Applied Mathematics Program of SciDAC FX We would like to express our gratitude to Prof Leslie Greengard at the Courant Institute of Mathematical Sciences, Professor Vladimir Rokhlin at Yale, and members in their groups. Without their help and encouragements, this package is simply impossible. J.H. and B.Z. were supported by NSF (NSF0811130 and NSF0411920), and the NSF Center of Theoretical Biological Physics (CTBP) and Institute for Mathematics and Its Applications (IMA). JJ. was partially supported by the Scientific Discovery through Advanced Computing (SciDAC) program of the U.S. Department of Energy, the division of Basic Energy Science, Office of Science, under contract number DE-AC05-000R22725 with Oak Ridge National Laboratory, and the Office of Advanced Scientific Computing, Applied Mathematics Program of SciDAC. Their support is thankfully acknowledged. NR 20 TC 11 Z9 12 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2009 VL 180 IS 11 BP 2331 EP 2338 DI 10.1016/j.cpc.2009.06.028 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 540TY UT WOS:000273363700024 ER PT J AU Dobaczewski, J Satula, W Carlsson, BG Engel, J Olbratowski, P Powalowski, P Sadziak, M Sarich, J Schunck, N Staszczak, A Stoitsov, M Zalewski, M Zdunczuk, H AF Dobaczewski, J. Satula, W. Carlsson, B. G. Engel, J. Olbratowski, P. Powalowski, P. Sadziak, M. Sarich, J. Schunck, N. Staszczak, A. Stoitsov, M. Zalewski, M. Zdunczuk, H. TI Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.40h): A new version of the program SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article ID ANGULAR-MOMENTUM PROJECTION; 2-LEVEL MODEL; NUCLEI; APPROXIMATION; RESTORATION; SYMMETRY; SYSTEMS; MOTION AB We describe the new version (v2.40h) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments. (viii) the D(2h)(T) transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected three insignificant errors. C1 [Dobaczewski, J.; Satula, W.; Olbratowski, P.; Zalewski, M.; Zdunczuk, H.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.; Carlsson, B. G.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Engel, J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Powalowski, P.; Sadziak, M.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. [Sarich, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schunck, N.; Staszczak, A.; Stoitsov, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Schunck, N.; Staszczak, A.; Stoitsov, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Staszczak, A.] Marie Curie Sklodowska Univ, Dept Theoret Phys, PL-20031 Lublin, Poland. [Stoitsov, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. RP Dobaczewski, J (reprint author), Univ Warsaw, Inst Theoret Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. EM jacek.dobaczewski@fuw.edu.pl OI Schunck, Nicolas/0000-0002-9203-6849 NR 33 TC 47 Z9 47 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2009 VL 180 IS 11 BP 2361 EP 2391 DI 10.1016/j.cpc.2009.08.009 PG 31 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 540TY UT WOS:000273363700028 ER PT J AU Jamshidi, M AF Jamshidi, Mo TI Special Issue: High Performance Computing Architectures SO COMPUTERS & ELECTRICAL ENGINEERING LA English DT Editorial Material C1 [Jamshidi, Mo] Univ Texas Syst, San Antonio, TX USA. [Jamshidi, Mo] Univ New Mexico, Ctr Autonomous Control Engn, Albuquerque, NM 87131 USA. [Jamshidi, Mo] Univ Texas San Antonio, San Antonio, TX USA. [Jamshidi, Mo] UNM, ECE, Albuquerque, NM USA. [Jamshidi, Mo] NASA, Washington, DC USA. [Jamshidi, Mo] US DOE, Washington, DC 20585 USA. RP Jamshidi, M (reprint author), Univ Texas Syst, San Antonio Campus, San Antonio, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7906 J9 COMPUT ELECTR ENG JI Comput. Electr. Eng. PD NOV PY 2009 VL 35 IS 6 BP III EP IV PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 523YK UT WOS:000272110800001 ER PT J AU Tan, L Allen, TR AF Tan, L. Allen, T. R. TI Localized corrosion of magnetite on ferritic-martensitic steels exposed to supercritical water SO CORROSION SCIENCE LA English DT Article DE Stainless steels; Interfaces; High temperature corrosion; Sulphide; Localized corrosion ID STAINLESS-STEELS; HCM12A AB Magnetite usually forms on ferritic-martensitic (F-M) stainless steels as a protective barrier when the steels are exposed to supercritical water (SCW). However, a novel localized corrosion was observed on magnetite induced by adsorbed Cu(2)S. The morphology and chemistry of the localized corrosion were studied by means of scanning electron microscopy, focused-ion beam, energy dispersive X-ray spectroscopy, and Auger electron spectroscopy. The mechanism of the development of the localized corrosion is elucidated in this paper. The presence of Cu(2)S Or related species should be eliminated for the applications of F-M stainless steels in SCW environment. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tan, L.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Tan, L (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008 MS6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 FU Idaho National Laboratory; US Department of Energy Generation IV Initiative FX This work was supported by the Idaho National Laboratory as part of the US Department of Energy Generation IV Initiative. This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison. NR 16 TC 4 Z9 6 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD NOV PY 2009 VL 51 IS 11 BP 2503 EP 2507 DI 10.1016/j.corsci.2009.08.021 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 522ST UT WOS:000272019700001 ER PT J AU Fernandez-Saavedra, R Aranda, P Carrado, KA Sandi, G Seifert, S Ruiz-Hitzky, E AF Fernandez-Saavedra, Rocio Aranda, Pilar Carrado, Kathleen A. Sandi, Giselle Seifert, Soenke Ruiz-Hitzky, Eduardo TI Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices SO CURRENT NANOSCIENCE LA English DT Article DE Imogolite; sepiolite; porous alumina membranes; polyacrylonitirile; nanostructured carbons; electrochemical devices ID VAPOR-DEPOSITION POLYMERIZATION; CLAY NANOCOMPOSITES; CONDUCTING POLYMERS; ELECTRODE MATERIALS; NANOPOROUS ALUMINA; LITHIUM BATTERIES; SEPIOLITE; IMOGOLITE; NANOTUBES; CARBONS AB Novel conducting nanostructured carbonaceous materials of various microstructures have been successfully prepared from nanocomposites containing polyacrylonitrile (PAN) inside the nanosized pores of imogolite, sepiolite and porous alumina membrane templates. The synthesis and electrochemical characterization of the PAN-inorganic porous solid nanocomposites, as well as their carbonaceous derivatives produced after removal of the matrix, have been studied by CHN elemental chemical analysis, thermal analysis (TG-DTA), specific surface area and porosity determinations (N(2) isotherms), X-ray diffractometry, FTIR, Small-Angle X-ray Scattering (SAXS), SEM, TEM and Electrochemical Impedance Spectroscopy (EIS). The properties of the carbonaceous materials as electroactive materials in electrochemical devices such as rechargeable Li-ion batteries and Electrochemical Double-Layer Capacitors (EDLC) are reported. The main objective of this work is to study the influence of the template used for the preparation of different carbonaceous materials on their physical-chemical characteristics as well as their electrochemical properties, including their behaviour as electrode materials for Li-ion batteries and EDLC capacitors. C1 [Fernandez-Saavedra, Rocio; Aranda, Pilar; Ruiz-Hitzky, Eduardo] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain. [Carrado, Kathleen A.; Sandi, Giselle; Seifert, Soenke] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ruiz-Hitzky, E (reprint author), CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain. EM eduardo@icmm.csic.es RI Ruiz-Hitzky, Eduardo/G-2727-2010; Aranda, Pilar/G-2765-2010; OI Ruiz-Hitzky, Eduardo/0000-0003-4383-7698; Aranda, Pilar/0000-0003-2196-0476 FU CICYT (Spain) [MAT2006-03356, MAT2009-]; Comunidad de Madrid (Spain) [S-0505/MAT/000227]; CICYT; U. S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the CICYT (Spain; project MAT2006-03356 and MAT2009-) and by the Comunidad de Madrid (Spain; project S-0505/MAT/000227). R.F.-S. acknowledges a fellowship from the CICYT. We also acknowledge Dr. M. A. Martin-Luengo and Mr. T. Garc a for specific surface area measurements, Mr. F. Pinto and Ms. S. Paniagua for SEM and TEM images acquisition and F. Fernandes for figure 1 development. This work, including use of the Advanced Photon Source at Argonne National Laboratory, was also supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 66 TC 8 Z9 8 U1 4 U2 26 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1573-4137 J9 CURR NANOSCI JI Curr. Nanosci. PD NOV PY 2009 VL 5 IS 4 BP 506 EP 513 PG 8 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics; Materials Science GA 514IB UT WOS:000271386500017 ER PT J AU Alquier, T Peyot, ML Latour, MG Kebede, M Sorensen, CM Gesta, S Kahn, CR Smith, RD Jetton, TL Metz, TO Prentki, M Poitout, V AF Alquier, Thierry Peyot, Marie-Line Latour, Martin G. Kebede, Melkam Sorensen, Christina M. Gesta, Stephane Kahn, C. Ronald Smith, Richard D. Jetton, Thomas L. Metz, Thomas O. Prentki, Marc Poitout, Vincent TI Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets SO DIABETES LA English DT Article ID PROTEIN-COUPLED RECEPTOR; FATTY-ACID STIMULATION; PANCREATIC BETA-CELLS; RAT ISLETS; EXPRESSION; PHOSPHOLIPASE-A(2); MODULATION; ACTIVATION; STARVATION; CALCIUM AB OBJECTIVE-The G-protein-coupled receptor GPR40 mediates fatty acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. RESEARCH DESIGN AND METHODS-Insulin secretion and sensitivity were assessed in GPR40 knockout mice and their wild-type littermates by hyperglycemic clamps and hyperinsulinemic euglycemic clamps, respectively. Transcriptomic analysis, metabolic studies, and lipid profiling were used to ascertain whether GPR40 modulates intracellular fuel metabolism in islets. RESULTS-Both glucose- and arginine-stimulated insulin secretion in vivo were decreased by similar to 60% in GPR40 knockout fasted and fed mice, without changes in insulin sensitivity. Neither gene expression profiles nor intracellular metabolism of glucose and palmitate in isolated islets were affected by GPR40 deletion. Lipid profiling of isolated islets revealed that the increase in triglyceride and decrease in lyso-phosphatidylethanolamine species in response to palmitate in vitro was similar in wild-type and knockout islets. In contrast, the increase in intracellular inositol phosphate levels observed in wild-type islets in response to fatty acids in vitro was absent in knockout islets. CONCLUSIONS-These results indicate that deletion of GPR40 impairs insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism in islets, via a mechanism that may involve the generation of inositol phosphates downstream of GPR40 activation. Diabetes 58:2607-2615, 2009 C1 [Alquier, Thierry; Peyot, Marie-Line; Latour, Martin G.; Kebede, Melkam; Prentki, Marc; Poitout, Vincent] Univ Montreal, Montreal Univ Hosp, Res Ctr, Montreal Diabet Res Ctr, Montreal, PQ, Canada. [Alquier, Thierry; Kebede, Melkam; Poitout, Vincent] Univ Montreal, Dept Med, Montreal, PQ H3C 3J7, Canada. [Sorensen, Christina M.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Gesta, Stephane; Kahn, C. Ronald] Joslin Diabet Ctr, Boston, MA 02215 USA. [Gesta, Stephane; Kahn, C. Ronald] Harvard Univ, Sch Med, Boston, MA USA. [Jetton, Thomas L.] Univ Vermont, Coll Med, Div Endocrinol Diabet & Metab, Burlington, VT USA. [Prentki, Marc] Univ Montreal, Dept Nutr, Montreal, PQ H3C 3J7, Canada. RP Poitout, V (reprint author), Univ Montreal, Montreal Univ Hosp, Res Ctr, Montreal Diabet Res Ctr, Montreal, PQ, Canada. EM vincent.poitout@umontreal.ca OI Alquier, Thierry/0000-0001-8171-802X; Metz, Tom/0000-0001-6049-3968; Poitout, Vincent/0000-0002-6555-5053 FU National Institutes of Health [R21-DK070598, R01-DK068329, R33-DK070146]; Canadian Institutes of Health Research [MOP 177381]; Canadian Diabetes Association; DOE [DE-AC06-76LO-1830] FX This work was supported by National Institutes of Health Grants R21-DK070598 to V.P., R01-DK068329 to T.L.J., and R33-DK070146 to R.D.S. and T.O.M. and the Canadian Institutes of Health Research (MOP 177381 to V.P.). T.A. was supported by a postdoctoral fellowship from the Canadian Diabetes Association. V.P. holds the Canada Research Chair in Diabetes and Pancreatic P-Cell Function. M.P. holds the Canada Research Chair in Diabetes and Metabolism. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the DOE under contract no. DE-AC06-76LO-1830. NR 39 TC 67 Z9 68 U1 0 U2 5 PU AMER DIABETES ASSOC PI ALEXANDRIA PA 1701 N BEAUREGARD ST, ALEXANDRIA, VA 22311-1717 USA SN 0012-1797 J9 DIABETES JI Diabetes PD NOV PY 2009 VL 58 IS 11 BP 2607 EP 2615 DI 10.2337/db09-0362 PG 9 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 515RQ UT WOS:000271490900022 PM 19720802 ER PT J AU Lucas, IT Pollak, E Kostecki, R AF Lucas, Ivan T. Pollak, Elad Kostecki, Robert TI In situ AFM studies of SEI formation at a Sn electrode SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Li-ion battery; Sn anode; SEI layer; In situ AFM ID TIN-BASED INTERMETALLICS; LITHIUM; ANODES; BATTERIES AB Early stages of the solid electrolyte interphase (SEI) formation at a tin foil electrode in an ethylene carbonate (EC) based electrolyte were investigated by in situ AFM and cyclic voltammetry (CV) at potentials >0.7 V, i.e., above the potential of Sn-Li alloying. We detected and observed initial steps of the surface film formation at similar to 2.8 V vs. Li/Li(+) followed by gradual film morphology changes at potentials 0.7 < U < 2.5 V. The SEI layer undergoes continuous reformation during the following CV cycles between 0.7 and 2.5 V. The surface film on Sn does not effectively prevent the electrolyte reduction and a large fraction of the reaction products dissolve in the electrolyte. The unstable SEI layer on Sn in EC-based electrolytes may compromise the use of tin-based anodes in Li-ion battery systems unless the interfacial chemistry of the electrode and/or electrolyte is modified. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lucas, Ivan T.; Pollak, Elad; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM r_kostecki@lbl.gov RI LUCAS, Ivan /S-5742-2016 OI LUCAS, Ivan /0000-0001-8930-0437 FU Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. NR 14 TC 66 Z9 67 U1 7 U2 99 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2009 VL 11 IS 11 BP 2157 EP 2160 DI 10.1016/j.elecom.2009.09.019 PG 4 WC Electrochemistry SC Electrochemistry GA 524AG UT WOS:000272115600021 ER PT J AU Park, CM Chang, WS Jung, H Kim, JH Sohn, HJ AF Park, Cheol-Min Chang, Won-Seok Jung, Heechul Kim, Jae-Hun Sohn, Hun-Joon TI Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium secondary batteries; Electrochemistry; Sn-based composite; Rutile TiO2 ID RECHARGEABLE LITHIUM BATTERIES; NANOCRYSTALLINE RUTILE TIO2; ROOM-TEMPERATURE; HIGH-CAPACITY; STORAGE; INSERTION; NANOCOMPOSITE; ELECTRODE; SNO2 AB A nanostructured Sn/TiO2/C composite was prepared from SnO, Ti, and carbon powders using a mechanochemical reduction method and evaluated as an anode material in rechargeable Li-ion batteries. The Sn/TiO2/C nanocomposite was composed of uniformly dispersed nanocrystalline Sn and rutile TiO2 in amorphous carbon matrix. In addition, electrochemical Li insertion/extraction in rutile TiO2 was examined by ex situ XRD and extended X-ray absorption fine structure. The Sn/TiO2/C nanocomposite exhibited excellent electrochemical performance, which highlights its potential as a new alternative anode material in Li-ion batteries. (C) 2009 Elsevier B.V. All rights reserved. C1 [Park, Cheol-Min; Chang, Won-Seok; Jung, Heechul; Sohn, Hun-Joon] Seoul Natl Univ, Dept Mat Sci & Engn, Res Ctr Energy Convers & Storage, Seoul 151742, South Korea. [Kim, Jae-Hun] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Sohn, HJ (reprint author), Seoul Natl Univ, Dept Mat Sci & Engn, Res Ctr Energy Convers & Storage, San 56-1, Seoul 151742, South Korea. EM hjsohn@snu.ac.kr OI Kim, Jae-Hun/0000-0001-6537-0350; Park, Cheol-Min/0000-0001-8204-5760; Kim, Jae-Hun/0000-0002-4252-2590 FU Korea Science and Engineering Foundation (KOSEF) through the Research Center for Energy Conversion and Storage at Seoul National University [R11-2002-102-00000-0] FX The authors wish to thank to the Pohang Light Source (PLS) for the EXAFS measurements. This study was supported by the Korea Science and Engineering Foundation (KOSEF) through the Research Center for Energy Conversion and Storage at Seoul National University (Grant No. R11-2002-102-00000-0). NR 27 TC 44 Z9 44 U1 10 U2 85 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2009 VL 11 IS 11 BP 2165 EP 2168 DI 10.1016/j.elecom.2009.09.021 PG 4 WC Electrochemistry SC Electrochemistry GA 524AG UT WOS:000272115600023 ER PT J AU Ganzera, M Nischang, I Siegl, C Senzenberger, B Svec, F Stuppner, H AF Ganzera, Markus Nischang, Ivo Siegl, Christian Senzenberger, Birgit Svec, Frantisek Stuppner, Hermann TI Application of MEKC and monolithic CEC for the analysis of bioactive naphthoquinones in Eleutherine americana SO ELECTROPHORESIS LA English DT Article DE CEC; Eleutherine americana; MEKC; Monolith; Naphthoquinones ID PERFORMANCE LIQUID-CHROMATOGRAPHY; CAPILLARY-ELECTROPHORESIS; STATIONARY PHASES; SEPARATION; COLUMNS; ELECTROCHROMATOGRAPHY; ANTHRAQUINONES AB Two microscale separation techniques for the analysis of bioactive naphthioquinones