FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Reisman, DB Javedani, JB Griffith, LV Ellsworth, GF Kuklo, RM Goerz, DA White, AD Tallerico, LJ Gidding, DA Murphy, MJ Chase, JB AF Reisman, D. B. Javedani, J. B. Griffith, L. V. Ellsworth, G. F. Kuklo, R. M. Goerz, D. A. White, A. D. Tallerico, L. J. Gidding, D. A. Murphy, M. J. Chase, J. B. TI Note: The full function test explosive generator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE pulse generators; pulsed power supplies AB We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained. C1 [Reisman, D. B.; Javedani, J. B.; Griffith, L. V.; Ellsworth, G. F.; Kuklo, R. M.; Goerz, D. A.; White, A. D.; Tallerico, L. J.; Gidding, D. A.; Murphy, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chase, J. B.] Jay B Chase Consulting, Livermore, CA 94550 USA. RP Reisman, DB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM reisman1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors would like to thank the support of Bruce Goodwin and Charlie Verdon. The authors would also like to acknowledge program manager Scott McAllister. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 10 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2010 VL 81 IS 3 AR 036109 DI 10.1063/1.3359998 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 577GJ UT WOS:000276210200080 PM 20370232 ER PT J AU Reisman, DB Javedani, JB Ellsworth, GF Kuklo, RM Goerz, DA White, AD Tallerico, LJ Gidding, DA Murphy, MJ Chase, JB AF Reisman, D. B. Javedani, J. B. Ellsworth, G. F. Kuklo, R. M. Goerz, D. A. White, A. D. Tallerico, L. J. Gidding, D. A. Murphy, M. J. Chase, J. B. TI The advanced helical generator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE inductors; magnetic flux; pulse generators; pulsed power supplies AB A high explosive pulsed power generator called the advanced helical generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 MA of current and 11 MJ of energy to a quasistatic 80 nH inductive load. A current gain of 160 times was obtained with a peak exponential rise time of 20 mu s. We will describe in detail the design and testing of the AHG. C1 [Reisman, D. B.; Javedani, J. B.; Ellsworth, G. F.; Kuklo, R. M.; Goerz, D. A.; White, A. D.; Tallerico, L. J.; Gidding, D. A.; Murphy, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chase, J. B.] Jay B Chase Consulting, Livermore, CA 94550 USA. RP Reisman, DB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM reisman1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors would like to thank the support of Bruce Goodwin and Charlie Verdon. The authors would also like to acknowledge program manager Scott McAllister. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 17 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2010 VL 81 IS 3 AR 034701 DI 10.1063/1.3309788 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 577GJ UT WOS:000276210200050 PM 20370202 ER PT J AU Soignard, E Benmore, CJ Yarger, JL AF Soignard, Emmanuel Benmore, Chris J. Yarger, Jeffery L. TI A perforated diamond anvil cell for high-energy x-ray diffraction of liquids and amorphous solids at high pressure SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE diamond; X-ray diffraction; X-ray scattering ID SUPERCRITICAL CONDITIONS; MULTICHANNEL COLLIMATOR; TRANSITION; DETECTOR; ELEMENTS; GLASSES; XAFS AB Diamond anvil cells (DACs) are widely used for the study of materials at high pressure. The typical diamonds used are between 1 and 3 mm thick, while the sample contained within the opposing diamonds is often just a few microns in thickness. Hence, any absorbance or scattering from diamond can cause a significant background or interference when probing a sample in a DAC. By perforating the diamond to within 50-100 mu m of the sample, the amount of diamond and the resulting background or interference can be dramatically reduced. The DAC presented in this article is designed to study amorphous materials at high pressure using high-energy x-ray scattering (>60 keV) using laser-perforated diamonds. A small diameter perforation maintains structural integrity and has allowed us to reach pressures >50 GPa, while dramatically decreasing the intensity of the x-ray diffraction background (primarily Compton scattering) when compared to studies using solid diamonds. This cell design allows us for the first time measurement of x-ray scattering from light (low Z) amorphous materials. Here, we present data for two examples using the described DAC with one and two perforated diamond geometries for the high-pressure structural studies of SiO(2) glass and B(2)O(3) glass. C1 [Soignard, Emmanuel] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA. [Benmore, Chris J.; Yarger, Jeffery L.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Benmore, Chris J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Yarger, Jeffery L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Soignard, E (reprint author), Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA. EM jyarger@gmail.com RI Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 FU National Nuclear Security Administration Carnegie/DOE Alliance Center (NNSA CDAC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported in part by the National Nuclear Security Administration Carnegie/DOE Alliance Center (NNSA CDAC). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We would also like to thank Dr. Malcolm Guthrie for helpful discussions and Dr. Guoyin Shen for lending us the c-BN backing plates. NR 37 TC 17 Z9 17 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2010 VL 81 IS 3 AR 035110 DI 10.1063/1.3356977 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 577GJ UT WOS:000276210200064 PM 20370216 ER PT J AU Rambo, RP Tainer, JA AF Rambo, Robert P. Tainer, John A. TI Improving small-angle X-ray scattering data for structural analyses of the RNA world SO RNA-A PUBLICATION OF THE RNA SOCIETY LA English DT Article DE small-angle X-ray scattering (SAXS); RNA folding; modeling; misfolded ID CONTROLS GENE-EXPRESSION; S-ADENOSYLMETHIONINE; BIOLOGICAL MACROMOLECULES; SHAPE DETERMINATION; RESOLUTION; RIBOZYME; MODEL; RIBOSWITCH; PROTEINS; SAXS AB Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNA(val), and yeast tRNA(phe) that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. C1 [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Rambo, Robert P.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Adv Light Source, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM jat@scripps.edu FU DOE [DE-AC02-05CH11231]; U.S. Department of Energy FX We acknowledge Robert Batey and Jeff Kieft for providing RNA samples and Steve Yannone for the 30S ribosomal subunit from Sulfolobus solfataricus. We thank John Hammond, Robert Batey, Jeff Kieft, Gareth Williams, Greg Hura, Michal Hammel, Ken Frankel, Kevin Dyer, Jane Tanamachi, and Elisa Lutzer for insightful discussions. Support for this work and data collection at the Lawrence Berkeley National Laboratory SIBYLS beamline of the Advanced Light Source came from the DOE program Integrated Diffraction Analysis Technologies (IDAT) under Contract DE-AC02-05CH11231 with the U.S. Department of Energy. NR 48 TC 50 Z9 50 U1 2 U2 15 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 1355-8382 J9 RNA JI RNA-Publ. RNA Soc. PD MAR PY 2010 VL 16 IS 3 BP 638 EP 646 DI 10.1261/rna.1946310 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 557YV UT WOS:000274707500018 PM 20106957 ER PT J AU Wullschleger, SD Strahl, M AF Wullschleger, Stan D. Strahl, Maya TI CLIMATE CHANGE: A CONTROLLED EXPERIMENT SO SCIENTIFIC AMERICAN LA English DT Article ID CO2 C1 [Strahl, Maya] Cold Spring Harbor Lab, New York, NY USA. [Strahl, Maya] Higher Educ Res Experiences Program, Oak Ridge, TN USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Plant Syst Biol Grp, Oak Ridge, TN USA. RI Wullschleger, Stan/B-8297-2012 OI Wullschleger, Stan/0000-0002-9869-0446 NR 3 TC 4 Z9 4 U1 2 U2 8 PU SCI AMERICAN INC PI NEW YORK PA 415 MADISON AVE, NEW YORK, NY 10017 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD MAR PY 2010 VL 302 IS 3 BP 78 EP 83 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 557SW UT WOS:000274691400030 PM 20184187 ER PT J AU Wiley, S AF Wiley, Steven TI To Join or Not to Join SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD MAR PY 2010 VL 24 IS 3 BP 33 EP 33 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 562EO UT WOS:000275032700020 ER PT J AU Foiles, SM AF Foiles, Stephen M. TI Temperature dependence of grain boundary free energy and elastic constants SO SCRIPTA MATERIALIA LA English DT Article DE Grain boundary energy; Elastic behavior; Thermodynamics; Molecular dynamics; Grain growth ID POINT-DEFECTS; METALS AB This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Sigma 79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Foiles, SM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM foiles@sandia.gov OI Foiles, Stephen/0000-0002-1907-454X FU United States Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. The Laboratory Directed Research and Development Program at Sandia National Laboratories supported this work. This work was motivated by and benefitted from discussions sponsored by the Department of Energy, Office of Basic Energy Sciences, Computational Materials Science Network program. The authors thanks M.D. Asta and D.L. Olmsted for critical reading of the manuscript. NR 20 TC 24 Z9 24 U1 4 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2010 VL 62 IS 5 BP 231 EP 234 DI 10.1016/j.scriptamat.2009.11.003 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 555WH UT WOS:000274546800004 ER PT J AU Kerr, M Daymond, MR Holt, RA Almer, JD Stafford, S AF Kerr, M. Daymond, M. R. Holt, R. A. Almer, J. D. Stafford, S. TI Observation of growth of a precipitate at a stress concentration by synchrotron X-ray diffraction SO SCRIPTA MATERIALIA LA English DT Article DE Zirconium hydrides; Fracture; Synchrotron; Zr-2 5Nb; Hydride growth ID ZIRCONIUM ALLOYS; MECHANICAL-PROPERTIES; HYDRIDE; STRAIN; EMBRITTLEMENT; DEFORMATION; EVOLUTION; ZR-2.5NB; BEHAVIOR; FRACTURE AB This paper reports X-ray diffraction results obtained during in situ precipitate growth studies A Zr-2 5Nb specimen containing 60 wt. ppm hydrogen was Subject to it thermomechanical cycle in order to precipitate hydrides preferentially at a 15 mu m root radius notch Diffraction patterns were collected as it Function of time, during growth of a large (similar to 100 mu m long) notch-tip hydride The results indicate that hydride precipitation relaxes the crack tip strain field and confirm differences in overload behavior observed at room temperature and 250 degrees C. (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved C1 [Kerr, M.; Daymond, M. R.; Holt, R. A.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Stafford, S.] Kinectrics Inc, Toronto, ON M8Z 6C4, Canada. RP Daymond, MR (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. OI Daymond, Mark/0000-0001-6242-7489 FU NSERC; UNENE; Nu-Tech Precision Metals under an Industrial Research Chair; US DOE; Office of Basic Energy Sciences [DE-Ac02-06CH11357] FX Work supported by NSERC, UNENE and Nu-Tech Precision Metals under an Industrial Research Chair Program. Use of APS was Supported by the US DOE, Office of Basic Energy Sciences, under Contract DE-Ac02-06CH11357 The authors thank Gordon Shek for useful discussions in planning this experiment. NR 23 TC 11 Z9 11 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2010 VL 62 IS 6 BP 341 EP 344 DI 10.1016/j.scriptamat.2009.10.031 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 562RY UT WOS:000275072700005 ER PT J AU Medlin, DL Sugar, JD AF Medlin, D. L. Sugar, J. D. TI Interfacial defect structure at Sb2Te3 precipitates in the thermoelectric compound AgSbTe2 SO SCRIPTA MATERIALIA LA English DT Article DE Thermoelectric materials; Phase transformations; Precipitation; Interfaces; High-resolution electron microscopy (HREM) ID POWER GENERATION; SYSTEM; DISCONNECTIONS; DISLOCATIONS; STEPS; PBTE; TE; SE; BI AB We analyze a line defect at the Interface between tetradymite-structured Sb2Te3 and rocksalt-structured AgSbTe2 using high-resolution electron microscopy By determining the step-height and Burgers vector of this defect, we show how motion of the defect, through it diffusive glide mechanism, call transform material from the rocksalt structure to the tetradymite structure We discuss the atomic flux requirements for this defect motion This analysis helps to explain the growth mechanism of tetradymite precipitates within rocksalt-structured chalcogenides (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved C1 [Medlin, D. L.; Sugar, J. D.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Medlin, DL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. FU US-DOE-OBES-DMS; Sandia LDRD Office FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US-DOE-NNSA, Under Contract DE-AC04-94ALS5000. Support was provided in part by the US-DOE-OBES-DMS, and the Sandia LDRD Office. The authors acknowledge helpful discussions with J Lensch-Falk, N. Bartelt, and P Sharma. NR 25 TC 18 Z9 19 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2010 VL 62 IS 6 BP 379 EP 382 DI 10.1016/j.scriptamat.2009.11.028 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 562RY UT WOS:000275072700015 ER PT J AU Yang, L Cemerlic, A Cui, XH AF Yang, Li Cemerlic, Alma Cui, Xiaohui TI A Dirichlet reputation system in reliable routing of wireless ad hoc network SO SECURITY AND COMMUNICATION NETWORKS LA English DT Article DE Dirichlet reputation; reliable routing; ad hoc network AB Ad hoc networks are very helpful in situations when no fixed network infrastructure is available, such as natural disasters and military conflicts. In such a network, all wireless nodes are equal peers simultaneously serving as both senders and routers for other nodes. Therefore, how to route packets through reliable paths becomes a fundamental problems when behaviors of certain nodes deviate from wireless ad hoc routing protocols. We proposed a novel Dirichlet reputation model based on Bayesian inference theory which evaluates reliability of each node in terms of packet delivery. Our system offers a way to predict and select a reliable path through combination of first-hand observation and second-hand reputation reports. We also proposed moving window mechanism which helps to adjust ours responsiveness of our system to changes of node behaviors. We integrated the Dirichlet reputation into routing protocol of wireless ad hoc networks. Our extensive simulation indicates that our proposed reputation system can improve good throughput of the network and reduce negative impacts caused by misbehaving nodes. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Yang, Li; Cemerlic, Alma] Univ Tennessee, Dept Comp Sci & Engn, Chattanooga, TN 37403 USA. [Cui, Xiaohui] Oak Ridge Natl Lab, Computat Sci & Engn Div, Appl Software Engn Res Grp, Oak Ridge, TN USA. RP Yang, L (reprint author), Univ Tennessee, Dept Comp Sci & Engn, Chattanooga, TN 37403 USA. EM Li-Yang@utc.edu FU Tennessee Higher Education Commission's Center of Excellence in Applied Computational Science and Engineering FX This work is partially supported by Tennessee Higher Education Commission's Center of Excellence in Applied Computational Science and Engineering. NR 22 TC 3 Z9 3 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1939-0114 J9 SECUR COMMUN NETW JI Secur. Commun. Netw. PD MAR-JUN PY 2010 VL 3 IS 2-3 SI SI BP 250 EP 260 DI 10.1002/sec.173 PG 11 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 589NR UT WOS:000277157600011 ER PT J AU Cabrera, ML Kissel, DE Craig, JR Qafoku, NP Vaio, N Rema, JA Morris, LA AF Cabrera, M. L. Kissel, D. E. Craig, J. R. Qafoku, N. P. Vaio, N. Rema, J. A. Morris, L. A. TI Relative Humidity Controls Ammonia Loss from Urea Applied to Loblolly Pine SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID APPLIED CATTLE SLURRY; WIND-SPEED; VOLATILIZATION; PLANTATION; SOIL; FERTILIZER; TEMPERATURE; RAINFALL AB In the United States, approximately 600,000 ha of pine trees are fertilized with urea each year, with NH(3) volatilization losses ranging from <1% to >50% depending on environmental conditions. Previous work showed that the timing of rainfall after urea application plays a significant role in controlling NH(3) loss, but the effect of other environmental variables is not well understood. We conducted 1029-d studies under different environmental conditions during 2 yr to identify important variables controlling NH(3) loss from urea applied to loblolly pine (Pinus taeda L.) at 200 kg N ha(-1). Ammonia loss was measured with dynamic chambers that adjusted the rate of air flow through the system based on wind speed at I cm above the soil surface. Regression analysis indicated that a variable related to the initial water content of the forest floor and a variable related to the relative humidity (RH) during the study explained 85 to 94% of the observed variability in NH(3) loss. Relatively high initial water content followed by consistently high RH led to large NH(3) losses. In contrast, low initial water contents resulted in slow rates of NH(3) loss, which increased when elevated RH led to an increase in the water content of the forest floor, These results indicate that RH can play a significant role in NH(3) loss by accelerating urea dissolution and by increasing or decreasing the water content of the forest floor, which in turn can affect the rate of urea hydrolysis. C1 [Cabrera, M. L.; Kissel, D. E.; Craig, J. R.; Vaio, N.; Rema, J. A.] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA. [Kissel, D. E.] Univ Georgia, Agr & Environm Serv Lab, Athens, GA 30602 USA. [Qafoku, N. P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Morris, L. A.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. RP Cabrera, ML (reprint author), Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA. EM mcabrera@uga.edu RI Yang, Yang/C-7464-2012; OI Qafoku, Nikolla P./0000-0002-3258-5379 FU Univ. of Georgia Agricultural Experiment Station; Warnell School of Forestry and Natural Resources; Georgia Traditional Industries Program for Pulp and Paper; Bowater Inc.; Champion International; Georgia Pacific; Goldkist/Southern States Cooperatives; U.S. Borax; Westvaco Corp. FX This research was funded by the Univ. of Georgia Agricultural Experiment Station, the Warnell School of Forestry and Natural Resources, the Georgia Traditional Industries Program for Pulp and Paper, Bowater Inc., Champion International, Georgia Pacific, Goldkist/Southern States Cooperatives, U.S. Borax, and Westvaco Corp. NR 28 TC 15 Z9 19 U1 0 U2 13 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2010 VL 74 IS 2 BP 543 EP 549 DI 10.2136/sssaj2009.0220 PG 7 WC Soil Science SC Agriculture GA 564BW UT WOS:000275187300024 ER PT J AU Brown, GF Ager, JW Walukiewicz, W Wu, J AF Brown, G. F. Ager, J. W., III Walukiewicz, W. Wu, J. TI Finite element simulations of compositionally graded InGaN solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Device modeling; InGaN; Composition grading; Heterojunction ID BAND-GAP; IN1-XGAXN ALLOYS; EFFECTIVE-MASS; WURTZITE GAN; INN; DISCONTINUITIES; LIFETIME AB The solar power conversion efficiency of compositionally graded In(x)Ga(1-x)N solar cells was simulated using a finite element approach. Incorporating a compositionally graded region on the InGaN side of a p-GaN/n-In(x)Ga(1-x)N heterojunction removes a barrier for hole transport into GaN and increases the cell efficiency. The design also avoids many of the problems found to date in homojunction cells as no p-type high-In content region is required. Simulations predict 28.9% efficiency for a p-GaN/n-In(x)Ga(1-x)N/n-In(0.5)Ga(0.5)N/p-Si/n-Si tandem structure using realistic material parameters. The thickness and doping concentration of the graded region was found to substantially affect the performance of the cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Brown, G. F.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ager, J. W., III; Walukiewicz, W.; Wu, J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Brown, GF (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg Rm 114, Berkeley, CA 94720 USA. EM gregory.f.brown@gmail.com RI Wu, Junqiao/G-7840-2011; OI Wu, Junqiao/0000-0002-1498-0148; Ager, Joel/0000-0001-9334-9751 FU National Science Foundation [CBET-0932905]; Lawrence Berkeley National Laboratory; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by National Science Foundation under Grant No. CBET-0932905, and a LDRD grant from the Lawrence Berkeley National Laboratory. JWA was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy, Contract No. DE-AC02-05CH11231. NR 39 TC 90 Z9 90 U1 4 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAR PY 2010 VL 94 IS 3 BP 478 EP 483 DI 10.1016/j.solmat.2009.11.010 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 562SB UT WOS:000275073000015 ER PT J AU Dwyer, D Repins, I Efstathiadis, H Haldar, P AF Dwyer, Daniel Repins, Ingrid Efstathiadis, Haralabos Haldar, Pradeep TI Selenization of co-sputtered CuInAl precursor films SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Selenization; CuInAl; CuInAlSe(2); CIAS; CIGS; Co-sputtering ID CHALCOPYRITE SOLAR-CELLS; CUINSE2 THIN-FILMS; X-RAY-DIFFRACTION; GA-CONTENT; REAL-TIME; CU(IN,GA)SE-2; PERFORMANCE; KINETICS; LAYERS; SE AB CuInAl precursor films with varying Al/(In+Al) ratios were co-sputtered onto Mo coated soda-lime glass substrates. Metal precursor films were then selenized under vacuum conditions using thermally evaporated elemental selenium. Both precursor films and selenized samples were characterized for composition, crystalline phases, morphology, and compositional depth uniformity. Selenized films show low Al incorporation and phase separation when selenized at both 500 and 525 degrees C. Films selenized with a Se deposition rate of 12 angstrom/s showed poor adhesion compared with samples selenized at 4 angstrom/s. The segregation of aluminum towards the back contact as well as oxygen incorporation appears to cause adhesive loss in extreme cases, and poor interface electrical characteristics in others. The maximum device efficiency measured was 5.2% under AM1.5 for a device with similar to 2 at% aluminum. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dwyer, Daniel; Efstathiadis, Haralabos; Haldar, Pradeep] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Repins, Ingrid] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dwyer, D (reprint author), SUNY Albany, Coll Nanoscale Sci & Engn, 255 Fuller Rd, Albany, NY 12203 USA. EM DDwyer@uamail.albany.edu FU New York State Foundation for Science, Technology and Innovation (NYSTAR) FX The authors would like to thank Richard Moore of the College of Nanoscale Science and Engineering (CNSE) for his assistance with XPS measurements and discussions on AES data, as well as Dr. Eric Lifshin of CNSE for discussions on EPMA data. We would also like to thank Stephen Glynn and Clay DeHart of the National Renewable Energy Laboratory (NREL) for their help with device finishing and useful comments on the finishing process, as well as Dr. Rommel Noufi of NREL for useful discussions. This work was supported by the New York State Foundation for Science, Technology and Innovation (NYSTAR). NR 26 TC 31 Z9 31 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAR PY 2010 VL 94 IS 3 BP 598 EP 605 DI 10.1016/j.solmat.2009.12.005 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 562SB UT WOS:000275073000033 ER PT J AU Chaudhari, P Shim, H AF Chaudhari, P. Shim, Heejae TI Grain boundaries in the cuprate superconductors: tapes and tunneling spectroscopy SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS) CY SEP 13-17, 2009 CL Dresden, GERMANY ID BREAK JUNCTIONS; BI2SR2CACU2O8+DELTA; TRANSPORT AB Grain boundaries in the high temperature superconducting cuprates have played a central role in their development for practical applications and in the fundamental understanding of the nature of superconductivity in these materials. Tapes for energy use, SQUIDS, symmetry of the wavefunction, Qbits, applications related to the AC Josephson effect, and tunneling spectroscopy are some areas of current research. In this brief paper, the authors first summarize what we know about what limits the critical current densities of tapes and suggest a few experiments to further understand these limits to critical current densities and, secondly, discuss the use of grain boundary for carrying out tunneling spectroscopy in optimally doped La1.84Sr0.16CuO4 (LSCO). This includes new data and comparisons with theory and experiments. The background material and review were presented at the EUCAS 09 conference in Dresden as one of the plenary talks and are available from the authors. C1 [Chaudhari, P.; Shim, Heejae] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Chaudhari, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM shim@bnl.gov NR 28 TC 0 Z9 0 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034002 DI 10.1088/0953-2048/23/3/034002 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500003 ER PT J AU Clem, JR Malozemoff, AP AF Clem, J. R. Malozemoff, A. P. TI Theory of ac loss in power transmission cables with second generation high temperature superconductor wires SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS) CY SEP 13-17, 2009 CL Dresden, GERMANY ID HARD SUPERCONDUCTORS; II SUPERCONDUCTORS; COATED CONDUCTORS AB While a considerable amount of work has been done in an effort to understand ac losses in power transmission cables made of first generation high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer in 2G wires reduces the surface superconductor hysteretic losses, for which a new formula is derived. Instead, gap and polygonal losses, flux transfer losses in imbalanced two-layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. A formula for the flux transfer losses is also derived with a paramagnetic approximation for the substrate. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward. C1 [Clem, J. R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Malozemoff, A. P.] Amer Superconductor Corp, Devens, MA 01434 USA. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM amalozemoff@amsc.com NR 18 TC 17 Z9 18 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034014 DI 10.1088/0953-2048/23/3/034014 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500015 ER PT J AU Espy, M Flynn, M Gomez, J Hanson, C Kraus, R Magnelind, P Maskaly, K Matlashov, A Newman, S Owens, T Peters, M Sandin, H Savukov, I Schultz, L Urbaitis, A Volegov, P Zotev, V AF Espy, M. Flynn, M. Gomez, J. Hanson, C. Kraus, R. Magnelind, P. Maskaly, K. Matlashov, A. Newman, S. Owens, T. Peters, M. Sandin, H. Savukov, I. Schultz, L. Urbaitis, A. Volegov, P. Zotev, V. TI Ultra-low-field MRI for the detection of liquid explosives SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS) CY SEP 13-17, 2009 CL Dresden, GERMANY ID NUCLEAR-QUADRUPOLE RESONANCE; QUANTUM INTERFERENCE DEVICE; MICROTESLA MAGNETIC-FIELDS; NMR; SPECTROMETER; RELAXOMETRY; MEG AB Recently it has become both possible and practical to use magnetic resonance (MR) at magnetic fields in the range from mu T to mT, the so-called ultra-low-field (ULF) regime. SQUID (superconducting quantum interference device) sensor technology allows for ultra-sensitive detection while pulsed pre-polarizing fields greatly enhance the signal. The instrumentation allows for unprecedented flexibility in signal acquisition sequences and simplified MRI instrumentation. Here we present results for a new application of ULF MRI and relaxometry for the detection and characterization of liquids. We briefly describe the motivation and advantages of the ULF MR approach, and present recent results from a seven-channel ULF MRI/relaxometer system constructed to non-invasively inspect liquids at a security checkpoint for the presence of hazardous material. The instrument was deployed at the Albuquerque International Airport in December 2008, and results from that endeavor are also presented. C1 [Espy, M.; Flynn, M.; Gomez, J.; Hanson, C.; Kraus, R.; Magnelind, P.; Maskaly, K.; Matlashov, A.; Newman, S.; Owens, T.; Peters, M.; Sandin, H.; Savukov, I.; Schultz, L.; Urbaitis, A.; Volegov, P.; Zotev, V.] Los Alamos Natl Lab, Appl Modern Phys Grp, Los Alamos, NM 87545 USA. RP Espy, M (reprint author), Los Alamos Natl Lab, Appl Modern Phys Grp, MS D454, Los Alamos, NM 87545 USA. EM espy@lanl.gov OI Savukov, Igor/0000-0003-4190-5335; Urbaitis, Algis/0000-0002-8626-5987 NR 27 TC 33 Z9 33 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034023 DI 10.1088/0953-2048/23/3/034023 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500024 ER PT J AU Godeke, A Acosta, P Cheng, D Dietderich, DR Mentink, MGT Prestemon, SO Sabbi, GL Meinesz, M Hong, S Huang, Y Miao, H Parrell, J AF Godeke, A. Acosta, P. Cheng, D. Dietderich, D. R. Mentink, M. G. T. Prestemon, S. O. Sabbi, G. L. Meinesz, M. Hong, S. Huang, Y. Miao, H. Parrell, J. TI Wind-and-react Bi-2212 coil development for accelerator magnets SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS'09) CY SEP 13-17, 2009 CL Dresden, GERMANY ID NB3SN AB Sub-scale coils are being manufactured and tested at Lawrence Berkeley National Laboratory in order to develop wind-and-react Bi(2)Sr(2)CaCu(2)O(x) (Bi-2212) magnet technology for future graded accelerator magnet use. Previous Bi-2212 coils showed significant leakage of the conductors' core constituents to the environment, which can occur during the partial melt reaction around 890 degrees C in pure oxygen. The main origin of the observed leakage is intrinsic leakage of the wires, and the issue is therefore being addressed at the wire manufacturing level. We report on further compatibility studies, and the performance of new sub-scale coils that were manufactured using improved conductors. These coils exhibit significantly reduced leakage, and carry currents that are about 70% of the witness wire critical current (I(c)). The coils demonstrate, for the first time, the feasibility of round wire Bi-2212 conductors for accelerator magnet technology use. Successful high temperature superconductor coil technology will enable the manufacture of graded accelerator magnets that can surpass the, already closely approached, intrinsic magnetic field limitations of Nb-based superconducting magnets. C1 [Godeke, A.; Acosta, P.; Cheng, D.; Dietderich, D. R.; Mentink, M. G. T.; Prestemon, S. O.; Sabbi, G. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Meinesz, M.; Hong, S.; Huang, Y.; Miao, H.; Parrell, J.] Oxford Instruments, Carteret, NJ 07008 USA. RP Godeke, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM agodeke@lbl.gov NR 8 TC 29 Z9 30 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034022 DI 10.1088/0953-2048/23/3/034022 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500023 ER PT J AU Grilli, F Sirois, F Brault, S Brambilla, R Martini, L Nguyen, DN Goldacker, W AF Grilli, Francesco Sirois, Frederic Brault, Simon Brambilla, Roberto Martini, Luciano Nguyen, Doan N. Goldacker, Wilfried TI Edge and top/bottom losses in non-inductive coated conductor coils with small separation between tapes SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS'09) CY SEP 13-17, 2009 CL Dresden, GERMANY AB In this paper we consider two different finite-element models for computing ac losses in coils composed of coated conductors: a 2D model based on solving Maxwell's equations by means of edge elements and a 1D model based on solving the integral equations for the current density in the tapes. The models are tested for a configuration of practical interest, a non-inductive solenoidal coil for fault current limiter applications. We focused our attention on the conditions when differences between the two models are expected to emerge, for example when the tapes are closely packed or when the dependence of the critical current density on the local magnetic field is taken into account. We present and discuss several cases, offering possible explanations for the observed differences of ac loss values. C1 [Grilli, Francesco; Goldacker, Wilfried] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany. [Sirois, Frederic; Brault, Simon] Ecole Polytech, Montreal, PQ H3C 3A7, Canada. [Brambilla, Roberto; Martini, Luciano] ENEA Ric Sistema Elettr SpA, I-20134 Milan, Italy. [Nguyen, Doan N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Grilli, F (reprint author), Karlsruhe Inst Technol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. EM francesco.grilli@kit.edu RI Sirois, Frederic/F-3736-2010; Nguyen, Doan/F-3148-2010 OI Sirois, Frederic/0000-0003-0372-9449; NR 11 TC 12 Z9 12 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034017 DI 10.1088/0953-2048/23/3/034017 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500018 ER PT J AU MacManus-Driscoll, JL Harrington, SA Durrell, JH Ercolano, G Wang, H Lee, JH Tsai, CF Maiorov, B Kursumovic, A Wimbush, SC AF MacManus-Driscoll, J. L. Harrington, S. A. Durrell, J. H. Ercolano, G. Wang, H. Lee, J. H. Tsai, C. F. Maiorov, B. Kursumovic, A. Wimbush, S. C. TI High current, low cost YBCO conductors-what's next? SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS'09) CY SEP 13-17, 2009 CL Dresden, GERMANY AB The Holy Grail for high temperature superconducting conductors is achieving high current material in a simple and cost-effective way. The current status is encouraging but even after more than twenty years of intense worldwide research, there are still many new avenues to be explored. Innovative functional oxide materials science is central to future progress. This paper discusses three key areas of our research focusing on new directions: highly tailored flux pinning using the new core pinning additives R(3)TaO(7) and RBa(2)NbO(6) for control of nanostructure formation; pinning using magnetic phase additives such as RFeO(3) with the potential for a magnetic contribution to the flux pinning; and the use of liquid assisted growth enabling very high growth rates leading to thick films with no critical current degradation. C1 [MacManus-Driscoll, J. L.; Harrington, S. A.; Durrell, J. H.; Ercolano, G.; Kursumovic, A.; Wimbush, S. C.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Wang, H.; Lee, J. H.; Tsai, C. F.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Maiorov, B.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. RP MacManus-Driscoll, JL (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM jld35@cam.ac.uk RI Wimbush, Stuart/F-3736-2011; Wang, Haiyan/P-3550-2014; Durrell, John/A-4052-2008; OI Wimbush, Stuart/0000-0003-1636-643X; Wang, Haiyan/0000-0002-7397-1209; Durrell, John/0000-0003-0712-3102; Maiorov, Boris/0000-0003-1885-0436 NR 24 TC 10 Z9 10 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034009 DI 10.1088/0953-2048/23/3/034009 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500010 ER PT J AU Putti, M Pallecchi, I Bellingeri, E Cimberle, MR Tropeano, M Ferdeghini, C Palenzona, A Tarantini, C Yamamoto, A Jiang, J Jaroszynski, J Kametani, F Abraimov, D Polyanskii, A Weiss, JD Hellstrom, EE Gurevich, A Larbalestier, DC Jin, R Sales, BC Sefat, AS McGuire, MA Mandrus, D Cheng, P Jia, Y Wen, HH Lee, S Eom, CB AF Putti, M. Pallecchi, I. Bellingeri, E. Cimberle, M. R. Tropeano, M. Ferdeghini, C. Palenzona, A. Tarantini, C. Yamamoto, A. Jiang, J. Jaroszynski, J. Kametani, F. Abraimov, D. Polyanskii, A. Weiss, J. D. Hellstrom, E. E. Gurevich, A. Larbalestier, D. C. Jin, R. Sales, B. C. Sefat, A. S. McGuire, M. A. Mandrus, D. Cheng, P. Jia, Y. Wen, H. H. Lee, S. Eom, C. B. TI New Fe-based superconductors: properties relevant for applications SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th European Conference on Applied Superconductivity (EUCAS) CY SEP 13-17, 2009 CL Dresden, GERMANY ID CRITICAL CURRENTS; SINGLE-CRYSTALS; FIELD; DEPENDENCE AB Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other hand, the Fe-based superconductors have metallic parent compounds and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, and the supposed order parameter symmetry is s-wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviors and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest T-c, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates. On the other hand, the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the T-c of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, and intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families. C1 [Putti, M.; Pallecchi, I.; Bellingeri, E.; Cimberle, M. R.; Tropeano, M.; Ferdeghini, C.; Palenzona, A.] CNR INFM LAMIA, I-16146 Genoa, Italy. [Putti, M.; Pallecchi, I.; Bellingeri, E.; Cimberle, M. R.; Tropeano, M.; Ferdeghini, C.; Palenzona, A.] Univ Genoa, I-16146 Genoa, Italy. [Tarantini, C.; Yamamoto, A.; Jiang, J.; Jaroszynski, J.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Weiss, J. D.; Hellstrom, E. E.; Gurevich, A.; Larbalestier, D. C.] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Jin, R.; Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Cheng, P.; Jia, Y.; Wen, H. H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Lee, S.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Putti, M (reprint author), CNR INFM LAMIA, Via Dodecaneso 33, I-16146 Genoa, Italy. RI McGuire, Michael/B-5453-2009; Yamamoto, Akiyasu/A-5119-2012; Sefat, Athena/R-5457-2016; Gurevich, Alex/A-4327-2008; Jiang, Jianyi/F-2549-2017; Lee, Sanghan/C-8876-2012; Bellingeri, Emilio/G-7260-2014; Mandrus, David/H-3090-2014; Eom, Chang-Beom/I-5567-2014; Putti, Marina/N-2844-2014; Larbalestier, David/B-2277-2008 OI Lee, Sanghan/0000-0002-5807-864X; McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504; Gurevich, Alex/0000-0003-0759-8941; Jiang, Jianyi/0000-0002-1094-2013; FERDEGHINI, CARLO/0000-0003-0323-7719; Putti, Marina/0000-0002-4529-1708; Larbalestier, David/0000-0001-7098-7208 NR 57 TC 124 Z9 127 U1 9 U2 47 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2010 VL 23 IS 3 AR 034003 DI 10.1088/0953-2048/23/3/034003 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 559DH UT WOS:000274800500004 ER PT J AU Rao, LF Tian, GX AF Rao, Linfeng Tian, Guoxin TI Symmetry, Optical Properties and Thermodynamics of Neptunium(V) Complexes SO SYMMETRY-BASEL LA English DT Review DE symmetry; optical absorption; thermodynamics; neptunium; complexation AB Recent results on the optical absorption and symmetry of the Np(V) complexes with dicarboxylate and diamide ligands are reviewed. The importance of recognizing the "silent" feature of centrosymmetric Np(V) species in analyzing the absorption spectra and calculating the thermodynamic constants of Np(V) complexes is emphasized. C1 [Rao, Linfeng; Tian, Guoxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM lrao@lbl.gov; gtian@lbl.gov FU Office of Science, Office of Basic Energy Science of the U.S. Department of Energy (DOE) at Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH 11231] FX This research was supported by the Director, Office of Science, Office of Basic Energy Science of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH 11231 at Lawrence Berkeley National Laboratory (LBNL). The X-ray diffraction crystallographic data for NpO2(TMOGA)2ClO4, Na3NpO2(ODA)2center dot 2H2O(s), and Na3NpO2(DPA)2(H2O)6(s) are collected at the Advanced Light Source (ALS). ALS is operated by LBNL for U.S. DOE. NR 32 TC 7 Z9 7 U1 2 U2 7 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-8994 J9 SYMMETRY-BASEL JI Symmetry-Basel PD MAR PY 2010 VL 2 IS 1 BP 1 EP 14 DI 10.3390/sym2010001 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V30QX UT WOS:000208831600001 ER PT J AU Santarelli, KR Dahleh, MA AF Santarelli, Keith R. Dahleh, Munther A. TI Optimal controller synthesis for a class of LTI systems via switched feedback SO SYSTEMS & CONTROL LETTERS LA English DT Article DE Switching systems; Rate of convergence; Hybrid systems; Controller design ID OUTPUT-FEEDBACK; LINEAR-SYSTEMS; STABILIZATION AB We develop a switched feedback controller that optimizes the rate of convergence of the state trajectories to the origin for a class of second order LTI systems. Specifically, we derive an algorithm which optimizes the rate of convergence by employing a controller that switches between symmetric gains. As a byproduct of our investigation, we find that, in general, the controllers which optimize the rate of convergence switch between two linear subsystems, one of which is unstable. The algorithm we investigate will design optimal switching laws for the specific case of second order LTI plants of relative degree two. Published by Elsevier B.V. C1 [Santarelli, Keith R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Dahleh, Munther A.] MIT, Cambridge, MA 02139 USA. RP Santarelli, KR (reprint author), Sandia Natl Labs, POB 5800,MS-1316, Albuquerque, NM 87185 USA. EM krsanta@sandia.gov NR 16 TC 2 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6911 J9 SYST CONTROL LETT JI Syst. Control Lett. PD MAR-APR PY 2010 VL 59 IS 3-4 BP 258 EP 264 DI 10.1016/j.sysconle.2010.02.003 PG 7 WC Automation & Control Systems; Operations Research & Management Science SC Automation & Control Systems; Operations Research & Management Science GA 595UJ UT WOS:000277638500013 ER PT J AU Bondar, AN Smith, JC Elstner, M AF Bondar, Ana-Nicoleta Smith, Jeremy C. Elstner, Marcus TI Mechanism of a proton pump analyzed with computer simulations SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Review DE Proton transfer; QM/MM; Reaction path; Bacteriorhodopsin; Opsin shift; Water molecules ID TRANSFORM INFRARED-SPECTROSCOPY; MOLECULAR-DYNAMICS SIMULATIONS; SENSORY RHODOPSIN-II; RETINAL SCHIFF-BASE; INTERNAL WATER-MOLECULES; BACTERIORHODOPSIN PHOTOCYCLE; STRUCTURAL-CHANGES; CRYSTAL-STRUCTURE; L-INTERMEDIATE; CRYSTALLOGRAPHIC STRUCTURE AB Understanding the mechanism of proton pumping requires a detailed description of the energetics and sequence of events associated with the proton transfers, and of how proton transfer couples to conformational rearrangements of the protein. Here, we discuss our recent advances in using computer simulations to understand how bacteriorhodopsin pumps protons. We emphasize the importance of accurately describing the retinal geometry and the location of water molecules. C1 [Bondar, Ana-Nicoleta] Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Irvine, CA 92697 USA. [Bondar, Ana-Nicoleta] Univ Calif Irvine, Sch Med, Ctr Biomembrane Syst, Irvine, CA 92697 USA. [Smith, Jeremy C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Mol Biol, Knoxville, TN 37996 USA. [Elstner, Marcus] Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys & Theoret Chem, D-38106 Braunschweig, Germany. RP Bondar, AN (reprint author), Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Med Sci I D374, Irvine, CA 92697 USA. EM nicoleta.bondar@uci.edu; smithjc@ornl.gov; m.elstner@tu-bs.de RI smith, jeremy/B-7287-2012; Elstner, Marcus/H-3463-2013 OI smith, jeremy/0000-0002-2978-3227; FU Deutsche Forschungsgemeinschaft (DFG); National Institutes of General Medical Sciences [GM74637, GM68002]; US Department of Energy; German Research Foundation (DFG) FX The work discussed here had been supported in part by the Deutsche Forschungsgemeinschaft (DFG) Consortium on Molecular Mechanisms of Retinal Proteins Action. A.-N. B. is supported by grants GM74637 and GM68002 from the National Institutes of General Medical Sciences. J.C.S. is supported by a Laboratory-Directed Research and Development grant from the US Department of Energy. M. E. is supported by grants from the German Research Foundation (DFG). NR 104 TC 8 Z9 8 U1 2 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD MAR PY 2010 VL 125 IS 3-6 BP 353 EP 363 DI 10.1007/s00214-009-0565-5 PG 11 WC Chemistry, Physical SC Chemistry GA 540TV UT WOS:000273363300022 ER PT J AU Kemp, DD Rintelman, JM Gordon, MS Jensen, JH AF Kemp, Daniel D. Rintelman, Jamie M. Gordon, Mark S. Jensen, Jan H. TI Exchange repulsion between effective fragment potentials and ab initio molecules SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Effective fragment potential; QM-EFP; Exchange repulsion; Solvent ID INTERMOLECULAR PAULI REPULSION; CLOSED-SHELL MOLECULES; GAUSSIAN-TYPE BASIS; ORBITAL METHODS; APPROXIMATE FORMULA; ORGANIC-MOLECULES; BENZENE DIMER; ENERGY; CHEMISTRY AB The exchange repulsion energy and the Fock operator for systems that contain both effective fragment potentials and ab initio molecules have been derived, implemented, and tested on six mixed dimers of common solvent molecules. The implementation requires a balance between accuracy and computational efficiency. The gradient of the exchange repulsion has also been derived. Computational timings and the current challenges facing the implementation of the gradient are discussed. C1 [Kemp, Daniel D.; Rintelman, Jamie M.; Gordon, Mark S.] Iowa State Univ, Ames, IA 50011 USA. [Kemp, Daniel D.; Rintelman, Jamie M.; Gordon, Mark S.] Ames Lab, Ames, IA 50011 USA. [Jensen, Jan H.] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. RP Gordon, MS (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM mark@si.fi.ameslab.gov RI Jensen, Jan/G-4338-2010 OI Jensen, Jan/0000-0002-1465-1010 FU Chemistry Division, Basic Energy Sciences, Department of Energy; Danish Research Agency (Forskningsradet for Natur og Univers) FX This work was supported by a grant from the Chemistry Division, Basic Energy Sciences, Department of Energy, administered by the Ames Laboratory. Special thanks is given to Hui Li for numerous and insightful discussions. The authors also thank Dr. Michael Schmidt and Professor Timothy Dudley for helping with various details of the implementation into GAMESS. JHJ gratefully acknowledges a Skou Fellowship from the Danish Research Agency (Forskningsradet for Natur og Univers). NR 27 TC 9 Z9 9 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD MAR PY 2010 VL 125 IS 3-6 BP 481 EP 491 DI 10.1007/s00214-009-0660-7 PG 11 WC Chemistry, Physical SC Chemistry GA 540TV UT WOS:000273363300035 ER PT J AU Fontana, SM Dadmun, MD Lowndes, DH AF Fontana, S. M. Dadmun, M. D. Lowndes, D. H. TI Long-range order of cylinders in diblock copolymer thin films using graphoepitaxy SO THIN SOLID FILMS LA English DT Article DE Polymers; Atomic force microscopy; Nanostructures ID CARBON NANOTUBES; ORIENTATION; FABRICATION; DEPOSITION; TEMPLATES; SURFACES; BRUSHES; DISPLAY AB Topographically patterned substrates are known to induce long-range lateral order in spherical diblock copolymers, but it is not clear that similar confinement will also order cylindrical diblock copolymers across the whole surface. The role of graphoepitaxial parameters including trough width and mesa height on the ordering process of cylindrical domains in diblock copolymers thin films is monitored in this study. The quantification of order was achieved by the calculation of an order parameter of the hexagonally packed cylinders. These results demonstrate that graphoepitaxy is an effective method to induce long-range order in cylindrical domain diblock copolymer systems. An increase in order was observed in samples prepared on the mesas and in troughs of widths up to 20 Ion, and mesa heights greater than 1.0 but less than 5.0 L The role of molecular weight on the kinetics of the ordering process of cylindrical domains in diblock copolymers thin films is also monitored in this study, where ordering is readily observed for lower molecular weight copolymers (number average molecular weight, M-n = 63,000), but not for larger copolymers (M = 230,000). The reduction of the rate of formation of long-range order is attributed to the impeded diffusion of higher molecular weight polymers. These results demonstrate that there will exist upper limits on the molecular weights of diblock copolymers that can be used to create nanoscale templates with long-range order, which also translates to an upper limit in pore size and spacing in these templates. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fontana, S. M.; Dadmun, M. D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Dadmun, M. D.; Lowndes, D. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dad@utk.edu FU Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy (DOE); Center for Nanophase Materials Sciences; US DOE [DE-AC05-000R22725] FX The authors would like to thank P.H. Fleming for her assistance in sample preparation, T.P Russell and T. Xu for their assistance on template preparation techniques, and Sudesh Kamath for programming assistance. This research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy (DOE). Additional support was provided by the 2004 User-Initiated Nanoscience Research Program of the Center for Nanophase Materials Sciences. The research was carried out at ORNL, managed by UT-Battelle, LLC, for the US DOE under contract No. DE-AC05-000R22725. NR 32 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 1 PY 2010 VL 518 IS 10 BP 2783 EP 2792 DI 10.1016/j.tsf.2009.10.161 PG 10 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 573NG UT WOS:000275920000035 ER PT J AU Chen, HT Trewyn, BG Wiench, JW Pruski, M Lin, VSY AF Chen, Hung-Ting Trewyn, Brian G. Wiench, Jerzy W. Pruski, Marek Lin, Victor S. -Y. TI Urea and Thiourea-Functionalized Mesoporous Silica Nanoparticle Catalysts with Enhanced Catalytic Activity for Diels-Alder Reaction SO TOPICS IN CATALYSIS LA English DT Article DE Thiourea; Mesoporous silica nanoparticle; Heterogeneous catalysis; Surface hydrogen bonding; Diels-Alder reaction ID HYDROGEN-BOND DONORS; MOLECULAR-SIEVES; SINGLE-SITE; BIFUNCTIONAL ORGANOCATALYSTS; HETEROGENEOUS CATALYSIS; STRUCTURAL STABILITY; METAL-FREE; ACID; CONDENSATION; PERFORMANCE AB A series of urea- and thiourea-functionalized mesoporous silica nanoparticles (MSN) was synthesized. These materials exhibited a superior catalytic reactivity for Diels-Alder reaction than their homogeneous analogues. The reactivity enhancement was attributed to the site isolation effect induced by the heterogenization of individual catalytic group. The surface hydrogen bonding between the organic catalysts and silanols also improved the catalytic reactivity. C1 [Chen, Hung-Ting; Trewyn, Brian G.; Pruski, Marek; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Chen, Hung-Ting; Wiench, Jerzy W.; Pruski, Marek; Lin, Victor S. -Y.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM vsylin@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX The research support is provided by the U.S. Department of Energy, Office of Basic Energy Sciences, through the Catalysis Science Grant under Contract No. DE-AC02-07CH11358. NR 35 TC 24 Z9 24 U1 3 U2 27 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2010 VL 53 IS 3-4 BP 187 EP 191 DI 10.1007/s11244-009-9423-x PG 5 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 568WZ UT WOS:000275558000007 ER PT J AU Pickett, G Seagrave, J Boggs, S Polzin, G Richter, P Tesfaigzi, Y AF Pickett, Gavin Seagrave, JeanClare Boggs, Susan Polzin, Gregory Richter, Patricia Tesfaigzi, Yohannes TI Effects of 10 Cigarette Smoke Condensates on Primary Human Airway Epithelial Cells by Comparative Gene and Cytokine Expression Studies SO TOXICOLOGICAL SCIENCES LA English DT Article DE cigarette smoke condensates; primary human lung epithelial cells; gene expression; toxicity; cytokine ID TOBACCO-SPECIFIC NITROSAMINES; BONE MORPHOGENETIC PROTEIN-9; HEME OXYGENASE-1 GENE; IN-VITRO EXPOSURE; INDUCED EMPHYSEMA; MAINSTREAM SMOKE; COMMERCIAL CIGARETTES; PULMONARY-EMPHYSEMA; A/J MICE; APOPTOSIS AB Cigarettes vary in tobacco blend, filter ventilation, additives, and other physical and chemical properties, but little is known regarding potential differences in toxicity to a smoker's airway epithelia. We compared changes in gene expression and cytokine production in primary normal human bronchial epithelial cells following treatment for 18 h with cigarette smoke condensates (CSCs) prepared from five commercial and four research cigarettes, at doses of similar to 4 mu g/ml nicotine. Nine of the CSCs were produced under a standard International Organization for Standardization smoking machine regimen and one was produced by a more intense smoking machine regimen. Isolated messenger RNA (mRNA) was analyzed by microarray hybridization, and media was analyzed for secreted cytokines and chemokines. Twenty-one genes were differentially expressed by at least 9 of the 10 CSCs by more than twofold, including genes encoding detoxifying and antioxidant proteins. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and NAD(P)H dehydrogenase, quinone 1 (NQO-1) were selected for validation with quantitative real-time PCR (qRT-PCR) and Western blot analyses. NQO-1 expression determined with microarrays, qRT-PCR, and Western blotting differed among the CSC types, with good correlation among the different assays. CYP1A1 mRNA levels varied substantially, but there was little correlation with the protein levels. For each CSC, the three most induced and three most repressed genes were identified. These genes may be useful as markers of exposure to that particular cigarette type. Furthermore, differences in interleukin-8 secretion were observed. These studies lay the foundation for future investigations to analyze differences in the responses of in vivo systems to tobacco products marketed with claims of reduced exposure or reduced harm. C1 [Seagrave, JeanClare; Tesfaigzi, Yohannes] Lovelace Resp Res Inst, COPD Program, Albuquerque, NM 87108 USA. [Pickett, Gavin] Univ New Mexico, Sch Med, Ctr Canc, Keck UNM Genom Resource Facil, Albuquerque, NM 87131 USA. [Boggs, Susan] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Polzin, Gregory] Ctr Dis Control & Prevent, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Richter, Patricia] Ctr Dis Control & Prevent, Off Smoking & Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30341 USA. RP Seagrave, J (reprint author), Lovelace Resp Res Inst, COPD Program, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM jseagrav@lrri.org FU U.S. Centers for Disease Control and Prevention; Flight Attendant Medical Research Institute [CIA_062442, 042281_CIA] FX U.S. Centers for Disease Control and Prevention and the Flight Attendant Medical Research Institute (#CIA_062442 and 042281_CIA). NR 40 TC 23 Z9 23 U1 2 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD MAR PY 2010 VL 114 IS 1 BP 79 EP 89 DI 10.1093/toxsci/kfp298 PG 11 WC Toxicology SC Toxicology GA 555HN UT WOS:000274499800009 PM 20015843 ER PT J AU Rodriguez, B Yang, YN Guliaev, AB Chenna, A Hang, B AF Rodriguez, Ben Yang, Yanu Guliaev, Anton B. Chenna, Ahmed Hang, Bo TI Benzene-derived N-2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA SO TOXICOLOGY LETTERS LA English DT Article DE Benzene; Hydroquinone; p-Benzoquinone; DNA adduct; UvrABC; Nucleotide excision repair; Adduct conformation; Molecular modeling ID NUCLEOTIDE EXCISION-REPAIR; HUMAN AP ENDONUCLEASE; MOLECULAR-DYNAMICS SIMULATIONS; SITE-SPECIFIC INCORPORATION; P-BENZOQUINONE; BREAST-CANCER; OCCUPATIONAL-EXPOSURE; STRUCTURAL INSIGHTS; MUTATIONAL HOTSPOTS; EXOCYCLIC ADDUCT AB Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N-2-(4-Hydroxyphenyl)-2'-deoxyguanosine (N-2-4-HOPh-dG) is the principal adduct identified in vivo by P-32-postlabeling in cells or animals treated with p-BQ or HQ To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia colt UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N-2-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E colt, both of which were found to have no detectable activity toward N-2-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N-2-4-HOPh-G center dot C base pair, with the hydroxyphenyl ring at an almost planar position In addition, N-2-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes. (C) 2010 Elsevier Ireland Ltd. All rights reserved C1 [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Berkeley, CA 94720 USA. [Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.] San Francisco State Univ, Dept Chem & Biochem, San Francisco, CA 94132 USA. [Chenna, Ahmed] Monogram Biosci Inc, San Francisco, CA 94080 USA. RP Hang, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU NIH [CA72079]; Department of Energy [DE-AC03-76SF00098]; Center for Computing for Life Sciences; SFSU; Minority Access to Research Careers National Institutes of Health [MBRS RISE R25-GM59298] FX This work was supported by the NIH R01 grant CA72079 (to B.H.) and was administrated by the Lawrence Berkeley National Laboratory under Department of Energy contract DE-AC03-76SF00098 Support was also provided by Center for Computing for Life Sciences Mini-grant, SFSU (to A. G.) and Minority Access to Research Careers National Institutes of Health Grant MBRS RISE R25-GM59298 NR 49 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD MAR 1 PY 2010 VL 193 IS 1 BP 26 EP 32 DI 10.1016/j.toxlet.2009.12.005 PG 7 WC Toxicology SC Toxicology GA 569QC UT WOS:000275611900005 PM 20006688 ER PT J AU Oldenburg, CM AF Oldenburg, Curtis M. TI Transport in Geologic CO2 Storage Systems SO TRANSPORT IN POROUS MEDIA LA English DT Editorial Material C1 Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Oldenburg, CM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 0 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 1 EP 2 DI 10.1007/s11242-009-9526-7 PG 2 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500001 ER PT J AU Doughty, C AF Doughty, Christine TI Investigation of CO2 Plume Behavior for a Large-Scale Pilot Test of Geologic Carbon Storage in a Saline Formation SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Geologic carbon storage; CO2 sequestration; Multiphase flow modeling; CO2 trapping mechanisms; Plume stabilization ID REACTIVE GEOCHEMICAL TRANSPORT; RELATIVE PERMEABILITY; AQUIFER DISPOSAL; SEQUESTRATION; DIOXIDE; SIMULATION AB The hydrodynamic behavior of carbon dioxide (CO2) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO2 plume stabilization. A numerical model of the subsurface at a proposed power plant with CO2 capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO2 is injected over a 4-year period, and the subsequent evolution of the CO2 plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO2 between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO2 plume is effectively immobilized at 25 years. At that time, 38% of the CO2 is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO2 saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Doughty, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM cadoughty@lbl.gov RI Doughty, Christine/G-2389-2015 FU WESTCARB; Clean Coal Fuels; National Energy Technology Laboratory (NETL); Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC02-05CH11231] FX Thanks are due to Jeff Wagoner of Lawrence Livermore National Laboratory for providing the geological and facies models of the Kimberlina site, to Preston Jordan for additional information on faulting, and to Larry Myer and Curt Oldenburg for insightful discussions. The careful review of this article by Kenzi Karasaki and two anonymous reviewers is appreciated. This study was supported in part by WESTCARB through the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 20 TC 50 Z9 52 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 49 EP 76 DI 10.1007/s11242-009-9396-z PG 28 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500005 ER PT J AU Oldenburg, CM Lewicki, JL Dobeck, L Spangler, L AF Oldenburg, Curtis M. Lewicki, Jennifer L. Dobeck, Laura Spangler, Lee TI Modeling Gas Transport in the Shallow Subsurface During the ZERT CO2 Release Test SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Geologic carbon sequestration; Monitoring; Detection; Leakage; Seepage; Vadose zone; Carbon dioxide flow and transport ID FLOW; DISPERSION; SEEPAGE; LEAKAGE; SITES AB We used the multiphase and multicomponent TOUGH2/EOS7CA model to carry out predictive simulations of CO2 injection into the shallow subsurface of an agricultural field in Bozeman, Montana. The purpose of the simulations was to inform the choice of CO2 injection rate and design of monitoring and detection activities for a CO2 release experiment. The release experiment configuration consists of a long horizontal well (70 m) installed at a depth of approximately 2.5 m into which CO2 is injected to mimic leakage from a geologic carbon sequestration site through a linear feature such as a fault. We estimated the permeability of the soil and cobble layers present at the site by manual inversion of measurements of soil CO2 flux from a vertical-well CO2 release. Based on these estimated permeability values, predictive simulations for the horizontal well showed that CO2 injection just below the water table creates an effective gas-flow pathway through the saturated zone up to the unsaturated zone. Once in the unsaturated zone, CO2 spreads out laterally within the cobble layer, where liquid saturation is relatively low. CO2 also migrates upward into the soil layer through the capillary barrier and seeps out at the ground surface. The simulations predicted a breakthrough time of approximately two days for the 100kg d(-1) injection rate, which also produced a flux within the range desired for testing detection and monitoring approaches. The seepage area produced by the model was approximately five meters wide above the horizontal well, compatible with the detection and monitoring methods tested. For a given flow rate, gas-phase diffusion of CO2 tends to dominate over advection near the ground surface, where the CO2 concentration gradient is large, while advection dominates deeper in the system. C1 [Oldenburg, Curtis M.; Lewicki, Jennifer L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Earth Sci Div 90 1116, Berkeley, CA 94720 USA. [Dobeck, Laura; Spangler, Lee] Montana State Univ, Dept Chem, Bozeman, MT 59717 USA. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Earth Sci Div 90 1116, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013; OI Oldenburg, Curtis/0000-0002-0132-6016; Spangler, Lee/0000-0002-3870-6696 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the entire ZERT team for an exciting and supportive research environment. Quanlin Zhou (LBNL) provided helpful internal review comments, as did two anonymous reviewers. This work was carried out in the ZERT project funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the National Energy Technology Laboratory, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 26 Z9 28 U1 1 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 77 EP 92 DI 10.1007/s11242-009-9361-x PG 16 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500006 ER PT J AU Kneafsey, TJ Pruess, K AF Kneafsey, Timothy J. Pruess, Karsten TI Laboratory Flow Experiments for Visualizing Carbon Dioxide-Induced, Density-Driven Brine Convection SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Carbon sequestration; Density-driven convection; Induction time ID NATURAL-CONVECTION; SALINE AQUIFERS; CO2 INJECTION; POROUS-MEDIA; STORAGE AB Injection of carbon dioxide (CO(2)) into saline aquifers confined by low- permeability cap rock will result in a layer of CO(2) overlying the brine. Dissolution of CO(2) into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO(2) storage security because it accelerates the transfer of buoyant CO(2) into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO(2) solute-driven convection (CSC). Upon introduction of CO(2) into the system, a layer of CO(2)-laden brine forms at the CO(2)-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO(2) uptake of the convection system indicates that the CO(2) dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments may be an artifact of a small temperature gradient induced by the cell illumination. C1 [Kneafsey, Timothy J.; Pruess, Karsten] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Kneafsey, TJ (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM TJKneafsey@lbl.gov RI Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU U.S. Department of Energy [DE-AC02-05CH11231.] FX We are grateful to Carrie Tse who helped in the setup and analysis of the experiments, and to Jil Geller, Dan Hawkes, and two anonymous reviewers for helpful comments in reviewing this manuscript. This study was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 95 Z9 96 U1 1 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 123 EP 139 DI 10.1007/s11242-009-9482-2 PG 17 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500009 ER PT J AU Liu, HH Rutqvist, J AF Liu, Hui-Hai Rutqvist, Jonny TI A New Coal-Permeability Model: Internal Swelling Stress and Fracture-Matrix Interaction SO TRANSPORT IN POROUS MEDIA LA English DT Article DE CO(2) geological sequestration; Coal permeability; Enhanced coalbed methane recovery; Rock mechanics ID ONSAGERS RECIPROCITY RELATIONS; CHEMO-MECHANICAL PHENOMENA; EXPANSIVE CLAYS; DOUBLE-POROSITY; 2-SCALE MODEL; ROCK; VALIDATION; SIMULATION; BEHAVIOR; MEDIA AB We have developed a new coal-permeability model for uniaxial strain and constant confining-stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal-deformation processes and is based on a newly proposed internal swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated using data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH(4) gas production, as well as using published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this study using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams. C1 [Liu, Hui-Hai; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX We are indebted to Teamrat A. Ghezzehei at Lawrence Berkeley National Laboratory for his critical and careful reviewof a preliminary version of this manuscript. Helpful comments of two referees are also gratefully acknowledged. This study was supported by the U.S. Department of Energy (DOE) under DOE Contract No. DE-AC02-05CH11231. NR 33 TC 97 Z9 107 U1 7 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 157 EP 171 DI 10.1007/s11242-009-9442-x PG 15 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500011 ER PT J AU Spycher, N Pruess, K AF Spycher, Nicolas Pruess, Karsten TI A Phase-Partitioning Model for CO2-Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems SO TRANSPORT IN POROUS MEDIA LA English DT Article DE CO2; Carbon dioxide; Solubility; Phase partitioning; Mutual solubility; Enhanced Geothermal System; EGS; Brine; Water Flow; Multiphase Flow ID PLUS CARBON-DIOXIDE; GEOLOGICAL SEQUESTRATION; CO2 SEQUESTRATION; LIQUID-EQUILIBRIUM; AQUEOUS-SOLUTIONS; CO2-H2O MIXTURES; SALINE AQUIFERS; SODIUM-CHLORIDE; SOLUBILITY DATA; WORKING FLUID AB Correlations are presented to compute the mutual solubilities of CO2 and chloride brines at temperatures 12-300A degrees C, pressures 1-600 bar (0.1-60 MPa), and salinities 0-6 m NaCl. The formulation is computationally efficient and primarily intended for numerical simulations of CO2-water flow in carbon sequestration and geothermal studies. The phase-partitioning model relies on experimental data from literature for phase partitioning between CO2 and NaCl brines, and extends the previously published correlations to higher temperatures. The model relies on activity coefficients for the H2O-rich (aqueous) phase and fugacity coefficients for the CO2-rich phase. Activity coefficients are treated using a Margules expression for CO2 in pure water, and a Pitzer expression for salting-out effects. Fugacity coefficients are computed using a modified Redlich-Kwong equation of state and mixing rules that incorporate asymmetric binary interaction parameters. Parameters for the calculation of activity and fugacity coefficients were fitted to published solubility data over the P-T range of interest. In doing so, mutual solubilities and gas-phase volumetric data are typically reproduced within the scatter of the available data. An example of multiphase flow simulation implementing the mutual solubility model is presented for the case of a hypothetical, enhanced geothermal system where CO2 is used as the heat extraction fluid. In this simulation, dry supercritical CO2 at 20A degrees C is injected into a 200A degrees C hot-water reservoir. Results show that the injected CO2 displaces the formation water relatively quickly, but that the produced CO2 contains significant water for long periods of time. The amount of water in the CO2 could have implications for reactivity with reservoir rocks and engineered materials. C1 [Spycher, Nicolas; Pruess, Karsten] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Spycher, N (reprint author), Lawrence Berkeley Natl Lab, MS 90-1116,1 Cyclotron Rd, Berkeley, CA USA. EM NSpycher@lbl.gov RI Spycher, Nicolas/E-6899-2010 NR 69 TC 76 Z9 82 U1 8 U2 60 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 173 EP 196 DI 10.1007/s11242-009-9425-y PG 24 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500012 ER PT J AU Kang, QJ Lichtner, PC Viswanathan, HS Abdel-Fattah, AI AF Kang, Qinjun Lichtner, Peter C. Viswanathan, Hari S. Abdel-Fattah, Amr I. TI Pore Scale Modeling of Reactive Transport Involved in Geologic CO2 Sequestration SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Geologic CO2 sequestration; Pore scale modeling; Lattice Boltzmann method; Reactive transport ID POROUS-MEDIA; CHEMICAL-REACTIONS; MASS-TRANSPORT; DISSOLUTION; PRECIPITATION; DEPOSITION; FRACTURES; FLUID; RATES; FLOW AB We apply a multi-component reactive transport lattice Boltzmann model developed in previous studies for modeling the injection of a CO2-saturated brine into various porous media structures at temperatures T = 25 and 80 degrees C. In the various cases considered the porous medium consists initially of calcite with varying grain size and shape. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO degrees 2 (aq), and Cl is considered. Flow and transport by advection and diffusion of aqueous species, combined with homogeneous reactions occurring in the bulk fluid, as well as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of the structure of the porous media on reactive transport are investigated. The results are compared with a continuum-scale model and the discrepancies between the pore- and continuum-scale models are discussed. This study sheds some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic CO2 sequestration. C1 [Kang, Qinjun; Lichtner, Peter C.; Viswanathan, Hari S.] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Abdel-Fattah, Amr I.] Los Alamos Natl Lab, Earth Syst Observat Grp EES 14, Los Alamos, NM USA. RP Kang, QJ (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. EM qkang@lanl.gov RI Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU National Science Foundation [CHE-0431328]; U.S. Department of Energy, Biological and Environmental Research (BER; Los Alamos National Laboratory [20070267ER] FX This article is based on research project supported by the National Science Foundation under Grant No. CHE-0431328 and the U.S. Department of Energy, Biological and Environmental Research (BER), by LDRD project 20070267ER sponsored by Los Alamos National Laboratory, and by the U. S. Department of Energy through the Zero Emission Research and Technology project. NR 31 TC 63 Z9 64 U1 4 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 197 EP 213 DI 10.1007/s11242-009-9443-9 PG 17 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500013 ER PT J AU Apps, JA Zheng, L Zhang, Y Xu, T Birkholzer, JT AF Apps, J. A. Zheng, L. Zhang, Y. Xu, T. Birkholzer, J. T. TI Evaluation of Potential Changes in Groundwater Quality in Response to CO2 Leakage from Deep Geologic Storage SO TRANSPORT IN POROUS MEDIA LA English DT Article DE CO2 leakage; Groundwater contamination; Hazardous trace elements ID NATURAL-WATERS; ESTUARINE SEDIMENTS; MADISON AQUIFER; SULFIDIC WATERS; REDOX REACTIONS; METAL SULFIDES; ADSORPTION; SURFACE; COMPLEXATION; CADMIUM AB Concern has been expressed that carbon dioxide (CO2) leaking from deep geological storage could adversely impact water quality in overlying potable aquifers by mobilizing hazardous trace elements. In this article, we present a systematic evaluation of the possible water quality changes in response to CO2 intrusion into aquifers currently used as sources of potable water in the United States. The evaluation was done in three parts. First, we developed a comprehensive geochemical model of aquifers throughout the United States, evaluating the initial aqueous abundances, distributions, and modes of occurrence of selected hazardous trace elements in a large number of potable groundwater quality analyses from the National Water Information System (NWIS) database. For each analysis, we calculated the saturation indices (SIs) of several minerals containing these trace elements. The minerals were initially selected through literature surveys to establish whether field evidence supported their postulated presence in potable water aquifers. Mineral assemblages meeting the criterion of thermodynamic saturation were assumed to control the aqueous concentrations of the hazardous elements at initial system state as well as at elevated CO2 concentrations caused by the ingress of leaking CO2. In the second step, to determine those hazardous trace elements of greatest concern in the case of CO2 leakage, we conducted thermodynamic calculations to predict the impact of increasing CO2 partial pressures on the solubilities of the identified trace element mineral hosts. Under reducing conditions characteristic of many groundwaters, the trace elements of greatest concern are arsenic (As) and lead (Pb). In the final step, a series of reactive-transport simulations was performed to investigate the chemical evolution of aqueous As and Pb after the intrusion of CO2 from a storage reservoir into a shallow confined groundwater resource. Results from the reactive-transport model suggest that a significant increase of aqueous As and Pb concentrations may occur in response to CO2 intrusion, but that the maximum concentration values remain below or close to specified maximum contaminant levels (MCLs). Adsorption/desorption from mineral surfaces may strongly impact the mobilization of As and Pb. C1 [Apps, J. A.; Zheng, L.; Zhang, Y.; Xu, T.; Birkholzer, J. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Birkholzer, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI zheng, liange/B-9748-2011; Birkholzer, Jens/C-6783-2011; Zheng, Liange/E-9521-2010; Zhang, Yingqi/D-1203-2015 OI zheng, liange/0000-0002-9376-2535; Birkholzer, Jens/0000-0002-7989-1912; NR 68 TC 95 Z9 101 U1 1 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2010 VL 82 IS 1 SI SI BP 215 EP 246 DI 10.1007/s11242-009-9509-8 PG 32 WC Engineering, Chemical SC Engineering GA 555XQ UT WOS:000274550500014 ER PT J AU Taheri, ML Sebastian, JT Reed, BW Seidman, DN Rollett, AD AF Taheri, Mitra L. Sebastian, Jason T. Reed, Bryan W. Seidman, David N. Rollett, Anthony D. TI Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary SO ULTRAMICROSCOPY LA English DT Article DE Grain boundary segregation; TEM; Atom probe; EBSD; FIB ID FIELD-ION-MICROSCOPE; INTERNAL INTERFACES; PROBE; ALUMINUM; ALLOYS; RECRYSTALLIZATION; SIMULATIONS; RESOLUTION; MIGRATION; MOBILITY AB A site-specific method for measuring solute segregation at grain boundaries in an Aluminum alloy is presented. A Sigma 7(Sigma 7=38 degrees<1 1 1 >) grain boundary (GB) in an aluminum alloy (Zr, Cu as main alloying elements) was evaluated using site-specific Local Electrode Atom Probe (LEAP). A sample containing a Sigma 7 GB was prepared by combining electron backscatter diffraction (EBSD) and focused ion beam (FIB) milling to locate the GB of interest and extract a specimen. Its composition was determined by LEAP, and compared to a general high angle GB (HAGB). Zr was the only alloying element present in the Sigma 7 GB, whereas the general HAGB contained both Cu and Zr. This site-specific LEAP method was found to be an accurate method for measuring GB segregation at specific GB misorientations. The method has advantages over other methods of measuring chemistry at GBs, such as spectroscopy, in that GB structure can be assessed in three dimensions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Taheri, Mitra L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Sebastian, Jason T.] QuesTek Innovat LLC, Evanston, IL 60201 USA. [Sebastian, Jason T.; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA. [Reed, Bryan W.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Rollett, Anthony D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM mtaheri@coe.drexel.edu RI Seidman, David/B-6697-2009; Rollett, Anthony/A-4096-2012; Felfer, Peter/H-6024-2011; Taheri, Mitra/F-1321-2011; Reed, Bryan/C-6442-2013 OI Rollett, Anthony/0000-0003-4445-2191; FU Alcoa Technical Center; Commonwealth of Pennsylvania; National Science Foundation [DMR-0520425]; National Center for Electron Microscopy, Lawrence Berkeley Lab; US Department of Energy [DE-AC02-05CH11231]; US Department of Energy; Lawrence Livermore National Laboratory; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC52-07NA27344] FX MT thanks Andrew Minor of Lawrence Berkeley National Laboratory, and Henk Colijn and Robert Williams of Ohio State University for training and useful discussions concerning conical FIB sample preparation. MT also thanks Keith Knipling, Chantal Sudbrack and Dieter Ishiem of Northwestern University for training on the LEAP Instrument. Lastly, MT thanks Eric Stach of Purdue University for technical guidance with in situ TEM imaging. This research was supported in part by the Alcoa Technical Center, in part by the Commonwealth of Pennsylvania, and in part by the MRSEC program of the National Science Foundation under Award no. DMR-0520425. The authors thank Hasso Weiland of the Alcoa Technical Center for numerous discussions and supply of materials. Support is acknowledged of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the US Department of Energy under Contract no. DE-AC02-05CH11231. Portions of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract DE-AC52-07NA27344. NR 42 TC 14 Z9 14 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2010 VL 110 IS 4 BP 278 EP 284 DI 10.1016/j.ultramic.2009.11.006 PG 7 WC Microscopy SC Microscopy GA 578JS UT WOS:000276290200002 PM 20097006 ER PT J AU Clark, WW Isherwood, W AF Clark, Woodrow W., II Isherwood, William TI Inner Mongolia must "leapfrog" the energy mistakes of the western developed nations SO UTILITIES POLICY LA English DT Article DE Renewable energy; Leapfrog; Economic and sustainable development AB The purpose of the Asian Development Bank Report was to investigate and study the energy infrastructure development of western industrialized nations along with their impact on the environment. Then there could be an analysis of how IMAR could "leapfrog" or jump over the mistakes of the west and create an energy infrastructure for itself and China. The report reflects and summarizes this historical energy infrastructure development over the 20th Century. The five countries were the UK, Germany, S. Africa, USA and Australia. The foreign energy advisors felt that there were two additional elements that needed to be included. First was the fact that the USA as a whole was different than its regions or states, particularly California. So the nation-state of California was added. Secondly, the western nations of Germany and S. Africa in particular, had carefully considered some advanced coal technologies that were "cleaner" than the traditional and conventional approaches to mining. Both nations developed these "clean coal" technologies that are now being used more and more today in other developed nations like the USA. If IMAR was to retain much of its coal production and reduce it over time, then it had to install these technologies now to reduce global warming and reverse the climate change caused by current coal mining. (C) 2009 Published by Elsevier Ltd. C1 [Clark, Woodrow W., II] Clark Strateg Partners, Beverly Hills, CA 90210 USA. [Isherwood, William] Tibetan Res Inst, Mongolia, WA USA. [Isherwood, William] Tibetan Res Inst, Seattle, WA USA. [Isherwood, William] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Clark, WW (reprint author), Clark Strateg Partners, POB 17975, Beverly Hills, CA 90210 USA. EM wwclark13@gmail.com NR 25 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0957-1787 EI 1878-4356 J9 UTIL POLICY JI Util. Policy PD MAR PY 2010 VL 18 IS 1 BP 29 EP 45 DI 10.1016/j.jup.2007.07.005 PG 17 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 752RI UT WOS:000289710000005 ER PT J AU Gloster, J Jones, A Redington, A Burgin, L Sorensen, JH Turner, R Dillon, M Hullinger, P Simpson, M Astrup, P Garner, G Stewart, P D'Amours, R Sellers, R Paton, D AF Gloster, John Jones, Andrew Redington, Alison Burgin, Laura Sorensen, Jens H. Turner, Richard Dillon, Michael Hullinger, Pam Simpson, Matthew Astrup, Poul Garner, Graeme Stewart, Paul D'Amours, Real Sellers, Robert Paton, David TI Airborne spread of foot-and-mouth disease - Model intercomparison SO VETERINARY JOURNAL LA English DT Article DE Foot-and-mouth disease; Airborne disease transmission; Modelling ID WIND-BORNE SPREAD; ATMOSPHERIC DISPERSION; INFECTED PREMISES; VIRUS; EPIDEMIC; RISK AB Foot-and-mouth disease virus (FMDV) spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route, with the relative importance of each mechanism depending on the particular outbreak characteristics. Atmospheric dispersion models have been developed to assess airborne spread of FMDV in a number of countries, including the UK, Denmark, Australia, New Zealand, USA and Canada. These models were compared at a Workshop hosted by the Institute for Animal Health/Met Office in 2008. Each modeller was provided with data relating to the 1967 outbreak of FMD in Hampshire, UK, and asked to predict the spread of FMDV by the airborne route. A number of key issues emerged from the Workshop and subsequent modelling work: (1) in general all models predicted similar directions for livestock at risk, with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events on the infected premises is highly important, especially if the meteorological conditions vary substantially during the virus emission period; (3) differences in assumptions made about virus release, environmental fate and susceptibility to airborne infection can substantially modify the size and location of the downwind risk area. All of the atmospheric dispersion models compared at the Workshop can be used to assess windborne spread of FMDV and provide scientific advice to those responsible for making control and eradication decisions in the event of an outbreak of disease. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved. C1 [Gloster, John] Met Off, Woking GU24 0NF, Surrey, England. [Jones, Andrew; Redington, Alison; Burgin, Laura] Met Off, Exeter EX1 3PB, Devon, England. [Sorensen, Jens H.] DMI, DK-2100 Copenhagen, Denmark. [Turner, Richard] NIWA, Wellington, New Zealand. [Dillon, Michael; Hullinger, Pam; Simpson, Matthew] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Astrup, Poul] Tech Univ Denmark, Riso Natl Lab, DK-4000 Roskilde, Denmark. [Garner, Graeme] Dept Agr Fisheries & Forestry, Canberra, ACT 2601, Australia. [Stewart, Paul] Bur Meteorol, Natl Meteorol & Oceanog Ctr, Melbourne, Vic 3001, Australia. [D'Amours, Real] Environm Canada, Canadian Meteorol Ctr, Quebec City, PQ H9P 1J3, Canada. [Paton, David] AFRC, Inst Anim Hlth, Pirbright Lab, Woking GU24 0NF, Surrey, England. RP Gloster, J (reprint author), Met Off, Woking GU24 0NF, Surrey, England. EM john.gloster@bbsrc.ac.uk RI Burgin, Laura/I-4724-2012 OI Burgin, Laura/0000-0003-1247-9971 FU DEFRA [SE4025]; Biosecurity New Zealand; Royal Society of New Zealand FX The authors readily acknowledge the contributions made to the intercomparison by Leonard Mansley, Torbert Mikklesen, Alistair Manning and David Schley. Thanks are also given to DEFRA for funding project SE4025. Richard Turner wishes to thank Graham Mackereth of Biosecurity New Zealand, who provided a virus emission profile for PDEMS, and to the Royal Society of New Zealand, who provided financial support to attend the intercomparison meeting through the International Science and Technology Linkages fund. Graeme Garner wishes to acknowledge the contributions of Dale Hess of CSIRO Marine and Atmospheric Research and Xue Yang from the Bureau of Meteorology. Pam Hullinger, Michael Dillon and Matthew Simpson would like to express their gratitude to Mrs. Fernando Aluzzi and Robert Shectman for their assistance with the meteorological data, Drs. Michael Bradley, John Nasstrom, and Kevin Foster for their helpful review, and Drs. Bill Colston, Global Security Directorate Chem/Bio Division Leader, and Tom Bates, Threat Awareness Program Leader, for supporting this effort. NR 37 TC 25 Z9 26 U1 4 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1090-0233 J9 VET J JI Vet. J. PD MAR PY 2010 VL 183 IS 3 BP 278 EP 286 DI 10.1016/j.tvjl.2008.11.011 PG 9 WC Veterinary Sciences SC Veterinary Sciences GA 569RD UT WOS:000275615700010 PM 19138867 ER PT J AU Walker, CA Trowbridge, FR Wagner, AR AF Walker, C. A. Trowbridge, F. R. Wagner, A. R. TI Direct Brazing of Sapphire to Niobium SO WELDING JOURNAL LA English DT Editorial Material ID METAL C1 [Walker, C. A.; Trowbridge, F. R.; Wagner, A. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Walker, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cawalke@sandia.gov NR 15 TC 2 Z9 2 U1 1 U2 4 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD MAR PY 2010 VL 89 IS 3 BP 50 EP 55 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 566FH UT WOS:000275355000014 ER PT J AU Johnson, SJ Baker, JP van Dam, CP Berg, D AF Johnson, Scott J. Baker, Jonathon P. van Dam, C. P. Berg, Dale TI An overview of active load control techniques for wind turbines with an emphasis on microtabs SO WIND ENERGY LA English DT Article DE wind turbine; active load control; smart blade; trailing-edge flaps; plasma actuators; vortex generator jets; microtabs; blade loads ID FLOW SEPARATION CONTROL; AIRFOILS; PERFORMANCE; ACTUATORS; DESIGN; BLADES; SYSTEM; JETS AB This paper outlines the benefits and challenges of utilizing active flow control (AFC) for wind turbines. The goal of AFC is to mitigate damaging loads and control the aeroelastic response of wind turbine blades. This can be accomplished by sensing changes in turbine operation and activating devices to adjust the sectional lift coefficient and/or local angle of attack. Fifteen AFC devices are introduced, and four are described in more detail. Non-traditional trailing-edge flaps, plasma actuators, vortex generator jets and microtabs are examples of devices that hold promise for wind turbine control. The microtab system is discussed in further detail including recent experimental results demonstrating its effectiveness in a three-dimensional environment. Wind tunnel tests indicated that a nearly constant change in C-L, over a wide range of angles of attack is possible with microtab control. Using an angle of attack of 5 degrees as a reference, microtabs with a height of 1.5%c were capable of increasing CL by +0.21 (37%) and decreasing CL by -0.23 (-40%). The results are consistent with findings from past two-dimensional experiments and numerical efforts. Through comparisons to other load control studies, the controllable range of this micro-tab system is determined to be suitable for smart blade applications. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Johnson, Scott J.; Baker, Jonathon P.; van Dam, C. P.] Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA. [Berg, Dale] Sandia Natl Labs, Wind Energy Technol Dept, Albuquerque, NM 87185 USA. RP Johnson, SJ (reprint author), Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA. EM sjjohnson@ucdavis.edu NR 52 TC 40 Z9 42 U1 6 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD MAR-APR PY 2010 VL 13 IS 2-3 SI SI BP 239 EP 253 DI 10.1002/we.356 PG 15 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 580YJ UT WOS:000276486700010 ER PT J AU Barker, Z Venkatchalam, V Martin, AN Farquar, GR Frank, M AF Barker, Zachary Venkatchalam, Veena Martin, Audrey N. Farquar, George R. Frank, Matthias TI Detecting trace pesticides in real time using single particle aerosol mass spectrometry SO ANALYTICA CHIMICA ACTA LA English DT Article DE Pesticide analysis; Single particle; Mass spectrometry; Aerosol analysis ID PERFORMANCE LIQUID-CHROMATOGRAPHY; DIODE-ARRAY DETECTION; MALATHION; IDENTIFICATION; EXPOSURE; DICHLORVOS; RESIDUES; CARBARYL; SAMPLES; RISKS AB Pesticides are toxic substances and may cause unintentional harm if improperly used. The ubiquitous nature of pesticides, with frequent use in agriculture and the household, and the potential for harm that pesticides pose to non-target organisms such as wildlife, humans, and pets, demonstrate the need for rapid and effective detection and identification of these compounds. In this Study, single particle aerosol mass spectrometry (SPAMS) was used to rapidly detect compounds from four classes of pesticides commonly used in agricultural and household applications. These include permethrin (pyrethroid class), malathion and dichlorvos (organophosphate class), imidacloprid (chloronicotinyl class), and carbaryl (carbamate class). Analytical standards of each compound were diluted and aerosolized using a nebulizer to create particles for analysis in the SPAMS instrument. The resultant dual-polarity time-of-flight mass spectra were then analyzed to identify the characteristic peaks of the compound in each sample. In addition, samples of commercial products containing pesticides, a commercial insecticide spray, containing permethrin, and a canine flea collar, containing carbaryl, were analyzed in their original form using SPAMS without any significant sample preparation. The characteristic mass spectral peaks of the active pesticides in these samples were identified using the mass spectra obtained earlier from the pesticide analytical standards. By successfully identifying pesticides in analytical standards and in commercial products, it is demonstrated herein that the SPAMS system may be capable of pesticide detection in numerous environmental and agricultural situations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Martin, Audrey N.; Farquar, George R.; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barker, Zachary] Mt Union Coll, Alliance, OH 44601 USA. [Venkatchalam, Veena] MIT, Cambridge, MA 02139 USA. [Martin, Audrey N.] Michigan State Univ, E Lansing, MI 48824 USA. RP Martin, AN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-091, Livermore, CA 94550 USA. EM amartin@llnl.gov; farquar2@llnl.gov RI Frank, Matthias/O-9055-2014 FU LLNL Laboratory Directed Research and Development; DARPA; TSWG of the Department of Defense FX The development of the SPAMS system at LLNL was partially funded through an LLNL Laboratory Directed Research and Development Grant and through DARPA and TSWG of the Department of Defense. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-SC52-07NA27344. Z.B. and V.V. performed this work while on appointment to the U.S. Department of Homeland Security (DHS) HS-STEM Summer Internship program and the U.S. DHS Scholarship and Fellowship Program, respectively, both administered by the Oak Ridge institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of DHS, DOE, or ORAU/ORISE. NR 38 TC 10 Z9 10 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD FEB 28 PY 2010 VL 661 IS 2 BP 188 EP 194 DI 10.1016/j.aca.2009.12.031 PG 7 WC Chemistry, Analytical SC Chemistry GA 562FB UT WOS:000275034000009 PM 20113734 ER PT J AU Cho, H de Jong, WA Soderquist, CZ AF Cho, Herman de Jong, Wibe A. Soderquist, Chuck Z. TI Probing the oxygen environment in UO22+ by solid-state O-17 nuclear magnetic resonance spectroscopy and relativistic density functional calculations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ORDER REGULAR APPROXIMATION; AMMONIUM URANYL CARBONATE; ELECTRONIC-STRUCTURE; DIFFERENT ATMOSPHERES; CRYSTAL-STRUCTURE; ACTINYL IONS; NMR; RUTHERFORDINE; DECOMPOSITION; CHEMISTRY AB A combined theoretical and solid-state O-17 nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO22+ in (NH4)(4)UO2(CO3)(3) and rutherfordine (UO2CO3) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of O-17 chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O-17 NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O-17 echo signal of U O-17(2)2+. (C) 2010 American Institute of Physics. [doi:10.1063/1.3308499] C1 [Cho, Herman; de Jong, Wibe A.; Soderquist, Chuck Z.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Cho, H (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. EM hm.cho@pnl.gov RI DE JONG, WIBE/A-5443-2008 OI DE JONG, WIBE/0000-0002-7114-8315 FU U.S. Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory FX The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. Part of the research was performed at the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. NR 46 TC 11 Z9 11 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2010 VL 132 IS 8 AR 084501 DI 10.1063/1.3308499 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 562DJ UT WOS:000275029200021 PM 20192301 ER PT J AU Leu, BM Alatas, A Sinn, H Alp, EE Said, AH Yavas, H Zhao, JY Sage, JT Sturhahn, W AF Leu, Bogdan M. Alatas, Ahmet Sinn, Harald Alp, E. Ercan Said, Ayman H. Yavas, Hasan Zhao, Jiyong Sage, J. Timothy Sturhahn, Wolfgang TI Protein elasticity probed with two synchrotron-based techniques SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NUCLEAR RESONANT SCATTERING; X-RAY-SCATTERING; LOW-FREQUENCY DYNAMICS; DENSITY-OF-STATES; INELASTIC NEUTRON-SCATTERING; CYTOCHROME-C; GLOBULAR-PROTEINS; MOSSBAUER-SPECTROSCOPY; VIBRATIONAL DYNAMICS; BRAGG-DIFFRACTION AB Compressibility characterizes three interconnecting properties of a protein: dynamics, structure, and function. The compressibility values for the electron-carrying protein cytochrome c and for other proteins, as well, available in the literature vary considerably. Here, we apply two synchrotron-based techniques-nuclear resonance vibrational spectroscopy and inelastic x-ray scattering - - to measure the adiabatic compressibility of this protein. This is the first report of the compressibility of any material measured with this method. Unlike the methods previously used, this novel approach probes the protein globally, at ambient pressure, does not require the separation of protein and solvent contributions to the total compressibility, and uses samples that contain the heme iron, as in the native state. We show, by comparing our results with molecular dynamics predictions, that the compressibility is almost independent of temperature. We discuss potential applications of this method to other materials beyond proteins. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3332585] C1 [Leu, Bogdan M.; Alatas, Ahmet; Alp, E. Ercan; Said, Ayman H.; Yavas, Hasan; Zhao, Jiyong; Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sinn, Harald] HASYLAB, D-22607 Hamburg, Germany. [Sage, J. Timothy] Northeastern Univ, Dept Phys, Dana Res Ctr, Boston, MA 02115 USA. RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM leu@aps.anl.gov RI Yavas, Hasan/A-7164-2014; Leu, Bogdan/J-9952-2015 OI Yavas, Hasan/0000-0002-8940-3556; Leu, Bogdan/0000-0003-2020-0686 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [PHY-0545787]; The University of Chicago FX We thank Professor Abel Schejter for helpful discussions, in particular about the cyt c 57Fe-enrichment procedure; Weiqiao Zeng for the Raman measurements on the IXS sample; and Dr. Yong Zhang for stimulating discussions on molecular dynamics simulations. Work at the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Generous support for the NRVS experiments was provided by the National Science Foundation (Contract No. PHY-0545787). Argonne National Laboratory is operated by The University of Chicago under contract with the U.S. Department of Energy, Office of Science. NR 100 TC 15 Z9 15 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2010 VL 132 IS 8 AR 085103 DI 10.1063/1.3332585 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 562DJ UT WOS:000275029200038 PM 20192318 ER PT J AU Jankowski, MD Franson, JC Mostl, E Porter, WP Hofmeister, EK AF Jankowski, Mark D. Franson, J. Christian Moestl, Erich Porter, Warren P. Hofmeister, Erik K. TI Testing independent and interactive effects of corticosterone and synergized resmethrin on the immune response to West Nile virus in chickens SO TOXICOLOGY LA English DT Article DE Resmethrin; Corticosterone; West Nile virus; Avian; Immunotoxicology; Insecticide ID PYRETHROID INSECTICIDES; PLASMA-CORTICOSTERONE; MOSQUITO MANAGEMENT; HOMARUS-AMERICANUS; PIPERONYL-BUTOXIDE; RISK-ASSESSMENT; CULEX-PIPIENS; IN-VITRO; TOXICITY; PERMETHRIN AB Public health agencies utilize aerial insecticides to interrupt an active West Nile virus (WNV) transmission cycle, which may expose WNV-infected birds to these agents. Although resmethrin has been considered benign to birds, no studies have evaluated whether the environmentally employed form of resmethrin with PBO synergist (synergized resmethrin (SR)) can suppress avian immunity to WNV infection and enhance a bird's host competence. Recognizing that wild birds confront toxicological stressors in the context of various physiological states, we exposed four groups (n = 9-11) of 9-week-old chickens (Gallus domesticus) to drinking water with either SR (three alternate days at 50 mu g/l resmethrin + 150 mu g/l piperonyl butoxide), CURT (10 days at 20 mg/l to induce subacute stress), the combination of SR and CURT, or 0.10% ethanol vehicle coincident with WNV infection. Compared to controls, SR treatment did not magnify but extended viremia by 1 day, and depressed IgG: CURT treatment elevated (mean, 4.26 log(10) PFU/ml) and extended viremia by 2 days, enhanced IgM and IgG, and increased oral virus. The combination of SR and CURT increased the number of chickens that shed oral virus compared to those treated with CURT alone. None of the chickens developed a readily infectious viremia to mosquitoes (none >= 5 log(10) PFU/ml), but viremia in a CURT-exposed chicken was up to 4.95 log(10) PFU/ml. Given that SR is utilized during WNV outbreaks, continued work toward a complete risk assessment of the potential immunotoxic effects of SR is warranted. This would include parameterization of SR exposures with immunological consequences in wild birds using both replicating (in the laboratory) and non-replicating (in the field) antigens. As a start, this study indicates that SR can alter some immunological parameters, but with limited consequences to primary WNV infection outcome, and that elevated CURT mildly enhances SRs immunotoxicity in chickens. Published by Elsevier Ireland Ltd. C1 [Jankowski, Mark D.; Porter, Warren P.] Univ Wisconsin, Mol & Environm Toxicol Ctr, Madison, WI 53706 USA. [Jankowski, Mark D.; Porter, Warren P.] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA. [Jankowski, Mark D.; Franson, J. Christian; Hofmeister, Erik K.] US Fish & Wildlife Serv, Natl Wildlife Hlth Res Ctr, US Geol Survey, Madison, WI 53711 USA. [Moestl, Erich] Univ Vet Med, Dept Nat Sci Biochem, A-1210 Vienna, Austria. RP Jankowski, MD (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop M888, Los Alamos, NM 87545 USA. EM mdjankowski@lanl.gov RI Mostl, Erich/G-1748-2010; OI Franson, J/0000-0002-0251-4238 FU NIEHS NIH HHS [T32 ES007015, T32 ES007015-30] NR 46 TC 10 Z9 11 U1 1 U2 15 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD FEB 28 PY 2010 VL 269 IS 1 BP 81 EP 88 DI 10.1016/j.tox.2010.01.010 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 576IB UT WOS:000276136600009 PM 20096745 ER PT J AU Oliver, MJ Murdock, AG Mishler, BD Kuehl, JV Boore, JL Mandoli, DF Everett, KDE Wolf, PG Duffy, AM Karol, KG AF Oliver, Melvin J. Murdock, Andrew G. Mishler, Brent D. Kuehl, Jennifer V. Boore, Jeffrey L. Mandoli, Dina F. Everett, Karin D. E. Wolf, Paul G. Duffy, Aaron M. Karol, Kenneth G. TI Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes SO BMC GENOMICS LA English DT Article ID DESICCATION-TOLERANCE; LAND PLANTS; PHYLOGENETIC SIGNIFICANCE; DNA; BRYOPHYTES; LIVERWORTS AB Background: Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results: The Tortula chloroplast genome is similar to 123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the similar to 71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions: Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses) of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations. C1 [Oliver, Melvin J.] Univ Missouri, Plant Genet Res Unit, USDA ARS MWA, Columbia, MO 65211 USA. [Murdock, Andrew G.; Mishler, Brent D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Murdock, Andrew G.; Mishler, Brent D.] Univ Calif Berkeley, Univ & Jepson Herbaria, Berkeley, CA 94720 USA. [Kuehl, Jennifer V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Boore, Jeffrey L.] Genome Project Solut Inc, Hercules, CA 94547 USA. [Mandoli, Dina F.; Everett, Karin D. E.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Wolf, Paul G.; Duffy, Aaron M.] Utah State Univ, Dept Biol, Logan, UT 84322 USA. [Karol, Kenneth G.] New York Bot Garden, Lewis B & Dorothy Cullman Program Mol Systemat St, Bronx, NY 10458 USA. RP Oliver, MJ (reprint author), Univ Missouri, Plant Genet Res Unit, USDA ARS MWA, 205 Curtis Hall, Columbia, MO 65211 USA. EM Mel.oliver@ars.usda.gov RI Wolf, Paul/F-7664-2010 OI Wolf, Paul/0000-0002-4317-6976 FU US National Science Foundation; NSF [0228729, 0228660, 0228432]; US National Institutes of Health [T32-HG00035]; USDA-CSREES NRI [2007-02007]; USDA-ARS CRIS [3622-21000-027-00]; US Department of Energy's Office of Science, Biological and Environmental Research; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This research was supported in part by a collaborative grant from the US National Science Foundation: ATOL: Collaborative Research: Deep Green Plant Phylogenetics: Novel Analytical Methods for Scaling from Genomics to Morphology http://ucjeps.berkeley.edu/TreeofLife/, NSF grant numbers 0228729 to BDM and JLB, 0228660 to DFM, and 0228432 to PGW. Additional funding was provided by the US National Institutes of Health Interdisciplinary Training in Genomic Sciences Grant T32-HG00035 to KGK and USDA-CSREES NRI grant 2007-02007 to MJO. The authors would like to thank Dr Aru K. Arumuganathan, Director of the Flow Cytometry Core, Benaroya Research Institute at Virginia Mason for his excellent technical assistance in the isolation of intact chloroplasts using fluorescence-activated cell sorting (FACS). We would also like to acknowledge the excellent technical assistance of Dean Kelch, Jeremy Hudgeons, and Jim Elder. Work presented here was also supported in part by USDA-ARS CRIS project 3622-21000-027-00 (MJO). This work was also partly performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable. NR 33 TC 20 Z9 21 U1 2 U2 13 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD FEB 27 PY 2010 VL 11 AR 143 DI 10.1186/1471-2164-11-143 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 572MD UT WOS:000275835900001 PM 20187961 ER PT J AU Morley, SK Henderson, MG AF Morley, Steven K. Henderson, Michael G. TI Comment on "Investigation of the period of sawtooth events" by X. Cai and C. R. Clauer SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Editorial Material ID INJECTIONS; SUBSTORMS C1 [Morley, Steven K.; Henderson, Michael G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Morley, SK (reprint author), Los Alamos Natl Lab, Mail Stop D466,POB 1663, Los Alamos, NM 87545 USA. EM smorley@lanl.gov RI Morley, Steven/A-8321-2008; Henderson, Michael/A-3948-2011 OI Morley, Steven/0000-0001-8520-0199; Henderson, Michael/0000-0003-4975-9029 NR 23 TC 1 Z9 1 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB 27 PY 2010 VL 115 AR A02216 DI 10.1029/2009JA014721 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 562GI UT WOS:000275037500002 ER PT J AU Bielejec, E Seamons, JA Carroll, MS AF Bielejec, E. Seamons, J. A. Carroll, M. S. TI Single ion implantation for single donor devices using Geiger mode detectors SO NANOTECHNOLOGY LA English DT Article AB Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of > 75 mu m from the center of the collecting junction. This detection efficiency is achieved with sensitivity to similar to 600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of < 2.5 nm. Significant reduction in false count probability is, furthermore, achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as similar to 10(-1) and 10(-4) for operation temperatures of similar to 300 K and similar to 77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of > 98% for counting one and only one ion for a false count probability of 10(-4) at an average ion number per gated window of 0.015. C1 [Bielejec, E.; Seamons, J. A.; Carroll, M. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bielejec, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM esbiele@sandia.gov FU National Security Agency Laboratory for Physical Sciences [EAO-09-0000049393]; United States Department of Energy [DE-AC04-94AL85000] FX We acknowledge the outstanding assistance from G Vizkelethy, B L Doyle, B R McWatters, and K Childs. This work was supported in full by the National Security Agency Laboratory for Physical Sciences under contract number EAO-09-0000049393. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract no. DE-AC04-94AL85000. NR 20 TC 9 Z9 9 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 26 PY 2010 VL 21 IS 8 AR 085201 DI 10.1088/0957-4484/21/8/085201 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 548LT UT WOS:000273965000004 PM 20101077 ER PT J AU Gottesman, D Hastings, MB AF Gottesman, Daniel Hastings, M. B. TI Entanglement versus gap for one-dimensional spin systems SO NEW JOURNAL OF PHYSICS LA English DT Article ID SPECTRAL GAP AB We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension (1D). The area law for a 1D system states that for the ground state, the entanglement of any interval is upper bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap Delta is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small Delta. To help resolve this asymptotic behavior, we construct a family of 1D local systems for which some intervals have entanglement entropy, which is polynomial in 1/Delta, whereas previously studied systems, such as free fermion systems or systems described by conformal field theory, had the entropy of all intervals bounded by a constant time log(1/Delta). C1 [Gottesman, Daniel] Perimeter Inst Theoret Phys, Waterloo, ON, Canada. [Hastings, M. B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hastings, M. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Hastings, M. B.] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA. RP Gottesman, D (reprint author), Perimeter Inst Theoret Phys, Waterloo, ON, Canada. EM dgottesman@perimeterinstitute.ca; xhastings@gmail.com FU CIFAR; Government of Canada through NSERC; Province of Ontario through MRI; US DOE [DE-AC52-06NA25396] FX We thank D Aharonov for many useful discussions throughout this work. DG was supported by CIFAR, by the Government of Canada through NSERC, and by the Province of Ontario through MRI. MBH was supported by US DOE contract no. DE-AC52-06NA25396. NR 18 TC 27 Z9 27 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 26 PY 2010 VL 12 AR 025002 DI 10.1088/1367-2630/12/2/025002 PG 20 WC Physics, Multidisciplinary SC Physics GA 564PQ UT WOS:000275228200002 ER PT J AU Pollmann, F Moore, JE AF Pollmann, F. Moore, J. E. TI Entanglement spectra of critical and near-critical systems in one dimension SO NEW JOURNAL OF PHYSICS LA English DT Article ID RENORMALIZATION; ENTROPY; CHAIN AB The entanglement spectrum of a pure state of a bipartite system is the full set of eigenvalues of the reduced density matrix obtained from tracing out one part. Such spectra are known in several cases to contain important information beyond that in the entanglement entropy. This paper studies the entanglement spectrum for a variety of critical and near-critical quantum lattice models in one dimension, chiefly by the infinite time evolving block decimation (iTEBD) numerical method, which enables both integrable and non-integrable models to be studied. We find that the distribution of eigenvalues in the entanglement spectra agrees with an approximate result derived by Calabrese and Lefevre to an accuracy of a few per cent for all models studied. This result applies whether the correlation length is intrinsic or generated by the finite matrix size accessible in iTEBD. For the transverse Ising model, the known exact results from Peschel and Eisler for the entanglement spectrum are used to confirm the validity of the iTEBD approach. For more general models, no exact result is available but the iTEBD results directly test the hypothesis that all moments of the reduced density matrix are determined by a single parameter. C1 [Pollmann, F.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Pollmann, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pollmann@berkeley.edu RI Pollmann, Frank/L-5378-2013; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU ARO; NSF [DMR-0804413] FX We acknowledge support from ARO (FP) and NSF DMR-0804413 (JEM). NR 41 TC 35 Z9 35 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 26 PY 2010 VL 12 AR 025006 DI 10.1088/1367-2630/12/2/025006 PG 12 WC Physics, Multidisciplinary SC Physics GA 564PQ UT WOS:000275228200006 ER PT J AU Aluie, H Eyink, GL AF Aluie, Hussein Eyink, Gregory L. TI Scale Locality of Magnetohydrodynamic Turbulence SO PHYSICAL REVIEW LETTERS LA English DT Article ID ZERO NET FLUX; MAGNETOROTATIONAL INSTABILITY; MHD SIMULATIONS; SHEARING BOX; INTERMITTENCY; SPECTRUM; DYNAMO AB We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range'' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsasser energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024(3) simulation of forced MHD turbulence. C1 [Aluie, Hussein; Eyink, Gregory L.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Aluie, Hussein] Los Alamos Natl Lab, Theoret Div T CNLS 5, Los Alamos, NM 87545 USA. RP Aluie, H (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA. RI Aluie, Hussein/D-6321-2011 FU NSF [ASE-0428325] FX We thank E. T. Vishniac, S. Chen, M. Wan, and D. Shapovalov. Computer time provided by DLMS at the Johns Hopkins University and support from NSF Grant No. ASE-0428325 are gratefully acknowledged. NR 22 TC 41 Z9 41 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2010 VL 104 IS 8 AR 081101 DI 10.1103/PhysRevLett.104.081101 PG 4 WC Physics, Multidisciplinary SC Physics GA 562NX UT WOS:000275060000007 PM 20366924 ER PT J AU Daghofer, M Moreo, A AF Daghofer, Maria Moreo, Adriana TI Comment on "Nonmagnetic Impurity Resonances as a Signature of Sign-Reversal Pairing in FeAs-Based Superconductors'' SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Daghofer, Maria] IFW Dresden, D-01171 Dresden, Germany. [Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. [Moreo, Adriana] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Daghofer, M (reprint author), IFW Dresden, POB 27 01 16, D-01171 Dresden, Germany. EM M.Daghofer@ifw-dresden.de RI Daghofer, Maria/C-5762-2008 OI Daghofer, Maria/0000-0001-9434-8937 NR 12 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2010 VL 104 IS 8 AR 089701 DI 10.1103/PhysRevLett.104.089701 PG 1 WC Physics, Multidisciplinary SC Physics GA 562NX UT WOS:000275060000049 PM 20366969 ER PT J AU Perez, F Gremillet, L Koenig, M Baton, SD Audebert, P Chahid, M Rousseaux, C Drouin, M Lefebvre, E Vinci, T Rassuchine, J Cowan, T Gaillard, SA Flippo, KA Shepherd, R AF Perez, F. Gremillet, L. Koenig, M. Baton, S. D. Audebert, P. Chahid, M. Rousseaux, C. Drouin, M. Lefebvre, E. Vinci, T. Rassuchine, J. Cowan, T. Gaillard, S. A. Flippo, K. A. Shepherd, R. TI Enhanced Isochoric Heating from Fast Electrons Produced by High-Contrast, Relativistic-Intensity Laser Pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA INTERACTIONS; COLLISIONS; TARGET; ANGLE AB Thin, mass-limited targets composed of V/Cu/Al layers with diameters ranging from 50 to 300 mu m have been isochorically heated by a 300 fs laser pulse delivering up to 10 J at 2 x 10(19) W/cm(2) irradiance. Detailed spectral analysis of the Cu x-ray emission indicates that the highest temperatures, of the order of 100 eV, have been reached when irradiating the smallest targets with a high-contrast, frequency-doubled pulse despite a reduced laser energy. Collisional particle-in-cell simulations confirm the detrimental influence of the preformed plasma on the bulk target heating. C1 [Perez, F.; Koenig, M.; Baton, S. D.; Audebert, P.; Chahid, M.] Ecole Polytech, CNRS CEA X Paris 6, UMR 7605, Lab Utilisat Lasers Intenses, Palaiseau, France. [Gremillet, L.; Rousseaux, C.; Drouin, M.; Lefebvre, E.; Vinci, T.] DIF, DAM, CEA, F-91297 Arpajon, France. [Gaillard, S. A.; Flippo, K. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rassuchine, J.; Cowan, T.; Gaillard, S. A.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Gaillard, S. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Shepherd, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Perez, F (reprint author), Ecole Polytech, CNRS CEA X Paris 6, UMR 7605, Lab Utilisat Lasers Intenses, Palaiseau, France. EM frederic.perez@polytechnique.edu RI Lefebvre, Erik/B-9835-2009; Koenig, Michel/A-2167-2012; Flippo, Kirk/C-6872-2009; Cowan, Thomas/A-8713-2011 OI Flippo, Kirk/0000-0002-4752-5141; Cowan, Thomas/0000-0002-5845-000X FU DOE [DE-FC52-01NV14050, DE-AC52-06NA25396] FX The authors acknowledge D. Salzmann for his interest in this work and fruitful discussions. PIC simulations were performed using the computing facilities of CEA/CCRT. S. A. G. was supported by DOE grant DE-FC52-01NV14050 and travel supported by FZD. K. A. F. was supported by DOE contract # DE-AC52-06NA25396. NR 27 TC 27 Z9 27 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2010 VL 104 IS 8 AR 085001 DI 10.1103/PhysRevLett.104.085001 PG 4 WC Physics, Multidisciplinary SC Physics GA 562NX UT WOS:000275060000022 PM 20366940 ER PT J AU Singleton, J de la Cruz, C McDonald, RD Li, SL Altarawneh, M Goddard, P Franke, I Rickel, D Mielke, CH Yao, X Dai, PC AF Singleton, John de la Cruz, Clarina McDonald, R. D. Li, Shiliang Altarawneh, Moaz Goddard, Paul Franke, Isabel Rickel, Dwight Mielke, C. H. Yao, Xin Dai, Pengcheng TI Magnetic Quantum Oscillations in YBa2Cu3O6.(61) and YBa2Cu3O6.69 in Fields of Up to 85 T: Patching the Hole in the Roof of the Superconducting Dome SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERMI-SURFACE; C SUPERCONDUCTOR; TEMPERATURE; POCKETS AB We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6+x with x = 0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at hole doping p approximate to 0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T = 0 limit of the metal-insulator crossover (low-p side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high p side). C1 [Singleton, John; McDonald, R. D.; Altarawneh, Moaz; Rickel, Dwight; Mielke, C. H.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [de la Cruz, Clarina; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [de la Cruz, Clarina; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Goddard, Paul; Franke, Isabel] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Yao, Xin] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. RP Singleton, J (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. RI Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012; dela Cruz, Clarina/C-2747-2013; McDonald, Ross/H-3783-2013; Goddard, Paul/A-8638-2015; YAO, XIN/O-5678-2015; OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz, Clarina/0000-0003-4233-2145; McDonald, Ross/0000-0002-0188-1087; Goddard, Paul/0000-0002-0666-5236; Mcdonald, Ross/0000-0002-5819-4739 FU DOE BES [DE-FG02-05ER46202]; State of Florida; Chinese Academy of Sciences; Shanghai Committee of Science and Technology; MOST of China [2006CB601003]; EPSRC FX This work is supported by the DOE BES grant "Science in 100 T'', DOE DE-FG02-05ER46202, and in part by Division of Scientific User Facilities. NHMFL is funded by DOE, NSF, and the State of Florida. Work at the IOP is supported by the Chinese Academy of Sciences. SJTU is supported by Shanghai Committee of Science and Technology and the MOST of China (2006CB601003). Work at Oxford takes place in the Nicholas Kurti Magnetic Field Laboratory and is supported by EPSRC. We thank Neil Harrison for useful discussions and John Betts, Mike Gordon, Alan Paris, Daryl Roybal, and Chuck Swenson for extreme technical assistance. NR 30 TC 44 Z9 44 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2010 VL 104 IS 8 AR 086403 DI 10.1103/PhysRevLett.104.086403 PG 4 WC Physics, Multidisciplinary SC Physics GA 562NX UT WOS:000275060000035 PM 20366955 ER PT J AU Stoupin, S Shvyd'ko, YV AF Stoupin, Stanislav Shvyd'ko, Yuri V. TI Thermal Expansion of Diamond at Low Temperatures SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOSSBAUER WAVELENGTH STANDARD; LATTICE-CONSTANT; SINGLE-CRYSTAL AB Temperature variation of a lattice parameter of a synthetic diamond crystal (type IIa) was measured using high-energy-resolution x-ray Bragg diffraction in backscattering. A 2 order of magnitude improvement in the measurement accuracy allowed us to directly probe the linear thermal expansion coefficient at temperatures below 100 K. The lowest value measured was 2 X 10(-9) K-1. It was found that the coefficient deviates from the expected Debye law (T-3) while no negative thermal expansion was observed. The anomalous behavior might be attributed to tunneling states due to low concentration impurities. C1 [Stoupin, Stanislav; Shvyd'ko, Yuri V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are indebted to Kwang-Je Kim for stimulated interest and discussions and to R. Winarski for the loan of the diamond crystal. We acknowledge help of our colleagues: A. Cunsolo, A. Said, T. Roberts, E. Trakhtenberg, T. Toellner, D. Shu, and T. Gog. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 26 TC 33 Z9 34 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2010 VL 104 IS 8 AR 085901 DI 10.1103/PhysRevLett.104.085901 PG 4 WC Physics, Multidisciplinary SC Physics GA 562NX UT WOS:000275060000029 PM 20366949 ER PT J AU Xiang, D Wan, W AF Xiang, D. Wan, W. TI Generating Ultrashort Coherent Soft X-Ray Radiation in Storage Rings Using Angular-Modulated Electron Beams SO PHYSICAL REVIEW LETTERS LA English DT Article ID HARMONIC-GENERATION; LASER; FEL AB A technique is proposed to generate ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. In the scheme a laser operating in the TEM01 mode is first used to modulate the angular distribution of the electron beam in an undulator. After passing through a special beam line with nonzero transfer matrix element R-54, the angular modulation is converted to density modulation which contains considerable high harmonic components of the laser. It is found that the harmonic number can be 1 or 2 orders of magnitude higher than the standard coherent harmonic generation method which relies on beam energy modulation. The technique has the potential of generating femtosecond coherent soft x-ray radiation directly from an infrared seed laser and may open new research opportunities for ultrafast sciences in storage rings. C1 [Xiang, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Xiang, D (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RI Xiang, Dao/P-2169-2015 FU U.S. DOE [DE-AC02-76SF00515] FX We thank A. Chao, Y. Nosochkov, G. Stupakov, M. Woodley, and J. Wu for helpful comments and discussions. This work was supported by the U. S. DOE under Contract No. DE-AC02-76SF00515. NR 14 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 26 PY 2010 VL 104 IS 8 AR 084803 DI 10.1103/PhysRevLett.104.084803 PG 4 WC Physics, Multidisciplinary SC Physics GA 562NX UT WOS:000275060000021 PM 20366939 ER PT J AU Gershenfeld, N Samouhos, S Nordman, B AF Gershenfeld, Neil Samouhos, Stephen Nordman, Bruce TI Intelligent Infrastructure for Energy Efficiency SO SCIENCE LA English DT Editorial Material ID SYSTEMS; DESIGN C1 [Gershenfeld, Neil; Samouhos, Stephen] MIT, Ctr Bits & Atoms, Cambridge, MA 02138 USA. [Nordman, Bruce] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gershenfeld, N (reprint author), MIT, Ctr Bits & Atoms, Cambridge, MA 02138 USA. EM gersh@cba.mit.edu; bnordman@lbl.gov; stratos@mit.edu NR 13 TC 19 Z9 19 U1 5 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 26 PY 2010 VL 327 IS 5969 BP 1086 EP 1088 DI 10.1126/science.1174082 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 560KJ UT WOS:000274901100020 PM 20185713 ER PT J AU Chempath, S Pratt, LR Paulaitis, ME AF Chempath, Shaji Pratt, Lawrence R. Paulaitis, Michael E. TI Distributions of extreme contributions to binding energies of molecules in liquids SO CHEMICAL PHYSICS LETTERS LA English DT Article ID WATER; DENSITY AB Strong intermolecular interactions in liquids are characterized by determining the distributions of maximum and minimum molecular contributions to the energies binding a molecule to a liquid. Extreme-value concepts help in understanding the shapes of these distributions, and therefore provides insight into molecular mechanisms of solvation behavior. The Gumbel distribution works satisfactorily for the maximum (least favorable) contribution. The minimum (most favorable) contribution conforms to another extreme-value distribution, a Weibull distribution. Simulation data for models of CF(4)(aq), Nd(CH(3))(4)(+) (aq), and H(2)O (liquid water) support the view that distributions of extreme values exhibit significant commonality for different molecules in liquid water. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. [Chempath, Shaji] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Paulaitis, Michael E.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. RP Pratt, LR (reprint author), Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. EM shaji.chempath@gmail.com; lpratt@tulane.edu; paulaitis.1@osu.edu RI Pratt, Lawrence/H-7955-2012 OI Pratt, Lawrence/0000-0003-2351-7451 NR 20 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 25 PY 2010 VL 487 IS 1-3 BP 24 EP 27 DI 10.1016/j.cplett.2010.01.023 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 554JX UT WOS:000274432400003 ER PT J AU Ghirardi, ML Mohanty, P AF Ghirardi, Maria L. Mohanty, Prasanna TI Oxygenic hydrogen photoproduction - current status of the technology SO CURRENT SCIENCE LA English DT Review DE Cyanobacteria; green algae; H(2) photoproduction; hydrogenases; nitrogenases ID CHLAMYDOMONAS-REINHARDTII CELLS; SP STRAIN PCC-6803; GREEN-ALGAE; BIDIRECTIONAL HYDROGENASE; H-2 PRODUCTION; TRANSCRIPTIONAL REGULATION; PHOTOSYNTHETIC ORGANISMS; ANAEROBIC CONDITIONS; RALSTONIA-EUTROPHA; SULFUR DEPRIVATION AB Oxygenic photosynthetic microbes such as green algae and cyanobacteria are capable of simultaneously splitting water and generating O(2) and H(2). This property confers them the ability to directly utilize sunlight to produce a clean fuel, H(2) gas. In this article, we discuss the two major classes of enzymes present in these organisms that are involved in H(2) production, hydrogenases and nitrogenases. We also describe the major barriers that must be overcome to bring the process to commercial deployment, as well as recent technological advances in the area. C1 [Ghirardi, Maria L.] Natl Renewable Energy Lab, Golden, CO USA. [Mohanty, Prasanna] Reg Plant Resource Ctr, Bhubaneswar 751015, Orissa, India. [Mohanty, Prasanna] Jawaharlal Nehru Univ, New Delhi 110067, India. RP Ghirardi, ML (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM Maria_Ghirardi@nrel.gov FU Indian National Science Academy, New Delhi; US Department of Energy's Office of Basic Energy Sciences, Office of Biological and Environmental Research; Hydrogen, Fuel Cells and Infrastructure Technologies Program FX P.M. thanks Indian National Science Academy, New Delhi for support and Drs Sangeeta Dawar, Sujata Mishra, N. Sredhar and B. K. Behera for help; M.L.G. acknowledges support from the US Department of Energy's Office of Basic Energy Sciences, Office of Biological and Environmental Research and the Hydrogen, Fuel Cells and Infrastructure Technologies Program. We acknowledge helpful comments and suggestions from NREL's Pin Ching Maness. We thank George C. Papageorgiou for editing our manuscript. NR 95 TC 25 Z9 25 U1 0 U2 20 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0011-3891 J9 CURR SCI INDIA JI Curr. Sci. PD FEB 25 PY 2010 VL 98 IS 4 BP 499 EP 507 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 569SB UT WOS:000275619500021 ER PT J AU Wang, HC Luo, X Ye, MC Hou, J Robinson, H Ke, HM AF Wang, Huanchen Luo, Xuan Ye, Mengchun Hou, Jing Robinson, Howard Ke, Hengming TI Insight into Binding of Phosphodiesterase-9A Selective Inhibitors by Crystal Structures and Mutagenesis SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES; CGMP-SPECIFIC PHOSPHODIESTERASE; SPINAL-CORD; RAT-BRAIN; TYPE-9; CAMP; IDENTIFICATION; LOCALIZATION; EXPRESSION; MECHANISM AB PDE9 inhibitors have been studied as therapeutics for treatment of cardiovascular diseases, diabetes, and neurodegenerative disorders. To illustrate the inhibitor selectivity, file crystal structures of the PDE9A catalytic domain in complex with the enantiomers of PDE9 inhibitor 1-(2-chlorophenyl)-6-(3,3,3-trifluoro-2-methylpropyl)-1H-pyrazolo[3,4-d]pyrimidine-4(5H)-one ((R)-BAY73-6691 or (S)-BAY73-6691, 1r or 1s) were determined and mutagenesis wits performed. The structures showed that the fluoromethyl groups of 1r and Is had different orientations while the other parts of the inhibitors commonly interacted with PDE9A. These differences may explain the slightly different affinity of 1r (IC(50) = 22 nM) and 1s (IC(50) = 88 nM). The mutagenesis experiments revealed that contribution of the binding residues to the inhibitor sensitivity Varies dramatically, From few-Fold to 3 orders Of magnitude. Oil the basis of the crystal structures, a hypothesized compound that simulates the recently published PDE9 inhibitors was modeled to provide Insight into the Inhibitor selectivity. C1 [Wang, Huanchen; Luo, Xuan; Ye, Mengchun; Ke, Hengming] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. [Wang, Huanchen; Luo, Xuan; Ye, Mengchun; Ke, Hengming] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Luo, Xuan; Hou, Jing; Ke, Hengming] Sun Yat Sen Univ, Sch Pharmaceut Sci, Struct Biol Lab, Guangzhou 510275, Guangdong, Peoples R China. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Ke, HM (reprint author), Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. EM hke@med.unc.edu RI ye, mengchun/D-5629-2014 OI ye, mengchun/0000-0002-2019-5365 FU NIH [GM59791]; Science Foundation of Sun Yat-Sen University; Offices of Biological and Environmental Research and Basic Energy Sciences of the U.S. Department of Energy; National Center for Research Resources of National Institutes of Health FX We thank beamline X29 at NSLS for collection of the diffraction data and BAYER Healthcare, Germany, for inhibitor 1r. This work was supported in part by NIH Grant GM59791 to FIX., the 985 Project of Science Foundation of Sun Yat-Sen University (X.L.), the Offices of Biological and Environmental Research and Basic Energy Sciences of the U.S. Department of Energy, and the National Center for Research Resources of National Institutes of Health (H.R.). NR 40 TC 13 Z9 14 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD FEB 25 PY 2010 VL 53 IS 4 BP 1726 EP 1731 DI 10.1021/jm901519f PG 6 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 556HN UT WOS:000274581200026 PM 20121115 ER PT J AU Wang, K Liu, Z Cruz, TH Salmeron, M Liang, H AF Wang, Ke Liu, Zhi Cruz, Tirma Herranz Salmeron, Miquel Liang, Hong TI In Situ Spectroscopic Observation of Activation and Transformation of Tantalum Suboxides SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID METAL-SURFACES; OXIDE-FILM; OXIDATION; REACTIVITY; REDUCTION; CHEMISTRY; PRESSURE; ALUMINUM; PD(111); SCIENCE AB Using ambient pressure X-ray photoelectron spectroscopy, we were able to observe the process of oxidation of tantalum with different morphological parameters. Being able to trace surface evolution during oxidation, we evaluated the activation energy of oxidation under the influence of strain and grain boundaries. It was found that the metal was oxidized through three different stages and there was a transition stage where the phase transformed from suboxides to the equilibrium state of pentoxide. The applied stress and surface defects reduced the activation energy of oxidation. C1 [Wang, Ke; Liang, Hong] Texas A&M Univ, College Stn, TX 77843 USA. [Liu, Zhi; Cruz, Tirma Herranz; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci & Chem Sci Div, Berkeley, CA 94720 USA. [Liu, Zhi; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Liang, H (reprint author), Texas A&M Univ, College Stn, TX 77843 USA. EM hliang@tamu.edu RI Herranz, Tirma/A-8656-2008; Wang, Ke/A-1044-2012; Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU National Science Foundation [0535578]; Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231.] FX This research was sponsored by the National Science Foundation (Grant 0535578). The Advanced Light Source was Supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, tinder Contract No. DE-AC02-05CH11231. NR 38 TC 11 Z9 11 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 25 PY 2010 VL 114 IS 7 BP 2489 EP 2497 DI 10.1021/jp910964s PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 556GM UT WOS:000274578200010 PM 20112976 ER PT J AU Wallace, AF Gibbs, GV Dove, PM AF Wallace, Adan F. Gibbs, G. V. Dove, Patricia M. TI Influence of Ion-Associated Water on the Hydrolysis of Si-O Bonded Interactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SODIUM-CHLORIDE SOLUTIONS; OPPENHEIMER AB-INITIO; BIOGENIC SILICA DISSOLUTION; X-RAY-DIFFRACTION; QUARTZ DISSOLUTION; SURFACE-CHARGE; ELECTROLYTE-SOLUTIONS; MINERAL DISSOLUTION; AMORPHOUS SILICA; MOLECULAR-DYNAMICS AB Previous studies show the demineralization of biogenic, amorphous, and crystalline forms of silica is enhanced in the presence of alkali and alkaline earth cations. The origins of this effect are difficult to explain in light of work suggesting predominantly weak outer-sphere type interactions between these ions and silica. Here we investigate the ability of M(II) aqua ions to promote the hydrolysis of Si-O bonded interactions relative to ion-free water using electronic structure methods. Reaction pathways for Si-O hydrolysis are calculated with the B3LYP and PBE1PBE density functionals at the 6-31G(d) and 6-311+G(d,p) levels in the presence of water, and both inner- and outer-sphere adsorption complexes of Mg(2+)(6H(2)O) and Ca(2+)(6H(2)O). All reaction trajectories involving hydrated ions are characterized by one or more surmountable barriers associated with the rearrangement of ion-associated water molecules, and a single formidable barrier corresponding to hydrolysis of the Si-O bonded interaction. The hydrolysis step for outer-sphere adsorption is slightly less favorable than the water-induced reaction. In contrast, the barrier opposing Si-O hydrolysis in the presence of inner-sphere species is generally reduced relative to the water-induced pathway, indicating that the formation of inner-sphere complexes may be prerequisite to the detachment of Si species from highly coordinated surface sites. The results Suggest a two-part physical model for ion-promoted Si-O hydrolysis that is consistent with experimental rate measurements. First, a bond path is formed between the cation and a bridging oxygen site on the silica surface that weakens the surrounding Si-O interactions, making them more susceptible to attack by water. Second, Si-O hydrolysis occurs adjacent to these inner-sphere species in proportion to the frequency of ion-associated solvent reorganization events. Both processes are dependent upon the particular ion hydration environment, which Suggests measured cation-specific demineralization rates arise from differential barriers opposing reorganization of ion-associated solvent molecules at the silica-water interface. C1 [Wallace, Adan F.; Gibbs, G. V.; Dove, Patricia M.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. RP Wallace, AF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 67R2206, Berkeley, CA 94720 USA. EM AFWallace@lbl.gov RI Dove, Patricia/A-7911-2010; Wallace, Adam/A-9976-2012 FU National Science Foundation [EAR-0545166]; Department of Energy [FG02-00ER15112] FX This material is based upon work supported by the National Science Foundation (EAR-0545166) and the Department of Energy (FG02-00ER15112). Additionally, we thank J. Don Rirnsticlt for providing helpful discussions and comments on the manuscript. NR 83 TC 30 Z9 30 U1 4 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 25 PY 2010 VL 114 IS 7 BP 2534 EP 2542 DI 10.1021/jp907851u PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 556GM UT WOS:000274578200015 PM 20108957 ER PT J AU Rashkeev, SN Dai, S Overbury, SH AF Rashkeev, Sergey N. Dai, Sheng Overbury, Steven H. TI Modification of Au/TiO2 Nanosystems by SiO2 Monolayers: Toward the Control of the Catalyst Activity and Stability SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE CO OXIDATION; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; SUPPORTED AU CATALYSTS; GOLD NANOPARTICLES; MOLECULAR-DYNAMICS; SILICA; TIO2; CLUSTERS; TRANSITION AB The activity and stability of Au/TiO2 catalysts depend oil several different factors Such as the anchoring strength of the Au particles at the TiO2 surface, the particle sintering, and the surface mobility of individual gold atoms and/or gold particles. Au/TiO2 catalysts can be made resistant to sintering by atomic layer deposition (ALD) of a layer or SiO2 onto the catalysts. In this study, first-principles density-functional calculations are used to investigate how the stability of Au nanoparticles is modified when a partial monolayer of SiO2 is deposited on a Au/TiO2 catalyst. We find that SiO2 structures deposited on a pure TiO2 substrate exhibit lattice-mismatch instabilities that result in the formation of additional strong anchoring sites for Au atoms/nanoparticles. An atomic-scale roughness introduced by a partial monolayer of SiO2 can slow the atomic Surface diffusion and inhibit Au nanoparticle growth/sintering, in agreement with previous experimental results. C1 [Rashkeev, Sergey N.] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Rashkeev, SN (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM sergey.rashkeev@inl.gov RI Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy [DE-AC07-051D14517, DE-AC05-00OR22725, DE-AC02-05CH11231]; National Energy Research Scientific Computing Center (NERSC) FX One of us (S.N.R.) acknowledges the INL Laboratory Directed Research and Development program and the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-051D14517 for financial support. Research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is Supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. It was also Supported in part by a grant of computer time from the High Performance Computer Center at Idaho National Laboratory. NR 43 TC 15 Z9 16 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 25 PY 2010 VL 114 IS 7 BP 2996 EP 3002 DI 10.1021/jp9091738 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556GQ UT WOS:000274578700023 ER PT J AU Tingay, M Morley, C King, R Hillis, R Coblentz, D Hall, R AF Tingay, Mark Morley, Chris King, Rosalind Hillis, Richard Coblentz, David Hall, Robert TI Present-day stress field of Southeast Asia SO TECTONOPHYSICS LA English DT Article DE Intraplate stresses; Present-day stress; Southeast Asia; Sunda plate ID STRIKE-SLIP FAULTS; SE-ASIA; PREEXISTING FABRICS; TECTONIC STRESS; PLATE MOTIONS; RIFT BASINS; MAP PROJECT; THRUST BELT; BORNEO; EVOLUTION AB It is now well established that ridge push forces provide a major control on the plate-scale stress field in most of the Earth's tectonic plates. However, the Sunda plate that comprises much of Southeast Asia is one of only two plates not bounded by a major spreading centre and thus provides an opportunity to evaluate other forces that control the intraplate stress field. The Cenozoic tectonic evolution of the Sunda plate is usually considered to be controlled by escape tectonics associated with India-Eurasia collision. However, the Sunda plate is bounded by a poorly understood and complex range of convergent and strike-slip zones and little is known about the effect of these other plate boundaries on the intraplate stress field in the region. We compile the first extensive stress dataset for Southeast Asia, containing 275 A-D quality (177 A-C) horizontal stress orientations, consisting of 72 stress indicators from earthquakes (located mostly on the periphery of the plate), 202 stress indicators from breakouts and drilling-induced fractures and one hydraulic fracture test within 14 provinces in the plate interior. This data reveals that a variable stress pattern exists throughout Southeast Asia that is largely inconsistent with the Sunda plate's approximately ESE absolute motion direction. The present-day maximum horizontal stress in Thailand, Vietnam and the Malay Basin is predominately north-south, consistent with the radiating stress patterns arising from the eastern Himalayan syntaxis. However, the present-day maximum horizontal stress is primarily oriented NW-SE in Borneo, a direction that may reflect plate-boundary forces or topographic stresses exerted by the central Borneo highlands. Furthermore, the South and Central Sumatra Basins exhibit a NE-SW maximum horizontal stress direction that is perpendicular to the Indo-Australian subduction front. Hence, the plate-scale stress field in Southeast Asia appears to be controlled by a combination of Himalayan orogeny-related deformation, forces related to subduction (primarily trench suction and collision) and intraplate sources of stress such as topography and basin geometry. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tingay, Mark] Curtin Univ Technol, Dept Appl Geol, Perth, WA 6845, Australia. [Morley, Chris] PTT Explorat & Prod, Bangkok, Thailand. [King, Rosalind; Hillis, Richard] Univ Adelaide, Australian Sch Petr, Adelaide, SA, Australia. [Coblentz, David] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Hall, Robert] Univ London, Dept Geol Sci, London WC1E 7HU, England. RP Tingay, M (reprint author), Curtin Univ Technol, Dept Appl Geol, Perth, WA 6845, Australia. EM m.tingay@curtin.edu.au RI King, Rosalind/F-9277-2011; OI Tingay, Mark/0000-0003-0582-2735; Morley, Christopher/0000-0002-6075-9022 FU Australian Research Council FX The authors thank Brunei Shell Petroleum, Chevron, Murphy Oil, Petronas, M and Shell Malaysia for providing data for this study and permission to publish these findings. The authors also wish to thank Blanka Sperner, Paola Montone and an anonymous reviewer for their constructive reviews of this paper. This research was funded by the Australian Research Council. Contributions to this paper by authors Hillis and King form TRaX record 15. NR 85 TC 31 Z9 31 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD FEB 25 PY 2010 VL 482 IS 1-4 SI SI BP 92 EP 104 DI 10.1016/j.tecto.2009.06.019 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 571YC UT WOS:000275791400010 ER PT J AU Morokuma, T Tokita, K Lidman, C Doi, M Yasuda, N Aldering, G Amanullah, R Barbary, K Dawson, K Fadeyev, V Fakhouri, HK Goldhaber, G Goobar, A Hattori, T Hayano, J Hook, IM Howell, DA Furusawa, H Ihara, Y Kashikawa, N Knop, RA Konishi, K Meyers, J Oda, T Pain, R Perlmutter, S Rubin, D Spadafora, AL Suzuki, N Takanashi, N Totani, T Utsunomiya, H Wang, LF AF Morokuma, Tomoki Tokita, Kouichi Lidman, Christopher Doi, Mamoru Yasuda, Naoki Aldering, Greg Amanullah, Rahman Barbary, Kyle Dawson, Kyle Fadeyev, Vitaliy Fakhouri, Hannah K. Goldhaber, Gerson Goobar, Ariel Hattori, Takashi Hayano, Junji Hook, Isobel M. Howell, D. Andrew Furusawa, Hisanori Ihara, Yutaka Kashikawa, Nobunari Knop, Rob A. Konishi, Kohki Meyers, Joshua Oda, Takeshi Pain, Reynald Perlmutter, Saul Rubin, David Spadafora, Anthony L. Suzuki, Nao Takanashi, Naohiro Totani, Tomonori Utsunomiya, Hiroyuki Wang, Lifan CA Supernova Cosmology Project TI Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE cosmology: observations; stars: supernovae: general; surveys ID HUBBLE-SPACE-TELESCOPE; PROBE WMAP OBSERVATIONS; NEWTON DEEP SURVEY; IA SUPERNOVAE; DARK ENERGY; LEGACY SURVEY; K-CORRECTIONS; LIGHT CURVES; PRIME FOCUS; CAMERA AB We present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low-resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope, and the Advanced Camera for Surveys on the Hubble Space Telescope. These SN surveys specifically targeted z > 1 Type la supernovae (SNe Ia). From the spectra of 39 candidates, we obtained redshifts for 32 candidates and spectroscopically identified 7 active candidates as probable SNe Ia, including one at z = 1.35, which is the most distant SN la to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates were identified as likely SNe la from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe la, either being SNe of another type or active galactic nuclei. When SNe la were observed within one week of the maximum light, we found that we could spectroscopically identify most of them up to z = 1.1. Beyond this redshift, very few candidates were spectroscopically identified as SNe Ia. The current generation of super red-sensitive, fringe-free CCDs will push this redshift limit higher. C1 [Morokuma, Tomoki; Furusawa, Hisanori; Kashikawa, Nobunari; Takanashi, Naohiro] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Tokita, Kouichi; Doi, Mamoru; Hayano, Junji; Ihara, Yutaka; Utsunomiya, Hiroyuki] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Lidman, Christopher] Stockholm Univ, AlbaNova Univ Ctr, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Doi, Mamoru; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778582, Japan. [Yasuda, Naoki; Konishi, Kohki] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Aldering, Greg; Amanullah, Rahman; Barbary, Kyle; Fakhouri, Hannah K.; Goldhaber, Gerson; Meyers, Joshua; Perlmutter, Saul; Rubin, David; Spadafora, Anthony L.; Suzuki, Nao] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Amanullah, Rahman; Goobar, Ariel] Stockholm Univ, Dept Phys, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. [Dawson, Kyle] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Fadeyev, Vitaliy] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 94064 USA. [Hattori, Takashi] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Hook, Isobel M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Hook, Isobel M.] Observ Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Howell, D. Andrew] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Knop, Rob A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Oda, Takeshi; Totani, Tomonori] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Pain, Reynald] CNRS, IN2P3, LPNHE, F-75005 Paris, France. [Pain, Reynald] Univ Paris VI & VII, F-75005 Paris, France. [Wang, Lifan] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Morokuma, T (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Tokyo 1818588, Japan. EM tomoki.morokuma@nao.ac.jp RI Yasuda, Naoki/A-4355-2011; Perlmutter, Saul/I-3505-2015 OI Perlmutter, Saul/0000-0002-4436-4661 FU Japan Society for the Promotion of Science (JSPS); Oskar Klein Centre at the University of Stockholm; Ministry of Education, Science, Culture, and Sports of Japan [15204012, 17104002]; NASA [GO-10496, NAS 5-26555]; U.S. Department of Energy [AC02-05CH11231] FX We thank an anonymous referee for providing helpful comments and suggestions. TM and YI are financially supported by the Japan Society for the Promotion of Science (JSPS) through the JSPS Research Fellowship. CL acknowledges the financial support from the Oskar Klein Centre at the University of Stockholm. This work was supported in part by scientific research grants (Nos. 15204012 and 17104002) from the Ministry of Education, Science, Culture, and Sports of Japan, and a JSPS core-to-core program "International Research Network for Dark Energy". Financial support for this work was provided in part by NASA through program GO-10496 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work was also supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under Contract No. AC02-05CH11231. Part of the Suprime-Cam observations were made during the guaranteed time observation of Suprime-Cam, and we thank for the Suprime-Cam instrument team. We also appreciate much help by the SDF and SXDS project team members. We thank Youichi Ohyama, who helped our observations as a support scientist of FOCAS. Data analysis were in part carried out on a common-use data analysis computer system at the Astronomy Data Center, ADC, of the National Astronomical Observatory of Japan. NR 62 TC 11 Z9 11 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 25 PY 2010 VL 62 IS 1 BP 19 EP 37 DI 10.1093/pasj/62.1.19 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 583ZZ UT WOS:000276721100005 ER PT J AU Ingham, B Hendy, SC Fong, DD Fuoss, PH Eastman, JA Lassesson, A Tee, KC Convers, PY Brown, SA Ryan, MP Toney, MF AF Ingham, B. Hendy, S. C. Fong, D. D. Fuoss, P. H. Eastman, J. A. Lassesson, A. Tee, K. C. Convers, P. Y. Brown, S. A. Ryan, M. P. Toney, M. F. TI Synchrotron x-ray diffraction measurements of strain in metallic nanoparticles with oxide shells SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID SURFACE; CLUSTER; SIZE; NANOCLUSTERS; TRANSITION; ENERGY; OXIDATION; PRESSURE; BEHAVIOR; MODEL AB We describe synchrotron x-ray diffraction measurements of strain in Cu and Pd metal nanoparticles (1.7-40 nm diameter) both with an air-formed oxide shell and after reduction of the oxide by treatment in a hydrogen-containing atmosphere. Oxide removal is evident from x-ray diffraction (for Cu) and x-ray absorption spectroscopy (for Pd). A simple model that uses bulk elastic properties is applied to each system. In the Pd case the model predictions agree well with the experiment. For Cu the observed strains are much smaller than predicted. This discrepancy is attributed to (a) the presence of multiple grains within the Cu particles and (b) the incoherency of the oxide with the metal core. C1 [Ingham, B.; Hendy, S. C.] Ind Res Ltd, Lower Hutt 5040, New Zealand. [Ingham, B.; Hendy, S. C.; Lassesson, A.; Tee, K. C.; Convers, P. Y.; Brown, S. A.] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6140, New Zealand. [Fong, D. D.; Fuoss, P. H.; Eastman, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lassesson, A.; Tee, K. C.; Convers, P. Y.; Brown, S. A.] Univ Canterbury, Dept Phys & Astron, Christchurch 8140, New Zealand. [Ryan, M. P.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Toney, M. F.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Ingham, B (reprint author), Ind Res Ltd, POB 31-310, Lower Hutt 5040, New Zealand. EM b.ingham@irl.cri.nz RI Brown, Simon/C-1014-2008; Hendy, Shaun/A-9776-2008; Eastman, Jeffrey/E-4380-2011; OI Brown, Simon/0000-0002-6041-4331; Hendy, Shaun/0000-0003-3468-6517; Ryan, Mary/0000-0001-8582-3003 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; New Zealand Foundation for Research, Science and Technology [C08X0409] FX The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. Funding was provided in part by the New Zealand Foundation for Research, Science and Technology under Contract No. C08X0409. The authors wish to thank BESSRC-CAT and Peter Baldo for beamline support at APS. They also thank Kevin Stevens for assisting with the Cu XRD experiments. NR 38 TC 7 Z9 7 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD FEB 24 PY 2010 VL 43 IS 7 AR 075301 DI 10.1088/0022-3727/43/7/075301 PG 6 WC Physics, Applied SC Physics GA 552UD UT WOS:000274318200016 ER PT J AU Xu, T Lin, CK Wang, C Brewe, DL Ito, Y Lu, J AF Xu, Tao Lin, Chikai Wang, Chao Brewe, Dale L. Ito, Yasuo Lu, Jun TI Synthesis of Supported Platinum Nanoparticles from Li-Pt Solid Solution SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FUEL-CELL ELECTROCATALYSTS; CATALYTIC-ACTIVITY; OXYGEN REDUCTION; METAL-CLUSTERS; CARBON-BLACKS; IFEFFIT; POLYMER; XAFS; SIZE AB Platinum nanoparticle catalysts are essential for achieving energy-efficient and greener chemical processes that involve breaking or establishing of H-H, C-H, or O-H bonds. In this work, we report an innovative top-down strategy to prepare the supported Pt nanoparticles with an average size of similar to 2 nm, starting directly from bulk metallic Pt by metallurgical method. Bulk platinum was dissolved in liquid lithium and ruptured into nanoparticles. This Li-Pt liquid alloy was quenched into Li-Pt solid solution. The lithium content was further converted into LiOH. The resulting powder of Pt nanoparticles in LiOH can be mixed with any nonaqueous support materials. Thereafter, the LiOH can be selectively leached off by water, allowing Pt nanoparticles to be adsorbed on the desired support material. Transmission electron microscope and extended X-ray absorption fine structure analyses demonstrated that the as-formed Pt nanoparticles have an average size of around 2 nm. The carbon-supported Pt nanoparticles prepared by this method inherit more characteristics of their bulk counterparts so that high specific catalytic activity of bulk Pt is maintained, which is confirmed by a preliminary electrocatalytic characterization of oxygen reduction reaction (ORR). C1 [Xu, Tao; Lin, Chikai] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Wang, Chao] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Brewe, Dale L.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ito, Yasuo; Lu, Jun] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. RI Wang, Chao/F-4558-2012; lin, chikai/D-4986-2014 OI Wang, Chao/0000-0001-7398-2090; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSERC; University of Washington FX PNC/XOR facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy - Basic Energy Sciences, a Major Resources support Grant from NSERC, the University of Washington. Simon Fraser University, and the Advanced Photon Source Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-06CH11357, The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated Under Contract DE-AC02-06CH11357 by UChicago Argonne, LLC NR 35 TC 9 Z9 9 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 24 PY 2010 VL 132 IS 7 BP 2151 EP + DI 10.1021/ja909442c PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 562WD UT WOS:000275085100024 PM 20121152 ER PT J AU Yim, TJ Zentgraf, T Min, B Zhang, X AF Yim, Tae-Jin Zentgraf, Thomas Min, Bumki Zhang, Xiang TI All-Liquid Photonic Microcavity Stabilized by Quantum Dots SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID IN-WATER EMULSIONS; MICROSPHERES; CAVITY; PARTICLES; EMISSION; LASER AB We demonstrate two simple methods to fabricate QD-stabilized toluene microdroplets in water as whispering gallery mode microscale resonators in all all-liquid phase. The toluene microdroplets show size-dependently high Q-factors up to 5100 resulting from the stable QD-loaded microdroplets. The highly QD-stabilized toluene microdroplet resonators in the all-liquid phase would be promising for multiple all-liquid lasers. C1 [Yim, Tae-Jin; Zentgraf, Thomas; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Min, Bumki] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305701, South Korea. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. RI Zhang, Xiang/F-6905-2011; Min, Bumki/A-1294-2007; Zentgraf, Thomas/G-8848-2013 OI Zentgraf, Thomas/0000-0002-8662-1101 FU US Army Research Office (ARO) [50432-PH-MUR]; NSF Nanoscale Science and Engineering Center [DMI-0327077]; Alexander von Humboldt Foundation; National Research Foundation of Korea (NRF), Korea government (MEST) [2009-0069459] FX We acknowledge funding support from US Army Research Office (ARO) MURI program 50432-PH-MUR and partially by the NSF Nanoscale Science and Engineering Center DMI-0327077. T.Z. acknowledges a fellowship from the Alexander von Humboldt Foundation B M acknowledges support by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No 2009-0069459). NR 22 TC 9 Z9 9 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 24 PY 2010 VL 132 IS 7 BP 2154 EP + DI 10.1021/ja909483w PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 562WD UT WOS:000275085100025 PM 20121091 ER PT J AU Pang, Y Jones, GA Prantil, MA Fleming, GR AF Pang, Yoonsoo Jones, Garth A. Prantil, Matthew A. Fleming, Graham R. TI Unusual Relaxation Pathway from the Two-Photon Excited First Singlet State of Carotenoids SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LIGHT-HARVESTING COMPLEX; RESOLVED ABSORPTION-SPECTROSCOPY; RESONANCE RAMAN-SPECTRA; BETA-CAROTENE; RADICAL-CATION; PHOTOSYSTEM-II; EXCITED-STATES; S-1 STATE; VIBRATIONAL-SPECTRA AB Transient infrared and visible absorption measurements along with density functional theory (DFT) calculations on carotenoids B'-apo-beta-caroten-8'-al (1) and 7',7'-dicyano-7'-apo-beta-carotene (II) were used to explore the nature of a long-lived species observed in transient infrared absorption measurements following two-photon excitation (Pang et al. J. Phys. Chem B 2009, 113, 13806) The long-lived species of I has a very strong infrared absorption around 1510 cm(-1) and a visible transient absorption band centered at 760 nm The long-lived species appears on two different time scales of similar to 16 and 140-270 ps The longer rise component is absent in nonpolar solvents DFT calculations using the B3LYP functional and the 6-31G(d) basis set were used to investigate the ground-state potential-energy surface of I and 11 including its conformational isomers, a pi-diradical "kinked" structure, and cation and neutral radicals From the simulated infrared spectra of all the structures considered, we found a close match in the cation radical spectrum to the experimental infrared spectrum of the long-lived species However, the visible absorption band does not match that of the monomeric cation radical On the basis of our experimental and theoretical results, we propose a charge-transfer complex between a carotenoid and a solvent molecule for the origin of the long-lived species formed from the direct two-photon excitation of the S, state C1 [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Pang, Yoonsoo/G-9879-2012 OI Pang, Yoonsoo/0000-0002-7291-232X FU NSF FX This research was funded by the NSF We thank Prof. Lowell D Kispert For his generous donation of the 7'.7'dicyano-7'-apo-beta-carotene molecule and many thoughtful discussions concerning our findings NR 66 TC 16 Z9 16 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 24 PY 2010 VL 132 IS 7 BP 2264 EP 2273 DI 10.1021/ja908472y PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 562WD UT WOS:000275085100041 PM 20104845 ER PT J AU Herranz, T McCarty, KF Santos, B Monti, M de la Figuera, J AF Herranz, T. McCarty, K. F. Santos, B. Monti, M. de la Figuera, J. TI Real Space Observations of Magnesium Hydride Formation and Decomposition SO CHEMISTRY OF MATERIALS LA English DT Article ID MG FILMS; HYDROGEN; RU(0001); GROWTH; STORAGE C1 [Herranz, T.; Santos, B.; Monti, M.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain. [McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Santos, B.; Monti, M.; de la Figuera, J.] Univ Autonoma Madrid, CMAM, E-28049 Madrid, Spain. RP de la Figuera, J (reprint author), CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain. RI Herranz, Tirma/A-8656-2008; de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012; OI de la Figuera, Juan/0000-0002-7014-4777; McCarty, Kevin/0000-0002-8601-079X; Monti, Matteo/0000-0003-3595-4472 FU Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, U.S. DOE [DE-AC04-94AL85000]; Spanish Ministry of Innovation and Science [MAT2006-13149-C02-02] FX This research was supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, U.S. DOE, under Contract DE-AC04-94AL85000 and the Spanish Ministry of Innovation and Science under Project MAT2006-13149-C02-02. NR 16 TC 2 Z9 2 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 23 PY 2010 VL 22 IS 4 BP 1291 EP 1293 DI 10.1021/cm903755t PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 555RI UT WOS:000274531300007 ER PT J AU Guo, ZS Zhao, LH Pei, J Zhou, ZL Gibson, G Brug, J Lam, S Mao, SS AF Guo, Zeng-Shan Zhao, Lihua Pei, Jian Zhou, Zhang-Lin Gibson, Gary Brug, James Lam, Sity Mao, Samuel S. TI CdSe/ZnS Nanoparticle Composites with Amine-Functionalized Polyfluorene Derivatives for Polymeric Light-Emitting Diodes: Synthesis, Photophysical Properties, and the Electroluminescent Performance SO MACROMOLECULES LA English DT Article ID THIN-FILM TRANSISTORS; CONJUGATED POLYMERS; SEMICONDUCTING POLYMER; SOLAR-CELLS; ELECTRON-INJECTION; ENERGY-TRANSFER; POLARIZED ELECTROLUMINESCENCE; HIGH-EFFICIENCY; BLUE; MORPHOLOGY AB A series of amine-functionalized poly(9,9-dihexylfluorene) (PFH) derivatives, PFH-NH(2)F-39-1 (P1), PFH-NH(2)F-19-1 (P2), PFH-NH(2)F-9-1 (P3), and PFH-NH(2)F-17-3 (P4), and PFH-NH(2)F-4-1 (P5), were developed to form organic/inorganic hybrid composites with CdSc/ZnS nanoparticle for polymeric light-emitting diodes (LEDs). The structures and purities of all desired polymers were fully characterized by (1)H and (13)C NMR, UV-vis and photoluminescent spectroscopy, gel permeation chromatography, elemental analyses. The hybrid nanocomposites were in situ formed through these amino-functionalized polyfluorene derivatives doped with core-shell CdSe/ZnS quantum dots (QDs). The detailed characterizations of their photophysical properties revealed that rapid Forster energy transfer from the conjugatee polymers to the red-emitting QDs afforded an efficient red color emission. The preliminary polymeric LEDs fabrication with the configuration of ITO/DB/nanocompositcs/Al achieved red emission for the ill Situ prepared hybrid nanocomposites. The investigation of device performance indicates that these nanocomposites are promising red light-emitting polymeric LED materials with good performance in providing excellent color purity, stability, and robustness. Such strategy provides us a platform to achieve red-emitting hybrid nanocomposites as the active materials for LEDs. C1 [Guo, Zeng-Shan; Pei, Jian] Peking Univ, Coll Chem & Mol Engn, Minist Educ, Key Lab Bioorgan Chem & Mol Engn, Beijing 100871, Peoples R China. [Zhao, Lihua; Zhou, Zhang-Lin; Gibson, Gary; Brug, James; Lam, Sity] Hewlett Packard Corp, Hewlett Packard Labs, Informat Surfaces Lab, Palo Alto, CA 94304 USA. [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Pei, J (reprint author), Peking Univ, Coll Chem & Mol Engn, Minist Educ, Key Lab Bioorgan Chem & Mol Engn, Beijing 100871, Peoples R China. EM jianpei@pku.edu.cn; zhang-lin.zhou@hp.com; ssmao@newton.berkeley.edu FU Ministry of Science and Technology [2006CB921602, 2009CB-623601]; National Natural Science Foundation of China; Hewlett-Packard Company FX This work was supported by the Major State Basic Research Development Program from the Ministry of Science and Technology (nos. 2006CB921602 and 2009CB-623601),ind National Natural Science Foundation of China, and Hewlett-Packard Company. NR 59 TC 25 Z9 26 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 23 PY 2010 VL 43 IS 4 BP 1860 EP 1866 DI 10.1021/ma902573d PG 7 WC Polymer Science SC Polymer Science GA 555QX UT WOS:000274529800027 ER PT J AU Ahn, H Shin, C Lee, B Ryu, DY AF Ahn, Hyungju Shin, Changhak Lee, Byeongdu Ryu, Du Yeol TI Phase Transitions of Block Copolymer Film on Homopolymer-Grafted Substrate SO MACROMOLECULES LA English DT Article ID ORDER-DISORDER TRANSITION; DIBLOCK COPOLYMER; THIN-FILMS; TRIBLOCK COPOLYMERS; PERFORATED LAYER; GYROID PHASE; CUBIC PHASE; FDDD PHASE; MELTS; POLYISOPRENE AB Morphological transitions such its the order-to-order transition (OOT) and the order-to-disorder transition (ODT) for an asymmetric polystyrene-block-polyisoprene (PS-b-PI) were investigated in bulk and film. The PS-rich block copolymer (BCP) bulk possessed the lamella morphology (LAM), which transformed to the gyroid (GYR) and then disordering (DIS) with increasing temperature. Between the LAM and GYR, a perforated layered structure (PL) and phase mixture (Fddd + GYR) of poorly ordered Fddd and GYR were observed. On the other hand, the film coated on a PS-grafted substrate showed a phase transition from random LAM to epitaxially oriented hexagonally modulated layer (HML) morphology. The HML transformed to GYR with further increasing temperature. The Fddd morphology observed in bulk was not observed at any stage of phase transitions in the film. The BCP film presented not only different OOT pathway but also higher OOT and ODT temperatures. Ill addition, the d-spacings of layers parallel to a substrate were not decreased at all with increasing temperature except when there was a structural transition, suggesting no relaxation of stretched BCP chains that are normal to the film. These results may be correlated dominantly to the interfacial energy between PS block of BCP and PS brushes oil a substrate, which suppresses the compositional fluctuation of BCP in the Film especially along the film normal direction, leading to anisotropic variation of d-spacings. C1 [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Ahn, Hyungju; Ryu, Du Yeol] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 120749, South Korea. RP Lee, B (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM blee@anl.gov; dyryu@yonsei.ac.kr RI Ryu, Du Yeol/G-8278-2012; OI Lee, Byeongdu/0000-0003-2514-8805 FU National Research Foundation [KRF-2008-D00297]; Ministry of Education, Science & Technology (MEST), Korea; U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by National Research Foundation (KRF-2008-D00297) and tile Nuclear R&D Programs funded by the Ministry of Education, Science & Technology (MEST), Korea. The work at the Argonne National Laboratory was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. B.L. thanks Dr. Myung Im Kim and Dr. MikihitoTakenaka for the comments and discussions on Fddd. NR 43 TC 15 Z9 15 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 23 PY 2010 VL 43 IS 4 BP 1958 EP 1963 DI 10.1021/ma9022229 PG 6 WC Polymer Science SC Polymer Science GA 555QX UT WOS:000274529800039 ER PT J AU Unger, N Bond, TC Wang, JS Koch, DM Menon, S Shindell, DT Bauer, S AF Unger, Nadine Bond, Tami C. Wang, James S. Koch, Dorothy M. Menon, Surabi Shindell, Drew T. Bauer, Susanne TI Attribution of climate forcing to economic sectors SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE global warming; mitigation; air pollution; ozone; aerosols ID LAND-CARBON SINK; EMISSIONS; AEROSOLS; OZONE; SIMULATIONS; RADIATION; CLOUDS; IMPACT; MATTER AB A much-cited bar chart provided by the Intergovernmental Panel on Climate Change displays the climate impact, as expressed by radiative forcing in watts per meter squared, of individual chemical species. The organization of the chart reflects the history of atmospheric chemistry, in which investigators typically focused on a single species of interest. However, changes in pollutant emissions and concentrations are a symptom, not a cause, of the primary driver of anthropogenic climate change: human activity. In this paper, we suggest organizing the bar chart according to drivers of change-that is, by economic sector. Climate impacts of tropospheric ozone, fine aerosols, aerosol-cloud interactions, methane, and long-lived greenhouse gases are considered. We quantify the future evolution of the total radiative forcing due to perpetual constant year 2000 emissions by sector, most relevant for the development of climate policy now, and focus on two specific time points, near-term at 2020 and long-term at 2100. Because sector profiles differ greatly, this approach fosters the development of smart climate policy and is useful to identify effective opportunities for rapid mitigation of anthropogenic radiative forcing. C1 [Unger, Nadine; Koch, Dorothy M.; Shindell, Drew T.; Bauer, Susanne] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Unger, Nadine; Koch, Dorothy M.; Bauer, Susanne] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Bond, Tami C.] Univ Illinois, Urbana, IL 61801 USA. [Wang, James S.] Environm Def Fund, New York, NY 10010 USA. [Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Unger, N (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM nunger@giss.nasa.gov RI Shindell, Drew/D-4636-2012; Bond, Tami/A-1317-2013; Bauer, Susanne/P-3082-2014; Unger, Nadine/M-9360-2015 OI Bond, Tami/0000-0001-5968-8928; FU NASA; NASA Center for Computational Sciences FX This research was supported by the NASA Atmospheric Chemistry Modeling and Analysis Program (ACMAP). We thank the NASA Center for Computational Sciences for computing support. NR 38 TC 102 Z9 103 U1 2 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 23 PY 2010 VL 107 IS 8 BP 3382 EP 3387 DI 10.1073/pnas.0906548107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 563KN UT WOS:000275130900022 PM 20133724 ER PT J AU Gureasko, J Kuchment, O Makino, DL Sondermann, H Bar-Sagi, D Kuriyan, J AF Gureasko, Jodi Kuchment, Olga Makino, Debora Lika Sondermann, Holger Bar-Sagi, Dafna Kuriyan, John TI Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE crystal structure; membrane-binding; PIP2-dependent; SOS ID PLECKSTRIN HOMOLOGY DOMAIN; NUCLEOTIDE EXCHANGE FACTOR; RECEPTOR TYROSINE KINASES; NOONAN-SYNDROME; PHOSPHATIDIC-ACID; PHOSPHOLIPASE-D; PROTEIN; GRB2; BINDING; ASSOCIATION AB Membrane-bound Ras is activated by translocation of the Son of Sevenless (SOS) protein to the plasma membrane. SOS is inactive unless Ras is bound to an allosteric site on SOS, and the Dbl homology (DH) and Pleckstrin homology (PH) domains of SOS (the DH-PH unit) block allosteric Ras binding. We showed previously that the activity of SOS at the membrane increases with the density of PIP(2) and the local concentration of Ras-GTP, which synergize to release the DH-PH unit. Here we present a new crystal structure of SOS that contains the N-terminal histone domain in addition to the DH-PH unit and the catalytic unit (SOSHDFC, residues 1-1049). The structure reveals that the histone domain plays a dual role in occluding the allosteric site and in stabilizing the autoinhibitory conformation of the DH-PH unit. Additional insight is provided by kinetic analysis of the activation of membrane-bound Ras by mutant forms of SOS that contain mutations in the histone and the PH domains (E108K, C441Y, and E433K) that are associated with Noonan syndrome, a disease caused by hyperactive Ras signaling. Our results indicate that the histone domain and the DH-PH unit are conformationally coupled, and that the simultaneous engagement of the membrane by a PH domain PIP(2)-binding interaction and electrostatic interactions between a conserved positively charged patch on the histone domain and the negatively charged membrane coincides with a productive reorientation of SOS at the membrane and increased accessibility of both Ras binding sites on SOS. C1 [Gureasko, Jodi; Kuchment, Olga; Makino, Debora Lika; Sondermann, Holger; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Gureasko, Jodi; Kuchment, Olga; Makino, Debora Lika; Sondermann, Holger; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bar-Sagi, Dafna] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Chem, Dept Mol & Cell Biol, QB3 Inst,176 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu FU NIGMS NIH HHS [R01 GM078266] NR 38 TC 30 Z9 30 U1 1 U2 10 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 23 PY 2010 VL 107 IS 8 BP 3430 EP 3435 DI 10.1073/pnas.0913915107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 563KN UT WOS:000275130900030 PM 20133692 ER PT J AU Raha, D Wang, Z Moqtaderi, Z Wu, LF Zhong, GN Gerstein, M Struhl, K Snyder, M AF Raha, Debasish Wang, Zhong Moqtaderi, Zarmik Wu, Linfeng Zhong, Guoneng Gerstein, Mark Struhl, Kevin Snyder, Michael TI Close association of RNA polymerase II and many transcription factors with Pol III genes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ChIP-Seq; RNA-Seq; transcription; gene regulation ID IN-VIVO; C-MYC; INITIATION; PROMOTERS; CELLS; ELONGATION; REVEALS AB Transcription of the eukaryotic genomes is carried out by three distinct RNA polymerases I, II, and III, whereby each polymerase is thought to independently transcribe a distinct set of genes. To investigate a possible relationship of RNA polymerases II and III, we mapped their in vivo binding sites throughout the human genome by using ChIP-Seq in two different cell lines, GM12878 and K562 cells. Pol III was found to bind near many known genes aswell as several previously unidentified target genes. RNA-Seq studies indicate that a majority of the bound genes are expressed, although a subset are not suggestive of stalling by RNA polymerase III. Pol II was found to bind near many known Pol III genes, including tRNA, U6, HVG, hY, 7SK and previously unidentified Pol III target genes. Similarly, in vivo binding studies also reveal that a number of transcription factors normally associated with Pol II transcription, including c-Fos, c-Jun and c-Myc, also tightly associate with most Pol III transcribed genes. Inhibition of Pol II activity using a-amanitin reduced expression of a number of Pol III genes (e. g., U6, hY, HVG), suggesting that Pol II plays an important role in regulating their transcription. These results indicate that, contrary to previous expectations, polymerases can often work with one another to globally coordinate gene expression. C1 [Raha, Debasish; Wu, Linfeng; Snyder, Michael] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA. [Zhong, Guoneng; Gerstein, Mark] Yale Univ, Dept Biochem & Mol Biophys, New Haven, CT 06520 USA. [Struhl, Kevin] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Wang, Zhong] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Snyder, Michael] Stanford Univ, Dept Genet, Stanford, CA 94305 USA. RP Snyder, M (reprint author), Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA. EM mpsnyder@stanford.edu RI Wang, Zhong/E-7897-2011 FU National Institutes of Health FX We thank Youhan Xu, Minyi Shi, and Hannah Monahan Giovanelli for technical assistance. This work was supported by National Institutes of Health grants. NR 27 TC 100 Z9 100 U1 2 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 23 PY 2010 VL 107 IS 8 BP 3639 EP 3644 DI 10.1073/pnas.0911315106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 563KN UT WOS:000275130900066 PM 20139302 ER PT J AU Feroughi, OM Sternemann, C Sahle, CJ Schroer, MA Sternemann, H Conrad, H Hohl, A Seidler, GT Bradley, J Fister, TT Balasubramanian, M Sakko, A Pirkkalainen, K Hamalainen, K Tolan, M AF Feroughi, O. M. Sternemann, C. Sahle, Ch. J. Schroer, M. A. Sternemann, H. Conrad, H. Hohl, A. Seidler, G. T. Bradley, J. Fister, T. T. Balasubramanian, M. Sakko, A. Pirkkalainen, K. Hamalainen, K. Tolan, M. TI Phase separation and Si nanocrystal formation in bulk SiO studied by x-ray scattering SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; crystal microstructure; elemental semiconductors; nanostructured materials; phase separation; silicon; silicon compounds; X-ray scattering ID AMORPHOUS-SILICON MONOXIDE; SMALL-ANGLE AB We present an x-ray scattering study of the temperature-induced phase separation and Si nanocrystal formation in bulk amorphous SiO(x) with x approximate to 1. X-ray Raman scattering at the Si L(II,III)-edge reveals a significant contribution of suboxides present in native amorphous SiO. The suboxide contribution decreases with increasing annealing temperature between 800-1200 degrees C pointing toward a phase separation of SiO into Si and SiO(2) domains. In combination with x-ray diffraction and small angle x-ray scattering the SiO microstructure is found to be dominated by internal suboxide interfaces in the native state. For higher annealing temperatures above 900 degrees C growth of Si nanocrystals with rough surfaces embedded in a silicon oxide matrix can be observed. C1 [Feroughi, O. M.; Sternemann, C.; Sahle, Ch. J.; Schroer, M. A.; Sternemann, H.; Conrad, H.; Tolan, M.] Tech Univ Dortmund, Fak Phys, DELTA, D-44221 Dortmund, Germany. [Hohl, A.] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany. [Seidler, G. T.; Bradley, J.; Fister, T. T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Fister, T. T.; Balasubramanian, M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Sakko, A.; Pirkkalainen, K.; Hamalainen, K.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. RP Feroughi, OM (reprint author), Tech Univ Dortmund, Fak Phys, DELTA, D-44221 Dortmund, Germany. EM christian.sternemann@tu-dortmund.de RI Hamalainen, Keijo/A-3986-2010 OI Hamalainen, Keijo/0000-0002-9234-9810 FU DAAD [313-PPP-SF/08-IK, 1127504]; DFG [TO 169/14-1]; Academy of Finland [1110571, 1127462] FX The authors would like to acknowledge APS and DELTA for providing synchrotron radiation. This work was supported by DAAD (Grant Nos. 313-PPP-SF/08-IK and 1127504), DFG (Grant No. TO 169/14-1) and the Academy of Finland (Grant Nos. 1110571 and 1127462). NR 22 TC 24 Z9 24 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 22 PY 2010 VL 96 IS 8 AR 081912 DI 10.1063/1.3323106 PG 3 WC Physics, Applied SC Physics GA 562CP UT WOS:000275027200027 ER PT J AU Grutter, A Wong, F Arenholz, E Liberati, M Vailionis, A Suzuki, Y AF Grutter, Alexander Wong, Franklin Arenholz, Elke Liberati, Marco Vailionis, Arturas Suzuki, Yuri TI Enhanced magnetism in epitaxial SrRuO3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic materials; internal stresses; magnetic epitaxial layers; magnetic moments; magnetisation; magnetomechanical effects; strontium compounds AB We observed enhanced magnetization in epitaxial SrRuO3 thin films compared to previously reported bulk and thin film values. The enhancement is strongly dependent on the orientation of the lattice distortions imposed by (001), (110), and (111) oriented SrTiO3 substrates. A larger magnetization enhancement for coherently strained SrRuO3 films on (111) and (110) oriented SrTiO3 compared to films on (001) SrTiO3 confirms the importance of the strain state in determining the magnetic ground state of the Ru ion. Moreover, SrRuO3 films on (111) SrTiO3 exhibit enhanced moments as high as 3.4 mu(B)/Ru ion, suggesting the stabilization of a high-spin Ru4+ state. C1 [Grutter, Alexander; Wong, Franklin; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Grutter, Alexander; Suzuki, Yuri] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Arenholz, Elke; Liberati, Marco] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Vailionis, Arturas] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RP Grutter, A (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM alexander.grutter@gmail.com RI Vailionis, Arturas/C-5202-2008 OI Vailionis, Arturas/0000-0001-5878-1864 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank J. Rondinelli and N. Spaldin for fruitful discussions and K. M. Yu for his assistance in RBS data collection. This work and the Advanced Light Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 35 Z9 36 U1 2 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 22 PY 2010 VL 96 IS 8 AR 082509 DI 10.1063/1.3327512 PG 3 WC Physics, Applied SC Physics GA 562CP UT WOS:000275027200058 ER PT J AU Klie, RF Yuan, T Tanase, M Yang, G Ramasse, Q AF Klie, R. F. Yuan, T. Tanase, M. Yang, G. Ramasse, Q. TI Direct measurement of ferromagnetic ordering in biaxially strained LaCoO3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt compounds; electron diffraction; electron energy loss spectra; ferromagnetic materials; lanthanum compounds; magnetic epitaxial layers; magnetic semiconductors; magnetic structure; paramagnetic materials; semiconductor epitaxial layers ID MAGNETIC CIRCULAR-DICHROISM; X-RAY ABSORPTION; SPIN-STATE; TRANSITION; RESOLUTION; EELS; OXIDES; COBALT; PHASE AB LaCoO3 undergoes a transition from a nonmagnetic to a paramagnetic semiconductor at 80 K, associated with a spin-state transition of the Co3+ ions. It was proposed that the temperature of the spin-state transition depends strongly on the LaCoO3 lattice parameter, suggesting that strain can stabilize different spin states at different temperatures. By combining atomic-resolution Z-contrast imaging, electron diffraction, and angular-resolved electron energy-loss spectroscopy (EELS) with in situ cooling experiments, we show that epitaxially strained LaCoO3 (001) thin films grown on LaAlO3 (001) do not undergo a low temperature spin-state transition. Our EELS study explores the origins of the ferromagnetic ordering in strained LaCoO3 films. C1 [Klie, R. F.; Yuan, T.; Tanase, M.; Yang, G.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Ramasse, Q.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Klie, RF (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM rfklie@uic.edu RI Yang, Guang/C-9022-2011 OI Yang, Guang/0000-0003-1117-1238 FU National Science Foundation [DMR-0846748]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank C. A. Ahn and A. Posadas for the synthesis of the LaCoO3 films. This research was supported by the National Science Foundation through a CAREER award (Grant No. DMR-0846748). The National Center for Electron Microscopy is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 15 Z9 15 U1 3 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 22 PY 2010 VL 96 IS 8 AR 082510 DI 10.1063/1.3336010 PG 3 WC Physics, Applied SC Physics GA 562CP UT WOS:000275027200059 ER PT J AU Zybin, SV Goddard, WA Xu, P van Duin, ACT Thompson, AP AF Zybin, Sergey V. Goddard, William A., III Xu, Peng van Duin, Adri C. T. Thompson, Aidan P. TI Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations SO APPLIED PHYSICS LETTERS LA English DT Article DE bonds (chemical); dissociation; explosives; internal stresses; organic compounds; shock wave effects; thermomechanical treatment ID ORIENTATION DEPENDENCE; CRYSTAL ORIENTATION; SINGLE-CRYSTALS; FORCE-FIELD; SHOCK; INITIATION; SYSTEMS; REAXFF; PETN AB We propose computational protocol (compressive shear reactive dynamics) utilizing the ReaxFF reactive force field to study chemical initiation under combined shear and compressive load. We apply it to predict the anisotropic initiation sensitivity observed experimentally for shocked pentaerythritol tetranitrate single crystals. For crystal directions known to be sensitive we find large stress overshoots and fast temperature increase that result in early bond-breaking processes whereas insensitive directions exhibit small stress overshoot, lower temperature increase, and little bond dissociation. These simulations confirm the model of steric hindrance to shear and capture the thermochemical processes dominating the phenomena of shear-induced chemical initiation. C1 [Zybin, Sergey V.; Goddard, William A., III; Xu, Peng] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. [van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Thompson, Aidan P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zybin, SV (reprint author), CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. EM wag@wag.caltech.edu FU ARO [MURI-W911NF-05-1-0345]; ONR [N00014-05-1-0778, N00014-09-1-0634]; DoD/HPCMP Challenge award [ARON27203C3K] FX This work was supported by ARO (Grant No. MURI-W911NF-05-1-0345) and ONR (Grant Nos. N00014-05-1-0778 and N00014-09-1-0634). Simulations were performed at DOD Major Shared Resource Centers under DoD/HPCMP Challenge award (ARON27203C3K). NR 22 TC 51 Z9 52 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 22 PY 2010 VL 96 IS 8 AR 081918 DI 10.1063/1.3323103 PG 3 WC Physics, Applied SC Physics GA 562CP UT WOS:000275027200033 ER PT J AU Fagan, PJ Voges, MH Bullock, RM AF Fagan, Paul J. Voges, Mark H. Bullock, R. Morris TI Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)(2)](2)(mu-H)} SO ORGANOMETALLICS LA English DT Article ID HYDROXYCYCLOPENTADIENYL RUTHENIUM HYDRIDE; TRANSITION-METAL HYDRIDES; CARBONYL-COMPLEXES; ALCOHOL COMPLEXES; TRITYL CATION; MOLYBDENUM; LIGAND; DEOXYGENATION; 1,2-PROPANEDIOL; DIHYDROGEN AB {[Cp*Ru(CO)(2)](2)(mu-H)}+OTf- functions as a homogenous catalyst precursor for hydrogenation of ketones to alcohols, with hydrogenations at 1 mol % catalyst loading at 90 degrees C under H-2 (820 psi) proceeding to completion and providing > 90% yields. Hydrogenation of methyl levulinate generates gamma-valerolactone, presumably by ring-closing of the initially formed alcohol with the methyl ester. Experiments in neat Et2C=O show that the catalyst loading can be <0.1 mol% and that at least 1200 turnovers of the catalyst can be obtained. These reactions are proposed to proceed by an ionic hydrogenation pathway, with the highly acidic dihydrogen complex [Cp*Ru(CO)(2)(eta(2)-H-2)](+) OTf- being formed under the reaction conditions from reaction of H-2 with {[Cp*Ru(CO)(2)]2(mu-H)](+) OTf- C1 [Voges, Mark H.; Bullock, R. Morris] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bullock, R. Morris] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Fagan, Paul J.] EI DuPont de Nemours & Co Inc, Expt Stn, Cent Res & Dev, Wilmington, DE 19880 USA. RP Bullock, RM (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM morris.bullock@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU U.S. Department of Energy [DE-AC02-98CH10886] FX Research at Brookhaven National Laboratory wits carried Out under contract DE-AC02-98CH10886 with the U.S. Department of Energy. We thank the U.S. Department of Energy, Office of Science, Off-ice of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory Technology Research Program, for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 32 TC 18 Z9 19 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD FEB 22 PY 2010 VL 29 IS 4 BP 1045 EP 1048 DI 10.1021/om901005k PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 555RC UT WOS:000274530400043 ER PT J AU Alexandrov, BS Gelev, V Bishop, AR Usheva, A Rasmussen, KO AF Alexandrov, B. S. Gelev, V. Bishop, A. R. Usheva, A. Rasmussen, K. O. TI DNA breathing dynamics in the presence of a terahertz field SO PHYSICS LETTERS A LA English DT Article ID RADIATION; DENATURATION; MODEL AB We consider the influence of a terahertz field on the breathing dynamics of double-stranded DNA. We model the spontaneous formation of spatially localized openings of a damped and driven DNA chain, and find that linear instabilities lead to dynamic dimerization, while true local strand separations require a threshold amplitude mechanism. Based on our results we argue that a specific terahertz radiation exposure may significantly affect the natural dynamics of DNA, and thereby influence intricate molecular processes involved in gene expression and DNA replication. (C) 2010 Elsevier B.V. All rights reserved. C1 [Alexandrov, B. S.; Bishop, A. R.; Rasmussen, K. O.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Alexandrov, B. S.; Bishop, A. R.; Rasmussen, K. O.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Gelev, V.; Usheva, A.] Harvard Univ, Sch Med, Boston, MA 02215 USA. RP Alexandrov, BS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM boian@lanl.gov RI Rasmussen, Kim/B-5464-2009; Alexandrov, Boian/D-2488-2010 OI Rasmussen, Kim/0000-0002-4029-4723; Alexandrov, Boian/0000-0001-8636-4603 FU US Department of Energy [DE-AC52-06NA25396]; National Institutes of Health [1101 GM073911] FX the auspices of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and it was supported by the National Institutes of Health (1101 GM073911 to A.U.). We acknowledge Dr. Voulgarakis for initial discussions regarding the subject of this work. This research was carried out under NR 24 TC 57 Z9 63 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD FEB 22 PY 2010 VL 374 IS 10 BP 1214 EP 1217 DI 10.1016/j.physleta.2009.12.077 PG 4 WC Physics, Multidisciplinary SC Physics GA 571TC UT WOS:000275777700004 PM 20174451 ER PT J AU Chasman, RR Van Isacker, P AF Chasman, R. R. Van Isacker, P. TI Pair-vibrational states in the presence of neutron-proton pairing SO PHYSICS LETTERS B LA English DT Article DE n-p pairing; Excited states; Variational configuration interaction method AB Pair vibrations are studied for a Hamiltonian with neutron-neutron, proton-proton and neutron-proton pairing. The spectrum is found to be rich in strongly correlated, low-lying excited states. Changing the ratio of diagonal to off-diagonal pairing matrix elements is found to have a large impact on the excited-state spectrum. The variational configuration interaction (VCI) method, used to calculate the excitation spectrum, is found to be in very good agreement with exact solutions for systems with large degeneracies having equal T = 0 and T = 1 pairing strengths. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chasman, R. R.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Van Isacker, P.] Grand Accelerateur Natl Ions Lourds, CNRS, CEA, DSM,IN2P3, F-14076 Caen 5, France. RP Chasman, RR (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM chasman@anl.gov; isacker@ganil.fr FU Minerva Foundation; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Agence Nationale de Recherche, France [ANR-07-BLAN-0256-03] FX We thank David Jenkins and lain Moore for inviting us to participate in an ECT* workshop on N = Z nuclei where this collaboration started. We thank A. Afanasjev for stimulating our interest in T = 0 pairing. We thank H. Esbensen for a useful discussion on this work. Most of the calculations were carried out on the jazz computer array at Argonne National Laboratory and on the Particle Physics Linux Farm at the Weizmann Institute. R.C. thanks the Minerva Foundation for supporting his stay at the Dept. of Physics of the Weizmann Institute where much of this work was done. The work of R.C. is supported by the U.S. Department of Energy, Office of Nuclear Physics, contract No. DE-AC02-06CH11357; P.V.I. is in part supported by the Agence Nationale de Recherche, France, under contract No. ANR-07-BLAN-0256-03. NR 10 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 22 PY 2010 VL 685 IS 1 BP 55 EP 58 DI 10.1016/j.physletb.2010.01.032 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 563QO UT WOS:000275148600010 ER PT J AU Gamberg, L Schlegel, M AF Gamberg, Leonard Schlegel, Marc TI Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods SO PHYSICS LETTERS B LA English DT Article DE Transverse momentum parton distributions; Final state interactions ID GENERALIZED PARTON DISTRIBUTIONS; DEEP-INELASTIC SCATTERING; SINGLE-SPIN ASYMMETRIES; DRELL-YAN PROCESSES; QUANTUM CHROMODYNAMICS; ANGULAR-DISTRIBUTIONS; AZIMUTHAL ASYMMETRY; HADRON STRUCTURE; HARD-SCATTERING; SIVERS FUNCTION AB In the factorized picture of semi-inclusive hadronic processes the naive time-reversal odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order gluonic contributions from the gauge link by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Using this framework we explore under what conditions the Boer-Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gamberg, Leonard] Penn State Berks, Div Sci, Reading, PA 19610 USA. [Gamberg, Leonard] Inst Nucl Theory, Seattle, WA 98103 USA. [Schlegel, Marc] Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. RP Gamberg, L (reprint author), Penn State Berks, Div Sci, Reading, PA 19610 USA. EM lpg10@psu.edu; schlegel@jlab.org FU Institute For Nuclear Theory; University of Washington; U.S. Department of Energy [DE-FG02-07ER41460, DE-AC05-06OR23177] FX We thank D. Boer, S. Brodsky, M. Burkardt, H. Fried, G. Goldstein, S. Liuti, A. Metz, P.J. Mulders, J.