in Eleutherine americana were developed and validated. By MEKC four compounds (eleuthoside B, isoeleutherin, eleutherol and eleutherinoside A) could be determined in plant extracts using an aqueous electrolyte solution composed of 25 mM sodium tetraborate, 50 mM sodium cholate and 20% THF CEC on a polymeric methacrylate-based monolith with strong cationic properties showed promising results, as it additionally enabled the separation of two enantiomers, eleutherin and isoeleutherin. The mobile phase for CEC experiments comprised 3 mM ammonium formate in a mixture of ACN and water. At an applied voltage of -25 KV all five markers were baseline separated in less than 12 min. Both methods were successfully validated for linearity (MEKC R(2) >= 0 999; CEC R(2) >= 0.997), sensitivity (MEKC. LOD = 4-5 mu g/mL, CEC: LOD = 2-8 mu g/mL), accuracy (MEKC: 96.5-1.02.7% recovery, CEC 97.1-103.5% recovery) and precision (MEKC. sigma(rel)<= 2.43%; CEC. sigma(rel)<= 2 21%) The quantitative analysis of naphthoquinone derivatives in several E americana samples showed that both methods are suitable for practical applications, because the results were well comparable to those obtained by established techniques such as HPLC. C1 [Ganzera, Markus; Siegl, Christian; Senzenberger, Birgit; Stuppner, Hermann] Univ Innsbruck, Inst Pharm, A-6020 Innsbruck, Austria. [Nischang, Ivo; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Ganzera, M (reprint author), Univ Innsbruck, Inst Pharm, Innrain 52, A-6020 Innsbruck, Austria. RI Nischang, Ivo/B-8619-2013; OI Ganzera, Markus/0000-0002-7407-9060 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX Portions of this work, were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No DE-AC02-05CH11231. NR 21 TC 7 Z9 7 U1 1 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0173-0835 J9 ELECTROPHORESIS JI Electrophoresis PD NOV PY 2009 VL 30 IS 21 BP 3757 EP 3763 DI 10.1002/elps.200900247 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 524EG UT WOS:000272126000014 PM 19862752 ER PT J AU Phadke, A AF Phadke, Amol TI How many Enrons? Mark-ups in the stated capital cost of independent power producers' (IPPs') power projects in developing countries SO ENERGY LA English DT Article DE Power Sector Reforms; Independent power producers; Regulation; Power Projects; Competitive Bidding; Privatization ID FIRMS AB I analyze the determinants of the stated capital cost of IPPs' power projects which significantly influences their price of power. I show that IPPs face a strong incentive to overstate their capital cost and argue that effective competition or regulatory scrutiny will limit the extent of the same. I analyze the stated capital costs of combined cycle gas turbine (CCGT) IPP projects in eight developing countries which became operational during 1990-2006 and find that the stated capital cost of projects selected without competitive bidding is 44-56% higher than those selected with competitive bidding, even after controlling for the effect of cost differences among projects. The extent to which the stated capital costs of projects selected without competitive bidding are higher compared those selected with competitive bidding, is a lower bound on the extent to which they are overstated. My results indicate the drawbacks associated with a policy of promoting private sector participation without an adequate focus on improving competition or regulation. Published by Elsevier Ltd. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, Berkeley, CA 94720 USA. RP Phadke, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, 1 Cyclotron Rd,Mailstop 90R4000, Berkeley, CA 94720 USA. EM aaphadke@lbl.gov FU University of California Energy Institute (UCEI) FX I am thankful to the University of California Energy Institute (UCEI) for providing financial support that made this research possible. I am grateful to Severin Borenstein, and James Bushnell, and Catherine Wolfram for providing useful feedback and sharing their analytical insights on this topic. I am thankful to Jun Ishii for useful discussions and insights on data sources. I am also thankful to many at UCEI and at the Energy and Resources Group for giving helpful feedback. I am indebted to the members of the Prayas Energy Group and to many officials in the Indian power sector including KA Singh and M.S. Puri for assisting me with the data collection and for giving me insights on the ground-level realities in the Indian Power Sector. I am thankful to two anonymous reviewers for their excellent suggestions on improving this manuscript. I am responsible for any remaining errors. NR 27 TC 1 Z9 1 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD NOV PY 2009 VL 34 IS 11 BP 1917 EP 1924 DI 10.1016/j.energy.2009.07.043 PG 8 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 522OS UT WOS:000272008200020 ER PT J AU Xu, TF Flapper, J Kramer, KJ AF Xu, Tengfang Flapper, Joris Kramer, Klaas Jan TI Characterization of energy use and performance of global cheese processing SO ENERGY LA English DT Article DE Specific energy consumption (SEC); Cheese; Dairy process; Greenhouse gas; Benchmarking ID DAIRY-INDUSTRY; MILK AB The global cheese-making industry processes approximately one quarter of total raw milk production to create a variety of consumer cheeses, and cheese processing can be very energy-intensive. Characterizing energy usage in existing cheese markets and plants can provide baseline information to allow comparisons of energy performance of individual plants and systems. In this paper, we analyzed energy data compiled through extensive literature reviews on cheese-making across various countries and regions. The study has found that the magnitudes of average final energy intensity exhibited significant variations, ranging from 4.9 to 8.9 MJ per kg cheese across a few countries. In addition, the final energy intensity of individual plants exhibited even more significant variations, ranging from 1.8 to 68.2 MJ per kg of cheese from the countries in this study. These significant differences have indicated large potential energy savings' opportunities in the sector. The paper also indicates that there are positive association between implementation of energy measures and the decreasing trends of specific energy consumption over time, and suggests that developing and promulgating an energy-benchmarking framework including a process step approach and efficiency measures should be recommended for evaluating energy performance and improving energy efficiency in cheese-making industry. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Xu, Tengfang; Flapper, Joris; Kramer, Klaas Jan] Univ Calif Berkeley, Lawrence Berkeley Lab, Int Energy Studies Grp, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Xu, TF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Int Energy Studies Grp, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ttxu@lbl.gov NR 47 TC 16 Z9 17 U1 4 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD NOV PY 2009 VL 34 IS 11 BP 1993 EP 2000 DI 10.1016/j.energy.2009.08.014 PG 8 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 522OS UT WOS:000272008200029 ER PT J AU Sathaye, J Lecocq, F Masanet, E Najam, A Schaeffer, R Swart, R Winkler, H AF Sathaye, Jayant Lecocq, Franck Masanet, Eric Najam, Adil Schaeffer, Roberto Swart, Rob Winkler, Harald TI Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency SO ENERGY EFFICIENCY LA English DT Article DE Sustainable development; Energy efficiency; GHG emissions; Synergies and tradeoffs; Mainstreaming ID ENVIRONMENTAL KUZNETS CURVE; SUSTAINABLE DEVELOPMENT; CARBON EMISSIONS; CLIMATE-CHANGE; CO2 EMISSIONS; POLICIES; CHINA; CONSUMPTION; REDUCTIONS; HYDROPOWER AB There is a multiplicity of development pathways in which low energy sector emissions are not necessarily associated with low economic growth. However, changes in development pathways can rarely be imposed from the top. On this basis, examples of energy efficiency opportunities to change development pathways toward lower emissions are presented in this paper. We review opportunities at the sectoral and macro level. The potential for action on nonclimate policies that influence energy use and emissions are presented. Examples are drawn from policies already adopted and implemented in the energy sector. The paper discusses relationships between energy efficiency policies and their synergies and tradeoffs with sustainable development and greenhouse gas emissions. It points to ways that energy efficiency could be mainstreamed into development choices. C1 [Sathaye, Jayant; Masanet, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lecocq, Franck] French Natl Inst Agr Res, Nancy, France. [Lecocq, Franck] AgroParisTech, Engref UMR Econ Forestiere 356, F-54000 Nancy, France. [Najam, Adil] Boston Univ, Boston, MA 02215 USA. [Schaeffer, Roberto] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. [Swart, Rob] Alterra Wageningen Univ & Res Ctr, Wageningen, Netherlands. [Winkler, Harald] Univ Cape Town, ZA-7925 Cape Town, South Africa. RP Sathaye, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jasathaye@lbl.gov RI Masanet, Eric /I-5649-2012; OI Swart, Rob/0000-0002-1563-1150; Winkler, Harald/0000-0002-5826-4071 NR 92 TC 8 Z9 8 U1 3 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD NOV PY 2009 VL 2 IS 4 SI SI BP 317 EP 337 DI 10.1007/s12053-009-9044-z PG 21 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA V18IO UT WOS:000207998700003 ER PT J AU Williams, GP Tomasko, D AF Williams, Gustavious P. Tomasko, David TI A SIMPLE QUANTITATIVE MODEL TO ESTIMATE CONSUMPTIVE EVAPORATION IMPACTS OF DISCHARGED COOLING WATER WITH MINIMAL DATA REQUIREMENTS SO ENERGY & ENVIRONMENT LA English DT Editorial Material DE evaporation rate estimate; cooling water; consumptive water use; impact assessment; power generation assessment ID VAPOR-PRESSURE; COMPUTATION AB This paper provides a early-stage analysis tool with minimal data requirements that can be used to quantify the consumptive water use from cooling operations and determine if additional data gathering or more detailed analysis is required. We develop and present a quantitative model to predict increased evaporation rates from the discharge of heated cooling water to a receiving water body. This model can be a screening tool for policy and decision makers, requiring minimal data to quickly estimate water loss from evaporation for various alternatives and impact evaluations. The model is based on standard evaporation estimation methods, modified to consider the higher atmospheric saturation gradient resulting from the heated water. The model requires minimal data; ambient air temperature, heated plume temperature, relative humidity, and wind speed. When comparing impacts from various alternatives, the change in evaporation is more important than the total evaporation and we show that the change in evaporation from the discharge of heated cooling water is independent of relative humidity, further reducing data requirements. We present graphs of model behavior over a range of expected conditions and discuss this behaviour. C1 [Williams, Gustavious P.] Brigham Young Univ, Provo, UT 84602 USA. [Tomasko, David] Argonne Natl Lab, Argonne, IL 60439 USA. RP Williams, GP (reprint author), 368 Clyde Bldg, Provo, UT 84602 USA. EM gus.williams@byu.edu; dtomasko@anl.gov RI Williams, Gustavious/P-7252-2014 OI Williams, Gustavious/0000-0002-2781-0738 NR 16 TC 0 Z9 0 U1 0 U2 1 PU MULTI-SCIENCE PUBL CO LTD PI BRENTWOOD PA 5 WATES WAY, BRENTWOOD CM15 9TB, ESSEX, ENGLAND SN 0958-305X J9 ENERG ENVIRON-UK JI Energy Environ. PD NOV PY 2009 VL 20 IS 7 BP 1155 EP 1162 DI 10.1260/095830509789876718 PG 8 WC Environmental Studies SC Environmental Sciences & Ecology GA V16ZP UT WOS:000207907800011 ER PT J AU Cheah, S Carpenter, DL Magrini-Bair, KA AF Cheah, Singfoong Carpenter, Daniel L. Magrini-Bair, Kimberly A. TI Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass- and Coal-derived Syngas SO ENERGY & FUELS LA English DT Review ID HOT-GAS DESULFURIZATION; CALCIUM-BASED SORBENTS; TITANIUM-OXIDE SORBENTS; SYNTHETIC GASIFICATION GAS; HYDROGEN-SULFIDE CAPTURE; RAY-DIFFRACTION ANALYSIS; ZINC TITANATE CERAMICS; NATURAL MANGANESE ORE; MO MIXED OXIDES; H2S REMOVAL AB This review examines state-of-the-art mid- and high-temperature sulfur sorbents that remove hydrogen sulfide (H2S) from syngas generated from coal gasification and may be applicable for use with biomass-derived syngas. Biomass feedstocks contain low percentages of protein-derived sulfur that is converted primarily to H,S, as well as small amounts of carbonyl Sulfide (COS) and organosulfur compounds during pyrolysis and gasification. These sulfur species must be removed from the raw syngas before it is used for downstream fuel synthesis or power generation. Several types of sorbents based on zinc, copper, iron, calcium, manganese, and ceria have been developed over the last two decades that are capable of removing H2S from dry coal-derived syngas at mid- to high-temperature ranges. Further improvement is necessary to develop materials more suitable for desulfurization of biomass-derived syngas because of its hydrocarbon, tar, and potentially high steam content, which presents different challenges as compared to desulfurization of coal-derived syngas. C1 [Cheah, Singfoong; Carpenter, Daniel L.; Magrini-Bair, Kimberly A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Cheah, S (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd,MS 3322, Golden, CO 80401 USA. EM Singfoong.Cheah@nrel.gov FU U.S. Department of Energy [DE-AC36-99GO10337] FX Funding for this research was provided by the Office of the Biomass Program, U.S. Department of Energy, under contract DE-AC36-99GO10337 with the National Renewable Energy Laboratory. NR 178 TC 109 Z9 111 U1 11 U2 123 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2009 VL 23 BP 5291 EP 5307 DI 10.1021/ef900714q PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 531VW UT WOS:000272700200001 ER PT J AU Kenley, CR Klingler, RD Plowman, CM Soto, R Turk, RJ Baker, RL Close, SA McDonnell, VL Paul, SW Rabideau, LR Rao, SS Reilly, BP AF Kenley, C. R. Klingler, R. D. Plowman, C. M. Soto, R. Turk, R. J. Baker, R. L. Close, S. A. McDonnell, V. L. Paul, S. W. Rabideau, L. R. Rao, S. S. Reilly, B. P. TI Job creation due to nuclear power resurgence in the United States SO ENERGY POLICY LA English DT Article DE US job creation; Commercial nuclear industry; Future energy demand AB The recent revival of global interest in the next generation of nuclear power reactors is causing a re-examination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current US industries to support a renewal of nuclear power plant deployment. Key among the many questions currently being asked is what potential exists for the creation of new jobs as a result of developing and operating these new plants? Idaho National Laboratory and Bechtel Power Corporation collaborated to perform a Department of Energy-sponsored study that evaluated the potential for job creation in the United States should these new next generation nuclear power plants be built. The study focused primarily on providing an initial estimate of the numbers of new manufacturing jobs that could be created, including those that could be repatriated from overseas, resulting from the construction of these new reactors. In addition to the growth in the manufacturing sector, the study attempted to estimate the potential increase in construction trades necessary to accomplish the new construction. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Kenley, C. R.; Klingler, R. D.; Plowman, C. M.; Soto, R.; Turk, R. J.] Idaho Natl Lab, R&D Support Serv, Idaho Falls, ID 83415 USA. [Baker, R. L.; Close, S. A.; McDonnell, V. L.; Paul, S. W.; Rabideau, L. R.; Rao, S. S.; Reilly, B. P.] Bechtel Power Corp, Frederick, MD 21703 USA. RP Plowman, CM (reprint author), Idaho Natl Lab, R&D Support Serv, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM Catherine.Plowman@inl.gov RI Kenley, Bob/G-7866-2012 OI Kenley, Bob/0000-0003-1350-5350 FU US Department of Energy (DOE) [DE-AC07-051D14517] FX This work was supported through funding provided by the US Department of Energy (DOE) to Idaho National Laboratory, operated by Battelle Energy Alliance, LLC, under DOE Idaho Operations Office Contract DE-AC07-051D14517. The submitted manuscript was authored by a contractor of the US Government. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 22 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD NOV PY 2009 VL 37 IS 11 BP 4894 EP 4900 DI 10.1016/j.enpol.2009.06.045 PG 7 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 520FB UT WOS:000271824600071 ER PT J AU Cho, SH Tong, HY McGee, JK Baldauf, RW Krantz, QT Gilmour, MI AF Cho, Seung-Hyun Tong, Haiyan McGee, John K. Baldauf, Richard W. Krantz, Q. Todd Gilmour, M. Ian TI Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE cardiopulmonary; chemical composition; inflammation; ischemia-reperfusion injury; mice; motor vehicle emissions; near road; particulate matter; size fraction ID DIESEL EXHAUST PARTICLES; AIR-POLLUTION; IN-VIVO; INFLAMMATORY RESPONSES; SUBCHRONIC INHALATION; ULTRAFINE PARTICLES; CARDIAC CHANGES; MOUSE LUNG; EXPOSURE; MICE AB BACKGROUND: Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. OBJECTIVES: We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. METHODS: We collected PM for 2 weeks in July-August 2006 using a three-stage (ultrafine, < 0.1 mu m; fine, 0.1-2.5 mu m; coarse, 2.5-10 mu m) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 mu g of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. RESULTS: Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia-reperfusion injury. CONCLUSIONS: On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues. C1 [Cho, Seung-Hyun; Tong, Haiyan; McGee, John K.; Krantz, Q. Todd; Gilmour, M. Ian] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. [Cho, Seung-Hyun; Baldauf, Richard W.] US EPA, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Cho, Seung-Hyun] Oak Ridge Inst Sci & Educ, Res Participat Program, Oak Ridge, TN USA. [Baldauf, Richard W.] US EPA, Off Transportat & Air Qual, Ann Arbor, MI USA. RP Gilmour, MI (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, 109 TW Alexander Dr,Mail Drop B143-04, Res Triangle Pk, NC 27711 USA. EM gilmour.ian@epa.gov FU U.S. Environmental Protection Agency FX S.-H.C. received fellowship support from the Research Participation Program of the U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education. NR 58 TC 52 Z9 53 U1 0 U2 21 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD NOV PY 2009 VL 117 IS 11 BP 1682 EP 1689 DI 10.1289/ehp.0900730 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 514MQ UT WOS:000271399300022 PM 20049117 ER PT J AU Wu, M Mintz, M Wang, M Arora, S AF Wu, May Mintz, Marianne Wang, Michael Arora, Salil TI Water Consumption in the Production of Ethanol and Petroleum Gasoline SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Water consumption; Corn ethanol; Cellulosic; Oil sands; Conventional oil; Feedstock; Fuel production AB We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle. C1 [Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil] Argonne Natl Lab, Div Energy Syst, Ctr Transportat Res, Lemont, IL 60439 USA. RP Wu, M (reprint author), Argonne Natl Lab, Div Energy Syst, Ctr Transportat Res, 9700 S Cass Ave, Lemont, IL 60439 USA. EM mwu@anl.gov FU Zia Haq of DOE's Office of Biomass Program, Office of EERE FX We would like to thank Zia Haq of DOE's Office of Biomass Program, Office of EERE, for providing funding for this study. We would also like to thank Matt Ante and Joan Pellegrino of Energetics for their work on the biofuel feedstock analysis, Bob Wallace of the National Renewable Energy Laboratory for the analysis of cellulosic biofuel production, and John Veil of Argonne National Laboratory for his insights regarding produced water. NR 69 TC 55 Z9 58 U1 4 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X J9 ENVIRON MANAGE JI Environ. Manage. PD NOV PY 2009 VL 44 IS 5 BP 981 EP 997 DI 10.1007/s00267-009-9370-0 PG 17 WC Environmental Sciences SC Environmental Sciences & Ecology GA 508ZQ UT WOS:000270980100011 PM 19774326 ER PT J AU Vangronsveld, J Herzig, R Weyens, N Boulet, J Adriaensen, K Ruttens, A Thewys, T Vassilev, A Meers, E Nehnevajova, E van der Lelie, D Mench, M AF Vangronsveld, Jaco Herzig, Rolf Weyens, Nele Boulet, Jana Adriaensen, Kristin Ruttens, Ann Thewys, Theo Vassilev, Andon Meers, Erik Nehnevajova, Erika van der Lelie, Daniel Mench, Michel TI Phytoremediation of contaminated soils and groundwater: lessons from the field SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Review DE Field experiments; Metals; Organic contaminants; Phytodegradation; Phytoextraction; Phytoremediation; Phytostabilization; Rhizodegradation; Trace elements ID ASSISTED NATURAL REMEDIATION; IN-SITU PHYTOREMEDIATION; THLASPI-CAERULESCENS; HEAVY-METALS; CADMIUM-ACCUMULATION; ENDOPHYTIC BACTERIA; TRACE-ELEMENT; BRASSICA-NAPUS; POLLUTED SOILS; SEWAGE-SLUDGE AB The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques). C1 [Vangronsveld, Jaco; Weyens, Nele; Boulet, Jana; Adriaensen, Kristin; Ruttens, Ann; Thewys, Theo] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium. [Herzig, Rolf; Nehnevajova, Erika] Phytotech Fdn PT F, CH-3013 Bern, Switzerland. [Herzig, Rolf; Nehnevajova, Erika] AGB Arbeitsgemeinschaft Bioindikat, Umweltbeobachtung & Okol Planung, CH-3013 Bern, Switzerland. [Vassilev, Andon] Agr Univ Plovdiv, Plovdiv, Bulgaria. [Meers, Erik] Univ Ghent, Lab Analyt Chem & Appl Ecochem, B-9000 Ghent, Belgium. [van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Mench, Michel] Univ Bordeaux 1, BIOGECO, INRA, UMR 1202, F-33405 Talence, France. RP Vangronsveld, J (reprint author), Hasselt Univ, Ctr Environm Sci, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. EM jaco.vangronsveld@uhasselt.be RI Meers, Erik/A-2789-2016; OI Meers, Erik/0000-0002-8296-3462; Mench, michel/0000-0002-0273-4142 NR 205 TC 273 Z9 282 U1 45 U2 332 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD NOV PY 2009 VL 16 IS 7 BP 765 EP 794 DI 10.1007/s11356-009-0213-6 PG 30 WC Environmental Sciences SC Environmental Sciences & Ecology GA 514MG UT WOS:000271398300003 PM 19557448 ER PT J AU Weyens, N Taghavi, S Barac, T van der Lelie, D Boulet, J Artois, T Carleer, R Vangronsveld, J AF Weyens, Nele Taghavi, Safiyh Barac, Tanja van der Lelie, Daniel Boulet, Jana Artois, Tom Carleer, Robert Vangronsveld, Jaco TI Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Chlorinated solvents; Fraxinus excelsior; Phytoremediation; Plant-associated bacteria; Quercus robur; TCE; Evapotranspiration; Endophytes ID PSEUDOMONAS-STUTZERI OX1; O-XYLENE MONOOXYGENASE; HORIZONTAL GENE-TRANSFER; ENDOPHYTIC BACTERIA; POPLAR TREES; AEROBIC DEGRADATION; TOLUENE; TRICHLOROETHYLENE; GROWTH; PHYTOREMEDIATION AB Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation. Cultivable bacteria isolated from bulk soil, rhizosphere, root, stem, and leaf were genotypically characterized by amplified rDNA restriction analysis (ARDRA) of their 16S rRNA gene and identified by 16S rRNA gene sequencing. Bacteria that displayed distinct ARDRA patterns were screened for heavy metal resistance, as well as TCE tolerance and degradation, as preparation for possible future in situ inoculation experiments. Furthermore, in situ evapotranspiration measurements were performed to investigate if the degradation capacity of the associated bacteria is enough to prevent TCE evapotranspiration to the air. Between both tree species, the associated populations of cultivable bacteria clearly differed in composition. In English Oak, more species-specific, most likely obligate endophytes were found. The majority of the isolated bacteria showed increased tolerance to TCE, and TCE degradation capacity was observed in some of the strains. However, in situ evapotranspiration measurements revealed that a significant amount of TCE and its metabolites was evaporating through the leaves to the atmosphere. The characterization of the isolates obtained in this study shows that the bacterial community associated with Oak and Ash on a TCE-contaminated site, was strongly enriched with TCE-tolerant strains. However, this was not sufficient to degrade all TCE before it reaches the leaves. A possible strategy to overcome this evapotranspiration to the atmosphere is to enrich the plant-associated TCE-degrading bacteria by in situ inoculation with endophytic strains capable of degrading TCE. C1 [Weyens, Nele; Barac, Tanja; Boulet, Jana; Artois, Tom; Carleer, Robert; Vangronsveld, Jaco] Hasselt Univ, B-3590 Diepenbeek, Belgium. [Taghavi, Safiyh; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Vangronsveld, J (reprint author), Hasselt Univ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. EM jaco.vangronsveld@uhasselt.be FU UHasselt Methusalem [08M03VGRJ]; US Department of Energy, Office of Science, BER [KP1102010, DE-AC02-98CH10886]; Laboratory Directed Research and Development [LDRD05-063]; U. S. Department of Energy FX This research was funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for N. W. and by the Fund for Scientific Research Flanders (FWO-Vlaanderen), Ph. D. grant for J. B. and postdoc grant for T. B. This work was also supported by the UHasselt Methusalem project 08M03VGRJ. D. v. d. L. and S. T. are supported by the US Department of Energy, Office of Science, BER, project number KP1102010 under contract DE-AC02-98CH10886, and by Laboratory Directed Research and Development funds (LDRD05-063) at the Brookhaven National Laboratory under contract with the U. S. Department of Energy. We thank A. Wijgaerts and C. Put for their help with the isolation and J. Put, J. Czech, and R. Carleer for GC analysis. NR 46 TC 47 Z9 47 U1 1 U2 36 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD NOV PY 2009 VL 16 IS 7 BP 830 EP 843 DI 10.1007/s11356-009-0154-0 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA 514MG UT WOS:000271398300007 PM 19401827 ER PT J AU Liu, J Aruguete, DM Murayama, M Hochella, MF AF Liu, Juan Aruguete, Deborah M. Murayama, Mitsuhiro Hochella, Michael F., Jr. TI Influence of Size and Aggregation on the Reactivity of an Environmentally and Industrially Relevant Manomaterial (PbS) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HEMATITE NANOPARTICLES; MINERAL NANOPARTICLES; DISSOLUTION; WATER; SUSPENSIONS; NANOMATERIALS; NANOCRYSTALS; OXIDATION; LIQUID; FUTURE AB Rarely observed nanoparticle dissolution rate data have been collected and explained for an environmentally and industrially relevant nanomaterial (PbS, the mineral galena) as a function of its particle size and aggregation state using high-resolution transmission electron microscopy (HRTEM) and solution analysis. Under identical anoxic acidic conditions (pH 3 HCl), it has been determined that the dissolution rate of PbS galena varies by at least 1 order of magnitude simply as a function of particle size, and also due to the aggregation state of the particles (dissolution rates measured are 4.4 x 10(-9) mol m(-2) s(-1) for dispersed 14 nm nanocrystals; 7.7 x 10(-10) mol m(-1) s(-1) for dispersed 3.1 mu m microcrystals; and 4.7 x 10(-10) mol m(-2) s(-1) for aggregated 14 nm nanocrystals). The dissolution rate difference between galena microparticles and nanoparticles is due to differences in nanotopography and the crystallographic faces present Aggregate vs. dispersed dissolution rates are related to transport inhibition in the observed highly confined spaces between densely packed, aggregated nanocrystals, where self-diffusion coefficients of water and ions decrease dramatically. This study shows that factors at the nanometer scale significantly influence the release rate of aqueous, highly toxic and bioavailable Pb in natural or industrial environments during galena dissolution. C1 [Liu, Juan; Aruguete, Deborah M.; Hochella, Michael F., Jr.] Virginia Tech, Dept Geosci, Ctr NanoBioEarth, Blacksburg, VA 24061 USA. [Murayama, Mitsuhiro] Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MSIN K8-96, Richland, WA 99352 USA. EM Juanliu@vt.edu RI Liu, Juan/D-2273-2013; Liu, Juan/G-6035-2016 FU U.S. Department of Energy [DE-FG02-06ER15786]; Institute for Critical Technology and Applied Science at Virginia Tech; National Science Foundation [0610373]; Environmental Protection Agency [EF-0830093]; Center for the Environmental Implications of Nanotechnology FX Grants from the U.S. Department of Energy (DE-FG02-06ER15786) and the Institute for Critical Technology and Applied Science at Virginia Tech provided major financial support for this study. We are also appreciative of the support from the National Science Foundation and the Environmental Protection Agency under NSF Cooperative Agreement EF-0830093, Center for the Environmental Implications of Nanotechnology. D.M.A. acknowledges support from the NSF under a Minority Postdoctoral Research Fellowship, award 0610373. Important assistance from John McIntosh at the Nanoscale Characterization and Fabrication Laboratory at Virginia Tech is gratefully acknowledged. NR 31 TC 73 Z9 74 U1 2 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2009 VL 43 IS 21 BP 8178 EP 8183 DI 10.1021/es902121r PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 510QT UT WOS:000271106300035 PM 19924941 ER PT J AU Rosenbaum, RK Mckone, TE Jolliet, O AF Rosenbaum, Ralph K. Mckone, Thomas E. Jolliet, Olivier TI CKow: A Dynamic Model for Chemical Transfer to Meat and Milk SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LIPOPHILIC ORGANIC CONTAMINANTS; BEEF; COWS; BIOCONCENTRATION; FATE AB The objective of this study is to increase the understanding and transparency of chemical biotransfer modeling into meat and milk and explicitly confront the uncertainties in exposure assessments of chemicals that require such estimates. In cumulative exposure assessments that include food pathways, much of the overall uncertainty is attributable to the estimation of transfer into biota and through food webs. Currently, the most commonly used meat and milk-biotransfer models date back two decades and, in spite of their widespread use in multimedia exposure models, few attempts have been made to advance or improve the outdated and highly uncertain K-ow regressions used in these models. Furthermore, in the range of K-ow where meat and milk become the dominant human exposure pathways, these models often provide unrealistic rates and do not properly reflect the transfer dynamics. To address these issues, we developed a dynamic three-compartment cow model (called CKow), distinguishing lactating and nonlactating cows. For chemicals without available overall removal rates in the cow, a correlation is derived from measured values reported in the literature to predict this parameter from K-ow. Results on carry over rates (COR) and biotransfer factors (BTF) demonstrate that a steady-state ratio between animal intake and meat concentrations is almost never reached. For meat, empirical data collected on short-term experiments need to be adjusted to provide estimates of average longer term behaviors. The performance of the new model in matching measurements is improved relative to existing models-thus reducing uncertainty. The CKow model is straightforward to apply at steady state for milk and dynamically for realistic exposure durations for meat COR. C1 [Rosenbaum, Ralph K.] Ecole Polytech, Dept Chem Engn, CIRAIG, Stn Ctr Ville, Montreal, PQ H3C 3A7, Canada. [Mckone, Thomas E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Mckone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jolliet, Olivier] Univ Michigan, Sch Publ Hlth, Risk Sci Ctr, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA. RP Rosenbaum, RK (reprint author), Ecole Polytech, Dept Chem Engn, CIRAIG, Stn Ctr Ville, 2900 Edouard Montpetit,POB 6079, Montreal, PQ H3C 3A7, Canada. EM ralph.rosenbaum@gmx.de OI Jolliet, Olivier/0000-0001-6955-4210; Rosenbaum, Ralph/0000-0002-7620-1568 FU European Commission [502687]; U.S. EPA [DW-988-38190-01-0]; US Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. Centers for Disease Control and Prevention (CDC) [U19/EH000097-03.DE-AC02-05CH11231] FX We acknowledge financial support of the European Commission through the "Sustainable Energy Systems" research program given to the NEEDS project (EC Project number 502687) at the Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. T.M. was supported in part by the U.S. EPA through Interagency Agreement DW-988-38190-01-0 with the Lawrence Berkeley National Laboratory operated for the US Department of Energy (DOE) under Contract Grant DE-AC02-05CH11231 and in part by the U.S. Centers for Disease Control and Prevention (CDC) through Cooperative Agreement U19/EH000097-03.DE-AC02-05CH11231. We are grateful to Mark Huijbregts for providing the measured removal rates data set used in (13) in Excel format. NR 19 TC 9 Z9 9 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2009 VL 43 IS 21 BP 8191 EP 8198 DI 10.1021/es803644z PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 510QT UT WOS:000271106300037 PM 19924943 ER PT J AU Sharp, JO Schofield, EJ Veeramani, H Suvorova, EI Kennedy, DW Marshall, MJ Mehta, A Bargar, JR Bernier-Latmani, R AF Sharp, Jonathan O. Schofield, Eleanor J. Veeramani, Harish Suvorova, Elena I. Kennedy, David W. Marshall, Matthew J. Mehta, Apurva Bargar, John R. Bernier-Latmani, Rizlan TI Structural Similarities between Biogenic Uraninites Produced by Phylogenetically and Metabolically Diverse Bacteria SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DISSIMILATORY METAL REDUCTION; URANIUM-CONTAMINATED AQUIFER; SHEWANELLA-ONEIDENSIS MR-1; DESULFOVIBRIO-DESULFURICANS; GEOBACTER-SULFURREDUCENS; SUBMICROMOLAR LEVELS; DISSOLVED-OXYGEN; U(VI) REDUCTION; BIOREDUCTION; REOXIDATION AB While the product of microbial uranium reduction is often reported to be "UO(2)", a comprehensive characterization including stoichiometry and unit cell determination is available for only one Shewanella species. Here, we compare the products of batch uranyl reduction by a collection of dissimilatory metal- and sulfate-reducing bacteria of the genera Shewanella, Geobacter, Anaeromyxobacter, and Desulfovibrio under similar laboratory conditions. Our results demonstrate that U(VI) bioreduction by this assortment of commonly studied, environmentally relevant bacteria leads to the precipitation of uraninite with an approximate composition Of UO(2.0), regardless of phylogenetic or metabolic diversity. Coupled analyses, including electron microscopy, X-ray absorption spectroscopy, and powder diffraction, confirm that structurally and chemically analogous uraninite solids are produced. These biogenic uraninites have particle diameters of about 2-3 nm and lattice constants consistent with UO(2.0) and exhibit a high degree of intermediate-range