-W. Qiu, O. Teryaev, and H. Weigel for useful discussions. L.G. is grateful for support from G. Miller and the Institute For Nuclear Theory, University of Washington where part of this work was undertaken. L.G. acknowledges support from U.S. Department of Energy under contract DE-FG02-07ER41460. Authored by Jefferson Science Associates, LLC under U.S. DOE contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. NR 95 TC 26 Z9 26 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 22 PY 2010 VL 685 IS 1 BP 95 EP 103 DI 10.1016/j.physletb.2009.12.067 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 563QO UT WOS:000275148600016 ER PT J AU Bytautas, L Matsunaga, N Ruedenberg, K AF Bytautas, Laimutis Matsunaga, Nikita Ruedenberg, Klaus TI Accurate ab initio potential energy curve of O-2. II. Core-valence correlations, relativistic contributions, and vibration-rotation spectrum SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review DE ab initio calculations; dissociation energies; electron correlations; oxygen; potential energy surfaces; relativistic corrections; rotational-vibrational states; spin-orbit interactions ID DEGENERATE PERTURBATION-THEORY; SCHUMANN-RUNGE SYSTEM; WAVE-FUNCTIONS; GROUND-STATE; CONFIGURATION-INTERACTION; MOLECULAR CALCULATIONS; GAUSSIAN PRIMITIVES; HERZBERG CONTINUUM; OZONE DEFICIT; ORBITAL BASES AB In the first paper of this series, a very accurate ab initio potential energy curve of the (3)Sigma(-)(g) ground state of O-2 has been determined in the approximation that all valence shell electron correlations were calculated at the complete basis set limit. In the present study, the corrections arising from core electron correlations and relativity effects, viz., spin-orbit coupling and scalar relativity, are determined and added to the potential energy curve. From the 24 points calculated on this curve, an analytical expression in terms of even-tempered Gaussian functions is determined and, from it, the vibrational and rotational energy levels are calculated by means of the discrete variable representation. We find 42 vibrational levels. Experimental data (from the Schumann-Runge band system) only yield the lowest 36 levels due to significant reduction in the transition intensities of higher levels. For the 35 term values G(v), the mean absolute deviation between theoretical and experimental data is 12.8 cm(-1). The dissociation energy with respect to the lowest vibrational energy is calculated within 25 cm(-1) of the experimental value of 41 268.2 +/- 3 cm(-1). The theoretical crossing between the (3)Sigma(-)(g) state and the (1)Sigma(+)(g) state is found to occur at 2.22 A degrees and the spin-orbit coupling in this region is analyzed. C1 [Bytautas, Laimutis; Ruedenberg, Klaus] Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA. [Bytautas, Laimutis; Ruedenberg, Klaus] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Matsunaga, Nikita] Long Isl Univ, Dept Chem & Biochem, Brooklyn, NY 11201 USA. RP Bytautas, L (reprint author), Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA. EM bytautas@scl.ameslab.gov; nikita.matsunaga@liu.edu; ruedenberg@iastate.edu FU Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-07CH11358]; Department of Energy FX The authors thank Dr. Michael W. Schmidt for his lively interest, his stimulating critique, and his many valuable suggestions. K. R. thanks Professor R. W. Field for a series of illuminating discussions. The present work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University through the Ames Laboratory. The authors also acknowledge support from the Department of Energy PCTC program (PI: Mark Gordon). NR 105 TC 40 Z9 40 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2010 VL 132 IS 7 AR 074307 DI 10.1063/1.3298376 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 558PE UT WOS:000274756000020 PM 20170227 ER PT J AU Bytautas, L Ruedenberg, K AF Bytautas, Laimutis Ruedenberg, Klaus TI Accurate ab initio potential energy curve of O-2. I. Nonrelativistic full configuration interaction valence correlation by the correlation energy extrapolation by intrinsic scaling method SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; configuration interactions; correlation theory; ground states; oxygen; potential energy surfaces ID COUPLED-CLUSTER THEORY; HOMONUCLEAR DIATOMIC-MOLECULES; CONSISTENT-FIELD METHOD; MULTIPLE ACTIVE SPACES; LOW-LYING STATES; ELECTRONIC-STRUCTURE; OXYGEN MOLECULE; EXCITED-STATES; WAVE-FUNCTIONS; GROUND-STATE AB The recently introduced method of correlation energy extrapolation by intrinsic scaling is used to calculate the nonrelativistic electron correlations in the valence shell of the O-2 molecule at 24 internuclear distances along the ground state (3)Sigma(-)(g) potential energy curve from 0.9 to 6 A degrees, the equilibrium distance being 1.207 52 A degrees. Using Dunning's correlation-consistent triple- and quadruple-zeta basis sets, the full configuration interaction energies are determined, with an accuracy of about 0.3 mhartree, by successively generating up to sextuple excitations with respect to multiconfigurational reference functions that strongly change along the reaction path. The energies of the reference functions and those of the correlation energies with respect to these reference functions are then extrapolated to their complete basis set limits. C1 [Bytautas, Laimutis] Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Bytautas, L (reprint author), Iowa State Univ, US DOE, Dept Chem, Ames, IA 50011 USA. EM bytautas@scl.ameslab.gov; ruedenberg@iastate.edu FU Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-07CH11358]; Department of Energy FX L. B. expresses his deep gratitude to the late Lawrence J. Schaad for his mentoring friendship as a Ph. D. advisor at Vanderbilt University and his inspirational introduction to potential energy surfaces. The authors thank Dr. Michael W. Schmidt for his continued interest, his assistance with the GAMESS code, his valuable suggestions, and his stimulating critique. The present work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University through the Ames Laboratory. The authors also acknowledge support from the Department of Energy PCTC program (PI: Mark Gordon). NR 97 TC 22 Z9 22 U1 3 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2010 VL 132 IS 7 AR 074109 DI 10.1063/1.3298373 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 558PE UT WOS:000274756000010 PM 20170217 ER PT J AU Whitelam, S Bon, SAF AF Whitelam, Stephen Bon, Stefan A. F. TI Self-assembly of amphiphilic peanut-shaped nanoparticles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE colloids; nanoparticles; self-assembly; surfactants ID PARTICLES; SYSTEMS; ICOSAHEDRA; COMPONENTS; DYNAMICS; SURFACES; CLUSTERS; PROTEIN; SIZE AB We use computer simulation to investigate the self-assembly of Janus-like amphiphilic peanut-shaped nanoparticles, finding phases of clusters, bilayers, and micelles in accord with ideas of packing familiar from the study of molecular surfactants. However, packing arguments do not explain the hierarchical self-assembly dynamics that we observe, nor the coexistence of bilayers and faceted polyhedra. This coexistence suggests that experimental realizations of our model can achieve multipotent assembly of either of two competing ordered structures. C1 [Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bon, Stefan A. F.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov RI Bon, Stefan/C-1992-2009 OI Bon, Stefan/0000-0001-5156-3901 NR 54 TC 21 Z9 21 U1 2 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2010 VL 132 IS 7 AR 074901 DI 10.1063/1.3316794 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 558PE UT WOS:000274756000038 ER PT J AU Qiang, J AF Qiang, Ji TI Particle-in-cell/Monte Carlo simulation of ion back bombardment in a high average current RF photo-gun SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photocathode; Ion back bombardment; Particle-in-cell/Monte Carlo ID ELECTRONS AB In this paper, we report on study of ion back bombardment in a high average current radio-frequency (RF) photo-gun using a particle-in-cell/Monte Carlo simulation method. Using this method, we systematically studied effects of gas pressure, RF frequency, RF initial phase, electric field profile, magnetic field, laser repetition rate, different ion species on ion particle line density distribution, kinetic energy spectrum, and ion power line density distribution back bombardment onto the photocathode. These simulation results suggest that effects of ion back bombardment could increase linearly with the background gas pressure and laser repetition rate. The RF frequency significantly affects the ion motion inside the gun so that the ion power deposition on the photocathode in an RF gun can be several orders of magnitude lower than that in a DC gun. The ion back bombardment can be minimized by appropriately choosing the electric field profile and the initial phase. (C) 2009 Elsevier B.V. All rights reserved. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Qiang, J (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jqiang@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank J. Corlett, S. Lidia and J. Staple, F. Sannibale for bringing this subject to the attention of the author, for providing cavity field profile, and for helpful discussions. This research was supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center. NR 24 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2010 VL 614 IS 1 BP 1 EP 9 DI 10.1016/j.nima.2009.12.001 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 573RC UT WOS:000275931300001 ER PT J AU Xu, YC Barannikova, O Bichsel, H Dong, X Fachini, P Fisyak, Y Kocoloski, A Mohanty, B Netrakanti, P Ruan, LJ Suarez, MC Tang, ZB van Buren, G Xu, ZB AF Xu, Yichun Barannikova, Olga Bichsel, Hans Dong, Xin Fachini, Patricia Fisyak, Yuri Kocoloski, Adam Mohanty, Bedanga Netrakanti, Pawan Ruan, Lijuan Suarez, Maria Cristina Tang, Zebo van Buren, Gene Xu, Zhangbu TI Improving the dE/dx calibration of the STAR TPC for the high-p(T) hadron identification SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE TPC; Ionization energy loss; Relativistic rise ID TRANSVERSE-MOMENTUM; PARTICLE IDENTIFICATION; FRAGMENTATION FUNCTIONS; D+AU COLLISIONS; SPECTRA; PHYSICS; P+P AB We derive a method to improve particle identification (PID) at high transverse momentum (p(T)) using the relativistic rise of the ionization energy loss (dE/dx) when charged particles traverse the Time Projection Chamber (TPC) at STAR. Electrons triggered and identified by the Barrel Electro-Magnetic Calorimeter (BEMC), pure protons (anti-protons) and pions from Lambda ((Lambda) over bar), and K-S(0) decays are used to obtain the dE/dx value and its width at given beta gamma=p/m. We found that the deviation of the dE/dx from the Bichsel function can be up to 0.4 sigma (similar to 3%) in p+p collisions at root S-NN=200GeV taken and subsequently calibrated in year 2005. The deviation is approximately a function of beta gamma independent of particle species and can be described with the function f(x) = A+B/(C+x(2)). The deviations obtained with this method are used in the data sample from p+p collision for physics analysis of identified hadron spectra and their correlations up to transverse momentum of 15GeV/c. The ratio of e(-)/e(+) (dominantly from gamma-conversion) is also used to correct for the residual momentum distortion in the STAR TPC. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xu, Yichun; Fachini, Patricia; Fisyak, Yuri; Ruan, Lijuan; Tang, Zebo; van Buren, Gene; Xu, Zhangbu] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Xu, Yichun; Dong, Xin; Tang, Zebo; Xu, Zhangbu] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Bichsel, Hans] Univ Washington, Nucl Phys Lab, Seattle, WA 98195 USA. [Dong, Xin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kocoloski, Adam] MIT, Cambridge, MA 02139 USA. [Mohanty, Bedanga] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Netrakanti, Pawan] Purdue Univ, W Lafayette, IN 47907 USA. [Barannikova, Olga; Suarez, Maria Cristina] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Xu, YC (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM xuychun@mail.ustc.edu.cn RI Tang, Zebo/A-9939-2014; Dong, Xin/G-1799-2014; OI Tang, Zebo/0000-0002-4247-0081; Dong, Xin/0000-0001-9083-5906; Fisyak, Yuri/0000-0002-3151-8377 FU U.S. DOE Office of Science; NSFC [10475071, 10805046]; National Natural Science Foundation of China [10610286, 10610285]; Chinese Academy of Sciences [KJCX2-YW-AI4] FX We thank the STAR Collaboration, the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science; Authors Yichun Xu and Zebo Tang are supported in part by NSFC 10475071, 10805046, National Natural Science Foundation of China under Grant no. 10610286 (10610285) and Knowledge Innovation Project of Chinese Academy of Sciences under Grant no. KJCX2-YW-AI4. One of us (Lijuan Ruan) would like to thank the Battelle Memorial institute and Stony Brook University for support in the form of the Gertrude and Maurice Goldhaber Distinguished Fellowship. NR 24 TC 12 Z9 13 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2010 VL 614 IS 1 BP 28 EP 33 DI 10.1016/j.nima.2009.12.011 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 573RC UT WOS:000275931300004 ER PT J AU Andreopoulos, C Bell, A Bhattacharya, D Cavanna, F Dobson, J Dytman, S Gallagher, H Guzowski, P Hatcher, R Kehayias, P Meregaglia, A Naples, D Pearce, G Rubbia, A Whalley, M Yang, T AF Andreopoulos, C. Bell, A. Bhattacharya, D. Cavanna, F. Dobson, J. Dytman, S. Gallagher, H. Guzowski, P. Hatcher, R. Kehayias, P. Meregaglia, A. Naples, D. Pearce, G. Rubbia, A. Whalley, M. Yang, T. TI The GENIE neutrino Monte Carlo generator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino; Monte Carlo generator; Neutrino interaction; Neutrino-induced hadronization; Intra-nuclear hadron transport; Rescattering; GENIE; AGKY; INTRANUKE ID CHARGED-CURRENT INTERACTIONS; TOTAL CROSS-SECTIONS; STRANGE-PARTICLE-PRODUCTION; SINGLE-PION-PRODUCTION; ATMOSPHERIC NU FLUX; MULTIPLICITY DISTRIBUTIONS; ELECTRON-SCATTERING; HADRON-PRODUCTION; EVENT GENERATOR; HYDROGEN INTERACTIONS AB GENIE [1] is anew neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks. GENIE is a large-scale software system, consisting of similar to 120000 lines of C + + code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4. (C) 2009 Elsevier B.V. All rights reserved. C1 [Andreopoulos, C.; Pearce, G.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bell, A.; Bhattacharya, D.; Dytman, S.; Naples, D.] Univ Pittsburgh, Dept Phys, Pittsburgh, PA 15260 USA. [Cavanna, F.] Univ Aquila, Dept Phys, I-67100 Laquila, Italy. [Dobson, J.; Guzowski, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2BW, England. [Gallagher, H.; Kehayias, P.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Hatcher, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Meregaglia, A.; Rubbia, A.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Meregaglia, A.] IPHC Strasbourg, F-67037 Strasbourg 2, France. [Whalley, M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94309 USA. RP Andreopoulos, C (reprint author), STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. EM costas.andreopoulos@stfc.ac.uk OI Cavanna, Flavio/0000-0002-5586-9964 FU UK Science and Technology Facilities Council/Rutherford Appleton Laboratory; US Department of Energy; US National Science Foundation; Tufts University Summer Scholars Program FX This work was supported by the UK Science and Technology Facilities Council/Rutherford Appleton Laboratory, the US Department of Energy, the US National Science Foundation, and the Tufts University Summer Scholars Program.; The authors would like to express our gratitude to G. Irwin (Stanford), B. Viren (Brookhaven Lab), S. Kasahara (Minnesota) and N. West (Oxford) for contributing to the early stages of the evolution of GENIE through example, by developing the MINOS offline framework, and through their inputs and criticisms during the GENIE design reviews.; We would also like to thank our MINOS collaborators, in particular R. Gran (UMD), K. Hofmann (Tufts), M. Kim (Pittsburgh), M. Korclosky (UCL), W.A. Mann (Tufts), J. Morfin (Fermilab) and S. Wojcicki (Stanford), for their contributions in the development, tuning and validation of the default set of physics models in GENIE. We would also like to thank E. Paschos (Dortmund), S. Mashnik (Los Alamos), A. Bodek (Rochester), O. Lalakulich (Dortmund, Giessen) and T. Leitner (Giessen) for providing important models and results. We also express our gratitude and recognition to C. Reed (NIKHEF), K. Scholberg, C. Little, R. Wendell (Duke), A. Habig, R. Schmidt (UMN Duluth) and D. Markoff (NCCU) for their ongoing effort to extend the GENIE validity range down to the MeV energy scale.; Also we would like to thank C. Backhouse (Oxford), S. Boyd (Warwick), J.J. Gomez Cadenas (IFIC Valencia), Y. Hayato (ICRR), J. Holeczek (Silesia), Z. Krahn (Minnesota), H. Lee (Rochester), J. Lagoda (L'Aquila), S. Manly (Rochester), B. Morgan (Warwick), D. Orme (Imperial), G. Perdue (Fermilab), T. Raufer (RAQ, D. Schmitz (Fermilab), E. Schulte (Rutgers)J Sobczyk (Wroclaw), A. Sousa (Oxford), J. Spitz (Yale), P. Stamoulis (Athens), R. Tacik (Regina), H. Tanaka (UBC), I. Taylor (imperial), R. Terri (QMUL), V. Tvaskis (Victoria), Y. Uchida (imperial), S. Wood OLAB), S. Zeller (LANL), L Zhu (Hampton) and many others who have used early versions of GENIE for their help in improving the build system, fixing bugs, and contributing comments and tools. NR 140 TC 203 Z9 203 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2010 VL 614 IS 1 BP 87 EP 104 DI 10.1016/j.nima.2009.12.009 PG 18 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 573RC UT WOS:000275931300011 ER PT J AU Yu, SW Chung, BW Tobin, JG Komesu, T Waddill, GD AF Yu, S-W. Chung, B. W. Tobin, J. G. Komesu, Takashi Waddill, G. D. TI A possible way for removing instrumental asymmetries in spin resolved photoemission with unpolarized light SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Spin resolved photoemission; Instrumental asymmetries ID ANALYZER AB We introduce a new method, a linear subtraction, to eliminate instrumental asymmetries in spin resolved photoemission with excitation by unpolarized light. The new method is applied successfully to analyze the spin polarizations in the valence band and 4d core level photoemission, excited with unpolarized light from a nonmagnetic Pt crystal. It is also tested in the spin analysis of the 2p core level photoemission, generated with circularly polarized X-rays from magnetic Fe. Even though the new method of linear subtraction is applicable for limited cases, it is a very valuable method for removing instrumental asymmetries especially when the helicity flipping, magnetization flipping, and even geometry flipping in spin resolved photoemission experiment are not possible. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yu, S-W.; Chung, B. W.; Tobin, J. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Komesu, Takashi; Waddill, G. D.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO USA. RP Yu, SW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM yu21@llnl.gov RI Chung, Brandon/G-2929-2012; Tobin, James/O-6953-2015 FU U.S. Department of Energy [DE-AC52-07NA27344] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. This work was supported by the DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering, and Campaign 2/WCI/LLNL. The APS has been built and operated under funding from the Office of Basic Energy Science at DOE. We would like to thank the scientific and technical staff of Sector 4 of the Advanced Photon Source for their technical assistance in supporting this work. NR 16 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2010 VL 614 IS 1 BP 145 EP 153 DI 10.1016/j.nima.2009.12.012 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 573RC UT WOS:000275931300016 ER PT J AU Kazin, EA Blanton, MR Scoccimarro, R McBride, CK Berlind, AA Bahcall, NA Brinkmann, J Czarapata, P Frieman, JA Kent, SM Schneider, DP Szalay, AS AF Kazin, Eyal A. Blanton, Michael R. Scoccimarro, Roman McBride, Cameron K. Berlind, Andreas A. Bahcall, Neta A. Brinkmann, Jon Czarapata, Paul Frieman, Joshua A. Kent, Stephen M. Schneider, Donald P. Szalay, Alexander S. TI THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; distance scale; galaxies: elliptical and lenticular, cD; large-scale structure of universe ID SPECTROSCOPIC TARGET SELECTION; POWER-SPECTRUM ANALYSIS; SURVEY IMAGING DATA; DATA RELEASE; REDSHIFT SURVEYS; OSCILLATIONS; MATTER; CONSTRAINTS; PROBE; PEAK AB We examine the correlation function. of the Sloan Digital Sky Survey Luminous Red Galaxy sample at large scales (60 h(-1) Mpc < s < 400 h(-1) Mpc) using the final data release (DR7). Focusing on a quasi-volume-limited (0.16 < z < 0.36) subsample and utilizing mock galaxy catalogs, we demonstrate that the observed baryonic acoustic peak and larger scale signal are consistent with ACDM at 70%-95% confidence. Fitting data to a non-linear, redshift-space, template-based model, we constrain the peak position at s(p) = 101.7 +/- 3.0 h(-1) Mpc when fitting the range 60 h(-1) Mpc < s < 150 h(-1) Mpc (1 sigma uncertainties). This redshift-space distance s(p) is related to the comoving sound horizon scale r(s) after taking into account matter-clustering non-linearities, redshift distortions, and galaxy-clustering bias. Mock catalogs show that the probability that a DR7-sized sample would not have an identifiable peak is at least similar to 10%. As a consistency check of a fiducial cosmology, we use the observed sp to obtain the distance D(V) = ((1 + z)(2)D(A)(2)cz/H(z))(1/3) relative to the acoustic scale. We find r(s)/D(V)(z = 0.278) = 0.1389 +/- 0.0043. This result is in excellent agreement with Percival et al., who examine roughly the same data set, but use the power spectrum. Comparison with other determinations in the literature are also in very good agreement. The signal of the full sample at 125 h(-1) Mpc < s < 200 h(-1) Mpc tends to be high relative to theoretical expectations; this slight deviation can probably be attributed to sample variance. We have tested our results against a battery of possible systematic effects, finding all effects are smaller than our estimated sample variance. C1 [Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [McBride, Cameron K.; Berlind, Andreas A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Bahcall, Neta A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Brinkmann, Jon] Apache Point Observ, Sunspot, NM 88349 USA. [Czarapata, Paul] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Szalay, Alexander S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Kazin, EA (reprint author), NYU, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. EM eyalkazin@gmail.com NR 73 TC 145 Z9 145 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2010 VL 710 IS 2 BP 1444 EP 1461 DI 10.1088/0004-637X/710/2/1444 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551TN UT WOS:000274233300041 ER PT J AU Leggett, SK Burningham, B Saumon, D Marley, MS Warren, SJ Smart, RL Jones, HRA Lucas, PW Pinfield, DJ Tamura, M AF Leggett, S. K. Burningham, Ben Saumon, D. Marley, M. S. Warren, S. J. Smart, R. L. Jones, H. R. A. Lucas, P. W. Pinfield, D. J. Tamura, Motohide TI MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY SO ASTROPHYSICAL JOURNAL LA English DT Review DE brown dwarfs; infrared: stars; stars: low-mass ID DIGITAL SKY SURVEY; SPITZER-SPACE-TELESCOPE; INFRARED ARRAY CAMERA; STAR ADAPTIVE OPTICS; EXOPLANET HOST STAR; LARGE-AREA SURVEY; METHANE T-DWARFS; SPECTRAL CLASSIFICATION; SOLAR NEIGHBORHOOD; ULTRACOOL DWARFS AB We present new Spitzer Infrared Array Camera (IRAC) photometry of 12 very late-type T dwarfs: nine have [3.6], [4.5], [5.8], and [8.0] photometry and three have [3.6] and [4.5] photometry only. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. The online appendix provides a collation of MKO-system YJHKL'M' and IRAC photometry for a sample of M, L, and T dwarfs. Brown dwarfs with effective temperature (T(eff)) below 700 K emit more than half their flux at wavelengths longer than 3 mu m, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T(eff) at these low temperatures. We confirm that the color H (1.6 mu m) - [4.5] is a good indicator of Teff with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 mu m) and [4.5] -[5.8] are sensitive to metallicity and gravity. Thus, near-and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are 12 dwarfs currently known with H - [4.5] > 3.0, and 500 K less than or similar to T(eff) less than or similar to 800 K, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1-1.0 Gyr) to relatively old (3-12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e., near the hydrogen burning limit. The metallicities also span a large range, from [m/H] = -0.3 to [m/H]= +0.3. The small number of T8-T9 dwarfs found in the UK Infrared Telescope Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions, warm-Spitzer and Wide-Field Infrared Survey Explorer, are desirable in order to obtain the vital mid-infrared data for cold brown dwarfs and to discover more of these rare objects. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Burningham, Ben; Jones, H. R. A.; Lucas, P. W.; Pinfield, D. J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Warren, S. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Smart, R. L.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Tamura, Motohide] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Burningham, Ben/0000-0003-4600-5627; Leggett, Sandy/0000-0002-3681-2989; Smart, Richard/0000-0002-4424-4766 FU NASA; Spitzer Space Telescope Theoretical Research Program FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Support for this work was also provided by the Spitzer Space Telescope Theoretical Research Program, through NASA. S. K. L.'s research is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. This research has benefited from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://www. browndwarfs. org/spexprism. This research has also benefited from the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by ChrisGelino, Davy Kirkpatrick, and Adam Burgasser. Finally, we are grateful to John Stauffer for a very helpful referee's report. NR 121 TC 114 Z9 114 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2010 VL 710 IS 2 BP 1627 EP 1640 DI 10.1088/0004-637X/710/2/1627 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551TN UT WOS:000274233300056 ER PT J AU Sumi, T Bennett, DP Bond, IA Udalski, A Batista, V Dominik, M Fouque, P Kubas, D Gould, A Macintosh, B Cook, K Dong, S Skuljan, L Cassan, A Abe, F Botzler, CS Fukui, A Furusawa, K Hearnshaw, JB Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nagayama, T Ohnishi, K Okumura, T Perrott, YC Rattenbury, N Saito, T Sako, T Sullivan, DJ Sweatman, WL Tristram, PJ Yock, PCM Beaulieu, JP Cole, A Coutures, C Duran, MF Greenhill, J Jablonski, F Marboeuf, U Martioli, E Pedretti, E Pejcha, O Rojo, P Albrow, MD Brillant, S Bode, M Bramich, DM Burgdorf, MJ Caldwell, JAR Calitz, H Corrales, E Dieters, S Prester, DD Donatowicz, J Hill, K Hoffman, M Horne, K Jorgensen, UG Kains, N Kane, S Marquette, JB Martin, R Meintjes, P Menzies, J Pollard, KR Sahu, KC Snodgrass, C Steele, I Street, R Tsapras, Y Wambsganss, J Williams, A Zub, M Szymanski, MK Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Wyrzykowski, L Ulaczyk, K Allen, W Christie, GW DePoy, DL Gaudi, BS Han, C Janczak, J Lee, CU McCormick, J Mallia, F Monard, B Natusch, T Park, BG Pogge, RW Santallo, R AF Sumi, T. Bennett, D. P. Bond, I. A. Udalski, A. Batista, V. Dominik, M. Fouque, P. Kubas, D. Gould, A. Macintosh, B. Cook, K. Dong, S. Skuljan, L. Cassan, A. Abe, F. Botzler, C. S. Fukui, A. Furusawa, K. Hearnshaw, J. B. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nagayama, T. Ohnishi, K. Okumura, T. Perrott, Y. C. Rattenbury, N. Saito, To Sako, T. Sullivan, D. J. Sweatman, W. L. Tristram, P. J. Yock, P. C. M. Beaulieu, J. P. Cole, A. Coutures, Ch Duran, M. F. Greenhill, J. Jablonski, F. Marboeuf, U. Martioli, E. Pedretti, E. Pejcha, O. Rojo, P. Albrow, M. D. Brillant, S. Bode, M. Bramich, D. M. Burgdorf, M. J. Caldwell, J. A. R. Calitz, H. Corrales, E. Dieters, S. Prester, D. Dominis Donatowicz, J. Hill, K. Hoffman, M. Horne, K. Jorgensen, U. G. Kains, N. Kane, S. Marquette, J. B. Martin, R. Meintjes, P. Menzies, J. Pollard, K. R. Sahu, K. C. Snodgrass, C. Steele, I. Street, R. Tsapras, Y. Wambsganss, J. Williams, A. Zub, M. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Wyrzykowski, L. Ulaczyk, K. Allen, W. Christie, G. W. DePoy, D. L. Gaudi, B. S. Han, C. Janczak, J. Lee, C. -U. McCormick, J. Mallia, F. Monard, B. Natusch, T. Park, B. -G. Pogge, R. W. Santallo, R. CA MOA Collaboration PLANET Collaboration OGLE Collaboration FUN Collaboration TI A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: COLD NEPTUNES ARE COMMON SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; SURFACE BRIGHTNESS RELATIONS; MICROLENSING OPTICAL DEPTH; CLUMP ABSOLUTE MAGNITUDE; EXTRA-SOLAR PLANETS; GALACTIC DARK HALO; HIGH-MAGNIFICATION; SUPER-EARTHS; DWARF STARS; IMAGE SUBTRACTION AB We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q = [9.5 +/- 2.1] x 10(-5) via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M(l) = 0.64(-0.26)(+0.21) M(circle dot) and D(l) = 5.9(-1.4)(+ 0.9) kpc, respectively, so the mass and separation of the planet are M(p) = 20(-8)(+7) M(circle plus) and a = 3.3(-0.8)(+1.4) AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN(pl)/d log q alpha q(-0.7+/-0.2) with a 95% confidence level upper limit of n < -0.35 ( where dN(pl)/d log q alpha q(n)). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level. C1 [Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Batista, V.; Skuljan, L.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Batista, V.; Kubas, D.; Cassan, A.; Beaulieu, J. P.; Coutures, Ch; Corrales, E.; Dieters, S.; Hill, K.; Marquette, J. B.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Dominik, M.; Pedretti, E.; Horne, K.; Kains, N.] SUPA, Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Fouque, P.] Univ Toulouse 3, CNRS, Astrophys Lab, F-31400 Toulouse, France. [Kubas, D.] European So Observ, Santiago 19, Chile. [Gould, A.; Pejcha, O.; Gaudi, B. S.; Janczak, J.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Macintosh, B.; Cook, K.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Cassan, A.; Wambsganss, J.; Zub, M.] Univ Heidelberg, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Botzler, C. S.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Nagayama, T.] Nagoya Univ, Fac Sci, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Cole, A.; Greenhill, J.; Dieters, S.; Hill, K.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia. [Duran, M. F.; Rojo, P.] Univ Chile, Dept Astron, Santiago, Chile. [Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, Brazil. [Marboeuf, U.] Observ Besancon, F-25010 Besancon, France. [Bode, M.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, OFIA Sci Ctr, Moffett Field, CA 94035 USA. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Calitz, H.; Hoffman, M.; Meintjes, P.] Univ Free State, Dept Phys, Boyden Observ, ZA-9300 Bloemfontein, South Africa. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Jorgensen, U. G.] Astron Observ, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Kane, S.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Street, R.; Tsapras, Y.] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Wyrzykowski, L.; Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [DePoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Han, C.] Chungbuk Natl Univ, Inst Basic Sci Res, Dept Phys, Chonju 361763, South Korea. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Mallia, F.] Campo Catino Observ, Guarcino, FR, Italy. [Monard, B.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa. [Natusch, T.] AUT Univ, Auckland, New Zealand. [Santallo, R.] So Stars Observ, Tahiti, Fr Polynesia. RP Sumi, T (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. EM sumi@stelab.nagoya-u.ac.jp; bennett@nd.edu; i.a.bond@massey.ac.nz; udalski@astrouw.edu.pl; batista@iap.fr; md35@st-andrews.ac.uk; pfouque@ast.obs-mip.fr; dkubas@iap.fr; gould@astronomy.ohio-state.edu; dong@ias.edu; l.skuljan@massey.ac.nz; cassan@iap.fr; abe@stelab.nagoya-u.ac.jp; c.botzler@auckland.ac.nz; afukui@stelab.nagoya-u.ac.jp; furusawa@stelab.nagoya-u.ac.jp; itow@stelab.nagoya-u.ac.jp; kkamiya@stelab.nagoya-u.ac.jp; a.korpela@niwa.co.nz; w.lin@massey.ac.nz; c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagoya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp; okumurat@stelab.nagoya-u.ac.jp; yper006@aucklanduni.ac.nz; sako@stelab.nagoya-u.ac.jp; denis.sullivan@vuw.ac.nz; w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; beaulieu@iap.fr; coutures@iap.fr; mburgdorf@sofia.usra.edu; caldwell@astro.as.utexas.edu; calitzjj.sci@mail.uovs.ac.za; kdh1@st-andrews.ac.uk; rmartin@physics.uwa.edu.au; ksahu@stsci.edu; rstreet@lcogt.net; ytsapras@lcogt.net; andrew@physics.uwa.edu.au; msz@astrouw.edu.pl; mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl; wyrzykow@ast.cam.ac.uk; kulaczyk@astrouw.edu.pl; whallen@xtra.co.nz; gwchristie@christie.org.nz; depoy@physics.tamu.edu; gaudi@astronomy.ohio-state.edu; cheongho@astroph.chungbuk.ac.kr; leecu@kasi.re.kr; farmcoveobs@xtra.co.nz; francomallia@campocatinobservatory.org; lagmonar@nmisa.org; tim.natusch@aut.ac.nz; bgpark@kasi.re.kr; pogge@astronomy.ohio-state.edu; santallo@southernstars-observatory.org RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Rojo, Patricio/K-6732-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Williams, Andrew/K-2931-2013; Rojo, Patricio/I-5765-2016; OI Snodgrass, Colin/0000-0001-9328-2905; Cole, Andrew/0000-0003-0303-3855; Rojo, Patricio/0000-0002-1607-6443; Williams, Andrew/0000-0001-9080-0105; Dominik, Martin/0000-0002-3202-0343 FU MEXT Japan [18749004, 19015005]; NSF [AST-0708890]; NASA [NNX07AL71G, NNG04GL51G]; Polish MNiSW [N20303032/4275]; National Research Foundation of Korea [2009-0081561]; Korea Astronomy and Space Science Institute; [JSPS18253002]; [JSPS20340052] FX This work is supported by the grant JSPS18253002 and JSPS20340052 (MOA). T. S. was supported by MEXT Japan, Grant-in-Aid for Young Scientists (B), 18749004 and Grant-inAid for Scientific Research on Priority Areas, "Development of Extra-solar Planetary Science," 19015005. D. P. B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. Work by A. G. was supported by NSF grant AST-0757888. Work by B. S. G., A. G., and R. P. is supported by NASA grant NNG04GL51G Dave Warren provided financial support for Mt Canopus Observatory. C. H. was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea (CH). B.-G. P. and C.-U. L. were supported by the grant of Korea Astronomy and Space Science Institute. NR 84 TC 119 Z9 119 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2010 VL 710 IS 2 BP 1641 EP 1653 DI 10.1088/0004-637X/710/2/1641 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551TN UT WOS:000274233300057 ER PT J AU Aspden, AJ Bell, JB Woosley, SE AF Aspden, A. J. Bell, J. B. Woosley, S. E. TI DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; methods: numerical; nuclear reactions, nucleosynthesis, abundances; supernovae: general; turbulence; white dwarfs ID TURBULENCE; SIMULATIONS; REGIME AB At a density near a few x 10(7) g cm(-3), the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkohler number (Da(T)), which steadily declines from much greater than one to less than one as the density decreases to a few x 10(6) g cm(-3). Classical scaling arguments predict that the turbulent flame speed s(T), normalized by the turbulent intensity. u, follows s(T)/u = Da(T)(1/2) for Da(T) less than or similar to 1. The flame in this regime is a single turbulently broadened structure that moves at a steady speed, and has a width larger than the integral scale of the turbulence. The scaling is predicted to break down at Da(T) approximate to 1, and the flame burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s. and width l., and we refer to this kind of flame as lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the integral scale. While the total burning rate continues to have a well-defined average, s(T) similar to u, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s(T) can actually be roughly twice u for Da(T) greater than or similar to 1, and that localized excursions to as much as 5 times. u can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da(T) similar to 1. The lambda-flame speed and width can be predicted based on the turbulence in the star (specifically the energy dissipation rate epsilon*) and the turbulent nuclear burning timescale of the fuel tau(T)(nuc) . We propose a practical method for measuring s(lambda) and l(lambda) based on the scaling relations and small-scale computationally inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed SNe flames. These results will be useful both for characterizing the deflagration speed in larger full-star simulations, where the flame cannot be resolved, and for predicting when detonation occurs. C1 [Aspden, A. J.; Bell, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Aspden, AJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA. RI Aspden, Andy/A-7391-2017 OI Aspden, Andy/0000-0002-2970-4824 FU Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-05CH11231]; NASA [NNX09AK36G]; DOE [DE-FC02-06ER41438] FX Support for A. J. A. was provided by a Seaborg Fellowship at Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. The work of J. B. B. was supported by the Applied Mathematics Research Program of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. At UCSC this research has been supported by the NASA Theory Program NNX09AK36G and the DOE SciDAC Program (DE-FC02-06ER41438). The computations presented here were performed on the ATLAS Linux Cluster at LLNL as part of a Grand Challenge Project. The authors are grateful to Alan Kerstein and Vaidya Sankaran for providing the LEM code used in our study and for assisting with its adaptation to astrophysics. We especially thank Alan for his many insights into turbulent flame physics and the interpretation of LEM results. NR 19 TC 22 Z9 22 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2010 VL 710 IS 2 BP 1654 EP 1663 DI 10.1088/0004-637X/710/2/1654 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551TN UT WOS:000274233300058 ER PT J AU Heerikhuisen, J Pogorelov, NV Zank, GP Crew, GB Frisch, PC Funsten, HO Janzen, PH McComas, DJ Reisenfeld, DB Schwadron, NA AF Heerikhuisen, J. Pogorelov, N. V. Zank, G. P. Crew, G. B. Frisch, P. C. Funsten, H. O. Janzen, P. H. McComas, D. J. Reisenfeld, D. B. Schwadron, N. A. TI PICK-UP IONS IN THE OUTER HELIOSHEATH: A POSSIBLE MECHANISM FOR THE INTERSTELLAR BOUNDARY EXPLORER RIBBON (vol 708, pg L126, 2010) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Correction C1 [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Ctr Space Phys & Aeron Res, Huntsville, AL 35899 USA. [Crew, G. B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Frisch, P. C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Janzen, P. H.; Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP Heerikhuisen, J (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. EM jacob.heerikhuisen@uah.edu RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; OI Funsten, Herbert/0000-0002-6817-1039; Heerikhuisen, Jacob/0000-0001-7867-3633 NR 1 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 20 PY 2010 VL 710 IS 2 BP L172 EP L172 DI 10.1088/2041-8205/710/2/L172 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 567BR UT WOS:000275417800015 ER PT J AU Adams, T Batra, P Bugel, L Camilleri, L Conrad, JM De Gouvea, A Fisher, PH Formaggio, JA Jenkins, J Karagiorgi, G Kobilarcik, TR Kopp, S Kyle, G Loinaz, WA Mason, DA Milner, R Moore, R Morfin, JG Nakamura, M Naples, D Nienaber, P Olness, FI Owens, JF Pate, SF Pronin, A Seligman, WG Shaevitz, MH Schellman, H Schienbein, I Syphers, MJ Tait, TMP Takeuchi, T Tan, CY Van De Water, RG Yamamoto, RK Yu, JY AF Adams, T. Batra, P. Bugel, L. Camilleri, L. Conrad, J. M. De Gouvea, A. Fisher, P. H. Formaggio, J. A. Jenkins, J. Karagiorgi, G. Kobilarcik, T. R. Kopp, S. Kyle, G. Loinaz, W. A. Mason, D. A. Milner, R. Moore, R. Morfin, J. G. Nakamura, M. Naples, D. Nienaber, P. Olness, F. I. Owens, J. F. Pate, S. F. Pronin, A. Seligman, W. G. Shaevitz, M. H. Schellman, H. Schienbein, I. Syphers, M. J. Tait, T. M. P. Takeuchi, T. Tan, C. Y. Van De Water, R. G. Yamamoto, R. K. Yu, J. Y. TI QCD PRECISION MEASUREMENTS AND STRUCTURE FUNCTION EXTRACTION AT A HIGH STATISTICS, HIGH ENERGY NEUTRINO SCATTERING EXPERIMENT: NuSOnG SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Neutrino scattering on glass ID DEEP-INELASTIC SCATTERING; CHARGE-SYMMETRY VIOLATION; DIFFERENTIAL CROSS-SECTIONS; STRANGE-QUARK CONTRIBUTIONS; OPPOSITE-SIGN DIMUONS; NUCLEONS FORM-FACTORS; PARTON DISTRIBUTIONS; FERMILAB TEVATRON; P(P)OVER-BAR COLLISIONS; ELECTRON-SCATTERING AB We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics. C1 [Adams, T.; Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA. [Loinaz, W. A.] Amherst Coll, Amherst, MA 01002 USA. [Tait, T. M. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Pronin, A.] Cent Coll, Pella, IA 50219 USA. [Batra, P.; Bugel, L.; Camilleri, L.; Seligman, W. G.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA. [Kobilarcik, T. R.; Mason, D. A.; Moore, R.; Morfin, J. G.; Syphers, M. J.; Tan, C. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Jenkins, J.; Van De Water, R. G.] Los Alamos Natl Accelerator Lab, Los Alamos, NM 87545 USA. [Schienbein, I.] Univ Grenoble 1, LPSC, F-38026 St Martin Dheres, France. [Conrad, J. M.; Fisher, P. H.; Formaggio, J. A.; Milner, R.; Yamamoto, R. K.] MIT, Cambridge, MA 02139 USA. [Nakamura, M.] Nagoya Univ, Nagoya, Aichi 46401, Japan. [Kyle, G.; Pate, S. F.] New Mexico State Univ, Las Cruces, NM 88003 USA. [De Gouvea, A.; Schellman, H.; Tait, T. M. P.] Northwestern Univ, Evanston, IL 60208 USA. [Naples, D.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Yu, J. Y.] So Methodist Univ, Dallas, TX 75205 USA. [Kopp, S.] Univ Texas Austin, Austin, TX 78712 USA. [Takeuchi, T.] Virginia Tech, Blacksburg, VA 24061 USA. RP Adams, T (reprint author), Florida State Univ, Tallahassee, FL 32306 USA. EM olness@smu.edu OI Takeuchi, Tatsu/0000-0002-3594-5149; Loinaz, William/0000-0001-7501-5002; Van de Water, Richard/0000-0002-1573-327X FU Deutsche Forschungsgemeinschaft; Kavli Institute for Theoretical Physics; United States Department of Energy; United States National Science Foundation FX We thank the following people for their informative discussions regarding neutrino nucleus interactions, and their thoughtful comments on the development of this physics case: Andrei Kataev, Sergey Kulagin, P. Langacker, Roberto Petti, M. Shaposhnikov, F. Vannucci and J. Wells. We acknowledge the support of the following funding agencies for the authors of this paper: Deutsche Forschungsgemeinschaft, The Kavli Institute for Theoretical Physics, The United States Department of Energy and The United States National Science Foundation. NR 105 TC 2 Z9 2 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 20 PY 2010 VL 25 IS 5 BP 909 EP 949 DI 10.1142/S0217751X10047828 PG 41 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 567TE UT WOS:000275468700002 ER PT J AU Colella, P Norgaard, PC AF Colella, Phillip Norgaard, Peter C. TI Controlling self-force errors at refinement boundaries for AMR-PIC SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Particle-in-cell methods; Adaptive mesh refinement; Self-forces ID POISSONS-EQUATION; MESH AB We analyze the source of the self-force errors in the node-centered adaptive-mesh-refinement particle-in-cell (AMR-PIC) algorithm and propose a method for reducing those self-forces. Our approach is based on a method of charge deposition due to Mayo [A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM of Numerical Analysis 21(2) (1984) 285-299] that can reduce the self-force error to any specified degree of accuracy. (C) 2009 Elsevier Inc. All rights reserved. C1 [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. [Norgaard, Peter C.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA. RP Colella, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pcolella@lbl.gov; norgaard@princeton.edu FU US Department of Energy Office [DE-AC02-05CH11231, DE-FG02-97ER25308] FX We would like to acknowledge many helpful discussions with Alex Friedman at LLNL and Jean-Luc Vay at LBNL and in particular for suggesting several of the test problems used here for evaluating the self-force errors. Work at LBNL was supported by the US Department of Energy Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH11231. PCN was supported by the US Department of Energy Computational Sciences Graduate Fellowship Program under grant number DE-FG02-97ER25308. NR 9 TC 11 Z9 11 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 20 PY 2010 VL 229 IS 4 BP 947 EP 957 DI 10.1016/j.jcp.2009.07.004 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 555WJ UT WOS:000274547000001 ER PT J AU Johnsen, E Larsson, J Bhagatwala, AV Cabot, WH Moin, P Olson, BJ Rawat, PS Shankar, SK Sjogreen, B Yee, HC Zhong, XL Lele, SK AF Johnsen, Eric Larsson, Johan Bhagatwala, Ankit V. Cabot, William H. Moin, Parviz Olson, Britton J. Rawat, Pradeep S. Shankar, Santhosh K. Sjoegreen, Bjoern Yee, H. C. Zhong, Xiaolin Lele, Sanjiva K. TI Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Compressible turbulence; Direct numerical simulation; Large-eddy simulation; High-resolution methods; Shock-capturing; Hybrid methods; Artificial diffusivity methods; Adaptive characteristic-based filters; Shock fitting ID LARGE-EDDY SIMULATION; RUNGE-KUTTA SCHEMES; HIGH-ORDER METHODS; CAPTURING SCHEMES; EFFICIENT IMPLEMENTATION; COMPUTATIONAL ACOUSTICS; DIFFERENCE-SCHEMES; EULER EQUATIONS; LOW-DISSIPATION; GAS-DYNAMICS AB Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results. (C) 2009 Elsevier Inc. All rights reserved. C1 [Johnsen, Eric; Larsson, Johan; Moin, Parviz] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Bhagatwala, Ankit V.; Olson, Britton J.; Shankar, Santhosh K.; Lele, Sanjiva K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Cabot, William H.; Sjoegreen, Bjoern] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Rawat, Pradeep S.; Zhong, Xiaolin] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Yee, H. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Johnsen, E (reprint author), Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. EM johnsen@stanford.edu; jola@stanford.edu RI Larsson, Johan/B-9543-2017 OI Larsson, Johan/0000-0001-8387-1933 FU DOE-Sci-DAC [DE-FC02-06-ER25787] FX The authors wish to thank Dr. A. Cook for his help in defining the test problems and for discussions of the results, and Dr. S. Kawai and Dr. A. Mani for insightful conversations on artificial diffusivity methods. This work was supported by DOE-Sci-DAC (Grant DE-FC02-06-ER25787). NR 51 TC 86 Z9 93 U1 1 U2 42 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 20 PY 2010 VL 229 IS 4 BP 1213 EP 1237 DI 10.1016/j.jcp.2009.10.028 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 555WJ UT WOS:000274547000013 ER PT J AU Cizek, K Prior, C Thammakhet, C Galik, M Linker, K Tsui, R Cagan, A Wake, J La Belle, J Wang, J AF Cizek, Karel Prior, Chad Thammakhet, Chongdee Galik, Michal Linker, Kevin Tsui, Ray Cagan, Avi Wake, John La Belle, Jeff Wang, Joseph TI Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor SO ANALYTICA CHIMICA ACTA LA English DT Article DE Trinitrotoluene; Vapor detection; Screen-printed electrodes; Explosive detection ID NATURAL-WATERS; SENSOR AB This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurement produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 mu g. Finally, the integrated device was Successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. (C) 2009 Elsevier B.V. All rights reserved C1 [Cizek, Karel; Prior, Chad; Galik, Michal; Wang, Joseph] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. [Thammakhet, Chongdee] Prince Songkla Univ, Dept Chem, Hat Yai 90112, Songkhla, Thailand. [Linker, Kevin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Tsui, Ray] Motorola Inc, Appl Res & Technol Ctr, Tempe, AZ 85284 USA. [Cagan, Avi; Wake, John; La Belle, Jeff] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. [Cagan, Avi; Wake, John; La Belle, Jeff] Arizona State Univ, Dept Chem Engn, Tempe, AZ 85287 USA. [Cagan, Avi; Wake, John; La Belle, Jeff] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA. RP Wang, J (reprint author), Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. EM josephwang@ucsd.edu RI Galik, Michal/E-1954-2011; Wang, Joseph/C-6175-2011 FU National Consortium for MASINT Research; Motorola, Inc. FX This research is supported by the National Consortium for MASINT Research, a Division of the Intelligence Community's National MASINT Management Office. The Support of Motorola, Inc. is also acknowledged. Thanks also to Prof. William Trogler for providing the solid TNT sample used in this study. NR 14 TC 28 Z9 28 U1 1 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD FEB 19 PY 2010 VL 661 IS 1 BP 117 EP 121 DI 10.1016/j.aca.2009.12.008 PG 5 WC Chemistry, Analytical SC Chemistry GA 560VW UT WOS:000274933200016 PM 20113724 ER PT J AU Dhakshnamoorthy, B Raychaudhury, S Blachowicz, L Roux, B AF Dhakshnamoorthy, Balasundaresan Raychaudhury, Suchismita Blachowicz, Lydia Roux, Benoit TI Cation-selective Pathway of OmpF Porin Revealed by Anomalous X-ray Diffraction SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE permeation; channel; electrostatics; ions ID ESCHERICHIA-COLI; DYNAMICS SIMULATION; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURES; BROWNIAN DYNAMICS; BACTERIAL PORINS; OUTER-MEMBRANE; PERMEATION; CHANNELS; IONS AB The OmpF porin from the Escherichia coli outer membrane folds into a trimer of beta-barrels, each forming a wide aqueous pore allowing the passage of ions and small solutes. A long loop (L3) carrying multiple acidic residues folds into the beta-barrel pore to form a narrow "constriction zone". A strong and highly conserved charge asymmetry is observed at the constriction zone, with multiple basic residues attached to the wall of the beta-barrel (Lys16, Arg42, Arg82 and Arg132) on one side, and multiple acidic residues of L3 (Asp107, Asp113, Glu117, Asp121, Asp126, Asp127) on the other side. Several computational studies have suggested that a strong transverse electric field could exist at the constriction zone as a result of such charge asymmetry, giving rise to separate permeation pathways for cations and anions. To examine this question, OmpF was expressed, purified and crystallized in the P6(3) space group and two different data sets were obtained at 2.6 angstrom and 3.0 angstrom resolution with K(+) and Rb(+), respectively. The Rb(+)-soaked crystals were collected at the rubidium anomalous wavelength of 0.8149 angstrom and cation positions were determined. A PEG molecule was observed in the pore region for both the K(+) and Rb(+)-soaked crystals, where it interacts with loop L3. The results reveal the separate pathways of anions and cations across the constriction zone of the OmpF pore. (C) 2009 Published by Elsevier Ltd. C1 [Dhakshnamoorthy, Balasundaresan; Raychaudhury, Suchismita; Blachowicz, Lydia; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA. [Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, 920 E 58Th St, Chicago, IL 60637 USA. EM roux@uchicago.edu RI Dhakshnamoorthy, Balasundaresan/G-5778-2012 FU National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Sciences [Y1-GM-1104]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38]; NIH [GM-62342] FX X-ray diffraction data were collected at bean-dine 23 SER/CAT ID-B at the Advanced Photon Source, Argonne National Laboratory. GM/CA CAT has been funded, in whole or in part, with Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Sciences (Y1-GM-1104). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract no.W-31-109-ENG-38. The authors are grateful to Tilman Schirmer and Patrick Loll for providing the OmpF vectors and for useful discussions. We thank Brigitte Ziervogel, Albert Lau and the staff at beamline 23ID-B for their kind help during data collection. These studies were supported by grant GM-62342 from the NIH. NR 25 TC 16 Z9 18 U1 2 U2 3 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 19 PY 2010 VL 396 IS 2 BP 293 EP 300 DI 10.1016/j.jmb.2009.11.042 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 561MC UT WOS:000274980400005 PM 19932117 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mommsen, RK Mondal, NK Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A-F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M-C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J-F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mommsen, R. K. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Parihar, V. Park, S-J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M-E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W-C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for the Standard Model Higgs Boson in the ZH -> v(v)over-barb(b)over-bar Channel in 5.2 fb(-1) of p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB A search is performed for the standard model Higgs boson in 5.2 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV, collected with the D0 detector at the Fermilab Tevatron Collider. The final state considered is a pair of b jets and large missing transverse energy, as expected from p (p) over bar -> ZH -> v (v) over barb (b) over bar production. The search is also sensitive to the WH -> lvb (b) over bar channel when the charged lepton is not identified. For a Higgs boson mass of 115 GeV, a limit is set at the 95% C.L. on the cross section multiplied by branching fraction for [p (p) over bar -> (Z/W)H](H -> b (b) over bar) that is a factor of 3.7 larger than the standard model value, consistent with the factor of 4.6 expected. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M-E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Badaud, F.; Gay, P.; Gris, Ph.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, CNRS,IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A-F.; Calpas, B.; Cousinou, M-C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J-F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, CNRS,IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S-J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W-C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Arov, M.; Bandurin, D. V.; Bolton, T. A.; Greenwood, Z. D.; Maravin, Y.; Onoprienko, D.; Sawyer, L.; Wobisch, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Herner, K.; Kraus, J.; Linnemann, J.; Neal, H. A.; Piper, J.; Qian, J.; Schwienhorst, R.; Strandberg, J.; Unalan, R.; Xu, C.; Zhou, B.] Michigan State Univ, E Lansing, MI 48824 USA. [Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M-A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Heintz, U.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Fisher, Wade/N-4491-2013; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Bolton, Tim/A-7951-2012 OI De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; FU DOE; NSF; CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 39 TC 9 Z9 9 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2010 VL 104 IS 7 AR 071801 DI 10.1103/PhysRevLett.104.071801 PG 7 WC Physics, Multidisciplinary SC Physics GA 557JD UT WOS:000274664500011 ER PT J AU Acosta, VM Bauch, E Ledbetter, MP Waxman, A Bouchard, LS Budker, D AF Acosta, V. M. Bauch, E. Ledbetter, M. P. Waxman, A. Bouchard, L-S. Budker, D. TI Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond SO PHYSICAL REVIEW LETTERS LA English DT Article ID ATOMIC MAGNETOMETER; DEFECT CENTERS; SPIN; MICROSCOPY; NMR AB The temperature dependence of the magnetic-resonance spectra of nitrogen-vacancy (NV(-)) ensembles in the range of 280-330 K was studied. Four samples prepared under different conditions were analyzed with NV(-) concentrations ranging from 10 ppb to 15 ppm. For all samples, the axial zero-field splitting (ZFS) parameter D was found to vary significantly with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter E was nonzero (between 4 and 11 MHz) in all samples, and exhibited a temperature dependence of dE/(EdT) = -1.4(3) x 10(-4) K(-1). The results might be accounted for by considering local thermal expansion. The temperature dependence of the ZFS parameters presents a significant challenge for diamond magnetometers and may ultimately limit their bandwidth and sensitivity. C1 [Acosta, V. M.; Bauch, E.; Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bauch, E.] Tech Univ Berlin, D-10623 Berlin, Germany. [Waxman, A.] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. [Bouchard, L-S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Acosta, VM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM vmacosta@berkeley.edu; budker@berkeley.edu RI Acosta, Victor/G-8176-2011; Budker, Dmitry/F-7580-2016; OI Budker, Dmitry/0000-0002-7356-4814; Acosta, Victor/0000-0003-0058-9954 FU NSF [PHY-0855552]; ONR-MURI FX The authors are grateful to A. Gali, C. Santori, P. Hemmer, F. Jelezko, E. Corsini, and O. Sushkov for valuable discussions, and R. Folman for support. This work was supported by NSF grant PHY-0855552 and ONR-MURI. NR 34 TC 109 Z9 110 U1 3 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2010 VL 104 IS 7 AR 070801 DI 10.1103/PhysRevLett.104.070801 PG 4 WC Physics, Multidisciplinary SC Physics GA 557JD UT WOS:000274664500008 PM 20366868 ER PT J AU Appelquist, T Avakian, A Babich, R Brower, RC Cheng, M Clark, MA Cohen, SD Fleming, GT Kiskis, J Neil, ET Osborn, JC Rebbi, C Schaich, D Vranas, P AF Appelquist, T. Avakian, A. Babich, R. Brower, R. C. Cheng, M. Clark, M. A. Cohen, S. D. Fleming, G. T. Kiskis, J. Neil, E. T. Osborn, J. C. Rebbi, C. Schaich, D. Vranas, P. TI Toward TeV Conformality SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAUGE-THEORIES; SCALE; HYPERCOLOR AB We study the chiral properties of an SU(3) gauge theory with N(f) massless Dirac fermions in the fundamental representation when N(f) is increased from 2 to 6. For N(f) = 2, our lattice simulations lead to a value of <(psi) over bar psi >/F(3), where F is the Nambu-Goldstone-boson decay constant and <(psi) over bar psi > is the chiral condensate, which agrees with the measured QCD value. For N(f) = 6, this ratio shows significant enhancement, presaging an even larger enhancement anticipated as N(f) increases further, toward the critical value for transition from confinement to infrared conformality. C1 [Appelquist, T.; Fleming, G. T.; Neil, E. T.] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. [Avakian, A.; Babich, R.; Brower, R. C.; Cohen, S. D.; Rebbi, C.; Schaich, D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Cheng, M.; Vranas, P.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. [Clark, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Clark, M. A.] Harvard Univ, Initiat Innovat Comp, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kiskis, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Osborn, J. C.] Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Appelquist, T (reprint author), Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. RI Schaich, David/J-6644-2013; Fleming, George/L-6614-2013; OI Schaich, David/0000-0002-9826-2951; Fleming, George/0000-0002-4987-7167; Cohen, Saul/0000-0001-6804-3320 FU National Nuclear Security Agency and Office of Science; U.S. Department of Energy; U.S. National Science Foundation FX We thank LLNL and the Multiprogrammatic and Institutional Computing program for time on the BlueGene/L supercomputer, and the Aspen Center for Physics. This work was supported by the National Nuclear Security Agency and Office of Science (High Energy Physics), U.S. Department of Energy; and by the U.S. National Science Foundation. NR 20 TC 47 Z9 47 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2010 VL 104 IS 7 AR 071601 DI 10.1103/PhysRevLett.104.071601 PG 4 WC Physics, Multidisciplinary SC Physics GA 557JD UT WOS:000274664500010 PM 20366870 ER PT J AU Nornberg, MD Ji, H Schartman, E Roach, A Goodman, J AF Nornberg, M. D. Ji, H. Schartman, E. Roach, A. Goodman, J. TI Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETOROTATIONAL INSTABILITY; INERTIAL WAVES; MAGNETIC-FIELD; EARTHS CORE; FLOW; OSCILLATIONS; TURBULENCE; DISKS AB The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability. C1 Ctr Magnet Self Org Lab & Astrophys Plasmas, Princeton, NJ 08543 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Nornberg, MD (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. OI Nornberg, Mark/0000-0003-1786-4190 FU NASA [ATP03-0084-0106, APRA04-0000-0152]; DOE [DE-AC0209CH11466]; NSF [AST0607472] FX We thank Chris Finlay for helpful discussions and pointing out valuable references and Hans Rinderknecht for his contributions on dispersion relation calculations as a senior project of Princeton University. This work was funded under NASA Grants No. ATP03-0084-0106 and No. APRA04-0000-0152, DOE Contract No. DE-AC0209CH11466, and NSF Grant No. AST0607472. NR 32 TC 24 Z9 24 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2010 VL 104 IS 7 AR 074501 DI 10.1103/PhysRevLett.104.074501 PG 4 WC Physics, Multidisciplinary SC Physics GA 557JD UT WOS:000274664500030 PM 20366890 ER PT J AU Ristivojevic, Z Japaridze, GI Nattermann, T AF Ristivojevic, Zoran Japaridze, George I. Nattermann, Thomas TI Spin Filtering by Field-Dependent Resonant Tunneling SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIMENSIONAL ELECTRON-GAS; LUTTINGER-LIQUID; CONDUCTANCE; TRANSPORT AB We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong. C1 [Ristivojevic, Zoran; Nattermann, Thomas] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Ristivojevic, Zoran] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Japaridze, George I.] Andronikashvili Inst Phys, GE-0177 Tbilisi, Rep of Georgia. [Japaridze, George I.] Ilia State Univ, GE-0162 Tbilisi, Rep of Georgia. RP Ristivojevic, Z (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. FU Deutsche Forschungsgemeinschaft [NA222/5-2, SFB 608 (D4)] FX We thank L. Chen and A. Petkovic for helpful discussions. This work is supported by the Deutsche Forschungsgemeinschaft under the grant NA222/5-2 and through SFB 608 (D4). NR 26 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2010 VL 104 IS 7 AR 076401 DI 10.1103/PhysRevLett.104.076401 PG 4 WC Physics, Multidisciplinary SC Physics GA 557JD UT WOS:000274664500039 PM 20366899 ER PT J AU Zhu, LJ Ma, R Sheng, L Liu, M Sheng, DN AF Zhu, Lijun Ma, Rong Sheng, Li Liu, Mei Sheng, Dong-Ning TI Universal Thermoelectric Effect of Dirac Fermions in Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH MAGNETIC-FIELD; INVERSION LAYER; TRANSITIONS; PHASE AB We numerically study the thermoelectric transports of Dirac fermions in graphene in the presence of a strong magnetic field and disorder. We find that the thermoelectric transport coefficients demonstrate universal behavior depending on the ratio between the temperature and the width of the disorder-broadened Landau levels (LLs). The transverse thermoelectric conductivity alpha(xy) reaches a universal quantum value at the center of each LL in the high temperature regime, and it has a linear temperature dependence at low temperatures. The calculated Nernst signal has a peak at the central LL with heights of the order of k(B)/e, and changes sign near other LLs, while the thermopower has an opposite behavior, in good agreement with experimental data. The validity of the generalized Mott relation between the thermoelectric and electrical transport coefficients is verified in a wide range of temperatures. C1 [Zhu, Lijun; Ma, Rong; Sheng, Dong-Ning] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Zhu, Lijun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Lijun] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Ma, Rong; Liu, Mei] Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China. [Sheng, Li] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. [Sheng, Li] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. RP Zhu, LJ (reprint author), Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. FU U.S. DOE [DE-FG02-06ER46305, DE-AC52-06NA25396]; NSF [DMR-0605696, 0906816, PHY05-51164]; MRSEC [DMR-0819860]; China Scholarship Council; Scientific Research Foundation of Graduate School of Southeast University of China; NSFC [10874066]; National Basic Research Program of China [2007CB925104, 2009CB929504]; doctoral foundation of Chinese Universities [20060286044] FX This work is supported by the U.S. DOE Grant No. DE-FG02-06ER46305 (L. Z, D. N. S), the U. S. DOE at LANL under Contract No. DE-AC52-06NA25396 (L. Z), and the NSF Grants No. DMR-0605696 and No. 0906816 (R. M, D. N. S). We also acknowledge partial support from Princeton MRSEC Grant No. DMR-0819860, the KITP through the NSF Grant No. PHY05-51164, the State Scholarship Fund from the China Scholarship Council, the Scientific Research Foundation of Graduate School of Southeast University of China (R. M), the NSFC Grant No. 10874066, the National Basic Research Program of China under Grants No. 2007CB925104 and No. 2009CB929504, (L. S), and the doctoral foundation of Chinese Universities under Grant No. 20060286044 (M. L). NR 20 TC 33 Z9 33 U1 1 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 19 PY 2010 VL 104 IS 7 AR 076804 DI 10.1103/PhysRevLett.104.076804 PG 4 WC Physics, Multidisciplinary SC Physics GA 557JD UT WOS:000274664500044 PM 20366904 ER PT J AU Tagmount, A Wang, M Lindquist, E Tanaka, Y Teranishi, KS Sunagawa, S Wong, M Stillman, JH AF Tagmount, Abderrahmane Wang, Mei Lindquist, Erika Tanaka, Yoshihiro Teranishi, Kristen S. Sunagawa, Shinichi Wong, Mike Stillman, Jonathon H. TI The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database SO PLOS ONE LA English DT Article ID THERMAL TOLERANCE LIMITS; GENUS PETROLISTHES; IMPLEMENTATION; IDENTIFICATION; ACCLIMATION; CRUSTACEANS; PHYLOGENY; CINCTIPES; GENOMICS; COPEPODS AB Background: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. Methodology/Principal Findings: A set of similar to 30K unique sequences (UniSeqs) representing similar to 19K clusters were generated from similar to 98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases. Conclusions/Significance: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in EST library sequencing approaches, and thus represent a rich resource for studies of environmental genomics. C1 [Tagmount, Abderrahmane; Tanaka, Yoshihiro; Teranishi, Kristen S.; Stillman, Jonathon H.] San Francisco State Univ, Romberg Tiburon Ctr, Tiburon, CA USA. [Tagmount, Abderrahmane; Tanaka, Yoshihiro; Teranishi, Kristen S.; Stillman, Jonathon H.] San Francisco State Univ, Dept Biol, Tiburon, CA USA. [Wang, Mei; Lindquist, Erika] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Sunagawa, Shinichi] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. [Wong, Mike] San Francisco State Univ, Ctr Comp Life Sci, San Francisco, CA 94132 USA. [Stillman, Jonathon H.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. RP Tagmount, A (reprint author), San Francisco State Univ, Romberg Tiburon Ctr, Tiburon, CA USA. EM stillmaj@sfsu.edu RI Sunagawa, Shinichi/D-9715-2011 OI Sunagawa, Shinichi/0000-0003-3065-0314 FU National Science Foundation NSF-IOB [IOB 0533920]; San Francisco State University Center for Computing in the Life Sciences; San Francisco State University; University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Los Alamos National Laboratory [W-7405-ENG-36] FX This work was supported by National Science Foundation NSF-IOB 0533920 to J.H.S. (http://www.nsf.gov), a San Francisco State University Center for Computing in the Life Sciences Mini-Grant to J.H.S. (http://cs.sfsu.edu/ccls/), a San Francisco State University Presidential Mini-Grant to J.H.S. (http://www.sfsu.edu), and DNA sequencing was performed as a part of a 2006 Community Sequencing Project (http://www.jgi.doe.gov/sequencing/cspseqplans2006.html), under the auspices of the US Department of Energy's Office of Science, Biological, and Environmental Research Program, and by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and Los Alamos National Laboratory under Contract No. W-7405-ENG-36. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 38 TC 17 Z9 17 U1 1 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 19 PY 2010 VL 5 IS 2 AR e9327 DI 10.1371/journal.pone.0009327 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 560SS UT WOS:000274923700025 PM 20174471 ER PT J AU Borucki, WJ Koch, D Basri, G Batalha, N Brown, T Caldwell, D Caldwell, J Christensen-Dalsgaard, J Cochran, WD DeVore, E Dunham, EW Dupree, AK Gautier, TN Geary, JC Gilliland, R Gould, A Howell, SB Jenkins, JM Kondo, Y Latham, DW Marcy, GW Meibom, S Kjeldsen, H Lissauer, JJ Monet, DG Morrison, D Sasselov, D Tarter, J Boss, A Brownlee, D Owen, T Buzasi, D Charbonneau, D Doyle, L Fortney, J Ford, EB Holman, MJ Seager, S Steffen, JH Welsh, WF Rowe, J Anderson, H Buchhave, L Ciardi, D Walkowicz, L Sherry, W Horch, E Isaacson, H Everett, ME Fischer, D Torres, G Johnson, JA Endl, M MacQueen, P Bryson, ST Dotson, J Haas, M Kolodziejczak, J Van Cleve, J Chandrasekaran, H Twicken, JD Quintana, EV Clarke, BD Allen, C Li, J Wu, H Tenenbaum, P Verner, E Bruhweiler, F Barnes, J Prsa, A AF Borucki, William J. Koch, David Basri, Gibor Batalha, Natalie Brown, Timothy Caldwell, Douglas Caldwell, John Christensen-Dalsgaard, Jorgen Cochran, William D. DeVore, Edna Dunham, Edward W. Dupree, Andrea K. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald Gould, Alan Howell, Steve B. Jenkins, Jon M. Kondo, Yoji Latham, David W. Marcy, Geoffrey W. Meibom, Soren Kjeldsen, Hans Lissauer, Jack J. Monet, David G. Morrison, David Sasselov, Dimitar Tarter, Jill Boss, Alan Brownlee, Don Owen, Toby Buzasi, Derek Charbonneau, David Doyle, Laurance Fortney, Jonathan Ford, Eric B. Holman, Matthew J. Seager, Sara Steffen, Jason H. Welsh, William F. Rowe, Jason Anderson, Howard Buchhave, Lars Ciardi, David Walkowicz, Lucianne Sherry, William Horch, Elliott Isaacson, Howard Everett, Mark E. Fischer, Debra Torres, Guillermo Johnson, John Asher Endl, Michael MacQueen, Phillip Bryson, Stephen T. Dotson, Jessie Haas, Michael Kolodziejczak, Jeffrey Van Cleve, Jeffrey Chandrasekaran, Hema Twicken, Joseph D. Quintana, Elisa V. Clarke, Bruce D. Allen, Christopher Li, Jie Wu, Haley Tenenbaum, Peter Verner, Ekaterina Bruhweiler, Frederick Barnes, Jason Prsa, Andrej TI Kepler Planet-Detection Mission: Introduction and First Results SO SCIENCE LA English DT Article ID EXOPLANETS; HAT-P-7B; EARTH; FIELD; STAR AB The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (similar to 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets. C1 [Borucki, William J.; Koch, David; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; Haas, Michael] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Basri, Gibor; Marcy, Geoffrey W.; Anderson, Howard; Walkowicz, Lucianne; Isaacson, Howard] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Batalha, Natalie] San Jose State Univ, San Jose, CA 95192 USA. [Brown, Timothy] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Tarter, Jill; Doyle, Laurance; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D.; Quintana, Elisa V.; Clarke, Bruce D.; Li, Jie; Wu, Haley; Tenenbaum, Peter] SETI Inst, Mountain View, CA 94043 USA. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Aarhus, Denmark. [Cochran, William D.; Endl, Michael; MacQueen, Phillip] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dupree, Andrea K.; Geary, John C.; Latham, David W.; Meibom, Soren; Sasselov, Dimitar; Charbonneau, David; Holman, Matthew J.; Buchhave, Lars; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gilliland, Ronald] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Monet, David G.] US Naval Observ, Flagstaff, AZ 86001 USA. [Ford, Eric B.] Univ Florida, Gainesville, FL 32611 USA. [Everett, Mark E.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Howell, Steve B.; Sherry, William] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Fischer, Debra] Yale Univ, New Haven, CT 06520 USA. [Caldwell, John] York Univ, N York, ON M3J 1P3, Canada. [Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA. [Boss, Alan] Carnegie Inst Washington, Washington, DC 20015 USA. [Owen, Toby] Univ Hawaii, Hilo, HI 96720 USA. [Brownlee, Don] Univ Washington, Seattle, WA 98195 USA. [Buzasi, Derek] Eureka Sci, Oakland, CA 94602 USA. [Horch, Elliott] So Connecticut State Univ, New Haven, CT 06515 USA. [Fortney, Jonathan] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Seager, Sara] MIT, Cambridge, MA 02139 USA. [Steffen, Jason H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Welsh, William F.] San Diego State Univ, San Diego, CA 92182 USA. [Ciardi, David; Johnson, John Asher] CALTECH, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Kondo, Yoji] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20025 USA. [Kolodziejczak, Jeffrey] George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Allen, Christopher] Orbital Sci, Mountain View, CA 94043 USA. [Verner, Ekaterina; Bruhweiler, Frederick] Catholic Univ Amer, Washington, DC 20064 USA. [Barnes, Jason] Univ Idaho, Moscow, ID 83844 USA. [Prsa, Andrej] Villanova Univ, Villanova, PA 19085 USA. RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM William.J.Borucki@nasa.gov RI Barnes, Jason/B-1284-2009; Steffen, Jason/A-4320-2013; rowe, james/C-3661-2013; Caldwell, Douglas/L-7911-2014; OI Barnes, Jason/0000-0002-7755-3530; Ciardi, David/0000-0002-5741-3047; rowe, james/0000-0001-7216-8679; Buchhave, Lars A./0000-0003-1605-5666; Caldwell, Douglas/0000-0003-1963-9616; Fortney, Jonathan/0000-0002-9843-4354 FU NASA FX Kepler was competitively selected as the 10th Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. NR 33 TC 946 Z9 947 U1 30 U2 199 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 19 PY 2010 VL 327 IS 5968 BP 977 EP 980 DI 10.1126/science.1185402 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 556XE UT WOS:000274625800034 PM 20056856 ER PT J AU Ng, DCM Song, T Siu, SO Siu, CK Laskin, J Chut, IK AF Ng, Dominic C. M. Song, Tao Siu, S. O. Siu, C. K. Laskin, Julia Chut, Ivan K. TI Formation, Isomerization, and Dissociation of alpha-Carbon-Centered and pi-Centered Glycylglycyltryptophan Radical Cations SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ELECTRON-CAPTURE DISSOCIATION; GAS-PHASE FRAGMENTATION; MASS-SPECTROMETRY; PEPTIDE RADICALS; PRODUCT IONS; AMINO-ACIDS; GLYCINE; GENERATION; COMPLEXES; HISTIDINE AB Gas phase fragmentations of two isomeric radical cationic tripeptides of glycylglycyltryptophan-[G(center dot)GW](+) and [GGW](center dot+)-with well-defined initial radical sites at the alpha-carbon atom and the 3-methylindole ring, respectively, have been studied using collision-induced dissociation (CID), density functional theory (DFT), and Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Substantially different low-energy CID spectra were obtained for these two isomeric GGW structures, suggesting that they did not interconvert on the time scale of these experiments. DFT and RRKM calculations were used to investigate the influence of the kinetics, stabilities, and locations of the radicals on the competition between the isomerization and dissociation channels. The calculated isomerization barrier between the GGW radical cations (>35.4 kcal/mol) was slightly higher than the barrier for competitive dissociation of these species (<30.5 kcal/mol); the corresponding microcanonical rate constants for isomerization obtained from RRKM calculations were all considerably lower than the dissociation rates at all internal energies. Thus, interconversion between the GGW isomers examined in this study cannot compete with their fragmentations. C1 [Ng, Dominic C. M.; Song, Tao; Siu, S. O.; Chut, Ivan K.] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China. [Siu, C. K.] City Univ Hong Kong, Dept Biol & Chem, Kowloon, Hong Kong, Peoples R China. [Laskin, Julia] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. RP Chut, IK (reprint author), Univ Hong Kong, Dept Chem, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. EM ivankchu@hku.hk RI Siu, Chi-Kit/E-5316-2010; Song, Tao/D-8800-2012; Laskin, Julia/H-9974-2012 OI Siu, Chi-Kit/0000-0002-1162-6899; Laskin, Julia/0000-0002-4533-9644 FU University of Hong Kong (UGC); Hong Kong Research Grants Council, Special Administrative Region, China [HKU 7018/06P, HKU 7012/08P]; U. S. Department of Energy; City University of Hong Kong FX Most of the research described in this manuscript was supported by the University of Hong Kong (UGC) and the Hong Kong Research Grants Council, Special Administrative Region, China (Project No. HKU 7018/06P and Project No. HKU 7012/08P). D.C.M.N. and T.S. thank the Hong Kong RGC for supporting their studentship. J.L. acknowledges support from the Chemical Sciences Division, Office of Basic Energy Sciences of the U. S. Department of Energy. Part of the work presented here was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. C.K.S. is grateful for financial support from the City University of Hong Kong. NR 57 TC 24 Z9 24 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 18 PY 2010 VL 114 IS 6 BP 2270 EP 2280 DI 10.1021/jp908599a PG 11 WC Chemistry, Physical SC Chemistry GA 553GV UT WOS:000274355400023 PM 20099850 ER PT J AU Chi, FL Guo, YN Liu, J Liu, YL Huo, QS AF Chi, Fangli Guo, Ya-Nan Liu, Jun Liu, Yunling Huo, Qisheng TI Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles for Drug Release SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BLOCK-COPOLYMER MICELLES; DELIVERY-SYSTEMS; POLYMERIC MICELLES; CANCER-THERAPY; PYRENE; GEL; SOLUBILIZATION; NANOMEDICINE; FLUORESCENCE; AGGREGATION AB Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to similar to 90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve the drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles. C1 [Chi, Fangli; Guo, Ya-Nan; Liu, Yunling; Huo, Qisheng] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Huo, QS (reprint author), Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. EM huoqisheng@jlu.edu.cn FU National Nature Science Foundation of China [20788101, 20671041]; Pacific Northwest National Laboratory (PNNL) of USA; Office of Basic Energy Sciences (BES); U.S. Department of Energy (DOE); Battelle Memorial Institute for the Department of Energy [DE-AC05-76RL01830] FX We greatly acknowledge financial support from the National Nature Science Foundation of China (Grant Nos. 20788101 and 20671041), Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) of USA, and the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under contract DE-AC05-76RL01830. NR 47 TC 31 Z9 33 U1 3 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 18 PY 2010 VL 114 IS 6 BP 2519 EP 2523 DI 10.1021/jp910460j PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 553GQ UT WOS:000274354800019 ER PT J AU Strmcnik, D Hodnik, N Hocevar, SB van der Vliet, D Zorko, M Stamenkovic, VR Pihlar, B Markovic, NM AF Strmcnik, D. Hodnik, N. Hocevar, S. B. van der Vliet, D. Zorko, M. Stamenkovic, V. R. Pihlar, B. Markovic, N. M. TI Novel Method for Fast Characterization of High-Surface-Area Electrocatalytic Materials Using a Carbon Fiber Microelectrode SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN REDUCTION ACTIVITY; ROTATING-DISK ELECTRODE; HIGH-MASS TRANSPORT; ELECTROCHEMICAL SENSORS; FUEL-CELLS; CATALYSTS; OXIDATION; HYDROGEN; POISONS; CO AB A carbon fiber microelectrode (CFME) was used for characterization of the nanoparticle catalysts as an alternative to the well-established rotating disk electrode (RDE) method. We found that the novel CFME method yielded comparable results to the RDE method when investigating the adsorption/desorption processes as well the specific activity for reactions such as the oxygen reduction reaction. Its major advantage over the RDE method is a fast sample preparation and rapid measurement, reducing significantly the time of a single sample characterization from 2-3 h to a favorable 5-10 min. C1 [Strmcnik, D.; van der Vliet, D.; Stamenkovic, V. R.; Markovic, N. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hodnik, N.; Hocevar, S. B.; Zorko, M.] Natl Inst Chem, Ljubljana 1000, Slovenia. [Pihlar, B.] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana 1000, Slovenia. RP Strmcnik, D (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Hodnik, Nejc/H-8758-2013; van der Vliet, Dennis/P-2983-2015 OI Hodnik, Nejc/0000-0002-7113-9769; van der Vliet, Dennis/0000-0002-2524-527X FU University of Chicago [DE-AC02-06CH 11357]; Argonne; LLC; Argonne National Laboratory; U.S. Department of Energy FX This work was supported under Contract No. DE-AC02-06CH 11357 by the University of Chicago and Argonne, LLC, Operator of Argonne National Laboratory, and the U.S. Department of Energy. NR 23 TC 9 Z9 9 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 18 PY 2010 VL 114 IS 6 BP 2640 EP 2644 DI 10.1021/jp908939e PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 553GQ UT WOS:000274354800037 ER PT J AU Muller, H Peters, A Chu, S AF Mueller, Holger Peters, Achim Chu, Steven TI A precision measurement of the gravitational redshift by the interference of matter waves SO NATURE LA English DT Article ID ATOMIC INTERFEROMETRY; GRAVITY; ACCELERATION; CLOCKS AB One of the central predictions of metric theories of gravity, such as general relativity, is that a clock in a gravitational potential U will run more slowly by a factor of 1 + U/c(2), where c is the velocity of light, as compared to a similar clock outside the potential(1). This effect, known as gravitational redshift, is important to the operation of the global positioning system(2), timekeeping(3,4) and future experiments with ultra-precise, space-based clocks(5) (such as searches for variations in fundamental constants). The gravitational redshift has been measured using clocks on a tower(6), an aircraft(7) and a rocket(8), currently reaching an accuracy of 7 x 10(-5). Here we show that laboratory experiments based on quantum interference of atoms(9,10) enable a much more precise measurement, yielding an accuracy of 7 x 10(-9). Our result supports the view that gravity is a manifestation of space-time curvature, an underlying principle of general relativity that has come under scrutiny in connection with the search for a theory of quantum gravity(11). Improving the redshift measurement is particularly important because this test has been the least accurate among the experiments that are required to support curved space-time theories(1). C1 [Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Peters, Achim] Humboldt Univ, Inst Phys, D-10117 Berlin, Germany. [Chu, Steven] US DOE, Washington, DC 20585 USA. RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte Hall,MS 7300, Berkeley, CA 94720 USA. EM hm@berkeley.edu RI Peters, Achim/G-3742-2010; Mueller, Holger/E-3194-2015 FU National Science Foundation [9320142, 0400866, 0652332]; Air Force Office of Scientific Research; Department of Energy; David and Lucile Packard Foundation; National Institute of Standards and Technology [60NANB9D9169]; European Science Foundation; European Space Agency; German Space Agency DLR [DLR 50 WM 0346] FX We thank F. Biraben, S.-w. Chiow, S. Herrmann, M. Hohensee, M. Kasevich, G. Tino and P. Wolf for discussions. This material is based on work supported by the National Science Foundation under grants 9320142, 0400866 and 0652332, by the Air Force Office of Scientific Research, and the Department of Energy. H. M. acknowledges support by the David and Lucile Packard Foundation and the National Institute of Standards and Technology under grant 60NANB9D9169. A. P. acknowledges support by the European Science Foundation's EUROCORES program, the European Space Agency, and the German Space Agency DLR (grant DLR 50 WM 0346). NR 30 TC 110 Z9 114 U1 4 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 18 PY 2010 VL 463 IS 7283 BP 926 EP U96 DI 10.1038/nature08776 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 556HZ UT WOS:000274582700041 PM 20164925 ER PT J AU White, JS Das, P Eskildsen, MR DeBeer-Schmitt, L Forgan, EM Bianchi, AD Kenzelmann, M Zolliker, M Gerber, S Gavilano, JL Mesot, J Movshovich, R Bauer, ED Sarrao, JL Petrovic, C AF White, J. S. Das, P. Eskildsen, M. R. DeBeer-Schmitt, L. Forgan, E. M. Bianchi, A. D. Kenzelmann, M. Zolliker, M. Gerber, S. Gavilano, J. L. Mesot, J. Movshovich, R. Bauer, E. D. Sarrao, J. L. Petrovic, C. TI Observations of Pauli paramagnetic effects on the flux line lattice in CeCoIn5 SO NEW JOURNAL OF PHYSICS LA English DT Article ID ANGLE NEUTRON-SCATTERING; MIXED-STATE; HARD SUPERCONDUCTORS; MAGNETIC-FIELD; VORTEX CORE AB From small-angle neutron scattering studies of the flux line lattice (FLL) in CeCoIn5, with magnetic field applied parallel to the crystal c-axis, we obtain the field and temperature dependence of the FLL form factor (FF), which is a measure of the spatial variation of the field in the mixed state. We extend our earlier work (Bianchi et al 2008 Science 319 177) to temperatures up to 1250 mK. Over the entire temperature range, paramagnetism in the flux line cores results in an increase of the FF with field. Near H-c2 the FF decreases again, and our results indicate that this fall-off extends outside the proposed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) region. Instead, we attribute the decrease to a paramagnetic suppression of Cooper pairing. At higher temperatures, a gradual crossover toward more conventional mixed state behavior is observed. C1 [White, J. S.; Forgan, E. M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Das, P.; Eskildsen, M. R.; DeBeer-Schmitt, L.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bianchi, A. D.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Bianchi, A. D.] Univ Montreal, Regrp Quebecois Mat Pointe, Montreal, PQ H3C 3J7, Canada. [Kenzelmann, M.; Zolliker, M.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Gerber, S.; Gavilano, J. L.; Mesot, J.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Mesot, J.] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland. [Movshovich, R.; Bauer, E. D.; Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [White, J. S.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. RP White, JS (reprint author), Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. EM jonathan.white@psi.ch RI Bauer, Eric/D-7212-2011; Eskildsen, Morten/E-7779-2011; Gerber, Simon/A-4566-2012; Das, Pinaki/C-2877-2012; Gavilano, Jorge/H-4910-2012; White, Jonathan/G-2742-2010; DeBeer-Schmitt, Lisa/I-3313-2015; Petrovic, Cedomir/A-8789-2009; Kenzelmann, Michel/A-8438-2008; Bianchi, Andrea/E-9779-2010 OI Gerber, Simon/0000-0002-5717-2626; Bauer, Eric/0000-0003-0017-1937; White, Jonathan/0000-0001-7738-0150; DeBeer-Schmitt, Lisa/0000-0001-9679-3444; Petrovic, Cedomir/0000-0001-6063-1881; Kenzelmann, Michel/0000-0001-7913-4826; Bianchi, Andrea/0000-0001-9340-6971 FU EPSRC of the UK; US NSF [DMR-0804887]; Alfred P Sloan Foundation; NSERC (Canada); FQRNT (Quebec); Canada Research Chair Foundation; Swiss National Centre of Competence in Research program; European Commission [RII3-CT-2003-505925] FX We acknowledge valuable discussions with M Ichioka and K Machida. Experiments were performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. We acknowledge support from the EPSRC of the UK, the US NSF through grant DMR-0804887, the Alfred P Sloan Foundation, NSERC (Canada), FQRNT (Quebec), the Canada Research Chair Foundation, the Swiss National Centre of Competence in Research program 'Materials with Novel Electronic Properties', and from the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. RII3-CT-2003-505925. Work at Los Alamos was performed under the auspices of the US DOE. Part of this work was carried out at the Brookhaven National Laboratory, which is operated for the US Department of Energy by Brookhaven Science Associates (DE-Ac02-98CH10886). NR 49 TC 17 Z9 17 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 18 PY 2010 VL 12 AR 023026 DI 10.1088/1367-2630/12/2/023026 PG 11 WC Physics, Multidisciplinary SC Physics GA 558NE UT WOS:000274749500002 ER PT J AU Munro, JB Altman, RB Tung, CS Sanbonmatsu, KY Blanchard, SC AF Munro, James B. Altman, Roger B. Tung, Chang-Shung Sanbonmatsu, Kevin Y. Blanchard, Scott C. TI A fast dynamic mode of the EF-G-bound ribosome SO EMBO JOURNAL LA English DT Article DE EF-G; ribosome; single molecule; translation; translocation ID ELONGATION-FACTOR-G; TRANSFER-RNA-BINDING; ESCHERICHIA-COLI RIBOSOMES; MESSENGER-RNA; HYBRID-STATE; 70S RIBOSOME; TRANSLATION ELONGATION; INTERSUBUNIT MOVEMENT; CRYSTAL-STRUCTURE; SINGLE RIBOSOMES AB A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two-and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control. The EMBO Journal (2010) 29, 770-781. doi: 10.1038/emboj.2009.384; Published online 24 December 2009 C1 [Munro, James B.; Altman, Roger B.; Blanchard, Scott C.] Cornell Univ, Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA. [Tung, Chang-Shung; Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RP Blanchard, SC (reprint author), Cornell Univ, Weill Cornell Med Coll, Dept Physiol & Biophys, 1300 York Ave,Whitney 205, New York, NY 10021 USA. EM scb2005@med.cornell.edu RI Blanchard, Scott/A-5804-2009 FU NIH [1R01GM079238-01]; Alice Bohmfalk Charitable Trust; NYSTAR FX We thank Mark Cava (RSP Amino Acids) for his assistance with fluorescently labelling EF-G, and members of the Blanchard laboratory for critical discussions during the writing of this paper. This study was supported by NIH grant 1R01GM079238-01, the Alice Bohmfalk Charitable Trust, and NYSTAR. NR 56 TC 48 Z9 48 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD FEB 17 PY 2010 VL 29 IS 4 BP 770 EP 781 DI 10.1038/emboj.2009.384 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 556PX UT WOS:000274604600008 PM 20033061 ER PT J AU Edwards, MK Fiskum, SK Shimskey, RW Peterson, RA AF Edwards, Matthew K. Fiskum, Sandra K. Shimskey, Rick W. Peterson, Reid A. TI Leaching Characteristics of Hanford Ferrocyanide Wastes SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH](3), and boehmite AlO[OH]), phosphates [PO(4)(3-)], chromium [Cr(3+)], and, to a lesser extent, oxalates [C(2)O(4)(2-)]). Ferrocyanide waste released solid phase (137)Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the (137)Cs during leaching. C1 [Edwards, Matthew K.; Fiskum, Sandra K.; Shimskey, Rick W.; Peterson, Reid A.] Pacific NW Natl Lab, Dept Separat & Radiochem, Richland, WA 99352 USA. RP Edwards, MK (reprint author), Pacific NW Natl Lab, Dept Separat & Radiochem, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM matthew.edwards@pnl.gov OI Peterson, Reid/0000-0003-3368-1896 NR 16 TC 3 Z9 3 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 17 PY 2010 VL 49 IS 4 BP 1792 EP 1798 DI 10.1021/ie901034m PG 7 WC Engineering, Chemical SC Engineering GA 553CM UT WOS:000274342500042 ER PT J AU Carpenter, DL Bain, RL Davis, RE Dutta, A Feik, CJ Gaston, KR Jablonski, W Phillips, SD Nimlos, MR AF Carpenter, Daniel L. Bain, Richard L. Davis, Ryan E. Dutta, Abhijit Feik, Calvin J. Gaston, Katherine R. Jablonski, Whitney Phillips, Steven D. Nimlos, Mark R. TI Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric Study and Comparison with Literature SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID BIOMASS GASIFICATION; STEAM GASIFICATION; FLUIDIZED-BED; MOLECULAR CHARACTERIZATION; PYROLYSIS; FUELS AB A parametric study of the gasification of four feedstocks (corn stover, switchgrass, wheat straw, and wood) has been performed on an experimental, pilot-scale (0.5 ton/day) gasification facility. A comparison was made of the performance of the gasifier as a function of feedstock, in terms of the syngas production and composition. In these experiments, pelletized feedstock was used, so that the shapes and sizes of the materials did not influence the results. A total of 22 statistically designed experimental conditions were examined for each feedstock, including the effects of varying the temperature of the fluidized bed, the temperature of the secondary thermal cracker, and the steam-to-biomass ratio. For each experimental condition, the permanent-gas composition was measured continuously by gas chromatography (GC). Tars were measured continuously using a molecular-beam mass spectrometer (MBMS). Sulfur analysis by GC was also conducted for three of the feedstocks Studied. The results from this study show that there were significant differences between the feedstocks studied in terms of light gases formed, but less apparent variation in tar formation. In general, the variations in products were smaller at higher temperatures. A preliminary analysis of gasifier efficiency was performed using an Aspen Plus process model for selected gasification conditions. Finally, a comparison was made between the results of this work and other similar biomass gasification studies. C1 [Carpenter, Daniel L.; Bain, Richard L.; Davis, Ryan E.; Dutta, Abhijit; Feik, Calvin J.; Gaston, Katherine R.; Jablonski, Whitney; Phillips, Steven D.; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Carpenter, DL (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM daniel.carpenter@nrel.gov OI Gaston, Katherine/0000-0002-1162-0905 FU U.S. Department of Energy [DE-AC36-99GO10337] FX This work was supported by the U.S. Department of Energy's Biomass Program, under Contract DE-AC36-99GO10337 with the National Renewable Energy Laboratory. The authors thank Justin Sluiter, Courtney Payne, Robert Sykes, and Dr. Ed Wolfrum for providing the biomass wet chemical analysis at NREL. The authors also thank Ray Hansen, Jason Hrdlicka, Rick French, Marc Pomeroy, and Jason Thibodeaux for pilot-plant and analytical equipment operation during several round-the-clock campaigns. NR 23 TC 64 Z9 64 U1 6 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 17 PY 2010 VL 49 IS 4 BP 1859 EP 1871 DI 10.1021/ie900595m PG 13 WC Engineering, Chemical SC Engineering GA 553CM UT WOS:000274342500050 ER PT J AU Revil, A Mendonca, CA Atekwana, EA Kulessa, B Hubbard, SS Bohlen, KJ AF Revil, A. Mendonca, C. A. Atekwana, E. A. Kulessa, B. Hubbard, S. S. Bohlen, K. J. TI Understanding biogeobatteries: Where geophysics meets microbiology SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID SELF-POTENTIAL MEASUREMENTS; MANUFACTURED-GAS PLANT; ELECTRON-TRANSFER; GEOBACTER-SULFURREDUCENS; REDOX CONDITIONS; FUEL-CELLS; CONTAMINATED GROUNDWATER; SOIL MIGRATION; ORE-DEPOSITS; ELECTRICITY AB Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donors and electron acceptors. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term "biogeobattery." After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field scale investigations conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system. C1 [Revil, A.; Bohlen, K. J.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Revil, A.] Univ Savoie, CNRS, UMR 5559, Equipe Volcan,LGIT, Le Bourget Du Lac, France. [Mendonca, C. A.] Inst Astron, BR-05508090 Sao Paulo, Brazil. [Atekwana, E. A.] Oklahoma State Univ, Boone Pickens Sch Geol, Stillwater, OK 74078 USA. [Kulessa, B.] Swansea Univ, Sch Environm & Soc, Swansea SA2 8PP, W Glam, Wales. [Hubbard, S. S.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Revil, A (reprint author), Colorado Sch Mines, Dept Geophys, 1500 Illinois St, Golden, CO 80401 USA. EM arevil@mines.edu; mendonca@iag.usp.br; estella.atekwana@okstate.edu; b.kulessa@swansea.ac.uk; sshubbard@lbl.gov RI Mendonca, Carlos/E-7783-2015; Hubbard, Susan/E-9508-2010 OI Mendonca, Carlos/0000-0003-0400-6373; FU Office of Science (BER), U.S. Department of Energy [DE-AC0205CH11231, DE-FG02-08ER646559, DE-FG02-07ER64413]; CAM; Brazilian Research Council CNPq [482381/2007-8] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, grants DE-AC0205CH11231, DE-FG02-08ER646559, and DE-FG02-07ER64413, and a CAM Scholarship to C. A. Mendonca from the Brazilian Research Council CNPq 482381/2007-8. We thank E. E. Roden and Y. Gorby for fruitful discussions. We want to express our deep gratitude to three exceptional referees who provided very useful comments to our manuscript. NR 68 TC 38 Z9 40 U1 7 U2 45 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD FEB 17 PY 2010 VL 115 AR G00G02 DI 10.1029/2009JG001065 PG 22 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 558ZS UT WOS:000274789700001 ER PT J AU Lee, HO Kurita, N Ho, PC Condron, CL Klavins, P Kauzlarich, SM Maple, MB Movshovich, R Bauer, ED Thompson, JD Fisk, Z AF Lee, Han-Oh Kurita, Nobuyuki Ho, Pei-chun Condron, Cathie L. Klavins, Peter Kauzlarich, Susan M. Maple, M. B. Movshovich, R. Bauer, E. D. Thompson, J. D. Fisk, Z. TI Weak coupling magnetism in Ce4Pt12Sn25: a small exchange limit in the Doniach phase diagram SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FERMI-LIQUID BEHAVIOR; KONDO-LATTICE; ANTIFERROMAGNETISM; ALLOYS; METALS; FIELD; HEAT AB Magnetic susceptibility, magnetization, specific heat, and electrical resistivity studies on single crystals of Ce4Pt12Sn25 reveal an antiferromagnetic transition at T-N = 0.19 K, which develops from a paramagnetic state with a very large specific heat coefficient (C/T) of 14 J mol(-1) K-2-Ce just above T-N. On the basis of its crystal structure and these measurements, we argue that a weak magnetic exchange interaction in Ce4Pt12Sn25 is responsible for its low ordering temperature and a negligible Kondo-derived contribution to physical properties above T-N. The anomalous enhancement of specific heat above T-N is suggested to be related, in part, to weak geometric frustration of f - moments in this compound. C1 [Lee, Han-Oh; Kurita, Nobuyuki; Movshovich, R.; Bauer, E. D.; Thompson, J. D.; Fisk, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ho, Pei-chun] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Condron, Cathie L.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Klavins, Peter] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Lee, HO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Kauzlarich, Susan/H-1439-2011; OI Bauer, Eric/0000-0003-0017-1937 FU NSF-DMR [0854781, 0433560, 0802478, DMR-0600742] FX This work was supported by NSF-DMR 0854781 and NSF-DMR 0433560 (HL and ZF), NSF-DMR 0802478(PCH and MBM), and DMR-0600742(CLC and SMK). Work at Los Alamos was performed under the auspices of the US Department of Energy/Office of Science. NR 19 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 17 PY 2010 VL 22 IS 6 AR 065601 DI 10.1088/0953-8984/22/6/065601 PG 5 WC Physics, Condensed Matter SC Physics GA 549FY UT WOS:000274033700014 PM 21389371 ER PT J AU Murphy, WJ Higginbotham, A Kimminau, G Barbrel, B Bringa, EM Hawreliak, J Kodama, R Koenig, M McBarron, W Meyers, MA Nagler, B Ozaki, N Park, N Remington, B Rothman, S Vinko, SM Whitcher, T Wark, JS AF Murphy, W. J. Higginbotham, A. Kimminau, G. Barbrel, B. Bringa, E. M. Hawreliak, J. Kodama, R. Koenig, M. McBarron, W. Meyers, M. A. Nagler, B. Ozaki, N. Park, N. Remington, B. Rothman, S. Vinko, S. M. Whitcher, T. Wark, J. S. TI The strength of single crystal copper under uniaxial shock compression at 100 GPa SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; STRAIN-RATE; PRESSURE; WAVES; DEFORMATION; SIMULATION; PLASTICITY; RANGE AB In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to 100 GPa pressures at strain rates over two orders of magnitude higher than those achieved previously. For shocks in the [001] direction there is a significant associated shear strain, while shocks in the [111] direction give negligible shear strain. We infer, using molecular dynamics simulations and VISAR (standing for 'velocity interferometer system for any reflector') measurements, that the strength of the material increases dramatically ( to similar to 1 GPa) for these extreme strain rates. C1 [Murphy, W. J.; Higginbotham, A.; Kimminau, G.; Nagler, B.; Vinko, S. M.; Whitcher, T.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Barbrel, B.; Koenig, M.] Univ Paris 06, CNRS, CEA,Lab Utilisat Laser Intenses, Ecole Polytech,UMR7605, F-91128 Palaiseau, France. [Bringa, E. M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. [Hawreliak, J.; Remington, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kodama, R.; Ozaki, N.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [McBarron, W.; Park, N.; Rothman, S.] AWE, Mat Modelling Grp, Reading RG7 4PR, Berks, England. [Meyers, M. A.] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA. RP Murphy, WJ (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM justin.wark@physics.ox.ac.uk RI Higginbotham, Andrew/F-7910-2011; Bringa, Eduardo/F-8918-2011; Koenig, Michel/A-2167-2012; Vinko, Sam/I-4845-2013; Kodama, Ryosuke/G-2627-2016; Meyers, Marc/A-2970-2016 OI Vinko, Sam/0000-0003-1016-0975; Meyers, Marc/0000-0003-1698-5396 FU AWE Aldermaston; Daresbury Laboratory through the NorthWest Science Fund; LLNL [B566832]; EU RTN FLASH; JSPS; MEXT FX The authors gratefully acknowledge financial support from a number of organizations. WJM was supported by AWE Aldermaston. AH was supported by Daresbury Laboratory through the NorthWest Science Fund. GK has partial support from LLNL under subcontract No. B566832. BN acknowledges support from the EU RTN FLASH. NO was supported by the Core-to-Core Programme from JSPS and the Global COE Programme from MEXT. Resources for large scale computing were provided under the Institutional Grand Computing Challenge at LLNL. The authors thank the target area and laser staff of the VULCAN laser for their help in performing the experiment, and Ray Smith for helpful discussions concerning VISAR. NR 30 TC 42 Z9 43 U1 5 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 17 PY 2010 VL 22 IS 6 AR 065404 DI 10.1088/0953-8984/22/6/065404 PG 5 WC Physics, Condensed Matter SC Physics GA 549FY UT WOS:000274033700012 PM 21389369 ER PT J AU Wu, HC Anders, A AF Wu, Hongchen Anders, Andre TI Energetic deposition of metal ions: observation of self-sputtering and limited sticking for off-normal angles of incidence SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID PHYSICAL VAPOR-DEPOSITION; VACUUM-ARC PLASMAS; HIGH-ASPECT-RATIO; PREFERRED ORIENTATION; THIN-FILMS; SURFACES; TRENCHES; FLUX; NEUTRALIZATION; DISTRIBUTIONS AB The deposition of films under normal and off-normal angles of incidence has been investigated in order to explore the relevance of non-sticking and self-sputtering of energetic ions. Non-sticking and self-sputtering lead to the formation of neutral atoms which return to the plasma and affect its properties. The flow of energetic ions was obtained using a filtered cathodic arc system in high vacuum. The range of materials included Cu, Ag, Au, Pt, Ti and Ni. Consistent with molecular dynamics simulations published in the literature, the experiments showed that the combined effects of non-sticking and self-sputtering appear to be significant, although the relatively large error range of the experimental method would not allow us to derive quantitative data. It was shown that modest heating of the substrate and intentional introduction of oxygen background gas considerably affected the results. C1 [Wu, Hongchen; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wu, Hongchen] Beijing Aeronaut Mfg Technol Res Inst, Beijing 100024, Peoples R China. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 FU China Scholarship Committee; US Department of Energy [DE-AC02-05CH11231] FX The authors thank Dr David Hanson of the Los Alamos National Laboratory for comments and for providing the data shown in figures 1 and 2. The work was supported by the China Scholarship Committee and by the US Department of Energy under Contract No DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory. NR 50 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD FEB 17 PY 2010 VL 43 IS 6 AR 065206 DI 10.1088/0022-3727/43/6/065206 PG 7 WC Physics, Applied SC Physics GA 554BV UT WOS:000274411400011 ER PT J AU Da Re, RE Eglin, JL Carlson, CN John, KD Morris, DE Woodruff, WH Bailey, JA Batista, E Martin, RL Cotton, FA Hillard, EA Murillo, CA Sattelberger, AP Donohoe, RJ AF Da Re, Ryan E. Eglin, Judith L. Carlson, Christin N. John, Kevin D. Morris, David E. Woodruff, William H. Bailey, James A. Batista, Enrique Martin, Richard L. Cotton, F. Albert Hillard, Elizabeth A. Murillo, Carlos A. Sattelberger, Alfred P. Donohoe, Robert J. TI Nature of Bonding in Complexes Containing "Supershort" Metal-Metal Bonds. Raman and Theoretical Study of M-2(dmp)(4) [M = Cr (Natural Abundance Cr, Cr-50, and Cr-54) and Mo; dmp=2,6-Dimethoxyphenyl] SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID EFFECTIVE CORE POTENTIALS; CHROMIUM QUADRUPLE BOND; INTERNUCLEAR DISTANCES; ELECTRONIC ABSORPTION; FORCE-CONSTANTS; TRIPLE BOND; DICHROMIUM; SPECTRA; DIMOLYBDENUM; MO2(O2CCH3)4 AB We report an investigation of complexes of the type M-2(dmp)(4) (M = Mo, Cr, dmp = 2,6-dimethoxyphenyl) using resonance Raman (RR) spectroscopy, Cr isotopic substitution, and density functional theory (DFT) calculations Assignment of the Mo-Mo stretching vibration in the Mo-2 species is straightforward, as evidenced by a single resonance-enhanced band at 424 cm(-1), consistent with an essentially unmixed metal-metal stretch, and overtones of this vibration On the other hand, the Cr-2 congener has no obvious metal-metal stretching mode near 650-700 cm(-1), where empirical predictions based on the Cr-Cr distance as well as DFT calculations suggest that this vibration should appear if unmixed Instead, three bands are observed at 345, 363, and 387 cm(-1) that (a) have relative RR intensities that are sensitive to the Raman excitation frequency, (b) exhibit overtones and combinations in the RR spectra, and (c) shift in frequency upon isotopic substitution (Cr-50 and Cr-54) DFT calculations are used to model the vibrational data for the Mo-2 and Cr-2 systems. Both the DFT results and empirical predictions are in good agreement with experimental observations in the Mo-2 Complex, but both, while mutually consistent, differ radically from experiment in the Cr-2 complex Our experimental and theoretical results, especially the Cr isotope shifts, clearly demonstrate that the potential energy of the Cr-Cr stretching coordinate is distributed among several normal modes having both Cr-Cr and Cr-ligand character The general significance of these results in interpreting spectroscopic observations in terms of the nature of metal-metal multiple bonding is discussed C1 [Eglin, Judith L.; Carlson, Christin N.; John, Kevin D.; Woodruff, William H.; Donohoe, Robert J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Morris, David E.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Batista, Enrique; Martin, Richard L.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. [Da Re, Ryan E.] ITT Corp, Adv Engn & Sci, Alexandria, VA 22303 USA. [Bailey, James A.] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada. [Sattelberger, Alfred P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cotton, F. Albert; Murillo, Carlos A.] Texas A&M Univ, Dept Chem, Mol Struct & Bonding Lab, College Stn, TX 77842 USA. [Hillard, Elizabeth A.] Ecole Natl Super Chim Paris, CNRS, UMR 7576, Lab Chim & Biochim Complexes Mol, F-75231 Paris 05, France. RP John, KD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RI Morris, David/A-8577-2012; OI Hillard, Elizabeth/0000-0002-5149-0324 FU Los Alamos National Laboratory Directed Research and Development (LDRD); U S Department of Energy [DE-AC52-06NA25396]; U S. Public Health Service under NIH [DK36263] FX The authors gratefully acknowledge the Los Alamos National Laboratory Directed Research and Development (LDRD) fund for financial support LANL, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U S Department of Energy under contract DE-AC52-06NA25396 Additional funding was provided by the U S. Public Health Service under NIH Grant DK36263 to W.H.W. Dr. Basil I. Swanson (LANL) and Prof Michael D Hopkins (University of Chicago) are acknowledged for helpful discussions. NR 43 TC 8 Z9 8 U1 4 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 17 PY 2010 VL 132 IS 6 BP 1839 EP 1847 DI 10.1021/ja9055504 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 562WC UT WOS:000275085000046 PM 20092271 ER PT J AU Sawyer, KR Cahoon, JF Shanoski, JE Glascoe, EA Kling, MF Schlegel, JP Zoerb, MC Hapke, M Hartwig, JF Webster, CE Harris, CB AF Sawyer, Karma R. Cahoon, James F. Shanoski, Jennifer E. Glascoe, Elizabeth A. Kling, Matthias F. Schlegel, Jacob P. Zoerb, Matthew C. Hapke, Marko Hartwig, John F. Webster, Charles Edwin Harris, Charles B. TI Time-resolved IR Studies on the Mechanism for the Functionalization of Primary C-H Bonds by Photoactivated Cp*W(CO)(3)(Bpin) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL BORYL COMPLEXES; CATALYZED ALKENE ISOMERIZATION; EFFECTIVE CORE POTENTIALS; UV PUMP/IR PROBE; MOLECULAR CALCULATIONS; VIBRATIONAL-SPECTRA; TRANSITION-METALS; BASIS-SETS; INFRARED-SPECTROSCOPY; CORRELATION-ENERGY AB Recently, transition-metal-boryl compounds have been reported that selectively functionalize primary C-H bonds in alkanes in high yield. We have investigated this process with one of the well-defined systems that reacts under photochemical conditions using both density functional theory calculations and pico- through microsecond time-resolved IR spectroscopy UV irradiation of Cp*W(CO)(3)(Bpin) (Cp* = C-5(CH3)(5), pin = 1,2-O2C2-(CH3)(4)) in neat pentane solution primarily results in dissociation of a single CO ligand and solvation of the metal by a pentane molecule from the bath within 2 ps. The spectroscopic data imply that the resulting complex, cis-Cp*W(CO)(2)(Bpin)(pentane), undergoes C-H bond activation by a cr-bond metathesis mechanism-in 16 mu s, a terminal hydrogen on pentane appears to migrate to the Bpin ligand to form a a-borane complex, Cp*W(CO)(2)(H-Bpin)(C5H11). Our data imply that the borane ligand rotates until the boron is directly adjacent to the C5H11 ligand. In this configuration, the B-H sigma-bond is broken in favor of a B-C sigma-bond, forming Cp*W(CO)(2)(H)(C5H11-Bpin), a tungsten-hydride complex containing a weakly bound alkylboronate ester The ester is then eliminated to form Cp*W(CO)(2)(H) in approximately 170 mu s We also identify two side reactions that limit the total yield of bond activation products and explain the 72% yield previously reported for this complex C1 [Hapke, Marko; Hartwig, John F.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Sawyer, Karma R.; Cahoon, James F.; Shanoski, Jennifer E.; Glascoe, Elizabeth A.; Kling, Matthias F.; Schlegel, Jacob P.; Zoerb, Matthew C.; Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hartwig, John F.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Webster, Charles Edwin] Univ Memphis, Dept Chem, Memphis, TN 38152 USA. [Sawyer, Karma R.; Cahoon, James F.; Shanoski, Jennifer E.; Glascoe, Elizabeth A.; Kling, Matthias F.; Schlegel, Jacob P.; Zoerb, Matthew C.; Harris, Charles B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Hartwig, JF (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. RI Kling, Matthias/D-3742-2014; Hapke, Marko/I-7444-2012; OI Webster, Charles Edwin/0000-0002-6917-2957 FU LBNL Laboratory Directed Research and Development program (LDRD) [3657-48]; NSF [CHE-09-10641]; US Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-05CH11231]; Alexander von Humboldt foundation FX This work was supported by the LBNL Laboratory Directed Research and Development program (LDRD. 3657-48) to C B H and by the NSF (CHE-09-10641) to J F H We also acknowledge some specialized equipment supported by the US Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division, Under contract DE-AC02-05CH11231 and contractor supported research (CSR). Computational work was performed on resources at the University of Memphis High-Performance Computing Facility. J.F C. acknowledges an NSF graduate research fellowship, and M.F K acknowledges a Feodor-Lynen fellowship by the Alexander von Humboldt foundation. Special thanks to Heinz Frei for use of the step-scan FTIR spectrometer NR 75 TC 19 Z9 19 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 17 PY 2010 VL 132 IS 6 BP 1848 EP 1859 DI 10.1021/ja906438a PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 562WC UT WOS:000275085000047 PM 20099849 ER PT J AU Weeratunga, SK Lovell, S Yao, HL Battaile, KP Fischer, CJ Gee, CE Rivera, M AF Weeratunga, Saroja K. Lovell, Scott Yao, Huili Battaile, Kevin P. Fischer, Christopher J. Gee, Casey E. Rivera, Mario TI Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI BACTERIOFERRITIN; AZOTOBACTER-VINELANDII BACTERIOFERRITIN; CORE FORMATION; HUMAN H; MOLECULAR-GRAPHICS; HORSE SPLEEN; HUMAN-LIVER; FERRITIN; SITE; RESOLUTION AB The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with similar to 600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in all FeSO(4) Solution (Fe soak) and in separate experiments after they had been soaked in an FeSO(4) solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center In the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron With minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the Ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in all FeSO(4) Solution displays a fully Occupied ferroxidase center and iron bound to the internal, Fe((in)), and external, Fe((out)), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe(2+) to the ferroxidase center. On its opposite end, the pore is capped by the side chain or His130 when it adopts its "gate-closed" conformation that enables coordination to a ferroxidase iron. A change to its "gate-open", noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in Solution, Suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808-6813], indicate that not all bacterioferritins operate in the same manner. C1 [Weeratunga, Saroja K.; Yao, Huili; Gee, Casey E.; Rivera, Mario] Univ Kansas, Ralph N Adams Inst Bioanalyt Chem, Lawrence, KS 66047 USA. [Weeratunga, Saroja K.; Yao, Huili; Gee, Casey E.; Rivera, Mario] Univ Kansas, Dept Chem, Lawrence, KS 66047 USA. [Lovell, Scott] Univ Kansas, Struct Biol Ctr, Lawrence, KS 66047 USA. [Fischer, Christopher J.] Dept Phys & Astron, Lawrence, KS USA. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, IMCA CAT, Argonne, IL 60439 USA. RP Rivera, M (reprint author), Univ Kansas, Ralph N Adams Inst Bioanalyt Chem, Multidisciplinary Res Bldg,2030 Becker Dr,Room 22, Lawrence, KS 66047 USA. EM mrivera@ku.edu RI Weeratunga, Saroja/C-8081-2011; Weeratunga, Saroja/B-4550-2013; OI Battaile, Kevin/0000-0003-0833-3259; Weeratunga, Saroja/0000-0002-4756-911X FU Industrial Macromolecular Crystallography Association; U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [W-31-109Eng-38] FX Use of IMCA-CAT beamline 17-BM at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago. Use of the Advanced Photon Source was Supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract W-31-109Eng-38. NR 43 TC 25 Z9 25 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 16 PY 2010 VL 49 IS 6 BP 1160 EP 1175 DI 10.1021/bi9015204 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 553CI UT WOS:000274342000013 PM 20067302 ER PT J AU Haubrich, J Quiller, RG Benz, L Liu, Z Friend, CM AF Haubrich, Jan Quiller, Ryan G. Benz, Lauren Liu, Zhi Friend, Cynthia M. TI In Situ Ambient Pressure Studies of the Chemistry of NO2 and Water on Rutile TiO2(110) SO LANGMUIR LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; HETEROGENEOUS HYDROLYSIS; SURFACE SCIENCE; OXIDE SURFACES; NITRIC-ACID; TIO2; XPS; ADSORPTION; MECHANISM; H2O AB The adsorption of NO2 on the rutile TiO2(110) surface has been Studied at room temperature in the pressure range from similar to 10(-8) torr to 200 mtorr using ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Atomic nitrogen, chemisorbed NO2, and NO3 were formed, each of which saturates at pressures below similar to 10(-6) torr NO2. Atomic nitrogen originates from decomposition of the NOx species, For pressures of up to 10(-3) torr, no significant change in the NOx Surface species occurred, suggesting that environmentally relevant conditions with typical NO2 partial pressures in the 1-100 ppb range call be modeled by ultrahigh vacuum (UHV) Studies. The chemisorbed surface species call be removed by in situ annealing in UHV: all of the NOx species disappear around 400 K, whereas the N Is signal associated with atomic nitrogen diminishes around 580 K. At higher pressures of NO2 (p(NO2) >= 10(-6) torr), physisorbed NO2 and adsorbed water, which was likely due to displacement from the chamber walls, appeared. The water coverage grew significantly above similar to 10(-3) torr. Concurrently with co-condensation of water and NO2, the Population of NO3 Species grew strongly. From this, we conclude that the presence of NO2 and water leads to the Formation of multilayers of nitric acid. In contrast, pure water exposure after saturation of the surface with 200 mtorr NO2 did not lead to a growth of the NO3 signals, implying that HNO3 formation requires weakly adsorbed NO2 species These Findings have important implications for environmental processes, since they confirm that oxides may facilitate nitric acid formation under ambient humidity conditions encountered in the atmosphere. C1 [Haubrich, Jan; Benz, Lauren; Friend, Cynthia M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Quiller, Ryan G.; Friend, Cynthia M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Liu, Zhi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Haubrich, J (reprint author), Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA. EM cfriend@deas.harvard.edu RI Haubrich, Jan/F-4302-2011; Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU NSF, Chemistry Division [CHE-0545335]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; A. v. Humboldt Foundation FX The Financial support from the NSF, Chemistry Division (Grant CHE-0545335). is gratefully acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.M.F. and J.H. (Feodor-Lynen fellowship) gratefully thank the A. v. Humboldt Foundation. NR 49 TC 31 Z9 31 U1 6 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 16 PY 2010 VL 26 IS 4 BP 2445 EP 2451 DI 10.1021/la904141k PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 553CK UT WOS:000274342200041 PM 20070108 ER PT J AU Santos, B Puerta, JM Cerda, JI Herranz, T McCarty, KF de la Figuera, J AF Santos, B. Puerta, J. M. Cerda, J. I. Herranz, T. McCarty, K. F. de la Figuera, J. TI Structure of ultrathin Pd films determined by low-energy electron microscopy and diffraction SO NEW JOURNAL OF PHYSICS LA English DT Article ID SURFACE; LEED; MORPHOLOGY; PALLADIUM; W(110); LAYERS; ORDER; CO AB Palladium (Pd) films have been grown and characterized in situ by low-energy electron diffraction (LEED) and microscopy in two different regimes: ultrathin films 2-6 monolayers (ML) thick on Ru(0001), and similar to 20 ML thick films on both Ru(0001) and W(110). The thinner films are grown at elevated temperature (750 K) and are lattice matched to the Ru(0001) substrate. The thicker films, deposited at room temperature and annealed to 880 K, have a relaxed in-plane lattice spacing. All the films present an fcc stacking sequence as determined by LEED intensity versus energy analysis. In all the films, there is hardly any expansion in the surface-layer interlayer spacing. Two types of twin-related stacking sequences of the Pd layers are found on each substrate. On W(110) the two fcc twin types can occur on a single substrate terrace. On Ru(0001) each substrate terrace has a single twin type and the twin boundaries replicate the substrate steps. C1 [Santos, B.; de la Figuera, J.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. [Santos, B.; Herranz, T.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain. [Puerta, J. M.; Cerda, J. I.] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. [McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Santos, B (reprint author), Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. EM benitosantos001@gmail.com RI Cerda, Jorge/F-4043-2010; Herranz, Tirma/A-8656-2008; de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012 OI Cerda, Jorge/0000-0001-6176-0191; de la Figuera, Juan/0000-0002-7014-4777; McCarty, Kevin/0000-0002-8601-079X FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy [DE-AC04-94AL85000]; Spanish Ministry of Science and Technology [MAT2006-13149-C02-02, MAT2007-66719-C03-02]; Council of the Hong Kong Special Administrative Region, China [CityU3/CRF/08] FX This research was partly supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under Contract Number DE-AC04-94AL85000, by the Spanish Ministry of Science and Technology under Project Numbers MAT2006-13149-C02-02 and MAT2007-66719-C03-02 and by the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU3/CRF/08). NR 39 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 16 PY 2010 VL 12 AR 023023 DI 10.1088/1367-2630/12/2/023023 PG 21 WC Physics, Multidisciplinary SC Physics GA 558NC UT WOS:000274749300004 ER PT J AU Michel, FM Barron, V Torrent, J Morales, MP Serna, CJ Boily, JF Liu, QS Ambrosini, A Cismasu, AC Brown, GE AF Michel, F. Marc Barron, Vidal Torrent, Jose Morales, Maria P. Serna, Carlos J. Boily, Jean-Francois Liu, Qingsong Ambrosini, Andrea Cismasu, A. Cristina Brown, Gordon E., Jr. TI Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE crystal structure; disorder; nano-sized ferrimagnets; soil formation; strain ID X-RAY-DIFFRACTION; NANOCRYSTALLINE MATERIAL; CHINESE LOESS; IRON-OXIDES; NANOPARTICLES; FERRITIN; SUSCEPTIBILITY; ENHANCEMENT; BRAIN; CRYSTALLIZATION AB The natural nanomineral ferrihydrite is an important component of many environmental and soil systems and has been implicated as the inorganic core of ferritin in biological systems. Knowledge of its basic structure, composition, and extent of structural disorder is essential for understanding its reactivity, stability, and magnetic behavior, as well as changes in these properties during aging. Here we investigate compositional, structural, and magnetic changes that occur upon aging of "2-line" ferrihydrite in the presence of adsorbed citrate at elevated temperature. Whereas aging under these conditions ultimately results in the formation of hematite, analysis of the atomic pair distribution function and complementary physicochemical and magnetic data indicate formation of an intermediate ferrihydrite phase of larger particle size with few defects, more structural relaxation and electron spin ordering, and pronounced ferrimagnetism relative to its disordered ferrihydrite precursor. Our results represent an important conceptual advance in understanding the nature of structural disorder in ferrihydrite and its relation to the magnetic structure and also serve to validate a controversial, recently proposed structural model for this phase. In addition, the pathway we identify for forming ferrimagnetic ferrihydrite potentially explains the magnetic enhancement that typically precedes formation of hematite in aerobic soil and weathering environments. Such magnetic enhancement has been attributed to the formation of poorly understood, nano-sized ferrimagnets from a ferrihydrite precursor. Whereas elevated temperatures drive the transformation on timescales feasible for laboratory studies, our results also suggest that ferrimagnetic ferrihydrite could form naturally at ambient temperature given sufficient time. C1 [Michel, F. Marc; Cismasu, A. Cristina; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Michel, F. Marc; Brown, Gordon E., Jr.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Barron, Vidal; Torrent, Jose] Univ Cordoba, Dept Ciencias & Recursos Agr & Forestales, E-14071 Cordoba, Spain. [Morales, Maria P.; Serna, Carlos J.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Boily, Jean-Francois] Umea Univ, Dept Chem, SE-90187 Umea, Sweden. [Liu, Qingsong] Chinese Acad Sci, Inst Geol & Geophys, Paleomagnetism & Geochronol Lab SKL LE, Beijing 100029, Peoples R China. [Ambrosini, Andrea] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Michel, FM (reprint author), Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. EM fmichel@stanford.edu RI Serna, Carlos /A-4552-2011; Morales Herrero, Maria del Puerto/A-4558-2011; Barron, Vidal/G-4483-2013; Torrent, Jose/K-5293-2014 OI Morales Herrero, Maria del Puerto/0000-0002-7290-7029; Barron, Vidal/0000-0003-1484-1655; Torrent, Jose/0000-0001-7725-105X FU National Science Foundation [CHE-0431425, EF-0830093]; U.S. Department of Energy (DOE) [DE-AC02-06CH11357]; Spain's Ministry of Science and Innovation; European Regional Development [MAT2008-01489, AGL2006-C03-02]; Chinese Academy of Sciences; National Nature Science Foundation of China [40821091] FX We thank Dr. Peter J. Chupas and Evan Maxey of the APS for assistance with x-ray data collection. This work was supported in part through the Stanford Environmental Molecular Science Institute (National Science Foundation Grant CHE-0431425) and, in part, from the U.S. Department of Energy (DOE), Office of Biological and Environmental Research, Environmental Remediation Sciences Program and National Science Foundation Grant EF-0830093 (Center for Environmental Implications of NanoTechnology) (F. M. M., A. C. C., and G. E. B., Jr.). This work was partly funded by Spain's Ministry of Science and Innovation and European Regional Development Funds [Project MAT2008-01489 ( M. P. M. and C. J. S.) and Project AGL2006-C03-02 ( V. B. and J. T.)]. Support was provided by the 100 Talent Program of the Chinese Academy of Sciences and by National Nature Science Foundation of China Grant 40821091 (Q. S. L.). We are grateful for access to the APS-ANL which is supported by the U.S. DOE, Office of Basic Energy Sciences under Contract DE-AC02-06CH11357. NR 50 TC 150 Z9 156 U1 11 U2 108 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 16 PY 2010 VL 107 IS 7 BP 2787 EP 2792 DI 10.1073/pnas.0910170107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 556OC UT WOS:000274599500017 PM 20133643 ER PT J AU Srivastava, D Schuermann, JP White, TA Krishnan, N Sanyal, N Hura, GL Tan, AM Henzl, MT Becker, DF Tanner, JJ AF Srivastava, Dhiraj Schuermann, Jonathan P. White, Tommi A. Krishnan, Navasona Sanyal, Nikhilesh Hura, Greg L. Tan, Anmin Henzl, Michael T. Becker, Donald F. Tanner, John J. TI Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE proline catabolism; substrate channeling ID RAY SOLUTION SCATTERING; ESCHERICHIA-COLI; SALMONELLA-TYPHIMURIUM; MULTIFUNCTIONAL PUTA; DELTA(1)-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE; DIMETHYLGLYCINE OXIDASE; ALDEHYDE DEHYDROGENASE; HELICOBACTER-PYLORI; PROTEIN; SUBSTRATE AB The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has not previously been solved. Here we report the 2.1 angstrom resolution crystal structure of PutA from Bradyrhizobium japonicum, along with data from small-angle x-ray scattering, analytical ultracentrifugation, and steady-state and rapid-reaction kinetics. PutA forms a ring-shaped tetramer in solution having a diameter of 150 angstrom. Within each protomer, the PRODH and P5CDH active sites face each other at a distance of 41 angstrom and are connected by a large, irregularly shaped cavity. Kinetics measurements show that glutamate production occurs without a lag phase, suggesting that the intermediate, Delta(1)-pyrroline-5-carboxylate, is preferably transferred to the P5CDH domain rather than released into the bulk medium. The structural and kinetic data imply that the cavity serves both as a microscopic vessel for the hydrolysis of Delta(1)-pyrroline-5-carboxylate to glutamate semialdehyde and a protected conduit for the transport of glutamate semialdehyde to the P5CDH active site. C1 [Srivastava, Dhiraj; Schuermann, Jonathan P.; Tanner, John J.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [White, Tommi A.; Tan, Anmin; Henzl, Michael T.; Tanner, John J.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. [Krishnan, Navasona; Sanyal, Nikhilesh; Becker, Donald F.] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. [Hura, Greg L.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Tanner, JJ (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM tannerjj@missouri.edu FU National Institutes of Health [GM065546, GM061068, P20 RR-017675]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Biological and Environmental Research [AC0206CH11357] FX We thank Dr. Jay Nix of ALS beamline 4.2.2 and Dr. Stephan L. Ginell of the APS SBC beamlines for assistance with data collection and processing. This research was supported by National Institutes of Health grants GM065546, GM061068, and P20 RR-017675. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. Results shown in this report are derived, in part, from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. Argonne is operated by UChicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC0206CH11357. NR 39 TC 32 Z9 32 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 16 PY 2010 VL 107 IS 7 BP 2878 EP 2883 DI 10.1073/pnas.0906101107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 556OC UT WOS:000274599500033 PM 20133651 ER PT J AU Garten, CT Smith, JL Tyler, DD Amonette, JE Bailey, VL Brice, DJ Castro, HF Graham, RL Gunderson, CA Izaurralde, RC Jardine, PM Jastrow, JD Kerley, MK Matamala, R Mayes, MA Metting, FB Miller, RM Moran, KK Post, WM Sands, RD Schadt, CW Phillips, JR Thomson, AM Vugteveen, T West, TO Wullschleger, SD AF Garten, C. T., Jr. Smith, J. L. Tyler, D. D. Amonette, J. E. Bailey, V. L. Brice, D. J. Castro, H. F. Graham, R. L. Gunderson, C. A. Izaurralde, R. C. Jardine, P. M. Jastrow, J. D. Kerley, M. K. Matamala, R. Mayes, M. A. Metting, F. B. Miller, R. M. Moran, K. K. Post, W. M., III Sands, R. D. Schadt, C. W. Phillips, J. R. Thomson, A. M. Vugteveen, T. West, T. O. Wullschleger, S. D. TI Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee, USA SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Carbon sequestration; Bioenergy crops; Switchgrass; Belowground biomass; Roots; Carbon; Nitrogen ID SOIL CARBON; ALAMO SWITCHGRASS; DIFFUSION METHOD; N-15 ANALYSIS; YIELD; DECOMPOSITION; HARVEST; SYSTEMS; SEQUESTRATION; POPULATIONS AB Switchgrass is a potential bioenergy crop that could promote soil C Sequestration in some environments. We compared four switchgrass cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (+/-SE) aboveground biomass was 2.1 +/- 0.13 kg m(-2), and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, the live root:shoot biomass ratio was 0.77. There was no difference (P > 0.05) among cultivars for total biomass. C, and N stocks belowground. Total belowground biomass (90 cm soil depth) as well as coarse (>= 1 mm diameter) and fine (<1 mm diameter) live root biomass increased from April to October. Dead roots were <10% of live root biomass to a depth of 90 cm. Net product ion of total belowground biomass (505 +/- 132 g m(-2)) Occurred in the last half of the growing season. The increase in total live belowground biomass (426 +/- 139 g m(-2)) Was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m(-2) removed by harvest of aboveground biomass and 6.7 g N m(-2) supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were potentially important to crop management for soil C sequestration. (C) 2010 Elsevier B.V. All rights reserved. C1 [Garten, C. T., Jr.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Smith, J. L.] ARS, USDA, Pullman, WA 99164 USA. [Tyler, D. D.] Univ Tennessee, W Tennessee Expt Stn, Jackson, TN 38301 USA. [Amonette, J. E.; Bailey, V. L.; Metting, F. B.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Izaurralde, R. C.; Sands, R. D.; Thomson, A. M.] Univ Maryland, College Pk, MD 20740 USA. [Izaurralde, R. C.; Sands, R. D.; Thomson, A. M.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Jastrow, J. D.; Matamala, R.; Miller, R. M.; Moran, K. K.; Vugteveen, T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6036, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov RI Thomson, Allison/B-1254-2010; Schadt, Christopher/B-7143-2008; Wullschleger, Stan/B-8297-2012; Brice, Deanne/B-9048-2012; Post, Wilfred/B-8959-2012; Izaurralde, Roberto/E-5826-2012; West, Tristram/C-5699-2013; Phillips, Jana/G-4755-2016 OI Bailey, Vanessa/0000-0002-2248-8890; Schadt, Christopher/0000-0001-8759-2448; Wullschleger, Stan/0000-0002-9869-0446; West, Tristram/0000-0001-7859-0125; Phillips, Jana/0000-0001-9319-2336 FU U.S. Department of Energy [DE-AC05-00OR22725] FX Research was sponsored by the U.S. Department of Energy's Office of Science, Biological and Environmental Research funding to the Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC. We wish to thank Blake Brown at the Research and Education Center at Milan, Tennessee, and Janet Gibson, Ernest Merriweather, and Bobby Henderson at the University of Tennessee's West Tennessee Research and Education Center for their helpful support of laboratory and field activities. NR 37 TC 40 Z9 40 U1 3 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD FEB 15 PY 2010 VL 136 IS 1-2 BP 177 EP 184 DI 10.1016/j.agee.2009.12.019 PG 8 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA 563LZ UT WOS:000275135100020 ER PT J AU Wahl, KL Colburn, HA Wunschel, DS Petersen, CE Jarman, KH Valentine, NB AF Wahl, Karen L. Colburn, Heather A. Wunschel, David S. Petersen, Catherine E. Jarman, Kristin H. Valentine, Nancy B. TI Residual Agar Determination in Bacterial Spores by Electrospray Ionization Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID STABLE-ISOTOPE RATIOS; MICROBIAL FORENSICS; BACILLUS; 3,6-ANHYDROGALACTOSE; OLIGOSACCHARIDES; POLYSACCHARIDES; CARRAGEENANS; GALACTOSE; CULTURE; SUGARS AB Presented here is an analytical method to detect residual agar from a bacterial spore sample as an indication of culturing on an agar plate. This method is based on the resolubilization of agar polysaccharide from a bacterial spore sample, enzymatic digestion, followed by electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis for detection of a specific agar fragment ion. A range of Bacillus species and strains were selected to demonstrate the effectiveness of this approach. The characteristic agar fragment ion was detected in the spores grown on agar that were washed from 1 to 5 times, irradiated or nonirradiated, and not in the spores grown in broth. A sample containing approximately 10(8) spores is currently needed for confident detection of residual agar from culture on agar plates in the presence of bacterial spores with a limit of detection of approximately 1 ppm agar spiked into a broth-grown spore sample. The results of a proficiency test with 42 blinded samples are presented demonstrating the utility of this method with no false positives and only three false negatives for samples that were below the detection level of the method as documented. C1 [Wahl, Karen L.; Colburn, Heather A.; Wunschel, David S.; Petersen, Catherine E.; Jarman, Kristin H.; Valentine, Nancy B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wahl, KL (reprint author), Pacific NW Natl Lab, POB 999,MS P7-50, Richland, WA 99352 USA. EM karen.wahl@pnl.gov RI Wunschel, David/F-3820-2010 FU Department of Homeland Security Science and Technology Directorate [AGR-HSSCHQ04X00038]; United States Department of Energy [DE-AC06-76RLO] FX Funding for this work was provided through contract AGR-HSSCHQ04X00038 to Pacific Northwest National Laboratory by the Department of Homeland Security Science and Technology Directorate. We thank Roy Kamimura, Joanna Horn, and Steve Velsko from Lawrence Livermore National Laboratory for B. thuringiensis spore samples and Dean Fetterolf, Federal Bureau of Investigations for irradiated Bacillus spore samples provided during initial method development. We also thank James Burans and Mike Hevey from the National Bioforensics Analysis Center and Robert Bull, Craig Marhefka, Matt Feinberg, Bruce Budowle, and Mark Wilson from the Federal Bureau of Investigations for technical discussions, establishing criteria to meet, and for generation of the blinded samples for final testing. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under contract DE-AC06-76RLO. NR 37 TC 9 Z9 9 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2010 VL 82 IS 4 BP 1200 EP 1206 DI 10.1021/ac901491c PG 7 WC Chemistry, Analytical SC Chemistry GA 554WK UT WOS:000274466100007 PM 20073479 ER PT J AU Comstock, DJ Elam, JW Pellin, MJ Hersam, MC AF Comstock, David J. Elam, Jeffrey W. Pellin, Michael J. Hersam, Mark C. TI Integrated Ultramicroelectrode-Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy SO ANALYTICAL CHEMISTRY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; LIVING CELLS; MEMBRANE-TRANSPORT; OPTICAL MICROSCOPY; LAYER DEPOSITION; FABRICATION; MODE; ELECTRODES; SYSTEMS; PORES AB Scanning ion conductance microscopy (SICM) has developed into a powerful tool for imaging a range of biophysical systems. In addition, SICM has been integrated with a range of other techniques, allowing for the simultaneous collection of complementary information including near-field optical and electrophysiological properties. However, SICM imaging remains insensitive to electrochemical properties, which play an important role in both biological and nonbiological systems. In this work, we demonstrate the fabrication and application of a nanopipet probe with an integrated ultramicroelectrode (UME) for concurrent SICM and scanning electrochemical microscopy (SECM). The fabrication process utilizes atomic layer deposition (ALD) of aluminum oxide to conformally insulate a gold-coated nanopipet and focused ion beam (FIB) milling to precisely expose a UME at the pipet tip. Fabricated probes are characterized by both scanning electron microscopy and cyclic voltammetry and exhibit a 100 nm diameter nanopipet tip and a UME with an effective radius of 294 nm. The probes exhibit positive and negative feedback responses on approach to conducting and insulating surfaces, respectively. The suitability of the probes for SECM-SICM imaging is demonstrated by both feedback-mode and substrate generation/tip collection-mode imaging on patterned surfaces. Ibis probe geometry enables successful SECM-SICM imaging on features as small as 180 nm in size. C1 [Comstock, David J.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Pellin, Michael J.; Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Hersam, MC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM m-hersam@northwestern.edu RI Hersam, Mark/B-6739-2009; Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU Army Research Office [ARO W911NF-05-1-0177, ARO W911NF-08-1-0156]; National Science Foundation [NSF ECS-0609064]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; NDSEG; UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was supported by the Army Research Office (ARO W911NF-05-1-0177 and ARO W911NF-08-1-0156) and the National Science Foundation (NSF ECS-0609064). This research made use of public facilities within the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. D. J. Comstock further acknowledges support from an NDSEG Fellowship. Argonne Nadonal Laboratory (ANL) is a U.S. Department of Energy Office of Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 49 TC 82 Z9 82 U1 4 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2010 VL 82 IS 4 BP 1270 EP 1276 DI 10.1021/ac902224q PG 7 WC Chemistry, Analytical SC Chemistry GA 554WK UT WOS:000274466100016 PM 20073475 ER PT J AU Alberi, K Martin, IT Shub, M Teplin, CW Romero, MJ Reedy, RC Iwaniczko, E Duda, A Stradins, P Branz, HM Young, DL AF Alberi, Kirstin Martin, Ina T. Shub, Maxim Teplin, Charles W. Romero, Manuel J. Reedy, Robert C. Iwaniczko, Eugene Duda, Anna Stradins, Paul Branz, Howard M. Young, David L. TI Material quality requirements for efficient epitaxial film silicon solar cells SO APPLIED PHYSICS LETTERS LA English DT Article DE carrier lifetime; elemental semiconductors; photovoltaic cells; semiconductor epitaxial layers; silicon; solar cells ID CHEMICAL-VAPOR-DEPOSITION AB The performance of 2-mu m-thick crystal silicon (c-Si) solar cells grown epitaxially on heavily doped wafer substrates is quantitatively linked to absorber dislocation density. We find that such thin devices have a high tolerance to bulk impurities compared to wafer-based cells. The minority carrier diffusion length is about half the dislocation spacing and must be roughly three times the absorber thickness for efficient carrier extraction. Together, modeling and experimental results provide design guidelines for film c-Si photovoltaic cells. C1 [Alberi, Kirstin; Martin, Ina T.; Shub, Maxim; Teplin, Charles W.; Romero, Manuel J.; Reedy, Robert C.; Iwaniczko, Eugene; Duda, Anna; Stradins, Paul; Branz, Howard M.; Young, David L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Alberi, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM kirstin.alberi@nrel.gov RI Martin, Ina/J-9484-2012 FU U.S. Department of Energy [DE-AC36-99GO10337] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337. The authors thank Scott Ward, Lorenzo Roybal, Vern Yost, Tihu Wang, and Qi Wang for their help and advice. NR 18 TC 26 Z9 26 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 15 PY 2010 VL 96 IS 7 AR 073502 DI 10.1063/1.3309751 PG 3 WC Physics, Applied SC Physics GA 558PX UT WOS:000274758100083 ER PT J AU Elhadj, S Matthews, MJ Yang, ST Cooke, DJ Stolken, JS Vignes, RM Draggoo, VG Bisson, SE AF Elhadj, Selim Matthews, Manyalibo J. Yang, Steven T. Cooke, Diane J. Stolken, James S. Vignes, Ryan M. Draggoo, Vaughn G. Bisson, Scott E. TI Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials SO APPLIED PHYSICS LETTERS LA English DT Article DE evaporation; heat transfer; heat treatment; laser beam effects; lithium compounds; phonons; sapphire; silicon compounds; thermal conductivity ID FUSED-SILICA; HEAT-TRANSFER; SPINEL; GLASS; BEAM AB An experimental and analytical approach is described to determine the temperature dependent intrinsic lattice thermal conductivity, k(T), for a broad range of materials. k(T) of silica, sapphire, spinel, and lithium fluoride were derived from surface temperature measurements. Surfaces were heated from room temperature up to 3000 K using a CO(2)-laser irradiance < 5 kW/cm(2). The solution of the nonlinear heat flow equation was used to extract parameters of k(T)=AxT(epsilon), where -1.13 2, 3 spectra of magnetite and Gerrit van der Laan for a helpful critical reading of a draft. Olav Hellwig and Eric Fullerton (Hitachi Global Storage Technologies) and Jeff Kortright (Lawrence Berkeley National Lab) provided synthetic out-of-plane magnetized (Pt-Co) multilayer and FeGd samples which were very useful in developing the STXM-XMCD methodology. The Canadian Light Source is supported by the Canada Foundation for Innovation (CFI), NSERC, Canadian Institutes of Health Research (CIHR), National Research Council (NRC) and the University of Saskatchewan. NR 69 TC 32 Z9 32 U1 1 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD FEB 15 PY 2010 VL 270 IS 1-4 BP 110 EP 116 DI 10.1016/j.chemgeo.2009.11.009 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 561PH UT WOS:000274989800010 ER PT J AU Boily, JF Gassman, PL Peretyazhko, T Szanyi, J Zachara, JM AF Boily, Jean-Francois Gassman, Paul L. Peretyazhko, Tetyana Szanyi, Janos Zachara, John M. TI FTIR Spectral Components of Schwertmannite SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ACID-MINE DRAINAGE; VARYING CRYSTALLINITY; DOUBLE HYDROXIDES; SULFURIC-ACID; SULFATE; IRON; GOETHITE; TRANSFORMATION; COORDINATION; SPECTROSCOPY AB Fourier transform infrared (FTIR) spectral components of three dominant groups of sulfate species in synthetic schwertmannite (FeO(8)O(8)(OH)(6-x)(SO(4))(x)center dot nH(2)O) are presented. These components were extracted by multivariate curve resolution analysis of spectra obtained from N(2)(g)-dry samples initially reacted in aqueous solutions (pH 3-9) at room temperature. Each component contains complex sets of bands that correspond to mixtures of similar species. We tentatively assign these components to sulfate ions that are hydrogen- (components I and III) and iron-bonded (component I) to schwertmannite. Another component (II) is assigned to protonated sulfate species. Heating experiments to 130 degrees C moreover confirmed this possibility for component II. The spectral components extracted from this study can be used to identify dominant sulfate species in FTIR spectra of naturally occurring schwertmannite samples. C1 [Boily, Jean-Francois] Umea Univ, Dept Chem, SE-90187 Umea, Sweden. [Gassman, Paul L.; Peretyazhko, Tetyana; Szanyi, Janos; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Boily, JF (reprint author), Umea Univ, Dept Chem, SE-90187 Umea, Sweden. EM jean-francois.boily@chem.umu.se FU U.S. Department of Energy, Biological and Environmental Research [DE-AC06-76RLO 1830]; Environmental Molecular Sciences Laboratory, a national scientific user facility at Pacific Northwest National Laboratory (PNNL) FX This work was supported by the U.S. Department of Energy, Biological and Environmental Research. It was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility at Pacific Northwest National Laboratory (PNNL) managed by the Department of Energy's Office of Biological and Environmental Research. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830. J.-F.B. thanks the Kempe and Wallenberg foundations for support. NR 45 TC 27 Z9 27 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2010 VL 44 IS 4 BP 1185 EP 1190 DI 10.1021/es902803u PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 553EC UT WOS:000274347800007 PM 20067282 ER PT J AU Keiluweit, M Nico, PS Johnson, MG Kleber, M AF Keiluweit, Marco Nico, Peter S. Johnson, Mark G. Kleber, Markus TI Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID INNER-SHELL SPECTROSCOPY; ABSORPTION FINE-STRUCTURE; X-RAY-DIFFRACTION; LIGNIN PYROLYSIS; PINE WOOD; CELLULOSE; CHARCOAL; NEXAFS; BIOAVAILABILITY; CARBONIZATION AB Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ("biochar"). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Brunauer-Emmett-Teller (BET)-N(2) surface area (SA), X-ray diffraction (XRD), synchrotron-based near-edge X-ray absorption fine structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 degrees C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars,the crystalline character of the precursor materials is preserved; (ii) in amorphous chars, the heat-altered molecules and incipient aromatic polycondensates are randomly mixed; (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases; and (iv) turbostratic chars are dominated by disordered graphitic crystallites. Molecular variations among the different char categories likely translate into differences in their ability to persist in the environment and function as environmental sorbents. C1 [Keiluweit, Marco; Kleber, Markus] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Johnson, Mark G.] US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, Corvallis, OR 97333 USA. RP Kleber, M (reprint author), Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. EM markus.kleber@oregonstate.edu RI Nico, Peter/F-6997-2010; Ducey, Thomas/A-6493-2011 OI Nico, Peter/0000-0002-4180-9397; FU U.S. DOE, Office of Science, Basic Energy Sciences [AC02-05CH11231]; U.S. Environmental Protection Agency FX We thank F. Prahl and M. Sparrow for assistance with pyrolysis procedures and elemental analysis, and D. Kilcoyne for providing "after hours" support at ALS beamline 5.3.2. M. Keiluweit acknowledges a merit scholarship awarded by the Department of Crop and Soil Science (OSU). Partial support was provided by the Office of Science, Climate and Environmental Science Division, of the U.S. DOE under Contract DE-AC02-05CH11231. Use of the ALS was provided by U.S. DOE, Office of Science, Basic Energy Sciences under the same contract. The information in this document has been funded in part by the U.S. Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory's Western Ecology Division and approved for publication. Approval does not signify that the contents reflect the views of the agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. NR 44 TC 538 Z9 598 U1 147 U2 900 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2010 VL 44 IS 4 BP 1247 EP 1253 DI 10.1021/es9031419 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 553EC UT WOS:000274347800016 PM 20099810 ER PT J AU Dumas, E Gao, C Suffern, D Bradforth, SE Dimitrijevic, NM Nadeau, JL AF Dumas, Eve Gao, Cherry Suffern, Diana Bradforth, Stephen E. Dimitrijevic, Nada M. Nadeau, Jay L. TI Interfacial Charge Transfer between CdTe Quantum Dots and Gram Negative Vs Gram Positive Bacteria SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; ANTIBACTERIAL ACTIVITY; SUPEROXIDE ANION; WATER SUSPENSION; SINGLET OXYGEN; NANOPARTICLES; TIO2; TOXICITY; CYTOTOXICITY AB Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C(60) nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles' fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects-nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd(2+) release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria. C1 [Dumas, Eve; Gao, Cherry; Nadeau, Jay L.] McGill Univ, Dept Biomed Engn, Montreal, PQ H3A 2B4, Canada. [Suffern, Diana; Bradforth, Stephen E.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Nadeau, JL (reprint author), McGill Univ, Dept Biomed Engn, 3775 Univ St, Montreal, PQ H3A 2B4, Canada. EM jay.nadeau@mcgill.ca RI Bradforth, Stephen/B-5186-2008 OI Bradforth, Stephen/0000-0002-6164-3347 FU U.S. Environmental Protection Agency Science to Achieve Results (STAR) [R831712]; National Science and Engineering Research Council of Canada (NSERC); Canadian Institutes of Health Research (CIHR) [rms-82504]; U.S. National Science Foundation [CHE-0617060]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX D.C., E.D., and J.L.N. acknowledge the U.S. Environmental Protection Agency Science to Achieve Results (STAR) program Grant No. R831712; the National Science and Engineering Research Council of Canada (NSERC) Nano IP and Individual Discovery programs; and the Canadian Institutes of Health Research (CIHR) grant rms-82504. Work at USC is supported by the U.S. National Science Foundation under Grant CHE-0617060. N.M.D. is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. We thank W. Minarik for the AA. NR 32 TC 38 Z9 38 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2010 VL 44 IS 4 BP 1464 EP 1470 DI 10.1021/es902898d PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 553EC UT WOS:000274347800049 PM 20085260 ER PT J AU LaVigne, M Matthews, KA Grottoli, AG Cobb, KM Anagnostou, E Cabioch, G Sherrell, RM AF LaVigne, Michele Matthews, Kathryn A. Grottoli, Andrea G. Cobb, Kim M. Anagnostou, Eleni Cabioch, Guy Sherrell, Robert M. TI Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony calibration with a contemporaneous seawater phosphate record SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID TRACE MATERIALS; VARIABILITY; PHOSPHORUS; PACIFIC; CADMIUM; PHYTOPLANKTON; DELTA-C-13; INCLUSION; NUTRIENTS; RATIOS AB A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (PO(4) (SW)) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panama were strongly correlated to a contemporaneous time-series record of surface water PO(4 SW) at this site (r(2) = 0.7-0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in +/- 0.2 and +/- 0.1 mu mol/kg uncertainties in PO(4) (SW) reconstructions from P. lobata and P. gigantea, respectively. P/Ca(Porites) (lobata) (mu mol/mol) = (21.1 +/- 2.4)PO(4 SW)(mu mol/kg) + (14.3 +/- 3.8) P/Ca(Porites) (lobata) (mu mol/mol) = (29.2 +/- 1.4)PO(4 SW)(mu mol/kg) + (33.4 +/- 2.7) Inter-colony agreement in P/Ca response to PO(4 SW) was good (+/- 5-12% about mean calibration slope), suggesting that species-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phosphate. However, offsets in the v-intercepts of calibration regressions among co-located individuals and taxa suggest that biologically-regulated "vital effects" and/or skeletal extension rate may also affect skeletal P incorporation. Quantification of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface water phosphate and regional calibration against documented local seawater phosphate variations. (C) 2009 Elsevier Ltd. All rights reserved. C1 [LaVigne, Michele; Anagnostou, Eleni; Sherrell, Robert M.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA. [Matthews, Kathryn A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Grottoli, Andrea G.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Cobb, Kim M.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Cabioch, Guy] Inst Rech Dev, Bondy, France. [Sherrell, Robert M.] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ USA. RP LaVigne, M (reprint author), Univ Calif Davis, Bodega Marine Lab, 2099 Westside Rd, Bodega Bay, CA 94923 USA. EM lavigne@marine.rutgers.edu OI Anagnostou, Eleni/0000-0002-7200-4794 FU Canon National Park Science Scholars Fellowship; American Chemical Society Petroleum Research Fund [47625-AC2, 41740-G2]; National Science Foundation [OCE 0752544, 0610487]; Andrew Mellon Foundation; Evolving Earth Foundation FX We thank B. Linsley, B. Lazar, D. Poore, T. I.). Hickey, C. Reich, K. DeLong, A. Wron, and F. Desenfant, for global P/Ca distribution samples; C. Theodore, I.S. Nurhati, and Y. Matsui for sample preparation and analyses; L. D'Croz of the Smithsonian Tropical Research Institute for Gulf of Panamd oceanographic data and field logistics; J. Palardy for extensive field work assistance, Y. Rosenthal, J. Reinfelder, S. Sosdian, T. Babila, and P. Field for valuable discussions on trace elements in corals and proxy development. Funding support was provided by the Canon National Park Science Scholars Fellowship to M. LaVigne, the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF Grant 47625-AC2 to R. Sherrell and 41740-G2 to A. Grottoli), the National Science Foundation (OCE 0752544 to R. Sherrell and 0610487 to A. Grottoli), the Andrew Mellon Foundation (to A. Grottoli), and the Evolving Earth Foundation (to K. Matthews). The reviews of T. McConnaughey, Associate Editor A. Cohen, and an anonymous reviewer greatly improved the quality of the manuscript. NR 57 TC 24 Z9 25 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2010 VL 74 IS 4 BP 1282 EP 1293 DI 10.1016/j.gca.2009.11.002 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 546QH UT WOS:000273824800007 ER PT J AU Jaisi, DP Blake, RE Kukkadapu, RK AF Jaisi, Deb P. Blake, Ruth E. Kukkadapu, Ravi K. TI Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HYDROUS FERRIC-OXIDE; STABLE-ISOTOPE; GOETHITE; FERRIHYDRITE; ADSORPTION; HEMATITE; EXCHANGE; SORPTION; WATER; PHOSPHORUS AB Iron (III) oxides are ubiquitous in near-surface soils and sediments and interact strongly with dissolved phosphates vie, sorption, co-precipitation, mineral transformation and redox-cycling reactions. Iron oxide phases are thus, an important reservoir for dissolved phosphate, and phosphate bound to iron oxides may reflect dissolved phosphate sources as well as carry a history of the biogeochemical cycling of phosphorus (P). It has recently been demonstrated that dissolved inorganic phosphate (DIP) in rivers, lakes, estuaries and the open ocean can be used to distinguish different P sources and biological reaction pathways in the ratio of (18)O/(16)O (delta(18)O(P)) in PO(4)(3-). Here we present results of experimental studies aimed at determining whether non-biological interactions between dissolved inorganic phosphate and solid iron oxides involve fractionation of oxygen isotopes in PO(4). Determination of such fractionations is critical to any interpretation of delta(18)O(P) values of modern (e.g., hydrothermal iron oxide deposits, marine sediments, soils, groundwater systems) to ancient and extra terrestrial samples (e.g., BIF's, Martian soils). Batch sorption experiments were performed using varied concentrations of synthetic ferrihydrite and isotopically-labeled dissolved ortho-phosphate at temperatures ranging from 4 to 95 degrees C. Mineral transformations and morphological changes were determined by X-Ray, Mossbauer spectroscopy and SEM image analyses. Our results show that isotopic fractionation between sorbed and aqueous phosphate occurs during the early phase of sorption with isotopically-light phosphate (P(16)O(4)) preferentially incorporated into sorbed/solid phases. This fractionation showed negligible temperature-dependence and gradually decreased as a result of O-isotope exchange between sorbed and aqueous-phase phosphate, to become insignificant at greater than similar to 100 h of reaction. In high-temperature experiments, this exchange was very rapid resulting in negligible fractionation between sorbed and aqueous-phase phosphate at much shorter reaction times. Mineral transformation resulted in initial preferential desorption/loss of light phosphate (P(16)O(4)) to solution. However, the continual exchange between sorbed and aqueous PO(4), concomitant with this mineralogical transformation resulted again in negligible fractionation between aqueous and sorbed PO(4) at long reaction times (>2000 h). This finding is consistent with results obtained from natural marine samples. Therefore, (18)O values of dissolved phosphate (DIP) in sea water may be preserved during its sorption to iron-oxide minerals such as hydrothermal plume particles, making marine iron oxides a potential new proxy for dissolved phosphate in the oceans. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Jaisi, Deb P.; Blake, Ruth E.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jaisi, DP (reprint author), Yale Univ, Dept Geol & Geophys, POB 208109, New Haven, CT 06520 USA. EM deb.jaisi@yale.edu FU American Chemical Society Petroleum Research Fund [45641AC2]; NSF [EAR-0746241]; Pacific Northwest National Laboratory; Yale University FX This research was supported by grants from the American Chemical Society Petroleum Research Fund (45641AC2) and NSF (EAR-0746241) to R.E.B., and EMSL Internal Grant from Pacific Northwest National Laboratory and Interdepartmental Bateman Postdoctoral Fellowship from Yale University to D.P.J. Mossbauer analysis and XRD measurements of the samples were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. We thank Gerard Olack for his meticulous assistance with O-isotope analyses and several constructive discussions during the project. NR 47 TC 32 Z9 32 U1 9 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2010 VL 74 IS 4 BP 1309 EP 1319 DI 10.1016/j.gca.2009.11.010 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 546QH UT WOS:000273824800009 ER PT J AU Um, W Icenhower, JP Brown, CF Serne, RJ Wang, ZM Dodge, CJ Francis, AJ AF Um, Wooyong Icenhower, Jonathan P. Brown, Christopher F. Serne, R. Jeffery Wang, Zheming Dodge, Cleveland J. Francis, Arokiasamy J. TI Characterization of uranium-contaminated sediments from beneath a nuclear waste storage tank from Hanford, Washington: Implications for contaminant transport and fate SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID VADOSE ZONE SEDIMENTS; SURFACE COMPLEXATION MODEL; K-D; SITE; URANYL; ADSORPTION; SORPTION; CALCITE; U(VI); LUMINESCENCE AB The concentration and distribution of uranium (U) in sediment samples from three boreholes recovered near radioactive waste storage tanks at Hanford, Washington, USA, were determined in detail using bulk and micro-analytical techniques. The source of contamination was a plume that contained all estimated 7000 kg of dissolved U that seeped into the subsurface as a result of an accident that occurred during filling of tank BX-102. The desorption character and kinetics of U were also determined by experiment in order to assess the mobility of U in the vadose zone. Most samples contained too little moisture to obtain quantitative information on pore water compositions. Concentrations of U (and contaminant phosphate-P) in pore waters were therefore estimated by performing 1:1 sediment-to-water extractions and the data indicated concentrations of these elements were above that of uncontaminated "background" sediments. Further extraction of U by 8 N nitric acid indicated that a significant fraction of the total U is relatively immobile and may be sequestered in mobilization-resistant phases. Fine- and coarse-grained samples in sharp contact with one another were sub-sampled for further scrutiny and identification of U reservoirs. Segregation of the samples into their constituent size fractions coupled with microwave-assisted digestion of bulk samples showed that most of the U contamination was sequestered within the fine-grained fraction. Isotope exchange ((233)U) tests revealed that similar to 51% to 63% of the U is labile, indicating that the remaining fund of U is locked up in mobilization-resistant phases. Analysis by Micro-X-ray Fluorescence and Micro-X-ray Absorption Near-Edge Spectroscopy (mu-XRF and mu-XANES) showed that U is primarily associated with Ca and is predominately U(VI). The spectra obtained on U-enriched "hot spots" using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLIFS) provide strong evidence for uranophane-type [Ca(UO(2))(2)(SiO(3)OH)(2)(H(2)O)(5)] and uranyl phosphate [Ca(UO(2))(2)(PO(4))(2)(H(2)O)1(0-12)] phases. These data show that disseminated micro-precipitates call form in narrow pore spaces within the finer-grained matrix and that these objects are likely not restricted to lithic fragment environments. Uranium mobility may therefore be curtailed by precipitation of uranyl silicate and phosphate phases, with additional possible influence exerted by capillary barriers. Consequently, equilibrium-based desorption models that predict the concentrations and mobility of U in the subsurface matrix at Hanford are unnecessarily conservative. Published by Elsevier Ltd. C1 [Um, Wooyong; Icenhower, Jonathan P.; Brown, Christopher F.; Serne, R. Jeffery; Wang, Zheming; Dodge, Cleveland J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Dodge, Cleveland J.; Francis, Arokiasamy J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Um, W (reprint author), Pacific NW Natl Lab, P7-22, Richland, WA 99354 USA. EM wooyong.um@pnl.gov RI Icenhower, Jonathan/E-8523-2011; Wang, Zheming/E-8244-2010 OI Wang, Zheming/0000-0002-1986-4357 FU U.S. Department of Energy (DOE)'s Office of River Protection FX This work was conducted as part of the Tank Farm Vadose Zone Project led by CH2M HILL Hanford Group, Inc., in support of the U.S. Department of Energy (DOE)'s Office of River Protection. The authors wish to thank John G. Kristofzski, Fredrick M. Mann, David A. Myers, Michael P. Connelly, and Harold A. Sydnor with CH2M HILL Hanford Group, Inc. and Dwayne Crumpler with Columbia Energy and Environmental Services for their planning support and technical review of this work. We would also like to express our gratitude to Robert Lober with the DOE Office of River Protection for his support and interest. We gratefully acknowledge Kent D. Reynolds, Dave Skoglie, Kelly Olson, and Mark Repko (Duratek Federal Services, Inc.) for their efforts in selecting depths to sample and executing the field work that obtained the samples. Finally, the authors would like to thank Jeffrey G. Catalano (Washington University in St. Louis) and two anonymous reviewers for thoughtful and constructive critiques. NR 50 TC 22 Z9 22 U1 8 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 15 PY 2010 VL 74 IS 4 BP 1363 EP 1380 DI 10.1016/j.gca.2009.11.014 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 546QH UT WOS:000273824800014 ER PT J AU Karp, DR Marthandan, N Marsh, SGE Ahn, C Arnett, FC DeLuca, DS Diehl, AD Dunivin, R Eilbeck, K Feolo, M Guidry, PA Helmberg, W Lewis, S Mayes, MD Mungall, C Natale, DA Peters, B Petersdorf, E Reveille, JD Smith, B Thomson, G Waller, MJ Scheuermann, RH AF Karp, David R. Marthandan, Nishanth Marsh, Steven G. E. Ahn, Chul Arnett, Frank C. DeLuca, David S. Diehl, Alexander D. Dunivin, Raymond Eilbeck, Karen Feolo, Michael Guidry, Paula A. Helmberg, Wolfgang Lewis, Suzanna Mayes, Maureen D. Mungall, Chris Natale, Darren A. Peters, Bjoern Petersdorf, Effie Reveille, John D. Smith, Barry Thomson, Glenys Waller, Matthew J. Scheuermann, Richard H. TI Novel sequence feature variant type analysis of the HLA genetic association in systemic sclerosis SO HUMAN MOLECULAR GENETICS LA English DT Article ID HLA-DQB1 1ST DOMAIN; DNA TOPOISOMERASE-I; T-CELL-RECEPTOR; AUTOANTIBODY RESPONSE; RHEUMATOID-ARTHRITIS; HAPLOTYPE METHOD; AMINO-ACIDS; SCLERODERMA; ANTIBODIES; PEPTIDE AB We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk. C1 [Karp, David R.] UT SW Med Ctr, Div Rheumat Dis, Dept Internal Med, Dallas, TX 75390 USA. [Marthandan, Nishanth; Guidry, Paula A.; Scheuermann, Richard H.] UT SW Med Ctr, Dept Pathol, Dallas, TX 75390 USA. [Marsh, Steven G. E.; Waller, Matthew J.] Royal Free Hosp, Anthony Nolan Res Inst, London NW3 2QG, England. [Ahn, Chul; Scheuermann, Richard H.] UT SW Med Ctr, Dept Clin Sci, Dallas, TX 75390 USA. [Arnett, Frank C.; Mayes, Maureen D.; Reveille, John D.] UT Houston, Dept Internal Med, Houston, TX 77030 USA. [DeLuca, David S.] Dana Farber Canc Inst, Boston, MA 02115 USA. [Diehl, Alexander D.] Jackson Lab, Bar Harbor, ME 04609 USA. [Dunivin, Raymond; Feolo, Michael] NIH, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. [Eilbeck, Karen] Univ Utah, Dept Human Genet, Salt Lake City, UT 84122 USA. [Helmberg, Wolfgang] Med Univ Graz, Dept Blood Grp Serol & Transfus Med, A-8036 Graz, Austria. [Lewis, Suzanna; Mungall, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Natale, Darren A.] Georgetown Univ, Med Ctr, Washington, DC 20057 USA. [Peters, Bjoern] La Jolla Inst Allergy & Immunol, Ctr Infect Dis, La Jolla, CA 92109 USA. [Petersdorf, Effie] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA. [Smith, Barry] SUNY Buffalo, Dept Philosophy, Buffalo, NY 14203 USA. [Smith, Barry] SUNY Buffalo, New York State Ctr Excellence Bioinformat & Life, Buffalo, NY 14203 USA. [Thomson, Glenys] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. RP Karp, DR (reprint author), UT SW Med Ctr, Div Rheumat Dis, Dept Internal Med, 5323 Harry Hines Blvd, Dallas, TX 75390 USA. EM david.karp@utsouthwestern.edu RI Diehl, Alexander/G-9883-2016; Smith, Barry/A-9525-2011; OI Diehl, Alexander/0000-0001-9990-8331; Smith, Barry/0000-0003-1384-116X; Lewis, Suzanna/0000-0002-8343-612X; Scheuermann, Richard/0000-0003-1355-892X FU National Institutes of Health [N01-AI40076, N01-AR02251, P50-AR054144, UL1-RR024148, UL1-RR024982] FX This work was supported by the National Institutes of Health [contracts N01-AI40076 and N01-AR02251; grants P50-AR054144, UL1-RR024148 and UL1-RR024982]. NR 39 TC 19 Z9 19 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0964-6906 J9 HUM MOL GENET JI Hum. Mol. Genet. PD FEB 15 PY 2010 VL 19 IS 4 BP 707 EP 719 DI 10.1093/hmg/ddp521 PG 13 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 545AA UT WOS:000273702200013 PM 19933168 ER PT J AU Poineau, F Hartmann, T Weck, PF Kim, E Silva, GWC Jarvinen, GD Czerwinski, KR AF Poineau, Frederic Hartmann, Thomas Weck, Philippe F. Kim, Eunja Silva, G. W. Chinthaka Jarvinen, Gordon D. Czerwinski, Kenneth R. TI Structural Studies of Technetium-Zirconium Alloys by X-ray Diffraction, High-Resolution Electron Microscopy, and First-Principles Calculations SO INORGANIC CHEMISTRY LA English DT Article ID SUPERCONDUCTIVITY; MOLECULES AB The structural properties of Tc-Zr binary alloys were investigated using combined experimental and computational approaches. The Tc(2)Zr and Tc(6)Zr samples were characterized by X-ray diffraction analysis, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. Our XRD results show that Tc(6)Zr crystallizes in the cubic alpha-Mn-type structure (/(43) over barm space group) with a variable stoichiometry of Tc(6.25-x)Zr (0 < x < 1.45), and Tc(2)Zr has a hexagonal crystal lattice with a MgZn(2)-type structure (P6(3)/mmc space group). Rietveld analysis of the powder XRD patterns and density functional calculations of the "Tc(6)Zr" phase show a linear increase of the lattice parameter when moving from Tc(6.25)Zr to Tc(4..80)Zr compositions, similar to previous observations in the Re-Zr system. This variation of the composition of "Tc(6)Zr" is explained by the substitution of Zr for Tc atoms in the 2a site of the alpha-Mn-type structure. These results suggest that the width of the "Tc(6)Ze" phase needs to be included when constructing the Tc-Zr phase diagram. The bonding character and stability of the various Tc-Zr phases were also investigated from first principles. Calculations indicate that valence and conduction bands near the Fermi level are dominated by electrons occupying the 4d orbital. In particular, the highest-lying molecular orbitals of the valence band of Tc(2)Zr are composed of d-d sigma bonds, oriented along the normal axis of the (110) plane and linking the Zr network to the Tc framework. Strong d-d bonds stabilizing the Tc framework in the hexagonal unit cell are also in the valence band. In the cubic structures of Tc-Zr phases, only Tc 4d orbitals are found to significantly contribute near the Fermi level. C1 [Poineau, Frederic; Weck, Philippe F.; Silva, G. W. Chinthaka; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. [Hartmann, Thomas; Czerwinski, Kenneth R.] Univ Nevada Las Vegas, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Kim, Eunja] Univ Nevada Las Vegas, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Jarvinen, Gordon D.] Los Alamos Natl Lab, GT Seaborg Inst, Los Alamos, NM 87545 USA. RP Poineau, F (reprint author), Univ Nevada Las Vegas, Dept Chem, Las Vegas, NV 89154 USA. EM freder29@unlv.nevada.edu RI Silva, Chinthaka/E-1416-2017; OI Silva, Chinthaka/0000-0003-4637-6030; , Philippe/0000-0002-7610-2893 FU U.S. Department of Energy [DE-AC07-05ID14517] FX The authors thank Mr. Tom O'Dou for health physics support. We also acknowledge Dr. Carol J. Burns (Los Alamos) for it generous loan of ammonium pertechnetate. Funding for this research was provided by a subcontract through Battelle 0089445 from the U.S. Department of Energy, agreement no. DE-AC07-05ID14517. NR 24 TC 8 Z9 8 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 15 PY 2010 VL 49 IS 4 BP 1433 EP 1438 DI 10.1021/ic9016257 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 551VT UT WOS:000274240700030 PM 20085255 ER PT J AU Li, B Kim, SJ Miller, GJ Corbett, JD AF Li, Bin Kim, Sung-Jin Miller, Gordon J. Corbett, John D. TI K23Au12Sn9-An Intermetallic Compound Containing a Large Gold-Tin Cluster: Synthesis, Structure, and Bonding SO INORGANIC CHEMISTRY LA English DT Article ID ZINTL-COMPOUNDS; FRAMEWORK STRUCTURE; CRYSTAL-STRUCTURE; BUILDING-BLOCKS; SOLID-STATE; PHASES; CHEMISTRY; GERMANIUM; POLYHEDRA; METALS AB A polyanionic unit {Au12Sn9} with a novel "corrugated sheet" shape occurs in K23Au12Sn9. The compound was obtained by fusion of the pure elements in tantalum ampules at high temperatures followed by programmed cooling, and the structure was determined by X-ray diffraction: /(4) over bar 2m (No. 121), a = 20.834(3), c = 6.818(1) angstrom, Z= 2. The large heteroatomic cluster has D-2d point symmetry and features a central four bonded (4b-) Sri, eight 3b- or 2b-Sn on the perimeter, and 24 linking nearly linear Sn-Au bonds at 12 Au atoms. Formula splitting according to the Zintl concept suggests that the compound is one electron deficient, and linear muff in-tin-orbital (LMTO) electronic structure calculations show that the Fermi level (E-F) lies near a band gap at around 0.5 eV, that is, an incompletely filled valence band in concert with favorable atom packing. Large relative -ICOHP values for Au-Sn are consistent with the observed maximization of the number of heteroatomic bonds, whereas the numerous K-Sn and K-Au contacts contribute similar to 40% of the total -ICOHP. Extended-Huckel population and molecular orbital analyses indicate that the open band feature originates from 5p states that are associated with the 2b-corner Sri atoms. In accord with the electronic structure calculations, magnetic susceptibility measurements show a nearly temperature-independent paramagnetic property. C1 [Corbett, John D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE); Iowa State University [DE-AC02-07CH11358] FX This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE); Ames Laboratory is operated for DOE by Iowa State University under contract No. DE-AC02-07CH11358. NR 52 TC 3 Z9 3 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 15 PY 2010 VL 49 IS 4 BP 1503 EP 1509 DI 10.1021/ic901771x PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 551VT UT WOS:000274240700039 PM 20063860 ER PT J AU Schelter, EJ Wu, RL Veauthier, JM Bauer, ED Booth, CH Thomson, RK Graves, CR John, KD Scott, BL Thompson, JD Morris, DE Kiplinger, JL AF Schelter, Eric J. Wu, Ruilian Veauthier, Jacqueline M. Bauer, Eric D. Booth, Corwin H. Thomson, Robert K. Graves, Christopher R. John, Kevin D. Scott, Brian L. Thompson, Joe D. Morris, David E. Kiplinger, Jaqueline L. TI Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide and Lanthanoid-Actinide Complexes Possessing Redox-Active Bridging Ligands SO INORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; RAY-ABSORPTION SPECTROSCOPY; MIXED-VALENCE URANIUM; BIS(KETIMIDO) COMPLEXES; METALLOCENE DICHLORIDES; MAGNETIC-PROPERTIES; PENTAVALENT URANYL; EXCITED-STATES; FINE-STRUCTURE; THORIUM(IV) AB A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are reported for (C(5)Me(5))(2)An[-N=C(Bn)(tpy-M{C(5)Me(4)R}(2))](2) (where An = Th(IV), U(IV); Bn = CH(2)C(6)H(5); M = La(III), Sm(III), Yb(III), U(III); R = H, Me, Et} to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral "M" site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetaillic Yb(III)-U(IV)-Yb(III), Sm(III)-U(IV)-Sm(III), and La(III)-U(IV)-La(III) complexes, [8](-), [9b](-), and (10b](-), respectively, whose calculated comproportionation constant K(c) is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U(III) U(IV), and U(V) reveal small but detectable energy differences in the "white-line" feature of the uranium L(III)-edges consistent with these variations in nominal oxidation state. The sum of these data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4'-cyano-2,2:6',2 ''-terpyridine is also reported. C1 [Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Booth, Corwin H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Morris, DE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM demorris@lanl.gov; kiplinger@lanl.gov RI Bauer, Eric/D-7212-2011; Schelter, Eric/E-2962-2013; Booth, Corwin/A-7877-2008; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Veauthier, Jacqueline/0000-0003-2206-7786; Bauer, Eric/0000-0003-0017-1937; John, Kevin/0000-0002-6181-9330 FU Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry; Director's, Agnew National Security, and Frederick Reines Postdoctoral Fellowships; LANL G. T. Scaborg Institute for Transactinium Science; LANL Laboratory Directed Research & Development program. Portions; U.S. DOE at LANL [AC5206NA25396]; U.S. DOE [DE-AC02-05CH11231] FX For financial support of this work, we acknowledge the Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program, LANL (Director's, Agnew National Security, and Frederick Reines Postdoctoral Fellowships), the LANL G. T. Scaborg Institute for Transactinium Science, and the LANL Laboratory Directed Research & Development program. Portions, of this research were carried Out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. DOE, Office of Basic Energy Sciences. This work was carried Out under the auspices of the NNSA of the U.S. DOE at LANL under Contract DE-AC5206NA25396. Work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences. of the U.S. DOE under Contract No. DE-AC02-05CH11231. Drs. Slosh A. Kozimor and Rebecca M. Chamberlin (LANL) are acknowledged for helpful discussions. NR 70 TC 23 Z9 23 U1 7 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 15 PY 2010 VL 49 IS 4 BP 1995 EP 2007 DI 10.1021/ic9024475 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 551VT UT WOS:000274240700093 PM 20088535 ER PT J AU Cheng, TY Szalda, DJ Franz, JA Bullock, RM AF Cheng, Tan-Yun Szalda, David J. Franz, James A. Bullock, R. Morris TI Structural and computational studies of Cp(CO)(2)(PCy3)MoFBF3, a complex with a bound BF4- ligand SO INORGANICA CHIMICA ACTA LA English DT Article DE Weakly coordinating ligand; DFT computations; Hydride transfer reactions; Metal hydride; Molybdenum complex ID CATALYTIC IONIC HYDROGENATIONS; COMPACT EFFECTIVE POTENTIALS; WEAKLY COORDINATING ANIONS; HYDRIDE TRANSFER-REACTIONS; TRANSITION-METAL HYDRIDES; EXPONENT BASIS-SETS; NONCOORDINATING ANIONS; CRYSTAL-STRUCTURES; TRITYL CATION; KETONES AB Hydride transfer from Cp(CO)(2)(PCy3)MoH to Ph3C+BF4- gives Cp(CO)(2)(PCy3)MoFBF3, and the crystal structure of this complex was determined. In the weakly bound FBF3 ligand, the B-F(bridging) bond length is 1.475(8) angstrom, which is 0.15 angstrom longer than the average length of the three B-F(terminal) bonds. The PCy3 and FBF3 ligands are cis to each other in the four-legged piano stool structure. Electronic structure (DFT) calculations predict the trans isomer of Cp(CO)(2)(PCy3)MoFBF3 to be 9.5 kcal/mol (in Delta G(g)degrees(,298)) less stable than the cis isomer that was crystallographically characterized. Hydride transfer from Cp(CO)(2)(PCy3)MoH to Ph3C+BAr4'-[Ar'-3,5 - bis(trifluoromethyl)phenyl] in CH2Cl2 solvent produces Cp(CO)(2()PCy3)Mo(ClCH2Cl)](+)[BAr4'](-), in which CH2Cl2 is coordinated to the metal. (C) 2009 Elsevier B.V. All rights reserved. C1 [Franz, James A.; Bullock, R. Morris] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Cheng, Tan-Yun; Szalda, David J.; Bullock, R. Morris] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Bullock, RM (reprint author), Pacific NW Natl Lab, Div Chem Sci, POB 999,K2-57, Richland, WA 99352 USA. EM morris.bullock@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU US Department of Energy [DE-AC02-98CH10886] FX Research at Brookhaven National Laboratory was carried out under contract DE-AC02-98CH10886 with the US Department of Energy and was supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. Research at Pacific Northwest National Laboratory was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences, US Department of Energy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. The provision of computing resources at the National Energy Research Scientific Computing Center (NERSC), Office of Science, US-DOE, at Lawrence Berkeley National Laboratory, is gratefully acknowledged. NR 46 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD FEB 15 PY 2010 VL 363 IS 3 BP 581 EP 585 DI 10.1016/j.ica.2009.02.028 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 553VF UT WOS:000274394200017 ER PT J AU Boley, CD Cutter, KP Fochs, SN Pax, PH Rotter, MD Rubenchik, AM Yamamoto, RM AF Boley, C. D. Cutter, K. P. Fochs, S. N. Pax, P. H. Rotter, M. D. Rubenchik, A. M. Yamamoto, R. M. TI Interaction of a high-power laser beam with metal sheets SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aerodynamics; aluminium; elasticity; heat treatment; high-speed optical techniques; laser beam effects; laser materials processing; melting point AB Experiments with a high-power laser beam directed onto thin aluminum sheets, with a large spot size, demonstrate that airflow produces a strong enhancement of the interaction. The enhancement is explained in terms of aerodynamic effects. As laser heating softens the material, the airflow-induced pressure difference between front and rear faces causes the metal to bulge into the beam. The resulting shear stresses rupture the material and remove it at temperatures well below the melting point. The material heating is shown to conform to an elementary model. We present an analytic model of elastic bulging. Scaling with respect to spot size, wind speed, and material parameters is determined. C1 [Boley, C. D.; Cutter, K. P.; Fochs, S. N.; Pax, P. H.; Rotter, M. D.; Rubenchik, A. M.; Yamamoto, R. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Boley, CD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM boley1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344] FX Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 13 TC 14 Z9 21 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 043106 DI 10.1063/1.3284204 PG 5 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900007 ER PT J AU Garcia, MA Jimenez-Villacorta, F Quesada, A de la Venta, J Carmona, N Lorite, I Llopis, J Fernandez, JF AF Garcia, M. A. Jimenez-Villacorta, F. Quesada, A. de la Venta, J. Carmona, N. Lorite, I. Llopis, J. Fernandez, J. F. TI Surface magnetism in ZnO/Co3O4 mixtures SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE cobalt compounds; electronic structure; electrostatics; ferromagnetic materials; II-VI semiconductors; reduction (chemical); reflectivity; semimagnetic semiconductors; surface magnetism; wide band gap semiconductors; XANES; zinc compounds ID ROOM-TEMPERATURE; DOPED ZNO; SOL-GEL; FERROMAGNETISM; OXIDE AB We recently reported the observation of room temperature ferromagnetism in mixtures of ZnO and Co3O4 despite the diamagnetic and antiferromagnetic character of these oxides, respectively. Here, we present a detailed study on the electronic structure of this material in order to account for the unexpected ferromagnetism. Electrostatic interactions between both oxides lead to a dispersion of Co3O4 particles over the surface of ZnO larger ones. As a consequence, the reduction Co+3 -> Co2+ at the particle surface takes place as evidenced by x-ray absorption spectroscopy measurements and optical spectroscopy. This reduction allows explaining the observed ferromagnetic signal within the well established theories of magnetism in oxides. C1 [Garcia, M. A.; de la Venta, J.; Lorite, I.; Fernandez, J. F.] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain. [Garcia, M. A.; de la Venta, J.; Carmona, N.; Llopis, J.] Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain. [Jimenez-Villacorta, F.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Jimenez-Villacorta, F.] European Synchrotron Radiat Facil, Spanish CRG Beamline, SpLine, F-38043 Grenoble 09, France. [Quesada, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Garcia, MA (reprint author), CSIC, Inst Ceram & Vidrio, Plaza Murillo 2, E-28049 Madrid, Spain. EM magarcia@icv.csic.es RI Jimenez-Villacorta, Felix/C-3924-2009; Quesada, Adrian/L-6475-2014; Fernandez, Jose/M-4402-2014; Garcia, Miguel Angel/N-3043-2016; Carmona, Noemi/I-1232-2015 OI Jimenez-Villacorta, Felix/0000-0001-7257-9208; Quesada, Adrian/0000-0002-6994-0514; Fernandez, Jose/0000-0001-5894-9866; Garcia, Miguel Angel/0000-0001-9972-2182; Carmona, Noemi/0000-0003-4765-2367 FU Spanish Council for Scientific Research [CSIC 2006-50F0122, CSIC 2007-50I015]; Spanish Ministry of Science and Education [MAT2007-66845-C02-01, FIS-2008-06249] FX ucas Perez and Manuel Plaza are acknowledged for the help with the magnetic measurements. M. S. Martin-Gonzalez and J.L. Costa-Kramer are acknowledged for fruitful discussions. This work was supported by the Spanish Council for Scientific Research through Project Nos. CSIC 2006-50F0122 and CSIC 2007-50I015 and Spanish Ministry of Science and Education through Project Nos. MAT2007-66845-C02-01 and FIS-2008-06249. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we would like to thank the SpLine CRG beamline staff for assistance during x-ray absorption experiments. NR 21 TC 12 Z9 12 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 043906 DI 10.1063/1.3294649 PG 5 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900063 ER PT J AU Horansky, RD Stiehl, GM Beall, JA Irwin, KD Plionis, AA Rabin, MW Ullom, JN AF Horansky, Robert D. Stiehl, Gregory M. Beall, James A. Irwin, Kent D. Plionis, Alexander A. Rabin, Michael W. Ullom, Joel N. TI Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE alpha-particle detection; alpha-particle effects; calorimeters; particle detectors; ubiquitous computing ID TRANSITION-EDGE SENSORS; X-RAY; ELECTRON-EMISSION; DETECTORS; DEFECT; SPECTROMETERS; METALS; ARRAY AB Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles. C1 [Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.] Natl Inst Stand & Technol, Boulder, CO USA. [Plionis, Alexander A.; Rabin, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Horansky, RD (reprint author), Natl Inst Stand & Technol, 325 Broadway,MS 817-03, Boulder, CO USA. EM horansky@nist.gov FU U.S. Department of Energy through the Office of Nonproliferation Research and Development; LANL/LDRD; Department of Homeland Security; NSF [IIS 0813777] FX We acknowledge valuable technical discussions with Harvey Moseley, Galen O'Neil, and Minesh Bacrania. We gratefully acknowledge the support of the U.S. Department of Energy through the Office of Nonproliferation Research and Development, the LANL/LDRD Program, and the Department of Homeland Security for this work. RDH acknowledges support through NSF (under Grant No. IIS 0813777). NR 36 TC 16 Z9 16 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 044512 DI 10.1063/1.3309279 PG 9 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900101 ER PT J AU Pan, M Bai, G Liu, Y Hong, S Dravid, VP Petford-Long, AK AF Pan, M. Bai, G. Liu, Y. Hong, S. Dravid, V. P. Petford-Long, A. K. TI Effect of deposition temperature on surface morphology and magnetic properties in epitaxial CoFe2O4 thin films deposited by metal organic chemical vapor deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE cobalt compounds; crystal microstructure; magnetic anisotropy; MOCVD; surface morphology; surface roughness; vapour phase epitaxial growth ID ULTRATHIN FILMS; COBALT FERRITE; FE3O4 FILMS; ANISOTROPY; BEHAVIOR; GROWTH; ENERGY; SPINEL; ORIGIN AB We have successfully grown epitaxial CoFe2O4 (CFO) thin film on SrTiO3 by metal organic chemical vapor deposition. In order to understand the surface structure and its correlation with magnetic properties, CFO thin films were deposited at a range of deposition temperatures. As the deposition temperature is decreased, a huge effect on film morphology and surface roughness is observed, resulting from a change in the size and density of the crystal nuclei. These changes to grain structure and surface roughness modify the energy landscape of the films and are major contributors to the change in magnetic properties as a function of deposition temperature: the direction of the easy axis is aligned in-plane at lower deposition temperatures and lower anisotropy between different directions is observed in the rough films grown at high temperature. C1 [Pan, M.; Bai, G.; Liu, Y.; Hong, S.