order. Results indicate that phylogenetic and metabolic variability within delta- and gamma-proteobacteria has little effect on biouraninite structure or crystal size under the investigated conditions. C1 [Sharp, Jonathan O.; Veeramani, Harish; Bernier-Latmani, Rizlan] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Schofield, Eleanor J.; Mehta, Apurva; Bargar, John R.] SSRL, Menlo Pk, CA USA. [Kennedy, David W.; Marshall, Matthew J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sharp, JO (reprint author), Colorado Sch Mines, Environm Sci & Engn Div, Golden, CO 80401 USA. EM jsharp@mines.edu RI Bernier-Latmani, Rizlan/E-4398-2011; Sharp, Jonathan/A-4893-2013; Suvorova, Elena/I-5582-2013; Veeramani, Harish/N-2783-2015; OI Bernier-Latmani, Rizlan/0000-0001-6547-722X; Sharp, Jonathan/0000-0002-2942-1066; Veeramani, Harish/0000-0002-7623-209X; Kennedy, David/0000-0003-0763-501X; Marshall, Matthew J/0000-0002-2402-8003 FU Swiss NSF [20021-113784, IZKOZ2-123550]; U.S. DOE-OBER [DEFG02-06ER64227, SCW0041]; Environmental Remediation Sciences Program (ERSP); DOE [DE-AC05-76RL01830]; DOE-BER; NIH-NCRR FX Work was funded by Swiss NSF Grants 20021-113784 (RBL&HV), IZKOZ2-123550 (JS), and U.S. DOE-OBER DEFG02-06ER64227 (RBL&JS) and SCW0041 (ES&JB). Work at PNNL was supported by the Environmental Remediation Sciences Program (ERSP). Battelle Memorial Institute operates PNNL for the DOE under Contract DE-AC05-76RL01830. SSRL is a U.S. national user facility operated by Stanford University on behalf of the U.S. DOE-OBES. Portions of this project were supported by the DOE-BER and NIH-NCRR-funded SSRL Structural Molecular Biology Program. We acknowledge CIME (EPFL) for the use of HRTEM and staff assistance. Assistance was supplied by Pilar Junier (EPFL) who aided in phylogenetic analysis and Yuri Gorby UCV1) for advice on Geobacter growth. Kai Ulrich and Dan Giammar (WUStL) contributed to research development and editing throughout the process. Joe Rogers and Carol Morris provided technical assistance with sample handling and analysis. We thank three anonymous reviewers for their constructive comments. NR 37 TC 38 Z9 38 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2009 VL 43 IS 21 BP 8295 EP 8301 DI 10.1021/es901281e PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 510QT UT WOS:000271106300053 PM 19924959 ER PT J AU Shi, ZQ Liu, CX Zachara, JM Wang, ZM Deng, BL AF Shi, Zhenqing Liu, Chongxuan Zachara, John M. Wang, Zheming Deng, Baolin TI Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VADOSE ZONE SEDIMENTS; HANFORD-SITE; FLUORESCENCE SPECTROSCOPY; URANYL INCORPORATION; NATURAL CALCITE; ADSORPTION; U(VI); HYDROXYAPATITE; SPECIATION; GOETHITE AB The inhibitory effect of phosphate mineral precipitation on diffusion-limited uranium release was evaluated using a U(VI)-contaminated sediment collected from the U.S. Department of Energy Hanford site. The sediment contained U(VI) that was associated with diffusion-limited intragrain regions within its millimeter-sized granitic lithic fragments. The sediment was first treated to promote phosphate mineral precipitation in batch suspensions spiked with 1 and 50 mM aqueous phosphate and calcium in the stoichiometric ratio of the mineral hydroxyapatite. The phosphate-treated sediment was then leached to solubilize contaminant U(VI) in a column system using a synthetic groundwater solution with chemical components representative of Hanford groundwater. Phosphate treatment significantly decreased the extent of U(VI) release from the sediment Within the experimental duration of about 200 pore volumes,the effluent U(VI) concentrations were consistently lower by over 1 and 2 orders of magnitude after the sediment was treated with 1 and 50 mM of phosphate, respectively. Measurements of solid-phase U(VI) using laser-induced fluorescence spectroscopy, scanning electron microscopy, and chemical extraction of the sediment collectively indicated that the inhibition of U(VI) release from the sediment was caused by (1) U(VI) adsorption to the secondary phosphate precipitates and (2) the transformation of original U(VI) mineral phases to less soluble forms. C1 [Shi, Zhenqing; Liu, Chongxuan; Zachara, John M.; Wang, Zheming] Pacific NW Natl Lab, Richland, WA 99354 USA. [Deng, Baolin] Univ Missouri, Dept Civil & Environm Engn, Columbia, MO 65211 USA. RP Liu, CX (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-96, Richland, WA 99354 USA. RI Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010; Shi, Zhenqing /F-9212-2016; OI Wang, Zheming/0000-0002-1986-4357; Deng, Baolin/0000-0001-6569-1808 FU Office of Biological and Environmental Research (BER), U.S. Department of Energy (DOE); DOE [DEAC06-76RLO 1830] FX This research was supported by the Environmental Remediation Science Program (ERSP), Office of Biological and Environmental Research (BER), U.S. Department of Energy (DOE). A portion of the research was performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE-BER and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under Contract DEAC06-76RLO 1830. We thank three anonymous reviewers for their constructive comments and suggestions. NR 34 TC 14 Z9 14 U1 4 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2009 VL 43 IS 21 BP 8344 EP 8349 DI 10.1021/es9021359 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 510QT UT WOS:000271106300061 PM 19924967 ER PT J AU Mendell, M AF Mendell, Mark TI Fungi on Air-Conditioning Cooling Coils and Drainage Pans, Identified with Polymerase Chain Reaction Assays SO EPIDEMIOLOGY LA English DT Meeting Abstract CT 21st Annual Conference of the International-Society-for-Environmental-Epidemiology CY AUG 25-29, 2009 CL Dublin, IRELAND C1 [Mendell, Mark] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1044-3983 J9 EPIDEMIOLOGY JI Epidemiology PD NOV PY 2009 VL 20 IS 6 SU S BP S168 EP S169 PG 2 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 507SE UT WOS:000270874101155 ER PT J AU Chtchelkatchev, N Vinokur, V AF Chtchelkatchev, N. Vinokur, V. TI Nonequilibrium mesoscopic superconductors in a fluctuational regime SO EPL LA English DT Article ID GINZBURG-LANDAU EQUATIONS; PARAMAGNETIC IMPURITIES; SNS JUNCTIONS; T-C AB We develop a non-equilibrium Ginzburg-Landau-type theory of the far-from-equilibrium dynamics of superconductors in a fluctuational regime and apply our approach to quantitative description of a superconductor island in a stationary nonequilibrium state. We derive the effective temperature of the nonequilibrium state and find fluctuational contributions to the magnetic susceptibility showing that it becomes a singular function of root V-V-c, where V is the external drive and V-c is its "critical" value at which the nonequilibrium phase transition takes place. Copyright (C) EPLA, 2009 C1 [Chtchelkatchev, N.] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia. [Chtchelkatchev, N.; Vinokur, V.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Chtchelkatchev, N (reprint author), Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia. EM nms@itp.ac.ru RI Chtchelkatchev, Nikolay/L-1273-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483 FU Deutsche Forschungsgemeinschaft [GK 638]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX We thank T. Baturina, Yu. Galperin, N. Kopnin and R. Fazio for helpful discussions. The work was funded by RFBR, the Deutsche Forschungsgemeinschaft GK 638, and by the U.S. Department of Energy Office of Science through the contract DE-AC02-06CH11357. NR 26 TC 5 Z9 5 U1 1 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2009 VL 88 IS 4 AR 47001 DI 10.1209/0295-5075/88/47001 PG 5 WC Physics, Multidisciplinary SC Physics GA 533OV UT WOS:000272835000017 ER PT J AU Matusiak, M Rogacki, K Veal, BW AF Matusiak, M. Rogacki, K. Veal, B. W. TI Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O7-d SO EPL LA English DT Article ID WIEDEMANN-FRANZ RATIO; THERMAL-CONDUCTIVITY; QUASI-PARTICLES; SINGLE-CRYSTALS; TRANSPORT; METALS; LIQUID AB Electronic heat transport in the normal state of a high-quality single crystal of the optimally doped superconductor YBa2Cu3O6.95 was studied by measurements of longitudinal and transverse transport coefficients. For the temperature range from 100 to 300 K, the Hall-Lorenz number (L-xy) depends weakly on temperature and is about two times larger than the Sommerfeld value of the Lorenz number L-0 = pi(2)/3. Our results can be interpreted using a Fermi liquid model when effects of the pseudogap that opens at the Fermi level are included. However, we find that the bipolaron model can also explain both the enhanced value and the weak temperature dependence of the Hall-Lorenz number. Copyright (C) EPLA, 2009 C1 [Matusiak, M.; Rogacki, K.] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland. [Veal, B. W.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Matusiak, M (reprint author), Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410, PL-50950 Wroclaw, Poland. EM k.rogacki@int.pan.wroc.pl FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX The authors are grateful to Dr C. SULKOWSKI for thermopower measurements and Dr T. PLACKOWSKI for fruitful discussion. Support by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357 is acknowledged (BWV). NR 25 TC 7 Z9 7 U1 0 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2009 VL 88 IS 4 AR 47005 DI 10.1209/0295-5075/88/47005 PG 5 WC Physics, Multidisciplinary SC Physics GA 533OV UT WOS:000272835000021 ER PT J AU Reichhardt, CJO Reichhardt, C AF Reichhardt, C. J. Olson Reichhardt, C. TI Coherent and incoherent vortex flow states in crossed channels SO EPL LA English DT Article ID SUPERCONDUCTING FILMS; ANTIDOT LATTICE; VORTICES; PHASES; DYNAMICS; DEFECTS; ARRAYS AB We examine vortex flow states in periodic square pinning arrays with one row and one column of pinning sites removed to create an easy-flow crossed-channel geometry. When a drive is simultaneously applied along both major symmetry axes of the pinning array such that vortices move in both channels, a series of coherent-flow states develop in the channel intersection at rational ratios of the drive components in each symmetry direction when the vortices can cross the intersection without local collisions. The coherent-flow states are correlated with a series of anomalies in the velocity force curves, and in some cases can produce negative differential conductivity. The same general behavior could also be realized in other systems including colloids, particle traffic in microfluidic devices, or Wigner crystals in crossed one-dimensional channels. Copyright (C) EPLA, 2009 C1 [Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cjrx@lanl.gov OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DoE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC52-06NA25396. NR 40 TC 1 Z9 1 U1 3 U2 9 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2009 VL 88 IS 4 AR 47004 DI 10.1209/0295-5075/88/47004 PG 6 WC Physics, Multidisciplinary SC Physics GA 533OV UT WOS:000272835000020 ER PT J AU Zhang, SJ Wang, XC Liu, QQ Lv, YX Yu, XH Lin, ZJ Zhao, YS Wang, L Ding, Y Mao, HK Jin, CQ AF Zhang, S. J. Wang, X. C. Liu, Q. Q. Lv, Y. X. Yu, X. H. Lin, Z. J. Zhao, Y. S. Wang, L. Ding, Y. Mao, H. K. Jin, C. Q. TI Superconductivity at 31 K in the "111"-type iron arsenide superconductor Na1-xFeAs induced by pressure SO EPL LA English DT Article ID T-C; LIFEAS; COMPOUND AB The effect of pressure on the superconductivity of "111"-type Na1-xFeAs is investigated through temperature-dependent electrical-resistance measurements in a diamond anvil cell. The superconducting transition temperature (T-c) increases from 26 K to a maximum of 31 K as the pressure increases from ambient pressure to 3 GPa. Further increasing pressure suppresses T-c drastically. The behavior of pressure-tuned T-c in Na1-xFeAs is much different from that in LixFeAs, although they have the same Cu2Sb-type structure. Copyright (C) EPLA, 2009 C1 [Zhang, S. J.; Wang, X. C.; Liu, Q. Q.; Lv, Y. X.; Yu, X. H.; Jin, C. Q.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yu, X. H.; Lin, Z. J.; Zhao, Y. S.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. [Wang, L.; Ding, Y.; Mao, H. K.] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. RP Zhang, SJ (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM Jin@aphy.iphy.ac.cn RI Lujan Center, LANL/G-4896-2012; WANG, LIN/G-7884-2012; Mao, Hokwang/K-8013-2013; Ding, Yang/K-1995-2014; Lin, Zhijun/A-5543-2010 OI Ding, Yang/0000-0002-8845-4618; FU NSF; MOST of China; LANL/LDRD program; Los Alamos National Security LLC under DOE [DEAC52-06NA25396]; DOE-BES; DOE-NNSA FX This work was partially supported by NSF & MOST of China through research projects. The work involving Los Alamos National Laboratory was supported by LANL/LDRD program and LANL is operated by Los Alamos National Security LLC under DOE contract DEAC52-06NA25396. HPCAT is supported by DOE-BES, DOE-NNSA, NSF. NR 28 TC 33 Z9 35 U1 2 U2 22 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2009 VL 88 IS 4 AR 47008 DI 10.1209/0295-5075/88/47008 PG 4 WC Physics, Multidisciplinary SC Physics GA 533OV UT WOS:000272835000024 ER PT J AU Anhalt, UCM Heslop-Harrison, JS Piepho, HP Byrne, S Barth, S AF Anhalt, U. C. M. Heslop-Harrison (Pat), J. S. Piepho, H. P. Byrne, S. Barth, S. TI Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F-2 population SO EUPHYTICA LA English DT Article; Proceedings Paper CT 18th General Congress of the European-Association-for-Research-on Plant-Breeding CY SEP 09-12, 2008 CL Valencia, SPAIN DE Lolium perenne; Perennial ryegrass; Biomass; QTL; Fresh weight; Dry weight ID PERENNIAL RYEGRASS; QTL ANALYSIS; HETEROSIS; SELECTION; GENOMICS; HYBRID; L. AB Lolium perenne L. (perennial ryegrass) is the principle forage grass species in temperate agriculture. Improving biomass yield still remains one of the most important aims of current forage breeding programmes. A quantitative trait locus (QTL) study investigating biomass yield traits in perennial ryegrass was carried out in greenhouse and field environments. The study is based on an F-2 population consisting of 360 individuals derived from two inbred grandparents where the F-1 has a large biomass yield phenotype. For both experimental environments co-localized QTL for biomass yield traits including fresh and dry weight and dry matter were identified on linkage groups 2, 3 and 7. A major QTL for fresh and dry weight was identified on LG 3 which explained around 30% of the phenotypic variance in the field experiment. The findings of this study are discussed with regard for their potential in research and breeding. C1 [Anhalt, U. C. M.; Byrne, S.; Barth, S.] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. [Anhalt, U. C. M.; Heslop-Harrison (Pat), J. S.] Univ Leicester, Dept Biol, Leicester LE1 7RH, Leics, England. [Piepho, H. P.] Univ Hohenheim, Inst Crop Prod & Grassland Res Bioinformat, D-70593 Stuttgart, Germany. RP Barth, S (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM susanne.barth@teagasc.ie RI Heslop-Harrison, JS/C-9207-2009; Anhalt, Ulrike /D-2480-2013; Barth, Susanne/P-3366-2014; OI Heslop-Harrison, JS/0000-0002-3105-2167; Byrne, Stephen/0000-0002-1179-2272; Barth, Susanne/0000-0002-4104-5964; Piepho, Hans-Peter/0000-0001-7813-2992 NR 22 TC 18 Z9 18 U1 1 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0014-2336 J9 EUPHYTICA JI Euphytica PD NOV PY 2009 VL 170 IS 1-2 BP 99 EP 107 DI 10.1007/s10681-009-9957-9 PG 9 WC Agronomy; Plant Sciences; Horticulture SC Agriculture; Plant Sciences GA 504XK UT WOS:000270651200009 ER PT J AU Watanabe, H Lane, GJ Dracoulis, GD Byrne, AP Nieminen, P Kondev, FG Ogawa, K Carpenter, MP Janssens, RVF Lauritsen, T Seweryniak, D Zhu, S Chowdhury, P AF Watanabe, H. Lane, G. J. Dracoulis, G. D. Byrne, A. P. Nieminen, P. Kondev, F. G. Ogawa, K. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Seweryniak, D. Zhu, S. Chowdhury, P. TI Identification of J(pi)=19/2(+) and 23/2(+) isomeric states in Sb-127 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID NEUTRON-RICH ISOTOPES; K-ISOMERS; NUCLEI; DECAYS; SN AB The nucleus Sb-127, which is on the neutron-rich periphery of the beta-stability region, has been populated in complex nuclear reactions involving deep-inelastic and fusion-fission processes with Xe-136 beams incident on thick targets. The previously known isomer at 2325 keV in Sb-127 has been assigned spin and parity 23/2(+), based on the measured gamma-gamma angular correlations and total internal conversion coefficients. The half-life has been determined to be 234(12) ns, somewhat longer than the value reported previously. The 2194 keV state has been assigned J(pi) = 19/2(+) and identified as an isomer with T-1/2 = 14(1) ns, decaying by two E2 branches. The observed level energies and transition strengths are compared with the predictions of a shell model calculation. Two 15/2(+) states have been identified close in energy, and their properties are discussed in terms of mixing between vibrational and three-quasiparticle configurations. C1 [Watanabe, H.; Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Nieminen, P.] Australian Natl Univ, Dept Nucl Phys, RS Phys SE, Canberra, ACT 0200, Australia. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ogawa, K.