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pan, M.; Dravid, V. P.; Petford-Long, A. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Pan, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mengchunpan2008@u.northwestern.edu RI Dravid, Vinayak/B-6688-2009; Hong, Seungbum/B-7708-2009; Petford-Long, Amanda/P-6026-2014; Liu, Yuzi/C-6849-2011 OI Hong, Seungbum/0000-0002-2667-1983; Petford-Long, Amanda/0000-0002-3154-8090; FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; National Science Foundation [DMR-0520513]; Department of Energy [DE-FG02-07ER46444] FX This work was mostly carried out by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. Use of the Electron Microscopy Center of Argonne National Laboratory is gratefully acknowledged. This work made use of J. B. Cohen X-ray Diffraction Facility supported by the MR-SEC program of the National Science Foundation (Contract No. DMR-0520513) at the Materials Research Center of Northwestern University. This material is based upon work supported by the Department of Energy under Award No. DE-FG02-07ER46444. DOE's support does not constitute an endorsement by DOE of the views expressed in the article. The authors would like to thank John Pearson and Axel Hoffman for assistance with SQUID measurements and Jui-Ching Lin for XRR technical support. NR 40 TC 13 Z9 13 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 043908 DI 10.1063/1.3312011 PG 7 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900065 ER PT J AU Salvador, JR Yang, J Wang, H Shi, X AF Salvador, J. R. Yang, J. Wang, H. Shi, X. TI Double-filled skutterudites of the type YbxCayCo4Sb12: Synthesis and properties SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE crystal structure; electrical resistivity; inclusions; phonons; thermal conductivity; thermoelectricity; ytterbium compounds ID LATTICE THERMAL-CONDUCTIVITY; THERMOELECTRIC PROPERTIES; TRANSPORT-PROPERTIES; FILLING FRACTION; HIGH FIGURE; COSB3; SEMICONDUCTOR; ANTIMONIDES; MERIT AB Filled skutterudites based on CoSb3 exhibit high ZT values due to the inclusion of filler atoms into voids that comprise the crystal structure of CoSb3. These atoms act as electron-donating species that dope the parent material, thereby decreasing the electrical resistivity. Additionally, the loosely bound nature of the filler species acts to scatter heat carrying phonons, which reduce the thermal conductivity. Recently it has been reported that filler atoms from different chemical groups could be cofilled into CoSb3, which further reduces the thermal conductivity, likely by scattering a wider spectrum of phonons. Presented here is the synthesis and transport property evaluation of a series of double-filled skutterudites of the type YbxCayCo4Sb12. Good power factors, S-2/rho comparable to Yb-filled skutterudites are obtained for samples with a high Yb to Ca filling ratio. Filling with Ca and Yb did not yield a significant reduction in the thermal conductivity and as a result the ZT values are not improved as compared to Yb-only filled skutterudites although they are much improved as compared to Ca-only filled. C1 [Salvador, J. R.] GM R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. [Yang, J.] GM R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA. [Wang, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shi, X.] Optimal Inc, Plymouth Township, MI 48170 USA. RP Salvador, JR (reprint author), GM R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. EM james.salvador@gm.com RI Yang, Jihui/A-3109-2009; Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU GM and by DOE under Corporate Agreement [DE-FC2604NT42278]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory [DEAC05000OR22725] FX J.R.S., X. S., and J.Y. would like to thank Dr. J.F. Herbst and Dr. M. W. Verbrugge for their continued support and encouragement. Elemental analysis provided by Richard Waldo, and x-ray powder diffraction measurements provided by Richard Speers Jr. The work is supported by GM and by DOE under Corporate Agreement No. DE-FC2604NT42278, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory managed by the UT-Battelle LLC, for the Department of Energy under Grant No. DEAC05000OR22725. NR 40 TC 39 Z9 39 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 043705 DI 10.1063/1.3296186 PG 6 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900050 ER PT J AU Vogler, TJ Alexander, CS Wise, JL Montgomery, ST AF Vogler, T. J. Alexander, C. S. Wise, J. L. Montgomery, S. T. TI Dynamic behavior of tungsten carbide and alumina filled epoxy composites SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium compounds; fibre reinforced composites; interferometry; shock wave effects; tungsten compounds; wave propagation ID PARTICULATE-LOADED MATERIALS; ISENTROPIC COMPRESSION; WAVE PROPAGATION; SHOCK; PARTICLES; MATRIX; ALLOY AB The dynamic behavior of a tungsten carbide filled epoxy composite is studied under planar loading conditions. Planar impact experiments were conducted to determine the shock and wave propagation characteristics of the material. Its stress-strain response is very close to a similar alumina filled epoxy studied previously, suggesting that the response of the composite is dominated by the compliant matrix material. Wave propagation characteristics are also similar for the two materials. Magnetically driven ramp loading experiments were conducted to obtain a continuous loading response which is similar to that obtained under shock loading. Spatially resolved interferometry was fielded on one experiment to provide a quantitative measure of the variability inherent in the response of this heterogeneous material. Complementing the experiments, a two-dimensional mesoscale model in which the individual constituents of the composite are resolved was used to simulate its behavior. Agreement of the predicted shock and release wave velocities with experiments is excellent, and the model is qualitatively correct on most other aspects of behavior. C1 [Vogler, T. J.] Sandia Natl Labs, Livermore, CA 94550 USA. [Alexander, C. S.; Wise, J. L.; Montgomery, S. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vogler, TJ (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM tjvogle@sandia.gov FU Joint DoD/DOE Munitions Technology Development Program; Sandia Corporation, a Lockheed Martin Co. FX The authors wish to thank the teams at the STAR and DICE facilities for the execution of the gas gun and Veloce experiments. They would also like to thank Tom Ao for the analysis of the line-VISAR experiment presented herein. This work was supported by the Joint DoD/DOE Munitions Technology Development Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 39 TC 10 Z9 10 U1 4 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 043520 DI 10.1063/1.3295904 PG 13 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900036 ER PT J AU Wang, L Matson, DW Polikarpov, E Swensen, JS Bonham, CC Cosimbescu, L Berry, JJ Ginley, DS Gaspar, DJ Padmaperuma, AB AF Wang, Liang Matson, Dean W. Polikarpov, Evgueni Swensen, James S. Bonham, Charles C. Cosimbescu, Lelia Berry, Joseph J. Ginley, David S. Gaspar, Daniel J. Padmaperuma, Asanga B. TI Highly efficient blue organic light emitting device using indium-free transparent anode Ga:ZnO with scalability for large area coating SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE current density; gallium; II-VI semiconductors; organic light emitting diodes; sputter deposition; wide band gap semiconductors; zinc compounds ID GA-DOPED ZNO; OXIDE THIN-FILMS; ZINC-OXIDE; OPTICAL-PROPERTIES; SUBSTRATE-TEMPERATURE; DEPOSITION; GALLIUM; WINDOWS; PERFORMANCE; PRESSURE AB Organic light emitting devices have been achieved with an indium-free transparent anode, Ga doped ZnO (GZO). A large area coating technique was used (RF magnetron sputtering) to deposit the GZO films onto glass. The respective organic light emitting devices exhibited an operational voltage of 3.7 V, an external quantum efficiency of 17%, and a power efficiency of 39 lm/W at a current density of 1 mA/cm(2). These parameters are well within acceptable standards for blue OLEDs to generate a white light with high enough brightness for general lighting applications. It is expected that high-efficiency, long-lifetime, large area, and cost-effective white OLEDs can be made with these indium-free anode materials. C1 [Wang, Liang; Matson, Dean W.; Polikarpov, Evgueni; Swensen, James S.; Bonham, Charles C.; Cosimbescu, Lelia; Gaspar, Daniel J.; Padmaperuma, Asanga B.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Berry, Joseph J.; Ginley, David S.] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, L (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM asanga.padmaperuma@pnl.gov RI Gaspar, Dan/H-6166-2011; OI Gaspar, Daniel/0000-0002-8089-810X FU U.S. Department of Energy [M6642866]; U.S. Department of Energy (DOE) [DE-AC06-76RLO 1830] FX The authors thank Wendy D. Bennett for helpful discussions on the uniformity of thin film deposition by magnetron sputtering. This project was funded by the Solid Sate Lighting Program within the Building Technologies Program (BT) managed by the National Energy Technology Laboratory (NETL) of the Energy Efficiency and Renewable Energy Division of the U.S. Department of Energy Award No. M6642866. A portion of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory (PNNL) is operated by the Battelle Memorial Institute for the U.S. Department of Energy (DOE) under Contract No. DE-AC06-76RLO 1830. NR 57 TC 18 Z9 19 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2010 VL 107 IS 4 AR 043103 DI 10.1063/1.3282526 PG 8 WC Physics, Applied SC Physics GA 562DG UT WOS:000275028900004 ER PT J AU Thomas, JE Kelley, MJ AF Thomas, Joan E. Kelley, Michael J. TI A study of competitive adsorption of organic molecules onto mineral oxides using DRIFTS SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Infrared spectroscopy; DRIFTS; Kaolinite; Gamma alumina; Adsorption; Surface water; Myristic acid; Salicylic acid; Hexane solvent ID SPECTROSCOPY AB Analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or gamma-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from gamma-alumina, but not kaolinite, was observed when excess salicylic acid remained in Solution. A 25% increase in the maximum loading was observed for kaolinite, but not for gamma-alumina. On gamma-alumina, after a loading of 1 molecule per nm(2), increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples [1,2]. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kelley, Michael J.] Coll William & Mary, Jefferson Lab, FEL Div, Newport News, VA 23606 USA. Coll William & Mary, Dept Appl Sci, Newport News, VA 23606 USA. RP Kelley, MJ (reprint author), Coll William & Mary, Jefferson Lab, FEL Div, 12050 Jefferson Ave,Suite 601, Newport News, VA 23606 USA. EM mkelley@jlab.org FU Commonwealth of Virginia FX We gratefully acknowledge the Commonwealth of Virginia for financial support. NR 8 TC 1 Z9 1 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD FEB 15 PY 2010 VL 342 IS 2 BP 474 EP 478 DI 10.1016/j.jcis.2009.10.031 PG 5 WC Chemistry, Physical SC Chemistry GA 550GX UT WOS:000274117400033 PM 19922942 ER PT J AU Gojkovic, SL Babic, BM Radmilovic, VR Krstajic, NV AF Gojkovic, S. Lj. Babic, B. M. Radmilovic, V. R. Krstajic, N. V. TI Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Oxide support; TiO2; Pt-Ru nanocatalyst; Methanol oxidation; Polymer electrolyte membrane fuel cell ID PLATINUM-RUTHENIUM ALLOY; METHANOL ELECTROOXIDATION; FUEL-CELLS; ELECTROCATALYSTS; ELECTRODES; OXIDATION; CO; NANOPARTICLES; DEPOSITION; REDUCTION AB TiO2 doped by 0.5% Nb was synthesized by the acid-catalyzed sol-gel method. BET surface area was determined to be 72 m(2) g(-1). XRD measurements showed that TiO2 has structure of anatase with similar to 13 nm average crystallite size. Using Nb-TiO2 as a support, Pt/Nb-TiO2 and Pt-Ru/Nb-TiO2 were prepared by borohydride reduction method. TEM imaging of Pt-Ru/Nb-TiO2 revealed rather uniform distribution of the metallic particles on the support with a mean diameter of 3.8 nm. According to XRD analysis, Pt-Ru particles consist of the solid solution of Ru in Pt (40 at.% Ru) and a small amount of RuO2. Cyclic voltammetry of Pt/Nb-TiO2 and Pt-Ru/Nb-TiO2 indicated good conductivity of the supporting material. Oxidation of pre-adsorbed CO and methanol on Pt-Ru/Nb-TiO2 was faster than on Pt/Nb-TiO2. However, when the activities of Pt/Nb-TiO2 and Pt-Ru/Nb-TiO2 for methanol oxidation were compared to those of Pt/XC-72 and Pt-Ru/XC-72, no significant difference was observed. This means that Nb-TiO2 is a promising replacement for high area carbon supports in PEMFC anodes, but without the influence on the reaction kinetics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gojkovic, S. Lj.; Krstajic, N. V.] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia. [Babic, B. M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Radmilovic, V. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Gojkovic, SL (reprint author), Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11120, Serbia. EM sgojkovic@tmf.bg.ac.rs FU Ministry of Science and Development, Republic of Serbia [142038] FX This paper has been supported by the Ministry of Science and Development, Republic of Serbia, under Contract No. 142038. NR 25 TC 38 Z9 41 U1 5 U2 54 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD FEB 15 PY 2010 VL 639 IS 1-2 BP 161 EP 166 DI 10.1016/j.jelechem.2009.12.004 PG 6 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 563MU UT WOS:000275137400023 ER PT J AU Grzenia, DL Schell, DJ Wickramsinghe, SR AF Grzenia, David L. Schell, Daniel J. Wickramsinghe, S. Ranil TI Detoxification of biomass hydrolysates by reactive membrane extraction SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Aliphatic amine extractant; Detoxification; Hydrolysate; Lignocellulosic biomass; Membrane extraction ID REDUCING SOLVENT TOXICITY; CARBOXYLIC-ACIDS; LIGNOCELLULOSIC BIOMASS; AMINE EXTRACTANTS; GAS MEMBRANES; ACETIC-ACID; FERMENTATION; PRETREATMENT; RECOVERY; TECHNOLOGIES AB Economical conversion of lignocellulosic biomass into biofuels is essential to reduce the world's dependence on fossil fuels. The typical biochemical process for biomass conversion includes a thermochemical pretreatment step to improve enzymatic cellulose hydrolysis and to release hemicellulosic sugars from the polymer matrix. However compounds that are toxic to microorganisms in subsequent fermentation steps may also be released. This work investigates the use of membrane extraction to detoxify or remove these toxic compounds from corn stover hydrolysates pretreated using dilute sulphuric acid. Extraction of sulphuric, acetic, formic and levulinic acid as well as 5-hydroxymethylfurfural and furfural has been investigated. Octanol and oelyl alcohol were used as organic phase solvents. Alamine 336 was used as the aliphatic amine extractant. Reactive extraction of sulphuric, acetic, formic and levulinc acid was observed while 5-hydroxymethylfurfural and furfural were extracted due to their distribution in the organic solvent. Significant removal of all toxic compounds investigated was obtained as well an increase in pH from 1.0 to 5.0. As small quantities of the organic phase transferred into the hydrolysate during extraction, the toxicity of the organic phase must be considered. As it is likely that detoxification will require the use of another unit operation in combination with membrane extraction, the economical viability of the combined process must be considered. (C) 2009 Elsevier B.V. All rights reserved. C1 [Grzenia, David L.; Wickramsinghe, S. Ranil] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. [Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Wickramsinghe, SR (reprint author), Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA. EM wickram@engr.colostate.edu FU U.S. Department of Energy; National Renewable Energy Laboratory [ZFT-9-99323-01] FX Funding for this work was provided by the U.S. Department of Energy's Office of the Biomass Program and funding for Colorado State University was provided by a subcontract with the National Renewable Energy Laboratory (ZFT-9-99323-01). We wish to thank Gary McMillen for material support, Jody Farmer and Robert Lyons for help with equipment setup, and Deborah Hyman, William Michener, and David Johnson for help with the analytical methods. NR 34 TC 23 Z9 23 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD FEB 15 PY 2010 VL 348 IS 1-2 BP 6 EP 12 DI 10.1016/j.memsci.2009.10.035 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 558SE UT WOS:000274765300002 ER PT J AU Zhang, S Shao, YY Yin, GP Lin, YH AF Zhang, Sheng Shao, Yuyan Yin, Geping Lin, Yuehe TI Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation SO JOURNAL OF POWER SOURCES LA English DT Article DE Direct formic acid fuel cell; Electrocatalyst; Platinum-gold alloy nanoparticle; Catalytic activity ID METHANOL FUEL-CELLS; OXYGEN-REDUCTION; PLATINUM NANOPARTICLES; ELECTROCATALYTIC ACTIVITY; AU NANOPARTICLES; PT/C CATALYSTS; ELECTROOXIDATION; PERFORMANCE; SURFACE; MICROEMULSION AB We report the facile synthesis of carbon supported PtAu alloy nanoparticles with high electrocatalytic activity as anode catalysts for direct formic acid fuel cells (DFAFCs). PtAu alloy nanoparticles are prepared by co-reducing HAuCl(4) and H(2)PtCl(6) with NaBH(4) in the presence of sodium citrate and then deposited on Vulcan XC-72R carbon support (PtAu/C). The obtained catalysts are characterized with X-ray diffraction (XRD) and transmission electron microscope (TEM), which reveal the formation of PtAu alloy nanoparticles with an average diameter of 4.6 nm. Electrochemical measurements show that PtAu/C has seven times higher catalytic activity towards formic acid oxidation than Pt/C. This significantly enhanced activity of PtAu/C catalyst can be attributed to noncontinuous Pt sites formed in the presence of the neighbored Au sites, which promotes direct oxidation of formic acid. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Sheng; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Zhang, Sheng; Shao, Yuyan; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. EM yingphit@hit.edu.cn; yuehe.lin@pnl.gov RI Zhang, Sheng/H-2452-2011; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011 OI Zhang, Sheng/0000-0001-7532-1923; Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587 FU Natural Science Foundation of China [50872027, 20606007]; Laboratory Directed Research and Development program; DOE [DE-AC05-76L01830]; China Scholarship Council; PNNL FX This work is partially supported by the Natural Science Foundation of China (Nos. 50872027 and 20606007) and partially by a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific-user facility sponsored by the U.S. Department of Energy's (DOES) Office of Biological and Environmental Research and located at PNNL. PNNL is operated for DOE by Battelle under Contract DE-AC05-76L01830. The authors would like to acknowledge Dr. Chongmin Wang for TEM measurements. Sheng Zhang would like to acknowledge the fellowship from the China Scholarship Council and the fellowship from PNNL. NR 34 TC 72 Z9 74 U1 5 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2010 VL 195 IS 4 BP 1103 EP 1106 DI 10.1016/j.jpowsour.2009.08.054 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 519PK UT WOS:000271779100026 ER PT J AU Chen, GY Richardson, TJ AF Chen, Guoying Richardson, Thomas J. TI Thermal instability of Olivine-type LiMnPO4 cathodes SO JOURNAL OF POWER SOURCES LA English DT Article DE Thermal stability; Lithium batteries; Olivine phosphates ID SOLID-SOLUTION PHASES; ELEVATED-TEMPERATURES; NONAQUEOUS SOLVENTS; BATTERY CATHODES; ION BATTERIES; STABILITY; LIFEPO4; ELECTROLYTE; LI0.5COO2; LI(NI0.8CO0.15AL0.05)O-2 AB The remarkable thermal stability of LiFePO4 and its charged counterpart, FePO4, have been instrumental in its commercialization as a lithium-ion battery cathode material. Despite the similarity in composition and structure, and despite the high thermal stability of the parent compound, LiMnPO4, we find that the delithiated phase LiyMnPO4 (which contains a small amount of residual lithium). is relatively unstable and reactive toward a lithium-ion electrolyte. The onset temperature for heat evolution in the presence of 1 M LiPF6 in 1:1 ethylene carbonate/propylene carbonate is around 150 degrees C, and the total evolved heat is 884 J g(-1), comparable to that produced under similar conditions by charged LiCoO2 electrodes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chen, Guoying; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Chen, GY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94720 USA. EM gchen@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. John Kerr of LBNL for assistance with the DSC measurements. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 26 TC 86 Z9 89 U1 4 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2010 VL 195 IS 4 SI SI BP 1221 EP 1224 DI 10.1016/j.jpowsour.2009.08.046 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 519PK UT WOS:000271779100045 ER PT J AU Christophersen, JP Shaw, SR AF Christophersen, Jon P. Shaw, Steven R. TI Using radial basis functions to approximate battery differential capacity and differential voltage SO JOURNAL OF POWER SOURCES LA English DT Article DE Differential capacity; Differential voltage; Radial basis function; Bootstrapping; Lithium-ion ID LITHIUM-ION CELLS; HIGH-POWER AB As part of the Department of Energy's Advanced Technology Development Program, lithium-ion cells of various sizes and chemistries are aged with periodic reference performance tests to ascertain degradation rates. The reference tests include a very slow discharge and charge based on a constant current equal to 1/25th of the rated capacity to elucidate the true electrochemical capacity of the cell. A differential analysis of these data helps to identify the individual kinetic and thermodynamic contributions of the anode and cathode. However, differential curves are very noisy, and previous smoothing methods included simple data reduction and moving averages. This paper introduces an alternative method of finding the differential voltage and differential capacity Curves based on radial basis functions. The voltage profile is fit with a number of Gaussian Curves, and the resulting model is differentiated. This approach also has the added advantage of assessing model uncertainty based on a bootstrap analysis. The radial basis function method was successfully applied to various lithium-ion chemistries tested under the Advanced Technology Development Program. The resulting differential capacity and differential voltage curves are generally smoother than the corresponding curves found by previous methods and also show little variance, indicating a good model fit. These results imply that the radial basis function technique is a more robust tool for assessing differential data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Christophersen, Jon P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Shaw, Steven R.] Montana State Univ, Bozeman, MT 59717 USA. RP Christophersen, JP (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jon.christophersen@inl.gov FU US DOE [DE-AC07-05ID14517]; NSF [0547616] FX This work was prepared as an account of work sponsored by an agency of the United States Government under US DOE Contract DE-AC07-05ID14517. Funding for this work was provided by the U.S. DOE Office of Vehicle Technologies (INL) and NSF award #0547616 (MSU). The authors gratefully acknowledge Kevin Gering (INL) and Ira Bloom (ANL) for providing valuable comments. NR 14 TC 7 Z9 7 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2010 VL 195 IS 4 BP 1225 EP 1234 DI 10.1016/j.jpowsour.2009.08.094 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 519PK UT WOS:000271779100046 ER PT J AU Segundo, FDS Moraes, MP de los Santos, T Dias, CCA Grubman, MJ AF Segundo, Fayna Diaz-San Moraes, Mauro P. de los Santos, Teresa Dias, Camila C. A. Grubman, Marvin J. TI Interferon-Induced Protection against Foot-and-Mouth Disease Virus Infection Correlates with Enhanced Tissue-Specific Innate Immune Cell Infiltration and Interferon-Stimulated Gene Expression SO JOURNAL OF VIROLOGY LA English DT Article ID NATURAL-KILLER-CELLS; HUMAN ADENOVIRUS TYPE-5; IFN-GAMMA PRODUCTION; TOLL-LIKE RECEPTOR; DENDRITIC CELLS; LANGERHANS CELLS; IN-VITRO; ALPHA/BETA INTERFERON; ANTIVIRAL ACTIVITY; LYMPHOID-TISSUES AB Previously, we demonstrated that type I interferon (IFN-alpha/beta) or a combination of IFN-alpha/beta and type II IFN (IFN-gamma) delivered by a replication-defective human adenovirus 5 (Ad5) vector protected swine when challenged 1 day later with foot-and-mouth disease virus (FMDV). To gain a more comprehensive understanding of the mechanism of protection induced by IFNs, we inoculated groups of six swine with Ad5-vectors containing these genes, challenged 1 day later and euthanized 2 animals from each group prior to (1 day postinoculation [dpi]) and at 1 (2 dpi) and 6 days postchallenge (7 dpi). Blood, skin, and lymphoid tissues were examined for IFN-stimulated gene (ISG) induction and infiltration by innate immune cells. All IFN-inoculated animals had delayed and decreased clinical signs and viremia compared to the controls, and one animal in the IFN-alpha treated group did not develop disease. At 1 and 2 dpi the groups inoculated with the IFNs had increased numbers of dendritic cells and natural killer cells in the skin and lymph nodes, respectively, as well as increased levels of several ISGs compared to the controls. In particular, all tissues examined from IFN-treated groups had significant upregulation of the chemokine 10-kDa IFN-gamma-inducible protein 10, and preferential upregulation of 2',5'-oligoadenylate synthetase, Mx1, and indoleamine 2,3-dioxygenase. There was also upregulation of monocyte chemotactic protein 1 and macrophage inflammatory protein 3 alpha in the skin. These data suggest that there is a complex interplay between IFN-induced immunomodulatory and antiviral activities in protection of swine against FMDV. C1 [Segundo, Fayna Diaz-San; Moraes, Mauro P.; de los Santos, Teresa; Dias, Camila C. A.; Grubman, Marvin J.] ARS, Plum Isl Anim Dis Ctr, USDA, NAA, Greenport, NY 11944 USA. [Segundo, Fayna Diaz-San; Dias, Camila C. A.] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN 37831 USA. RP Grubman, MJ (reprint author), ARS, Plum Isl Anim Dis Ctr, USDA, NAA, POB 848, Greenport, NY 11944 USA. EM marvin.grubman@ars.usda.gov FU Oak Ridge Institute for Science and Education; CRIS [1940-32000-053-00D]; Department of Homeland Security [60-1940-7-047] FX This research was supported in part by the Plum Island Animal Disease Research Participation Program administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U. S. Department of Energy and the U. S. Department of Agriculture (appointment of Fayna Diaz-San Segundo and Camila C. A. Dias), by CRIS project number 1940-32000-053-00D, ARS, USDA (M. J. Grubman and T. de los Santos) and by reimbursable agreement 60-1940-7-047 with the Department of Homeland Security (M. J. Grubman).; We thank Noemi Sevilla, CISA-INIA, Valdeolmos, Madrid, Spain, for helpful discussions and suggestions. We also thank Harry Dawson, USDA, ARS, Nutrient Requirements and Function Laboratory, Beltsville, MD, for creating the PIN library with the recommendations of RT- PCR conditions for measuring swine gene expression. Finally, we thank the animal care staff at the Plum Island Animal Disease Center for their professional support and assistance. NR 62 TC 14 Z9 14 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD FEB 15 PY 2010 VL 84 IS 4 BP 2063 EP 2077 DI 10.1128/JVI.01874-09 PG 15 WC Virology SC Virology GA 546ZB UT WOS:000273853200039 ER PT J AU Nelson, AJ Laurence, TA Conway, AM Behymer, EM Sturm, BW Voss, LF Nikolic, RJ Payne, SA Mertiri, A Pabst, G Mandal, KC Burger, A AF Nelson, A. J. Laurence, T. A. Conway, A. M. Behymer, E. M. Sturm, B. W. Voss, L. F. Nikolic, R. J. Payne, S. A. Mertiri, A. Pabst, G. Mandal, K. C. Burger, A. TI Spectroscopic investigation of (NH4)(2)S treated GaSeTe for radiation detector applications SO MATERIALS LETTERS LA English DT Article DE Semiconductor; XPS; PL; Radiation detection ID RAY PHOTOEMISSION ANALYSIS; GROWTH; GATE AB The Surface of the layered III-VI chalcogenide semiconductor GaSeTe was treated with (NH4)(2)S at 60 degrees C to modify the surface chemistry and determine the effect on transport properties. X-ray photoelectron spectroscopy and room temperature photoluminescence were used to examine the surface reactions and effect on surface defect states of the (NH4)(2)S treatment. Metal overlayers were deposited on the (NH4)(2)S treated Surfaces and the I-V characteristics were measured. The measurements were correlated to understand the effect of (NH4)(2)S modification of the interfacial electronic structure with the goal of optimizing the metal/GaSeTe interface for radiation detector devices. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nelson, A. J.; Laurence, T. A.; Conway, A. M.; Behymer, E. M.; Sturm, B. W.; Voss, L. F.; Nikolic, R. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mertiri, A.; Pabst, G.; Mandal, K. C.] EIC Labs Inc, Norwood, MA 02062 USA. [Burger, A.] Fisk Univ, Nashville, TN 37208 USA. RP Nelson, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM nelson63@llnl.gov RI Laurence, Ted/E-4791-2011 OI Laurence, Ted/0000-0003-1474-779X FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Homeland Security, Domestic Nuclear Detection Office [HSHQDC-07-C-00034] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by the Department of Homeland Security, Domestic Nuclear Detection Office under Contract HSHQDC-07-C-00034. NR 12 TC 5 Z9 5 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD FEB 15 PY 2010 VL 64 IS 3 BP 393 EP 395 DI 10.1016/j.matlet.2009.11.027 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 550WS UT WOS:000274164500049 ER PT J AU Aine, CJ Bryant, JE Knoefel, JE Adair, JC Hart, B Donahue, CH Montano, R Hayek, R Qualls, C Ranken, D Stephen, JM AF Aine, C. J. Bryant, J. E. Knoefel, J. E. Adair, J. C. Hart, B. Donahue, C. H. Montano, R. Hayek, R. Qualls, C. Ranken, D. Stephen, J. M. TI Different strategies for auditory word recognition in healthy versus normal aging SO NEUROIMAGE LA English DT Article DE MEG; Verbal recognition; Word recognition; Normal aging; Healthy aging; Alzheimer's disease; MCI; Brain mapping; Hypertension; White matter hyperintensities ID MILD COGNITIVE IMPAIRMENT; AGE-RELATED DIFFERENCES; WHITE-MATTER LESIONS; WORKING-MEMORY DEMAND; VASCULAR RISK-FACTORS; ALZHEIMERS-DISEASE; SOURCE LOCALIZATION; BLOOD-PRESSURE; OLDER-ADULTS; HUMAN BRAIN AB To explore the effects of commonly encountered pathology on auditory recognition strategies in elderly participants, magnetoencephalographic (MEG) brain activation patterns and performance were examined in 30 elderly [18 controls and 12 elderly with mild cognitive impairment (MCI) or probable Alzheimer's disease (AD)]. It was predicted that participants with known pathology would reveal different networks of brain activation, compared to healthy elderly, which should correlate with poorer performance. Participants heard a list of words representing common objects, twice. After 20 minutes a list of new and old words was presented and participants judged whether each word was heard earlier. MEG responses were analyzed using a semiautomated source modeling procedure. A cluster analysis using all subjects' MEG sources revealed three dominant patterns of activity which correlated with IQ and task performance. The highest performing group revealed activity in premotor, anterior temporal, and superior parietal lobes with little contribution from prefrontal cortex. Performance and brain activation patterns were also compared for individuals with or without abnormalities such as white matter hyperintensities and/or volume reduction evidenced on their MRIs. Memory performance and activation patterns for individuals with white matter hyperintensities resembled the group of MCI/AD patients. These results emphasize the following: (1) general pathology correlates with cognitive decline and (2) full characterization of the health of elderly participants is important in studies of normal aging since random samples from the elderly population are apt to include individuals with subclinical pathology that can affect cognitive performance. (C) 2009 Elsevier Inc. All rights reserved. C1 [Aine, C. J.; Bryant, J. E.; Hart, B.; Donahue, C. H.; Montano, R.; Hayek, R.; Qualls, C.] 1 Univ New Mexico, Univ New Mexico, Dept Radiol, Sch Med, Albuquerque, NM 87131 USA. [Knoefel, J. E.] Univ New Mexico, Sch Med, Dept Internal Med, Albuquerque, NM 87131 USA. [Adair, J. C.] Univ New Mexico, Sch Med, Dept Neurol, Albuquerque, NM 87131 USA. [Knoefel, J. E.; Adair, J. C.] New Mexico VA Hlth Care Syst, Albuquerque, NM 87108 USA. [Ranken, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stephen, J. M.] Mind Res Network, Albuquerque, NM 87106 USA. RP Aine, CJ (reprint author), 1 Univ New Mexico, Univ New Mexico, Dept Radiol, Sch Med, MSC10-5530, Albuquerque, NM 87131 USA. EM aine@unm.edu RI Ranken, Douglas/J-4305-2012; OI Donahue, Christopher/0000-0003-1574-1162; Stephen, Julia/0000-0003-2486-747X FU National Institute On Aging [R01 AG020302-04, R01 AG029495-01]; Department of Energy [DE-FG02-99ER62764]; Radiology Department at UNM SOM, DHHS/NIH/NCRR/GCRC [5M01-RR-00997]; Research Service at the New Mexico VA Health Care System FX This work was supported by Award Number R01 AG020302-04 and R01 AG029495-01 from the National Institute On Aging. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute On Aging or the National Institutes of Health. This work was also supported in part by the Department of Energy under Award Number DE-FG02-99ER62764 to the Mind Research Network, the Radiology Department at UNM SOM, DHHS/NIH/NCRR/GCRC 5M01-RR-00997 awarded to UNM HSC, and the Research Service at the New Mexico VA Health Care System. We thank Megan Schendel for her help in acquiring the MEG data, Laura Lundy for her help with neuropsychological testing, and Selma Supek for her insightful comments on an earlier version of the manuscript. NR 81 TC 9 Z9 9 U1 2 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 15 PY 2010 VL 49 IS 4 BP 3319 EP 3330 DI 10.1016/j.neuroimage.2009.11.068 PG 12 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 549OW UT WOS:000274064500042 PM 19962439 ER PT J AU Ates, D Cakmak, AO Colak, E Zhao, RK Soukoulis, CM Ozbay, E AF Ates, Damla Cakmak, Atilla Ozgur Colak, Evrim Zhao, Rongkuo Soukoulis, C. M. Ozbay, Ekmel TI Transmission enhancement through deep subwavelength apertures using connected split ring resonators SO OPTICS EXPRESS LA English DT Article ID EXTRAORDINARY OPTICAL-TRANSMISSION; SURFACE-PLASMONS; HOLE ARRAYS; LIGHT TRANSMISSION; METALLIC GRATINGS; RESONANCES; CORRUGATIONS; SLITS; FILM AB We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of lambda/31x lambda/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. (C) 2010 Optical Society of America C1 [Ates, Damla; Cakmak, Atilla Ozgur; Colak, Evrim; Ozbay, Ekmel] Bilkent Univ, Nanotechnol Res Ctr NANOTAM, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey. [Zhao, Rongkuo; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhao, Rongkuo; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhao, Rongkuo] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China. [Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Khania, Greece. [Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Khania, Greece. [Ozbay, Ekmel] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey. RP Ates, D (reprint author), Bilkent Univ, Nanotechnol Res Ctr NANOTAM, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey. EM damla@ee.bilkent.edu.tr RI Zhao, Rongkuo/B-5731-2008; Soukoulis, Costas/A-5295-2008; Colak, Evrim/K-5405-2015 OI Colak, Evrim/0000-0002-4961-5060 FU European Union [107A004, 107A012]; Turkish Academy of Sciences; Department of Energy Basic Energy Science [DE-ACD2-07CH11358]; China Scholarship Council (CSC) FX This work is supported by the European Union under the projects EU-PHOME, and EU-ECONAM, and TUBITAK under Project Nos., 107A004, and 107A012. One of the authors (E.O.) also acknowledges partial support from the Turkish Academy of Sciences. Work at Ames Laboratory was supported by the Department of Energy Basic Energy Science under Contract No. DE-ACD2-07CH11358. The author (R.Z.) specially acknowledges the China Scholarship Council (CSC) for the financial support. NR 44 TC 13 Z9 13 U1 0 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 15 PY 2010 VL 18 IS 4 BP 3952 EP 3966 DI 10.1364/OE.18.003952 PG 15 WC Optics SC Optics GA 559BV UT WOS:000274795700080 PM 20389408 ER PT J AU Sales, BC McGuire, MA Sefat, AS Mandrus, D AF Sales, B. C. McGuire, M. A. Sefat, A. S. Mandrus, D. TI A semimetal model of the normal state magnetic susceptibility and transport properties of Ba(Fe1-xCox)(2)As-2 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Iron-based superconductors; Normal state properties; Phenomenological model; BaFe2As2; Co-doping ID LAYERED QUATERNARY COMPOUND; ELECTRONIC-STRUCTURE; SUPERCONDUCTIVITY; FESI AB A simple two-band 3D model of a semimetal is constructed to determine which normal state features of the Ba(Fe1-xCox)(2)As-2 superconductors can be qualitatively understood within this framework The model is able to account in a semiquantitative fashion for the measured magnetic susceptibility, Hall, and See-beck data, and the low temperature Sommerfeld coefficient for 0 < x < 0 3 with only three parameters for all x. The purpose of the model is not to fit the data but to provide a simple starting point for thinking about the physics of these interesting materials Although many of the static magnetic properties, such as the increase of the magnetic susceptibility with temperature, are reproduced by the model, none of the spin-fluctuation dynamics are addressed A general conclusion from the model is that the magnetic susceptibility of most semimetals should increase with temperatures (C) 2010 Elsevier B.V. All rights reserved C1 [Sales, B. C.; McGuire, M. A.; Sefat, A. S.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sales, BC (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences FX It is a pleasure to acknowledge useful discussions with David Singh and David Johnston. Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. Part of this research was performed by Eugene P. Wigner Fellows at ORNL. NR 42 TC 23 Z9 23 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB 15 PY 2010 VL 470 IS 4 BP 304 EP 308 DI 10.1016/j.physc.2010.01.043 PG 5 WC Physics, Applied SC Physics GA 576LG UT WOS:000276145300010 ER PT J AU Ahmed, Z Akerib, DS Arrenberg, S Bailey, CN Balakishiyeva, D Baudis, L Bauer, DA Beaty, J Brink, PL Bruch, T Bunker, R Cabrera, B Caldwell, DO Cooley, J Cushman, P DeJongh, F Dragowsky, MR Duong, L Figueroa-Feliciano, E Filippini, J Fritts, M Golwala, SR Grant, DR Hall, J Hennings-Yeomans, R Hertel, S Holmgren, D Hsu, L Huber, ME Kamaev, O Kiveni, M Kos, M Leman, SW Mahapatra, R Mandic, V Moore, D McCarthy, KA Mirabolfathi, N Nelson, H Ogburn, RW Pyle, M Qiu, X Ramberg, E Rau, W Reisetter, A Saab, T Sadoulet, B Sander, J Schnee, RW Seitz, DN Serfass, B Sundqvist, KM Wang, G Wikus, P Yellin, S Yoo, J Young, BA AF Ahmed, Z. Akerib, D. S. Arrenberg, S. Bailey, C. N. Balakishiyeva, D. Baudis, L. Bauer, D. A. Beaty, J. Brink, P. L. Bruch, T. Bunker, R. Cabrera, B. Caldwell, D. O. Cooley, J. Cushman, P. DeJongh, F. Dragowsky, M. R. Duong, L. Figueroa-Feliciano, E. Filippini, J. Fritts, M. Golwala, S. R. Grant, D. R. Hall, J. Hennings-Yeomans, R. Hertel, S. Holmgren, D. Hsu, L. Huber, M. E. Kamaev, O. Kiveni, M. Kos, M. Leman, S. W. Mahapatra, R. Mandic, V. Moore, D. McCarthy, K. A. Mirabolfathi, N. Nelson, H. Ogburn, R. W. Pyle, M. Qiu, X. Ramberg, E. Rau, W. Reisetter, A. Saab, T. Sadoulet, B. Sander, J. Schnee, R. W. Seitz, D. N. Serfass, B. Sundqvist, K. M. Wang, G. Wikus, P. Yellin, S. Yoo, J. Young, B. A. CA CDMS Collaboration TI Analysis of the low-energy electron-recoil spectrum of the CDMS experiment SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER; DAMA/LIBRA AB We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2-8.5 keV. We find no significant excess of a peaked contribution to the total counting rate above the background model, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0: 246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z(2) scaling. With this assumption the observed rate in DAMA remains higher than the upper limit in CDMS. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of similar to 2 lower than observed by DAMA, constraining some possible interpretations of this modulation. C1 [Ahmed, Z.; Filippini, J.; Golwala, S. R.; Moore, D.; Ogburn, R. W.; Wang, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Akerib, D. S.; Bailey, C. N.; Dragowsky, M. R.; Grant, D. R.; Hennings-Yeomans, R.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Bauer, D. A.; DeJongh, F.; Hall, J.; Holmgren, D.; Hsu, L.; Ramberg, E.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sadoulet, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Figueroa-Feliciano, E.; Hertel, S.; Leman, S. W.; McCarthy, K. A.; Wikus, P.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Rau, W.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Reisetter, A.] St Olaf Coll, Dept Phys, Northfield, MN 55057 USA. [Young, B. A.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Brink, P. L.; Cabrera, B.; Cooley, J.; Ogburn, R. W.; Pyle, M.; Yellin, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kiveni, M.; Kos, M.; Schnee, R. W.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Mahapatra, R.] Texas A&M Univ, Dept Phys, College Stn, TX USA. [Filippini, J.; Mirabolfathi, N.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bunker, R.; Caldwell, D. O.; Nelson, H.; Sander, J.; Yellin, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Huber, M. E.] Univ Colorado Denver, Dept Phys, Denver, CO 80217 USA. [Huber, M. E.] Univ Colorado Denver, Dept Elec Engr, Denver, CO 80217 USA. [Balakishiyeva, D.; Saab, T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Beaty, J.; Cushman, P.; Duong, L.; Fritts, M.; Kamaev, O.; Mandic, V.; Qiu, X.; Reisetter, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Ahmed, Z (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. RI Bailey, Catherine/C-6107-2009; Huber, Martin/B-3354-2011; Qiu, Xinjie/C-6164-2012; Hall, Jeter/F-6108-2013; Hall, Jeter/E-9294-2015; Yoo, Jonghee/K-8394-2016; Pyle, Matt/E-7348-2015; OI Pyle, Matt/0000-0002-3490-6754; Holmgren, Donald/0000-0001-6701-7737; Baudis, Laura/0000-0003-4710-1768 FU National Science Foundation [AST-9978911, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052, PHY-0801536, PHY-0801708, PHY-0801712, PHY-0802575]; Department of Energy [DE-AC03-76SF00098, DE-FG02-91ER40688, DE-FG02-92ER40701, DE-FG03-90ER40569, DE-FG03-91ER40618]; Swiss National Foundation (SNF) [20-118119]; NSERC Canada [SAPIN 341314-07] FX This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052, PHY-0801536, PHY-0801708, PHY-0801712 and PHY-0802575), by the Department of Energy (Contracts DE-AC03-76SF00098, DE-FG02-91ER40688, DE-FG02-92ER40701, DE-FG03-90ER40569, and DE-FG03-91ER40618), by the Swiss National Foundation (SNF Grant No. 20-118119), and by NSERC Canada (Grant SAPIN 341314-07). NR 25 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 15 PY 2010 VL 81 IS 4 AR 042002 DI 10.1103/PhysRevD.81.042002 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 573HA UT WOS:000275898500006 ER PT J AU Belikov, AV Hooper, D AF Belikov, Alexander V. Hooper, Dan TI Contribution of inverse Compton scattering to the diffuse extragalactic gamma-ray background from annihilating dark matter SO PHYSICAL REVIEW D LA English DT Article ID STATISTICS; EVOLUTION; BLAZARS AB In addition to gamma rays, dark matter annihilation products can include energetic electrons which inverse Compton scatter with the cosmic microwave background to produce a diffuse extragalactic background of gamma rays and x rays. In models in which the dark matter particles annihilate primarily to electrons or muons, the measurements of EGRET and COMPTEL can provide significant constraints on the annihilation cross section. The Fermi gamma-ray space telescope will likely provide an even more stringent test of such scenarios. C1 [Belikov, Alexander V.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Belikov, AV (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. OI Belikov, Alexander/0000-0002-5649-0913 FU U.S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX This work has been supported by the U.S. Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842. NR 55 TC 25 Z9 25 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 15 PY 2010 VL 81 IS 4 AR 043505 DI 10.1103/PhysRevD.81.043505 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 573HA UT WOS:000275898500019 ER PT J AU Kratochvil, JM Haiman, Z May, M AF Kratochvil, Jan M. Haiman, Zoltan May, Morgan TI Probing cosmology with weak lensing peak counts SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND ANISOTROPIES; CLUSTER SURVEYS; POWER SPECTRUM; COSMIC SHEAR; DARK ENERGY; TOMOGRAPHY; STATISTICS; PARAMETERS; MODELS AB We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constraints that are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. As a pilot study, we have run cosmological N-body simulations to produce WL convergence maps in three models with different constant values of the dark energy equation-of-state parameter, w = -0.8, -1, and -1.2, with a fixed normalization of the primordial power spectrum (corresponding to present-day normalizations of sigma(8) = 0.742, 0.798, and 0.839, respectively). By comparing the number of WL peaks in eight convergence bins in the range of -0.1 < kappa < 0.4, in multiple realizations of a single simulated 3 x 3 degree field, we show that the first (last) pair of models differ at the 95% (85%) confidence level. A survey with depth and area comparable to those expected from the Large Synoptic Survey Telescope should have a factor of approximate to 50 better parameter sensitivity. These results warrant further investigation, in order to assess the constraints available when marginalization over other uncertain parameters is included, and with the specifications of a realistic survey folded into the analysis. Here we find that relatively low-amplitude peaks (kappa similar to 0.03), which typically do not correspond to a single collapsed halo along the line of sight, account for most of the parameter sensitivity. We study a range of smoothing scales and source galaxy redshifts (z(s)). With a fixed source galaxy density of 15 arcmin(-2), the best results are provided by the smallest scale we can reliably simulate, 1 arcmin, and z(s) = 2 provides substantially better sensitivity than z(s) <= 1.5. C1 [Kratochvil, Jan M.; Haiman, Zoltan] Columbia Univ, ISCAP, New York, NY 10027 USA. [Haiman, Zoltan] Columbia Univ, Dept Astron, New York, NY 10027 USA. [May, Morgan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kratochvil, JM (reprint author), Columbia Univ, ISCAP, New York, NY 10027 USA. FU ISCAP; Columbia Academic Quality Fund; Hungarian National Office for Research and Technology (NKTH); NSF [AST-05-07161]; U.S. Department of Energy [DE-AC02-98CH10886]; Initiatives in Science and Engineering (ISE) program at Columbia University FX We would like express our deep thanks to Lam Hui for numerous helpful discussions, and to Greg Bryan, Francesco Pace, and Matthias Bartelmann and his group for invaluable help during code development. We are also grateful to Christof Wetterich for kindly supporting an extended visit by J. K. at the University of Heidelberg. We also thank Puneet Batra, Wenjuan Fang, Eugene Lim, and Sarah Shandera for useful discussions about statistics, CAMB, and lensing, and Volker Springel for his help with GADGET-2 and for providing us with his parallelized initial conditions generator. J. K. is supported by ISCAP and the Columbia Academic Quality Fund. This work was supported in part by the Polanyi Program of the Hungarian National Office for Research and Technology (NKTH), by NSF Grant No. AST-05-07161, by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886, and by the Initiatives in Science and Engineering (ISE) program at Columbia University. The computational work for this paper was performed at the LSST Cluster at Brookhaven National Laboratory and with the NSF TeraGrid advanced computing resources provided by NCSA. NR 54 TC 49 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 15 PY 2010 VL 81 IS 4 AR 043519 DI 10.1103/PhysRevD.81.043519 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 573HA UT WOS:000275898500033 ER PT J AU Mandal, SK Buckley, MR Freese, K Spolyar, D Murayama, H AF Mandal, Sourav K. Buckley, Matthew R. Freese, Katherine Spolyar, Douglas Murayama, Hitoshi TI Cascade events at IceCube plus DeepCore as a definitive constraint on the dark matter interpretation of the PAMELA and Fermi anomalies SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINO TELESCOPES; GALACTIC HALO; GAMMA-RAYS; ANNIHILATIONS; POSITRON; CANDIDATES; RADIATION; ELECTRONS; ENERGIES; DENSITY AB Dark matter decaying or annihilating into mu(+)mu(-) or tau(+)tau(-) has been proposed as an explanation for the e(+/-) anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to mu(+)mu(-), and rule out decays to tau(+)tau(-) and annihilations to mu(+)mu(-) in less than five years of running. These analyses rely on measuring tracklike events in IceCube + DeepCore from down-going nu(mu). In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube + DeepCore can rule out decays to mu(+)mu(-) in only three years of running, and rule out decays to tau(+)tau(-) and annihilation to mu(+)mu(-) in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon crosssection. C1 [Mandal, Sourav K.; Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mandal, Sourav K.; Murayama, Hitoshi] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. [Buckley, Matthew R.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Freese, Katherine] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Spolyar, Douglas] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Spolyar, Douglas] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Murayama, Hitoshi] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Mandal, SK (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Murayama, Hitoshi/A-4286-2011; OI Buckley, Matthew/0000-0003-1109-3460 FU MEXT, Japan; U.S. Department of Energy [DE-FG03-92ER40701, DE-AC03-76SF00098]; MCTP via the University of Michigan; NSF [AST-0507117, PHY-04-57315]; GAANN FX The authors would like to thank D. Grant, D. J. Koskinen, and I. Taboada for answering questions about DeepCore. S. K. M. is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and would also like to thank G. Lambard for useful discussions. M. R. B. is supported by the U.S. Department of Energy, under Grant No. DE-FG03-92ER40701. K. F. is supported by the U.S. Department of Energy and MCTP via the University of Michigan. D. S. is supported by NSF Grant No. AST-0507117 and GAANN (D. S.). H. M. is supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, in part by the U.S. DOE under Contract No. DE-AC03-76SF00098, and in part by the NSF under Grant No. PHY-04-57315. NR 82 TC 27 Z9 27 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 15 PY 2010 VL 81 IS 4 AR 043508 DI 10.1103/PhysRevD.81.043508 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 573HA UT WOS:000275898500022 ER PT J AU Samsing, J Linder, EV AF Samsing, Johan Linder, Eric V. TI Generating and analyzing constrained dark energy equations of state and systematics functions SO PHYSICAL REVIEW D LA English DT Article ID IA SUPERNOVAE; UNCERTAINTIES; CALIBRATION; PARAMETERS; TELESCOPE; COSMOLOGY; GALAXIES; DUST AB Some functions entering cosmological analysis, such as the dark energy equation of state or systematic uncertainties, are unknown functions of redshift. To include them without assuming a particular form, we derive an efficient method for generating realizations of all possible functions subject to certain bounds or physical conditions, e. g. w is an element of [-1, +1] as for quintessence. The method is optimal in the sense that it is both pure and complete in filling the allowed space of principal components. The technique is applied to propagation of systematic uncertainties in supernova population drift and dust corrections and calibration through to cosmology parameter estimation and bias in the magnitude-redshift Hubble diagram. We identify specific ranges of redshift and wavelength bands where the greatest improvements in supernova systematics due to population evolution and dust correction can be achieved. C1 [Samsing, Johan] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Linder, Eric V.] Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. RP Samsing, J (reprint author), Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. FU OTICON; Dark Cosmology Centre; Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful for useful discussions with Marina Cortes, Alex Kim, Saul Perlmutter, and especially Roland de Putter. J. S. acknowledges support from the OTICON Fund and Dark Cosmology Centre, and thanks the Berkeley Center for Cosmological Physics and the Berkeley Lab for hospitality during his stay. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 15 PY 2010 VL 81 IS 4 AR 043533 DI 10.1103/PhysRevD.81.043533 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 573HA UT WOS:000275898500047 ER PT J AU Ahn, C Kim, C Linder, EV AF Ahn, Changrim Kim, Chanju Linder, Eric V. TI Cosmological constant behavior in DBI theory SO PHYSICS LETTERS B LA English DT Article ID SCALAR FIELD; POTENTIALS; SUPERNOVAE AB Cosmological constant behavior can be realized as solutions of the Dirac-Born-Infeld (DBI) action within Type IIB string theory and the AdS/CFT correspondence. We derive a family of attractor solutions to the cosmological constant that arise purely from the "relativistic" nature of the DBI action without an explicit false vacuum energy. We also find attractor solutions with values of the equation of state near but with w not equal -1: the forms for the potential arising from flux interactions are renormalizable and natural, and the D3-brane tension can be given by the standard throat form. We discuss present and future observational constraints on the theory. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ahn, Changrim; Kim, Chanju; Linder, Eric V.] Ewha Womans Univ, Inst Early Univ, Seoul 120750, South Korea. [Ahn, Changrim; Kim, Chanju; Linder, Eric V.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Kim, Chanju] Korea Inst Adv Study, Seoul 130722, South Korea. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kim, C (reprint author), Ewha Womans Univ, Inst Early Univ, Seoul 120750, South Korea. EM cjkim@ewha.ac.kr FU World Class University [R32-2008-000-10130-0]; MEST through CQUeST [2005-0049409]; Director, Office of Science, Office of High Energy Physics, of the US Department of Energy [DE-AC02-05CH11231] FX This work has been supported by the World Class University grant R32-2008-000-10130-0. C.K. has been supported in part by the NRF grant funded by MEST through CQUeST with grant No. 2005-0049409. E.L. has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 15 PY 2010 VL 684 IS 4-5 BP 181 EP 184 DI 10.1016/j.physletb.2009.12.069 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 561WA UT WOS:000275009600002 ER PT J AU Zhang, S Chen, JH Crawford, H Keane, D Ma, YG Xu, ZB AF Zhang, S. Chen, J. H. Crawford, H. Keane, D. Ma, Y. G. Xu, Z. B. TI Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations SO PHYSICS LETTERS B LA English DT Article DE Onset of deconfinement; Baryon-strangeness correlation; Strangeness population factor; Hypernucleus ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; NUCLEAR COLLISIONS; COALESCENCE; MODEL; FLOW; COLLABORATION; PERSPECTIVE; STATE AB We argue that the ratio S-3 = H-3(Lambda)/(He-3 x Lambda/p) is a good representation of the local correlation between baryon number and strangeness, and therefore is a valuable tool to probe the nature of the dense matter created in high energy heavy-ion collisions: quark gluon plasma or hadron gas. A multiphase transport model (AMPT) plus a dynamical coalescence model is used to elucidate our arguments. We find that AMPT with string melting predicts an increase of S-3 with increasing beam energy, and is consistent with experimental data, while AMPT with only hadronic scattering results in a low S-3 throughout the energy range from AGS to RHIC, and fails to describe the experimental data. Published by Elsevier B.V. C1 [Chen, J. H.; Keane, D.] Kent State Univ, Kent, OH 44242 USA. [Zhang, S.; Ma, Y. G.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Crawford, H.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Xu, Z. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Xu, Z. B.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. RP Chen, JH (reprint author), Kent State Univ, Kent, OH 44242 USA. EM jhchen@rcf.rhic.bnl.gov RI Ma, Yu-Gang/M-8122-2013 OI Ma, Yu-Gang/0000-0002-0233-9900 FU Office of Nuclear Physics, US Department of Energy [DE-AC02-98CH10886, DEFG02-89ER40531]; NNSF of China [10610285, 10610286, 10905085]; Chinese Academy of Science [KJCX2-YW-A14, KJCX3-SYW-N2]; PECASE FX We are grateful for discussions with Prof. H. Huang, Prof. C.M. Ko, Prof. B. Muller, Dr. V. Koch, Dr. Z.B. Tang and H. Qiu. This work is supported in part by the Office of Nuclear Physics, US Department of Energy under Grants DE-AC02-98CH10886 and DEFG02-89ER40531, and in part by the NNSF of China under Grants 10610285, 10610286, 10905085 and Chinese Academy of Science under Grants KJCX2-YW-A14 and KJCX3-SYW-N2. Z.B. Xu is supported in part by the PECASE Award. NR 40 TC 29 Z9 29 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 15 PY 2010 VL 684 IS 4-5 BP 224 EP 227 DI 10.1016/j.physletb.2010.01.034 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 561WA UT WOS:000275009600010 ER PT J AU Max, N Hu, CC Kreylos, O Crivelli, S AF Max, Nelson Hu, ChengCheng Kreylos, Oliver Crivelli, Silvia TI BuildBeta-A system for automatically constructing beta sheets SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE sample conformation space; ab initio protein structure prediction; combinatorial method ID PROTEIN-STRUCTURE PREDICTION; BARRELS; TASSER; CASP7 AB We describe a method that can thoroughly sample a protein conformational space given the protein primary sequence of amino acids and secondary structure predictions. Specifically, we target proteins with beta-sheets because they are particularly challenging for ab initio protein structure prediction because of the complexity of sampling long-range strand pairings. Using some basic packing principles, inverse kinematics (IK), and beta-pairing scores, this method creates all possible beta-sheet arrangements including those that have the correct packing of beta-strands. It uses the IK algorithms of Protein-Shop to move alpha-helices and beta-strands as rigid bodies by rotating the dihedral angles in the coil regions. Our results show that our approach produces structures that are within 4-6 angstrom RMSD of the native one regardless of the protein size and beta-sheet topology although this number may increase if the protein has long loops or complex alpha-helical regions. C1 [Max, Nelson; Hu, ChengCheng; Crivelli, Silvia] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Max, Nelson; Hu, ChengCheng; Kreylos, Oliver; Crivelli, Silvia] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Max, Nelson; Hu, ChengCheng; Kreylos, Oliver; Crivelli, Silvia] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA. RP Crivelli, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, 1 Cyclotron Rd,M-S 50F, Berkeley, CA 94720 USA. EM sncrivelli@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX Grant sponsor: U.S. Department of Energy [Director, Office of Advanced Scientific Computing Research, Office Of Science through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET)]; Grant number: DE-AC02-05CH11231. NR 29 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 15 PY 2010 VL 78 IS 3 BP 559 EP 574 DI 10.1002/prot.22578 PG 16 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 547XR UT WOS:000273923700006 PM 19768785 ER PT J AU Rodriguez, JA Hrbek, J AF Rodriguez, Jose A. Hrbek, Jan TI Inverse oxide/metal catalysts: A versatile approach for activity tests and mechanistic studies SO SURFACE SCIENCE LA English DT Article DE Oxides; Metals; Surface reactions; Catalysis; Water-gas shift reaction ID GAS SHIFT REACTION; CERIUM OXIDE-FILMS; THERMAL-PROPERTIES; MODEL CATALYST; METAL-OXIDE; WATER; SURFACES; NANOPARTICLES; CU(111); STM AB There is a general desire to improve the configuration of industrial catalysts to take advantage of the intrinsic properties of metal oxides. In recent years, a series of studies has been published examining the growth of oxide nanoparticles on metal substrates. These studies have revealed structures for the supported oxide which are different from those found in bulk phases. In addition, the oxide - metal interactions can alter the electronic states of the oxide producing new chemical properties. On an inverse oxide/metal catalyst, the reactants can interact with defect sites of the oxide nanoparticles, metal sites, and the metal-oxide interface. in these systems, one can couple the special reactivity of the oxide nanoparticles to the reactivity of the metal to obtain high catalytic activity. Furthermore, an oxide/metal system is also an attractive model for fundamental studies. It can be used to investigate the role of the oxide in a catalytic process, and how the stability of different reaction intermediates depends on the nature of the oxide. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rodriguez, Jose A.; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013 FU US Department of Energy [DE-AC02-98CH10886] FX The authors are thankful to the US Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886 Grant) for financial support. Many thanks to P. Liu, J. Evans, and M. Perez for thought provoking conversions about the behavior of inverse oxide/metal catalysts. NR 49 TC 64 Z9 64 U1 7 U2 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD FEB 15 PY 2010 VL 604 IS 3-4 BP 241 EP 244 DI 10.1016/j.susc.2009.11.038 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 561LP UT WOS:000274979000001 ER PT J AU Tal, TL Simmons, SO Silbajoris, R Dailey, L Cho, SH Ramabhadran, R Linak, W Reed, W Bromberg, PA Samet, JM AF Tal, Tamara L. Simmons, Steven O. Silbajoris, Robert Dailey, Lisa Cho, Seung-Hyun Ramabhadran, Ram Linak, William Reed, William Bromberg, Philip A. Samet, James M. TI Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Diesel exhaust particle; IL-8; NFkB; AP-1; Transcriptional regulation; Airway epithelial cells ID GROWTH-FACTOR RECEPTOR; NF-KAPPA-B; INDUCE OXIDATIVE STRESS; PARTICULATE MATTER; MYOCARDIAL-INFARCTION; PULMONARY TOXICITY; POLLUTION PARTICLE; IN-VITRO; ACTIVATION; INTERLEUKIN-8 AB Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DER NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure. Published by Elsevier Inc. C1 [Samet, James M.] US EPA, Human Studies Div MD 58D, Natl Hlth & Environm Effects Res Lab, Chapel Hill, NC 27599 USA. [Tal, Tamara L.; Ramabhadran, Ram; Samet, James M.] Univ N Carolina, Curriculum Toxicol, Chapel Hill, NC USA. [Reed, William; Bromberg, Philip A.] Univ N Carolina, Ctr Environm Med Asthma & Lung Biol, Chapel Hill, NC USA. [Cho, Seung-Hyun; Linak, William] US EPA, Air Pollut Prevent Control Div, Natl Risk Management Res Lab, Chapel Hill, NC 27599 USA. [Cho, Seung-Hyun] Oak Ridge Inst Sci & Educ, Res Participat Program, Oak Ridge, TN USA. RP Samet, JM (reprint author), US EPA, Human Studies Div MD 58D, Natl Hlth & Environm Effects Res Lab, 104 Mason Farm, Chapel Hill, NC 27599 USA. EM samet.james@epa.gov OI Simmons, Steven/0000-0001-9079-1069; Tal, Tamara/0000-0001-8365-9385 FU U.S. EPA; EPA [T829472]; [T32 ES007126] FX We thank Melanie Jardim for helpful discussions and the critical review of this manuscript. We are grateful to M. Ian Gilmour and David Diaz-Sanchez for providing us with C-DEP and A-DEP, respectively. T.L.T. is a recipient of the Curriculum in Toxicology Training Grant T32 ES007126. Fellowship support for S.H.C. from the U.S. EPA Research Participation Program administered by ORISE is acknowledged. This research was also supported by EPA training grant T829472. NR 50 TC 39 Z9 40 U1 4 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD FEB 15 PY 2010 VL 243 IS 1 BP 46 EP 54 DI 10.1016/j.taap.2009.11.011 PG 9 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 555EB UT WOS:000274489700006 PM 19914270 ER PT J AU Rodgers, JM Webb, M Smit, B AF Rodgers, Jocelyn M. Webb, Michael Smit, Berend TI Alcohol solubility in a lipid bilayer: Efficient grand-canonical simulation of an interfacially active molecule SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorption; biomedical materials; lipid bilayers; Monte Carlo methods; solubility ID DISSIPATIVE PARTICLE DYNAMICS; INDUCED INTERDIGITATION; CHAIN MOLECULES; PHASE-BEHAVIOR; ETHANOL; MEMBRANES; ANESTHETICS; CHOLESTEROL; POTENTIALS; LIPOSOMES AB We derive a new density-biased Monte Carlo technique which preserves detailed balance and improves the convergence of grand-canonical simulations of a species with a strong preference for an interfacial region as compared to the bulk. This density-biasing technique is applied to the solubility of "alcohol" molecules in a mesoscopic model of the lipid bilayer, a system which has anesthetic implications but is poorly understood. C1 [Rodgers, Jocelyn M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Webb, Michael] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Smit, Berend] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Rodgers, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jrodgers@berkeley.edu; berend-smit@berkeley.edu RI Smit, Berend/B-7580-2009 OI Smit, Berend/0000-0003-4653-8562 FU Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. NR 29 TC 5 Z9 5 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2010 VL 132 IS 6 AR 064107 DI 10.1063/1.3314289 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 555MR UT WOS:000274516400007 PM 20151733 ER PT J AU Yang, M Yang, F Jackson, KA Jellinek, J AF Yang, M. Yang, F. Jackson, K. A. Jellinek, J. TI Probing the structural evolution of Cu-N-, N=9-20, through a comparison of computed electron removal energies and experimental photoelectron spectra SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atomic clusters; copper; density functional theory; isomerism; photoelectron spectra ID SMALL COPPER CLUSTERS; COINAGE METAL-CLUSTERS; CU-N(-) CLUSTERS; JELLIUM MODEL; SPECTROSCOPY; GOLD; APPROXIMATION; CATALYSIS; PHYSICS; SILVER AB Computed electron removal energies for Cu-N- clusters, N=9-20, are presented for the three lowest-energy isomers obtained from extensive, unbiased searches for the minimum energy structure at each size. The density functional theory (DFT) computations make use of a scheme introduced by Jellinek and Acioli (JA) [J. Chem. Phys. 118, 7783 (2003)] that obtains electron removal energies from DFT orbital energies using corrections based on DFT total energies. The computed removal energies are compared with the measured photoelectron spectra (PES) for Cu-N-. The patterns of computed removal energies are shown to be isomer specific for clusters in this size range. By matching the computed removal energies to the observed PES, the isomers responsible for the PES are identified. The results of the JA scheme are compared to those obtained using other DFT-based methods. C1 [Yang, M.; Yang, F.] Sichuan Univ, W China Hosp, Inst Nanobiomed Technol, State Key Lab Biotherapy, Chengdu 610041, Peoples R China. [Jackson, K. A.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Jellinek, J.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Yang, M (reprint author), Sichuan Univ, W China Hosp, Inst Nanobiomed Technol, State Key Lab Biotherapy, Chengdu 610041, Peoples R China. EM jacks1ka@cmich.edu; jellinek@anl.gov RI Yang, Mingli/E-9983-2012 OI Yang, Mingli/0000-0001-8590-8840 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-FGO2-03ER15489, DE-AC-02-06CH11357]; NSFC of China [20873088]; SRFDP [20070610175] FX This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy under Grant No. DE-FGO2-03ER15489 (K.A.J.) and under Contract No. DE-AC-02-06CH11357 (J.J.). M.Y. thanks NSFC (Grant No. 20873088) and SRFDP (Grant No. 20070610175) of China. NR 50 TC 15 Z9 16 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2010 VL 132 IS 6 AR 064306 DI 10.1063/1.3300128 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 555MR UT WOS:000274516400016 PM 20151742 ER PT J AU Buijsman, MC Kanarska, Y McWilliams, JC AF Buijsman, M. C. Kanarska, Y. McWilliams, J. C. TI On the generation and evolution of nonlinear internal waves in the South China Sea SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID OCEANIC MODELING SYSTEM; TIDAL FLOW; SOLITARY WAVES; LEE WAVES; LUZON STRAIT; TIDES; TOPOGRAPHY; RIDGE; DISSIPATION; PROPAGATION AB The nonhydrostatic Regional Ocean Modeling System is applied to the nonlinear internal waves, or solitons, that are generated at the Luzon ridge in the South China Sea. The Luzon ridge near the Batan islands is represented by an idealized ridge with a height of 2.6 km on a flat bottom. Model runs are performed for various ridge shapes and (a) symmetric tidal forcings. The model is in the mixed tidal lee wave regime. The barotropic tide over the ridge generates first-mode waves through the internal tide release mechanism. Westward-traveling solitons emerge from these first-mode waves through nonlinear steepening. In the internal tide release mechanism, asymmetric tides with strong eastward currents can generate strong westward solitons. The eastward current creates an elevation wave with a higher energy density west of the ridge, and as soon as the current slackens, the wave is released westward. On its backslope strong solitons develop. The energy density is further enhanced by nonlinearities, such as differences in phase speeds and energy fluxes related to lee waves. A modal and harmonic decomposition shows the generation of vertical modes and higher temporal harmonics and indicates significant wave-wave interaction (e.g., triads). In the mixed tidal lee wave regime, more energy is contained in the first mode compared to the higher modes. Hence, linear internal tide beams are less well defined and strong solitons develop. C1 [Buijsman, M. C.; McWilliams, J. C.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Kanarska, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Buijsman, MC (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, 405 Hilgard Ave, Los Angeles, CA 90095 USA. EM maartenbuijsman@gmail.com FU Office of Naval Research [N00014-05-10293, N00014-08-10597] FX The Office of Naval Research is acknowledged for supporting this research with grants N00014-05-10293 and N00014-08-10597. The two reviewers and Z. Zhao are thanked for their helpful comments. NR 49 TC 66 Z9 72 U1 3 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD FEB 13 PY 2010 VL 115 AR C02012 DI 10.1029/2009JC005275 PG 17 WC Oceanography SC Oceanography GA 554VV UT WOS:000274464400001 ER PT J AU Ali, M Lipfert, J Seifert, S Herschlag, D Doniach, S AF Ali, Mona Lipfert, Jan Seifert, Soenke Herschlag, Daniel Doniach, Sebastian TI The Ligand-Free State of the TPP Riboswitch: A Partially Folded RNA Structure SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE small-angle X-ray scattering; RNA folding; RNA structure; riboswitch ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; BIOLOGICAL MACROMOLECULES; GENE-REGULATION; S-ADENOSYLMETHIONINE; HAMMERHEAD RIBOZYME; SENSING RIBOSWITCH; CRYSTAL-STRUCTURE; HAIRPIN RIBOZYME; NUCLEIC-ACIDS AB Riboswitches are elements of mRNA that regulate gene expression by undergoing structural changes upon binding of small ligands. Although the structures of several riboswitches have been solved with their ligands bound, the ligand-free states of only a few riboswitches have been characterized. The ligand-free state is as important for the functionality of the riboswitch as the ligand-bound form, but the ligand-free state is often a partially folded structure of the RNA, with conformational heterogeneity that makes it particularly challenging to study. Here, we present models of the ligand-free state of a thiamine pyrophosphate riboswitch that are derived from a combination of complementary experimental and computational modeling approaches. We obtain a global picture of the molecule using small-angle X-ray scattering data and use an RNA structure modeling software, MC-Sym, to fit local structural details to these data on an atomic scale. We have used two different approaches to obtaining these models. Our first approach develops a model of the RNA from the structures of its constituent junction fragments in isolation. The second approach treats the RNA as a single entity, without bias from the structure of its individual constituents. We find that both approaches give similar models for the ligand-free form, but the ligand-bound models differ for the two approaches, and only the models from the second approach agree with the ligand-bound structure known previously from X-ray crystallography. Our models provide a picture of the conformational changes that may occur in the riboswitch upon binding of its ligand. Our results also demonstrate the power of combining experimental small-angle X-ray scattering data with theoretical structure prediction tools in the determination of RNA structures beyond riboswitches. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Ali, Mona; Doniach, Sebastian] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Lipfert, Jan] Delft Inst Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Herschlag, Daniel] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. RP Doniach, S (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. EM doniach@drizzle.stanford.edu FU National Institutes of Health [PO1 GM0066275]; Stanford Graduate Fellowship; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX We thank Nathan Boyd for help with sample preparations, and Rhiju Das, Adelene Sim, Vincent B. Chu, and members of the Herschlag laboratory for helpful discussions and comments. This research was supported by National Institutes of Health grant PO1 GM0066275 and a Stanford Graduate Fellowship to M.A. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. NR 70 TC 41 Z9 41 U1 1 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 12 PY 2010 VL 396 IS 1 BP 153 EP 165 DI 10.1016/j.jmb.2009.11.030 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 558SO UT WOS:000274766500013 PM 19925806 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, J Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D d'Ascenzo, N Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. d'Ascenzo, N. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Inclusive Search for Standard Model Higgs Boson Production in the WW Decay Channel Using the CDF II Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-GAMMA PRODUCTION; HADRON COLLIDERS; QCD CORRECTIONS; NNLO QCD; COLLISIONS; FERMILAB AB We present a search for standard model (SM) Higgs boson production using p (p) over bar collision data at root s = 1. 96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4. 8 fb(-1). We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (m(H)) in the range from 110 to 200 GeV. These limits are the most stringent for m(H) > 130 GeV and are 1.29 above the predicted value of sigma(H) for m(H) 165 GeV. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Laasanen, A. T.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Kim, Soo-Bong/B-7061-2014; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Lysak, Roman/H-2995-2014; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Zeng, Yu/C-1438-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013 OI Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Osterberg, Kenneth/0000-0003-4807-0414; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Vidal Marono, Miguel/0000-0002-2590-5987; Nielsen, Jason/0000-0002-9175-4419; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Lami, Stefano/0000-0001-9492-0147; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University Program, the National Research Foundation of Korea; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak Ramp; D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R & D Agency; and the Academy of Finland. NR 30 TC 32 Z9 34 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 061803 DI 10.1103/PhysRevLett.104.061803 PG 8 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100007 PM 20366813 ER PT J AU Aaltonen, T Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Adelman, J Aguilo, E Alexeev, GD Alkhazov, G Alton, A Gonzalez, BA Alverson, G Alves, GA Amerio, S Amidei, D Anastassov, A Ancu, LS Annovi, A Antos, J Aoki, M Apollinari, G Appel, J Apresyan, A Arisawa, T Arnoud, Y Arov, M Artikov, A Asaadi, J Ashmanskas, W Askew, A Asman, B Atramentov, O Attal, A Aurisano, A Avila, C Azfar, F BackusMayes, J Badaud, F Badgett, W Bagby, L Baldin, B Bandurin, DV Banerjee, S Barbaro-Galtieri, A Barberis, E Barfuss, AF Baringer, P Barnes, VE Barnett, BA Barreto, J Barria, P Bartlett, JF Bartos, P Bassler, U Bauer, D Bauer, G Beale, S Bean, A Beauchemin, PH Bedeschi, F Beecher, D Begalli, M Begel, M Behari, S Belanger-Champagne, C Bellantoni, L Bellettini, G Bellinger, J Benitez, JA Benjamin, D Beretvas, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blazey, G Blessing, S Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boehnlein, A Boisvert, V Boline, D Bolton, TA Boos, EE Borissov, G Bortoletto, D Bose, T Boudreau, J Boveia, A Brandt, A Brau, B Bridgeman, A Brigliadori, L Brock, R Bromberg, C Brooijmans, G Bross, A Brown, D Brubaker, E Bu, XB Buchholz, D Budagov, J Budd, HS Budd, S Buehler, M Buescher, V Bunichev, V Burdin, S Burkett, K Burnett, TH Busetto, G Bussey, P Buszello, CP Buzatu, A Byrum, KL Cabrera, S Calancha, C Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Camarda, S Cammin, J Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrasco-Lizarraga, MA Carrera, E Carrillo, S Carron, S Casal, B Casarsa, M Casey, BCK Castilla-Valdez, H Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chang, SH Chen, YC Chertok, M Cheu, E Chevalier-Thery, S Chiarelli, G Chlachidze, G Chlebana, F Cho, K Cho, DK Cho, SW Choi, S Chokheli, D Chou, JP Choudhary, B Christoudias, T Chung, K Chung, WH Chung, YS Chwalek, T Cihangir, S Ciobanu, CI Ciocci, MA Claes, D Clark, A Clark, D Clutter, J Compostella, G Convery, ME Conway, J Cooke, M Cooper, WE Corbo, M Corcoran, M Cordelli, M Couderc, F Cousinou, MC Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Cutts, D Cwiok, M Dagenhart, D d'Ascenzo, N Das, A Datta, M Davies, G Davies, T De, K de Barbaro, P De Cecco, S Deisher, A de Jong, SJ De La Cruz-Burelo, E Deliot, F Dell'Orso, M De Lorenzo, G Deluca, C Demarteau, M Demina, R Demortier, L Deng, J Deninno, M Denisov, D Denisov, SP d'Errico, M Desai, S DeVaughan, K Di Canto, A Diehl, HT Diesburg, M Di Ruzza, B Dittmann, JR Dominguez, A Donati, S Dong, P D'Onofrio, M Dorigo, T Dorland, T Dube, S Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Ebina, K Edmunds, D Elagin, A Ellison, J Elvira, VD Enari, Y Eno, S Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Evans, H Evdokimov, A Evdokimov, VN Facini, G Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Ferapontov, AV Ferbel, T Fernandez, JP Ferrazza, C Fiedler, F Field, R Filthaut, F Fisher, W Fisk, HE Flanagan, G Forrest, R Fortner, M Fox, H Frank, MJ Franklin, M Freeman, JC Fuess, S Furic, I Gadfort, T Galea, CF Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garcia-Bellido, A Garfinkel, AF Garosi, P Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gerberich, H Gerdes, D Gershtein, Y Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gillberg, D Gimmell, JL Ginsburg, CM Ginther, G Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Golovanov, G Gomez, B Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gresele, A Grinstein, S Gris, P Grivaz, JF Grohsjean, A Grosso-Pilcher, C Group, RC Grundler, U Nendahl, SG Grunewald, MW da Costa, JG Gunay-Unalan, Z Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haber, C Haefner, P Hagopian, S Hahn, SR Haley, J Halkiadakis, E Hall, I Han, BY Han, JY Han, L Happacher, F Hara, K Harder, K Hare, D Hare, M Harel, A Harr, RF Hartz, M Hatakeyama, K Hauptman, JM Hays, C Hays, J Hebbeker, T Heck, M Hedin, D Hegeman, JG Heinrich, J Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herndon, M Herner, K Hesketh, G Heuser, J Hewamanage, S Hidas, D Hildreth, MD Hill, CS Hirosky, R Hirschbuehl, D Hoang, T Hobbs, JD Hocker, A Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hou, S Houlden, M Hsu, SC Hu, Y Hubacek, Z Hughes, RE Hurwitz, M Husemann, U Huske, N Hussein, M Huston, J Hynek, V Iashvili, I Illingworth, R Incandela, J Introzzi, G Iori, M Ito, AS Ivanov, A Jabeen, S Jaffre, M Jain, S James, E Jamin, D Jang, D Jayatilaka, B Jeon, EJ Jesik, R Jha, MK Jindariani, S Johns, K Johnson, C Johnson, M Johnson, W Johnston, D Jonckheere, A Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Juste, A Kajfasz, E Kamon, T Karchin, PE Kar, D Karmanov, D Kasper, PA Kato, Y Katsanos, I Kaushik, V Kehoe, R Kephart, R Kermiche, S Ketchum, W Keung, J Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, MH Kirsch, L Kirsch, M Klimenko, S Kohli, JM Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kozelov, AV Kraus, J Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kumar, A Kupco, A Kurata, M Kurca, T Kuzmin, VA Kvita, J Kwang, S Laasanen, AT Lam, D Lami, S Lammel, S Lammers, S Lancaster, M Lander, RL Landsberg, G Lannon, K Lath, A Latino, G Lazzizzera, I Lebrun, P LeCompte, T Lee, E Lee, HS Lee, HS Lee, JS Lee, SW Lee, WM Leflat, A Lellouch, J Leone, S Lewis, JD Li, L Li, QZ Lietti, SM Lim, JK Linacre, J Lincoln, D Lin, CJ Lindgren, M Linnemann, J Lipaev, VV Lipeles, E Lipton, R Lister, A Litvintsev, DO Liu, C Liu, T Liu, Y Liu, Z Lobodenko, A Lockyer, NS Loginov, A Lokajicek, M Lovas, L Love, P Lubatti, HJ Lucchesi, D Lueck, J Lujan, P Lukens, P Luna-Garcia, R Lungu, G Lyon, AL Lysak, R Lys, J Maciel, AKA Mackin, D MacQueen, D Madrak, R Maeshima, K Magana-Villalba, R Makhoul, K Maksimovic, P Mal, PK Malde, S Malik, S Malik, S Malyshev, VL Manca, G Manousakis-Katsikakis, A Maravin, Y Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Martinez-Ortega, J Mastrandrea, P Mathis, M Mattig, P Mattson, ME Mazzanti, P McCarthy, R McFarland, KS McGivern, CL McIntyre, P McNulty, R Mehta, A Mehtala, P Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Menzione, A Mercadante, PG Merkin, M Mesropian, C Meyer, A Meyer, J Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondal, NK Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Moulik, T Fernandez, PM Muanza, GS Mukherjee, A Mulhearn, M Muller, T Mulmenstadt, J Mundal, O Mundim, L Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nagy, E Naimuddin, M Nakamura, K Nakano, I Napier, A Narain, M Nayyar, R Neal, HA Negret, JP Nett, J Neu, C Neubauer, MS Neubauer, S Neustroev, P Nielsen, J Nilsen, H Nodulman, L Nogima, H Norman, M Norniella, O Novaes, SF Nunnemann, T Nurse, E Oakes, L Obrant, G Oh, SH Oh, YD Oksuzian, I Okusawa, T Onoprienko, D Orava, R Orduna, J Osman, N Osta, J Osterberg, K Otec, R Garzon, GJY Owen, M Padilla, M Padley, P Griso, SP Pagliarone, C Palencia, E Pangilinan, M Papadimitriou, V Papaikonomou, A Paramanov, AA Parashar, N Parihar, V Park, SJ Park, SK Parks, B Parsons, J Partridge, R Parua, N Pashapour, S Patrick, J Patwa, A Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penning, B Penzo, A Perfilov, M Peters, K Peters, Y Petroff, P Phillips, TJ Piacentino, G Pianori, E Piegaia, R Pinera, L Piper, J Pitts, K Plager, C Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Pondrom, L Popov, AV Potamianos, K Poukhov, O Prewitt, M Price, D Prokoshin, F Pronko, A Protopopescu, S Ptohos, F Pueschel, E Punzi, G Pursley, J Qian, J Quadt, A Quinn, B Rademacker, J Rahaman, A Ramakrishnan, V Rangel, MS Ranjan, K Ranjan, N Ratoff, PN Razumov, I Redondo, I Renkel, P Renton, P Renz, M Rescigno, M Rich, P Richter, S Rijssenbeek, M Rimondi, F Ripp-Baudot, I Ristori, L Rizatdinova, F Robinson, S Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Rominsky, M Roser, R Rossi, M Rossin, R Roy, P Royon, C Rubinov, P Ruchti, R Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Safronov, G Sajot, G Sakumoto, WK Sanchez-Hernandez, A Sanders, MP Sanghi, B Santi, L Sartori, L Sato, K Savage, G Saveliev, V Savoy-Navarro, A Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schlabach, P Schliephake, T Schlobohm, S Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwanenberger, C Schwarz, T Schwienhorst, R Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Sekaric, J Semenov, A Severini, H Sexton-Kennedy, L Sforza, F Sfyrla, A Shabalina, E Shalhout, SZ Shary, V Shchukin, AA Shears, T Shepard, PF Shimojima, M Shiraishi, S Shivpuri, RK Shochet, M Shon, Y Shreyber, I Simak, V Simonenko, A Sinervo, P Sirotenko, V Sisakyan, A Skubic, P Slattery, P Slaughter, AJ Slaunwhite, J Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Snow, GR Snow, J Snyder, S Soha, A Soldner-Rembold, S Somalwar, S Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Spurlock, B Squillacioti, P Stanitzki, M Stark, J St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strologas, J Strom, D Strycker, GL Stutte, L Suh, JS Sukhanov, A Suslov, I Svoisky, P Taffard, A Takahashi, M Takashima, R Takeuchi, Y Tanaka, R Tanasijczuk, A Tang, J Taylor, W Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tiller, B Tipton, P Titov, M Tkaczyk, S Toback, D Tokar, S Tokmenin, VV Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, SY Tsybychev, D Ttito-Guzman, P Tuchming, B Tu, Y Tully, C Turini, N Tuts, PM Ukegawa, F Unalan, R Uozumi, S Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM van Remortel, N Varelas, N Varganov, A Varnes, EW Vasilyev, IA Vataga, E Vazquez, F Velev, G Vellidis, C Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vidal, M Vila, I Vilanova, D Vilar, R Vint, P Vogel, M Vokac, P Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wahl, HD Wakisaka, T Wallny, R Wang, MHLS Wang, SM Warburton, A Warchol, J Waters, D Watts, G Wayne, M Weber, G Weber, M Weinberger, M Weinelt, J Wester, WC Wetstein, M White, A Whitehouse, B Whiteson, D Wicke, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Williams, MRJ Wilson, GW Wilson, P Wimpenny, SJ Winer, BL Wittich, P Wobisch, M Wolbers, S Wolfe, C Wolfe, H Wood, DR Wright, T Wu, X Wurthwein, F Wyatt, TR Xie, Y Xu, C Yacoob, S Yagil, A Yamada, R Yamamoto, K Yamaoka, J Yang, UK Yang, WC Yang, YC Yao, WM Yasuda, T Yatsunenko, YA Ye, Z Yeh, GP Yi, K Yin, H Yip, K Yoh, J Yoo, HD Yorita, K Yoshida, T Youn, SW Yu, GB Yu, I Yu, J Yu, SS Yun, JC Zanetti, A Zeitnitz, C Zelitch, S Zeng, Y Zhang, X Zhao, T Zheng, Y Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zucchelli, S Zutshi, V Zverev, EG AF Aaltonen, T. Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Adelman, J. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alvarez Gonzalez, B. Alverson, G. Alves, G. A. Amerio, S. Amidei, D. Anastassov, A. Ancu, L. S. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Arnoud, Y. Arov, M. Artikov, A. Asaadi, J. Ashmanskas, W. Askew, A. Asman, B. Atramentov, O. Attal, A. Aurisano, A. Avila, C. Azfar, F. BackusMayes, J. Badaud, F. Badgett, W. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barbaro-Galtieri, A. Barberis, E. Barfuss, A. -F. Baringer, P. Barnes, V. E. Barnett, B. A. Barreto, J. Barria, P. Bartlett, J. F. Bartos, P. Bassler, U. Bauer, D. Bauer, G. Beale, S. Bean, A. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Begalli, M. Begel, M. Behari, S. Belanger-Champagne, C. Bellantoni, L. Bellettini, G. Bellinger, J. Benitez, J. A. Benjamin, D. Beretvas, A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blazey, G. Blessing, S. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boehnlein, A. Boisvert, V. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bortoletto, D. Bose, T. Boudreau, J. Boveia, A. Brandt, A. Brau, B. Bridgeman, A. Brigliadori, L. Brock, R. Bromberg, C. Brooijmans, G. Bross, A. Brown, D. Brubaker, E. Bu, X. B. Buchholz, D. Budagov, J. Budd, H. S. Budd, S. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burkett, K. Burnett, T. H. Busetto, G. Bussey, P. Buszello, C. P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Camarda, S. Cammin, J. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrasco-Lizarraga, M. A. Carrera, E. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Casey, B. C. K. Castilla-Valdez, H. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chang, S. H. Chen, Y. C. Chertok, M. Cheu, E. Chevalier-Thery, S. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Cho, D. K. Cho, S. W. Choi, S. Chokheli, D. Chou, J. P. Choudhary, B. Christoudias, T. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Cihangir, S. Ciobanu, C. I. Ciocci, M. A. Claes, D. Clark, A. Clark, D. Clutter, J. Compostella, G. Convery, M. E. Conway, J. Cooke, M. Cooper, W. E. Corbo, M. Corcoran, M. Cordelli, M. Couderc, F. Cousinou, M. -C. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cutts, D. Cwiok, M. Dagenhart, D. d'Ascenzo, N. Das, A. Datta, M. Davies, G. Davies, T. De, K. de Barbaro, P. De Cecco, S. Deisher, A. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Dell'Orso, M. De Lorenzo, G. Deluca, C. Demarteau, M. Demina, R. Demortier, L. Deng, J. Deninno, M. Denisov, D. Denisov, S. P. d'Errico, M. Desai, S. DeVaughan, K. Di Canto, A. Diehl, H. T. Diesburg, M. Di Ruzza, B. Dittmann, J. R. Dominguez, A. Donati, S. Dong, P. D'Onofrio, M. Dorigo, T. Dorland, T. Dube, S. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Ebina, K. Edmunds, D. Elagin, A. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Ferapontov, A. V. Ferbel, T. Fernandez, J. P. Ferrazza, C. Fiedler, F. Field, R. Filthaut, F. Fisher, W. Fisk, H. E. Flanagan, G. Forrest, R. Fortner, M. Fox, H. Frank, M. J. Franklin, M. Freeman, J. C. Fuess, S. Furic, I. Gadfort, T. Galea, C. F. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garcia-Bellido, A. Garfinkel, A. F. Garosi, P. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gerberich, H. Gerdes, D. Gershtein, Y. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gillberg, D. Gimmell, J. L. Ginsburg, C. M. Ginther, G. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Golovanov, G. Gomez, B. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gresele, A. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grosso-Pilcher, C. Group, R. C. Grundler, U. Nendahl, S. Gru Gruenewald, M. W. da Costa, J. Guimaraes Gunay-Unalan, Z. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haber, C. Haefner, P. Hagopian, S. Hahn, S. R. Haley, J. Halkiadakis, E. Hall, I. Han, B. -Y. Han, J. Y. Han, L. Happacher, F. Hara, K. Harder, K. Hare, D. Hare, M. Harel, A. Harr, R. F. Hartz, M. Hatakeyama, K. Hauptman, J. M. Hays, C. Hays, J. Hebbeker, T. Heck, M. Hedin, D. Hegeman, J. G. Heinrich, J. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herndon, M. Herner, K. Hesketh, G. Heuser, J. Hewamanage, S. Hidas, D. Hildreth, M. D. Hill, C. S. Hirosky, R. Hirschbuehl, D. Hoang, T. Hobbs, J. D. Hocker, A. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hou, S. Houlden, M. Hsu, S. -C. Hu, Y. Hubacek, Z. Hughes, R. E. Hurwitz, M. Husemann, U. Huske, N. Hussein, M. Huston, J. Hynek, V. Iashvili, I. Illingworth, R. Incandela, J. Introzzi, G. Iori, M. Ito, A. S. Ivanov, A. Jabeen, S. Jaffre, M. Jain, S. James, E. Jamin, D. Jang, D. Jayatilaka, B. Jeon, E. J. Jesik, R. Jha, M. K. Jindariani, S. Johns, K. Johnson, C. Johnson, M. Johnson, W. Johnston, D. Jonckheere, A. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Juste, A. Kajfasz, E. Kamon, T. Karchin, P. E. Kar, D. Karmanov, D. Kasper, P. A. Kato, Y. Katsanos, I. Kaushik, V. Kehoe, R. Kephart, R. Kermiche, S. Ketchum, W. Keung, J. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. H. Kirsch, L. Kirsch, M. Klimenko, S. Kohli, J. M. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kozelov, A. V. Kraus, J. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kumar, A. Kupco, A. Kurata, M. Kurca, T. Kuzmin, V. A. Kvita, J. Kwang, S. Laasanen, A. T. Lam, D. Lami, S. Lammel, S. Lammers, S. Lancaster, M. Lander, R. L. Landsberg, G. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lebrun, P. LeCompte, T. Lee, E. Lee, H. S. Lee, H. S. Lee, J. S. Lee, S. W. Lee, W. M. Leflat, A. Lellouch, J. Leone, S. Lewis, J. D. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Linacre, J. Lincoln, D. Lin, C. -J. Lindgren, M. Linnemann, J. Lipaev, V. V. Lipeles, E. Lipton, R. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Liu, Y. Liu, Z. Lobodenko, A. Lockyer, N. S. Loginov, A. Lokajicek, M. Lovas, L. Love, P. Lubatti, H. J. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Luna-Garcia, R. Lungu, G. Lyon, A. L. Lysak, R. Lys, J. Maciel, A. K. A. Mackin, D. MacQueen, D. Madrak, R. Maeshima, K. Magana-Villalba, R. Makhoul, K. Maksimovic, P. Mal, P. K. Malde, S. Malik, S. Malik, S. Malyshev, V. L. Manca, G. Manousakis-Katsikakis, A. Maravin, Y. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Martinez-Ortega, J. Mastrandrea, P. Mathis, M. Maettig, P. Mattson, M. E. Mazzanti, P. McCarthy, R. McFarland, K. S. McGivern, C. L. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Menzione, A. Mercadante, P. G. Merkin, M. Mesropian, C. Meyer, A. Meyer, J. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondal, N. K. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Moulik, T. Fernandez, P. Movilla Muanza, G. S. Mukherjee, A. Mulhearn, M. Muller, Th. Muelmenstaedt, J. Mundal, O. Mundim, L. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nagy, E. Naimuddin, M. Nakamura, K. Nakano, I. Napier, A. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Neustroev, P. Nielsen, J. Nilsen, H. Nodulman, L. Nogima, H. Norman, M. Norniella, O. Novaes, S. F. Nunnemann, T. Nurse, E. Oakes, L. Obrant, G. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Onoprienko, D. Orava, R. Orduna, J. Osman, N. Osta, J. Osterberg, K. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Griso, S. Pagan Pagliarone, C. Palencia, E. Pangilinan, M. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parks, B. Parsons, J. Partridge, R. Parua, N. Pashapour, S. Patrick, J. Patwa, A. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penning, B. Penzo, A. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Phillips, T. J. Piacentino, G. Pianori, E. Piegaia, R. Pinera, L. Piper, J. Pitts, K. Plager, C. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Pondrom, L. Popov, A. V. Potamianos, K. Poukhov, O. Prewitt, M. Price, D. Prokoshin, F. Pronko, A. Protopopescu, S. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Qian, J. Quadt, A. Quinn, B. Rademacker, J. Rahaman, A. Ramakrishnan, V. Rangel, M. S. Ranjan, K. Ranjan, N. Ratoff, P. N. Razumov, I. Redondo, I. Renkel, P. Renton, P. Renz, M. Rescigno, M. Rich, P. Richter, S. Rijssenbeek, M. Rimondi, F. Ripp-Baudot, I. Ristori, L. Rizatdinova, F. Robinson, S. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Rominsky, M. Roser, R. Rossi, M. Rossin, R. Roy, P. Royon, C. Rubinov, P. Ruchti, R. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Safronov, G. Sajot, G. Sakumoto, W. K. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santi, L. Sartori, L. Sato, K. Savage, G. Saveliev, V. Savoy-Navarro, A. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schlabach, P. Schliephake, T. Schlobohm, S. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwanenberger, C. Schwarz, T. Schwienhorst, R. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Sekaric, J. Semenov, A. Severini, H. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shabalina, E. Shalhout, S. Z. Shary, V. Shchukin, A. A. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shivpuri, R. K. Shochet, M. Shon, Y. Shreyber, I. Simak, V. Simonenko, A. Sinervo, P. Sirotenko, V. Sisakyan, A. Skubic, P. Slattery, P. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Snow, G. R. Snow, J. Snyder, S. Soha, A. Soeldner-Rembold, S. Somalwar, S. Sonnenschein, L. Sopczak, A. Sorin, V. Sosebee, M. Soustruznik, K. Spurlock, B. Squillacioti, P. Stanitzki, M. Stark, J. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strologas, J. Strom, D. Strycker, G. L. Stutte, L. Suh, J. S. Sukhanov, A. Suslov, I. Svoisky, P. Taffard, A. Takahashi, M. Takashima, R. Takeuchi, Y. Tanaka, R. Tanasijczuk, A. Tang, J. Taylor, W. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tiller, B. Tipton, P. Titov, M. Tkaczyk, S. Toback, D. Tokar, S. Tokmenin, V. V. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, S. -Y. Tsybychev, D. Ttito-Guzman, P. Tuchming, B. Tu, Y. Tully, C. Turini, N. Tuts, P. M. Ukegawa, F. Unalan, R. Uozumi, S. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. van Remortel, N. Varelas, N. Varganov, A. Varnes, E. W. Vasilyev, I. A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vidal, M. Vila, I. Vilanova, D. Vilar, R. Vint, P. Vogel, M. Vokac, P. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wahl, H. D. Wakisaka, T. Wallny, R. Wang, M. H. L. S. Wang, S. M. Warburton, A. Warchol, J. Waters, D. Watts, G. Wayne, M. Weber, G. Weber, M. Weinberger, M. Weinelt, J. Wester, W. C., III Wetstein, M. White, A. Whitehouse, B. Whiteson, D. Wicke, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Williams, M. R. J. Wilson, G. W. Wilson, P. Wimpenny, S. J. Winer, B. L. Wittich, P. Wobisch, M. Wolbers, S. Wolfe, C. Wolfe, H. Wood, D. R. Wright, T. Wu, X. Wuerthwein, F. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yagil, A. Yamada, R. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, W. -C. Yang, Y. C. Yao, W. M. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yeh, G. P. Yi, K. Yin, H. Yip, K. Yoh, J. Yoo, H. D. Yorita, K. Yoshida, T. Youn, S. W. Yu, G. B. Yu, I. Yu, J. Yu, S. S. Yun, J. C. Zanetti, A. Zeitnitz, C. Zelitch, S. Zeng, Y. Zhang, X. Zhao, T. Zheng, Y. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zucchelli, S. Zutshi, V. Zverev, E. G. CA CDF Collaboration D0 Collaboration TI Combination of Tevatron Searches for the Standard Model Higgs Boson in the W+W- Decay Mode SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; QCD; NNLO AB We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard model Higgs boson in the mass range 162-166 GeV at the 95% C.L. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Martin, V.; Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ, Canada. [Aguilo, E.; Beale, S.; Beauchemin, P. -H.; Buzatu, A.; Gillberg, D.; Liu, Z.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Taylor, W.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Enari, Y.; Ershaidat, N.; Huske, N.; Lellouch, J.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul, South Korea. [Chang, S. H.; Cho, K.; Choi, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju, South Korea. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Dubna Joint Nucl Res Inst, Dubna 141980, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Shreyber, I.; Stolin, V.] Moscow Theoret & Expt Phys Inst, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Protvino High Energy Phys Inst, Protvino 142284, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aoki, M.; Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Beretvas, A.; Bhat, P. C.; Binkley, M.; Boehnlein, A.; Bross, A.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Casey, B. C. K.; Chlachidze, G.; Chlebana, F.; Chung, K.; Cihangir, S.; Convery, M. E.; Cooke, M.; Cooper, W. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dong, P.; Elvira, V. D.; Fisk, H. E.; Freeman, J. C.; Fuess, S.; Ginsburg, C. M.; Ginther, G.; Glenzinski, D.; Golossanov, A.; Greenlee, H.; Group, R. C.; Nendahl, S. Gru; Gutierrez, G.; Hahn, S. R.; Hocker, A.; Illingworth, R.; Ito, A. S.; James, E.; Jindariani, S.; Johnson, M.; Jonckheere, A.; Junk, T. R.; Juste, A.; Kasper, P. A.; Kephart, R.; Khalatyan, N.; Kilminster, B.; Lammel, S.; Lee, W. M.; Lewis, J. D.; Li, Q. Z.; Lincoln, D.; Lindgren, M.; Lipton, R.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Lyon, A. L.; Madrak, R.; Maeshima, K.; Margaroli, F.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Penning, B.; Podstavkov, V. M.; Pronko, A.; Ptohos, F.; Roser, R.; Rubinov, P.; Rusu, V.; Rutherford, B.; Sanghi, B.; Savage, G.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Sirotenko, V.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Stutte, L.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Verzocchi, M.; Wagner, R. L.; Weber, M.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yeh, G. P.; Yi, K.; Yoh, J.; Youn, S. W.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Anastassov, A.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Schmitt, M.; Stentz, D.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Alton, A.; Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Herner, K.; Mietlicki, D.; Neal, H. A.; Qian, J.; Strandberg, J.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Bromberg, C.; Edmunds, D.; Fisher, W.; Geng, W.; Gunay-Unalan, Z.; Hall, I.; Hussein, M.; Huston, J.; Kraus, J.; Linnemann, J.; Miller, R.; Piper, J.; Schwienhorst, R.; Tollefson, K.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Dube, S.; Duggan, D.; Gershtein, Y.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Gold, M.; Gorelov, I.; Muanza, G. S.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Cammin, J.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Gimmell, J. L.; Ginther, G.; Han, B. -Y.; Han, J. Y.; Harel, A.; McFarland, K. S.; Sakumoto, W. K.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Cutts, D.; Ferapontov, A. V.; Heintz, U.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Shon, Y.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Bolton, Tim/A-7951-2012; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Gorelov, Igor/J-9010-2015; Guo, Jun/O-5202-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Christoudias, Theodoros/E-7305-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Kim, Soo-Bong/B-7061-2014; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Lysak, Roman/H-2995-2014; Kozelov, Alexander/J-3812-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Zeng, Yu/C-1438-2013; Yip, Kin/D-6860-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Fisher, Wade/N-4491-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Ruiz, Alberto/0000-0002-3639-0368; Dudko, Lev/0000-0002-4462-3192; Grohsjean, Alexander/0000-0003-0748-8494; Gallinaro, Michele/0000-0003-1261-2277; Melnychuk, Oleksandr/0000-0002-2089-8685; Torre, Stefano/0000-0002-7565-0118; Bassler, Ursula/0000-0002-9041-3057; Turini, Nicola/0000-0002-9395-5230; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Osterberg, Kenneth/0000-0003-4807-0414; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; Landsberg, Greg/0000-0002-4184-9380; iori, maurizio/0000-0002-6349-0380; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Vidal Marono, Miguel/0000-0002-2590-5987; Haas, Andrew/0000-0002-4832-0455; Bean, Alice/0000-0001-5967-8674; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Lami, Stefano/0000-0001-9492-0147; Carrera, Edgar/0000-0002-0857-8507; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Gorelov, Igor/0000-0001-5570-0133; Guo, Jun/0000-0001-8125-9433; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Christoudias, Theodoros/0000-0001-9050-3880; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Sharyy, Viatcheslav/0000-0002-7161-2616; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Punzi, Giovanni/0000-0002-8346-9052; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489 FU DOE and NSF (USA); CONICET and UBACyT (Argentina); CNPq; FAPERJ; FAPESP and FUNDUNESP (Brazil); CRC Program; CFI; NSERC and WestGrid Project (Canada); CAS and CNSF (China); Colciencias (Colombia); MSMT and GACR (Czech Republic); Academy of Finland (Finland); CEA and CNRS/IN2P3 (France); BMBF and DFG (Germany); Ministry of Education, Culture, Sports, Science and Technology (Japan); World Class University Program; National Research Foundation (Korea); KRF and KOSEF (Korea); DAE and DST (India); SFI (Ireland); INFN (Italy); CONACyT (Mexico); NSC(Republic of China); FASI; Rosatom and RFBR (Russia); Slovak Ramp; D Agency (Slovakia); Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010 (Spain); The Swedish Research Council (Sweden); Swiss National Science Foundation (Switzerland); FOM (The Netherlands); STFC; Royal Society (UK); A.P. Sloan Foundation (USA) FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by DOE and NSF (USA), CONICET and UBACyT (Argentina), CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), CRC Program, CFI, NSERC and WestGrid Project (Canada), CAS and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), Academy of Finland (Finland), CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), Ministry of Education, Culture, Sports, Science and Technology (Japan), World Class University Program, National Research Foundation (Korea), KRF and KOSEF (Korea), DAE and DST (India), SFI (Ireland), INFN (Italy), CONACyT (Mexico), NSC(Republic of China), FASI, Rosatom and RFBR (Russia), Slovak R & D Agency (Slovakia), Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), Swiss National Science Foundation (Switzerland), FOM (The Netherlands), STFC and the Royal Society (UK), and the A.P. Sloan Foundation (USA). NR 31 TC 81 Z9 81 U1 4 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 061802 DI 10.1103/PhysRevLett.104.061802 PG 11 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100006 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martin, B Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Prewitt, M Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for a Resonance Decaying into WZ Boson Pairs in p(p)over-bar Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDERS AB We present the first search for an electrically charged resonance W' decaying to a WZ boson pair using 4.1 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron p (p) over bar collider. The WZ pairs are reconstructed through their decays into three charged leptons (l = e, mu). A total of 9 data events is observed in good agreement with the background prediction. We set 95% C.L. limits on the W'WZ coupling and on the W' production cross section multiplied by the branching fractions. We also exclude W' masses between 188 and 520 GeV within a simple extension of the standard model and set the most restrictive limits to date on low-scale technicolor models. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, CPPM, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Nilsen, H.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Sirotenko, V.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.; Parihar, V.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gerbaudo, D.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; Bolton, Tim/A-7951-2012; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Gutierrez, Phillip/C-1161-2011; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014 OI Belanger-Champagne, Camille/0000-0003-2368-2617; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank Kenneth Lane for useful discussions and help with interpretation of the results within the TCSM parameter space and we thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 29 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 061801 DI 10.1103/PhysRevLett.104.061801 PG 7 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100005 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for Higgs Boson Production in Dilepton and Missing Energy Final States with 5.4 fb(-1) of p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL AB A search for the standard model Higgs boson is presented using events with two charged leptons and large missing transverse energy selected from 5.4 fb(-1) of integrated luminosity in p ($) over bar collisions at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron collider. No significant excess of events above background predictions is found, and observed (expected) upper limits at 95% confidence level on the rate of Higgs boson production are derived that are a factor of 1.55 (1.36) above the predicted standard model cross section at m(H) = 165 GeV. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Ferbel, T.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Heintz, U.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012 OI Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878 FU DOE and NSF (USA); CEA and CNRS/ IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/ IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 39 TC 27 Z9 27 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 061804 DI 10.1103/PhysRevLett.104.061804 PG 7 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100008 PM 20366814 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Busza, W Carroll, A Chai, Z Chetluru, V Decowski, MP Garcia, E Gburek, T George, N Gulbrandsen, K Halliwell, C Hamblen, J Hauer, M Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Khan, N Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Roland, C Roland, G Sagerer, J Seals, H Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Tonjes, MB Trzupek, A Vale, C van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Walters, P Wenger, E Wolfs, FLH Wosiek, B Wozniak, K Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bickley, A. A. Bindel, R. Busza, W. Carroll, A. Chai, Z. Chetluru, V. Decowski, M. P. Garcia, E. Gburek, T. George, N. Gulbrandsen, K. Halliwell, C. Hamblen, J. Hauer, M. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Johnson, E. Kane, J. L. Khan, N. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Roland, C. Roland, G. Sagerer, J. Seals, H. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Tonjes, M. B. Trzupek, A. Vale, C. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Walters, P. Wenger, E. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyslouch, B. TI High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in Au plus Au Collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB A measurement of two-particle correlations with a high transverse momentum trigger particle (p(T)(trig) > 2.5 GeV/c) is presented for Au + Au collisions at root s(NN) = 200 GeV over the uniquely broad longitudinal acceptance of the PHOBOS detector (-4 < Delta eta < 2). A broadening of the away-side azimuthal correlation compared to elementary collisions is observed at all Delta eta. As in p + p collisions, the near side is characterized by a peak of correlated partners at small angle relative to the trigger particle. However, in central Au + Au collisions an additional correlation extended in Delta eta and known as the "ridge'' is found to reach at least vertical bar Delta eta vertical bar approximate to 4. The ridge yield is largely independent of Delta eta over the measured range, and it decreases towards more peripheral collisions. For the chosen p(T)(trig) cut, the ridge yield is consistent with zero for events with less than roughly 100 participating nucleons. C1 [Alver, B.; Ballintijn, M.; Busza, W.; Decowski, M. P.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wyslouch, B.] MIT, Cambridge, MA 02139 USA. [Back, B. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baker, M. D.; Barton, D. S.; Carroll, A.; Chai, Z.; George, N.; Hauer, M.; Holzman, B.; Nouicer, R.; Pak, R.; Seals, H.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland. [Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Chungli 32054, Taiwan. [Betts, R. R.; Chetluru, V.; Garcia, E.; Halliwell, C.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Nouicer, R.; Sagerer, J.; Smith, C. E.] Univ Illinois, Chicago, IL 60607 USA. [Bickley, A. A.; Bindel, R.; Mignerey, A. C.; Tonjes, M. B.] Univ Maryland, College Pk, MD 20742 USA. [Hamblen, J.; Johnson, E.; Khan, N.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Rochester, NY 14627 USA. RP Alver, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC02-06CH11357]; U.S. NSF [9603486, 0072204, 0245011]; Polish MNiSW [N202 282234]; NSC of Taiwan NSC 89-2112-M-008-024; Hungarian OTKA [F 049823] FX This work was partially supported by U.S. DOE Grants No. DE-AC02-98CH10886, No. DE-FG02-93ER40802, No. DE-FG02-94ER40818, No. DE-FG02-94ER40865, No. DE-FG02-99ER41099, and No. DE-AC02-06CH11357, by U.S. NSF Grants No. 9603486, No. 0072204, and No. 0245011, by Polish MNiSW Grant No. N202 282234 (2008-2010), by NSC of Taiwan Contract No. NSC 89-2112-M-008-024, and by Hungarian OTKA Grant No. F 049823. NR 26 TC 118 Z9 118 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 062301 DI 10.1103/PhysRevLett.104.062301 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100009 ER PT J AU Hau-Riege, SP Boutet, S Barty, A Bajt, S Bogan, MJ Frank, M Andreasson, J Iwan, B Seibert, MM Hajdu, J Sakdinawat, A Schulz, J Treusch, R Chapman, HN AF Hau-Riege, Stefan P. Boutet, Sebastien Barty, Anton Bajt, Sasa Bogan, Michael J. Frank, Matthias Andreasson, Jakob Iwan, Bianca Seibert, M. Marvin Hajdu, Janos Sakdinawat, Anne Schulz, Joachim Treusch, Rolf Chapman, Henry N. TI Sacrificial Tamper Slows Down Sample Explosion in FLASH Diffraction Experiments SO PHYSICAL REVIEW LETTERS LA English DT Article ID FREE-ELECTRON LASER; RAY; HOLOGRAPHY AB Intense and ultrashort x-ray pulses from free-electron lasers open up the possibility for near-atomic resolution imaging without the need for crystallization. Such experiments require high photon fluences and pulses shorter than the time to destroy the sample. We describe results with a new femtosecond pump-probe diffraction technique employing coherent 0.1 keV x rays from the FLASH soft x-ray free-electron laser. We show that the lifetime of a nanostructured sample can be extended to several picoseconds by a tamper layer to dampen and quench the sample explosion, making <1 nm resolution imaging feasible. C1 [Hau-Riege, Stefan P.; Barty, Anton; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boutet, Sebastien; Bogan, Michael J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bajt, Sasa; Treusch, Rolf] Deutsch Elektronen Synchrotron DESY, HASYLAB, D-22607 Hamburg, Germany. [Andreasson, Jakob; Iwan, Bianca; Seibert, M. Marvin; Hajdu, Janos] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Sakdinawat, Anne] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Barty, Anton; Schulz, Joachim; Chapman, Henry N.] DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany. [Chapman, Henry N.] Univ Hamburg, D-22761 Hamburg, Germany. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM hauriege1@llnl.gov RI Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Bogan, Mike/I-6962-2012; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014; Treusch, Rolf/C-3935-2015; OI Chapman, Henry/0000-0002-4655-1743; Bogan, Mike/0000-0001-9318-3333; Barty, Anton/0000-0003-4751-2727; Seibert, Mark Marvin/0000-0003-0251-0744 FU U.S. Department of Energy [DE-AC5207NA27344]; SLAC National Accelerator Laboratory [DE-AC02-76SF00515]; Deutsches Elektronen-Synchrotron; Helmholtz Association; Helmholtz Society; Joachim Herz Stiftung; Swedish Research Council FX We would like to thank the scientific and technical staff at FLASH at DESY. Also thanks to C. Bostedt, T. Moller, H. Thomas, D. Rupp, S. Schorb, M. Adolph, all of T. U. Berlin, for discussions, technical assistance, and providing instrumentation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344, the SLAC National Accelerator Laboratory under Contract No. DE-AC02-76SF00515, and the Deutsches Elektronen-Synchrotron, a research center of the Helmholtz Association. Additional support comes from the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics [22], from the Virtual Institute Program of the Helmholtz Society, the Joachim Herz Stiftung, and from the Swedish Research Council. NR 21 TC 30 Z9 30 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 064801 DI 10.1103/PhysRevLett.104.064801 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100017 PM 20366823 ER PT J AU Kanai, Y Khalap, VR Collins, PG Grossman, JC AF Kanai, Yosuke Khalap, Vaikunth R. Collins, Philip G. Grossman, Jeffrey C. TI Atomistic Oxidation Mechanism of a Carbon Nanotube in Nitric Acid SO PHYSICAL REVIEW LETTERS LA English DT Article AB Motivated by recent experiments, we investigate how NO3-SWNT interactions become energetically favorable with varying oxidation state of a single-walled carbon nanotube (SWNT) using first-principles calculations. Chemisorption becomes less endothermic with respect to physisorption when the SWNT oxidation state is elevated. Importantly, the dissociative incorporation of an oxygen atom into the SWNT sidewall becomes highly favorable when the SWNT oxidation state is elevated from electron density depletion in the vicinity, as caused experimentally using electrochemical potential. The elevation of the SWNT oxidation state through accumulating local charge transfer from the surrounding molecules does not have the same effect. Our investigation reveals the crucial effects of the SWNT oxidation state in understanding the molecule-SWNT interaction. C1 [Kanai, Yosuke; Grossman, Jeffrey C.] Univ Calif Berkeley, Berkeley Nanosci Nanoengn Inst, Berkeley, CA 94720 USA. [Kanai, Yosuke] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Khalap, Vaikunth R.; Collins, Philip G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Grossman, Jeffrey C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Kanai, Y (reprint author), Univ Calif Berkeley, Berkeley Nanosci Nanoengn Inst, Berkeley, CA 94720 USA. RI Kanai, Yosuke/B-5554-2016 NR 12 TC 26 Z9 26 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 066401 DI 10.1103/PhysRevLett.104.066401 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100030 PM 20366836 ER PT J AU Koga, T Li, C Endoh, MK Koo, J Rafailovich, M Narayanan, S Lee, DR Lurio, LB Sinha, SK AF Koga, Tadanori Li, C. Endoh, M. K. Koo, J. Rafailovich, M. Narayanan, S. Lee, D. R. Lurio, L. B. Sinha, S. K. TI Reduced Viscosity of the Free Surface in Entangled Polymer Melt Films SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLASS-TRANSITION; THIN-FILMS; ONE-PHASE; DYNAMICS; SIMULATIONS; GOLD AB By embedding "dilute'' gold nanoparticles in single polystyrene thin films as "markers'', we probe the local viscosity of the free surface at temperatures far above the glass transition temperature (T(g)). The technique used was x-ray photon correlation spectroscopy with resonance-enhanced x-ray scattering. The results clearly showed the surface viscosity is about 30% lower than the rest of the film. We found that this reduction is strongly associated with chain entanglements at the free surface rather than the reduction in T(g). C1 [Koga, Tadanori; Rafailovich, M.] SUNY Stony Brook, Chem & Mol Engn Program, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Narayanan, S.; Lee, D. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lurio, L. B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Koga, T (reprint author), SUNY Stony Brook, Chem & Mol Engn Program, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM tkoga@notes.cc.sunysb.edu RI Koga, Tadanori/A-4007-2010 FU NSF [CMMI-0846267]; ChemMatCARS; APS; DOE, Office of Basic Energy Science [DE-AC02-06CH11357] FX We thank Z. Jiang for helpful discussions. T. K. acknowledges financial support from NSF Grant No. CMMI-0846267 and ChemMatCARS, APS. The use of the APS was supported by the DOE, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 22 TC 37 Z9 38 U1 9 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 066101 DI 10.1103/PhysRevLett.104.066101 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100026 PM 20366832 ER PT J AU Luo, JW Chantis, AN van Schilfgaarde, M Bester, G Zunger, A AF Luo, Jun-Wei Chantis, Athanasios N. van Schilfgaarde, Mark Bester, Gabriel Zunger, Alex TI Discovery of a Novel Linear-in-k Spin Splitting for Holes in the 2D GaAs/AlAs System SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTOR AB The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wave vector k. Whereas for 3D bulk zinc blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells, the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of hole states in 2D. This scaling emerges from coupling of hole bands that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k scaling for holes in 2D implies a different understanding of hole physics in low dimensions. C1 [Luo, Jun-Wei; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Chantis, Athanasios N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [van Schilfgaarde, Mark] Arizona State Univ, Tempe, AZ 85287 USA. [Bester, Gabriel] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI LUO, JUN-WEI/A-8491-2010; Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013; OI Bester, Gabriel/0000-0003-2304-0817; Chantis, Athanasios/0000-0001-7933-0579 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC36-08GO28308]; ONR [N00014-07-1-0479]; NSF [QMHP-0802216] FX A. Z. thanks E. Rashba and D. Loss for helpful discussions on this subject. Research at NREL supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC36-08GO28308. M. v S. was supported by ONR, Project No. N00014-07-1-0479 and NSF No. QMHP-0802216. NR 26 TC 26 Z9 28 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 066405 DI 10.1103/PhysRevLett.104.066405 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100034 PM 20366840 ER PT J AU Tanatar, MA Reid, JP Shakeripour, H Luo, XG Doiron-Leyraud, N Ni, N Bud'ko, SL Canfield, PC Prozorov, R Taillefer, L AF Tanatar, M. A. Reid, J. -Ph. Shakeripour, H. Luo, X. G. Doiron-Leyraud, N. Ni, N. Bud'ko, S. L. Canfield, P. C. Prozorov, R. Taillefer, Louis TI Doping Dependence of Heat Transport in the Iron-Arsenide Superconductor Ba(Fe1-xCox)(2)As-2: From Isotropic to a Strongly k-Dependent Gap Structure SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; BA0.6K0.4FE2AS2 AB The temperature and magnetic field dependence of the in-plane thermal conductivity kappa of the iron-arsenide superconductor Ba(Fe1-xCox)(2)As-2 was measured down to T similar or equal to 50 mK and up to H = 15 T as a function of Co concentration x in the range 0.048 <= x <= 0.114. At H = 0, a negligible residual linear term in kappa/T as T -> 0 at all x shows that the superconducting gap has no nodes in the ab plane anywhere in the phase diagram. However, while the slow H dependence of kappa(H) at T -> 0 in the underdoped regime is consistent with a superconducting gap that is large everywhere on the Fermi surface, the rapid increase in kappa(H) observed in the overdoped regime shows that the gap acquires a deep minimum somewhere on the Fermi surface. Outside the antiferromagnetic-orthorhombic phase, the superconducting gap structure has a strongly k-dependent amplitude. C1 [Tanatar, M. A.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Reid, J. -Ph.; Shakeripour, H.; Luo, X. G.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, Dept Phys & RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON, Canada. RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA. EM louis.taillefer@physique.usherbrooke.ca RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation; CIFAR; NSERC; CFI; FQRNT FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from the Alfred P. Sloan Foundation. L. T. acknowledges support from CIFAR, NSERC, CFI, and FQRNT. NR 31 TC 118 Z9 118 U1 4 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 067002 DI 10.1103/PhysRevLett.104.067002 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100044 PM 20366850 ER PT J AU van Veenendaal, M Chang, J Fedro, AJ AF van Veenendaal, Michel Chang, Jun Fedro, A. J. TI Model of Ultrafast Intersystem Crossing in Photoexcited Transition-Metal Organic Compounds SO PHYSICAL REVIEW LETTERS LA English DT Article ID VIBRATIONAL-ENERGY REDISTRIBUTION; SPIN-CROSSOVER COMPLEXES; DYNAMICS; SYSTEMS AB The mechanism behind fast intersystem crossing in transition-metal complexes is shown to be a result of the dephasing of the photoexcited state to the phonon continuum of a different state with a significantly different transition metal-ligand distance. The coupling is a result of the spin-orbit interaction causing a change in the local moment. A recurrence to the initial state is prevented by the damping of the phonon oscillation. The decay time is faster than the oscillation frequency of the transition metal-ligand stretch mode, in agreement with experiment. For energies above the region where the strongest coupling occurs, a slower "leakage-type'' decay is observed. If the photoexcited state is lower in energy than the state it couples to, then there is no decay. C1 [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP van Veenendaal, M (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RI Chang, jun/A-1840-2010 OI Chang, jun/0000-0003-0041-4804 FU U.S. Department of Energy (DOE) [DE-FG02-03ER46097]; NIU; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (DOE), DE-FG02-03ER46097, and NIU's Institute for Nanoscience, Engineering, and Technology. Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 20 TC 25 Z9 25 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 067401 DI 10.1103/PhysRevLett.104.067401 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100046 PM 20366852 ER PT J AU Wang, SZ Wang, LW AF Wang, Shuzhi Wang, Lin-Wang TI Atomic and Electronic Structures of GaN/ZnO Alloys SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLID-SOLUTION PHOTOCATALYST; VISIBLE-LIGHT ABSORPTION; HYDROGEN GENERATION; WATER; GAN; ENERGY; ORIGIN AB A new model Hamiltonian is developed to describe the ab initio energy differences of the nonisovalent alloy configurations based on the semiconductor electron counting rule. Monte Carlo simulations using this Hamiltonian show strong short range order of the GaN/ZnO alloy, which has significant effects on its electronic structure. We also predict further reduction of the band gap by increasing the synthesis temperature. C1 [Wang, Shuzhi; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wang, SZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, 1 Cyclotron Rd,Mail Stop 50F, Berkeley, CA 94720 USA. EM swang2@lbl.gov RI Wang, Shuzhi/A-1799-2009 FU U.S. Department of Energy [DE-AC02-05CH11231]; National Energy Research Scientific Computing Center (NERSC); National Center for Computational Sciences (NCCS) FX This work was performed in the Helios Solar Energy Research Center which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used the computational resources of the National Energy Research Scientific Computing Center (NERSC) and the National Center for Computational Sciences (NCCS). NR 21 TC 30 Z9 30 U1 4 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 12 PY 2010 VL 104 IS 6 AR 065501 DI 10.1103/PhysRevLett.104.065501 PG 4 WC Physics, Multidisciplinary SC Physics GA 554OU UT WOS:000274445100022 PM 20366828 ER PT J AU Coppe, JP Patil, CK Rodier, F Krtolica, A Beausejour, CM Parrinello, S Hodgson, JG Chin, KE Desprez, PY Campisi, J AF Coppe, Jean-Philippe Patil, Christopher K. Rodier, Francis Krtolica, Ana Beausejour, Christian M. Parrinello, Simona Hodgson, J. Graeme Chin, Koei Desprez, Pierre-Yves Campisi, Judith TI A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen SO PLOS ONE LA English DT Article ID CELLULAR SENESCENCE; DNA-DAMAGE; REPLICATIVE SENESCENCE; HUMAN-FIBROBLASTS; GENE-EXPRESSION; IN-VIVO; TRIGGERS SENESCENCE; CANCER PROGRESSION; EPITHELIAL-CELLS; GROWTH-FACTOR AB Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP), which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent'' mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen), do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3%) oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP. C1 [Coppe, Jean-Philippe; Patil, Christopher K.; Rodier, Francis; Krtolica, Ana; Parrinello, Simona; Desprez, Pierre-Yves; Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Coppe, Jean-Philippe; Patil, Christopher K.; Rodier, Francis; Desprez, Pierre-Yves; Campisi, Judith] Buck Inst Age Res, Novato, CA USA. [Beausejour, Christian M.] Univ Montreal, CHU Ste Justine, Ctr Rech, Montreal, PQ, Canada. [Beausejour, Christian M.] Univ Montreal, Dept Pharmacol, Montreal, PQ H3C 3J7, Canada. [Hodgson, J. Graeme; Chin, Koei] Univ Calif San Francisco, Dept Lab Med, Ctr Comprehens Canc, San Francisco, CA 94143 USA. [Desprez, Pierre-Yves] Calif Pacific Med Ctr, Res Inst, San Francisco, CA USA. RP Coppe, JP (reprint author), Dynam Throughput Inc, Berkeley, CA USA. EM jcampisi@buckinstitute.org FU National Institutes of Health [AG09909, AG017242, CA126540, AG000266, AG0025708]; Larry L. Hillblom Foundation; California Breast Cancer Research Program [8KB-0100]; US Department of Energy [DE-AC03-76SF00098] FX Supported by grants from the National Institutes of Health (research grants AG09909, AG017242 and CA126540 to JC; training grant AG000266; center grant AG0025708), Larry L. Hillblom Foundation (to CKP), California Breast Cancer Research Program (8KB-0100 to AK) and the US Department of Energy under contract DE-AC03-76SF00098 (JC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 54 TC 122 Z9 126 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 12 PY 2010 VL 5 IS 2 AR e9188 DI 10.1371/journal.pone.0009188 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554ZC UT WOS:000274474600009 PM 20169192 ER PT J AU Deng, HX Doonan, CJ Furukawa, H Ferreira, RB Towne, J Knobler, CB Wang, B Yaghi, OM AF Deng, Hexiang Doonan, Christian J. Furukawa, Hiroyasu Ferreira, Ricardo B. Towne, John Knobler, Carolyn B. Wang, Bo Yaghi, Omar M. TI Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks SO SCIENCE LA English DT Article ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; HYDROGEN STORAGE; CARBON-DIOXIDE; PORE-SIZE; CAPTURE; DESIGN AB We show that metal-organic frameworks (MOFs) can incorporate a large number of different functionalities on linking groups in a way that mixes the linker, rather than forming separate domains. We made complex MOFs from 1,4-benzenedicarboxylate (denoted by "A" in this work) and its derivatives -NH(2), -Br, -(Cl)(2), -NO(2), -(CH(3))(2), -C(4)H(4), -(OC(3)H(5))(2), and -(OC(7)H(7))(2) (denoted by "B" to "I," respectively) to synthesize 18 multivariate (MTV) MOF-5 type structures that contain up to eight distinct functionalities in one phase. The backbone (zinc oxide and phenylene units) of these structures is ordered, but the distribution of functional groups is disordered. The complex arrangements of several functional groups within the pores can lead to properties that are not simply linear sums of those of the pure components. For example, a member of this series, MTV-MOF-5-EHI, exhibits up to 400% better selectivity for carbon dioxide over carbon monoxide compared with its best same-link counterparts. C1 [Deng, Hexiang; Doonan, Christian J.; Furukawa, Hiroyasu; Ferreira, Ricardo B.; Towne, John; Knobler, Carolyn B.; Wang, Bo; Yaghi, Omar M.] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Energy DOE, Inst Genom & Prote,Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Yaghi, OM (reprint author), Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Energy DOE, Inst Genom & Prote,Dept Chem & Biochem, 607 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM yaghi@chem.ucla.edu RI Barroso Ferreira, Ricardo/A-3679-2010; WANG, BO/D-9762-2012; Furukawa, Hiroyasu/C-5910-2008; OI WANG, BO/0000-0001-9092-3252; Furukawa, Hiroyasu/0000-0002-6082-1738; Yaghi, Omar/0000-0002-5611-3325 FU DOE Office of Basic Energy Sciences [DE-FG02-08ER15935] FX This work was supported by DOE Office of Basic Energy Sciences (grant DE-FG02-08ER15935). We thank F. J. Uribe-Romo and R. Taylor for assistance and helpful discussions. MTV-MOF-5-AC and MTV-MOF-5-ACEF have been deposited into the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 747004 to 747007. NR 13 TC 686 Z9 695 U1 96 U2 837 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 12 PY 2010 VL 327 IS 5967 BP 846 EP 850 DI 10.1126/science.1181761 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554AQ UT WOS:000274408300056 PM 20150497 ER PT J AU Tao, F Dag, S Wang, LW Liu, Z Butcher, DR Bluhm, H Salmeron, M Somorjai, GA AF Tao, Feng Dag, Sefa Wang, Lin-Wang Liu, Zhi Butcher, Derek R. Bluhm, Hendrik Salmeron, Miquel Somorjai, Gabor A. TI Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage SO SCIENCE LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; IN-SITU; PHOTOELECTRON-SPECTROSCOPY; SHAPE CHANGES; NANOPARTICLES; OXIDATION; PT(111); RECONSTRUCTION; NANOCRYSTALS; ADSORPTION AB Stepped single-crystal surfaces are viewed as models of real catalysts, which consist of small metal particles exposing a large number of low-coordination sites. We found that stepped platinum (Pt) surfaces can undergo extensive and reversible restructuring when exposed to carbon monoxide (CO) at pressures above 0.1 torr. Scanning tunneling microscopy and photoelectron spectroscopy studies under gaseous environments near ambient pressure at room temperature revealed that as the CO surface coverage approaches 100%, the originally flat terraces of (557) and (332) oriented Pt crystals break up into nanometer-sized clusters and revert to the initial morphology after pumping out the CO gas. Density functional theory calculations provide a rationale for the observations whereby the creation of increased concentrations of low-coordination Pt edge sites in the formed nanoclusters relieves the strong CO-CO repulsion in the highly compressed adsorbate film. This restructuring phenomenon has important implications for heterogeneous catalytic reactions. C1 [Tao, Feng; Butcher, Derek R.; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tao, Feng; Butcher, Derek R.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dag, Sefa; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Liu, Zhi; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov; somorjai@berkeley.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Office of Basic Energy Sciences, Materials Sciences, and Chemical, Geosciences, and Biosciences Divisions; Office of Advanced Scientific Computing Research; U.S. Department of Energy [DE-AC02-05CH11231] FX The experimental work was supported by the director, Office of Basic Energy Sciences, Materials Sciences, and Chemical, Geosciences, and Biosciences Divisions. The theoretical work was supported by the Office of Advanced Scientific Computing Research. U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The computation uses the resources of National Energy Research Scientific Computing Center (NERSC) and the INCITE project allocations within the National Center for Computational Sciences (NCCS). XPS data were collected at the Advanced Light Source, Berkeley, CA. F. T. acknowledges the discussions with S. L. Bernasek, N. Kruse, T. Bligaard, and F. Ogletree. NR 24 TC 208 Z9 211 U1 23 U2 286 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 12 PY 2010 VL 327 IS 5967 BP 850 EP 853 DI 10.1126/science.1182122 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554AQ UT WOS:000274408300057 PM 20150498 ER PT J AU Mihailovic, D Saponjic, Z Radoicic, M Radetic, T Jovancic, P Nedeljkovic, J Radetic, M AF Mihailovic, Darka Saponjic, Zoran Radoicic, Marija Radetic, Tamara Jovancic, Petar Nedeljkovic, Jovan Radetic, Maja TI Functionalization of polyester fabrics with alginates and TiO2 nanoparticles SO CARBOHYDRATE POLYMERS LA English DT Article DE TiO2 nanoparticles; Polyester fabric; Alginate; Antibacterial activity; UV protection; Photodegradation activity ID TITANIUM-DIOXIDE NANOPARTICLES; MODIFIED COTTON TEXTILES; SELF-CLEANING COTTON; DAYLIGHT IRRADIATION; CELLULOSE FIBERS; THIN-FILM; TEMPERATURE; SILVER; DETOXIFICATION; BIOPOLYMERS AB This study was aimed to investigate the possibility of engineering the multifunctional textile nanocomposite material based on the polyester fabric modified with natural polysaccharide alginate and colloidal TiO2 nanoparticles. The multifunctionality of such nanocomposite material was evaluated by analyzing its UV protection efficiency, antibacterial and photocatalytic activity. The level of UV protection was verified by the UV protection factor (UPF) of polyester fabrics. Antibacterial activity of modified polyester fabrics was tested against Gram-negative bacterium Escherichia coli. The photocatalytic activity of TiO2 nanoparticles deposited on the polyester fabrics was followed by degradation of methylene blue as a model compound in aqueous solution. Modified polyester fabrics exhibited outstanding antibacterial activity and UV protection efficiency even after five washing cycles, indicating the excellent laundering durability. The total photodegradation of methylene blue was reached after 24 h of UV illumination and this ability was preserved and even enhanced after two consecutive cycles. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Mihailovic, Darka; Jovancic, Petar; Radetic, Maja] Univ Belgrade, Fac Technol & Met, Dept Text Engn, Belgrade 11120, Serbia. [Saponjic, Zoran; Radoicic, Marija; Nedeljkovic, Jovan] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Radetic, Tamara] Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Radetic, M (reprint author), Univ Belgrade, Fac Technol & Met, Dept Text Engn, Karnegijeva 4, Belgrade 11120, Serbia. EM maja@tmf.bg.ac.rs OI Jovancic, Petar/0000-0002-9905-6260 FU Ministry of Science of Republic of Serbia [TR 19007, 142066]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX The financial support for this work was provided by the Ministry of Science of Republic of Serbia (projects TR 19007 and 142066). This work was performed in part at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 73 Z9 77 U1 8 U2 55 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0144-8617 J9 CARBOHYD POLYM JI Carbohydr. Polym. PD FEB 11 PY 2010 VL 79 IS 3 BP 526 EP 532 DI 10.1016/j.carbpol.2009.08.036 PG 7 WC Chemistry, Applied; Chemistry, Organic; Polymer Science SC Chemistry; Polymer Science GA 547CZ UT WOS:000273864500006 ER PT J AU Le, A Egedal, J Daughton, W Drake, JF Fox, W Katz, N AF Le, A. Egedal, J. Daughton, W. Drake, J. F. Fox, W. Katz, N. TI Magnitude of the Hall fields during magnetic reconnection SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB In situ observation of the Earth's magnetosphere has identified Hall magnetic fields as a key signature of collisionless magnetic reconnection. The inflow portion of the reconnection diffusion region is further characterized by strong electron pressure anisotropy. These two features are tightly linked in a quantitative model, which is verified using fully kinetic simulations. The model predicts the Hall field strength and the maximum electron pressure anisotropy as functions of the upstream ratio of electron fluid and magnetic pressures. Citation: Le, A., J. Egedal, W. Daughton, J. F. Drake, W. Fox, and N. Katz (2010), Magnitude of the Hall fields during magnetic reconnection, Geophys. Res. Lett., 37, L03106, doi: 10.1029/2009GL041941. C1 [Le, A.; Egedal, J.; Fox, W.; Katz, N.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Drake, J. F.] Univ Maryland, Plasma Res Lab, College Pk, MD 20742 USA. RP Le, A (reprint author), MIT, Plasma Sci & Fus Ctr, NW 16-132,167 Albany St, Cambridge, MA 02139 USA. EM arile@mit.edu RI Daughton, William/L-9661-2013 FU DOE [DE-FG02-06ER54878]; DOE/NSF [DE-FG02-03ER54712] FX This work was funded at MIT in part by DOE grant DE-FG02-06ER54878 and DOE/NSF grant DE-FG02-03ER54712. NR 14 TC 30 Z9 30 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 11 PY 2010 VL 37 AR L03106 DI 10.1029/2009GL041941 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 554VJ UT WOS:000274463000004 ER PT J AU Jee, JE Bakac, A AF Jee, Joo-Eun Bakac, Andreja TI Reactions of Mn(II) and Mn(III) with Alkyl, Peroxyalkyl, and Peroxyacyl Radicals in Water and Acetic Acid SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AQUEOUS-SOLUTION; RATE CONSTANTS; HYDROCARBON OXIDATION; INORGANIC RADICALS; MOLECULAR-OXYGEN; ACYL RADICALS; COMPLEXES; KINETICS; DECARBONYLATION; BROMIDE AB The kinetics of oxidation of Mn(II) with acylperoxyl and alkylperoxyl radicals were determined by laser flash photolysis utilizing a macrocyclic nickel complex as a kinetic probe. Radicals were generated photochemically from the appropriate ketones in the presence of molecular oxygen. In both acidic aqueous solutions and in 95% acetic acid, Mn(II) reacts with acylperoxyl radicals with k = (0.5-1.6) x 10(6) M(-1) s(-1) and somewhat more slowly with alkylperoxyl radicals, k = (0.5-5) x 10(5) M(-1) s(-1). Mn(III) rapidly oxidizes benzyl radicals, k = 2.3 x 10(8) M(-1) s(-1) (glacial acetic acid) and 3.7 x 10(8) M(-1) s(-1) (95% acetic acid). The value in 3.0 M aqueous perchloric acid is much smaller, 1 x 10(7) M(-1) s(-1). The decarbonylation of benzoyl radicals in H(2)O has k = 1.2 x 10(6) s(-1). C1 [Jee, Joo-Eun; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Bakac, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM bakac@ameslab.gov FU U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We are thankful to Dr. Pestovsky for useful comments and discussions. The support for this project from BP Amoco is gratefully acknowledged. The research was carried out in the facilities of the Ames Laboratory [under contract No. DE-AC02-07CH11358 with the U.S. Department of Energy-Basic Energy Sciences]. NR 43 TC 3 Z9 3 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 11 PY 2010 VL 114 IS 5 BP 2136 EP 2141 DI 10.1021/jp910140s PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 552EJ UT WOS:000274270400011 PM 20078053 ER PT J AU Bogatko, SA Bylaska, EJ Weare, JH AF Bogatko, Stuart A. Bylaska, Eric J. Weare, John H. TI First Principles Simulation of the Bonding, Vibrational, and Electronic Properties of the Hydration Shells of the High-Spin Fe3+ Ion in Aqueous Solutions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; TRANSITION-METAL IONS; X-RAY-DIFFRACTION; ELASTIC NEUTRON-SCATTERING; LOCALIZED WANNIER FUNCTIONS; DENSITY-FUNCTIONAL THEORY; PERCHLORATE SOLUTIONS; CHLORIDE SOLUTIONS; PAIR POTENTIALS; WATER EXCHANGE AB Results of parameter-free first principles simulations of a spin up 3d(5) Fe3+ ion hydrated in an aqueous Solution (64 waters, 30 ps, 300 K) are reported. The first hydration shell associated with the first maximum of the radial distribution function, g(FeO)(r), at d(Fe-O-1) = 2.11-2.15 angstrom, contains 6 waters with average d(OH) = 0.99 angstrom, in good agreement with observations. A second shell with average coordination number 13.3 can be identified with average shell radius of d(Fe-Ou) = 4.21-4.32 angstrom. The waters in this hydration shell are coordinated to the first shell via a trigonal H-bond network with d(O-I-O-II) = 2.7-2.9 angstrom, also in agreement with experimental measurements. The first shell tilt angle average is 33.4 degrees as compared to the reported value of 41 degrees. Wannier-Boys orbitals (WBO) show in interaction between the unoccupied 3d orbitals of the Fe3+ valence (Spill Lip, 3d(5)) and the occupied spin down lone pair orbitals of first shell waters. The effect of the spin ordering of the Fe 31 ion on the WBO is not observed beyond the first shell. From this local bond analysis and consistent with other observations, the electronic structure of waters in the second shell is similar to that of a bulk water even in this strongly interacting system. H-bond decomposition shows significant bulk-like structure within the second shell for Fe3+. The vibrational density of states shows a first shell red shift of 230 cm(-1) for the v(1),2(V2),V-3 overtone, in reasonable agreement with experimental estimates for trivalent cations (300 cm(-1)). No exchanges between first and second shell were observed. Waters in the second shell exchanged with bulk waters via dissociative and associative mechanisms. Results are compared with all AIMD study of Al3+ and 64 waters. For Fe3+ the average first shell tilt angle is larger and the tilt angle distribution wider. H-bond decomposition shows that second shell to second shell H-bonding is enhanced in Fe3+ suggesting an earlier onset of bulk-like water Structure. C1 [Weare, John H.] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92103 USA. Pacific NW Natl Lab, Richland, WA USA. RP Weare, JH (reprint author), Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92103 USA. EM jweare@ucsd.edu RI Bogatko, Stuart/C-8394-2013 OI Bogatko, Stuart/0000-0001-9759-2580 NR 95 TC 16 Z9 16 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 11 PY 2010 VL 114 IS 5 BP 2189 EP 2200 DI 10.1021/jp904967n PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 552EJ UT WOS:000274270400018 PM 20078102 ER PT J AU Porcar, L Hong, KL Butler, PD Herwig, KW Smith, GS Liu, Y Chen, WR AF Porcar, Lionel Hong, Kunlun Butler, Paul D. Herwig, Kenneth W. Smith, Gregory S. Liu, Yun Chen, Wei-Ren TI Intramolecular Structural Change of PAMAM Dendrimers in Aqueous Solutions Revealed by Small-Angle Neutron Scattering SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLYMERS; PH; SIMULATION; PARTICLES; LOCATION; SOLVENT AB Small-angle neutron scattering (SANS) experiments were carried out to investigate the structure of aqueous (D(2)O) G4 PAMAM dendrimer solutions as a function of molecular protonation and dendrimer concentration. Our results indicate unambiguously that, although the radius of gyration R(G), remains nearly invariant, the dendrimer radial density profile rho(r) decreases in the dendrimer core with a continuous increase in protonation. This discovery also suggests that R(G), which is commonly adopted by numerous simulation and experimental works in describing the global dendrimer size, is not suitable as the index parameter to characterize the dendrimer coil formation change. We also found that R(G) and rho(r), for dendrimers dissolved in both neutral and acidified solutions, remain nearly constant over the studied concentration range. We further demonstrate that the outcome of the widely used Guinier method is questionable for extracting R(G) in the concentration range studied. Our results reveal the polymer colloid structural duality as benchmarks for future experimental and theoretical studies and provide a critical step toward understanding drug encapsulation by ionic bonds. C1 [Butler, Paul D.; Liu, Yun] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Porcar, Lionel] Inst Laue Langevin, F-38042 Grenoble 9, France. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Herwig, Kenneth W.; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Liu, Y (reprint author), Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM yunliu@nist.gov; chenw@ornl.gov RI Butler, Paul/D-7368-2011; Herwig, Kenneth/F-4787-2011; Liu, Yun/F-6516-2012; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015 OI Liu, Yun/0000-0002-0944-3153; Smith, Gregory/0000-0001-5659-1805; Hong, Kunlun/0000-0002-2852-5111 FU ORNL LDRD [05125]; NSF [DMR-0454672]; U.S. DOE FX We gratefully acknowledge the financial support from ORNL LDRD project (project no. 05125). The support of the NIST in providing the neutron research facilities supported, under NSF agreement DMR-0454672, is also acknowledged. The samples were prepared at CNMS ORNL sponsored by U.S. DOE. NR 24 TC 38 Z9 38 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 11 PY 2010 VL 114 IS 5 BP 1751 EP 1756 DI 10.1021/jp9064455 PG 6 WC Chemistry, Physical SC Chemistry GA 552EG UT WOS:000274270100002 PM 20070093 ER PT J AU Scott, DM Smith, NA Valente, JJ Adams, R Bufkin, K Patrick, DL AF Scott, Douglas M. Smith, Nickolaus A. Valente, Joseph J. Adams, Rachel Bufkin, Kevin Patrick, David L. TI Cooperative Ordering at Liquid Crystal Interfaces and Its Role in Orientational Memory SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INDUCED BULK ALIGNMENT; MAGNETIC-FIELD; SURFACE; MONOLAYERS; FILMS; TRANSITION; NEMATICS; PHASE; LAYER AB Orientational memory in interfacial liquid crystal films occurs when cells heated above the isotropic transition temperature return to their initial ordered texture upon cooling. First observed over 80 years ago, the origins of orientational memory, which is sometimes called the surface memory effect, remain poorly understood. In this study, films of the thermotropic liquid crystal 4'-octyl-4-cyanobiphenyl on graphite were studied by scanning tunneling and polarizing optical microscopy. Strong orientational memory was observed despite relatively weak molecule-surface interactions of the kind previously thought to be responsible for this effect. By preparing cells in a uniformly oriented initial reference state and separately measuring bulk and surface order parameters as systems were thermally disordered, cooperative interactions were found to play an important role, leading to the recovery of long-range order that neither the bulk nor surface layers alone retained. When the surface and bulk layers were partially decoupled using a magnetic field, orientational memory in the surface layer almost disappeared. The findings provide a new interpretation of the origins of orientational memory in liquid crystal films and underscore the potentially important role of cooperativity in bulk <-> interfacial liquid crystal interactions. C1 [Scott, Douglas M.; Adams, Rachel; Bufkin, Kevin; Patrick, David L.] Western Washington Univ, Dept Chem, Bellingham, WA 98225 USA. [Smith, Nickolaus A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Valente, Joseph J.] Novartis Pharmaceut, E Hanover, NJ 07936 USA. RP Patrick, DL (reprint author), Western Washington Univ, Dept Chem, 516 High St, Bellingham, WA 98225 USA. EM patrick@chem.wwu.edu RI Patrick, David/F-9457-2011 FU National Science Foundation [CHE-0518682, DMR-0705908] FX This work was supported by the National Science Foundation under CHE-0518682 and DMR-0705908. The authors thank C. Reinhart, A. Brackley, and B. Edwards for their contributions and B. L. Johnson for insights into the theoretical analysis. NR 32 TC 3 Z9 3 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 11 PY 2010 VL 114 IS 5 BP 1810 EP 1814 DI 10.1021/jp909218g PG 5 WC Chemistry, Physical SC Chemistry GA 552EG UT WOS:000274270100010 PM 20085363 ER PT J AU Sun, YG AF Sun, Yugang TI Conversion of Ag Nanowires to AgCl Nanowires Decorated with Au Nanoparticles and Their Photocatalytic Activity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ENHANCED RAMAN-SCATTERING; BY-LAYER FILMS; SILVER NANOWIRES; OPTICAL-PROPERTIES; GOLD NANORODS; COAXIAL NANOCABLES; REMOTE-EXCITATION; PHASE SYNTHESIS; ASPECT RATIO; NANOSTRUCTURES AB A two-step approach has been developed to synthesize AgCl nanowires decorated with Au nanoparticles by using Ag nanowires as chemical templates. In the first step, the Ag nanowires are oxidized with FeCl(3) followed by a simultaneous precipitation reaction between Ag(+) and Cl(-) ions at room temperature, resulting in conversion of the Ag nanowires to AgCl nanowires as well as reduction of Fe(3+) to Fe(2+) ions. In the second step, the Fe(2+) ions generated in the first step reduce Au precursors (e.g., NaAuCl(4)) to deposit Au nanoparticles on the surfaces of the AgCl nanowires, resulting in the formation of AgCl:Au composite nanowires. Because of strong surface plasmon resonance and chemical inertness of Au nanoparticles, the as-synthesized AgCl:Au nanowires exhibit enhanced absorption coefficient in the visible region and enhanced chemical stability to prevent them from degradation and aggregation. These unique properties enable the AgCl:Au nanowires to be used as a class of promising plasmonic photocatalysts driven by visible light. Preliminary results demonstrate these composite nanowires can efficiently decompose organics, such as methylene blue molecules, under illumination of white light. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 63 TC 70 Z9 72 U1 6 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 11 PY 2010 VL 114 IS 5 BP 2127 EP 2133 DI 10.1021/jp9115645 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 552ED UT WOS:000274269700024 ER PT J AU Culp, JT Goodman, AL Chirdon, D Sankar, SG Matranga, C AF Culp, Jeffrey T. Goodman, A. L. Chirdon, Danielle Sankar, S. G. Matranga, Christopher TI Mechanism for the Dynamic Adsorption of CO2 and CH4 in a Flexible Linear Chain Coordination Polymer as Determined from In Situ Infrared Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC-FRAMEWORK; ZEOLITIC IMIDAZOLATE FRAMEWORKS; SOFT SUPRAMOLECULAR MATERIALS; STATE GUEST-EXCHANGE; CARBON-DIOXIDE; AB-INITIO; FTIR SPECTROSCOPY; NICKEL(II) DIBENZOYLMETHANATE; CLATHRATE-FORMATION; ACCEPTOR COMPLEXES AB Adsorption-desorption cycles for CO2 and CH4 on the one-dimensional coordination polymer, catena-bis(dibenzoylmethanato)-(4,4'-bipyridyl)nickel(II), "Ni-DBM-BPY", showed pronounced step-shape isotherms, where minimal gas adsorption was detected below a threshold pressure and rapid gas uptake was observed above this threshold. Desorption isotherms from the saturated state displayed significant hysteresis from the adsorption isotherm path. Such behavior is rare in one-dimensional coordination polymers that lack a robust framework with permanent porosity. This step-shape adsorption behavior for CO2 was shown by in situ FTIR measurements to be the result of a structural phase transition in the Ni-DBM-BPY host which arises from a change in conformation of the DBM ligands. After the structural transition, the adsorption spectrum of the adsorbed CO2 changed significantly due to an enhanced CO2 interaction with the host. A similar mechanism can be inferred for CH4 from the isotherm shape, but the host structural phase transitions could not be observed directly with CH4 uptake, since the threshold conditions were outside the temperature and pressure limits of the instrument. These reported results highlight the importance of in situ FT-IR measurements for determining gas adsorption mechanisms in flexible porous coordination polymers. C1 [Culp, Jeffrey T.; Goodman, A. L.; Chirdon, Danielle; Matranga, Christopher] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Culp, Jeffrey T.] URS Washington Div, Pittsburgh, PA 15236 USA. [Chirdon, Danielle] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Sankar, S. G.] Adv Mat Corp, Pittsburgh, PA 15220 USA. RP Culp, JT (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Jeffrey.Culp@PP.NETL.DOE.GOV RI Culp, Jeffrey/B-1219-2010; Garcia-Sanchez, Almudena/B-3303-2009; Matranga, Christopher/E-4741-2015 OI Culp, Jeffrey/0000-0002-7422-052X; Matranga, Christopher/0000-0001-7082-5938 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in CO2 capture tinder the RDS contract DE-AC26-04NT41817. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the United States Department of Energy, NR 82 TC 23 Z9 23 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 11 PY 2010 VL 114 IS 5 BP 2184 EP 2191 DI 10.1021/jp908202s PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 552ED UT WOS:000274269700032 ER PT J AU Yamamoto, S Kendelewicz, T Newberg, JT Ketteler, G Starr, DE Mysak, ER Andersson, KJ Ogasawara, H Bluhm, H Salmeron, M Brown, GE Nilsson, A AF Yamamoto, Susumu Kendelewicz, Tom Newberg, John T. Ketteler, Guido Starr, David E. Mysak, Erin R. Andersson, Klas J. Ogasawara, Hirohito Bluhm, Hendrik Salmeron, Miquel Brown, Gordon E., Jr. Nilsson, Anders TI Water Adsorption on alpha-Fe2O3(0001) at near Ambient Conditions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Review ID RAY PHOTOELECTRON-SPECTROSCOPY; SCANNING-TUNNELING-MICROSCOPY; MOLECULAR-BEAM EPITAXY; HEMATITE 0001 SURFACE; IRON-OXIDE SURFACES; ELECTRONIC-STRUCTURE; ABSORPTION-SPECTROSCOPY; LEED CRYSTALLOGRAPHY; GEOMETRIC STRUCTURE; FUNDAMENTAL-ASPECTS AB We have investigated hydroxylation and water adsorption on alpha-Fe2O3(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) <= 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10(-7) % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost Surface under our experimental conditions. The onset of molecular water adsorption varies from similar to 2 x 10(-5) to similar to 4 x 10(-2) % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at similar to 15% RH and increases to 1.5 ML at 34% RH. C1 [Yamamoto, Susumu; Andersson, Klas J.; Ogasawara, Hirohito; Brown, Gordon E., Jr.; Nilsson, Anders] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Kendelewicz, Tom; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Newberg, John T.; Starr, David E.; Mysak, Erin R.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ketteler, Guido; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Andersson, Klas J.; Nilsson, Anders] Stockholm Univ, FYSIKUM, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Nilsson, Anders] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Nilsson, A (reprint author), Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM nilsson@slac.stanford.edu RI Yamamoto, Susumu/C-1584-2008; Nilsson, Anders/E-1943-2011; Newberg, John/E-8961-2010; Ogasawara, Hirohito/D-2105-2009; OI Yamamoto, Susumu/0000-0002-6116-7993; Nilsson, Anders/0000-0003-1968-8696; Ogasawara, Hirohito/0000-0001-5338-1079; Andersson, Klas J./0000-0002-6064-5658 FU National Science Foundation [CHE-0431425]; U.S. Department of Energy [DE-AC02-05CH11231]; Alexander-von-Humboldt foundation FX The authors thank Dr. Uwe Bovensiepen (Freie Universitat Berlin) for his help and valuable discussion during the experiments. This work was supported by the National Science Foundation under Grant CHE-0431425 (Stanford Environmental Molecular Science Institute) and by the Office of Biological and Environmental Research, Materials and Chemical Sciences Divisions of the Lawrence Berkeley National Laboratory, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Advanced Light Source and the Stanford Synchrotron Radiation Lightsource. G.K. thanks the Alexander-von-Humboldt foundation for financial support. NR 111 TC 87 Z9 87 U1 11 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 11 PY 2010 VL 114 IS 5 BP 2256 EP 2266 DI 10.1021/jp909876t PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 552ED UT WOS:000274269700040 ER PT J AU Moss, RH Edmonds, JA Hibbard, KA Manning, MR Rose, SK van Vuuren, DP Carter, TR Emori, S Kainuma, M Kram, T Meehl, GA Mitchell, JFB Nakicenovic, N Riahi, K Smith, SJ Stouffer, RJ Thomson, AM Weyant, JP Wilbanks, TJ AF Moss, Richard H. Edmonds, Jae A. Hibbard, Kathy A. Manning, Martin R. Rose, Steven K. van Vuuren, Detlef P. Carter, Timothy R. Emori, Seita Kainuma, Mikiko Kram, Tom Meehl, Gerald A. Mitchell, John F. B. Nakicenovic, Nebojsa Riahi, Keywan Smith, Steven J. Stouffer, Ronald J. Thomson, Allison M. Weyant, John P. Wilbanks, Thomas J. TI The next generation of scenarios for climate change research and assessment SO NATURE LA English DT Article ID MODEL; ATMOSPHERE; SRES AB Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community. C1 [Moss, Richard H.; Edmonds, Jae A.; Smith, Steven J.; Thomson, Allison M.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Hibbard, Kathy A.; Meehl, Gerald A.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80305 USA. [Manning, Martin R.] Victoria Univ Wellington, New Zealand Climate Change Res Inst, Wellington, New Zealand. [Rose, Steven K.] Elect Power Res Inst, Washington, DC 20036 USA. [van Vuuren, Detlef P.; Kram, Tom] Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands. [Carter, Timothy R.] Finnish Environm Inst, Helsinki 00251, Finland. [Emori, Seita; Kainuma, Mikiko] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Mitchell, John F. B.] Met Off, Exeter EX1 3PB, Devon, England. [Nakicenovic, Nebojsa; Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Nakicenovic, Nebojsa] Vienna Univ Technol, A-1040 Vienna, Austria. [Stouffer, Ronald J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Weyant, John P.] Stanford Univ, Stanford, CA 94305 USA. [Wilbanks, Thomas J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Moss, RH (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM rhm@pnl.gov RI van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011; Thomson, Allison/B-1254-2010; Emori, Seita/D-1950-2012 OI van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498; Moss, Richard/0000-0001-5005-0063; NR 87 TC 1580 Z9 1631 U1 131 U2 881 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 11 PY 2010 VL 463 IS 7282 BP 747 EP 756 DI 10.1038/nature08823 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 553VG UT WOS:000274394300028 PM 20148028 ER PT J AU Vogel, JP Garvin, DF Mockler, TC Schmutz, J Rokhsar, D Bevan, MW Barry, K Lucas, S Harmon-Smith, M Lail, K Tice, H Grimwood, J McKenzie, N Huo, NX Gu, YQ Lazo, GR Anderson, OD You, FM Luo, MC Dvorak, J Wright, J Febrer, M Idziak, D Hasterok, R Lindquist, E Wang, M Fox, SE Priest, HD Filichkin, SA Givan, SA Bryant, DW Chang, JH Wu, HY Wu, W Hsia, AP Schnable, PS Kalyanaraman, A Barbazuk, B Michael, TP Hazen, SP Bragg, JN Laudencia-Chingcuanco, D Weng, YQ Haberer, G Spannagl, M Mayer, K Rattei, T Mitros, T Lee, SJ Rose, JKC Mueller, LA York, TL Wicker, T Buchmann, JP Tanskanen, J Schulman, AH Gundlach, H de Oliveira, AC Maia, LD Belknap, W Jiang, N Lai, JS Zhu, LC Ma, JX Sun, C Pritham, E Salse, J Murat, F Abrouk, M Bruggmann, R Messing, J Fahlgren, N Sullivan, CM Carrington, JC Chapman, EJ May, GD Zhai, JX Ganssmann, M Gurazada, SGR German, M Meyers, BC Green, PJ Tyler, L Wu, JJ Thomson, J Chen, S Scheller, HV Harholt, J Ulvskov, P Kimbrel, JA Bartley, LE Cao, PJ Jung, KH Sharma, MK Vega-Sanchez, M Ronald, P Dardick, CD De Bodt, S Verelst, W Inze, D Heese, M Schnittger, A Yang, XH Kalluri, UC Tuskan, GA Hua, ZH Vierstra, RD Cui, Y Ouyang, SH Sun, QX Liu, ZY Yilmaz, A Grotewold, E Sibout, R Hematy, K Mouille, G Hofte, H Pelloux, J O'Connor, D Schnable, J Rowe, S Harmon, F Cass, CL Sedbrook, JC Byrne, ME Walsh, S Higgins, J Li, PH Brutnell, T Unver, T Budak, H Belcram, H Charles, M Chalhoub, B Baxter, I AF Vogel, John P. Garvin, David F. Mockler, Todd C. Schmutz, Jeremy Rokhsar, Dan Bevan, Michael W. Barry, Kerrie Lucas, Susan Harmon-Smoth, Miranda Lail, Kathleen Tice, Hope Grimwood, Jane McKenzie, Neil Huo, Naxin Gu, Yong Q Lazo, Gerard R. Anderson, Olin D. You, Frank M. Luo, Ming-Cheng Dvorak, Jan Wright, Jan Febrer, Melanie Idziak, Dominika Hasterok, Robert Lindquist, Erika Wang, Mei Fox, Samuel E. Priest, Henry D. Filichkin, Sergei A. Givan, Scott A. Bryant, Douglas W. Chang, Jeff H. Wu, Haiyan Wu, Wei Hsia, An-Ping Schnable, Patrick S. Kalyanaraman, Anantharaman Baarbazuk, Brad Michael, Todd P. Hazen, Samuel P. Bragg, Jennifer N. Laudencia-Chingcuanco, Debbie Weng, Yiqun Haberer, Georg Spannagl, Mianuel Mayer, Klaus Rattei, Thomas Mitros, Therese Lee, Sang-Jik Rose, Jocelyn K. C. Mueller, Lukas A. York, Thomas L. Wicker, Thomas Buchmann, Jan P. Tanskanen, Jaakko Schulman, Alan H. Gundlach, Heidrun de Oliveira, Antonio Costa Maia, Luciano da C. Belknap, William Jiang, Ning Lai, Jinsheng Zhu, Liucun Ma, Jianxin Sun, Cheng Pritham, Ellen Salse, Jerome Murat, Florent Abrouk, Michael Bruggmann, Remy Messing, Joachim Fahlgren, Noah Sullivan, Christopher M. Carrington, James C. Chapman, Elisabeth J. May, Greg D. Zhai, Jixian Ganssmann, Matthias Gurazada, Sai Guna Ranjan German, Marcelo Meyers, Blake C. Green, Pamela J. Tyler, Ludmila Wu, Jiajie Thomson, James Chen, Shan Scheller, Henrik V. Harholt, Jesper Ulvskov, Peter Kimbrel, Jeffrey A. Bartley, Laura E. Cao, Peijian Jung, Ki-Hong Sharma, Manoj K. Vega-Sanchez, Miguel Ronald, Pamela Dardick, Christopher D. De Bodt, Stefanie Verelst, Wim Inze, Dirk Heese, Maren Schnittger, Arp Yang, Xiaohan Kalluri, Udaya C. Tuskan, Gerald A. Hua, Zhihua Vierstra, Richard D. Cui, Yu Ouyang, Shuhong Sun, Qixin Liu, Zhiyong Yilmaz, Alper Grotewold, Erich Sibout, Richard Hematy, Kian Mouille, Gregory Hoefte, Herman Pelloux, Jerome O'Connor, Devin Schbnable, James Rowe, Scott Harmon, Frank Cass, Cynthia L. Sedbrook, John C. Byrne, Mary E. Walsh, Sean Higgins, Janet Li, Pinghua Brutnell, Thomas Unver, Turgay Budak, Hikmet Belcram, Harry Charles, Mathieu Chalhoub, Boulos Baxter, Ivan CA Int Brachypodium Initiative TI Genome sequencing and analysis of the model grass Brachypodium distachyon SO NATURE LA English DT Article ID AGROBACTERIUM-MEDIATED TRANSFORMATION; INTRASPECIES DIVERSITY; RICE; EVOLUTION; WHEAT; MAP; ARABIDOPSIS; DIVERGENCE; TRITICEAE; RETROTRANSPOSONS AB Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops. C1 [Vogel, John P.; Huo, Naxin; Gu, Yong Q; Lazo, Gerard R.; Anderson, Olin D.; Bragg, Jennifer N.; Laudencia-Chingcuanco, Debbie; Belknap, William; Tyler, Ludmila; Wu, Jiajie; Thomson, James] USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA. [Garvin, David F.] USDA ARS, Plant Sci Res Unit, St Paul, MN 55108 USA. [Garvin, David F.] Univ Minnesota, St Paul, MN 55108 USA. [Mockler, Todd C.; Fox, Samuel E.; Priest, Henry D.; Filichkin, Sergei A.; Givan, Scott A.; Bryant, Douglas W.; Chang, Jeff H.; Fahlgren, Noah; Sullivan, Christopher M.; Carrington, James C.; Chapman, Elisabeth J.; Kimbrel, Jeffrey A.] Oregon State Univ, Corvallis, OR 97331 USA. [Schmutz, Jeremy; Grimwood, Jane] HudsonAlpha Inst, Huntsville, AL 35806 USA. [Rokhsar, Dan; Barry, Kerrie; Lucas, Susan; Harmon-Smoth, Miranda; Lail, Kathleen; Tice, Hope; Febrer, Melanie; Lindquist, Erika; Wang, Mei] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Rokhsar, Dan; Mitros, Therese; Tyler, Ludmila] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bevan, Michael W.; McKenzie, Neil; Wright, Jan; Byrne, Mary E.; Walsh, Sean; Higgins, Janet] John Innes Ctr, Norwich NR4 7UJ, Norfolk, England. [You, Frank M.; Luo, Ming-Cheng; Dvorak, Jan; Wu, Jiajie; Bartley, Laura E.; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Vega-Sanchez, Miguel; Ronald, Pamela] Univ Calif Davis, Davis, CA 95616 USA. [Idziak, Dominika; Hasterok, Robert] Univ Silesia, Katowice, Poland. [Wu, Haiyan; Wu, Wei; Hsia, An-Ping; Schnable, Patrick S.] Iowa State Univ, Ames, IA 50011 USA. [Kalyanaraman, Anantharaman] Washington State Univ, Pullman, WA 99163 USA. [Baarbazuk, Brad] Univ Florida, Gainesville, FL 32611 USA. [Michael, Todd P.; Bruggmann, Remy; Messing, Joachim] Rutgers State Univ, Piscataway, NJ 08855 USA. [Hazen, Samuel P.; Chen, Shan] Univ Massachusetts, Amherst, MA 01003 USA. [Weng, Yiqun] Univ Wisconsin, USDA ARS, Vegetable Crops Res Unit, Dept Hort, Madison, WI 53706 USA. [Haberer, Georg; Spannagl, Mianuel; Mayer, Klaus; Gundlach, Heidrun] Helmholtz Zentrum Munchen, D-85764 Neuherberg, Germany. [Rattei, Thomas] Tech Univ Munich, D-80333 Munich, Germany. [Lee, Sang-Jik; Rose, Jocelyn K. C.] Cornell Univ, Ithaca, NY 14853 USA. [Mueller, Lukas A.; York, Thomas L.; Li, Pinghua; Brutnell, Thomas] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA. [Wicker, Thomas; Buchmann, Jan P.] Univ Zurich, CH-8008 Zurich, Switzerland. [Tanskanen, Jaakko; Schulman, Alan H.] MTT Agrifood Res, FIN-00014 Helsinki, Finland. [Tanskanen, Jaakko; Schulman, Alan H.] Univ Helsinki, FIN-00014 Helsinki, Finland. [de Oliveira, Antonio Costa; Maia, Luciano da C.] Univ Fed Pelotas, BR-96001970 Pelotas, RS, Brazil. [Jiang, Ning] Michigan State Univ, E Lansing, MI 48824 USA. [Wu, Haiyan; Schnable, Patrick S.; Lai, Jinsheng; Cui, Yu; Ouyang, Shuhong; Sun, Qixin; Liu, Zhiyong] China Agr Univ, Beijing 10094, Peoples R China. [Zhu, Liucun; Ma, Jianxin] Purdue Univ, W Lafayette, IN 47907 USA. [Sun, Cheng; Pritham, Ellen] Univ Texas, Arlington, TX 76019 USA. [Salse, Jerome; Murat, Florent; Abrouk, Michael] INRA, UMR 1095, F-63100 Clermont Ferrand, France. [Chapman, Elisabeth J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [May, Greg D.] Natl Ctr Genome Resources, Santa Fe, NM 87505 USA. [Zhai, Jixian; Ganssmann, Matthias; Gurazada, Sai Guna Ranjan; German, Marcelo; Meyers, Blake C.; Green, Pamela J.] Univ Delaware, Newark, DE 19716 USA. [Scheller, Henrik V.; Bartley, Laura E.; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Vega-Sanchez, Miguel; Ronald, Pamela] Joint Bioenergy Inst, Emeryville, CA 94720 USA. [Harholt, Jesper; Ulvskov, Peter] Univ Copenhagen, DK-1871 Frederiksberg, Denmark. [Dardick, Christopher D.] USDA ARS, Appalachian Fruit Res Stn, Kearneysville, WV 25430 USA. [De Bodt, Stefanie; Verelst, Wim; Inze, Dirk] VIB, VIB Dept Plant Syst Biol, B-9052 Ghent, Belgium. [De Bodt, Stefanie; Verelst, Wim; Inze, Dirk] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium. [Heese, Maren; Schnittger, Arp] CNRS, Inst Biol Mol Plantes, F-67084 Strasbourg, France. [Yang, Xiaohan; Kalluri, Udaya C.; Tuskan, Gerald A.] BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Yang, Xiaohan; Kalluri, Udaya C.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hua, Zhihua; Vierstra, Richard D.] Univ Wisconsin, Madison, WI 53706 USA. [Yilmaz, Alper; Grotewold, Erich] Ohio State Univ, Columbus, OH 43210 USA. [Sibout, Richard; Hematy, Kian; Mouille, Gregory; Hoefte, Herman] INRA, Inst Jean Pierre Bourgin, UMR1318, F-78026 Versailles, France. [Pelloux, Jerome] Univ Picardie, F-80039 Amiens, France. [O'Connor, Devin; Schbnable, James; Rowe, Scott; Harmon, Frank] Univ Calif Berkeley, Plant Gene Express Ctr, Albany, CA 94710 USA. [Cass, Cynthia L.; Sedbrook, John C.] Illinois State Univ, Normal, IL 61790 USA. [Cass, Cynthia L.; Sedbrook, John C.] DOE, Great Lakes Bioenergy Res Ctr, Normal, IL 61790 USA. [Unver, Turgay; Budak, Hikmet] Sabanci Univ, T-34956 Istanbul, Turkey. [Belcram, Harry; Charles, Mathieu; Chalhoub, Boulos] INRA CNRS UEVE, Unite Rech Genomique Vegetale, F-91057 Evry, France. [Baxter, Ivan] USDA ARS, Donald Danforth Plant Sci Ctr, St Louis, MO 63130 USA. RP Vogel, JP (reprint author), USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA. RI Schnittger, Arp/F-8989-2010; Oliveira, Antonio/F-7508-2012; Fahlgren, Noah/D-4404-2011; Yang, Xiaohan/A-6975-2011; Schmutz, Jeremy/N-3173-2013; Abrouk, Michael/F-8516-2014; Ulvskov, Peter/I-1228-2014; Harholt, Jesper/F-6865-2014; Brutnell, Thomas/M-2840-2013; Yilmaz, Alper/C-7075-2014; Baxter, Ivan/A-1052-2009; Mockler, Todd/L-2609-2013; Rattei, Thomas/F-1366-2011; Carrington, James/A-4656-2012; Meyers, Blake/B-6535-2012; Maia, Luciano/G-4005-2016; Mayer, Klaus/M-7941-2015; Schulman, Alan/A-9322-2011; Budak, Hikmet/F-4708-2010; Scheller, Henrik/A-8106-2008; KALLURI, UDAYA/A-6218-2011; Tuskan, Gerald/A-6225-2011; Unver, Turgay/B-4819-2009; Higgins, Janet/A-5002-2011; Mueller, Lukas/E-8840-2011; Harholt, Jesper/F-3760-2011; Hua, Zhihua/B-8835-2012; Luo, Ming-Cheng/C-5600-2011; Jiang, Ning/G-6546-2012; Vega-Sanchez, Miguel/K-3072-2012; Lazo, Gerard/A-8900-2009; OI Schnittger, Arp/0000-0001-7067-0091; Oliveira, Antonio/0000-0001-8835-8071; Fahlgren, Noah/0000-0002-5597-4537; Yang, Xiaohan/0000-0001-5207-4210; Michael, Todd/0000-0001-6272-2875; Schnable, James/0000-0001-6739-5527; York, Thomas/0000-0002-6829-5816; zhu, liucun/0000-0002-8334-0216; Schmutz, Jeremy/0000-0001-8062-9172; Abrouk, Michael/0000-0001-9082-1432; Ulvskov, Peter/0000-0003-3776-818X; Harholt, Jesper/0000-0002-7984-0066; Brutnell, Thomas/0000-0002-3581-8211; Yilmaz, Alper/0000-0002-8827-4887; Baxter, Ivan/0000-0001-6680-1722; Mockler, Todd/0000-0002-0462-5775; Rattei, Thomas/0000-0002-0592-7791; Carrington, James/0000-0003-3572-129X; Meyers, Blake/0000-0003-3436-6097; Maia, Luciano/0000-0002-4371-261X; Mayer, Klaus/0000-0001-6484-1077; Bartley, Laura/0000-0001-8610-7551; Vogel, John/0000-0003-1786-2689; Buchmann, Jan Piotr/0000-0002-6842-1229; Schulman, Alan/0000-0002-4126-6177; Budak, Hikmet/0000-0002-2556-2478; Scheller, Henrik/0000-0002-6702-3560; Tuskan, Gerald/0000-0003-0106-1289; Unver, Turgay/0000-0001-6760-443X; Vega-Sanchez, Miguel/0000-0003-0128-2743; Lazo, Gerard/0000-0002-9160-2052; KALLURI, UDAYA/0000-0002-5963-8370; Givan, Scott/0000-0002-0630-8589; Inze, Dirk/0000-0002-3217-8407 FU US Department of Energy Joint Genome Institute; BBSRC; EU; GABI Barlex; Oregon State Agricultural Research Foundation FX We acknowledge the contributions of the late M. Gale, who identified the importance of conserved gene order in grass genomes. This work was mainly supported by the US Department of Energy Joint Genome Institute Community Sequencing Program project with J.P.V., D. F. G., T. C. M. and M. W. B., a BBSRC grant to M. W. B., an EU Contract Agronomics grant to M. W. B. and K. F. X. M., and GABI Barlex grant to K. F. X. M. Illumina transcriptome sequencing was supported by a DOE Plant Feedstock Genomics for Bioenergy grant and an Oregon State Agricultural Research Foundation grant to T. C. M.; small RNA research was supported by the DOE Plant Feedstock Genomics for Bioenergy grants to P.J.G. and T. C. M.; annotation was supported by a DOE Plant Feedstocks for Genomics Bioenergy grant to J.P.V. A full list of support and acknowledgements is in the Supplementary Information. NR 46 TC 709 Z9 731 U1 29 U2 241 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD FEB 11 PY 2010 VL 463 IS 7282 BP 763 EP 768 DI 10.1038/nature08747 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 553VG UT WOS:000274394300030 ER PT J AU Garcia, MA Ali, MN Chang, NN Parsons-Moss, T Ashby, PD Gates, JM Stavsetra, L Gregorich, KE Nitsche, H AF Garcia, Mitch A. Ali, Mazhar N. Chang, Noel N. Parsons-Moss, T. Ashby, Paul D. Gates, Jacklyn M. Stavsetra, Liv Gregorich, Kenneth E. Nitsche, Heino TI Metal oxide targets produced by the polymer-assisted deposition method SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 24th World Conference of the International-Nuclear-Target-Development-Society CY SEP 15-19, 2008 CL Caen, FRANCE SP Int Nucl Target Dev Soc DE Polymer-assisted deposition; Target production; Metal oxide ID THIN-FILMS; ELECTRODEPOSITION AB The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm. (C)2009 Elsevier B.V. All rights reserved. C1 [Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Gates, Jacklyn M.; Gregorich, Kenneth E.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Garcia, MA (reprint author), Univ Calif Berkeley, Dept Chem, Room 446 Latimer Hall, Berkeley, CA 94720 USA. EM mitch@berkeley.edu RI Garcia, Mitch/G-2413-2010; Ali, Mazhar/C-6473-2013 OI Ali, Mazhar/0000-0002-1129-6105 NR 10 TC 2 Z9 2 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2010 VL 613 IS 3 BP 396 EP 400 DI 10.1016/j.nima.2009.09.084 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 569JX UT WOS:000275593500013 ER PT J AU Steski, DB Thieberger, P AF Steski, D. B. Thieberger, P. TI Stripping foils at RHIC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 24th World Conference of the International-Nuclear-Target-Development-Society CY SEP 15-19, 2008 CL Caen, FRANCE SP Int Nucl Target Dev Soc DE Carbon-C; Micro-ribbon target; Vacuum deposition AB There are two major science programs at the relativistic heavy ion collider (RHIC). These are the heavy ion programs, which collide beams of fully stripped ions, and the polarized proton program. A wide variety of stripper foils and carbon targets are used throughout the RHIC accelerator chain to facilitate these collisions. Each stripper and target has unique properties and functions. Those characteristics will be discussed, as well as recent efforts to improve their performance. (C) 2009 Elsevier B.V. All rights reserved. C1 [Steski, D. B.; Thieberger, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Steski, DB (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Steski@bnl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2010 VL 613 IS 3 BP 439 EP 441 DI 10.1016/j.nima.2009.09.096 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 569JX UT WOS:000275593500025 ER PT J AU Greene, JP Lee, HY Becker, HW AF Greene, John P. Lee, Hye Young Becker, Hans-Werner TI Preparation of thin metallic titanium foils as hydrogen targets SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 24th World Conference of the International-Nuclear-Target-Development-Society CY SEP 15-19, 2008 CL Caen, FRANCE SP Int Nucl Target Dev Soc DE Hydrogen target; Titanium; Electron beam evaporation AB Its a recently proposed study to resolve the discrepancy for the cross-section from the inverse reaction (21)Ne(p,alpha)(18)F, important in calculations of asymptotic giant branch (AGB) stellar nucleosynthesis, a hydrogen target was required. Another important consideration for studying this reaction involves the isotopic abundance of Ne measured in stellar silicon carbide (SiC) grains found in meteorites. The measurement consists of the time-reversed reaction in inverse kinematics (1)H((21)Ne,alpha)(18)F at the resonance energy. Using a stable (21)Ne beam, high currents are anticipated requiring a robust hydrogen-containing target. A metal hydride foil would be more apt to withstand the bombardment over a plastic polyethylene target. For this purpose we chose titanium hydride, as the easily produced titanium foils can be reacted with hydrogen to produce the needed targets. Details of the methods of production as well as target characteristics and performance are discussed. Published by Elsevier B.V. C1 [Greene, John P.; Lee, Hye Young] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Becker, Hans-Werner] Ruhr Univ Bochum, Dept Phys & Astron, Bochum, Germany. RP Greene, JP (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM greene@anl.gov NR 12 TC 2 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 11 PY 2010 VL 613 IS 3 BP 462 EP 464 DI 10.1016/j.nima.2009.10.004 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 569JX UT WOS:000275593500030 ER PT J AU Ye, M Lu, D Neuman, SP Meyer, PD AF Ye, Ming Lu, Dan Neuman, Shlomo P. Meyer, Philip D. TI Comment on "Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window" by Frank T.-C. Tsai and Xiaobao Li SO WATER RESOURCES RESEARCH LA English DT Editorial Material C1 [Ye, Ming; Lu, Dan] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Neuman, Shlomo P.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Meyer, Philip D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ye, M (reprint author), Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. EM mye@fsu.edu RI Ye, Ming/A-5964-2008; OI Meyer, Philip/0000-0002-8714-4693 NR 7 TC 18 Z9 18 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 11 PY 2010 VL 46 AR W02801 DI 10.1029/2009WR008501 PG 3 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 554WM UT WOS:000274466300001 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Botner, O Bradley, L Braun, J Breder, D Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gro, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Heise, J Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lennarz, D Lucke, A Lundberg, J Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Middell, E Milke, N Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Toale, PA Tooker, J Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Botner, O. Bradley, L. Braun, J. Breder, D. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gro, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Heise, J. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lennarz, D. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Middell, E. Milke, N. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Swillens, Q. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Toale, P. A. Tooker, J. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, A. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. CA IceCube Collaboration TI SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; methods: data analysis; neutrinos; telescopes ID HIGH-ENERGY NEUTRINOS; COSMIC-RAYS; UPPER LIMITS; GRB 970417A; EMISSION; AMANDA; TEV; CONSTRAINTS; AFTERGLOW; FIREBALLS AB We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to + 3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10(-3) erg cm(-2) (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10(-3) erg cm(-2) (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10(-3) erg cm(-2) (3 TeV-2.8 PeV) assuming an E-2 flux. C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Gro, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Milke, N.; Pieloth, D.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Euler, S.; Huelss, J. -P.; Knops, S.; Laihem, K.; Lennarz, D.; Schukraft, A.; Schunck, M.; Wiebusch, C. H.; Wissing, H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Cohen, S.; Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] So Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Gro, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Taboada, I.; Tooker, J.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tooker, J.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; OI Perez de los Heros, Carlos/0000-0002-2084-5866; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Schukraft, Anne/0000-0002-9112-5479; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Ter-Antonyan, Samvel/0000-0002-5788-1369 FU U.S. National Science Foundation-Office; U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Swedish Research Council; Swedish Polar Research Secretariat; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG), Germany; FNRS-FWO; Flanders Institute; Belgian Federal Science Policy Office (Belspo); Netherlands Organisation for Scientific Research (NWO); Marsden Fund, New Zealand; SNF (Switzerland); EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Program, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Germany; Fund for Scientific Research (FNRS-FWO), Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); the Netherlands Organisation for Scientific Research (NWO); Marsden Fund, New Zealand; M. Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and A. Gross acknowledge support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledge support by the Capes Foundation, Ministry of Education of Brazil. NR 66 TC 60 Z9 61 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2010 VL 710 IS 1 BP 346 EP 359 DI 10.1088/0004-637X/710/1/346 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546YH UT WOS:000273850800031 ER PT J AU Aharmim, B Ahmed, SN Anthony, AE Barros, N Beier, EW Bellerive, A Beltran, B Bergevin, M Biller, SD Boudjemline, K Boulay, MG Burritt, TH Cai, B Chan, YD Chauhan, D Chen, M Cleveland, BT Cox, GA Dai, X Deng, H Detwiler, J DiMarco, M Doe, PJ Doucas, G Drouin, PL Duba, CA Duncan, FA Dunford, M Earle, ED Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Ford, RJ Formaggio, JA Gagnon, N Goon, JTM Graham, K Guillian, E Habib, S Hahn, RL Hallin, AL Hallman, ED Harvey, PJ Hazama, R Heintzelman, WJ Heise, J Helmer, RL Hime, A Howard, C Howe, MA Huang, M Jamieson, B Jelley, NA Keeter, KJ Klein, JR Kormos, LL Kos, M Kraus, C Krauss, CB Kutter, T Kyba, CCM Law, J Lawson, IT Lesko, KT Leslie, JR Levine, I Loach, JC MacLellan, R Majerus, S Mak, HB Maneira, J Martin, R McCauley, N McDonald, AB McGee, S Miller, ML Monreal, B Monroe, J Morissette, B Nickel, BG Noble, AJ O'Keeffe, HM Oblath, NS Gann, GDO Oser, SM Ott, RA Peeters, SJM Poon, AWP Prior, G Reitzner, SD Rielage, K Robertson, BC Robertson, RGH Schwendener, MH Secrest, JA Seibert, SR Simard, O Sinclair, D Skensved, P Sonley, TJ Stonehill, LC Tesic, G Tolich, N Tsui, T Tunnell, CD Van Berg, R VanDevender, BA Virtue, CJ Wall, BL Waller, D Tseung, HWC Wark, DL Watson, PJS West, N Wilkerson, JF Wilson, JR Wouters, JM Wright, A Yeh, M Zhang, F Zuber, K AF Aharmim, B. Ahmed, S. N. Anthony, A. E. Barros, N. Beier, E. W. Bellerive, A. Beltran, B. Bergevin, M. Biller, S. D. Boudjemline, K. Boulay, M. G. Burritt, T. H. Cai, B. Chan, Y. D. Chauhan, D. Chen, M. Cleveland, B. T. Cox, G. A. Dai, X. Deng, H. Detwiler, J. DiMarco, M. Doe, P. J. Doucas, G. Drouin, P. -L. Duba, C. A. Duncan, F. A. Dunford, M. Earle, E. D. Elliott, S. R. Evans, H. C. Ewan, G. T. Farine, J. Fergani, H. Fleurot, F. Ford, R. J. Formaggio, J. A. Gagnon, N. Goon, J. T. M. Graham, K. Guillian, E. Habib, S. Hahn, R. L. Hallin, A. L. Hallman, E. D. Harvey, P. J. Hazama, R. Heintzelman, W. J. Heise, J. Helmer, R. L. Hime, A. Howard, C. Howe, M. A. Huang, M. Jamieson, B. Jelley, N. A. Keeter, K. J. Klein, J. R. Kormos, L. L. Kos, M. Kraus, C. Krauss, C. B. Kutter, T. Kyba, C. C. M. Law, J. Lawson, I. T. Lesko, K. T. Leslie, J. R. Levine, I. Loach, J. C. MacLellan, R. Majerus, S. Mak, H. B. Maneira, J. Martin, R. McCauley, N. McDonald, A. B. McGee, S. Miller, M. L. Monreal, B. Monroe, J. Morissette, B. Nickel, B. G. Noble, A. J. O'Keeffe, H. M. Oblath, N. S. Gann, G. D. Orebi Oser, S. M. Ott, R. A. Peeters, S. J. M. Poon, A. W. P. Prior, G. Reitzner, S. D. Rielage, K. Robertson, B. C. Robertson, R. G. H. Schwendener, M. H. Secrest, J. A. Seibert, S. R. Simard, O. Sinclair, D. Skensved, P. Sonley, T. J. Stonehill, L. C. Tesic, G. Tolich, N. Tsui, T. Tunnell, C. D. Van Berg, R. VanDevender, B. A. Virtue, C. J. Wall, B. L. Waller, D. Tseung, H. Wan Chan Wark, D. L. Watson, P. J. S. West, N. Wilkerson, J. F. Wilson, J. R. Wouters, J. M. Wright, A. Yeh, M. Zhang, F. Zuber, K. TI SEARCHES FOR HIGH-FREQUENCY VARIATIONS IN THE B-8 SOLAR NEUTRINO FLUX AT THE SUDBURY NEUTRINO OBSERVATORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE neutrinos; methods: data analysis; Sun: helioseismology ID G-MODES; OSCILLATIONS; GOLF; MATTER; SOHO AB We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar B-8 neutrinos. The first search looked for any significant peak in the frequency range 1-144 day(-1), with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches. C1 [Aharmim, B.; Chauhan, D.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Ahmed, S. N.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X.; DiMarco, M.; Duncan, F. A.