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. RP Watanabe, H (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM hiroshi@ribf.riken.jp RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015; OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734; Byrne, Aidan/0000-0002-7096-6455 FU ANSTO program for Access to Major Research Facilities [02/03-H-05]; Australian Research Council Discovery [DP0343027, DP0345844]; U. S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11257, DE-FG02-94ER40848]; Academy of Finland [121110] FX We are indebted to the staff members of the Argonne facility for providing the beams. This work was supported by the ANSTO program for Access to Major Research Facilities, grant No. 02/03-H-05, the Australian Research Council Discovery projects DP0343027 and DP0345844, and the U. S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11257 and No. DE-FG02-94ER40848. P. N. acknowledges funding from the Academy of Finland (Grant 121110). NR 28 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD NOV PY 2009 VL 42 IS 2 BP 163 EP 169 DI 10.1140/epja/i2009-10881-7 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 517UV UT WOS:000271645100005 ER PT J AU Arnaldi, R Banicz, K Borer, K Castor, J Chaurand, B Chen, W Cicalo, C Colla, A Cortese, P Damjanovic, S David, A de Falco, A Devaux, A Ducroux, L En'yo, H Fargeix, J Ferretti, A Floris, M Forster, A Force, P Guettet, N Guichard, A Gulkanyan, H Heuser, J Keil, M Kluberg, L Li, Z Lourenco, C Lozano, J Manso, F Martins, P Masoni, A Neves, A Ohnishi, H Oppedisano, C Parracho, P Pillot, P Poghosyan, T Puddu, G Radermacher, E Ramalhete, P Rosinsky, P Scomparin, E Seixas, J Serci, S Shahoyan, R Sonderegger, P Specht, HJ Tieulent, R Uras, A Usai, G Veenhof, R Wohri, HK AF Arnaldi, R. Banicz, K. Borer, K. Castor, J. Chaurand, B. Chen, W. Cicalo, C. Colla, A. Cortese, P. Damjanovic, S. David, A. de Falco, A. Devaux, A. Ducroux, L. En'yo, H. Fargeix, J. Ferretti, A. Floris, M. Foerster, A. Force, P. Guettet, N. Guichard, A. Gulkanyan, H. Heuser, J. Keil, M. Kluberg, L. Li, Z. Lourenco, C. Lozano, J. Manso, F. Martins, P. Masoni, A. Neves, A. Ohnishi, H. Oppedisano, C. Parracho, P. Pillot, P. Poghosyan, T. Puddu, G. Radermacher, E. Ramalhete, P. Rosinsky, P. Scomparin, E. Seixas, J. Serci, S. Shahoyan, R. Sonderegger, P. Specht, H. J. Tieulent, R. Uras, A. Usai, G. Veenhof, R. Woehri, H. K. TI phi production in In-In collisions at 158 A GeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HEAVY-ION COLLISIONS; INDIUM-INDIUM COLLISIONS; QUARK-GLUON PLASMA; MESON PRODUCTION; SPS ENERGIES; NA60; STRANGENESS; NUCLEON; RESONANCES; DETECTORS AB The NA60 experiment has measured muon pair production in In-In collisions at 158 AGeV at the CERN SPS. This paper presents a high statistics measurement of phi ->mu mu meson production. Differential spectra, yields, mass and width are measured as a function of centrality and compared to previous measurements in other colliding systems at the same energy. The width of the rapidity distribution is found to be constant as a function of centrality, compatible with previous results. The decay muon polar angle distribution is measured in several reference frames. No evidence of polarization is found as a function of transverse momentum and centrality. The analysis of the p (T) spectra shows that the phi has a small radial flow, implying a weak coupling to the medium. The T (eff) parameter measured in In-In collisions suggests that the high value observed in Pb-Pb in the kaon channel is difficult to reconcile with radial flow alone. The absolute yield is compared to results in Pb-Pb collisions: though significantly smaller than measured by NA50 in the muon channel, it is found to exceed the NA49 and CERES data in the kaon channel at any centrality. The mass and width are found to be compatible with the PDG values at any centrality and at any p (T) : no evidence for in-medium modifications is observed. C1 [Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Borer, K.] High Energy Phys Lab, Bern, Switzerland. [Chen, W.; Li, Z.] BNL, Upton, NY USA. [de Falco, A.; Floris, M.; Puddu, G.; Serci, S.; Uras, A.; Usai, G.] Univ Cagliari, Cagliari, Italy. [Cicalo, C.; de Falco, A.; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.; Uras, A.; Usai, G.; Woehri, H. K.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Banicz, K.; Damjanovic, S.; David, A.; Foerster, A.; Guettet, N.; Keil, M.; Kluberg, L.; Lourenco, C.; Martins, P.; Parracho, P.; Radermacher, E.; Ramalhete, P.; Rosinsky, P.; Shahoyan, R.; Veenhof, R.] CERN, Geneva, Switzerland. [Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Guettet, N.; Manso, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Guettet, N.; Manso, F.] CNRS, IN2P3, Clermont Ferrand, France. [Banicz, K.; Damjanovic, S.; Specht, H. J.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [David, A.; Keil, M.; Lozano, J.; Martins, P.; Neves, A.; Parracho, P.; Ramalhete, P.; Seixas, J.; Shahoyan, R.; Sonderegger, P.; Woehri, H. K.] Inst Super Tecn, Lisbon, Portugal. [Chaurand, B.; Kluberg, L.] Ecole Polytech, LLR, Palaiseau, France. [Chaurand, B.; Kluberg, L.] Ecole Polytech, CNRS, IN2P3, F-91128 Palaiseau, France. [En'yo, H.; Heuser, J.; Ohnishi, H.] RIKEN, Saitama, Japan. [Colla, A.; Cortese, P.; Ferretti, A.] Univ Turin, Turin, Italy. [Ducroux, L.; Guichard, A.; Pillot, P.; Tieulent, R.] Univ Lyon 1, CNRS, INPL, IN2P3, F-69622 Villeurbanne, France. [Gulkanyan, H.; Poghosyan, T.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Veenhof, R.] Univ Wisconsin, Milwaukee, WI 53201 USA. RP Arnaldi, R (reprint author), Ist Nazl Fis Nucl, I-10125 Turin, Italy. EM michele.floris@ca.infn.it RI Tinoco Mendes, Andre David/D-4314-2011; Cortese, Pietro/G-6754-2012; Colla, Alberto/J-4694-2012; En'yo, Hideto/B-2440-2015; Lozano-Bahilo, Julio/F-4881-2016; Usai, Gianluca/E-9604-2015; Seixas, Joao/F-5441-2013; Ferretti, Alessandro/F-4856-2013; OI Tinoco Mendes, Andre David/0000-0001-5854-7699; Lozano-Bahilo, Julio/0000-0003-0613-140X; Usai, Gianluca/0000-0002-8659-8378; Seixas, Joao/0000-0002-7531-0842; Ferretti, Alessandro/0000-0001-9084-5784; Floris, Michele/0000-0003-0635-788X; Scomparin, Enrico/0000-0001-9015-9610 FU BMBF (Heidelberg group); C. Gulbenkian Foundation; Swiss Fund Kidagan (YerPHI group) FX We acknowledge support from the BMBF (Heidelberg group) as well as from the C. Gulbenkian Foundation and the Swiss Fund Kidagan (YerPHI group). NR 62 TC 12 Z9 13 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV PY 2009 VL 64 IS 1 BP 1 EP 18 DI 10.1140/epjc/s10052-009-1137-5 PG 18 WC Physics, Particles & Fields SC Physics GA 510VA UT WOS:000271119700001 ER PT J AU Habs, D Hegelich, BM Schreiber, J Thirolf, PG AF Habs, D. Hegelich, B. M. Schreiber, J. Thirolf, P. G. TI Vision of a fully laser-driven n gamma-m gamma collider SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID BOSE-EINSTEIN CONDENSATION; POSITRONIUM NEGATIVE-ION; BOUND-STATE; X-RAY; ELECTRON; COLLISIONS; MOLECULE AB The use is suggested of a laser-accelerated dense electron sheet with an energy of (E = (gamma) over tilde mc(2)) as a relativistic mirror to reflect coherently a second laser with photon energy h omega, generating by the Doppler boost high-energy gamma photons with h omega' = 4 (gamma) over tilde (2)h omega and short duration [A. Einstein, Annalen der Physik 17, 891 (1905); D. Habs et al., Appl. Phys. B 93, 349 (2008)]. Two of these counter-propagating. beams are focused by the parabolically shaped electron sheets into the interaction region with small, close to diffraction-limited, spot size. Comparing the new n gamma-m gamma collider with former proposed gamma gamma collider schemes we achieve the conversion of many photon-pairs in a small space-time volume to matter-antimatter particles, while in the other discussed setups only two isolated, much more high-energetic photons will be converted, reaching in the new approach much higher energy densities and temperatures. With a gamma-field strength somewhat below the Schwinger limit we can reach this complete conversion of the. bunch energy into e(+)e-or quark-antiquark q (q) over bar -plasmas. For a Bose-Einstein condensate (BEC) [A. Einstein, Physikalisch-mathematische Klasse (Berlin) 22, 261 (1924); A. Einstein, Physikalisch-mathematische Klasse (Berlin) 22, 3 (1925); A. Griffin, D. W. Snoke, S. Stringari, Bose-Einstein Condensation (Cambridge University Press, 1995)] final state or for the Cooper pair ground state at higher densities [A. J. Leggett, Quantum Liquids, Oxford Graduate Texts (Oxford University Press, 2006)] the strong induced transition into this coherent state is of special interest for single-cycle. pulses. Due to annihilation these cold coherent states are very short-lived. For gamma beams with photon energies of 1-10 keV the rather cold e(+)e(-)-plasma or e(+)e(-)-BEC expands to a cold dense aggregate of positronium (Ps) atoms, where the production of Ps molecules is discussed. For photon energies of 1-10 MeV we discuss the production of a cold induced pi(0)-BEC followed by the formation of molecules. For the direct population of higher q (q) over bar densities we can study condensates of color-neutral mesons with enhanced population. For a.. collider with several-cycle laser pulses the following cycles heat up the fermion-antifermion f (f) over bar system to a certain temperature. Thus we can reach high energy densities and temperatures of an e(+)e(-)gamma plasma, where the production of hadrons in general or the quark-gluon phase transition can be observed. Within the long-term goal of very high photon energies of about 1 GeV in the n gamma-m gamma-collider, even the electro-weak phase transition or SUSY phase transition could be reached. C1 [Habs, D.; Hegelich, B. M.; Schreiber, J.; Thirolf, P. G.] Univ Munich, Fac Phys, D-85748 Garching, Germany. [Habs, D.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Habs, D (reprint author), Univ Munich, Fac Phys, D-85748 Garching, Germany. EM dieter.habs@physik.uni-muenchen.de RI Hegelich, Bjorn/J-2689-2013 NR 49 TC 2 Z9 2 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 EI 1434-6079 J9 EUR PHYS J D JI Eur. Phys. J. D PD NOV PY 2009 VL 55 IS 2 BP 253 EP 264 DI 10.1140/epjd/e2009-00080-2 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 508ZC UT WOS:000270978200002 ER PT J AU Habs, D Tajima, T Schreiber, J Barty, CP Fujiwara, M Thirolf, PG AF Habs, D. Tajima, T. Schreiber, J. Barty, C. P. J. Fujiwara, M. Thirolf, P. G. TI Vision of nuclear physics with photo-nuclear reactions by laser-driven gamma beams SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID PULSE-FRONT TILT; MINI-ORANGE SPECTROMETERS; X-RAY; CONVERSION ELECTRONS; LIFETIME; FISSION; AUTOCORRELATOR; SPECTROSCOPY AB A laser-accelerated dense electron sheet with an energy E = (gamma) over tilde mc(2) can be used as a relativistic mirror to coherently reflect a second laser with photon energy h omega, thus generating by the Doppler boost [A. Einstein, Annalen der Physik 17, 891 (1905); D. Habs et al., Appl. Phys. B 93, 349 (2008)] brilliant high-energy photon beams with h omega' = 4 (gamma) over tilde (2)h omega. and short duration for many new nuclear physics experiments. While the shortest-lived atomic levels are in the atto-second range, nuclear levels can have lifetimes down to zeptoseconds. We discuss how the modulation of electron energies in phase-locked laser fields used for as-measurements [E. Goulielmakis et al., Science 317, 769 (2007)] can be carried over to the new direct measurement of fs-zs nuclear lifetimes by modulating the energies of accompanying conversion electrons or emitted protons. In the field of nuclear spectroscopy we discuss the new perspective as a function of increasing photon energy. In nuclear systems a much higher sensitivity is predicted to the time variation of fundamental constants compared to atomic systems [V. Flambaum, arXiv:nucl-th/0801.1994v1 (2008)]. For energies up to 50 keV Mossbauer-like recoilless absorption allows to produce nuclear bosonic ensembles with many delocalized coherent polaritons [G. V. Smirnov et al., Phys. Rev. A 71, 023804 (2005)] for the first time. Using the (gamma, n) reaction to produce cold, polarized neutrons with a focusing ellipsoidal device [P. Boni, Nucl. Instrum. Meth. A 586, 1 (2008); Ch. Schanzer et al., Nucl. Instrum. Meth. 529, 63 (2004)], brilliant cold polarized micro-neutron beams become available. The compact and relatively cheap lasergenerated. beams may serve for extended studies at university-based facilities. C1 [Habs, D.; Tajima, T.; Schreiber, J.; Thirolf, P. G.] Univ Munich, Fac Phys, D-85748 Garching, Germany. [Habs, D.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Fujiwara, M.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Barty, C. P. J.] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94550 USA. RP Habs, D (reprint author), Univ Munich, Fac Phys, D-85748 Garching, Germany. EM Peter.Thirolf@physik.uni-muenchen.de NR 53 TC 26 Z9 27 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 EI 1434-6079 J9 EUR PHYS J D JI Eur. Phys. J. D PD NOV PY 2009 VL 55 IS 2 BP 279 EP 285 DI 10.1140/epjd/e2009-00101-2 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 508ZC UT WOS:000270978200005 ER PT J AU Shah, RC Johnson, RP Shimada, T Hegelich, BM AF Shah, R. C. Johnson, R. P. Shimada, T. Hegelich, B. M. TI Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID PULSE; CORRELATOR; AMPLIFIER AB To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10(7) and < 0.5 mJ input energy. We also consider use of optical densities to boost the CCD dynamic range within a single temporal window. C1 [Shah, R. C.; Johnson, R. P.; Shimada, T.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shah, RC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rpjohnson@lanl.gov RI Hegelich, Bjorn/J-2689-2013 FU European Commission [ELI pp 212105]; program FP7 Infrastructures-2007-1; LANL Laboratory Directed Research and Development (LDRD) program FX This work was performed under the auspices of the US DOE and was supported by the LANL Laboratory Directed Research and Development (LDRD) program. We also acknowledge the support by the European Commission under contract ELI pp 212105 in the framework of the program FP7 Infrastructures-2007-1. NR 15 TC 11 Z9 14 U1 3 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 J9 EUR PHYS J D JI Eur. Phys. J. D PD NOV PY 2009 VL 55 IS 2 BP 305 EP 309 DI 10.1140/epjd/e2009-00152-3 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 508ZC UT WOS:000270978200009 ER PT J AU Blaschke, DB Prozorkevich, AV Ropke, G Roberts, CD Schmidt, SM Shkirmanov, DS Smolyansky, SA AF Blaschke, D. B. Prozorkevich, A. V. Roepke, G. Roberts, C. D. Schmidt, S. M. Shkirmanov, D. S. Smolyansky, S. A. TI Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID POSITRON PAIR PRODUCTION; X-RAY LASERS; OSCILLATOR REPRESENTATION; ELECTRON ACCELERATION; KINETIC DESCRIPTION; PARTICLE-PRODUCTION; PHOTON PROPAGATION; ALTERNATING FIELD; VACUUM; SCATTERING AB We consider the possibility of experimental verification of vacuum e(+)e(-) pair creation at the focus of two counter-propagating optical laser beams with intensities 10(20)-10(22) W/cm(2), achievable with present-day petawatt lasers, and approaching the Schwinger limit: 10(29) W/cm(2) to be reached at ELI. Our approach is based on the collisionless kinetic equation for the evolution of the e(+) and e(-) distribution functions governed by a non-Markovian source term for pair production. As possible experimental signals of vacuum pair production we consider e(+)e(-) annihilation into gamma-pairs and the refraction of a high-frequency probe laser beam by the produced e(+)e(-) plasma. We discuss the dependence of the dynamical pair production process on laser wavelength, with special emphasis on applications in the X-ray domain (X-FEL), as well as the prospects for mu(+)mu(-) and pi(+)pi(-) pair creation at high-intensity lasers. We investigate perspectives for using high-intensity lasers as "boosters" of ion beams in the few-GeV per nucleon range, which is relevant, e. g., to the exploration of the QCD phase transition in laboratory experiments. C1 [Blaschke, D. B.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Blaschke, D. B.] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, RU-141980 Dubna, Russia. [Blaschke, D. B.; Roepke, G.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Prozorkevich, A. V.; Shkirmanov, D. S.; Smolyansky, S. A.] Saratov NG Chernyshevskii State Univ, Saratov 410026, Russia. [Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schmidt, S. M.] Forschungszentrum Julich, D-52428 Julich, Germany. [Schmidt, S. M.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schmidt, S. M.] DELTA, D-44221 Dortmund, Germany. RP Blaschke, DB (reprint author), Univ Wroclaw, Inst Theoret Phys, Max Born Pl 9, PL-50204 Wroclaw, Poland. EM blaschke@ift.uni.wroc.pl OI Roberts, Craig/0000-0002-2937-1361 NR 86 TC 22 Z9 22 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 EI 1434-6079 J9 EUR PHYS J D JI Eur. Phys. J. D PD NOV PY 2009 VL 55 IS 2 BP 341 EP 358 DI 10.1140/epjd/e2009-00156-y PG 18 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 508ZC UT WOS:000270978200013 ER PT J AU Kiefer, D Henig, A Jung, D Gautier, DC Flippo, KA Gaillard, SA Letzring, S Johnson, RP Shah, RC Shimada, T Fernandez, JC Liechtenstein, VK Schreiber, J Hegelich, BM Habs, D AF Kiefer, D. Henig, A. Jung, D. Gautier, D. C. Flippo, K. A. Gaillard, S. A. Letzring, S. Johnson, R. P. Shah, R. C. Shimada, T. Fernandez, J. C. Liechtenstein, V. Kh. Schreiber, J. Hegelich, B. M. Habs, D. TI First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID BRILLIANT X-RAY; LASER-PULSES; DESIGN CONSIDERATIONS; GAMMA-RAY; BEAMS; ACCELERATION; MIRRORS AB Electrons have been accelerated from ultra-thin diamond-like carbon (DLC) foils by an ultrahigh-intensity laser pulse. A distinct quasi-monoenergetic electron spectrum peaked at 30 MeV is observed at a target thickness as thin as 5 nm which is in contrast to the observations of wide spectral distributions for thicker targets. At the same time, a substantial drop in laser-accelerated ion energies is found. The experimental findings give first indication that relativistic electron sheets can be generated from ultra-thin foils which in future may be used to generate brilliant X-ray beams by the coherent reflection of a second laser. C1 [Kiefer, D.; Henig, A.; Jung, D.; Schreiber, J.; Habs, D.