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Graham, K.; Guillian, E.; Harvey, P. J.; Heise, J.; Kormos, L. L.; Kos, M.; Kraus, C.; Leslie, J. R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Anthony, A. E.; Klein, J. R.; Seibert, S. R.; Tunnell, C. D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Barros, N.; Maneira, J.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal. [Beier, E. W.; Deng, H.; Dunford, M.; Heintzelman, W. J.; Klein, J. R.; Kyba, C. C. M.; McCauley, N.; Gann, G. D. Orebi; Secrest, J. A.; Van Berg, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bellerive, A.; Boudjemline, K.; Dai, X.; Drouin, P. -L.; Farine, J.; Graham, K.; Levine, I.; Noble, A. J.; Simard, O.; Sinclair, D.; Tesic, G.; Waller, D.; Watson, P. J. S.; Zhang, F.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Beltran, B.; Habib, S.; Hallin, A. L.; Howard, C.; Krauss, C. B.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Martin, R.; Poon, A. W. P.; Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Lesko, K. T.; Loach, J. C.; Martin, R.; Poon, A. W. P.; Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bergevin, M.; Law, J.; Lawson, I. T.; Nickel, B. G.; Reitzner, S. D.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.; Zuber, K.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Burritt, T. H.; Cox, G. A.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Howe, M. A.; McGee, S.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wall, B. L.; Tseung, H. Wan Chan; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Burritt, T. H.; Cox, G. A.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Howe, M. A.; McGee, S.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wall, B. L.; Tseung, H. Wan Chan; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Duncan, F. A.; Ford, R. J.; Keeter, K. J.; Lawson, I. T.; Morissette, B.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. [Elliott, S. R.; Gagnon, N.; Heise, J.; Hime, A.; Rielage, K.; Seibert, S. R.; Stonehill, L. C.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Formaggio, J. A.; Miller, M. L.; Monreal, B.; Monroe, J.; Ott, R. A.; Sonley, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Goon, J. T. M.; Kutter, T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Hahn, R. L.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Heise, J.; Jamieson, B.; Oser, S. M.; Tsui, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T IZ1, Canada. [Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Wark, D. L.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Wark, D. L.] Univ London Imperial Coll Sci Technol & Med, London, England. RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. RI Hallin, Aksel/H-5881-2011; Kormos, Laura/D-1032-2012; Kyba, Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Prior, Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros, Nuno/O-1921-2016; OI Kyba, Christopher/0000-0001-7014-1843; Maneira, Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705; Wilkerson, John/0000-0002-0342-0217; Prior, Gersende/0000-0002-6058-1420 FU Natural Sciences and Engineering Research Council, Canada; Industry Canada, Canada; National Research Council, Canada; Northern Ontario Heritage Fund, Canada; Atomic Energy of Canada, Ltd., Canada; Ontario Power Generation, Canada; High Performance Computing Virtual Laboratory, Canada; Canada Foundation for Innovation; Dept. of Energy, US; National Energy Research Scientific Computing Center, US; Science and Technologies Facilities Council, UK FX This research was supported by Canada: Natural Sciences and Engineering Research Council, Industry Canada, National Research Council, Northern Ontario Heritage Fund, Atomic Energy of Canada, Ltd., Ontario Power Generation, High Performance Computing Virtual Laboratory, Canada Foundation for Innovation; US: Dept. of Energy, National Energy Research Scientific Computing Center; UK: Science and Technologies Facilities Council. We thank the SNO technical staff for their strong contributions. We thank Vale Inco, Ltd. for hosting this project. NR 22 TC 13 Z9 13 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2010 VL 710 IS 1 BP 540 EP 548 DI 10.1088/0004-637X/710/1/540 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546YH UT WOS:000273850800043 ER PT J AU Adams, T Appel, JA Arms, KE Balantekin, AB Conrad, JM Cooper, PS Djurcic, Z Dunwoodie, W Engelfried, J Fisher, PH Gottschalk, E De Gouvea, A Heller, K Ignarra, CM Karagiorgi, G Kwan, S Loinaz, WA Meadows, B Moore, R Morfin, JG Naples, D Nienaber, P Pate, SF Papavassiliou, V Petrov, AA Purohit, MV Ray, H Russ, J Schwartz, AJ Seligman, WG Shaevitz, MH Schellman, H Spitz, J Syphers, MJ Tait, TMP Vannucci, F AF Adams, T. Appel, J. A. Arms, K. E. Balantekin, A. B. Conrad, J. M. Cooper, P. S. Djurcic, Z. Dunwoodie, W. Engelfried, J. Fisher, P. H. Gottschalk, E. De Gouvea, A. Heller, K. Ignarra, C. M. Karagiorgi, G. Kwan, S. Loinaz, W. A. Meadows, B. Moore, R. Morfin, J. G. Naples, D. Nienaber, P. Pate, S. F. Papavassiliou, V. Petrov, A. A. Purohit, M. V. Ray, H. Russ, J. Schwartz, A. J. Seligman, W. G. Shaevitz, M. H. Schellman, H. Spitz, J. Syphers, M. J. Tait, T. M. P. Vannucci, F. TI RENAISSANCE OF THE similar to 1 TeV FIXED-TARGET PROGRAM SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Tevatron; charm; neutrinos; exotic neutrinos; CP violation ID LIQUID-ARGON TPC; CP-VIOLATION; ELECTROWEAK PARAMETERS; STERILE NEUTRINOS; MAGNETIC-FIELD; MUON-NEUTRINOS; MESON DECAYS; D-0 DECAYS; SEARCH; SCATTERING AB This document describes the physics potential of a new fixed-target program based on a similar to 1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues. C1 [Spitz, J.] Yale Univ, New Haven, CT 06520 USA. [Loinaz, W. A.] Amherst Coll, Amherst, MA 01002 USA. [Tait, T. M. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Engelfried, J.] Univ Autonoma San Luis Potosi, Mexico City 78240, DF, Mexico. [Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Meadows, B.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Djurcic, Z.; Seligman, W. G.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA. [Appel, J. A.; Cooper, P. S.; Gottschalk, E.; Kwan, S.; Moore, R.; Morfin, J. G.; Syphers, M. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Adams, T.] Florida State Univ, Tallahassee, FL 32306 USA. [Conrad, J. M.; Fisher, P. H.; Ignarra, C. M.; Karagiorgi, G.] MIT, Cambridge, MA 02139 USA. [Petrov, A. A.] Univ Michigan, Ann Arbor, MI 48201 USA. [Papavassiliou, V.] New Mexico State Univ, Las Cruces, NM 88003 USA. [De Gouvea, A.; Schellman, H.; Tait, T. M. P.] Northwestern Univ, Chicago, IL 60208 USA. [Vannucci, F.] Univ Paris 07, APC, Paris, France. [Naples, D.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Dunwoodie, W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.] Univ S Carolina, Columbia, SC 29208 USA. [Petrov, A. A.] Wayne State Univ, Detroit, MI 48201 USA. [Balantekin, A. B.] Univ Wisconsin, Madison, WI 53706 USA. RP Spitz, J (reprint author), Yale Univ, New Haven, CT 06520 USA. EM joshua.spitz@yale.edu RI Petrov, Alexey/F-2882-2010; Balantekin, Akif Baha/E-4776-2010; Russ, James/P-3092-2014; OI Balantekin, Akif Baha/0000-0002-2999-0111; Russ, James/0000-0001-9856-9155; Spitz, Joshua/0000-0002-6288-7028 FU Department of Energy; National Science Foundation; Consejo Nacional de Ciencia y Tecnologia; Universities Research Association (URA) FX We gratefully acknowledge support from the Department of Energy, the National Science Foundation, the Consejo Nacional de Ciencia y Tecnologia and the Universities Research Association (URA) Visiting Scholars at Fermilab Award. NR 108 TC 2 Z9 2 U1 0 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD FEB 10 PY 2010 VL 25 IS 4 BP 777 EP 813 DI 10.1142/S0217751X10047774 PG 37 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 560PK UT WOS:000274914400004 ER PT J AU Sgouros, G Roeske, JC McDevitt, MR Palm, S Allen, BJ Fisher, DR Brill, AB Song, H Howell, RW Akabani, G AF Sgouros, George Roeske, John C. McDevitt, Michael R. Palm, Stig Allen, Barry J. Fisher, Darrell R. Brill, A. Bertrand Song, Hong Howell, Roger W. Akabani, Gamal CA SNM MIRD Comm TI MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy SO JOURNAL OF NUCLEAR MEDICINE LA English DT Review DE alpha-particle emitters; human alpha-particle emitter dosimetry; targeted alpha-particle emitter therapy ID DIFFERENT IONIZING RADIATIONS; ACCELERATED HEAVY-IONS; RELATIVE BIOLOGICAL EFFECTIVENESS; CHINESE-HAMSTER V79-CELLS; RADIOPROTECTORS IN-VIVO; LINEAR-ENERGY-TRANSFER; HUMAN-CELLS; MAMMALIAN-CELLS; TISSUE CULTURE; ABSORBED FRACTIONS AB The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle emitter therapy and to provide guidance and recommendations for human alpha-particle emitter dosimetry. C1 [Sgouros, George; Song, Hong] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Baltimore, MD 21231 USA. [Roeske, John C.] Loyola Univ, Med Ctr, Dept Radiat Oncol, Maywood, IL 60153 USA. [McDevitt, Michael R.] Mem Sloan Kettering Canc Ctr, Dept Med, New York, NY 10021 USA. [McDevitt, Michael R.] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10021 USA. [Palm, Stig] IAEA, Dosimetry & Med Radiat Phys Sect, A-1400 Vienna, Austria. [Allen, Barry J.] St George Canc Ctr, Ctr Expt Radiat Oncol, Kogarah, NSW, Australia. [Fisher, Darrell R.] Pacific NW Natl Lab, Radioisotopes Program, Richland, WA 99352 USA. [Brill, A. Bertrand] Vanderbilt Univ, Dept Radiol, Nashville, TN USA. [Howell, Roger W.] Univ Med & Dent New Jersey, New Jersey Med Sch, Ctr Canc, Div Radiat Res,Dept Radiol, Newark, NJ 07103 USA. [Akabani, Gamal] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Sgouros, G (reprint author), Johns Hopkins Univ, Dept Radiol & Radiol Sci, CRB 2 4M61-1550 Orleans St, Baltimore, MD 21231 USA. EM gsgouros@jhmi.edu RI Song, Hong/F-9541-2011; Brill, Aaron/H-3732-2014 OI Brill, Aaron/0000-0001-7538-086X NR 155 TC 75 Z9 75 U1 3 U2 18 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 EI 1535-5667 J9 J NUCL MED JI J. Nucl. Med. PD FEB 10 PY 2010 VL 51 IS 2 BP 311 EP 328 DI 10.2967/jnumed.108.058651 PG 18 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 550TL UT WOS:000274152800036 PM 20080889 ER PT J AU Kang, J Wei, SH Kim, YH AF Kang, Joongoo Wei, Su-Huai Kim, Yong-Hyun TI Microscopic Theory of Hysteretic Hydrogen Adsorption in Nanoporous Materials SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; STORAGE AB Understanding gas adsorption confined in nanoscale pores is a fundamental issue with broad applications in catalysis and gas storage. Recently, hysteretic H(2) adsorption was observed in several nanoporous metal-organic frameworks (MOFs). Here, using first-principles calculations and simulated adsorption/desorption isotherms. we present a microscopic theory of the enhanced adsorption hysteresis of H(2) molecules using the MOF Co(1,4-benzenedipyrazolate) [Co(BDP)] as a model system. Using activated H(2) diffusion along the small-pore channels as a dominant equilibration process, we demonstrate that the system shows hysteretic H(2) adsorption under changes of external pressure. For a small increase of temperature, the pressure width of the hysteresis, as well as the adsorption/desorption pressure, dramatically increases. The sensitivity of gas adsorption to temperature changes is explained by the simple thermodynamics of the gas reservoir. Detailed analysis of transient adsorption dynamics reveals that the hysteretic H(2) adsorption is an intrinsic adsorption characteristic in the diffusion-controlled small-pore systems. C1 [Kang, Joongoo; Wei, Su-Huai; Kim, Yong-Hyun] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea. RP Kim, YH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yong.hyun.kim@kaist.ac.kr RI Kim, Yong-Hyun/C-2045-2011 OI Kim, Yong-Hyun/0000-0003-4255-2068 FU U.S. DOE/OS/BES; DOE/EERE [DE-AC36-08GO28308]; Ministry of Education, Science and Technology [R31-2008-000-10071-0] FX We thank J. R. Long and H. J. Choi for supplying adsorption and structural data. This research was funded by U.S. DOE/OS/BES and DOE/EERE under Contract No. DE-AC36-08GO28308 to NREL. Y.-H.K. was also supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10071-0). NR 11 TC 9 Z9 9 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 10 PY 2010 VL 132 IS 5 BP 1510 EP + DI 10.1021/ja9092133 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 562WB UT WOS:000275084900033 PM 20088523 ER PT J AU Concepcion, JJ Tsai, MK Muckerman, JT Meyer, TJ AF Concepcion, Javier J. Tsai, Ming-Kang Muckerman, James T. Meyer, Thomas J. TI Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COUPLED ELECTRON-TRANSFER; PHOTOSYSTEM-II; ANISOTROPIC DIELECTRICS; POLYPYRIDYL COMPLEXES; TRANSITION-STATES; MOLECULAR-OXYGEN; IONIC-SOLUTIONS; HYDRIDE BOND; DIOXYGEN; DENSITY AB The mechanism of Ce(IV) water oxidation catalyzed by [Ru(tpy)(bpm)(OH(2))](2+) (tpy = 2,2':6',2 ''-terpyridine; bpm = 2,2'-bipyrimidine) and related single-site catalysts has been determined by a combination of mixing and stopped-flow experiments with spectrophotometric monitoring. The mechanism features O---O coupling by water attack on Ru(V)=O(3+) and three peroxidic intermediates that have been characterized by a combination of spectroscopy and DFT calculations. C1 [Concepcion, Javier J.; Meyer, Thomas J.] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Tsai, Ming-Kang; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Meyer, TJ (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA. EM tjmeyer@email.unc.edu RI Muckerman, James/D-8752-2013; OI Tsai, Ming-Kang/0000-0001-9189-5572 FU Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-06ER15788, DE-SC0001011]; UNC EFRC FX Funding by the Chemical Sciences, Geosciences and Biosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy, Grant DE-FG02-06ER15788, and UNC EFRC: Solar Fuels and Next Generation Photovoltaics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001011 is gratefully acknowledged. NR 51 TC 256 Z9 259 U1 13 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 10 PY 2010 VL 132 IS 5 BP 1545 EP 1557 DI 10.1021/ja904906v PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 562WB UT WOS:000275084900042 PM 20085264 ER PT J AU Weber-Bargioni, A Schwartzberg, A Schmidt, M Harteneck, B Ogletree, DF Schuck, PJ Cabrini, S AF Weber-Bargioni, A. Schwartzberg, A. Schmidt, M. Harteneck, B. Ogletree, D. F. Schuck, P. J. Cabrini, S. TI Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography SO NANOTECHNOLOGY LA English DT Article ID BEAM-INDUCED DEPOSITION; FOCUSED ELECTRON-BEAM; SILVER NANOPARTICLES; NEAR-FIELD; RESONANCE; FLUORESCENCE; NANOANTENNAS; MICROSCOPY; SCATTERING; GOLD AB We have fabricated plasmonic bowtie antennae on the apex of silicon atomic-force microscope cantilever tips that enhance the local silicon Raman scattering intensity by similar to 4 x 10(4) when excited near the antenna resonance. The antennae were fabricated using a novel method, induced-deposition mask lithography (IDML), capable of creating high-purity metallic nanostructures on non-planar, non-conducting substrates with high repeatability. IDML involves electron-beam-induced deposition of a W or SiO(x) hard mask on the material to be pattered, here a 20 nm Au film, followed by Ar ion etching to remove the mask and the unmasked gold, leaving a chemically pure Au bowtie antenna. Antenna function and reproducibility was confirmed by comparing Raman spectra for excitation polarized parallel and perpendicular to the antenna axis, as well as by dark-field spectroscopic characterization of resonant modes. The field enhancement of these plasmonic AFM antennae tips was comparable with antennae produced by electron-beam lithography on flat substrates. C1 [Weber-Bargioni, A.; Schwartzberg, A.; Harteneck, B.; Ogletree, D. F.; Schuck, P. J.; Cabrini, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Schmidt, M.] Univ Calif Berkeley, Energy Biosci Inst, Calvin Lab, Berkeley, CA 94720 USA. RP Weber-Bargioni, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM afweber-bargioni@lbl.gov; amschwartzberg@lbl.gov; mwbschmidt@lbl.gov; bdharteneck@lbl.gov; dfogletree@lbl.gov; pjschuck@lbl.gov; scabrini@lbl.gov RI Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Energy Biosciences Institute FX The authors thank Ed Wong for fast and high quality technical support. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. M Schmidt is supported by the Energy Biosciences Institute. NR 33 TC 51 Z9 51 U1 2 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 10 PY 2010 VL 21 IS 6 AR 065306 DI 10.1088/0957-4484/21/6/065306 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 543EK UT WOS:000273553300014 PM 20061594 ER PT J AU Tracht, SM Del Valle, SY Hyman, JM AF Tracht, Samantha M. Del Valle, Sara Y. Hyman, James M. TI Mathematical Modeling of the Effectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1) SO PLOS ONE LA English DT Article ID FACEPIECE RESPIRATORS; PANDEMIC INFLUENZA; TRANSMISSION; PERFORMANCE AB On June 11, 2009, the World Health Organization declared the outbreak of novel influenza A (H1N1) a pandemic. With limited supplies of antivirals and vaccines, countries and individuals are looking at other ways to reduce the spread of pandemic (H1N1) 2009, particularly options that are cost effective and relatively easy to implement. Recent experiences with the 2003 SARS and 2009 H1N1 epidemics have shown that people are willing to wear facemasks to protect themselves against infection; however, little research has been done to quantify the impact of using facemasks in reducing the spread of disease. We construct and analyze a mathematical model for a population in which some people wear facemasks during the pandemic and quantify impact of these masks on the spread of influenza. To estimate the parameter values used for the effectiveness of facemasks, we used available data from studies on N95 respirators and surgical facemasks. The results show that if N95 respirators are only 20% effective in reducing susceptibility and infectivity, only 10% of the population would have to wear them to reduce the number of influenza A (H1N1) cases by 20%. We can conclude from our model that, if worn properly, facemasks are an effective intervention strategy in reducing the spread of pandemic (H1N1) 2009. C1 [Tracht, Samantha M.; Del Valle, Sara Y.] Los Alamos Natl Lab, Decis Applicat Div, Energy & Infrastruct Anal Grp, Los Alamos, NM USA. [Tracht, Samantha M.] Capital Univ, Dept Math Comp Sci & Phys, Columbus, OH USA. [Hyman, James M.] Los Alamos Natl Lab, Div Theoret, Math Modeling & Anal Grp, Los Alamos, NM USA. RP Tracht, SM (reprint author), Los Alamos Natl Lab, Decis Applicat Div, Energy & Infrastruct Anal Grp, Los Alamos, NM USA. EM samantha.tracht@gmail.com FU Los Alamos National Security, LLC (LANS) [DE-AC52-06NA25396]; U.S. Department of Energy (DOE) FX This research was prepared by Los Alamos National Security, LLC (LANS) under Contract DE-AC52-06NA25396 with the U.S. Department of Energy (DOE). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 35 TC 27 Z9 29 U1 3 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 10 PY 2010 VL 5 IS 2 AR e9018 DI 10.1371/journal.pone.0009018 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554NW UT WOS:000274442700002 PM 20161764 ER PT J AU Gu, MG Rajashankar, KR Lima, CD AF Gu, Meigang Rajashankar, Kanagalaghatta R. Lima, Christopher D. TI Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA Capping Apparatus SO STRUCTURE LA English DT Article ID CARBOXY-TERMINAL DOMAIN; POLYMERASE-II; CONFORMATIONAL-CHANGE; CRYSTAL-STRUCTURE; ENZYME SUBUNITS; IN-VIVO; TRIPHOSPHATASE; YEAST; GUANYLYLTRANSFERASE; PHOSPHORYLATION AB The 5' guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP Ilo), primarily via contacts between RNAP Ilo and Ceg1. A 3.0 angstrom crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP Ilo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure. C1 [Gu, Meigang; Lima, Christopher D.] Sloan Kettering Inst, Struct Biol Program, New York, NY 10065 USA. [Rajashankar, Kanagalaghatta R.] Cornell Univ, Dept Chem & Chem Biol, NE CAT, Adv Photon Source, Argonne, IL 60439 USA. RP Lima, CD (reprint author), Sloan Kettering Inst, Struct Biol Program, New York, NY 10065 USA. EM limac@mskcc.org OI Lima, Christopher/0000-0002-9163-6092 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; National Center for Research Resources at the National Institutes of Health [RR-15301, GM061906]; Rita Allen Foundation FX We thank Beate Schwer and Stewart Shuman for yeast strains and helpful discussion and Agni Ghosh for critical reading of the manuscript. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38. Use of the SGX Collaborative Access Team (SGX-CAT) beamline facilities at Sector 31 of the Advanced Photon Source was provided by SGX Pharmaceuticals, who constructed and operated the facility when these data were collected. K.R.R. was supported by grant RR-15301 from the National Center for Research Resources at the National Institutes of Health. M.G. and C.D.L. were supported in part by a grant from the National Institutes of Health (GM061906). C.D.L. acknowledges support from the Rita Allen Foundation. NR 50 TC 19 Z9 19 U1 1 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD FEB 10 PY 2010 VL 18 IS 2 BP 216 EP 227 DI 10.1016/j.str.2009.12.009 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 557CH UT WOS:000274645500008 PM 20159466 ER PT J AU Keiski, CL Harwich, M Jain, S Neculai, AM Yip, P Robinson, H Whitney, JC Riley, L Burrows, LL Ohman, DE Howell, PL AF Keiski, Carrie-Lynn Harwich, Michael Jain, Sumita Neculai, Ana Mirela Yip, Patrick Robinson, Howard Whitney, John C. Riley, Laura Burrows, Lori L. Ohman, Dennis E. Howell, P. Lynne TI AlgK Is a TPR-Containing Protein and the Periplasmic Component of a Novel Exopolysaccharide Secretin SO STRUCTURE LA English DT Article ID OUTER-MEMBRANE LIPOPROTEIN; MUCOID PSEUDOMONAS-AERUGINOSA; X-RAY ANALYSIS; ESCHERICHIA-COLI; ALGINATE BIOSYNTHESIS; SUBCELLULAR-LOCALIZATION; CRYSTAL-STRUCTURE; BIOFILM FORMATION; BINDING SITES; PREDICTION AB The opportunistic pathogen Pseudomonas aeruginosa causes chronic biofilm infections in cystic fibrosis patients. During colonization of the lung, A aeruginosa converts to a mucoid phenotype characterized by overproduction of the exopolysaccharide alginate. Here we show that AlgK, a protein essential for production of high molecular weight alginate, is an outer membrane lipoprotein that contributes to the correct localization of the porin AlgE. Our 2.5 angstrom structure shows AlgK is composed of 9.5 tetratricopeptide-like repeats, and three putative sites of protein-protein interaction have been identified. Bioinformatics analysis suggests that BcsA, PgaA, and PelB, involved in the production and export of cellulose, poly-beta-1,6-N-Acetyl-D-glucosamine, and Pel exopolysaccharide, respectively, share the same topology as AlgK/E. Together, our data suggest that AlgK plays a role in the assembly of the alginate biosynthetic complex and represents the periplasmic component of a new type of outer membrane secretin that differs from canonical bacterial capsular polysaccharide secretion systems. C1 [Keiski, Carrie-Lynn; Neculai, Ana Mirela; Yip, Patrick; Whitney, John C.; Riley, Laura; Burrows, Lori L.; Howell, P. Lynne] Hosp Sick Children, Toronto, ON M5G 1X8, Canada. [Keiski, Carrie-Lynn; Whitney, John C.; Howell, P. Lynne] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Harwich, Michael; Jain, Sumita; Ohman, Dennis E.] Virginia Commonwealth Univ, Med Ctr, Dept Microbiol & Immunol, Richmond, VA 23298 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Burrows, Lori L.] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada. [Burrows, Lori L.] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON L8N 3Z5, Canada. RP Howell, PL (reprint author), Hosp Sick Children, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM deohman@vcu.edu; howell@sickkids.ca RI Burrows, Lori/D-1142-2010 OI Burrows, Lori/0000-0003-0838-5040 FU Canadian Institutes of Health [AI-19146]; National Institute of Allergy and Infectious Disease; Cystic Fibrosis (CF) Foundation; Veterans Administrations Medical Research Funds; Canada Research Chair; CIHR New Investigator award; Natural Sciences and Engineering Research Council; Canadian CIF Foundation; Ontario Graduate Scholarship Program; Ontario Student Opportunities Trust Fund; Hospital for Sick Children Foundation; US Department of Energy FX The authors thank G.D. Smith, S.-Y. Ku, and J. Marsh for access to various computer programs; the Advanced Protein Technology Centre at the Hospital for Sick Children for assistance with DNA sequencing; and R. Zhoa and W. Houry at the University of Toronto for the analytical ultracentrifiguation analysis. This work is supported by grants from the Canadian Institutes of Health (AI-19146), the National Institute of Allergy and Infectious Disease, the Cystic Fibrosis (CF) Foundation, and Veterans Administrations Medical Research Funds to D.E.O. P.L.H., L.L.B., and M.N. are recipients of a Canada Research Chair, a CIHR New Investigator award, and a CIHR postdoctoral fellowship, respectively. C.-L.K. was funded, in part, by graduate scholarships from the Natural Sciences and Engineering Research Council, the Canadian CIF Foundation, the Ontario Graduate Scholarship Program, Ontario Student Opportunities Trust Fund, and the Hospital for Sick Children Foundation Student Scholarship Program. Beam lines X25 and X29 at the National Synchrotron Light Source are supported by the US Department of Energy. NR 64 TC 43 Z9 44 U1 2 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD FEB 10 PY 2010 VL 18 IS 2 BP 265 EP 273 DI 10.1016/j.str.2009.11.015 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 557CH UT WOS:000274645500013 PM 20159471 ER PT J AU Kanatzidis, MG AF Kanatzidis, Mercouri G. TI Nanostructured Thermoelectrics: The New Paradigm? SO CHEMISTRY OF MATERIALS LA English DT Review ID SOLID-STATE CHEMISTRY; LATTICE THERMAL-CONDUCTIVITY; POWER-GENERATION; HIGH-TEMPERATURE; LEAD-TELLURIDE; ELECTRICAL-PROPERTIES; ENERGY-CONVERSION; ELASTIC-MODULI; BULK MATERIALS; HIGH FIGURE AB This review discusses recent developments and current research in bulk thermoelectric materials in which nanostructuring is a key aspect affecting thermoelectric performance. Systems based on PbTe, AgPb(m)SbTe(2+m), NaPb(m)SbTe(2+m), Bi(2)Te(3), and Si are given particular emphasis. To date the dramatic enhancements in figure of merit in bulk nanostructured materials come from very large reductions in lattice thermal conductivity rather than improvement in power factors. A discussion of future possible strategies is aimed at enhancing the thermoelectric figure of merit of these materials. C1 [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. FU Office of Naval Research [N00014-02-1-0867, N00014-03-1-0789, N00014-06-1-0130, N00014-08-1-613] FX The author is grateful to the Office of Naval Research for financial support (Grants N00014-02-1-0867, N00014-03-1-0789, N00014-06-1-0130, N00014-08-1-613). I thank Professors S.D. Mahanti, T.P. Hogan, C. Uher, V. Dravid, E. Case, A.J, Freeman, and C. Wolverton for plentiful stimulating discussions and fruitful collaborations. Of course most of all, I am grateful to the numerous dedicated graduate students and postdoctoral fellows who have contributed to our thermoelectric research effort. Their names appear in the various publications cited in this article. NR 111 TC 441 Z9 444 U1 45 U2 392 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 648 EP 659 DI 10.1021/cm902195j PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600007 ER PT J AU Mandrus, D Sefat, AS McGuire, MA Sales, BC AF Mandrus, David Sefat, Athena S. McGuire, Michael A. Sales, Brian C. TI Materials Chemistry of BaFe(2)AS(2): A Model Platform for Unconventional Superconductivity SO CHEMISTRY OF MATERIALS LA English DT Review ID BA1-XKXFE2AS2 AB BaFe(2)AS(2) is the parent compound of a family of unconventional superconductors with critical temperatures approaching 40 K. BaFe2As2 is structurally simple, available Lis high-quality large crystals, can be both hole and electron doped, and is amenable to first-principles electronic structure calculations. BaFe(2)AS(2) has a rich and flexible materials chemistry that makes it an ideal model platform for the study of unconventional superconductivity. The key properties of this family of materials are briefly reviewed. C1 [Mandrus, David; Sefat, Athena S.; McGuire, Michael A.; Sales, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mandrus, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mandrusdg@ornl.gov RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Division of Materials Sciences and Engineering (D.M., B.C.S., M.A.M.), Office of Basic Energy Sciences, U.S. Department of Energy. This research is sponsored in part by the Eugene P. Wigner Fellowship Program (A.S., M.A.M.). NR 70 TC 59 Z9 59 U1 0 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 715 EP 723 DI 10.1021/cm9027397 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600011 ER PT J AU Sootsman, JR He, JQ Dravid, VP Ballikaya, S Vermeulen, D Uher, C Kanatzidis, MG AF Sootsman, Joseph R. He, Jiaqing Dravid, Vinayak P. Ballikaya, Sedat Vermeulen, Derek Uher, Ctirad Kanatzidis, Mercouri G. TI Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites SO CHEMISTRY OF MATERIALS LA English DT Article ID THERMAL-CONDUCTIVITY; SOLID-SOLUTIONS; FIGURE; MERIT; POWER; AGPBMSBTE2+M; SCATTERING AB The microstructure and thermoelectric properties of the PbTe-Si eutectic system are presented in detail, When rapidly quenched from the melt this system yields materials with thermoelectric properties similar 101 PbTe itself but with improved mechanical properties. Doping optimization was performed using Pbl(2) as an n-type dopant giving precise con trol of the thermoelectric properties. Electron microscopy indicates that the PbTe-Si system is both a nanocomposite and microcomposite. Despite the added Si, the thermal conductivity of this composite follows closely that of PbTe. The temperature dependence of the Lorenz number was estimated, and it shows a significant departure from the value of metals (L(0)) reaching only 45% of L(0) at 650 K. The optimized ZT for the PbTe-Si(8%) eutectic was 0.9 at 675 K. The improved mechanical robustness of these composites makes them attractive for use in large scale thermoelectric device fabrication. C1 [Sootsman, Joseph R.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ballikaya, Sedat; Vermeulen, Derek; Uher, Ctirad] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. RI Dravid, Vinayak/B-6688-2009; He, Jiaqing/A-2245-2010 NR 38 TC 28 Z9 28 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 869 EP 875 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600030 ER PT J AU Lin, QY Smeller, M Heideman, CL Zschack, P Koyano, M Anderson, MD Kykyneshi, R Keszler, DA Anderson, IM Johnson, DC AF Lin, Qiyin Smeller, Mary Heideman, Colby L. Zschack, Paul Koyano, Mikio Anderson, Michael D. Kykyneshi, Robert Keszler, Douglas A. Anderson, Ian M. Johnson, David C. TI Rational Synthesis and Characterization of a New Family of Low Thermal Conductivity Misfit Layer Compounds [(PbSe)(0.99)](m)(WSe2)(n) SO CHEMISTRY OF MATERIALS LA English DT Article ID BAND-STRUCTURE CALCULATIONS; COMPOSITE CRYSTAL-STRUCTURE; ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; THERMOELECTRIC PROPERTIES; PHOTOELECTRON-SPECTRA; CHROMIUM SULFIDE; RAMAN-SCATTERING; CHARGE-TRANSFER; SPECTROSCOPY AB We describe here a general synthesis approach for the preparation of new families of misfit layer compounds and demonstrate its effectiveness through the preparation of the first 64 members of the [(PbSe)(0.99)](m) (WSe2)(n) family of compounds, where in and it are integers that were systematically varied from 1 to 8. The new Compounds [(PbSc)(1+y)](m) (WSe2)(n) were synthesized by annealing reactant precursors containing 177 layers of alternating elemental Pb and Se followed by it layers ofalternating elemental W and Se, in which the thickness of each pair of elemental layers was calibrated to yield a structural bilayer of rock salt structured PbSe and a trilayer of hexagonal WSe2. The compounds are kinetically trapped by the similarity of the composition profiles and modulation lengths in the precursor and the targeted compounds. The structural evolution from initial reactant of layer elements to crystalline misfit layer compounds was tracked using X-ray diffraction. The crystal structures of new compounds were probed using both analytical electron microscopy and X-ray diffraction. The c-axis of the misfit layer compound is perpendicular to the Substrate, with a c-axis lattice parameter that changes linearly with a slope of 0.612-0.615 nm as in is changed and n is held constant and with a slope of 0.654-0.656 nm as it is varied and m is held constant. The in-plane lattice parameters did not change as the individual layer thicknesses were increased and a misfit parameter of y = -0.01 was calculated, the first negative misfit parameter among known misfit layer compounds. Analytical electron microscopy images and X-ray diffraction data collected on mixed hkl reflections revealed rotational (turbostratic) disorder of the a-b planes. C1 [Smeller, Mary; Heideman, Colby L.; Anderson, Michael D.; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Lin, Qiyin] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Anderson, Michael D.; Anderson, Ian M.] Natl Inst Stand & Technol, Surface & Microanal Sci Div, Gaithersburg, MD 20899 USA. [Kykyneshi, Robert; Keszler, Douglas A.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. RP Johnson, DC (reprint author), Univ Oregon, Dept Chem, 1253 Univ Oregon, Eugene, OR 97403 USA. FU Office of Naval Research [N0014-07-1-0358]; National Science Foundation through the IGERT [DGE-0549503]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation through CC [CHE-0847970] FX This work was supported through the Office of Naval Research (N0014-07-1-0358). Coauthors C.L.H. and M.D.A. were supported by the National Science Foundation through the IGERT grant (DGE-0549503). The use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. Coauthors R.K. and D.A.K. acknowledge support from the National Science Foundation through CCI grant number CHE-0847970. We wish to acknowledge and thank Dr. Andrew Herzing of NIST for help with acquiring the high-resolution STEM images. NR 46 TC 41 Z9 41 U1 5 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1002 EP 1009 DI 10.1021/cm901952v PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600047 ER PT J AU Poudeu, PFP Gueguen, A Wu, CI Hogan, T Kanatzidis, MG AF Poudeu, Pierre F. P. Gueguen, Aurelie Wu, Chun-I Hogan, Tim Kanatzidis, Mercouri G. TI High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials SO CHEMISTRY OF MATERIALS LA English DT Article ID THERMAL-CONDUCTIVITY; ELECTRICAL-PROPERTIES; HIGH-TEMPERATURE; SOLID-SOLUTIONS; BULK MATERIALS; PBTE; PERFORMANCE; ALLOYS; SB; PB1-XSN(X)TE AB We demonstrate that the KPbmSbTe2+m system (PLAT-m for tellurium, antimony, lead potassium, m = 19-21) of materials exhibits high thermoelectric performance. Samples with compositions K1-xPbm+delta Sb1+gamma Tem+2 were prepared using several combinations of x, delta, gamma and m and their thermoelectric properties were investigated in the temperature range of 300 - 800 K. All K1-xPbm+delta Sb1+gamma Tem+2 samples exhibited n-type conduction over the measured temperature range. Their lattice thermal conductivities were found to be significantly reduced when compared to PbTe and even AgPbmSbTem+2. For example, for K0.95Pb20Sb1.2Te22 a lattice thermal conductivity as low as 0.4 W/(m.K) was estimated at 650 K (based on a Lorenz number of 1.25 x 10(-8) W.Omega/K-2). High resolution transmission electron microscopy on several samples revealed a widely dispersed nanoscale particle with varying size and shape endotaxially embedded inside a PbTe-rIch matrix which is believed to be responsible for the reduced lattice thermal conductivity of K1-xPbm+delta Sb1+gamma Tem+2 materials. Because of their small size, the nanoinclusions are coherent with the matrix and therefore do not markedly degrade the electrical conductivity of the materials. As a result, very high figures of merit are achieved at high temperature for several compositions. For K0.95Pb20Sb1.2Te22, a maximum figure of merit ZT similar to 1.6 was obtained around 750 K. This Value is similar to that of n-type LAST-18 and is two times larger than that of the-state-of-the-art n-type PbTe. C1 [Poudeu, Pierre F. P.; Gueguen, Aurelie; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Wu, Chun-I; Hogan, Tim] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU Office or Naval Research [NO0014-08-0613] FX Financial support from the Office or Naval Research (NO0014-08-0613) is greatly acknowledged. We thank Robert Pcionek for his assistance with TEM. NR 39 TC 53 Z9 54 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1046 EP 1053 DI 10.1021/cm902001c PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600053 ER PT J AU Becht, GA Vaughey, JT Hwu, SJ AF Becht, Gregory A. Vaughey, John T. Hwu, Shiou-Jyh TI Ag3Fe(VO4)(2) and AgFeV2O7: Synthesis, Structure, and Electrochemical Characteristics of Two New Silver Iron(III) Vanadates SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; ELECTRODE; PHOSPHATE; EVOLUTION; EXCHANGE AB The structural features and electrochemical properties of two new silver iron(III) vanadates have been determined, and their relevance to cathode materials for primary lithium battery devices is reported. Ag3Fe(VO4)(2) (SFVO-1) and AgFeV2O7 (SFVO-2) were isolated via a pseudoternary (Ag2O-Fe2O3-V2O5) system at 600 degrees C. The crystallographic data of the phases are the following: Ag3Fe(VO4)(2) monoclinic C2/c (no. 15), a = 9.771(2) angstrom, b = 5.153(1) angstrom, c.= 14.325(3) angstrom, beta = 93.8 5(3)degrees, V = 719.7(2) angstrom(3), Z = 4; AgFeV2O7, triclinic, P1 (no. 2), a = 5.603(1) angstrom, b = 7.485(2) angstrom, c = 7.644(2) angstrom, alpha = 65.07(3)degrees, beta = 89.48(3)degrees, gamma = 78.98(3)degrees, V = 284.4(1) angstrom(3), Z = 2. The single crystal X-ray diffraction studies show that the Ag+ cations reside in the open space of layered (SFVO-1) and channeled (SFVO-2) Fe-O-V frameworks. The extended electrochemical capacity above 2 V (vs Li/Li+) in these phases is consistent with their higher (Ag++Fe3+)/V5+ ratios, compared to the corresponding Ag+/V5+ in Ag2V4O11 (SVO). The discharge voltage of SFVO-1 exhibits a short initial plateau at similar to 3.15 V, corresponding to the reduction of 0.5 x [Ag(I) -> Ag(0)], followed by an abrupt drop to similar to 2.3-2.0 V where the remaining silver (2.5 equiv Li) and some of the framework iron (0.8 equiv Li) are reduced. SFVO-2 has a nominal capacity of 293 mA h/g exhibiting several plateaulike features between 2.5 and 2.0 V. SFVO-1,2 represents the first family of silver iron(III) vanadate phases that have been systematically investigated. C1 [Becht, Gregory A.; Hwu, Shiou-Jyh] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Vaughey, John T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Hwu, SJ (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. FU National Science Foundation [CHE-9808165]; [DMR-0322905]; [0706426] FX Financial support for this research (DMR-0322905, 0706426) and the purchase of a single crystal X-ray diffractometer (CHE-9808165) from the National Science Foundation is gratefully acknowledged. NR 23 TC 7 Z9 7 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1149 EP 1154 DI 10.1021/cm9024342 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600066 ER PT J AU Dambournet, D Belharouak, I Amine, K AF Dambournet, Damien Belharouak, Ilias Amine, Khalil TI Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties SO CHEMISTRY OF MATERIALS LA English DT Article ID NANOCRYSTALLINE BROOKITE; LITHIUM INTERCALATION; NANOCOMPOSITE; PERFORMANCE; ELECTRODES; CHEMISTRY; BATTERIES; INSERTION; IMPACT; SIZE AB Using a simple aqueous precipitation method based on a low-cost titanium oxysulfate precursor, we have prepared three TiO2 polymorphs: anatase, rutile, and brookite. Although the anatase form can be directly obtained from the thermolysis reaction of an oxysulfate solution, the rutile and the brookite have been prepared by the addition of oxalate species. Depending on the concentration, the oxalate anions have been shown to act either as a ligand with the stabilization of a titanium oxalate hydrate, Ti2O3(H2O)(2)(C2O4) center dot H2O, or as a chelating agent with the isolation of the rutile phase. The brookite form was obtained by thermal decomposition of the oxalate hydrate at a temperature as low as 300 degrees C. The resulting solid consisted of nanodomains of TiO2 brookite embedded in large micrometer-size particles and exhibited a high specific surface area of 255 m(2)/g because of the mesoporosity arising from the removal of water from the oxalate species. This type of morphology is of interest for lithium-ion batteries because of an easier coating process and a higher surface contact between the material kind the electrolyte that enhanced the electrochemical activity. Finally, based on electrochemical characterizations, TiO2 brookite provided higher volumetric energy density than comparable nanomaterials. C1 [Dambournet, Damien; Belharouak, Ilias; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dambournet, D (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dambournet@anl.gov; belharouak@anl.gov RI Amine, Khalil/K-9344-2013; OI Belharouak, Ilias/0000-0002-3985-0278 FU U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357] FX This research was funded by the U.S. Department of Energy, FrccdoinCAR and Vehicle Technologics Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under Contract DE-AC02-06CH11357. NR 28 TC 142 Z9 142 U1 13 U2 190 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1173 EP 1179 DI 10.1021/cm902613h PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600069 ER PT J AU Zeng, DL Cabana, J Yoon, WS Grey, CP AF Zeng, Dongli Cabana, Jordi Yoon, Won-Sub Grey, Clare P. TI Investigation of the Structural Changes in Li[NiyMnyCo(1-2y)]O-2 (y=0.05) upon Electrochemical Lithium Deintercalation SO CHEMISTRY OF MATERIALS LA English DT Article ID X-RAY-ABSORPTION; POSITIVE ELECTRODE MATERIAL; PAIR DISTRIBUTION FUNCTION; IN-SITU XRD; CATHODE MATERIALS; LOCAL-STRUCTURE; PHYSICAL-PROPERTIES; ION BATTERIES; NMR; LICOO2 AB A systematic study has been performed to investigate the structural changes of Li[Ni0.05Mn0.05Co0.90]O-2, one member of the Li[NiyMnyCo(1-2y)]O-2 series with low Ni/Mn content, upon electrochemical lithium deintercalation. X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), and nuclear magnetic resonance (NMR) measurements were performed, and the results from these experiments provided I detailed picture of the whole delithiation process. Oxidation of not only Ni2+, but also some Co3+, is seen in the beginning of Li extraction (less than 0.15 mol removed), the ions located closest to Mn4+ being extracted first. Further deintercalation (additional 0.2 mol of Li removal) induces an insulator to metal transition that is similar to that reported for LiCoO2. However, this reaction follows a solid solution mechanism even for this low level of substitution, rather than the two-phase reaction reported for the Ni, Mn-free oxide. When half of the Li ions are extracted, the electrochemical signature for lithium vacancy ordering in the host framework is observed. The NMR results for deintercalation of more than 50% Li were compared to those for LixCoO2 at similar stages of charge, which are reported here for the first time; they indicate that the behavior of these two phases at these potentials is very similar. When the batteries are charged to voltages higher than 4.6 V, very few lithium ions remain in the structure and the O3 to O1 phase transition Occurs. C1 [Zeng, Dongli; Cabana, Jordi; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Cabana, Jordi] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Yoon, Won-Sub] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yoon, Won-Sub] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. RP Grey, CP (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM cgrey@notes.cc.sunysb.edu RI Yoon, Won-Sub/H-2343-2011; Cabana, Jordi/G-6548-2012; Zeng, Dongli/J-6833-2012 OI Cabana, Jordi/0000-0002-2353-5986; FU U.S. DOE Office of FreedomCAR [DE-AC03-76SF00098, 6517749]; National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL); U.S. DOE, Office of BES [DE-AC02-98CH10886] FX We acknowledge support from the U.S. DOE Office of FreedomCAR (Contract No. DE-AC03-76SF00098; subcontract 6517749 with LBNL). We would also like to acknowledge support from the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). This facility is funded by the U.S. DOE, Office of BES, under Contract No. DE-AC02-98CH10886. We are grateful for the assistance given to us at NSLS from Dr. Syed Khalid. NR 41 TC 22 Z9 23 U1 4 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1209 EP 1219 DI 10.1021/cm902721w PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600074 ER PT J AU Allen, MR Thibert, A Sabio, EM Browning, ND Larsen, DS Osterloh, FE AF Allen, Mark R. Thibert, Arthur Sabio, Erwin M. Browning, Nigel D. Larsen, Delmar S. Osterloh, Frank E. TI Evolution of Physical and Photocatalytic Properties in the Layered Titanates A(2)Ti(4)O(9) (A = K, H) and in Nanosheets Derived by Chemical Exfoliation SO CHEMISTRY OF MATERIALS LA English DT Article ID PHOTOCHEMICAL HYDROGEN EVOLUTION; LOADED STRONTIUM-TITANATE; SHUTTLE REDOX MEDIATOR; VISIBLE-LIGHT; NIOBATE NANOSHEETS; OXIDE NANOSHEETS; POTASSIUM TETRATITANATE; TITANIUM-DIOXIDE; CARRIER DYNAMICS; CHARGE-TRANSFER AB K2Ti4O9 has been known as a photocatalyst for the oxidation of methanol under UV irradiation. Here we study the evolution of morphology, optical, and photocatalytic properties of this titanate as it is converted into H2Ti4O9 and subsequently exfoliated into individual tetrabutylammonium (TBA)-supported [Ti4O9](2-) nanosheets. We find that proton exchange and exfoliation are accompanied by a red shift of the optical absorption edge and fluorescence maximum, suggesting a reduction of the bandgap in the series K2Ti4O9 (3.54 eV), H2Ti4O9 (3.25 cV), TBA(2)Ti(4)O(9) (3.00 eV). Neither compound is active for photochemical water splitting, even after photochemical deposition of platinum nanoparticles. However, in aqueous methanol, all platinated compounds are moderately active for H, evolution upon bandgap irradiation, and in 0.01 M AgNO3, they all produce moderate quantities of O-2. From the onset potentials for photoelectrochemical methanol oxidation, the values for the valence band edges at pH = 7 are deduced to lie between -0.23 and -0.53 V (NHE) for the nonplatinated compounds, and at +0.08 V and -0.30 V for the platinated compounds. This Pt-induced decrease of negative charge on the titanates is likely due to Fermi level equilibration of metal and semiconductor. Its effect can also be seen in a shift of the onset potentials for electrochemical water oxidation, as measured by cyclic voltammetry. Transient absorption data reveal that photogenerated electrons become trapped in mid band gap states, from which they decay exponentially with a time-constant of 43.67 +/- 0.28 ins, much slower than observed for 68 +/- 1 ns for TiO2 nanocrystals (DegUssa, P25). C1 [Allen, Mark R.; Thibert, Arthur; Sabio, Erwin M.; Larsen, Delmar S.; Osterloh, Frank E.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Osterloh, FE (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM fosterloh@ucdavis.edu RI Dom, Rekha/B-7113-2012; OI Browning, Nigel/0000-0003-0491-251X FU National Science Foundation [0829142] FX The authors acknowledge support from the National Science Foundation in the form of an "Energy for Sustainability" grant (CBET 0829142). NR 71 TC 89 Z9 91 U1 7 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1220 EP 1228 DI 10.1021/cm902695r PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600075 ER PT J AU Cabana, J Shirakawa, J Chen, GY Richardson, TJ Grey, CP AF Cabana, Jordi Shirakawa, Junichi Chen, Guoying Richardson, Thomas J. Grey, Clare P. TI MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System SO CHEMISTRY OF MATERIALS LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; RECHARGEABLE LITHIUM BATTERIES; RAY-ABSORPTION SPECTROSCOPY; PAIR DISTRIBUTION FUNCTION; CATHODE MATERIALS; LI-7 NMR; X-RAY; NEUTRON-DIFFRACTION; LOCAL-STRUCTURE; DISORDERED LI0.6FEPO4 AB Li-6,Li-7 and P-31 NMR experiments were conducted on a series of single- or two-phase samples in the LiFePO4-FePO4 System with different overall lithium contents, and containing the two end-members and/or two metastable solid solution phases, Li0.6FePO4 or Li0.34FePO4. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for L2+-Fe2+ interactions was observed for both Li0.6FePO4 and Li0.34FePO4. The strength of this interaction leads to the formation of LiFePO4-like clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125 degrees C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing. C1 [Cabana, Jordi; Shirakawa, Junichi; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Cabana, Jordi; Chen, Guoying; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Grey, CP (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM cgrey@notes.cc.sunysb.edu RI Cabana, Jordi/G-6548-2012 OI Cabana, Jordi/0000-0002-2353-5986 FU U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory [6517749] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 via subcontract No. 6517749 with the Lawrence Berkeley National Laboratory. J.C. is indebted to Generalitat de Catalunya for funding through a Beatriu de Pinos fellowship. NR 61 TC 39 Z9 39 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1249 EP 1262 DI 10.1021/cm902714v PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600078 ER PT J AU Johnson, CS Kang, SH Vaughey, JT Pol, SV Balasubramanian, M Thackeray, MM AF Johnson, C. S. Kang, S. -H. Vaughey, J. T. Pol, S. V. Balasubramanian, M. Thackeray, M. M. TI Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID SECONDARY BATTERIES; HIGH-CAPACITY; ELECTRODES; OXIDES; INTERCALATION; CATALYST; LI2MNO3; XANES; IRON AB Lithium has been extracted both electrochemically and chemically from the defect antifluorite-type structure, Li5FeO4 (5Li(2)O center dot Fe2O3). The electrochemical data show that four lithium ions can be removed from Li5FeO4 between 3.5 and 4.5 V. vs Li-0. X-ray absorption spectroscopy (XAS) data of electrochemically delithiated samples show evidence of some Fe3+ to Fe4+ oxidation during the initial charge. On the other hand, XAS data of chemically delithiated samples show no evidence of Fe3+ to Fe4+ oxidation, but rather a change in coordination of the Fe3+ ions from tetrahedral to octahedral coordination, suggesting that lithium extraction from Li5FeO4 is accompanied predominantly by the release of oxygen, the net loss being lithia (Li2O); the residual lithium-iron-oxide product has a Fe2O3-rich composition. The high lithium content in Li5FeO4 renders it an attractive cathode precursor for loading the graphite (C-6) anode of lithium-ion electrochemical cells with sufficient lithium to enable the discharge of a charged component in the parent cathode, Li1.2V3O8, as well as the residual Fe2O3-rich component. The electrochemical behavior of C-6/Li5FeO4-Li1.2V3O8 lithium-ion cells is compared to C-6/Li2MnO3-Li1.2V3O8 cells containing a layered Li2MnO3 (Li2O center dot MnO2) cathode precursor with a lower Li2O content, from which lithia can be extracted at higher potentials, typically > 4 V vs metallic lithium. The ability to remove Li2O electrochemically from metal oxide host structures with a high lithium content, such as Li5FeO4, has implications for Li-air cells. C1 [Johnson, C. S.; Kang, S. -H.; Vaughey, J. T.; Thackeray, M. M.] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, Argonne, IL 60439 USA. [Pol, S. V.; Balasubramanian, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Johnson, CS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Energy Storage Dept, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cjohnson@anl.gov RI Kang, Sun-Ho/E-7570-2010; Pol, Swati/B-5868-2012 FU U.S. Department of Energy (DOE); NSERC; University of Washington; Simon Fraser University; Advanced Photon Source FX Financial support from the Office of Vehicle Technologies of the U.S. Department of Energy (DOE) is gratefully acknowledged. PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy - Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, Simon Fraser University and the Advanced Photon Source. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 29 TC 20 Z9 20 U1 12 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 9 PY 2010 VL 22 IS 3 BP 1263 EP 1270 DI 10.1021/cm902713m PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 549YE UT WOS:000274089600079 ER PT J AU Polaske, NW McGrath, DV McElhanon, JR AF Polaske, Nathan W. McGrath, Dominic V. McElhanon, James R. TI Thermally Reversible Dendronized Step-Polymers Based on Sequential Huisgen 1,3-Dipolar Cycloaddition and Diels-Alder "Click" Reactions SO MACROMOLECULES LA English DT Article ID BEARING FURAN MOIETIES; DENDRITIC MACROMOLECULES; HIGHLY EFFICIENT; CROSS-LINKING; CHEMISTRY; DENDRIMERS; ADDUCTS; POLYMERIZATIONS; BISMALEIMIDES; COPOLYMERS AB Thermally labile dendronized AA-BB step polymers m-e described. First through third generation dendritic bisfuran monomers 6a-6c were prepared in part by the Cu(I)-catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition reaction bind in turn polymerized by the reversible furan-maleimide Diels-Alder reaction. The Diels-Alder reaction conditions were optimized through end-capping studies with N-phenylmaleimide (7). Dendronized step polymers 10a-10c were then formed front reaction with bismaleimide 9 and their assembly, disassembly, and reassembly behavior studied by GPC. C1 [McElhanon, James R.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. [Polaske, Nathan W.; McGrath, Dominic V.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. RP McElhanon, JR (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM mcgrath@u.arizona.edu; jrmcelh@sandia.gov RI McGrath, Dominic/A-7675-2012 FU United States Department of Energy (US DOE) [De-AC04-94AL85000] FX This work was supported by the United States Department of Energy (US DOE) under Contract De-AC04-94AL85000. Sandia is a multiprogram laboratory operated by sandia Corporation, a Lockheed Martin Company, for the US DOE. Certain trade names and company products are identified in order to specify experimental procedures adequately. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose. NR 55 TC 33 Z9 35 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 9 PY 2010 VL 43 IS 3 BP 1270 EP 1276 DI 10.1021/ma902180r PG 7 WC Polymer Science SC Polymer Science GA 552DS UT WOS:000274268400019 ER PT J AU Patel, AJ Mochrie, S Narayanan, S Sandy, A Watanabe, H Balsara, NP AF Patel, Amish J. Mochrie, Simon Narayanan, Suresh Sandy, Alec Watanabe, Hiroshi Balsara, Nitash P. TI Dynamic Signatures of Microphase Separation in a Block Copolymer Melt Determined by X-ray Photon Correlation Spectroscopy and Rheology SO MACROMOLECULES LA English DT Article ID ORDER-DISORDER TRANSITION; DIFFUSIVE RELAXATION MODE; DIBLOCK COPOLYMER; LIGHT-SCATTERING; POLYMER-SOLUTIONS; CONCENTRATION FLUCTUATION; VISCOELASTIC PROPERTIES; DIELECTRIC-RELAXATION; MECHANICAL-PROPERTIES; GROWTH-KINETICS AB The relationship between structure and dynamics in a polystyrene-polyisoprene block copolymer melt in the vicinity of the order-disorder transition was studied by small-angle X-ray scattering (SAXS), X-ray photon correlation spectroscopy (XPCS), and rheology. Rheological measurements on the disordered state indicate the presence of a fast process arising from the relaxation of polyisoprene chains and a slow process resulting predominantly from the relaxation of concentration fluctuations. In contrast, XPCS measurements of the disordered phase are dominated by diffusion of micelles. Time-resolved SAXS. XPCS, and rheology experiments on samples quenched from disorder-to-order reveal the existence of two regimes. While the microscopic relaxation time, measured by XPCS, increases after all of the quenches. SAXS and rheological signatures of ordering are only seen when the quench depth exceeds a critical value of 10 degrees C. For quenches 5 degrees C below the order-to-disorder transition temperature, no changes in the SAXS profiles and rheological properties are observed on experimental time scales. It is evident that nucleation barriers preclude the formation of the ordered phase during shallow quenches. The time-resolved rheology measurements enable estimation of the nucleation barriers that are responsible for the observations in the shallow quench regime. C1 [Watanabe, Hiroshi] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Patel, Amish J.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Mochrie, Simon] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Narayanan, Suresh; Sandy, Alec] Argonne Natl Lab, Argonne, IL 60439 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Watanabe, H (reprint author), Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. FU National Science Foundation [DMR 0453856]; U.S. DOE [W-31-109-Eng-38]; Tyco Electronics FX Financial support was provided by the National Science Foundation (DMR 0453856). The APS is supported by the U.S. DOE under Contract W-31-109-Eng-38. A.J.P. gratefully acknowledged the graduate researcher fellowship from Tyco Electronics. NR 64 TC 14 Z9 14 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD FEB 9 PY 2010 VL 43 IS 3 BP 1515 EP 1523 DI 10.1021/ma902343m PG 9 WC Polymer Science SC Polymer Science GA 552DS UT WOS:000274268400049 ER PT J AU Gofryk, K Sefat, AS Bauer, ED McGuire, MA Sales, BC Mandrus, D Thompson, JD Ronning, F AF Gofryk, K. Sefat, A. S. Bauer, E. D. McGuire, M. A. Sales, B. C. Mandrus, D. Thompson, J. D. Ronning, F. TI Gap structure in the electron-doped iron-arsenide superconductor Ba(Fe0.92Co0.08)(2)As-2: low-temperature specific heat study SO NEW JOURNAL OF PHYSICS LA English DT Article ID S-WAVE SUPERCONDUCTORS; PAIRING SYMMETRY; VORTEX AB In this paper, we report the field and temperature dependence of low-temperature specific heat down to 400 mK and in magnetic fields up to 9 T of the electron-doped Ba(Fe0.92Co0.08)(2)As-2 superconductor. Using the phonon specific heat obtained from pure BaFe2As2, we found a normal state Sommerfeld coefficient of 18 mJ mol(-1) K-2 and a condensation energy of 1.27 J mol(-1). The temperature dependence of electronic specific heat clearly indicates the presence of low-energy excitations in the system. The magnetic field variation of field-induced specific heat cannot be described by single clean s- or d-wave models. Rather, the data require an anisotropic gap scenario that may or may not have nodes. We discuss the implications of these results. C1 [Gofryk, K.; Bauer, E. D.; Thompson, J. D.; Ronning, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Gofryk, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM gofryk@lanl.gov RI McGuire, Michael/B-5453-2009; Bauer, Eric/D-7212-2011; Gofryk, Krzysztof/F-8755-2014; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016; OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504; Gofryk, Krzysztof/0000-0002-8681-6857; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU US Department of Energy, Office of Science; Division of Material Sciences and Engineering Office of Basic Energy Sciences FX Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Science and supported in part by the Los Alamos LDRD program. Research at Oak Ridge National Laboratory is sponsored by the Division of Material Sciences and Engineering Office of Basic Energy Sciences. NR 60 TC 32 Z9 32 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 9 PY 2010 VL 12 AR 023006 DI 10.1088/1367-2630/12/2/023006 PG 10 WC Physics, Multidisciplinary SC Physics GA 553AB UT WOS:000274335300002 ER PT J AU Clarkson, BK Gilbert, WV Doudna, JA AF Clarkson, Bryan K. Gilbert, Wendy V. Doudna, Jennifer A. TI Functional Overlap between eIF4G Isoforms in Saccharomyces cerevisiae SO PLOS ONE LA English DT Article ID INITIATION-FACTOR 4G; CYTOPLASMIC PROCESSING BODIES; CAP-INDEPENDENT TRANSLATION; RIBOSOMAL-RNA SYNTHESIS; MESSENGER-RNA; EUKARYOTIC TRANSLATION; PROTEIN-SYNTHESIS; HELICASE ACTIVITY; DEPENDENT TRANSLATION; YEAST TRANSCRIPTOME AB Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency. C1 [Clarkson, Bryan K.; Gilbert, Wendy V.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Clarkson, BK (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI /0000-0003-2807-9657 FU NIH [K99] FX This work was supported by a program grant from the NIH (JAD), a K99 award from the NIH (WVG) and an NIH training grant (BKC). JAD is an investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 90 TC 32 Z9 33 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 9 PY 2010 VL 5 IS 2 AR e9114 DI 10.1371/journal.pone.0009114 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554NV UT WOS:000274442600012 PM 20161741 ER PT J AU Denef, VJ Kalnejais, LH Mueller, RS Wilmes, P Baker, BJ Thomas, BC VerBerkmoes, NC Hettich, RL Banfield, JF AF Denef, Vincent J. Kalnejais, Linda H. Mueller, Ryan S. Wilmes, Paul Baker, Brett J. Thomas, Brian C. VerBerkmoes, Nathan C. Hettich, Robert L. Banfield, Jillian F. TI Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE geomicrobiology; genome evolution; niche partitioning; community genomics; community proteomics ID ACID-MINE DRAINAGE; IN-SITU DETECTION; PHYLOGENETIC IDENTIFICATION; GENOMIC ANALYSIS; GENE-EXPRESSION; GROUP-II; EVOLUTION; POPULATION; DIVERSITY; PROTEOMICS AB Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillum group II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry-based proteomics, indicate increased cobalamin biosynthesis, (de) methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteo-genomic analyses show that differential regulation of shared genes and expression of a small subset of the similar to 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies. C1 [Denef, Vincent J.; Kalnejais, Linda H.; Mueller, Ryan S.; Wilmes, Paul; Baker, Brett J.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [VerBerkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Baker, Brett/P-1783-2014; Hettich, Robert/N-1458-2016; Wilmes, Paul/B-1707-2017 OI Baker, Brett/0000-0002-5971-1021; Hettich, Robert/0000-0001-7708-786X; Wilmes, Paul/0000-0002-6478-2924 FU U.S. DOE [DOE-AC05-00OR22725, DE-FG02-05ER64134] FX We thank Mr. T.W. Arman (President, Iron Mountain Mines Inc.) and Mr. R. Sugarek (U.S. Environmental Protection Agency) for site access, and Mr. R. Carver for on-site assistance. We thank Banfield laboratory members for their contributions to sample collection. B. Suttle (Imperial College, UK) and C. Miller (University of California Berkeley) are thanked for assistance with and discussion of statistical analyses. We thank C. Miller for critical reading of the manuscript. P. Abraham, M. Lefsrud, M.B. Shah, and D. Schmoyer (Oak Ridge National Laboratory [ORNL]) for their assistance with proteomic measurements and analysis. D.K. Nordstrom and B. McCleskey (U.S. Geological Survey, Boulder) for advice on field protocols and assistance with the metal analyses. We thank Dr. J.P. Gogarten and Dr. M.F. Polz for critically reviewing our paper before publication. ORNL is managed by University of Tennessee-Battelle LLC for the Department of Energy under contract DOE-AC05-00OR22725. This project was funded by Grant DE-FG02-05ER64134 from the U.S. DOE Genomics: GTL program (Office of Science). NR 51 TC 89 Z9 92 U1 3 U2 29 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 9 PY 2010 VL 107 IS 6 BP 2383 EP 2390 DI 10.1073/pnas.0907041107 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554AO UT WOS:000274408100008 PM 20133593 ER PT J AU Gaharwar, AK Schexnailder, P Kaul, V Akkus, O Zakharov, D Seifert, S Schmidt, G AF Gaharwar, Akhilesh K. Schexnailder, Patrick Kaul, Vikas Akkus, Ozan Zakharov, Dmitri Seifert, Soenke Schmidt, Gudrun TI Highly Extensible Bio-Nanocomposite Films with Direction-Dependent Properties SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LAYERED SILICATE NANOCOMPOSITES; POLYMER NANOCOMPOSITES; MATERIALS SCIENCE; BLOCK-COPOLYMER; BONE; CRYSTALLIZATION; REQUIREMENT; COMPOSITES; EXPRESSION; NANOSCALE AB The structure and mechanical properties of bio-nanocomposite films made from poly(ethylene oxide) (PEO) that is physically cross-linked with silicate nanoparticles, Laponite, are investigated. Direction-dependent mechanical properties of the films are presented, and the effect of shear orientation during sample preparation oon tensile strength and elongation is assessed. Repeated mechanical deformation results in highly extensible materials with preferred orientation and structuring at the nano- and micrometer scales. Additionally, in vitro biocompatibility data are reported, and NIH 3T3 fibroblasts are observed to readily adhere and proliferate on silicate cross-linked PEO while maintaining high cell viability. C1 [Gaharwar, Akhilesh K.; Schexnailder, Patrick; Kaul, Vikas; Akkus, Ozan; Schmidt, Gudrun] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. [Zakharov, Dmitri] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gaharwar, AK (reprint author), Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. EM gudrun@purdue.edu RI Gaharwar, Akhilesh/C-5856-2009; Gaharwar, Akhilesh/A-2002-2014; Zakharov, Dmitri/F-4493-2014 OI Gaharwar, Akhilesh/0000-0002-0284-0201; Gaharwar, Akhilesh/0000-0002-0284-0201; FU NSF [0711783] FX Work by the authors was supported by an NSF-CAREER award 0711783 to GS and a Purdue Lynn Doctorai fellowship to PS. The authors acknowledge Avinash Dundigalla for providing the SEM image. The authors declare that they have no conflict of interest. NR 45 TC 43 Z9 43 U1 9 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 8 PY 2010 VL 20 IS 3 BP 429 EP 436 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 557BY UT WOS:000274644400008 ER PT J AU Sun, YK Kim, DH Yoon, CS Myung, ST Prakash, J Amine, K AF Sun, Yang-Kook Kim, Dong-Hui Yoon, Chong Seung Myung, Seung-Taek Prakash, Jai Amine, Khalil TI A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID POSITIVE ELECTRODE MATERIALS; SECONDARY BATTERIES; ELECTROCHEMICAL PROPERTIES; SIGNIFICANT IMPROVEMENT; ELEVATED-TEMPERATURE; THERMAL-BEHAVIOR; CYCLING BEHAVIOR; PERFORMANCE; COPRECIPITATION; SPINEL AB A high-energy functional cathode material with an average composition of Li[Ni(0.72)Co(0.18)Mn(0.10)]O(2), mainly comprising a core material Li[Ni(0.8)Co(0.2)]O(2) encapsulated completely within a stable manganese-rich concentration-gradient shell is successfully synthesized by a co-precipitation process. The Li[Ni(0.72)Co(0.18)Mn(0.10)]O(2) with a concentration-gradient shell has a shell thickness of about 1 mu m and an outer shell composition rich in manganese, Li[Ni(0.55)Co(0.15)Mn(0.30)]O(2). The core material can deliver a very high capacity of over 200 mA h g(-1), while the manganese-rich concentration-gradient shell improves the cycling and thermal stability of the material. These improvements are caused by a gradual and continuous increase of the stable tetravalent Mn in the concentration-gradient shell layer. The electrochemical and thermal properties of this cathode material are found to be far superior to those of the core Li[Ni(0.8)Co(0.2)]O(2) material alone. Electron microscopy also reveals that the original crystal structure of this material remains intact after cycling. C1 [Sun, Yang-Kook; Kim, Dong-Hui] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. [Amine, Khalil] Argonne Natl Lab, Electrochem Technol Program, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Yoon, Chong Seung] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea. [Myung, Seung-Taek] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan. [Prakash, Jai] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA. RP Sun, YK (reprint author), Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr; amine@anl.gov RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013; OI Sun, Yang-Kook/0000-0002-0117-0170; Myung, Seung-Taek/0000-0001-6888-5376 FU Korea government (MEST) [2009-0092780]; US Department of Energy, Vehicle Technologies Office FX This work was carried out in close collaboration between Hanyang University and Argonne National Laboratory. The work at Hanyang University was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0092780). The work at Argonne was funded by the US Department of Energy, Vehicle Technologies Office. Supporting Information is available online from Wiley InterScience or from the authors. NR 24 TC 106 Z9 107 U1 17 U2 134 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD FEB 8 PY 2010 VL 20 IS 3 BP 485 EP 491 DI 10.1002/adfm.200901730 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 557BY UT WOS:000274644400015 ER PT J AU Huang, LP Liu, YC Gubbins, KE Nardelli, MB AF Huang, Liping Liu, Ying-Chun Gubbins, Keith E. Nardelli, Marco Buongiorno TI Ti-decorated C-60 as catalyst for hydrogen generation and storage SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; adsorption; catalysts; chemisorption; density functional theory; dissociation; fullerenes; hydrogen; hydrogen storage; moisture; nanostructured materials; titanium; water ID CORRELATION-ENERGY; DENSITY AB First-principles calculations were carried out to study Ti-C-60 nanostructures as catalysts for water dissociation to generate hydrogen and elucidate the influence of water moisture in the air on hydrogen storage capability of such systems. Our results show that both Ti atoms and dimers on C-60 can act as reaction centers for water dissociation with much lower energy barriers than that for water splitting in free space (similar to 5 eV). After water dissociation, Ti atoms are covered with OH groups, their interaction with hydrogen is substantially reduced, and hydrogen adsorption is changed from chemisorption to physisorption. Therefore, care needs to be taken to eliminate moisture if they were designed as efficient hydrogen storage media. C1 [Huang, Liping] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Liu, Ying-Chun] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. [Liu, Ying-Chun; Gubbins, Keith E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Gubbins, Keith E.] N Carolina State Univ, Inst Computat Sci & Engn, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, Marco Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37381 USA. RP Huang, LP (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM huang15@rpi.edu RI Buongiorno Nardelli, Marco/C-9089-2009; Huang, Liping/B-4412-2008 FU American Chemical Society [48623-AC6]; National Natural Science Foundation of China [20876132]; National Natural Science Foundation of Zhejiang Province, China [Y4080131]; BES, U. S. DOE [DE-FG02-98ER14847, DE-AC05-00OR22725] FX L. H. would like to acknowledge RPI start-up funds for this research. This work was also supported in part by the Petroleum Research Fund of the American Chemical Society (Grant No. 48623-AC6), the National Natural Science Foundation of China (Grant No. 20876132), National Natural Science Foundation of Zhejiang Province, China (Grant No. Y4080131), and by BES, U. S. DOE at ORNL (Grant Nos. DE-FG02-98ER14847 and DE-AC05-00OR22725 with UT-Battelle, LLC). Liping Huang and Ying-Chun Liu contributed equally to this paper. NR 18 TC 11 Z9 11 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 8 PY 2010 VL 96 IS 6 AR 063111 DI 10.1063/1.3302469 PG 3 WC Physics, Applied SC Physics GA 555MV UT WOS:000274516900065 ER PT J AU Ogawa, Y Minami, F Abate, Y Leone, SR AF Ogawa, Y. Minami, F. Abate, Yohannes Leone, Stephen R. TI Nanometer-scale dielectric constant of Ge quantum dots using apertureless near-field scanning optical microscopy SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; germanium; optical microscopy; permittivity; semiconductor quantum dots ID CONFINEMENT; SCATTERING; SI AB Tip-enhanced near-field scattering images of Ge quantum dots (QDs) with 20-40 nm height and 220-270 nm diameter grown on a Si substrate have been observed with a spatial resolution of 15 nm. Changing the wavelength of the incident light, the contrast of the images is reversed. It is found that the scattering intensity is caused by the dielectric constants of the materials under the probe. By changing the wavelength of the incident light, we have obtained information about the dielectric constant dispersion of single Ge QDs. C1 [Ogawa, Y.; Minami, F.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Abate, Yohannes; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem & Phys, Berkeley, CA 94720 USA. [Abate, Yohannes; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ogawa, Y (reprint author), Tokyo Inst Technol, Dept Phys, Oh Okayama 2-12-1, Tokyo 1528551, Japan. EM y.ogawa@ap.titech.ac.jp FU MEXT, Japan; Tokyo Institute of Technology; Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Global Center of Excellence Program by MEXT, Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology. The researchers at Berkeley are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 18 TC 10 Z9 10 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 8 PY 2010 VL 96 IS 6 AR 063107 DI 10.1063/1.3309692 PG 3 WC Physics, Applied SC Physics GA 555MV UT WOS:000274516900061 ER PT J AU Yang, RQ Tian, ZB Klem, JF Mishima, TD Santos, MB Johnson, MB AF Yang, Rui Q. Tian, Zhaobing Klem, J. F. Mishima, Tetsuya D. Santos, Michael B. Johnson, Matthew B. TI Interband cascade photovoltaic devices SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; gallium compounds; III-V semiconductors; indium compounds; infrared detectors; lasers; photodetectors; thermoelectric conversion AB A photovoltaic (PV) device based on an interband cascade (IC) structure is proposed for efficiently converting solar and thermal energy to electricity. These IC PV devices employ absorption and transport regions with characteristics that are favorable for achieving high open-circuit voltage and thus possibly improving conversion efficiency over conventional PV devices. Preliminary experiments carried out using IC infrared photodetectors (seven stages) and lasers (11 stages) showed open-circuit voltages that exceed the single-band gap voltage from these devices under infrared illumination. The observed open-circuit voltage demonstrates multiple stages operating in series and provides an initial proof of concept for IC PV devices. C1 [Yang, Rui Q.; Tian, Zhaobing] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA. [Klem, J. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. RP Yang, RQ (reprint author), Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA. EM rui.q.yang@ou.edu RI Tian, Zhaobing/C-9705-2011; Santos, Michael/B-5836-2013 FU NSF [0838439]; AFOSR [FA9550-09-1-0288]; C-SPIN; MRSEC [DMR-0520550]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Zhihua Cai for his technical assistance. This work is supported in part by a new faculty start-up fund at OU, by NSF (Award No. 0838439), by AFOSR (Award No. FA9550-09-1-0288), and by C-SPIN, the Oklahoma/Arkansas MRSEC (Grant No. DMR-0520550). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 6 TC 26 Z9 28 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 8 PY 2010 VL 96 IS 6 AR 063504 DI 10.1063/1.3313934 PG 3 WC Physics, Applied SC Physics GA 555MV UT WOS:000274516900074 ER PT J AU Zheng, M Takei, K Hsia, B Fang, H Zhang, XB Ferralis, N Ko, H Chueh, YL Zhang, YG Maboudian, R Javey, A AF Zheng, Maxwell Takei, Kuniharu Hsia, Benjamin Fang, Hui Zhang, Xiaobo Ferralis, Nicola Ko, Hyunhyub Chueh, Yu-Lun Zhang, Yuegang Maboudian, Roya Javey, Ali TI Metal-catalyzed crystallization of amorphous carbon to graphene SO APPLIED PHYSICS LETTERS LA English DT Article DE amorphous state; annealing; catalysis; crystallisation; graphene; precipitation; Raman spectra; thin films ID CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; LARGE-AREA; DEVICES; FILMS AB Metal-catalyzed crystallization of amorphous carbon to graphene by thermal annealing is demonstrated. In this "limited source" process scheme, the thickness of the precipitated graphene is directly controlled by the thickness of the initial amorphous carbon layer. This is in contrast to chemical vapor deposition processes, where the carbon source is virtually unlimited and controlling the number of graphene layers depends on the tight control over a number of deposition parameters. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as chemical vapor deposition. The ability to synthesize graphene sheets with tunable thickness over large areas presents an important progress toward their eventual integration for various technological applications. C1 [Zheng, Maxwell; Takei, Kuniharu; Fang, Hui; Zhang, Xiaobo; Ko, Hyunhyub; Chueh, Yu-Lun; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Zheng, Maxwell; Takei, Kuniharu; Fang, Hui; Zhang, Xiaobo; Ko, Hyunhyub; Chueh, Yu-Lun; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zheng, Maxwell; Takei, Kuniharu; Fang, Hui; Zhang, Xiaobo; Ko, Hyunhyub; Chueh, Yu-Lun; Maboudian, Roya; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Hsia, Benjamin; Ferralis, Nicola; Maboudian, Roya] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Zheng, M (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Zhang, Xiaobo/B-3818-2012; Fang, Hui/I-8973-2014; Javey, Ali/B-4818-2013; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013 OI Fang, Hui/0000-0002-4651-9786; Chueh, Yu-Lun/0000-0002-0155-9987 FU MSD Focus Center; Intel; NSF [EEC-0832819, CMMI-0825531]; Molecular Foundry; LBNL FX The authors acknowledge support from MSD Focus Center, Intel and NSF (Grant Nos. EEC-0832819 and CMMI-0825531). The fabrication part of this work was partially supported by the Molecular Foundry and a LDRD from LBNL. M. Z. acknowledges a SRC research scholarship. NR 18 TC 127 Z9 129 U1 13 U2 112 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 8 PY 2010 VL 96 IS 6 AR 063110 DI 10.1063/1.3318263 PG 3 WC Physics, Applied SC Physics GA 555MV UT WOS:000274516900064 ER PT J AU Pomerantz, I Bubis, N Allada, K Beck, A Beck, S Berman, BL Boeglin, W Camsonne, A Canan, M Chirapatpimol, K Cisbani, E Cusanno, F de Jager, CW Dutta, C Garibaldi, F Geagla, O Gilman, R Glister, J Higinbotham, DW Jiang, X Katramatou, AT Khrosinkova, E Lee, BW LeRose, JJ Lindgren, R McCcullough, E Meekins, D Michaels, R Moffit, B Petratos, GG Piasetzky, E Qian, X Qiang, Y Rodriguez, I Ron, G Saha, A Sarty, AJ Sawatzky, B Schulte, E Shneor, R Sparveris, N Subedi, R Strauch, S Sulkosky, V Wang, Y Wojtsekhowski, B Yan, X Yao, H Zhan, X Zheng, X AF Pomerantz, I. Bubis, N. Allada, K. Beck, A. Beck, S. Berman, B. L. Boeglin, W. Camsonne, A. Canan, M. Chirapatpimol, K. Cisbani, E. Cusanno, F. de Jager, C. W. Dutta, C. Garibaldi, F. Geagla, O. Gilman, R. Glister, J. Higinbotham, D. W. Jiang, X. Katramatou, A. T. Khrosinkova, E. Lee, B. W. LeRose, J. J. Lindgren, R. McCcullough, E. Meekins, D. Michaels, R. Moffit, B. Petratos, G. G. Piasetzky, E. Qian, X. Qiang, Y. Rodriguez, I. Ron, G. Saha, A. Sarty, A. J. Sawatzky, B. Schulte, E. Shneor, R. Sparveris, N. Subedi, R. Strauch, S. Sulkosky, V. Wang, Y. Wojtsekhowski, B. Yan, X. Yao, H. Zhan, X. Zheng, X. TI Hard photodisintegration of a proton pair SO PHYSICS LETTERS B LA English DT Article ID GLUON STRINGS MODEL; DEUTERON PHOTODISINTEGRATION; 2-BODY PHOTODISINTEGRATION; ELECTROMAGNETIC REACTIONS; POLARIZATION OBSERVABLES; QUANTUM CHROMODYNAMICS; PHOTON ENERGIES; PION THRESHOLD; CROSS-SECTION; PHOTOPRODUCTION AB We present a Study of high energy photodisintegration of proton-pairs through the gamma + (3)He -> p + p + n channel. Photon energies, E(gamma), from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s(-11) scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photoclisintegration. For E(gamma) below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration. (C) 2010 Elsevier B.V. All rights reserved. C1 [Camsonne, A.; de Jager, C. W.; Gilman, R.; Higinbotham, D. W.; LeRose, J. J.; Michaels, R.; Saha, A.; Sulkosky, V.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Pomerantz, I.; Bubis, N.; Piasetzky, E.; Shneor, R.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Allada, K.; Dutta, C.] Univ Kentucky, Lexington, KY 40506 USA. [Beck, A.; Beck, S.] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel. [Berman, B. L.] George Washington Univ, Washington, DC 20052 USA. [Boeglin, W.; Rodriguez, I.] Florida Int Univ, Miami, FL 33199 USA. [Canan, M.] Old Dominion Univ, Norfolk, VA 23508 USA. [Chirapatpimol, K.; Geagla, O.; Lindgren, R.; Sawatzky, B.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Coll Sanita, I-00161 Rome, Italy. [Cisbani, E.; Cusanno, F.; Garibaldi, F.] Ist Super Sanita, Dept TESA, I-00161 Rome, Italy. [Gilman, R.; Jiang, X.; Schulte, E.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Glister, J.; McCcullough, E.; Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Glister, J.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada. [Katramatou, A. T.; Khrosinkova, E.; Petratos, G. G.; Subedi, R.] Kent State Univ, Kent, OH 44242 USA. [Lee, B. W.; Yan, X.] Seoul Natl Univ, Seoul 151747, South Korea. [Moffit, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Qian, X.] Duke Univ, Durham, NC 27708 USA. [Qiang, Y.; Sparveris, N.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Ron, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sawatzky, B.; Yao, H.] Temple Univ, Philadelphia, PA 19122 USA. [Strauch, S.] Univ S Carolina, Columbia, SC 29208 USA. [Wang, Y.] Univ Illinois, Urbana, IL 61801 USA. RP Higinbotham, DW (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM doug@jlab.org RI Cisbani, Evaristo/C-9249-2011; Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014; OI Cisbani, Evaristo/0000-0002-6774-8473; Higinbotham, Douglas/0000-0003-2758-6526; Qian, Xin/0000-0002-7903-7935 FU US Department of Energy; US National Science Foundation; Israel Science Foundation; US-Israeli Bi-National Scientific Foundation FX We thank M.M. Sargsian for initiating and escorting this study and S.J. Brodsky, L.L. Frankfurt and M. Strikman for helpful discussions. We thank the JLab physics and accelerator divisions for their support and especially the CLAS Collaboration of Hall B, for allowing us access to their data. This work was supported by the US Department of Energy, the US National Science Foundation, the Israel Science Foundation, and the US-Israeli Bi-National Scientific Foundation. Jefferson Science Associates operates the Thornas Jefferson National Accelerator Facility under DOE contract DE-AC05-060R23177. NR 47 TC 13 Z9 13 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 8 PY 2010 VL 684 IS 2-3 BP 106 EP 109 DI 10.1016/j.physletb.2009.12.050 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 561IV UT WOS:000274970500009 ER PT J AU Airapetian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avetissian, A Avetisyan, E Ball, B Belostotski, S Bianchi, N Blok, HP Bottcher, H Bonomo, C Borissov, A Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Nardo, L De Leo, R Dreschler, J De Sanctis, E Diefenthaler, M Di Nezzai, P Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Fabbri, R Felawka, L Fantoni, A Frullani, S Gabbert, D Gapienko, V Garibaldi, F Gharibyan, V Giordano, F Gliske, S Hadjidakis, C Hartig, M Hasch, D Hill, G Hillenbrand, A Hoek, M Holler, Y Hristova, I Imazu, Y Ivanilov, A Jackson, HE Jo, HS Jgoun, A Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Korotkov, V Kozlov, V Kravchenko, P Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Linden-Levy, LA Ruiz, AL Lorenzon, W Lu, XG Lu, XR Ma, BQ Mahon, D Makins, NCR Manaenkov, SI Manfre, L Mao, Y Marianski, B de la Ossa, AM Marukyan, H Miller, CA Miyachi, Y Movsisyan, A Muccifora, V Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Sanftl, F Schafer, A Schnell, G Schuler, KP Seitz, B Shibata, TA Shutov, V Stancari, M Staterai, M Steffens, E Steijger, JJM Stenzel, H Stewart, J Stinzing, F Taroian, S Trzcinski, A Tytgat, M Vandenbroucke, A van der Nat, PB Van Haarlem, Y Van Hulse, C Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, H Ye, Z Yu, W Zeiller, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avetissian, A. Avetisyan, E. Ball, B. Belostotski, S. Bianchi, N. Blok, H. P. Boettcher, H. Bonomo, C. Borissov, A. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Nardo, L. De Leo, R. Dreschler, J. De Sanctis, E. Diefenthaler, M. Di Nezzai, P. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Fabbri, R. Felawka, L. Fantoni, A. Frullani, S. Gabbert, D. Gapienko, V. Garibaldi, F. Gharibyan, V. Giordano, F. Gliske, S. Hadjidakis, C. Hartig, M. Hasch, D. Hill, G. Hillenbrand, A. Hoek, M. Holler, Y. Hristova, I. Imazu, Y. Ivanilov, A. Jackson, H. E. Jo, H. S. Jgoun, A. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Korotkov, V. Kozlov, V. Kravchenko, P. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Linden-Levy, L. A. Ruiz, A. Lopez Lorenzon, W. Lu, X. -G. Lu, X. -R. Ma, B. -Q. Mahon, D. Makins, N. C. R. Manaenkov, S. I. Manfre, L. Mao, Y. Marianski, B. de la Ossa, A. Martinez Marukyan, H. Miller, C. A. Miyachi, Y. Movsisyan, A. Muccifora, V. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanftl, F. Schaefer, A. Schnell, G. Schueler, K. P. Seitz, B. Shibata, T. A. Shutov, V. Stancari, M. Staterai, M. Steffens, E. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, F. Taroian, S. Trzcinski, A. Tytgat, M. Vandenbroucke, A. van der Nat, P. B. Van Haarlem, Y. Van Hulse, C. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, H. Ye, Z. Yu, W. Zeiller, D. Zihlmann, B. Zupranski, P. TI Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei SO PHYSICS LETTERS B LA English DT Article ID HADRONIZATION; FRAGMENTATION; DEUTERIUM; TARGETS AB The first detailed measurement of the dependence oil target nuclear mass of the average Squared transverse momentum < p(t)(2)> of pi(+), pi(-), and K+ mesons from deep-inelastic lepton scattering is obtained as a function of several kinematic variables. The data were accumulated at the HERMES experiment at DESY, in which the HERA 27.6 GeV lepton beam was scattered off several nuclear gas targets. The average squared transverse momentum was clearly observed to increase with atomic mass number. The effect increases as a function of Q(2) and x and remains constant as a function of both the virtual photon energy v and the fractional hadron energy z, except that it vanishes as z approaches unity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Diefenthaler, M.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiller, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ma, B. -Q.; Mao, Y.; Wang, S.; Ye, H.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Giordano, F.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Boettcher, H.; Fabbri, R.; Gabbert, D.; Hillenbrand, A.; Hristova, I.; Lu, X. -G.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany. [Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Staterai, M.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Staterai, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezzai, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Jo, H. S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Airapetian, A.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany. [Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Diefenthaler, M.; Joosten, S.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Ball, B.; Deconinck, W.; De Nardo, L.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Dreschler, J.; Lapikas, L.; Steijger, J. J. M.; van der Nat, P. B.] Natl Inst Subatom Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Jgoun, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Bryzgalov, V.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. [Felawka, L.; Miller, C. A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Imazu, Y.; Lu, X. -R.; Miyachi, Y.; Shibata, T. A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Studies, PL-00689 Warsaw, Poland. [Akopov, N.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Rith, K (reprint author), Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. EM klaus.rith@desy.de RI Cisbani, Evaristo/C-9249-2011; Deconinck, Wouter/F-4054-2012; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Kozlov, Valentin/M-8000-2015; OI Cisbani, Evaristo/0000-0002-6774-8473; Lagamba, Luigi/0000-0002-0233-9812; Deconinck, Wouter/0000-0003-4033-6716 NR 28 TC 31 Z9 31 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 8 PY 2010 VL 684 IS 2-3 BP 114 EP 118 DI 10.1016/j.physletb.2010.01.020 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 561IV UT WOS:000274970500011 ER PT J AU Allen, CD Macalady, AK Chenchouni, H Bachelet, D McDowell, N Vennetier, M Kitzberger, T Rigling, A Breshears, DD Hogg, EH Gonzalez, P Fensham, R Zhang, Z Castro, J Demidova, N Lim, JH Allard, G Running, SW Semerci, A Cobb, N AF Allen, Craig D. Macalady, Alison K. Chenchouni, Haroun Bachelet, Dominique McDowell, Nate Vennetier, Michel Kitzberger, Thomas Rigling, Andreas Breshears, David D. Hogg, E. H. (Ted) Gonzalez, Patrick Fensham, Rod Zhang, Zhen Castro, Jorge Demidova, Natalia Lim, Jong-Hwan Allard, Gillian Running, Steven W. Semerci, Akkin Cobb, Neil TI A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article; Proceedings Paper CT Conference on Adaptation of Forests and Forest Management to Changing Climate with Emphasis on Forest Health CY AUG 25-28, 2008 CL Umea, SWEDEN DE Climate change; Drought effects; Forest die-off; Forest mortality; Global patterns; Tree mortality ID PINYON-JUNIPER WOODLANDS; PINE PINUS-SYLVESTRIS; GONAREZHOU-NATIONAL-PARK; MISTLETOE VISCUM-ALBUM; SWISS RHONE VALLEY; EL-NINO DROUGHT; RAIN-FOREST; UNITED-STATES; NORTH-AMERICA; NEW-ZEALAND AB Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide. Published by Elsevier B.V. C1 [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. [Macalady, Alison K.] Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA. [Macalady, Alison K.] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. [Chenchouni, Haroun] Univ Batna, Dept Biol, Batna 05000, Algeria. [Bachelet, Dominique] Oregon State Univ, Dept Biol & Ecol Engn, Corvallis, OR 97330 USA. [McDowell, Nate] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Vennetier, Michel] Aix Marseille Univ, ECCOREV FR 3098, CEMAGREF, Aix En Provence, France. [Kitzberger, Thomas] Consejo Nacl Invest Cient & Tecn, INIBIOMA, Lab Ecotono, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Kitzberger, Thomas] Univ Nacl Comahue, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Rigling, Andreas] Swiss Fed Inst Forest Snow & Landscape Res WSL, CH-8903 Birmensdorf, Switzerland. [Breshears, David D.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Hogg, E. H. (Ted)] Canadian Forest Serv, No Forestry Ctr, Edmonton, AB T6H 3S5, Canada. [Gonzalez, Patrick] Univ Calif Berkeley, Ctr Forestry, Berkeley, CA 94720 USA. [Fensham, Rod] Environm Protect Agcy, Queensland Herbarium, Toowong, Qld 4066, Australia. [Zhang, Zhen] Chinese Acad Forestry, Res Inst Forest Ecol Environm & Protect, Key Lab Forest Protect, State Forestry Adm, Beijing 100091, Peoples R China. [Castro, Jorge] Univ Granada, Dept Ecol, Grp Ecol Terr, E-18071 Granada, Spain. [Demidova, Natalia] No Res Inst Forestry, Arkhangelsk 163062, Russia. [Lim, Jong-Hwan] Korea Forest Res Inst, Dept Forest Conservat, Div Forest Ecol, Seoul 130712, South Korea. [Allard, Gillian] FAO, Dept Forestry, I-00100 Rome, Italy. [Running, Steven W.