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Kiefer, D.; Henig, A.; Jung, D.; Liechtenstein, V. Kh.; Schreiber, J.; Hegelich, B. M.; Habs, D.] Univ Munich, Fak Phys, D-85748 Garching, Germany. [Gautier, D. C.; Flippo, K. A.; Gaillard, S. A.; Letzring, S.; Johnson, R. P.; Shah, R. C.; Shimada, T.; Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gaillard, S. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Gaillard, S. A.] Forschungszentrum Dresden Rossendorf, D-01328 Dresden, Germany. [Liechtenstein, V. Kh.] RRC Kurchatov Inst, Moscow 123182, Russia. [Schreiber, J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. RP Kiefer, D (reprint author), Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. EM daniel.kiefer@mpq.mpg.de RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; Flippo, Kirk/C-6872-2009 OI Fernandez, Juan/0000-0002-1438-1815; Flippo, Kirk/0000-0002-4752-5141 FU US DOE; DFG [TR18]; International Max-Planck Research School on Advanced Photon Science (IMPRS-APS); German Academic Exchange Service (DAAD); European Commission [212105] FX We acknowledge many useful discussion with J. Meyer-terVehn, H.-C. Wu, X. Q. Yan, S. Rykovanov, B. Qiao, M. Geissler, H. Ruhl, and T. E. Cowan for providing the electron spectrometer. This work was performed under the auspices of the US DOE and was supported by the LANL Laboratory Directed Research and Development (LDRD) program and by the DFG under Contract No. TR18 and the DFG cluster of excellence Munich-Centre for Advanced Photonics. D. Kiefer, A. Henig and D. Jung acknowledge financial support from the International Max-Planck Research School on Advanced Photon Science (IMPRS-APS), J. Schreiber from the German Academic Exchange Service (DAAD). The authors acknowledge the support by the European Commission under contract ELI pp 212105 in the framework of the program FP7 Infrastructures-2007-1. NR 36 TC 29 Z9 29 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 J9 EUR PHYS J D JI Eur. Phys. J. D PD NOV PY 2009 VL 55 IS 2 BP 427 EP 432 DI 10.1140/epjd/e2009-00199-0 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 508ZC UT WOS:000270978200024 ER PT J AU Nune, SK Gunda, P Thallapally, PK Lin, YY Forrest, ML Berkland, CJ AF Nune, Satish K. Gunda, Padmaja Thallapally, Praveen K. Lin, Ying-Ying Forrest, M. Laird Berkland, Cory J. TI Nanoparticles for biomedical imaging SO EXPERT OPINION ON DRUG DELIVERY LA English DT Review DE biomedical imaging; molecular imaging; nanoparticle synthesis; surface modification; targeting ID CALCIUM-PHOSPHATE NANOPARTICLES; FUNCTIONALIZED GOLD NANOPARTICLES; SUPERPARAMAGNETIC IRON-OXIDE; MRI CONTRAST AGENTS; DEXTRAN SULFATE NANOPARTICLES; MAGNETIC-RESONANCE DETECTION; SEMICONDUCTOR QUANTUM DOTS; OVARIAN TUMOR XENOGRAFTS; WALLED CARBON NANOTUBES; IN-VIVO AB Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 - 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. C1 [Nune, Satish K.; Thallapally, Praveen K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Gunda, Padmaja; Forrest, M. Laird; Berkland, Cory J.] Univ Kansas, Dept Pharmaceut Chem, Lawrence, KS 66047 USA. [Lin, Ying-Ying; Berkland, Cory J.] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA. RP Nune, SK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd,POB 999,MSIN K6-81, Richland, WA 99352 USA. EM satish.nune@pnl.gov RI Forrest, Marcus/A-8452-2008; thallapally, praveen/I-5026-2014; OI thallapally, praveen/0000-0001-7814-4467; Forrest, Marcus Laird/0000-0002-0288-6138 FU Pacific Northwest National Laboratory for Laboratory Directed Research and Development Fund [DE-AC05-76RL01830]; American Heart Association; NIH [R03 AR054035, P20 RR016443, R21 CA132033, P20 RR015563]; NSF [CHE0719464]; American Cancer Society [RSG-08-133-01-CDD] FX The authors thank the Pacific Northwest National Laboratory for Laboratory Directed Research and Development Fund (operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830), the American Heart Association, the NIH (R03 AR054035, P20 RR016443, R21 CA132033 and P20 RR015563), the NSF (CHE0719464) and the American Cancer Society (RSG-08-133-01-CDD). NR 193 TC 99 Z9 100 U1 7 U2 82 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1742-5247 EI 1744-7593 J9 EXPERT OPIN DRUG DEL JI Expert Opin. Drug Deliv. PD NOV PY 2009 VL 6 IS 11 BP 1175 EP 1194 DI 10.1517/17425240903229031 PG 20 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 528WA UT WOS:000272476500004 PM 19743894 ER PT J AU Bashir, A Raya, A Sanchez-Madrigal, S Roberts, CD AF Bashir, A. Raya, A. Sanchez-Madrigal, S. Roberts, C. D. TI Gauge Invariance of a Critical Number of Flavours in QED3 SO FEW-BODY SYSTEMS LA English DT Article ID DYSON-SCHWINGER EQUATIONS; CHIRAL-SYMMETRY BREAKING; QUANTUM ELECTRODYNAMICS; FERMION PROPAGATOR; QUENCHED QED3; VERTEX; RENORMALIZATION; CONFINEMENT; QCD; DECONFINEMENT AB The fermion propagator in an arbitrary covariant gauge can be obtained from the Landau gauge result via a Landau-Khalatnikov-Fradkin transformation. This transformation can be written in a practically useful form in both configuration and momentum space. It is therefore possible to anticipate effects of a gauge transformation on the propagator's analytic properties. These facts enable one to establish that if a critical number of flavours for chiral symmetry restoration and deconfinement exists in noncompact QED3, then its value is independent of the gauge parameter. This is explicated using simple forms for the fermion-photon vertex and the photon vacuum polarisation. The illustration highlights pitfalls that must be avoided in order to arrive at valid conclusions. Landau gauge is seen to be the covariant gauge in which the propagator avoids modification by a non-dynamical gauge-dependent exponential factor, whose presence can obscure truly observable features of the theory. C1 [Bashir, A.; Raya, A.; Sanchez-Madrigal, S.] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico. [Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Roberts, C. D.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. RP Bashir, A (reprint author), Univ Michoacana, Inst Fis & Matemat, Apartado Postal 2-82, Morelia 58040, Michoacan, Mexico. EM adnan@itzel.ifm.umich.mx OI Roberts, Craig/0000-0002-2937-1361 FU CIC; CONACyT [4.10, 4.22, 82230, 46614-I]; Department of Energy [DE-AC02-06CH11357] FX CDR is grateful to the staff and students of the Instituto de F sica y Matematicas, Universidad Michoacana de San Nicol~s deHidalgo, for organising and hosting the "2nd MoreliaWorkshop on NonperturbativeAspects of Field Theories," at which this study was completed. This work was supported by: CIC and CONACyT grants, under project nos. 4.10, 4.22, 82230 and 46614-I; COECyT grants; and the Department of Energy, Office of Nuclear Physics, contract no. DE-AC02-06CH11357. NR 57 TC 53 Z9 53 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD NOV PY 2009 VL 46 IS 4 BP 229 EP 237 DI 10.1007/s00601-009-0069-9 PG 9 WC Physics, Multidisciplinary SC Physics GA 514OJ UT WOS:000271404000003 ER PT J AU Janetos, AC AF Janetos, Anthony C. TI A New Biology for the 21st Century SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Editorial Material C1 [Janetos, Anthony C.] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. [Janetos, Anthony C.] Univ Maryland, College Pk, MD 20742 USA. RP Janetos, AC (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 3 U2 8 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD NOV PY 2009 VL 7 IS 9 BP 455 EP 455 DI 10.1890/1540-9295-7.9.455 PG 1 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 516RB UT WOS:000271559000001 ER PT J AU Nyberg, CM Thompson, JS Zhuang, Y Pavlish, JH Brickett, L Pletcher, S AF Nyberg, Carolyn M. Thompson, Jeffrey S. Zhuang, Ye Pavlish, John H. Brickett, Lynn Pletcher, Sara TI Fate of trace element haps when applying mercury control technologies SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE HAPs; Trace elements; Mercury control; Coal ID SELENIUM CAPTURE; COAL COMBUSTION; EMISSIONS; REMOVAL; SYSTEMS; GAS AB During the past several years, and particularly since the Clean Air Mercury Rule (CAMR) was promulgated in June of 2005, the electric utility industry, product vendors, and the research community have been working diligently to develop and test Hg control strategies for a variety of coal types and plant configurations. Some of these strategies include sorbent injection and chemical additives designed to increase mercury capture efficiency in particulate control devices. These strategies have the potential to impact the fate of other inorganic hazardous air Pollutants (HAPs), which typically include As. Be, Cd, Cr, Co, Mn. Ni, Pb, Se, and Sb. To evaluate this impact, flue gas samples using EPA Method 29, along with representative coal and ash samples, were collected during recent pilot-scale and field test projects that were evaluating Hg control technologies. These test programs included a range of fuel types with varying trace element concentrations, along with different combustion systems and particulate control devices. The results show that the majority of the trace element HAPs are associated with the particulate matter in the flue gas, except for Se. However, for five of the six projects. Se partitioning was shifted to the particulate phase and total emissions reduced when Hg control technologies were applied. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nyberg, Carolyn M.; Thompson, Jeffrey S.; Zhuang, Ye; Pavlish, John H.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. [Brickett, Lynn; Pletcher, Sara] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Nyberg, CM (reprint author), Univ N Dakota, Energy & Environm Res Ctr, 15 N 23rd St,Stop 9018, Grand Forks, ND 58202 USA. EM cnyberg@undeerc.org FU U.S. Department of Energy (DOE) [DE- FC26-98FT40321]; EPA Office of Environmental Engineering and Technology Demonstration through the EERC's Center for Air Toxic Metals(R) (CATM(R)) through Agreement [CR83092901] FX The work summarized in this paper was performed under U.S. Department of Energy (DOE) Cooperative Agreement No. DE- FC26-98FT40321, the EPA Office of Environmental Engineering and Technology Demonstration through the EERC's Center for Air Toxic Metals(R) (CATM(R)) through Agreement No. CR83092901. This paper has not been through a formal review and, therefore, does not bear the endorsement of the EPA. Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of DOE or EPA. NR 26 TC 3 Z9 4 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 BP 1348 EP 1353 DI 10.1016/j.fuproc.2009.06.025 PG 6 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300005 ER PT J AU Feeley, TJ Jones, AP Brickett, LA O'Palko, BA Miller, CE Murphy, JT AF Feeley, Thomas J., III Jones, Andrew P. Brickett, Lynn A. O'Palko, B. Andrew Miller, Charles E. Murphy, James T. TI An update on DOE's Phase II and Phase III mercury control technology R&D program SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Mercury capture; Activated carbon injection; Chemically-treated; Calcium bromide; Oxidation; Commercialization AB The U.S. Department of Energy's National Energy Technology Laboratory, under the Office of Fossil Energy's Innovations for Existing Plants Program, carried out a comprehensive Hg research and development program for coal-fired power generation facilities since the mid-1990s. Working collaboratively with the U.S. Environmental Protection Agency, the Electric Power Research Institute, power plant operators, state and local agencies, and a host of research organizations and academic institutions, the Program identified the major factors that affect mercury speciation and capture in coal combustion flue gas and funneled this knowledge into the development of a suite of mercury control technologies for the diverse fleet of U.S. coal-fired power plants. The high performance observed during full-scale field testing has given coal-fired power plant operators the confidence to begin deploying technology. As of March 2009, more than 130 full-scale activated carbon injection systems have been ordered by the U.S. coal-fired power generators. These contracts include both new and retrofit installations and represent over 55 GW of coal-based electric generating capacity. (C) 2009 Elsevier B.V. All rights reserved. C1 [Jones, Andrew P.; Murphy, James T.] Sci Applicat Int Corp, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Feeley, Thomas J., III; Brickett, Lynn A.; Miller, Charles E.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [O'Palko, B. Andrew] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Jones, AP (reprint author), Sci Applicat Int Corp, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM andrew.jones@netl.doe.gov NR 15 TC 13 Z9 13 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 BP 1388 EP 1391 DI 10.1016/j.fuproc.2009.05.012 PG 4 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300011 ER PT J AU Thompson, JS Pavlish, JH Hamre, LL Jensen, MD Smith, D Podwin, S Brickett, LA AF Thompson, Jeffrey S. Pavlish, John H. Hamre, Lucinda L. Jensen, Melanie D. Smith, David Podwin, Steve Brickett, Lynn A. TI Sorbent injection into a slipstream baghouse for mercury control: Project summary SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Electrostatic precipitator-fabric filter; Trace elements; Continuous mercury monitor; Sorbent injection; Mercury; Mercury control AB A project led by the Energy and Environmental Research Center to test and demonstrate sorbent injection as a cost-effective mercury control technology for utilities burning lignites has shown effective mercury capture under a range of operating conditions. Screening, parametric. and long-term tests were carried Out at a slipstream facility representing an electrostatic precipitator-activated carbon injection-fabric filter configuration (called a TOXECON (TM) in the United States). Screening tests of sorbent injection evaluated nine different sorbents, including both treated and standard activated carbon, to compare mercury capture as a function of sorbent injection rate. Parametric tests evaluated several variables including air-to-cloth (A/C) ratio, flue gas temperature. cleaning frequency, and dust loading to determine the effect on mercury control and systems operation. Long-term tests (approximately 2 months in duration) evaluated the sustainability of systems operation. The screening tests identified four sorbents that achieved greater than 90% mercury capture. Longer-term tests demonstrated mercury capture of 82% at sorbent injection rates of about 2-2.5 lb/Macf. Ash loading and A/C ratio affected the operation of the fabric filter. At lower ash loadings, A/C ratios as high as 6 ft/min could be sustained while operating with conventional bags, but higher ash loadings required the use of high-permeability bags to overcome pressure drop issues. (C) 2009 Elsevier B.V. All rights reserved. C1 [Thompson, Jeffrey S.; Pavlish, John H.; Hamre, Lucinda L.; Jensen, Melanie D.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. [Smith, David; Podwin, Steve] SaskPower, Regina, SK S4P 0S1, Canada. [Brickett, Lynn A.] Dept Energy, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Thompson, JS (reprint author), Univ N Dakota, Energy & Environm Res Ctr, 15 N 23rd St,Stop 9018, Grand Forks, ND 58202 USA. EM jthompson@undeerc.org NR 3 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 BP 1392 EP 1399 DI 10.1016/j.fuproc.2009.06.016 PG 8 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300012 ER PT J AU Derenne, S Sartorelli, P Bustard, J Stewart, R Sjostrom, S Johnson, P McMillian, M Sudhoff, F Chang, R AF Derenne, Steven Sartorelli, Paul Bustard, Jean Stewart, Robin Sjostrom, Sharon Johnson, Paul McMillian, Michael Sudhoff, Fred Chang, Ramsay TI TOXECON clean coal demonstration for mercury and multi-pollutant control at the Presque Isle Power Plant SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Coal; Mercury removal; Sorbent injection; Activated carbon; TOXECON AB We Energies and DOE, under a Clean Coal Power Initiative program, are working together to design, install, evaluate and demonstrate the EPRI-patented TOXECON (TM) air Pollution control process as an integrated emissions control system for mercury and particulate matter from three 90 MW units at the Presque Isle Power Plant located in Marquette, Michigan. The process involves the injection of activated carbon between the existing particulate collector and a fabric filter installed downstream. The sorbent collects mercury that is then removed from the flue gas using the baghouse. The project has also recently investigated SO(2) and NO(x) control using sorbent injection. Demonstration of TOXECON (TM) began in February 2006 and is scheduled to continue through early 2009. This paper will discuss balance of plant issues encountered during start-up in 2006 as well as ongoing issues. Mercury removal results from optimization and long-term testing will be presented as well as current efforts in SO(2) and NO(x) trim control. (C) 2009 Elsevier B.V. All rights reserved. C1 [Derenne, Steven; Sartorelli, Paul] We Energies, Milwaukee, WI 53203 USA. [Bustard, Jean; Stewart, Robin; Sjostrom, Sharon; Johnson, Paul] ADA ES Inc, Unit B, Littleton, CO 80120 USA. [McMillian, Michael; Sudhoff, Fred] US DOE, NETL, Morgantown, WV 26507 USA. [Chang, Ramsay] EPRI, Palo Alto, CA 94393 USA. RP Derenne, S (reprint author), We Energies, 231 W Michigan St, Milwaukee, WI 53203 USA. EM steven.derenne@we-energies.com NR 0 TC 6 Z9 7 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 BP 1400 EP 1405 DI 10.1016/j.fuproc.2009.06.014 PG 6 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300013 ER PT J AU Dombrowski, K Richardson, C Padilla, J Fisher, K Campbell, T Chang, R Eckberg, C Hudspeth, J O'Palko, A Pletcher, S AF Dombrowski, Katherine Richardson, Carl Padilla, Jackie Fisher, Kevin Campbell, Tom Chang, Ramsay Eckberg, Craig Hudspeth, John O'Palko, Andrew Pletcher, Sara TI Evaluation of low ash impact sorbent injection technologies for mercury control at a Texas lignite/PRB fired power plant SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Activated carbon injection; Mercury control; Fly ash; Toxecon (TM) II; Sorbent; Electrostatic precipitator AB A sorbent injection test program was carried out at NRG Texas Power LLC's (NRG) Limestone Electric Generating Station (LMS). LMS fires a 30/70 blend of Powder River Basin (PRB) and Texas Lignite, and is equipped with a cold-side electrostatic precipitator (ESP) and wet scrubber. The plant markets its fly ash for beneficial use, so development of a low ash impact mercury control technology is important to the economics of implementing a mercury control system. In addition to standard activated carbon injection, two different low ash impact mercury control technologies were evaluated in parametric tests: low ash impact sorbents and Toxecon (TM) II. The parametric ACI test program conducted at LMS demonstrated that high (>90%) levels of mercury removal could be achieved with carbon sorbents. The Toxecon (TM) II design used at LMS did not provide for as high a mercury removal as injection upstream of the ESP, likely due to poor coverage of the cross-sectional area of the ESP. Limited concrete testing was performed with simulated ash/carbon mixtures. As expected, the amount of air-entraining additive required increased with increasing carbon content in the ash. However, it appeared that small amounts of non-passivated carbon may be acceptable in fly ash for concrete use. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dombrowski, Katherine; Richardson, Carl; Padilla, Jackie] URS Corp, Austin, TX 78729 USA. [Fisher, Kevin] Apogee Sci, Englewood, CO 80110 USA. [Campbell, Tom] ADA ES, Littleton, CO 80120 USA. [Chang, Ramsay] EPRI, Palo Alto, CA 94304 USA. [Eckberg, Craig] NRG Texas Power LLC, Houston, TX 77010 USA. [Hudspeth, John] Limestone Generating Stn, Jewett, TX 75846 USA. [O'Palko, Andrew; Pletcher, Sara] US DOE, NETL, Morgantown, WV 26507 USA. RP Dombrowski, K (reprint author), URS Corp, 9400 Amberglen Blvd, Austin, TX 78729 USA. EM Katherine_Dombrowski@URScorp.com FU United States Department of Energy's National Energy Technology Laboratory [DE-FC26-06NT42779]; EPRI; NRG Texas Power LLC; Luminant; AEP FX The work described in this paper is funded by the United States Department of Energy's National Energy Technology Laboratory under Cooperative Agreement DE-FC26-06NT42779. EPRI, NRG Texas Power LLC, Luminant, and AEP are project co-funders. NR 5 TC 2 Z9 3 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 BP 1406 EP 1411 DI 10.1016/j.fuproc.2009.06.015 PG 6 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300014 ER PT J AU Sjostrom, S Dillon, M Donnelly, B Bustard, J Filippelli, G Glesmann, R Orscheln, T Wahlert, S Chang, R O'Palko, A AF Sjostrom, Sharon Dillon, Martin Donnelly, Brian Bustard, Jean Filippelli, Greg Glesmann, Rob Orscheln, Tom Wahlert, Steve Chang, Ramsay O'Palko, Andrew TI Influence of SO3 on mercury removal with activated carbon: Full-scale results SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Coal; SO3; Hg; Activated carbon injection AB Activated carbon injection is considered one of the most cost-effective options for mercury control at PRB-fired power plants. However, roughly 30% of sites firing PRB coal use SO3 for flue gas conditioning. The presence of SO3 in flue gas can decrease mercury capture by activated carbon, sometimes dramatically. Overcoming activated carbon performance limitations caused by SO3 conditioning for units with this configuration is essential to enable these plants to cost-effectively meet pending mercury emission regulations. Ameren's Labadie Unit 2 fires PRB coal and uses SO3 to enhance particulate capture in the electrostatic precipitator (ESP). Full-scale sorbent injection tests at Labadie were conducted from 2005-2007. Six sorbents were tested at SO3 injection concentrations ranging from 0 to 10.7 ppm. Sorbent performance was evaluated at two injection locations (the air preheater (APH) inlet and outlet). Native mercury capture on fly ash was typically less than 15%. When the mercury sorbents were injected downstream of the air preheater, the SO3 concentration resulted in a decrease in mercury capture from 85% (no SO3 injection) to 17% (SO3 injection set at 10.7 ppm). Mercury sorbents were more effective when injected upstream of the air preheater. With the SO3 system off, mercury removal increased from 75% when injecting 5.1 lb/MMacf of brominated carbon at the APH outlet, compared to 95% when injecting at the inlet. With the SO(3)3 system on, test results indicated an increase from about 30% injecting at the outlet to 58% injecting at the inlet. Tests evaluating the ADA-ES,patented onsite milling process showed that 85% mercury capture was achieved injecting 4lb/MMacf of milled activated carbon compared to a requirement of 10lb/MMacf to achieve the same removal using as-received carbon, representing a 60% reduction in activated carbon consumption. No changes in opacity, APH and ESP performance, or other balance-of-plant effects were observed in these tests. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sjostrom, Sharon; Dillon, Martin; Donnelly, Brian; Bustard, Jean] ADA ES Inc, Unit B, Littleton, CO 80120 USA. [Filippelli, Greg; Glesmann, Rob] ADA ES Inc, Emiss Strategies, Baltimore, MD 21044 USA. [Orscheln, Tom] Ameren, St Louis, MO 63127 USA. [Wahlert, Steve] Sargent & Lundy Engineers, Chicago, IL 60603 USA. [Chang, Ramsay] EPRI, Palo Alto, CA 94304 USA. [O'Palko, Andrew] US DOE, NETL, Morgantown, WV 26507 USA. RP Sjostrom, S (reprint author), ADA ES Inc, Unit B, 8100 SouthPk Way, Littleton, CO 80120 USA. EM sharons@adaes.com FU Department of Energy's National Energy Technology Laboratory (DOE/NETL) [DE-FC26-03NT41986] FX The work described in this paper was made possible through funding and leadership of Ameren, EPRI, and DOE NETL and several other industry partners. Results included in this paper from 2006 and 2007 were part of an overall program funded by the Department of Energy's National Energy Technology Laboratory (DOE/NETL Award Number DE-FC26-03NT41986) and industry partners to obtain the necessary information to assess the technical and cost feasibility of controlling mercury from coal-fired utility plants. Any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE, EPRI, Ameren or the other funders. Special acknowledgments are given to the mercury field-testing team at ADA-ES, Inc., for their efforts and sacrifices. Brian Griffen and the staff at Labadie Plant are also gratefully acknowledged for their support during testing at their facility. NR 6 TC 12 Z9 12 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 SI SI BP 1419 EP 1423 DI 10.1016/j.fuproc.2009.08.019 PG 5 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300016 ER PT J AU Pavlish, JH Thompson, JS Martin, CL Hamre, LL Wiemuth, R Pletcher, S AF Pavlish, John H. Thompson, Jeffrey S. Martin, Christopher L. Hamre, Lucinda L. Wiemuth, Robert Pletcher, Sara TI Fabric filter bag investigation following field testing of sorbent injection for mercury control at TXU's Big Brown Station SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE TOXECON; Mercury control; Filter analysis; Activated carbon injection AB Field testing of mercury control sorbent injection options with a TOXECON (TM) configuration has been completed at TXU's Big Brown Station. Mercury control results at Big Brown were promising and have been previously reported. However, the high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before differential pressure limits were encountered, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. After field testing, the residual differential pressure across the test fabric filter module had increased relative to baseline conditions to the point that the plant performed a filter change of the test module several months ahead of schedule. An investigation was conducted on pre- and posttest filter samples from the test module and a parallel nontest module to examine the effect of activated carbon injection. Analysis of the samples indicates an increase in residual dust embedded in the filters which appears to explain the low fabric permeabilities. The long-term increase in differential pressure did not appear to be associated with activated carbon injection, but instead was due to a gradual buildup of embedded material on the filters that was not cleaned away by the pulse cleaning system. The injected activated carbon appeared to behave like additional fly ash in terms of baghouse differential pressure but did not appear to accelerate the buildup of residual material. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pavlish, John H.; Thompson, Jeffrey S.; Martin, Christopher L.; Hamre, Lucinda L.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. [Wiemuth, Robert] Luminant Power, Dallas, TX 75201 USA. [Pletcher, Sara] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Pavlish, JH (reprint author), Univ N Dakota, Energy & Environm Res Ctr, 15 N 23rd St,Stop 9018, Grand Forks, ND 58202 USA. EM jpavlish@undeerc.org; Robert.Wiemuth@luminant.com; Sara.Pletcher@netl.doe.gov FU DOE National Energy Technology Laboratory [DE-FC26-05NT42305]; TXU Power; ADA-ES, Inc.; Babcock Wilcox Company; Electric Power Research Institute FX This paper was prepared by the EERC, an agency of the University of North Dakota, whose staff wish to acknowledge and thank the following organizations for their support of this project: the DOE National Energy Technology Laboratory through Cooperative Agreement No. DE-FC26-05NT42305; TXU Power; ADA-ES, Inc.; Babcock & Wilcox Company; and the Electric Power Research Institute. Special assistance was also provided by Norit Americas and Acid Gas Solutions. NR 6 TC 1 Z9 2 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD NOV PY 2009 VL 90 IS 11 BP 1424 EP 1429 DI 10.1016/j.fuproc.2009.06.018 PG 6 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 524DF UT WOS:000272123300017 ER PT J AU Rao, MR Halfhill, MD Abercrombie, LG Ranjan, P Abercrombie, JM Gouffon, JS Saxton, AM Stewart, CN AF Rao, Murali R. Halfhill, Matthew D. Abercrombie, Laura G. Ranjan, Priya Abercrombie, Jason M. Gouffon, Julia S. Saxton, Arnold M. Stewart, C. Neal, Jr. TI Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes SO FUNCTIONAL & INTEGRATIVE GENOMICS LA English DT Article DE Explosives; RDX; TNT; Microarrays; Phytoremediation; Phytosensing ID LEUCINE-RICH REPEAT; EXPLOSIVE HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE RDX; ARMY AMMUNITION PLANT; BACTERIAL NITROREDUCTASE; MICROARRAY PLATFORMS; ARABIDOPSIS-THALIANA; TRANSGENIC PLANTS; TRANSFORMATION PRODUCTS; EXPRESSION MEASUREMENTS; POPLAR TREES AB High explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT) are important contaminants in the environment and phytoremediation has been viewed as a cost-effective abatement. There remains, however, an insufficient knowledge-base about how plants respond to explosives, especially in the steady state. Microarray analysis was conducted on Arabidopsis thaliana that were grown in Murashige and Skoog media containing steady-state levels of 0.5 mM RDX or 2.0 mu M TNT to study the effect of these compounds on its transcriptional profile. Our results for both RDX and TNT were consistent with the existing theory for xenobiotic metabolism in plants. Among the genes that were differentially expressed included oxidoreductases, cytochrome P450s, transferases, transporters, and several unknown expressed proteins. We discuss the potential role of upregulated genes in plant metabolism, phytoremediation, and phytosensing. Phytosensing, the detection of field contamination using plants, is an end goal of this project. C1 [Rao, Murali R.; Halfhill, Matthew D.; Abercrombie, Laura G.; Ranjan, Priya; Abercrombie, Jason M.; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Halfhill, Matthew D.] St Ambrose Univ, Dept Biol, Davenport, IA 52803 USA. [Ranjan, Priya] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Gouffon, Julia S.] Univ Tennessee, Dept Nutr, Affymetrix Core Facil, Knoxville, TN 37996 USA. [Saxton, Arnold M.] Univ Tennessee, Dept Anim Sci, Knoxville, TN 37996 USA. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, 2431 Joe Johnson Blvd, Knoxville, TN 37996 USA. EM nealstewart@utk.edu RI Ranjan, Priya/F-6835-2011 FU DIA-AFMIC; Tennessee Agricultural Experiment Station FX We would like to thank Pradeep Chimakurthy for the help on Affymetrix data analysis and all the members of Stewart lab for their support. Also, we would like to thank the reviewers for their constructive comments and suggestions. We are grateful for the funding by DIA-AFMIC and the Tennessee Agricultural Experiment Station. NR 64 TC 14 Z9 15 U1 1 U2 23 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1438-793X EI 1438-7948 J9 FUNCT INTEGR GENOMIC JI Funct. Integr. Genomics PD NOV PY 2009 VL 9 IS 4 BP 537 EP 547 DI 10.1007/s10142-009-0125-z PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 504RB UT WOS:000270633700010 PM 19543758 ER PT J AU Heung, LK Sessions, HT Xiao, X Mentzer, HL AF Heung, L. K. Sessions, H. T. Xiao, X. Mentzer, H. L. TI DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE hydrogen isotopes; TCAP process; separation AB The first generation of a hydrogen isotope separation process called the thermal cycling absorption process (TCAP) has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental 12-m column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the Eighth International Conference on Tritium Science and Technology and are published in the proceedings, Fusion Sci. Technol., Vol. 54, No. 2, p. 399 (2008). We have since completed the start-up and demonstrated the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams, each with better than 99.7% purity. C1 [Heung, L. K.; Sessions, H. T.; Xiao, X.; Mentzer, H. L.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Heung, LK (reprint author), Savannah River Natl Lab, 773-A,Savannah River Site, Aiken, SC 29808 USA. EM leung.heung@srnl.doe.gov NR 3 TC 10 Z9 10 U1 0 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2009 VL 56 IS 4 BP 1471 EP 1475 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513EV UT WOS:000271306100003 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI ADIABATIC COMPRESSION OF A DENSE PLASMA "MIXED" WITH RANDOM MAGNETIC FIELDS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE magnetized target fusion; magneto-inertial fusion; random magnetic field ID LINER; IMPLOSION; PHYSICS; FUSION; TARGET AB This paper is concerned with adiabatic compression of a plasma sphere with a random small-scale magnetic field embedded in the plasma. The length of the field line between two intersections with the wall, determined from random walk scaling, is large enough to make electron heat losses along the field lines negligible. Then, such a sphere may become an interesting target for magnetized target fusion experiments. Key processes affecting the performance of such a target are identified, and constraints on the parameters of the system are formulated. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ryutovl@llnl.gov FU U.S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 18 TC 2 Z9 2 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2009 VL 56 IS 4 BP 1489 EP 1494 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513EV UT WOS:000271306100005 ER PT J AU Dick, GJ Clement, BG Webb, SM Fodrie, FJ Bargar, JR Tebo, BM AF Dick, Gregory J. Clement, Brian G. Webb, Samuel M. Fodrie, F. Joel Bargar, John R. Tebo, Bradley M. TI Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SP STRAIN SG-1; PUTATIVE MULTICOPPER OXIDASE; LEPTOTHRIX-DISCOPHORA SS-1; EAST PACIFIC RISE; MARINE BACILLUS; MANGANESE OXIDE; TRACE-METALS; HOT SPRINGS; CALIFORNIA; SPORES AB Microorganisms play important roles in mediating biogeochemical reactions in deep-sea hydrothermal plumes, but little is known regarding the mechanisms that underpin these transformations. At Guaymas Basin (GB) in the Gulf of California, hydrothermal vents inject fluids laden with dissolved Mn(II) (dMn) into the deep waters of the basin where it is oxidized and precipitated as particulate Mn(III/IV) oxides, forming turbid hydrothermal "clouds". Previous studies have predicted extremely short residence times for dMn at GB and suggested they are the result of microbially-mediated Mn(II) oxidation and precipitation. Here we present biogeochemical results that support a central role for microorganisms in driving Mn(II) oxidation in the GB hydrothermal plume, with enzymes being the primary catalytic agent. dMn removal rates at GB are remarkably fast for a deep-sea hydrothermal plume (up to 2 nM/h). These rapid rates were only observed within the plume, not in background deep-sea water above the GB plume or at GB plume depths (similar to 1750-2000 m) in the neighboring Carmen Basin, where there is no known venting. dMn removal is dramatically inhibited under anoxic conditions and by the presence of the biological poison, sodium azide. A conspicuous temperature optimum of dMn removal rates (similar to 40 degrees C) and a saturation-like (i.e. Michaelis-Menten) response to O(2) concentration were observed, indicating an enzymatic mechanism. dMn removal was resistant to heat treatment used to select for spore-forming organisms, but very sensitive to low concentrations of added Cu, a cofactor required by the putative Mn(II)-oxidizing enzyme. Extended X-ray absorption. ne structure spectroscopy (EXAFS) and synchrotron radiation-based X-ray diffraction (SR-XRD) revealed the Mn oxides to have a hexagonal birnessite or delta-MnO(2)-like mineral structure, indicating that these freshly formed deep-sea Mn oxides are strikingly similar to primary biogenic Mn oxides produced by laboratory cultures of bacteria. Overall, these results reveal a vigorous Mn biogeochemical cycle in the GB hydrothermal plume, where a distinct microbial community enzymatically catalyzes rapid Mn(II) oxidation and the production of Mn biooxides. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Dick, Gregory J.; Clement, Brian G.; Tebo, Bradley M.] Univ Calif San Diego, Scripps Inst Oceanog, Div Marine Biol Res, La Jolla, CA 92093 USA. [Dick, Gregory J.; Clement, Brian G.; Tebo, Bradley M.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. [Fodrie, F. Joel] Dauphin Isl Sea Lab, Dauphin Isl, AL 36528 USA. [Webb, Samuel M.; Bargar, John R.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Tebo, BM (reprint author), Oregon Hlth & Sci Univ, Div Environm & Biomol Syst, 20000 NW Walker Rd, Beaverton, OR 97006 USA. EM tebo@ebs.ogi.edu RI Dick, Gregory/D-8901-2012; Webb, Samuel/D-4778-2009; Tebo, Bradley/A-8432-2017 OI Dick, Gregory/0000-0001-7666-6288; Webb, Samuel/0000-0003-1188-0464; Tebo, Bradley/0000-0002-6301-4325 FU NSF Ocean Sciences [OCE-0352081/0635493]; NSF CRAEMS [CHE-0089208]; U. S. Department of Energy; Office of Basic Energy Sciences; National Institutes of Health; National Center for Research Resources, Biomedical Technology Program FX Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. NR 77 TC 35 Z9 38 U1 4 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2009 VL 73 IS 21 BP 6517 EP 6530 DI 10.1016/j.gca.2009.07.039 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 541LG UT WOS:000273416600005 ER PT J AU Lepot, K Benzerara, K Rividi, N Cotte, M Brown, GE Philippot, P AF Lepot, Kevin Benzerara, Karim Rividi, Nicolas Cotte, Marine Brown, Gordon E., Jr. Philippot, Pascal TI Organic matter heterogeneities in 2.72 Ga stromatolites: Alteration versus preservation by sulfur incorporation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Review ID X-RAY SPECTROMICROSCOPY; MODERN MARINE STROMATOLITES; KASHPIR OIL SHALES; SULFATE-REDUCING BACTERIA; ABSORPTION FINE-STRUCTURE; WESTERN-AUSTRALIA; PILBARA-CRATON; ELECTRON-MICROSCOPY; RAMAN-SPECTROSCOPY; MICROBIAL MATS AB The stromatolites of the weakly metamorphosed 2.72 Ga Tumbiana Formation present abundant organic globules that resemble in size, shape and distribution the microorganisms observed in modern stromatolites. In order to evaluate the significance of these cell-like organic materials, we characterized organic matter in-situ down to the nanoscale using a combination of Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Raman microspectroscopy, scanning transmission X-ray microscopy (STXM) and transmission electron microscopy (TEM). These analyses revealed the occurrence of two distinct types of organic matter forming mu m-scale textural and chemical heterogeneities distributed in distinct mineralogical laminae of the stromatolites. Type A organic matter, which is by far the most abundant, consists of sulfur-poor organic matter that is located in mud-type laminae at grain boundaries, mostly in association with silicate minerals. In contrast, Type B organic matter is rare and preserved as inclusions in the core of calcite grains forming laminates. It occurs as micrometer-sized cell-like globules containing variable amounts of organic sulfur likely in the form of thiophenes. Different scenarios may account for these compositional heterogeneities in the kerogen. Based on textural and compositional analogies with modern stromatolites, it is argued that Type B sulfur-rich globules may represent microbial cells protected by mineral encapsulation and selectively preserved through polymerization by early diagenetic sulfurization. In modern sediments, this reaction is fuelled by bacterial sulfate reduction (BSR). This metabolism has been widely considered as a major driver in modern stromatolites calcification and could thus have played an important role in the formation of the Tumbiana Formation stromatolites. In contrast, Type A sulfur-poor organic matter corresponds to either fossil extracellular polymer substances (EPS) or recondensed kerogen. This pool was likely not sulfurized due to either local and/or timely variations in the concentrations of H(2)S or adverse pyritization driven by the availability of iron. Our observations thus show the need to use spatially-resolved techniques to complement organic geochemistry analyses and provide a detailed analysis of the organic carbon pools composing Archean stromatolites. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Lepot, Kevin; Benzerara, Karim; Rividi, Nicolas; Philippot, Pascal] Univ Paris 06, Lab Geobiosphere Actuelle & Primit, Inst Mineral & Phys Milieux Condenses, Inst Phys Globe Paris,CNRS, F-75252 Paris, France. [Lepot, Kevin; Benzerara, Karim; Rividi, Nicolas; Philippot, Pascal] Univ Paris 07, Lab Geobiosphere Actuelle & Primit, Inst Mineral & Phys Milieux Condenses, Inst Phys Globe Paris,CNRS, F-75252 Paris, France. [Cotte, Marine] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Cotte, Marine] CNRS, Lab Ctr Rech & Restaurat Musees France, F-75001 Paris, France. [Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Brown, Gordon E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Lepot, K (reprint author), Univ Liege, Dept Geol, UR Paleobot Paleopalynol & Micropaleontol, 17 Allee 6 Aout B18, B-4000 Sart Tilman Par Liege, Belgium. EM kevin.lepot@ulg.ac.be RI Lepot, Kevin/C-7072-2014; Benzerara, Karim/J-1532-2016; IMPMC, Geobio/F-8819-2016 OI Lepot, Kevin/0000-0003-0556-0405; Benzerara, Karim/0000-0002-0553-0137; FU Division of Chemical Sciences, Geosciences, and; U. S. Department of Energy [DE-AC03-76SF00098]; ESRF [ME-824]; INSU; Agence Nationale de la Recherche; Region Ile-de-France; NSF FX We thank M. J. Van Kranendonk, P. Lopez-Garcia, D. Moreira and Y. Wang for assistance during the Pilbara Drilling Project. We thank O. Boudouma (SEM analysis, UPMC), C. Dominici (FIB, Universite Aix Marseille), M. Quintin (thin sections preparation), N. Menguy (STEM analyses, IMPMC), and G. Y. Wang (STEM, ICMPE) for laboratory assistance. We thank S. Bernard and Q. Gautier for discussion and their help during STXM analyses, as well as S. Derenne, C. Thomazo and M. van Zuilen for discussion. The work at the ALS BL 11.0.2 was supported in part by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, and Division of Chemical Sciences, Geosciences, and Biosciences of the U. S. Department of Energy at Lawrence Berkeley National Laboratory under contract No. DE-AC03-76SF00098. We thank T. Tyliszczak for the maintenance and development of BL 11.0.2. FTIR analyses were funded by grants from ESRF (Project ME-824). P. P. thanks the Institut de Physique du Globe de Paris, the Institut des Sciences de l'Univers and the Geological Survey of Western Australia for supporting the PDP. This study was supported by grants from INSU (P. P.), Agence Nationale de la Recherche (P. P., K. B.), Region Ile-de-France (P. P.), NSF (K. B., G. E. B.). T. W. Lyons and three anonymous reviewers are acknowledged for constructive comments that greatly improved an early version of the manuscript. This is IPGP contribution no 2541. NR 141 TC 25 Z9 26 U1 6 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2009 VL 73 IS 21 BP 6579 EP 6599 DI 10.1016/j.gca.2009.08.014 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 541LG UT WOS:000273416600009 ER PT J AU Renard, F Dysthe, DK Feder, JG Meakin, P Morris, SJS Jamtveit, B AF Renard, F. Dysthe, D. K. Feder, J. G. Meakin, P. Morris, S. J. S. Jamtveit, B. TI Pattern formation during healing of fluid-filled cracks: an analog experiment SO GEOFLUIDS LA English DT Article DE crack healing; fluid; instability; pattern formation ID ELEVATED-TEMPERATURES; MORPHOLOGICAL CHANGES; PHASE-DIAGRAM; SUSPENSIONS; PARTICLES; QUARTZ; DECREPITATION; CAPILLARITY; MICROCRACKS; INCLUSIONS AB The formation and subsequent healing of cracks and crack networks may control such diverse phenomena as the strengthening of fault zones between earthquakes, fluid migrations in the Earth's crust, or the transport of radioactive materials in nuclear waste disposal. An intriguing pattern-forming process can develop during healing of fluid-filled cracks, where pockets of fluid remain permanently trapped in the solid as the crack tip is displaced driven by surface energy. Here, we present the results of analog experiments in which a liquid was injected into a colloidal inorganic gel to obtain penny-shaped cracks that were subsequently allowed to close and heal under the driving effect of interfacial tension. Depending on the properties of the gel and the injected liquid, two modes of healing were obtained. In the first mode, the crack healed completely through a continuous process. The second mode of healing was discontinuous and was characterized by a 'zipper-like' closure of a front that moved along the crack perimeter, trapping fluid that may eventually form inclusions trapped in the solid. This instability occurred only when the velocity of the crack tip decreased to zero. Our experiments provide a cheap and simple analog to reveal how aligned arrays of fluid inclusions may be captured along preexisting fracture planes and how small amounts of fluids can be permanently trapped in solids, modifying irreversibly their material properties. C1 [Renard, F.] Univ Grenoble 1, CNRS, OSUG, LGCA, F-38041 Grenoble, France. [Renard, F.; Dysthe, D. K.; Feder, J. G.; Meakin, P.; Jamtveit, B.] Univ Oslo, Oslo, Norway. [Meakin, P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Morris, S. J. S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Renard, F (reprint author), Univ Grenoble 1, CNRS, OSUG, LGCA, BP 53, F-38041 Grenoble, France. EM francois.renard@ujf-grenoble.fr RI Dysthe, Dag Kristian/F-2247-2011; Feder, Jens/B-4117-2014; Renard, Francois/A-7862-2008; OI Dysthe, Dag Kristian/0000-0001-8336-5061; Feder, Jens/0000-0002-3727-4705; Renard, Francois/0000-0002-5125-5930; Jamtveit, Bjorn/0000-0001-5700-1803 FU Center of Excellence FX We thank E. Brodsky, M. Brenner, J. P. Poirier, and D. Quere for fruitful discussions and Egide (Centre Francais pour l'Accueil et les Echanges Internationaux) award number 350257L to S. J. S. Morris. We also thank an anonymous reviewer for a very careful discussion. This study was supported by a Center of Excellence grant to the Physics of Geological Processes Centre at the University of Oslo. NR 30 TC 8 Z9 8 U1 0 U2 19 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1468-8115 J9 GEOFLUIDS JI Geofluids PD NOV PY 2009 VL 9 IS 4 BP 365 EP 372 DI 10.1111/j.1468-8123.2009.00260.x PG 8 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA 515JR UT WOS:000271466500010 ER PT J AU Vasco, DW Minkoff, SE AF Vasco, D. W. Minkoff, Susan E. TI Modelling flow in a pressure-sensitive, heterogeneous medium SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Non-linear differential equations; Transient deformation; Geomechanics; Hydrology; Permeability and porosity; Wave propagation ID NONLINEAR DIFFUSION EQUATION; FLUID-FLOW; SIMILARITY SOLUTIONS; ASYMPTOTIC APPROACH; FRACTURE; DEFORMATION; ROCKS; PROPAGATION; WAVES; PERMEABILITY AB Using an asymptotic methodology, including an expansion in inverse powers of root omega, where omega is the frequency, we derive a solution for flow in a medium with pressure dependent properties. The solution is valid for a heterogeneous medium with smoothly varying properties. That is, the scale length of the heterogeneity must be significantly larger then the scale length over which the pressure increases from it initial value to its peak value. The solution is in the form of a travelling disturbance and is defined along a trajectory through the medium, similar to a ray. The expression for pseudo-phase, which is related to the 'traveltime' of the transient pressure disturbance, and the expression for pressure amplitude contain modifications due to the pressure dependence of the medium. We apply the method to synthetic and observed pressure variations in a deforming medium. In the synthetic test we model 1-D propagation in a pressure-dependent medium. Comparisons with both an analytic self-similar solution and the results of a numerical simulation indicate general agreement. Furthermore, we are able to match pressure variations observed during a pulse test at the Coaraze Laboratory site in France. C1 [Vasco, D. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Minkoff, Susan E.] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA. RP Vasco, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM dwvasco@lbl.gov RI Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary, Office of Basic Energy Sciences of the U.S. Department of Energy under contract DE-AC02-05CH11231. We would like to thank F. Cappa and Y. Guglielmi for the pressure and displacement data from the pulse test conducted at the Coaraze Laboratory site. NR 85 TC 4 Z9 4 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD NOV PY 2009 VL 179 IS 2 BP 972 EP 989 DI 10.1111/j.1365-246X.2009.04330.x PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 504XU UT WOS:000270652300020 ER PT J AU Malama, B Kuhlman, KL Revil, A AF Malama, Bwalya Kuhlman, Kristopher L. Revil, Andre TI Theory of transient streaming potentials associated with axial-symmetric flow in unconfined aquifers SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Hydrogeophysics; Hydrology; Permeability and porosity ID HYDROGEOPHYSICAL RESEARCH SITE; PUMPING TEST; SP ANOMALIES; WATER-TABLE; INVERSION; BOISE; SUBSURFACE; YIELD; FIELD AB P>We present a semi-analytical solution for the transient streaming potential response of an unconfined aquifer to continuous constant rate pumping. We assume that flow occurs without leakage from the unit below a transverse anisotropic aquifer and neglect flow in the unsaturated zone by treating the water-table as a moving material boundary. In the development of the solution to the streaming potential problem, we impose insulating boundary conditions at land surface and the lower boundary of the lower confining unit. We solve the problem exactly in the double Laplace-Hankel transform space and obtain the inverse transforms numerically. The solution is used to analyse transient streaming potential data collected during dipole hydraulic tests conducted at the Boise Hydrogeophysical Research Site in 2007 June. This analysis yields estimates of aquifer hydraulic parameters. The estimated hydraulic parameters, namely, hydraulic conductivity, transverse hydraulic anisotropy, specific storage and specific yield, compare well to published estimates obtained by inverting drawdown data collected at the field site. C1 [Malama, Bwalya] Boise State Univ, CGISS, Boise, ID 83725 USA. [Malama, Bwalya] Boise State Univ, Dept Geosci, Boise, ID 83725 USA. [Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM 88220 USA. [Revil, Andre] Colorado Sch Mines, Dept Geophys, Green Ctr, Golden, CO 80401 USA. [Revil, Andre] Univ Savoie, CNRS, LGIT, F-73376 Le Bourget Du Lac, France. RP Malama, B (reprint author), Boise State Univ, CGISS, Boise, ID 83725 USA. EM bmalama@cgiss.boisestate.edu RI Kuhlman, Kristopher/I-7283-2012 OI Kuhlman, Kristopher/0000-0003-3397-3653 FU EPA [X-960041-01-0] FX The study presented here was supported in part by EPA grant X-960041-01-0. We thank the two anonymous reviewers whose insightful comments helped improve the paper. We also thank Dr. Warren Barrash for organizing the experimental aspects of the study presented here. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 41 TC 19 Z9 19 U1 0 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD NOV PY 2009 VL 179 IS 2 BP 990 EP 1003 DI 10.1111/j.1365-246X.2009.04336.x PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 504XU UT WOS:000270652300021 ER EF