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Semerci, Akkin] Cent Anatolia Forestry Res Inst, TR-06501 Bahcelievler Ankara, Turkey. [Cobb, Neil] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Cobb, Neil] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA. RP Allen, CD (reprint author), US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. EM craig_allen@usgs.gov RI Chenchouni, Haroun/I-7494-2012; Rigling, Andreas/B-9665-2013; Vennetier, Michel/B-1354-2012; Gonzalez, Patrick/B-9479-2013; Castro, Jorge/M-1509-2014; Kitzberger, Thomas/H-9209-2015; Breshears, David/B-9318-2009; Wang, Jin-xin/B-4770-2009 OI Hogg, Ted/0000-0002-6198-0124; Chenchouni, Haroun/0000-0001-9077-2706; Vennetier, Michel/0000-0002-7549-5701; Gonzalez, Patrick/0000-0002-7105-0561; Castro, Jorge/0000-0002-6362-2240; Kitzberger, Thomas/0000-0002-9754-4121; Breshears, David/0000-0001-6601-0058; NR 260 TC 1611 Z9 1672 U1 200 U2 1461 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD FEB 5 PY 2010 VL 259 IS 4 SI SI BP 660 EP 684 DI 10.1016/j.foreco.2009.09.001 PG 25 WC Forestry SC Forestry GA 561XW UT WOS:000275014400002 ER PT J AU Uzun, A Ortalan, V Browning, ND Gates, BC AF Uzun, Alper Ortalan, Volkan Browning, Nigel D. Gates, Bruce C. TI A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy SO JOURNAL OF CATALYSIS LA English DT Article DE Scanning transmission electron microscopy; Iridium complex catalyst; Ethene hydrogenation; Single-atom imaging ID RAY-ABSORPTION-SPECTROSCOPY; INFRARED-SPECTROSCOPY; ETHENE HYDROGENATION; ZEOLITE-Y; OXIDATION; CLUSTERS; CO; IR; IDENTIFICATION; REACTIVITY AB Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C(2)H(4))(2)(acac) (acac is CH(3)CCCHCOCH(3)) wit:h highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C(2)H(4))(2), formed by the dissociation of the acac ligand from Ir(C(2)H(4))(2)(acac) and bonding of the Ir(C(2)H(4))(2) species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO)(2) complexes On the MgO surface. The breadth of the nu(CO) bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support. (C) 2009 Published by Elsevier Inc. C1 [Uzun, Alper; Ortalan, Volkan; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu OI Uzun, Alper/0000-0001-7024-2900; Browning, Nigel/0000-0003-0491-251X FU US Department of Energy (DOE) [DE-FG02-04ER15600]; National Science Foundation (NSF) [CTS-0500511] FX This research was supported by the US Department of Energy (DOE) (A.U., Grant No. DE-FG02-04ER15600) and by the National Science Foundation (NSF) (V.O., Grant No. CTS-0500511). We acknowledge beam time and the support of the DOE Division of Materials Sciences for its role in the operation and development of beamline X-18B at the National Synchrotron Light Source. We further acknowledge the Stanford Synchrotron Radiation Laboratory, operated by Stanford University for the US Department of Energy, Office of Science, Basic Energy Science, for access to beam time on beamline 2-3. We thank the beamline staffs at both facilities for their assistance. The STEM images were acquired at Oak Ridge National Laboratory's Shared Research Equipment (SHaRE) User Facility, supported by the Division of Scientific User Facilities, Office of Science, Basic Energy Science, DOE. NR 38 TC 46 Z9 46 U1 7 U2 56 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB 5 PY 2010 VL 269 IS 2 BP 318 EP 328 DI 10.1016/j.jcat.2009.11.017 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 569HK UT WOS:000275587000008 ER PT J AU Feng, H Elam, JW Libera, JA Pellin, MJ Stair, PC AF Feng, H. Elam, J. W. Libera, J. A. Pellin, M. J. Stair, P. C. TI Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths SO JOURNAL OF CATALYSIS LA English DT Article DE Oxidative dehydrogenation (ODH); Cyclohexane; Vanadium oxides (VOx); Anodic aluminum oxide (AAO); Atomic layer deposition (ALD) ID ATOMIC LAYER DEPOSITION; SITU INFRARED TECHNIQUES; DIFFUSE-REFLECTANCE; METHANOL CHEMISORPTION; RAMAN-SPECTROSCOPY; ACTIVE-SITES; CATALYSTS; SURFACE; PROPANE; FREQUENCIES AB Featuring highly ordered one-dimensional nanopores, anodic aluminum oxide (AAO) makes an ideal substrate for fabrication of catalysts by atomic layer deposition (ALD). Vanadium oxide (VOx) catalysts supported on AAOs and prepared by ALD and incipient wetness impregnation are characterized by X-ray fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. At low loadings (<4 V/nm(2)) the supported VOx are mostly isolated monomers; polyvanadate domains are gradually formed as the surface vanadium content increases. The catalytic performance at a series of loadings (<3-32 V/nm(2)), and hence different forms of VOx, for the oxidative dehydrogenation (ODH) of cyclohexane are investigated. Compared to the catalysts prepared by incipient wetness impregnation, the ALD VOx catalysts show specific activities that are between 2 and 7.5 times higher. This reflects a better dispersion of the catalytic species on the surface as synthesized by ALD. In the cyclohexane ODH reaction with the supported ALD VOx, the kinetic orders and activation energies are comparable to kinetics data reported previously for the supported VOx. The results indicate that the ALD technique can be applied as an alternative approach to synthesize the supported VOx catalysts and achieves very good dispersion even at loadings above one monolayer (8 V/nm(2)). In the ODH reaction, polyvanadate sites are shown to be more active, overall, than monovanadate sites. However, numerical modeling of the reaction pathways indicates that the olefin formation rate is similar to 3 times faster on monomeric VOx sites than on polymeric VOx. By comparing the ODH of cyclohexane and the oxidations of cyclohexene and benzene, we find that both the sequential path and the direct path (the direct conversion from cyclohexane to benzene) are important in the oxidation process of cyclohexane. (C) 2009 Elsevier Inc. All rights reserved. C1 [Stair, P. C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Stair, P. C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Elam, J. W.; Libera, J. A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Feng, H.; Stair, P. C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU US Department of Energy, Office of Basic Energy Science [DE-AC02-06CH11357, DE-FG02-03-ER15457] FX This work was supported by the US Department of Energy, Office of Basic Energy Science, under Contracts DE-AC02-06CH11357 and DE-FG02-03-ER15457. NR 49 TC 49 Z9 50 U1 3 U2 97 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB 5 PY 2010 VL 269 IS 2 BP 421 EP 431 DI 10.1016/j.jcat.2009.11.026 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 569HK UT WOS:000275587000019 ER PT J AU Svec, F AF Svec, Frantisek TI Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation SO JOURNAL OF CHROMATOGRAPHY A LA English DT Review DE Monolith; Polymerization; Radical; Polycondensation; Grafting ID PERFORMANCE LIQUID-CHROMATOGRAPHY; OPENING METATHESIS POLYMERIZATION; FREE-RADICAL POLYMERIZATION; CO-ETHYLENE DIMETHACRYLATE); SOLID-PHASE EXTRACTION; IONIZATION MASS-SPECTROMETRY; SUPERCRITICAL CARBON-DIOXIDE; MACROPOROUS POLYACRYLAMIDE-GEL; EXCHANGE STATIONARY PHASES; LESS COMMON APPLICATIONS AB The porous polymer monoliths went a long way since their invention two decades ago. While the first studies applied the traditional polymerization processes at that time well established for the preparation of polymer particles, creativity of scientists interested in the monolithic structures has later led to the use of numerous less common techniques. This review article presents vast variety of methods that have meanwhile emerged. The text first briefly describes the early approaches used for the preparation of monoliths comprising standard free radical polymerizations and includes their development up to present days. Specific attention is paid to the effects of process variables on the formation of both porous structure and pore surface chemistry. Specific attention is also devoted to the use of photopolymerization. Then, several less common free radical polymerization techniques are presented in more detail such as those initiated by gamma-rays and electron beam, the preparation of monoliths from high internal phase emulsions, and cryogels. Living processes including stable free radicals, atom transfer radical polymerization, and ring-opening metathesis polymerization are also discussed. The review ends with description of preparation methods based on polycondensation and polyaddition reactions as well as on precipitation of preformed polymers affording the monolithic materials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Svec, Frantisek] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, MS 67R6110, Berkeley, CA 94720 USA. EM fsvec@lbl.gov FU National Institutes of Health [GM-48364, EB-006133]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Support of this work by grants of the National Institutes of Health (GM-48364 and EB-006133) is gratefully acknowledged. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 233 TC 327 Z9 334 U1 31 U2 344 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD FEB 5 PY 2010 VL 1217 IS 6 SI SI BP 902 EP 924 DI 10.1016/j.chroma.2009.09.073 PG 23 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 550DS UT WOS:000274109100012 PM 19828151 ER PT J AU Wang, XF Ding, B Yu, JY Wang, MR Pan, FK AF Wang, Xianfeng Ding, Bin Yu, Jianyong Wang, Moran Pan, Fukui TI A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance SO NANOTECHNOLOGY LA English DT Article ID ELECTROSPUN NANOFIBERS; SENSING PROPERTIES; GAS SENSORS; POLYMER; FIBERS; FILMS; WATER; POLYELECTROLYTE; SORPTION; VAPOR AB A novel humidity sensor was fabricated by electrospinning deposition of nanofibrous polyelectrolyte membranes as sensitive coatings on a quartz crystal microbalance (QCM). The results of sensing experiments indicated that the response of the sensors increased by more than two orders of magnitude with increasing relative humidity (RH) from 6 to 95% at room temperature, exhibiting high sensitivity, and that, in the range of 20-95% RH, the Log(Delta f) showed good linearity. The sensitivity of fibrous composite polyacrylic acid (PAA)/poly(vinyl alcohol) (PVA) membranes was two times higher than that of the corresponding flat films at 95% RH. Compared with fibrous PAA/PVA membranes, the nanofibrous PAA membranes exhibited remarkably enhanced humidity sensitivity due to their high PAA content and large specific surface area caused by the formation of ultrathin nanowebs among electrospun fibers. Additionally, the resultant sensors exhibited a good reversible behavior and good long term stability. C1 [Wang, Xianfeng; Ding, Bin] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. [Wang, Xianfeng; Ding, Bin; Yu, Jianyong] Donghua Univ, Modern Text Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China. [Wang, Xianfeng] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Wang, Moran] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pan, Fukui] Qingdao Univ, Coll Text & Fash, Qingdao 266071, Peoples R China. RP Ding, B (reprint author), Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. EM binding@dhu.edu.cn RI Wang, Moran/A-1150-2010; Wang, Xianfeng/I-9846-2014 FU National Natural Science Foundation of China [50803009, 10872048]; Program of Introducing Talents of Discipline to Universities [111-2-04, B07024] FX This work was partly supported by the National Natural Science Foundation of China under grant Nos 50803009 and 10872048. Partial support from the Program of Introducing Talents of Discipline to Universities (Nos 111-2-04 and B07024) was appreciated. NR 34 TC 87 Z9 95 U1 17 U2 105 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 5 PY 2010 VL 21 IS 5 AR 055502 DI 10.1088/0957-4484/21/5/055502 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 540PT UT WOS:000273348400014 PM 20023313 ER PT J AU Seo, JW Barron, AE Zuckermann, RN AF Seo, Jiwon Barron, Annelise E. Zuckermann, Ronald N. TI Novel Peptoid Building Blocks: Synthesis of Functionalized Aromatic Helix-Inducing Submonomers SO ORGANIC LETTERS LA English DT Article ID TERT-BUTANESULFINYL IMINES; SURFACTANT PROTEIN-B; CHIRAL SIDE-CHAINS; SECONDARY STRUCTURE; RECEPTOR ANTAGONISTS; ASYMMETRIC-SYNTHESIS; DIRECT CONDENSATION; EFFICIENT METHOD; PROTECTING GROUP; OLIGOMERS AB Peptoids, oligo-N-substituted glycines, can fold into well-defined helical secondary structures. The design and synthesis of new peptoid building blocks that are capable of both (a) inducing a helical secondary structure and (b) decorating the helices with chemical functionalities are reported. Peptoid heptamers containing carboxamide, carboxylic acid or thiol functionalities were synthesized, and the resulting peptoids were shown to form stable helices. A thiol-containing peptoid readily formed the homodisulfide. providing a convenient route to prepare peptoid helix homodimers. C1 [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. [Seo, Jiwon; Barron, Annelise E.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Biol Nanostruct Facil, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Barron, Annelise/B-7639-2009; Zuckermann, Ronald/A-7606-2014 OI Zuckermann, Ronald/0000-0002-3055-8860 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institute of Health [R01 A1072666] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are also grateful to the National Institute of Health (R01 A1072666 to A.E.B.) for the support. J.S. thanks Dr. Byoung-Chul Lee (Lawrence Berkeley National Laboratory) and Dr. Modi Wetzler (Stanford University) for valuable discussions. NR 40 TC 32 Z9 32 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD FEB 5 PY 2010 VL 12 IS 3 BP 492 EP 495 DI 10.1021/ol902660p PG 4 WC Chemistry, Organic SC Chemistry GA 548QZ UT WOS:000273982600024 PM 20055478 ER PT J AU Hucker, M von Zimmermann, M Debessai, M Schilling, JS Tranquada, JM Gu, GD AF Huecker, M. von Zimmermann, M. Debessai, M. Schilling, J. S. Tranquada, J. M. Gu, G. D. TI Spontaneous Symmetry Breaking by Charge Stripes in the High Pressure Phase of Superconducting La1.875Ba0. 125CuO4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID LA2-XBAXCUO4; TRANSITIONS; STATE; ORDER AB In those cases where charge-stripe order has been observed in cuprates, the crystal structure is such that the average rotational symmetry of the CuO2 planes is reduced from fourfold to twofold. As a result, one could argue that the reduced lattice symmetry is essential to the existence of stripe order. We use pressure to restore the average fourfold symmetry in a single crystal of La1.875Ba0.125CuO4, and show by x-ray diffraction that charge-stripe order still occurs. Thus, electronically driven stripe order can spontaneously break the lattice symmetry. C1 [Huecker, M.; Tranquada, J. M.; Gu, G. D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [von Zimmermann, M.] Hamburger Synchrotronstrahlungslabor HASYLAB Deut, D-22603 Hamburg, Germany. [Debessai, M.; Schilling, J. S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. RP Hucker, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009; Gu, Genda/D-5410-2013 OI Tranquada, John/0000-0003-4984-8857; Gu, Genda/0000-0002-9886-3255 FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [DMR-0703896] FX We gratefully acknowledge helpful discussions with E. W. Carlson, S. A. Kivelson, and A. Gozar. M. v. Z. and M. H. thank R. Nowak for technical support with the high pressure XRD setup. Work at Brookhaven is supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. M. D. and J. S. S. are supported by the National Science Foundation through Grant No. DMR-0703896. NR 33 TC 41 Z9 41 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 5 PY 2010 VL 104 IS 5 AR 057004 DI 10.1103/PhysRevLett.104.057004 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AM UT WOS:000274336800040 PM 20366788 ER PT J AU MacPhee, AG Divol, L Kemp, AJ Akli, KU Beg, FN Chen, CD Chen, H Hey, DS Fedosejevs, RJ Freeman, RR Henesian, M Key, MH Le Pape, S Link, A Ma, T Mackinnon, AJ Ovchinnikov, VM Patel, PK Phillips, TW Stephens, RB Tabak, M Town, R Tsui, YY Van Woerkom, LD Wei, MS Wilks, SC AF MacPhee, A. G. Divol, L. Kemp, A. J. Akli, K. U. Beg, F. N. Chen, C. D. Chen, H. Hey, D. S. Fedosejevs, R. J. Freeman, R. R. Henesian, M. Key, M. H. Le Pape, S. Link, A. Ma, T. Mackinnon, A. J. Ovchinnikov, V. M. Patel, P. K. Phillips, T. W. Stephens, R. B. Tabak, M. Town, R. Tsui, Y. Y. Van Woerkom, L. D. Wei, M. S. Wilks, S. C. TI Limitation on Prepulse Level for Cone-Guided Fast-Ignition Inertial Confinement Fusion SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON-TRANSPORT; LASER; AMPLIFICATION; PLASMA; SYSTEM AB The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K(alpha) radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of similar to 2-4 MeV electrons. C1 [MacPhee, A. G.; Divol, L.; Kemp, A. J.; Chen, C. D.; Chen, H.; Hey, D. S.; Henesian, M.; Key, M. H.; Le Pape, S.; Ma, T.; Mackinnon, A. J.; Patel, P. K.; Phillips, T. W.; Tabak, M.; Town, R.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom Co, San Diego, CA USA. [Beg, F. N.; Ma, T.; Wei, M. S.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Fedosejevs, R. J.; Link, A.; Tsui, Y. Y.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2M7, Canada. [Freeman, R. R.; Ovchinnikov, V. M.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. RP MacPhee, AG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM macphee2@llnl.gov RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 24 TC 66 Z9 67 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 5 PY 2010 VL 104 IS 5 AR 055002 DI 10.1103/PhysRevLett.104.055002 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AM UT WOS:000274336800023 PM 20366771 ER PT J AU Nandi, S Kim, MG Kreyssig, A Fernandes, RM Pratt, DK Thaler, A Ni, N Bud'ko, SL Canfield, PC Schmalian, J McQueeney, RJ Goldman, AI AF Nandi, S. Kim, M. G. Kreyssig, A. Fernandes, R. M. Pratt, D. K. Thaler, A. Ni, N. Bud'ko, S. L. Canfield, P. C. Schmalian, J. McQueeney, R. J. Goldman, A. I. TI Anomalous Suppression of the Orthorhombic Lattice Distortion in Superconducting Ba(Fe1-xCox)(2)As-2 Single Crystals SO PHYSICAL REVIEW LETTERS LA English DT Article AB High-resolution x-ray diffraction measurements reveal an unusually strong response of the lattice to superconductivity in Ba(Fe1-xCox)(2)As-2. The orthorhombic distortion of the lattice is suppressed and, for Co doping near x 0.063, the orthorhombic structure evolves smoothly back to a tetragonal structure. We propose that the coupling between orthorhombicity and superconductivity is indirect and arises due to the magnetoelastic coupling, in the form of emergent nematic order, and the strong competition between magnetism and superconductivity. C1 [Nandi, S.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Nandi, S (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM goldman@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Kim, Min Gyu/B-8637-2012; Fernandes, Rafael/E-9273-2010; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014; McQueeney, Robert/A-2864-2016 OI Kim, Min Gyu/0000-0001-7676-454X; Thaler, Alexander/0000-0001-5066-8904; McQueeney, Robert/0000-0003-0718-5602 FU U.S. DOE [DE-AC02-07CH11358] FX We thank A. Kracher for the WDS measurements. The work at the Ames Laboratory was supported by the U.S. DOE, office of science, under Contract No. DE-AC02-07CH11358. NR 24 TC 244 Z9 244 U1 8 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 5 PY 2010 VL 104 IS 5 AR 057006 DI 10.1103/PhysRevLett.104.057006 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AM UT WOS:000274336800042 PM 20366790 ER PT J AU Phillips, NE Gordon, JE AF Phillips, N. E. Gordon, J. E. TI Comment on "Kinks in the Electronic Specific Heat'' SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID LIV2O4 C1 [Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Phillips, N. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Gordon, J. E.] Amherst Coll, Dept Phys, Amherst, MA 01002 USA. RP Phillips, NE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 4 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 5 PY 2010 VL 104 IS 5 AR 059703 DI 10.1103/PhysRevLett.104.059703 PG 1 WC Physics, Multidisciplinary SC Physics GA 553AM UT WOS:000274336800055 PM 20366803 ER PT J AU Zhou, HJ Chen, JY Sutter, E Feygenson, M Aronson, MC Wong, SS AF Zhou, Hongjun Chen, Jingyi Sutter, Eli Feygenson, Mikhail Aronson, M. C. Wong, Stanislaus S. TI Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes SO SMALL LA English DT Article DE cadmium selenide; composite nanotubes; encapsulation; photoluminescence; silica ID TRANSFER RADICAL POLYMERIZATION; SELF-ASSEMBLED MONOLAYERS; QUANTUM DOTS; FE3O4/CDS NANOCOMPOSITES; CDSE NANOCRYSTALS; COLLOIDAL CDSE; DRUG-DELIVERY; NANOPARTICLES; SHELL; CORE AB A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe(3)O(4) nanoparticles (NPs) within a SiO(2)-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors of HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology. C1 [Zhou, Hongjun; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Chen, Jingyi; Feygenson, Mikhail; Aronson, M. C.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Aronson, M. C.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Zhou, Hongjun/A-1304-2011; Feygenson, Mikhail /H-9972-2014; Chen, Jingyi/E-7168-2010 OI Feygenson, Mikhail /0000-0002-0316-3265; Chen, Jingyi/0000-0003-0012-9640 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Deportment of Energy [DE-AC02-98CH10886]; National Science Foundation [DMR-0348239]; Alfred P. Sloan Foundation FX Research carried out (in whole or in port) at the Center for Functional Nanomaterials at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886. M.C.A. and S.S.W. specifically acknowledge the U.S. Deportment of Energy (DE-AC02-98CH10886) for facility and personnel support for work completed in the Condensed Matter Physics and Materials Science Department. S.S.W. also acknowledges the National Science Foundation (CAREER Award DMR-0348239) and the Alfred P. Sloan Foundation for PI support and experimental supplies. The authors also thank Dr. James Quinn and Dr. Susan van Horn at SUNY Stony Brook for their invaluable help with electron microscopy measurements. NR 53 TC 20 Z9 21 U1 6 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD FEB 5 PY 2010 VL 6 IS 3 BP 412 EP 420 DI 10.1002/smll.200901276 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 557XZ UT WOS:000274705100014 PM 20025080 ER PT J AU Xiao, HY Gao, F Zu, XT Weber, WJ AF Xiao, H. Y. Gao, Fei Zu, X. T. Weber, W. J. TI Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Gallium nitride; Ab initio molecular dynamics; High pressure; Phase transition ID INDUCED PHASE-TRANSITION; DENSITY-FUNCTIONAL CALCULATIONS; ROCK-SALT PHASE; III-V NITRIDES; GALLIUM NITRIDE; THERMODYNAMIC PROPERTIES; STABILITY; WURTZITE; SILICON; INN AB High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM hyxiao@uestc.edu.cn RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; FU US Department of Energy [DE-AC05-76RL01830] FX F. Gao and W.J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 38 TC 6 Z9 6 U1 3 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 4 PY 2010 VL 490 IS 1-2 BP 537 EP 540 DI 10.1016/j.jallcom.2009.10.076 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 559PV UT WOS:000274839100105 ER PT J AU Trevitt, AJ Goulay, F Taatjes, CA Osborn, DL Leone, SR AF Trevitt, Adam J. Goulay, Fabien Taatjes, Craig A. Osborn, David L. Leone, Stephen R. TI Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSITION-STATE MODEL; VERY-LOW TEMPERATURES; TITANS ATMOSPHERE; PHOTOELECTRON-SPECTRA; COUPLING PHOTOCHEMISTRY; MOLECULE REACTIONS; RATE COEFFICIENTS; RATE CONSTANTS; HAZE FORMATION; OH AB Low-temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique Coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165, and 295 K is found to be relatively constant over this temperature range, (3.9-4.9) x 10(-10) cm(3) molecule(-1) s(-1). These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a rate coefficient of 1.3 x 10(-10) cm(3) molecule(-1) s(-1) at 105 K. At room temperature. nonexponential decay profiles are observed for this reaction that may Suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature Using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoulene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta, and para isomers of cyanotoluene because of their similar ionization energies and the similar to 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn's moon Titan (similar to 100 K) and are also likely to proceed at the temperature of interstellar Clouds (10-20 K). C1 [Trevitt, Adam J.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Trevitt, Adam J.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Trevitt, Adam J.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Trevitt, AJ (reprint author), Univ Wollongong, Sch Chem, Wollongong, NSW 2522, Australia. EM adamt@uow.edu.au; srl@berkeley.edu RI Trevitt, Adam/A-2915-2009 OI Trevitt, Adam/0000-0003-2525-3162 FU National Aeronautics and Space Administration [NAGS-13339]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Nuclear Security Administration [DE-AC04-94-ALS5000] FX The support of personnel (A.J.T., F.G.) for this research by the National Aeronautics and Space Administration (grant NAGS-13339) is gratefully acknowledged. Sandia authors and some of the instrumentation for this work are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the National Nuclear Security Administration Under contract DE-AC04-94-ALS5000. The Advanced Light Source and Chemical Sciences Division (S.R.L.) are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 47 TC 15 Z9 15 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 4 PY 2010 VL 114 IS 4 BP 1749 EP 1755 DI 10.1021/jp909633a PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 548GM UT WOS:000273948100019 PM 20043665 ER PT J AU Wang, XB Chi, CX Zhou, MF Kuvychko, IV Seppelt, K Popov, AA Strauss, SH Boltalina, OV Wang, LS AF Wang, Xue-Bin Chi, Chaoxian Zhou, Mingfei Kuvychko, Igor V. Seppelt, Konrad Popov, Alexey A. Strauss, Steven H. Boltalina, Olga V. Wang, Lai-Sheng TI Photoelectron Spectroscopy of C60Fn- and C60Fm2- (n=17, 33, 35, 43, 45, 47; m=34, 46) in the Gas Phase and the Generation and Characterization of C-1-C60F47- and D-2-C60F44 in Solution SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HIGHLY FLUORINATED FULLERENES; MULTIPLY-CHARGED ANIONS; ELECTRON-AFFINITIES; MASS-SPECTROMETRY; ELECTROCHEMICAL PROPERTIES; FLUOROFULLERENE DIANIONS; NEGATIVE-IONS; DERIVATIVES; IONIZATION; SUPERHALOGENS AB A photoelectron spectroscopy investigation of the fluorofullerene anions C60Fn- (n = 17, 31, 35, 43, 45, 47) and the doubly charged anions C60F342- and C60F462- is reported. The first electron affinities for the corresponding neutral molecules, C60Fn, were directly measured and were found to increase as n increased, reaching the extremely high value of 5.66 +/- 0.10 eV for C60F47. Density functional calculations suggest that the experimentally observed species C60F17-, C60F35-, and C60F47- were each formed by reductive defluorination of the parent fluorofullerene, C-3n-C60F18, C60F36 (a mixture of isomers), and D-3-C60F48, respectively, without rearrangement of the remaining fluorine atoms. The DFT-predicted stability of C60F47- was verified by its generation by chemical reduction from D-3-C60F48 in chloroform solution at 25 degrees C and its characterization by mass spectrometry and F-19 NMR spectroscopy. Further reductive defluorination of C60F47- in solution resulted in the selective generation of a new fluorofullerene, D-2-C60F44, which was also characterized by mass spectrometry and F-19 NMR spectroscopy. C1 [Popov, Alexey A.] Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany. [Popov, Alexey A.] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119992, Russia. [Wang, Lai-Sheng] Brown Univ, Providence, RI 02912 USA. [Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Chi, Chaoxian; Zhou, Mingfei] Fudan Univ, Adv Mat Lab, Dept Chem, Shanghai Key Lab Mol Catalysts & Innovat Mat, Shanghai 200433, Peoples R China. [Kuvychko, Igor V.; Strauss, Steven H.; Boltalina, Olga V.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Seppelt, Konrad] Free Univ Berlin, D-14195 Berlin, Germany. RP Popov, AA (reprint author), Leibniz Inst Solid State & Mat Res, D-01069 Dresden, Germany. EM a.popov@ifw-dresden.de; steven.strauss@colostate.edu; olga.boltalina@colostate.edu; lai-sheng_wang@brown.edu RI Popov, Alexey/A-9937-2011 OI Popov, Alexey/0000-0002-7596-0378 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; U.S. National Science Foundation [CHE-0749496]; DOE's Office of Biological and Environmental Research; National Natural Science Foundation of China [20528303]; National Basic Research Program of China [2007CB815203]; Alexander von Humboldt Foundation FX The PES work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, and in part by the U.S. National Science Foundation (CHE-0749496), and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. M.F.Z. thanks the National Natural Science Foundation of China (Grant No. 20528303) and National Basic Research Program of China (2007CB815203) for partial support of the work. A.A.P. thanks Lothar Dunsch for his encouragement and support, the Alexander von Humboldt Foundation for financial support, the Research Computing Center of the Moscow State University for computer time at the supercomputer Chebyshev SKIF-MGU, and Ulrike Nitzsche for assistance with computational resources in IFW Dresden. I.V.K., O.V.B., and S.H.S. acknowledge the support of the U.S. National Science Foundation (CHE-0707223). O.V.B. thanks the Alexander von Humboldt Foundation for a Freidrich Bessel Award (2003) and an AvH Research Award (2009). NR 65 TC 7 Z9 8 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 4 PY 2010 VL 114 IS 4 BP 1756 EP 1765 DI 10.1021/jp9097364 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 548GM UT WOS:000273948100020 PM 20058887 ER PT J AU Chen, HY Wang, LP Bai, JM Hanson, JC Warren, JB Muckerman, JT Fujita, E Rodriguez, JA AF Chen, Haiyan Wang, Liping Bai, Jianming Hanson, Jonathan C. Warren, John B. Muckerman, James T. Fujita, Etsuko Rodriguez, Jose A. TI In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID-SOLUTION PHOTOCATALYST; GROUP-III NITRIDES; VISIBLE-LIGHT; WATER; PHASE; GPA; ZNGA2O4 AB The high-pressure, high-temperature conditions for the synthesis of Zn-rich (Ga1-xZnx)(N1-xOx) solid solutions from mixtures of ZnO/GaN were explored using synchrotron-based in situ time-resolved X-ray diffraction (XRD). Following a new synthetic path, (Ga1-xZnx)(N1-xOx) solid solutions with a Zn content up to similar to 75% were prepared for the first time. The structures of the (Ga1-xZnx)(N1-xOx) solid solutions were characterized by XRD and X-ray absorption fine structure (XAFS) analyses and were in excellent agreement with the predictions of density functional calculations. These materials adopt a wurtzite crystal structure with metal-N or metal-O bond distances in the range of 1.95-1.98 angstrom. Although the (Ga1-xZnx)(N1-xOx) solid solutions seem to be stable over the full range of compositions, no ideal solid solution formation was observed. In all cases, the lattice parameters were larger than those of ideal solid solutions. The variation of the lattice parameter c showed an upward double bowing curve, as was predicted by theoretical calculations. Also, no ideal behavior was observed in the electronic properties of the (Ga1-xZnx)(N1-xOx) solid solutions. X-ray absorption spectra at the Zn and Ga K-edges of the (Ga1-xZnx)(N1-xOx) systems showed significant electronic perturbations with respect to ZnO and GaN. The synthesized (Ga1-xZnx)(N1-xOx) solid solution with a Zn content of 50% displayed the ability to absorb visible light well above 500 nm. This material has a great potential for splitting water under visible light irradiation. The availability of (Ga1-xZnx)(N1-xOx) solid solutions with a high Zn content opens the door to fully explore the application of these materials in photocatalysis. C1 [Chen, Haiyan; Hanson, Jonathan C.; Muckerman, James T.; Fujita, Etsuko; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wang, Liping] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Bai, Jianming] Univ Tennessee, Knoxville, TN 37996 USA. [Warren, John B.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Muckerman, James T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Chen, Haiyan/C-8109-2012; Dom, Rekha/B-7113-2012; Muckerman, James/D-8752-2013; Fujita, Etsuko/D-8814-2013; Bai, Jianming/O-5005-2015; Hanson, jonathan/E-3517-2010 FU U.S. Department of Energy [DE-AC02-98CH10886]; COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 06-49658] FX This work was carried out at BNL under Contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. We also gratefully acknowledge the U.S. DOE for funding under the BES Hydrogen Fuel Initiative. Use of the National Synchrotron Light Source and the Center for Functional Nanomaterials was supported by the U.S. DOE, Office of Basic Energy Sciences. The synthesis experiment was carried out at beamline X-17B2, which is supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658. The authors would like to thank Drs. O. Gang, D. Nykypanckuk, and L. Barrio for their help with the diffuse reflectance measurements. NR 21 TC 35 Z9 35 U1 8 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 4 PY 2010 VL 114 IS 4 BP 1809 EP 1814 DI 10.1021/jp909649n PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 548GH UT WOS:000273947600011 ER PT J AU Mei, DH AF Mei, Donghai TI Density Functional Theory Study of Surface Carbonate Formation on BaO(001) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NOX STORAGE/REDUCTION CATALYST; MODEL NSR CATALYSTS; PT-BA/GAMMA-AL2O3 CATALYST; STORAGE MATERIALS; REDUCING AGENT; BAO OVERLAYERS; CO2; ADSORPTION; H2O; REDUCTION AB Periodic density functional theory calculations were used to study the formation and stability of surface carbonate on BaO(001) at CO2 exposure. CO2 adsorbs at Lewis basic O-s sites, fort-ning anionic surface carbonate (CO3-delta) species. Upon adsorption, a portion of electrons is transferred from the surface to CO2. Although the adsorption strength of CO2 decreases with the increasing coverage (theta(CO2)), the surface carbonate overlayer in the perpendicular pattern is stable up to one monolayer (1 ML). Dramatic surface reconstruction is found for the surface carbonate overlayer in the parallel pattern at theta(CO2) > 0.75 ML. The BaO(001) Surface is reconstructed such that the surface Ba atoms are actually pulled out of the surface plane into the carbonate overlayer, suggesting a possible onset of phase transition from surface carbonate to crystalline bulklike carbonate when the coverage is higher than 0.75 ML. At ambient CO2 pressure, the calculated surface free energies indicate that the surface carbonate monolayer becomes unstable at 600 K, while the isolated surface carbonate is still stable at 800 K. This is in good agreement with previous experimental observations. The effect of surface hydroxyl on the stability of surface carbonate was also investigated in this work. At low hydroxyl coverage, the neighboring hydroxyls stabilize the surface carbonate. On the fully hydroxylated BaO(001) surface, chelating bicarbonate, instead of surface carbonate, is formed upon CO2 adsorption. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Mei, Donghai/D-3251-2011; Mei, Donghai/A-2115-2012 OI Mei, Donghai/0000-0002-0286-4182 FU PNNL Laboratory Directed Research and Development (LDRD) project; National Energy Research Scientific Computing Center (NERSC) [m752, st30469]; DOE FX This work that was performed in the Institute for Interfacial Catalysis at Pacific Northwest National Laboratory (PNNL) was financially supported by a PNNL Laboratory Directed Research and Development (LDRD) project. Computing time was granted by the National Energy Research Scientific Computing Center (NERSC) under Project No. m752 and by the scientific user project (st30469) using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL and supported by the DOE's Office of Biological and Environmental Research. NR 44 TC 6 Z9 6 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 4 PY 2010 VL 114 IS 4 BP 1867 EP 1874 DI 10.1021/jp907765e PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 548GH UT WOS:000273947600018 ER PT J AU Dawes, R Jasper, AW Tao, C Richmond, C Mukarakate, C Kable, SH Reid, SA AF Dawes, Richard Jasper, Ahren W. Tao, Chong Richmond, Craig Mukarakate, Calvin Kable, Scott H. Reid, Scott A. TI Theoretical and Experimental Spectroscopy of the S-2 State of CHF and CDF: Dynamically Weighted Multireference Configuration Interaction Calculations for High-Lying Electronic States SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DISCRETE-VARIABLE REPRESENTATIONS; RENNER-TELLER; SPECTRUM; SYSTEM; HCF AB Dynamically adjusting the weights in state-averaged multiconfigurational self-consistent field (SA-MCSCF) calculations using an energy dependent functional allows the electronic wave function to smoothly evolve across the potential energy surface (PES) and correctly preserves differing asymptotic electronic-state degeneracy patterns. We have developed a generalized dynamic weighting (GDW) method to treat high-lying electronic states. To test the method, a global PES was constructed for the S-2((B) over tilde) state of CHG(CDF) which lies nearly 31000 cm(-1) above the minimum of the ground state. The GDW method was used to produced SA-MCSCF references states for subsequent multireference configuration interaction (MRCI) calculations, whose Davidson-corrected energies were extrapolated to the complete basis set limit. Quantum mechanical vibrational energy calculations for CDF were performed using the fitted PES, and the predicted energy levels are in excellent agreement with an extensive set of experimentally determined (optical-optical double resonance) levels, with a mean unsigned error of only 12 cm(-1). C1 [Dawes, Richard; Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Tao, Chong; Mukarakate, Calvin; Reid, Scott A.] Marquette Univ, Dept Chem, Milwaukee, WI 53201 USA. [Richmond, Craig; Kable, Scott H.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RP Dawes, R (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM rdawes@sandia.gov; scott.reid@mu.edu RI Jasper, Ahren/A-5292-2011; Dawes, Richard/C-6344-2015; Reid, Scott/J-6491-2016 OI Reid, Scott/0000-0001-9916-7414 FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; Australian Academy of Science; National Science Foundation [CHE-0717960, CHE-0353596]; Australian Research Council [DP0665831] FX R.D. and A.W.J. are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94-AL85000. S.A.R. and S.H.K. acknowledge an Australian Academy of Science travel fellowship which allowed S.H.N. and S.A.R. to collaborate on the initial stages of this project. S.A.R. acknowledges the National Science Foundation (Grants CHE-0717960 and CHE-0353596) for support of this research. S.H.K. acknowledges the Australian Research Council for project funding (DP0665831). NR 32 TC 37 Z9 37 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD FEB 4 PY 2010 VL 1 IS 3 BP 641 EP 646 DI 10.1021/jz900380a PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 588BF UT WOS:000277040400010 ER PT J AU Solomatin, SV Greenfeld, M Chu, S Herschlag, D AF Solomatin, Sergey V. Greenfeld, Max Chu, Steven Herschlag, Daniel TI Multiple native states reveal persistent ruggedness of an RNA folding landscape SO NATURE LA English DT Article ID TETRAHYMENA RIBOZYME; ENERGY LANDSCAPE; SINGLE-MOLECULE; SUBSTRATE; BINDING; PATHWAYS; DYNAMICS; INTERMEDIATE; CATALYSIS AB According to the 'thermodynamic hypothesis', the sequence of a biological macromolecule defines its folded, active (or 'native') structure as a global energy minimum in the folding landscape(1,2). However, the enormous complexity of folding landscapes of large macromolecules raises the question of whether there is in fact a unique global minimum corresponding to a unique native conformation or whether there are deep local minima corresponding to alternative active conformations(3). The folding of many proteins is well described by two-state models, leading to highly simplified representations of protein folding landscapes with a single native conformation(4,5). Nevertheless, accumulating experimental evidence suggests a more complex topology of folding landscapes with multiple active conformations that can take seconds or longer to interconvert(6-8). Here we demonstrate, using single-molecule experiments, that an RNA enzyme folds into multiple distinct native states that interconvert on a timescale much longer than that of catalysis. These data demonstrate that severe ruggedness of RNA folding landscapes extends into conformational space occupied by native conformations. C1 [Solomatin, Sergey V.; Herschlag, Daniel] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. [Greenfeld, Max] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, Steven] Univ Calif Berkeley, Dept Phys & Mol & Cell Biol, Berkeley, CA 94720 USA. RP Herschlag, D (reprint author), Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. EM herschla@stanford.edu FU US National Institutes of Health (NIH) [P01-GM-66275, GM49243]; Stanford Bio-X Program FX We thank T. H. Lee, B. Cui, H. Kim, W. Zhao and other current and former members of the Chu laboratory, and the Mabuchi laboratory, for technical assistance. We thank members of the Herschlag laboratory for discussions and comments on the manuscript. Financial support for this work was provided by US National Institutes of Health (NIH) programme project grant P01-GM-66275 and NIH grant GM49243, to D. H. We thank the Stanford Bio-X Program for fellowship support to S. V. S. NR 30 TC 106 Z9 109 U1 2 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 4 PY 2010 VL 463 IS 7281 BP 681 EP U117 DI 10.1038/nature08717 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 551GB UT WOS:000274193900040 PM 20130651 ER PT J AU Goretta, KC Pena, JI Orera, VM Chen, N Routbort, SJL AF Goretta, K. C. Pena, J. I. Orera, V. M. Chen, Nan Routbort, Singh J. L. TI Solid-particle erosion of directionally solidified Al2O3-ZrO2(Y2O3) eutectics SO WEAR LA English DT Article DE Eutectic ceramic; Directional solidification; Erosion; Mechanical properties ID PLASTIC INDENTATION DAMAGE; MECHANICAL-PROPERTIES; STRENGTH DEGRADATION; FRACTURE-TOUGHNESS; BRITTLE MATERIALS; RESIDUAL-STRESSES; MATRIX COMPOSITES; CERAMIC EUTECTICS; TENSILE-STRENGTH; ALUMINA CERAMICS AB Resistance to solid-particle erosion was studied by measuring individual damage sites in directionally solidified Al2O3-ZrO2 (Y2O3) eutectics that contained three concentrations of Y2O3 (0.5, 3, and 9% in the ZrO2 phase). For comparison, polycrystalline Al2O3, sapphire, and polycrystalline and single-crystal tetragonally stabilized ZrO2 were also studied. All specimens were impacted at normal incidence by angular 63 and 143 mu m SiC particles traveling at 100 m/s. The eutectics containing 3% and 9 mol.% Y2O3 generally exhibited the smallest damage zones and the ZrO2 specimens exhibited by far the largest damage zones. Examination of damage features and comparison with basic mechanical properties and models for erosion of brittle materials led to conclusions that the eutectics were resistant to erosion because of the presence of large compressive residual stresses in their Al2O3 phases and that the ZrO2 materials were susceptible to erosive damage because transformation toughening was ineffective in reducing propagation of lateral cracks that emanated from the damage sites. Published by Elsevier B.V. C1 [Routbort, Singh J. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Goretta, K. C.] Asian Off Aerosp Res & Dev, Tokyo 1060032, Japan. [Pena, J. I.; Orera, V. M.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50018 Zaragoza, Spain. RP Routbort, SJL (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM routbort@anl.gov RI orera, Victor/A-4213-2011; OI Orera, Victor/0000-0001-9690-9064 FU Air Force Office of Scientific Research; Spanish Ministry of Science and Technology [MAT2006-13005-CO3-1]; U.S. Department of Energy [DE-AC02-06CHI 1357] FX Financial support was provided by the Air Force Office of Scientific Research; the Spanish Ministry of Science and Technology, through Projects MAT2006-13005-CO3-1; and the U.S. Department of Energy, under Contract DE-AC02-06CHI 1357 at Argonne National Laboratory, managed by the UChicago, LLC. The electron microscopy was performed in the Electron Microscopy Collaborative Research Center at Argonne National Laboratory. NR 85 TC 3 Z9 6 U1 2 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 EI 1873-2577 J9 WEAR JI Wear PD FEB 4 PY 2010 VL 268 IS 3-4 BP 571 EP 578 DI 10.1016/j.wear.2009.10.003 PG 8 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 550XM UT WOS:000274167200027 ER PT J AU Vasco, DW Rucci, A Ferretti, A Novali, F Bissell, RC Ringrose, PS Mathieson, AS Wright, IW AF Vasco, D. W. Rucci, A. Ferretti, A. Novali, F. Bissell, R. C. Ringrose, P. S. Mathieson, A. S. Wright, I. W. TI Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADAR INTERFEROMETRY; EARTHS SURFACE AB Interferometric Synthetic Aperture Radar (InSAR) data, gathered over the In Salah CO(2) storage project in Algeria, provide an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected mass of 3 million tons of carbon dioxide from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques, we are able to infer flow within the reservoir layer and within a seismically detected fracture/fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone. Citation: Vasco, D. W., A. Rucci, A. Ferretti, F. Novali, R. C. Bissell, P. S. Ringrose, A. S. Mathieson, and I. W. Wright (2010), Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide, Geophys. Res. Lett., 37, L03303, doi:10.1029/2009GL041544. C1 [Vasco, D. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Ferretti, A.; Novali, F.] Tele Rilevamento Europa, I-20149 Milan, Italy. [Rucci, A.] Politecn Milan, I-20133 Milan, Italy. [Bissell, R. C.; Mathieson, A. S.; Wright, I. W.] BP Alternat Energy, Sunbury On Thames TW16 7LN, Middx, England. [Ringrose, P. S.] Statoil Res Ctr, N-7005 Trondheim, Norway. RP Vasco, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Bldg 90,MS 1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dwvasco@lbl.gov RI Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 FU US Department of Energy [DE-AC02-05-CH11231]; Office of Basic Energy Sciences,; Office of Coal and Power Systems, US Department of Energy FX Work performed at Lawrence Berkeley National Laboratory and Tele-Rilevamento Europa (TRE) was supported by the US Department of Energy under contract DE-AC02-05-CH11231, Office of Basic Energy Sciences, and the GEOSEQ project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems, through the National Energy Technology Laboratory of the US Department of Energy. The In Salah CO2 Joint Industry Project (BP, Statoil, and Sonatrach) is thanked for the provision and interpretation of production, injection, and subsurface data. NR 16 TC 113 Z9 114 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 3 PY 2010 VL 37 AR L03303 DI 10.1029/2009GL041544 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 553GY UT WOS:000274355700004 ER PT J AU Mugridge, JS Bergman, RG Raymond, KN AF Mugridge, Jeffrey S. Bergman, Robert G. Raymond, Kenneth N. TI High-Precision Measurement of Isotope Effects on Noncovalent Host-Guest Interactions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANIONIC HOST; CLUSTER; ENCAPSULATION; RECOGNITION; BINDING; PROBE AB The self-assembled supramolecular host [Ga(4)L(6)](12-) can bind cationic guest molecules to both the interior and exterior of the host assembly through noncovalent interactions. Very small equilibrium isotope effects (EIEs) have been precisely measured for the association of benzyltrimethylphosphonium isotopologues to the host exterior surface by adapting an NMR titration method originally developed by the Perrin group for measuring isotope effects on acidity constants. Deuteration of the phosphonium methyl groups was found to have a larger EIE than deuteration at the ring and benzyl positions, Suggesting subtle differences in the noncovalent interactions between the host exterior and different guest C-H/D bonds. The application of this method to the measurement of EIEs on noncovalent host-guest interactions demonstrates the generality of this NMR technique in precisely measuring relative equilibrium constants. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu FU Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geo-sciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Predoctotal Fellowship FX We are grateful to Prof Charles Perrin for helpful discussions of his pKa/IE determination method. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geo-sciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract DE-AC02-05CH11231 and an NSF Predoctotal Fellowship to J.S.M. NR 20 TC 25 Z9 25 U1 6 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 3 PY 2010 VL 132 IS 4 BP 1182 EP + DI 10.1021/ja905170x PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 562WA UT WOS:000275084800001 PM 20050653 ER PT J AU Freedman, DE Harman, WH Harris, TD Long, GJ Chang, CJ Long, JR AF Freedman, Danna E. Harman, W. Hill Harris, T. David Long, Gary J. Chang, Christopher J. Long, Jeffrey R. TI Slow Magnetic Relaxation in a High-Spin Iron(II) Complex SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SINGLE-MOLECULE MAGNETS; ORBITAL ANGULAR-MOMENTUM; JAHN-TELLER DISTORTION; MOSSBAUER; BEHAVIOR; BARRIER; ABSENCE; LEVEL AB Slow magnetic relaxation is observed for [(tpa(Mes))Fe](-), a trigonal pyramidal complex of high-spin iron(II), providing the first example of a mononuclear transition metal complex that behaves as a single-molecule magnet. Dc magnetic susceptibility and magnetization measurements reveal a strong uniaxial magnetic anisotropy (D = -39.6 cm(-1)) acting on the S = 2 ground state of the molecule. Ac magnetic susceptibility measurements indicate the absence of slow relaxation under zero applied dc Field as a result of quantum tunneling of the magnetization. Application of a 1500 Oe dc field initiates slow magnetic relaxation, which follows a thermally activated tunneling mechanism at high temperature to give an effective spin-reversal barrier of U-eff = 42 cm(-1) and follows a temperature-independent tunneling mechanism at low temperature. In addition, the magnetic relaxation time shows a pronounced dc-field dependence, with a maximum occurring at similar to 1500 Oe. C1 [Freedman, Danna E.; Harman, W. Hill; Harris, T. David; Chang, Christopher J.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Harman, W. Hill; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Long, Gary J.] Univ Missouri, Dept Chem, Missouri Univ Sci & Technol, Rolla, MO 65409 USA. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu; jrlong@berkeley.edu RI Harris, David/M-9204-2014; OI Harris, David/0000-0003-4144-900X; Freedman, Danna/0000-0002-2579-8835 FU NSF [CHE-0617063]; DOE/LBNL [403801]; Tyco Electronics; Arkema FX This research was funded by NSF Grant CHE-0617063 to J.R.L. and DOE/LBNL Grant 403801 to C.J.C. C.J.C. is a Howard Hughes Medical Institute Investigator. We thank Tyco Electronics (D.E.F. and T.D.H.) and Arkema (W.H.H.) for providing fellowship support. NR 28 TC 236 Z9 237 U1 4 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 3 PY 2010 VL 132 IS 4 BP 1224 EP + DI 10.1021/ja909560d PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 562WA UT WOS:000275084800022 PM 20055389 ER PT J AU Meevasana, W Zhou, XJ Moritz, B Chen, CC He, RH Fujimori, SI Lu, DH Mo, SK Moore, RG Baumberger, F Devereaux, TP van der Marel, D Nagaosa, N Zaanen, J Shen, ZX AF Meevasana, W. Zhou, X. J. Moritz, B. Chen, C-C He, R. H. Fujimori, S-I Lu, D. H. Mo, S-K Moore, R. G. Baumberger, F. Devereaux, T. P. van der Marel, D. Nagaosa, N. Zaanen, J. Shen, Z-X TI Strong energy-momentum dispersion of phonon-dressed carriers in the lightly doped band insulator SrTiO3 SO NEW JOURNAL OF PHYSICS LA English DT Article ID FERMI-SURFACE; SUPERCONDUCTIVITY; LA2-XSRXCUO4; TRANSITIONS; MANGANITES; BIPOLARONS; OXIDES AB Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle-resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises as to how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is that of perovskite SrTiO3 (STO), well known for its giant dielectric constant of 10 000 at low temperatures, exceeding that of La2CuO4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped STO. In comparison to lightly doped Mott insulators, we find the signatures of only moderate el-ph coupling; a dispersion anomaly associated with the low-frequency optical phonon with a lambda' similar to 0.3 and an overall bandwidth renormalization suggesting an overall lambda' similar to 0.7 coming from the higher frequency phonons. Furthermore, we find no clear signatures of the large pseudogap or small-polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators. C1 [Meevasana, W.; Chen, C-C; He, R. H.; Mo, S-K; Shen, Z-X] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Meevasana, W.; Chen, C-C; He, R. H.; Mo, S-K; Shen, Z-X] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Meevasana, W.; Moritz, B.; Chen, C-C; He, R. H.; Lu, D. H.; Moore, R. G.; Devereaux, T. P.; Shen, Z-X] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Meevasana, W.; Baumberger, F.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Meevasana, W.] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand. [Zhou, X. J.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Fujimori, S-I] Japan Atom Energy Agcy, Synchrotron Radiat Res Unit, Mikazuki, Hyogo 6795148, Japan. [Mo, S-K] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [van der Marel, D.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Nagaosa, N.] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. [Nagaosa, N.] RIKEN, ASI, Cross Correlated Mat Res Grp CMRG, Wako, Saitama 3510198, Japan. [Zaanen, J.] Leiden Univ, Inst Lorentz Theoret Phys, Leiden, Netherlands. RP Meevasana, W (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM wm14@st-andrews.ac.uk RI He, Ruihua/A-6975-2010; Baumberger, Felix/A-5170-2008; Nagaosa, Naoto/G-7057-2012; Mo, Sung-Kwan/F-3489-2013; Moritz, Brian/D-7505-2015; van der Marel, Dirk/G-4618-2012 OI Baumberger, Felix/0000-0001-7104-7541; Mo, Sung-Kwan/0000-0003-0711-8514; Moritz, Brian/0000-0002-3747-8484; van der Marel, Dirk/0000-0001-5266-9847 FU Department of Energy [DE-AC02-76SF00515]; Thailand Research Fund; National Science Council, Taiwan [NSC-095-SAF-I-564-013-TMS] FX We gratefully thank II Mazin for providing the unpublished LDA calculations, A Mishchenko for helpful discussion and H Takagi and J Matsuno for crystal information. This work was supported by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. WM acknowledges The Thailand Research Fund for financial support. CCC was supported in part by National Science Council, Taiwan, under grant no. NSC-095-SAF-I-564-013-TMS. NR 31 TC 33 Z9 33 U1 7 U2 45 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 3 PY 2010 VL 12 AR 023004 DI 10.1088/1367-2630/12/2/023004 PG 11 WC Physics, Multidisciplinary SC Physics GA 551XS UT WOS:000274247300004 ER PT J AU Nalbantoglu, U Sayood, K Dempsey, MP Iwen, PC Francesconi, SC Barabote, RD Xie, G Brettin, TS Hinrichs, SH Fey, PD AF Nalbantoglu, Ufuk Sayood, Khalid Dempsey, Michael P. Iwen, Peter C. Francesconi, Stephen C. Barabote, Ravi D. Xie, Gary Brettin, Thomas S. Hinrichs, Steven H. Fey, Paul D. TI Large Direct Repeats Flank Genomic Rearrangements between a New Clinical Isolate of Francisella tularensis subsp tularensis A1 and Schu S4 SO PLOS ONE LA English DT Article ID UNITED-STATES; POPULATION-STRUCTURE; MOLECULAR ANALYSIS; IDENTIFICATION; TULAREMIA; SEQUENCE; STRAIN AB Francisella tularensis subspecies tularensis consists of two separate populations A1 and A2. This report describes the complete genome sequence of NE061598, an F. tularensis subspecies tularensis A1 isolated in 1998 from a human with clinical disease in Nebraska, United States of America. The genome sequence was compared to Schu S4, an F. tularensis subspecies tularensis A1a strain originally isolated in Ohio in 1941. It was determined that there were 25 nucleotide polymorphisms (22 SNPs and 3 indels) between Schu S4 and NE061598; two of these polymorphisms were in potential virulence loci. Pulsed-field gel electrophoresis analysis demonstrated that NE061598 was an A1a genotype. Other differences included repeat sequences (n = 11 separate loci), four of which were contained in coding sequences, and an inversion and rearrangement probably mediated by insertion sequences and the previously identified direct repeats I, II, and III. Five new variable-number tandem repeats were identified; three of these five were unique in NE061598 compared to Schu S4. Importantly, there was no gene loss or gain identified between NE061598 and Schu S4. Interpretation of these data suggests there is significant sequence conservation and chromosomal synteny within the A1 population. Further studies are needed to determine the biological properties driving the selective pressure that maintains the chromosomal structure of this monomorphic pathogen. C1 [Nalbantoglu, Ufuk; Sayood, Khalid] Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA. [Iwen, Peter C.; Hinrichs, Steven H.; Fey, Paul D.] Univ Nebraska Med Ctr, Dept Pathol & Microbiol, Omaha, NE USA. [Barabote, Ravi D.; Xie, Gary] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Barabote, Ravi D.; Xie, Gary] DOE Joint Genome Inst, Walnut Creek, CA USA. [Dempsey, Michael P.] Armed Forces Inst Pathol, Div Microbiol, Washington, DC 20306 USA. [Francesconi, Stephen C.] USN, Med Res Ctr, Silver Spring, MD USA. [Brettin, Thomas S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Nalbantoglu, U (reprint author), Univ Nebraska, Dept Elect Engn, Lincoln, NE 68588 USA. EM pfey@unmc.edu RI Barabote, Ravi/B-8727-2011; Barabote, Ravi/C-1299-2017; OI Barabote, Ravi/0000-0002-0403-246X; xie, gary/0000-0002-9176-924X FU Department of Defense, Defense Advanced Research Program Agency [W911NF0510275] FX This work was supported by a grant from the Department of Defense, Defense Advanced Research Program Agency ( award W911NF0510275) to S. H. H. The opinions expressed in this manuscript are the private views of the authors and are not the official views of the Armed Forces Institute of Pathology, the Department of the Army, the United States Air Force, or the Department of Defense. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 18 TC 11 Z9 11 U1 1 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 3 PY 2010 VL 5 IS 2 AR e9007 DI 10.1371/journal.pone.0009007 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 554ZA UT WOS:000274474200008 PM 20140244 ER PT J AU Garcia-Barriocanal, J Bruno, FY Rivera-Calzada, A Sefrioui, Z Nemes, NM Garcia-Hernandez, M Rubio-Zuazo, J Castro, GR Varela, M Pennycook, SJ Leon, C Santamaria, J AF Garcia-Barriocanal, Javier Bruno, Flavio Y. Rivera-Calzada, Alberto Sefrioui, Zouhair Nemes, Norbert M. Garcia-Hernandez, Mar Rubio-Zuazo, Juan Castro, German R. Varela, Maria Pennycook, Stephen J. Leon, Carlos Santamaria, Jacobo TI "Charge Leakage" at LaMnO3/SrTiO3 Interfaces SO ADVANCED MATERIALS LA English DT Article ID SUPERLATTICES; HETEROSTRUCTURES; LAMNO3+DELTA; MULTILAYERS; OXIDES AB Direct evidence for charge leakage at the interface of epitaxial SrTiO3/LaMnO3 superlattices with atomically sharp interfaces is provided. The direction of charge leakage can be reversed by changing the LMO/STO thickness ratio. This result will be important for the understanding of some of the reported limitations of oxide devices involving manganite/titanate interfaces. C1 [Garcia-Barriocanal, Javier; Bruno, Flavio Y.; Rivera-Calzada, Alberto; Sefrioui, Zouhair; Nemes, Norbert M.; Leon, Carlos; Santamaria, Jacobo] Univ Complutense Madrid, Dpto Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. [Garcia-Hernandez, Mar] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Garcia-Barriocanal, Javier; Rubio-Zuazo, Juan; Castro, German R.] European Synchrotron Radiat Facil, SpLine Spanish CRG Beamline, F-38043 Grenoble, France. [Varela, Maria; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Santamaria, J (reprint author), Univ Complutense Madrid, Dpto Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI Leon, Carlos/A-5587-2008; Bruno, Flavio/C-7380-2008; Varela, Maria/H-2648-2012; Nemes, Norbert Marcel/B-6275-2009; Varela, Maria/E-2472-2014; Garcia-Hernandez, Mar/J-9520-2014; Rubio Zuazo, Juan/M-3346-2014; Castro, German/H-6679-2015; Santamaria, Jacobo/N-8783-2016; Sefrioui, Zouhair/C-2728-2017 OI Leon, Carlos/0000-0002-3262-1843; Bruno, Flavio/0000-0002-3970-8837; Nemes, Norbert Marcel/0000-0002-7856-3642; Varela, Maria/0000-0002-6582-7004; Garcia-Hernandez, Mar/0000-0002-5987-0647; Rubio Zuazo, Juan/0000-0003-0614-5334; Castro, German/0000-0003-4251-3245; Santamaria, Jacobo/0000-0003-4594-2686; Sefrioui, Zouhair/0000-0002-6703-3339 FU Division of Materials Sciences and Engineering of the US Department of Energy; MICINN [MAT200806517] FX The authors acknowledge Julia Luck for the preparation of the STEM specimen, Matt Chisholm for the LTO films and Masashi Watanabe for the Digital Micrograph plug-in for principal-component analysis. Research at ORNL (MV, SJP) was sponsored by the Division of Materials Sciences and Engineering of the US Department of Energy. We acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities. Research at UCM was supported by MICINN grant MAT200806517. NR 33 TC 60 Z9 61 U1 4 U2 79 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 2 PY 2010 VL 22 IS 5 BP 627 EP + DI 10.1002/adma.200902263 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 556TP UT WOS:000274615600012 PM 20217762 ER PT J AU Lee, MV Lee, JRI Brehmer, DE Linford, MR Willey, TM AF Lee, Michael V. Lee, Jonathan R. I. Brehmer, Daniel E. Linford, Matthew R. Willey, Trevor M. TI Unanticipated C = C Bonds in Covalent Monolayers on Silicon Revealed by NEXAFS SO LANGMUIR LA English DT Article ID POROUS SILICON; ORGANIC MONOLAYERS; MIXED MONOLAYERS; ALKYL MONOLAYERS; SURFACES; CHEMISTRY; 1-ALKENES; ALKENES; FILMS AB Interfaces are Crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption Fine structure spectroscopy to show that the most basic covalent monolayers formed from l-alkenes on silicon retain a double bond in one-firth to two-fifths of the resultant Molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon. C1 [Lee, Michael V.] Natl Inst Mat Sci, ICYS, MANA, Tsukuba, Ibaraki 3050047, Japan. [Lee, Jonathan R. I.; Willey, Trevor M.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA USA. [Brehmer, Daniel E.] Stanford Synchrotron Radiat Lightsource, SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Linford, Matthew R.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. RP Lee, MV (reprint author), Natl Inst Mat Sci, ICYS, MANA, Tsukuba, Ibaraki 3050047, Japan. EM lee.michael@nims.go.jp RI Willey, Trevor/A-8778-2011; Lee, Michael/A-8189-2012; Brehmer, Daniel/A-2196-2013; OI Willey, Trevor/0000-0002-9667-8830; Lee, Michael/0000-0002-3953-3811 FU World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan; Office of Basic Energy Sciences (OBES), Materials Sciences, U.S. DOE; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX M.V.L. acknowledges support by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan. J.R.I.L. and T.M.W. acknowledge funding by the Office of Basic Energy Sciences (OBES), Materials Sciences, U.S. DOE. This work was partially performed at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The Stanford Synchrotron Radiation Lightsource Is it national user facility operated by SLAC National Accelerator Laboratory on behalf of the U.S. DOE, OBES. NR 30 TC 11 Z9 11 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 2 PY 2010 VL 26 IS 3 BP 1512 EP 1515 DI 10.1021/la9038254 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 546SM UT WOS:000273831700028 PM 19938807 ER PT J AU Bennett, LM Wang, Y Ramsey, MJ Harger, GF Bigbee, WL Tucker, JD AF Bennett, L. Michelle Wang, Yun Ramsey, Marilyn J. Harger, Gail F. Bigbee, William L. Tucker, James D. TI Cigarette smoking during pregnancy: Chromosome translocations and phenotypic susceptibility in mothers and newborns SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE Cigarette smoking; Pregnancy; Newborns; Mothers; Chromosome translocations; Genomic susceptibility ID PERIPHERAL-BLOOD LYMPHOCYTES; RADIATION-INDUCED TRANSLOCATIONS; CHILDHOOD BRAIN-TUMORS; LIFE-STYLE FACTORS; TOBACCO-SMOKE; CANCER SUSCEPTIBILITY; MATERNAL SMOKING; ENVIRONMENTAL-POLLUTANTS; PRENATAL EXPOSURE; PARENTAL USE AB The effects of maternal cigarette smoking during pregnancy on structural chromosome aberrations were evaluated in peripheral lymphocytes from 239 mothers and their 241 newborns to determine whether smoking during pregnancy, genetic susceptibility, and race are associated with chromosome aberrations including translocations. Demographic information and cigarette smoking data were obtained via questionnaire. There were 119 Caucasian Americans, 118 African Americans, and 2 Asian Americans. The average maternal age was 24.9 +/- 5.8 (mean +/- S.D.) years. Thirty-nine percent of the Caucasian Americans and 45.4% of the African Americans self-reported that they were active smokers during the index pregnancy. The average number of cigarettes smoked per day was 2.65 +/- 5.75 and 1.37 +/- 3.17 for Caucasian and African American mothers, respectively. Peripheral blood lymphocytes from the mother and from the fetal side of the placenta were evaluated for chromosome aberrations by whole chromosome painting. Aliquots from the same blood samples were also used to assess genetic susceptibility with an in vitro bleomycin challenge assay. Spontaneous translocation frequencies in both maternal and newborn lymphocytes were not associated with cigarette smoking, socioeconomic status, or education. The absence of a smoking effect may be attributable to the low level of cigarette usage in these subjects. The average bleomycin-induced damage in the maternal and newborn populations was 0.37 +/- 0.27 and 0.15 +/- 0.14 breaks per cell, respectively, a difference that was highly significant (p < 0.0001). In newborns there was a positive association between bleomycin sensitivity and the frequencies of aberrations as measured by chromosome painting: p <= 0.0007 for dicentrics and fragments, and p < 0.002 for translocations. Caucasian American newborns demonstrated a significant association between clicentrics and fragments as measured by painting, and bleomycin sensitivity (p < 0.0002), but no such association was observed for African American newborns. The results of this study indicate that while differences were observed between African Americans and Caucasian Americans, race does not appear to be a major contributor to chromosome damage in newborns or their mothers. However, peripheral lymphocytes in pregnant women are more susceptible to genetic damage than peripheral lymphocytes in newborns. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bennett, L. Michelle; Ramsey, Marilyn J.; Tucker, James D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Wang, Yun] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Biostat, Pittsburgh, PA 15213 USA. [Wang, Yun] Univ Pittsburgh, Biostat Facil, Inst Canc, Pittsburgh, PA 15213 USA. [Harger, Gail F.; Bigbee, William L.] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Epidemiol, Pittsburgh, PA 15213 USA. [Bigbee, William L.] Univ Pittsburgh, Inst Canc, Hillman Canc Ctr, Dept Pathol,Sch Med, Pittsburgh, PA 15213 USA. RP Tucker, JD (reprint author), Wayne State Univ, Dept Biol Sci, 1370 Biol Sci Bldg,5047 Gullen Mall, Detroit, MI 48202 USA. EM lmbennett@nih.gov; jtucker@biology.wayne.edu FU U.S. Department of Energy by the University of California; Lawrence Livermore National Laboratory [W-7405-ENG-48]; California Tobacco Related Disease Research Program [8RT-0070]; NIH [R01 HD33016] FX This work was performed in part under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract W-7405-ENG-48. Funding from the California Tobacco Related Disease Research Program Grant #8RT-0070 to JDT and NIH grant R01 HD33016 to WLB is gratefully acknowledged. We thank J. Montgomery for expert technical assistance with slide preparation and J. Williams, B. Cutter, F. Zamora, J. Coffey, S. Sun, J. Lamberton, B. Lear, G. Vrankovich, W. Mellberg, E. Mirkova, A. Petersen, and C. Hara for expert technical assistance in performing the cytogenetic analyses. The authors also gratefully acknowledge Ms. Peggyjoy Chatfield for assay development and measurements of serum cotinine levels, which were performed in support of her M.P.H. thesis dissertation in the Graduate School of Public Health at San Diego State University. NR 62 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD FEB 2 PY 2010 VL 696 IS 1 BP 81 EP 88 DI 10.1016/j.mrgentox.2009.12.015 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 563NY UT WOS:000275140600010 PM 20060061 ER PT J AU Chang, PV Prescher, JA Sletten, EM Baskin, JM Miller, IA Agard, NJ Lo, A Bertozzi, CR AF Chang, Pamela V. Prescher, Jennifer A. Sletten, Ellen M. Baskin, Jeremy M. Miller, Isaac A. Agard, Nicholas J. Lo, Anderson Bertozzi, Carolyn R. TI Copper-free click chemistry in living animals SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE 1,3-dipolar cycloaddition; azide; bioorthogonal ligation; cyclooctyne; glycan ID IN-VIVO; STAUDINGER LIGATION; 1,3-DIPOLAR CYCLOADDITIONS; AQUEOUS SOLUBILITY; CHEMICAL-COMPOUNDS; TERMINAL ALKYNES; AZIDO SUGARS; GLYCANS; PROTEINS; GLYCOSYLATION AB Chemical reactions that enable selective biomolecule labeling in living organisms offer a means to probe biological processes in vivo. Very few reactions possess the requisite bioorthogonality, and, among these, only the Staudinger ligation between azides and triarylphosphines has been employed for direct covalent modification of biomolecules with probes in the mouse, an important model organism for studies of human disease. Here we explore an alternative bioorthogonal reaction, the 1,3-dipolar cycloaddition of azides and cyclooctynes, also known as "Cu-free click chemistry," for labeling biomolecules in live mice. Mice were administered peracetylated N-azidoacetylmannosamine (Ac(4)ManNAz) to metabolically label cell-surface sialic acids with azides. After subsequent injection with cyclooctyne reagents, glycoconjugate labeling was observed on isolated splenocytes and in a variety of tissues including the intestines, heart, and liver, with no apparent toxicity. The cyclooctynes tested displayed various labeling efficiencies that likely reflect the combined influence of intrinsic reactivity and bioavailability. These studies establish Cu-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse. C1 [Chang, Pamela V.; Prescher, Jennifer A.; Sletten, Ellen M.; Baskin, Jeremy M.; Miller, Isaac A.; Agard, Nicholas J.; Lo, Anderson; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, B84 Hildebrand Hall 1460, Berkeley, CA 94720 USA. EM crb@berkeley.edu OI Baskin, Jeremy/0000-0003-2939-3138 FU National Institutes of Health [GM058867]; National Science Foundation; American Chemical Society; Howard Hughes Medical Institute; National Defense Science and Engineering FX We thank Danielle Dube, Sarah Hubbard, Julian Codelli, and Bryan Dickinson for technical assistance and Scott Laughlin for graphical assistance. This work was supported by National Institutes of Health Grant GM058867. P. V. C. was supported by National Science Foundation and American Chemical Society Division of Medicinal Chemistry predoctoral fellowships. J.A.P. was supported by a Howard Hughes Medical Institute predoctoral fellowship. E. M. S. was supported by an American Chemical Society Division of Organic Chemistry predoctoral fellowship. J.M.B. was supported by National Science Foundation and National Defense Science and Engineering predoctoral fellowships. NR 39 TC 273 Z9 274 U1 11 U2 162 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 2 PY 2010 VL 107 IS 5 BP 1821 EP 1826 DI 10.1073/pnas.0911116107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 552MV UT WOS:000274296300006 PM 20080615 ER PT J AU Johnson, NC Wilson, GWT Bowker, MA Wilson, JA Miller, RM AF Johnson, Nancy Collins Wilson, Gail W. T. Bowker, Matthew A. Wilson, Jacqueline A. Miller, R. Michael TI Resource limitation is a driver of local adaptation in mycorrhizal symbioses SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE coevolution; geographic mosaics; mutualism; parasitism ID PLANT COMMUNITY STRUCTURE; TALLGRASS PRAIRIE; ARBUSCULAR MYCORRHIZA; WATER RELATIONS; FUNGI; SOIL; NUTRIENT; NITROGEN; DYNAMICS; FEEDBACK AB Symbioses may be important mechanisms of plant adaptation to their environment. We conducted a reciprocal inoculation experiment to test the hypothesis that soil fertility is a key driver of local adaptation in arbuscular mycorrhizal (AM) symbioses. Ecotypes of Andropogon gerardii from phosphorus-limited and nitrogen-limited grasslands were grown with all possible "home and away" combinations of soils and AM fungal communities. Our results indicate that Andropogon ecotypes adapt to their local soil and indigenous AM fungal communities such that mycorrhizal exchange of the most limiting resource is maximized. Grasses grown in home soil and inoculated with home AM fungi produced more arbuscules ( symbiotic exchange structures) in their roots than those grown in away combinations. Also, regardless of the host ecotype, AM fungi produced more extraradical hyphae in their home soil, and locally adapted AM fungi were, therefore, able to sequester more carbon compared with nonlocal fungi. Locally adapted mycorrhizal associations were more mutualistic in the two phosphorus-limited sites and less parasitic at the nitrogen-limited site compared with novel combinations of plants, fungi, and soils. To our knowledge, these findings provide the strongest evidence to date that resource availability generates evolved geographic structure in symbioses among plants and soil organisms. Thus, edaphic origin of AM fungi should be considered when managing for their benefits in agriculture, ecosystem restoration, and soil-carbon sequestration. C1 [Johnson, Nancy Collins; Bowker, Matthew A.] No Arizona Univ, Flagstaff, AZ 86011 USA. [Wilson, Gail W. T.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Wilson, Jacqueline A.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA. [Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Johnson, NC (reprint author), No Arizona Univ, Flagstaff, AZ 86011 USA. EM Nancy.Johnson@nau.edu RI Wilson, Gail/G-4255-2012 FU National Science Foundation [DEB-03116136, DEB-0842327, IBN-9632851]; US Department of Energy [DE-AC02-06CH11357] FX We thank Anita Antoninka for her analysis of the AM fungal- spore communities and Brent Burch and Matthew Lau for their assistance with the statistical analyses. We also thank James Bever, John Klironomos, and Thomas Whitham for their helpful comments on an earlier version of this manuscript. We thank the Cedar Creek and Konza Long-Term Ecological Research (LTER) sites and the Fermi National Laboratory Environmental Research Park for permitting us to collect soil and seed at their research sites. This work was funded by the National Science Foundation Grants DEB-03116136, DEB-0842327, and IBN-9632851 (Konza LTER). R.M.M.'s participation was in part funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate Change Research Division under contract DE-AC02-06CH11357 at Argonne, IL. NR 52 TC 186 Z9 193 U1 30 U2 240 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 2 PY 2010 VL 107 IS 5 BP 2093 EP 2098 DI 10.1073/pnas.0906710107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 552MV UT WOS:000274296300053 PM 20133855 ER PT J AU Xie, ZH Ulrich, LE Zhulin, IB Alexandre, G AF Xie, Zhihong Ulrich, Luke E. Zhulin, Igor. B. Alexandre, Gladys TI PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE FAD; nitrogen fixation; signal transduction ID AZOSPIRILLUM-BRASILENSE SP7; PROTON MOTIVE FORCE; ESCHERICHIA-COLI; ENERGY TAXIS; SIGNAL-TRANSDUCTION; BACTERIAL CHEMOTAXIS; REDOX SENSOR; AEROTAXIS; AER; OXYGEN AB Chemoreceptors provide sensory specificity and sensitivity that enable motile bacteria to seek optimal positions for growth and metabolism in gradients of various physicochemical cues. Despite the abundance of chemoreceptors, little is known regarding the sensory specificity and the exact contribution of individual chemoreceptors to the lifestyle of bacteria. Azospirillum brasilense are motile bacteria that can fix atmospheric nitrogen under microaerophilic conditions. Here, we characterized a chemoreceptor in this organism, named AerC, which functions as a redox sensor that enables the cells to seek microaerophilic conditions that support optimum nitrogen fixation. AerC is a representative of a widespread class of soluble chemoreceptors that monitor changes in the redox status of the electron transport system via the FAD cofactor associated with its PAS domains. In A. brasilense, AerC clusters at the cell poles. Its cellular localization and contribution to the behavioral response correlate with its expression pattern and with changes in the overall cellular FAD content under nitrogen-fixing conditions. AerC-mediated energy taxis in A. brasilense prevails under conditions of nitrogen fixation, illustrating a strategy by which cells optimize chemosensing to signaling cues that directly affect current metabolic activities and thus revealing a mechanism by which chemotaxis is coordinated with dynamic changes in cell physiology. C1 [Xie, Zhihong; Alexandre, Gladys] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Ulrich, Luke E.; Alexandre, Gladys] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Ulrich, Luke E.; Zhulin, Igor. B.] Agile Genom LLC, Mt Pleasant, SC 29466 USA. [Zhulin, Igor. B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37886 USA. [Zhulin, Igor. B.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37886 USA. RP Alexandre, G (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. EM galexan2@utk.edu RI XIE, Zhihong/B-2968-2011; Zhulin, Igor/A-2308-2012 OI Zhulin, Igor/0000-0002-6708-5323 FU National Science Foundation [MCB-0622277, MCB-0919819]; National Institutes of Health [GM072285]; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank R. Goodchild and K. Watts for providing antibodies; K. Watts and M. S. Johnson for advice with the FAD measurement assays; and Q. Ma, B. L. Taylor, and W. Black for participating in the early stages of computational analysis. The authors also thank B. R. Crane for insightful discussion. This work was supported by National Science Foundation CAREER Award MCB-0622277 and MCB-0919819 (to G.A.), the National Institutes of Health Grant GM072285 (to I.B.Z.) and the DOE BioEnergy Science Center, which is supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 34 TC 30 Z9 30 U1 0 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 2 PY 2010 VL 107 IS 5 BP 2235 EP 2240 DI 10.1073/pnas.0910055107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 552MV UT WOS:000274296300078 PM 20133866 ER PT J AU Willcock, J Lumsdaine, A Quinlan, D AF Willcock, Jeremiah Lumsdaine, Andrew Quinlan, Daniel TI Reusable, Generic Program Analyses and Transformations SO ACM SIGPLAN NOTICES LA English DT Article DE Languages; Performance; Generic programming; compiler optimization; program analysis ID OPTIMIZATIONS AB The optimizations in modern compilers are constructed for a predetermined set of primitive types. As a result, programmers are unable to exploit optimizations for user-defined types where these optimizations would be correct and beneficial. Moreover, because the set of optimizations is also fixed, programmers are unable to incorporate new optimizations into the compiler. To address these limitations, we apply the reuse methodologies from generic programming to compiler analyses and optimizations. To enable compilers to apply optimizations to classes of types rather than particular types, we define optimizations in terms of generic interface descriptions (similar to C++ concepts or Haskell type classes). By extending these interface descriptions to include associated program analysis and transformation fragments, we enable compilers to incorporate user-defined transformations and analyses. Since these transformations are explicitly associated with interface descriptions, they can be applied in generic fashion by the compiler. We demonstrate that classical compiler optimizations, when generalized using this framework, can apply to a broad range of types, both built-in and user-defined. Finally, we present an initial implementation, the principles of which are generalizable to other compilers. C1 [Willcock, Jeremiah; Lumsdaine, Andrew] Indiana Univ, Bloomington, IN 47405 USA. [Quinlan, Daniel] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Willcock, J (reprint author), Indiana Univ, Bloomington, IN 47405 USA. EM jewillco@osl.iu.edu; lums@osl.iu.edu; dquinlan@llnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [07-ERD-057]; United States Department of Energy; Air Force Research Laboratory; NSF [CCF-0541335]; Lilly Endowment FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code; A portion of this work previously appeared in the first author's Ph.D. thesis in the context of a more sophisticated program analysis and transformation specification language intended for use in generic optimizations [42]. The first author was partially supported by a United States Department of Energy High Performance Computer Science Fellowship. This project was also partially funded by the Air Force Research Laboratory, as well as by NSF award CCF-0541335 and by the Lilly Endowment. We would also like to thank David R. Musser for clarifying some aspects of Vargun's work on generic proofs, and Bronis de Supinski, Chunhua Liao, Laura Hopkins, Marcin Zalewski, and Andreas S bjornsen for reading and commenting on the paper. We also thank the anonymous reviewers for their comments.07-ERD-057. NR 42 TC 1 Z9 1 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD FEB PY 2010 VL 45 IS 2 BP 5 EP 14 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 633ZT UT WOS:000280547600001 ER PT J AU Wu, KS Shoshani, A Stockinger, K AF Wu, Kesheng Shoshani, Arie Stockinger, Kurt TI Analyses of Multi-Level and Multi-Component Compressed Bitmap Indexes SO ACM TRANSACTIONS ON DATABASE SYSTEMS LA English DT Article DE Performance; Algorithms; Multi-component bitmap index; multi-level bitmap index; compression; performance analysis ID SIGNATURE FILES; TECHNOLOGY AB Bitmap indexes are known as the most effective indexing methods for range queries on append-only data, and many different bitmap indexes have been proposed in the research literature. However, only two of the simplest ones are used in commercial products. To better understand the benefits offered by the more sophisticated variations, we conduct an analytical comparison of well-known bitmap indexes, most of which are in the class of multi-component bitmap indexes. Our analysis is the first to fully incorporate the effects of compression on their performance. We produce closed-form formulas for both the index sizes and the query processing costs for the worst cases. One surprising finding is that the two simple indexes are in fact the best among multi-component indexes. Additionally, we investigate a number of novel variations in a class of multi-level indexes, and find that they answer queries faster than the best of multi-component indexes. More specifically, some two-level indexes are predicted by analyses and verified with experiments to be 5 to 10 times faster than well-known indexes. Furthermore, these two-level indexes have the optimal computational complexity for answering queries. C1 [Wu, Kesheng; Shoshani, Arie; Stockinger, Kurt] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wu, KS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd Mail Stop, Berkeley, CA 94720 USA. EM kwu@lbl.gov FU U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 8 Z9 8 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-5915 EI 1557-4644 J9 ACM T DATABASE SYST JI ACM Trans. Database Syst. PD FEB PY 2010 VL 35 IS 1 AR 2 DI 10.1145/1670243.1670245 PG 52 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 555KZ UT WOS:000274511000002 ER PT J AU Xu, XC Rao, NSV Sahni, S AF Xu, Xiaochun Rao, Nageswara S. V. Sahni, Sartaj TI A Computational Geometry Method for Localization Using Differences of Distances SO ACM TRANSACTIONS ON SENSOR NETWORKS LA English DT Article DE Algorithms; Measurement; DTOA localization; distance-difference triangulation; geometric search; sensor networks ID LOCATION AB We present a computational geometry method for the problem of estimating the location of a source in the plane using measurements of distance-differences to it. Compared to existing solutions to this well-studied problem, this method is: (a) computationally more efficient and adaptive in that its precision can be controlled as a function of the number of computational operations, and (b) robust with respect to measurement and computational errors, and is not susceptible to numerical instabilities typical of existing linear algebraic or quadratic methods. This method employs a binary search on a distance-difference curve in the plane using a second distance-difference as the objective function. We show the correctness of this method by establishing the unimodality of directional derivative of the objective function within each of a small number of regions of the plane, wherein a suitable binary search is supported. The computational complexity of this method is O(log(1/gamma)), where the computed solution is guaranteed to be within a distance. of the actual location of the source. We present simulation results to compare this method with existing DTOA localization methods. C1 [Xu, Xiaochun; Sahni, Sartaj] Univ Florida, Comp & Informat Sci & Engn Dept, Gainesville, FL 32611 USA. [Rao, Nageswara S. V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Xu, XC (reprint author), Univ Florida, Comp & Informat Sci & Engn Dept, Gainesville, FL 32611 USA. EM xxu@cise.ufl.edu; raons@ornl.gov; sahni@cise.ufl.edu OI Rao, Nageswara/0000-0002-3408-5941 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-00OR22725] FX This work is funded by the SensorNet program of Oak Ridge National Laboratory (ORNL) through Office of Naval Research. ONRL is managed by UT-Battelle, LLC for U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 21 TC 5 Z9 5 U1 1 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1550-4859 EI 1550-4867 J9 ACM T SENSOR NETWORK JI ACM Trans. Sens. Netw. PD FEB PY 2010 VL 6 IS 2 AR 10 DI 10.1145/1689239.1689240 PG 25 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 563VK UT WOS:000275163100001 ER PT J AU Zhu, MX Ding, S Wu, QS Brooks, RR Rao, NSV Iyengar, SS AF Zhu, Mengxia Ding, Song Wu, Qishi Brooks, R. R. Rao, N. S. V. Iyengar, S. S. TI Fusion of Threshold Rules for Target Detection in Wireless Sensor Networks SO ACM TRANSACTIONS ON SENSOR NETWORKS LA English DT Article DE Algorithms; Performance; Hit rate; false alarm rate; Chebyshev inequality; ROC curve; wireless sensor network; binary decision fusion ID DECISION FUSION; DISTRIBUTED DETECTION; PERFORMANCE; SYSTEMS AB We propose a binary decision fusion rule that reaches a global decision on the presence of a target by integrating local decisions made by multiple sensors. Without requiring a priori probability of target presence, the fusion threshold bounds derived using Chebyshev's inequality ensure a higher hit rate and lower false alarm rate compared to the weighted averages of individual sensors. The Monte Carlo-based simulation results show that the proposed approach significantly improves target detection performance, and can also be used to guide the actual threshold selection in practical sensor network implementation under certain error rate constraints. C1 [Zhu, Mengxia] So Illinois Univ, Dept Comp Sci, Carbondale, IL 62901 USA. [Ding, Song; Iyengar, S. S.] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA. [Wu, Qishi] Univ Memphis, Dept Comp Sci, Memphis, TN 38152 USA. [Brooks, R. R.] Clemson Univ, Dept Comp Engn, Clemson, SC USA. [Rao, N. S. V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Zhu, MX (reprint author), So Illinois Univ, Dept Comp Sci, Carbondale, IL 62901 USA. EM mzhu@cs.siu.edu; sding@bit.csc.lsu.edu; qishiwu@memphis.edu; rrb@acm.org; raons@ornl.gov; iyengar@bit.csc.lsu.edu OI Rao, Nageswara/0000-0002-3408-5941 FU ARO [W911 NF-05-1-0226] FX R.R. Brooks acknowledges financial support by ARO through grant W911 NF-05-1-0226. NR 10 TC 14 Z9 15 U1 4 U2 7 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1550-4859 J9 ACM T SENSOR NETWORK JI ACM Trans. Sens. Netw. PD FEB PY 2010 VL 6 IS 2 AR 18 DI 10.1145/1689239.1689248 PG 7 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 563VK UT WOS:000275163100009 ER PT J AU Reilly, TH Tenent, RC Barnes, TM Rowlen, KL van de Lagemaat, J AF Reilly, Thomas H., III Tenent, Robert C. Barnes, Teresa M. Rowlen, Kathy L. van de Lagemaat, Jao TI Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films SO ACS NANO LA English DT Article DE surface plasmon; transparent electrode; enhanced optical transmission; nanohole; nanoaperture; colloidal lithography; layer-by-layer deposition ID SUBWAVELENGTH HOLE ARRAYS; THIN METAL-FILMS; ENHANCED TRANSMISSION; LIGHT TRANSMISSION; SURFACE-PLASMONS; COPPER PHTHALOCYANINE; PHOTOVOLTAIC CELLS; SOLID FILMS; GOLD-FILMS; RESONANCE AB Disordered nanohole arrays were formed in silver films by colloidal lithography techniques and characterized for their surface-plasmon activity. Careful control of the reagent concentration, deposition solution ionic strength, and assembly time allowed generation of a wide variety of nanohole densities. The fractional coverage of the nanospheres across the surface was varied from 0.05-0.36. Electrical sheet resistance measurements as a function of nanohole coverage fit well to percolation theory indicating that the electrical behavior of the films is determined by bulk silver characteristics. The transmission and reflection spectra were measured as a function of coverage and the results indicate that the optical behavior of the films is dominated by surface plasmon phenomena. Angle-resolved transmission and reflection spectra were measured, yielding insight into the nature of the excitations taking place on the metal films. The tunability of the colloidal lithography assembly method holds much promise as a means to generate customized transparent electrodes with high surface plasmon activity throughout the visible and NIR spectrum over large surface areas. C1 [Reilly, Thomas H., III; Barnes, Teresa M.; van de Lagemaat, Jao] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tenent, Robert C.; Rowlen, Kathy L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP van de Lagemaat, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jao.vandelagemaat@nrel.gov RI van de Lagemaat, Jao/J-9431-2012 FU Laboratory Directed Research and Development program at NREL; NSF; U.S. Department of Energy [DE-AC36-99GO10337] FX T.H.R., J.v.d.L. and T.M.B. would like to acknowledge support from the Laboratory Directed Research and Development program at NREL. R.C.T. and K.L.R. would like to acknowledge support from the NSF. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. NR 50 TC 25 Z9 25 U1 4 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 615 EP 624 DI 10.1021/nn901734d PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800006 PM 20112934 ER PT J AU Nikiforov, MP Thompson, GL Reukov, VV Jesse, S Guo, S Rodriguez, BJ Seal, K Vertegel, AA Kalinin, SV AF Nikiforov, M. P. Thompson, G. L. Reukov, V. V. Jesse, S. Guo, S. Rodriguez, B. J. Seal, K. Vertegel, A. A. Kalinin, S. V. TI Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment SO ACS NANO LA English DT Article DE amyloid; electromechanical coupling; double layer; PFM; SPM ID ATOMIC-FORCE MICROSCOPY; ELECTRIC-FIELD; MOLECULAR-DYNAMICS; DEVICES; INSULIN; NANOSCALE; DRIVEN; SURFACE; ROTOR; PIEZOELECTRICITY AB Harnessing electrical bias-induced mechanical motion on the nanometer and molecular scale is a critical step toward understanding the fundamental mechanisms of redox processes and implementation of molecular electromechanical machines. Probing these phenomena in biomolecular systems requires electromechanical measurements be performed in liquid environments. Here we demonstrate the use of band excitation piezoresponse force microscopy for probing electromechanical coupling in amyloid fibrils. The approaches for separating the elastic and electromechanical contributions based on functional fits and multivariate statistical analysis are presented. We demonstrate that in the bulk of the fibril the electromechanical response is dominated by double-layer effects (consistent with shear piezoelectricity of biomolecules), while a number of electromechanically active hot spots possibly related to structural defects are observed. C1 [Thompson, G. L.; Reukov, V. V.; Vertegel, A. A.] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA. [Nikiforov, M. P.; Jesse, S.; Guo, S.; Rodriguez, B. J.; Seal, K.; Kalinin, S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Vertegel, AA (reprint author), Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA. EM vertege@clemson.edu; sergei2@ornl.gov RI Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 FU ORNL LORD; U.S. Department of Energy; NIH [RR024449] FX The work was supported in part (M.P.N., S.V.K.) by ORNL LORD program. A portion of this research at the Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research was also supported in part (V.V.R., A.A.V., S.V.K.) by NIH Grant RR024449. NR 70 TC 19 Z9 19 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 689 EP 698 DI 10.1021/nn901127k PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800015 PM 20088597 ER PT J AU Gu, DF Baumgart, H Abdel-Fattah, TM Namkoong, G AF Gu, Diefeng Baumgart, Helmut Abdel-Fattah, Tarek M. Namkoong, Gon TI Synthesis of Nested Coaxial Multiple-Walled Nanotubes by Atomic Layer Deposition SO ACS NANO LA English DT Article DE atomic layer deposition; nested multiple-walled coaxial nanotubes; coaxial sacrificial spacer layer; porous alumina templates; chemical nanotube release ID ALUMINA MEMBRANES; ANODIC ALUMINA; FABRICATION; ARRAYS; TEMPLATES; METAL; NANOSTRUCTURES; REPLICATION; DIFFUSION; INSULATOR AB Nested multiple-walled coaxial nanotube structures of transition metal oxides, semiconductors, and metals were successfully synthesized by atomic layer deposition (ALD) techniques utilizing nanoporous anodic aluminum oxide (AAO) as templates. In order to fabricate free-standing tube-in-tube namostructures, successive ALD nanotubes were grown on the interior template walls of the AAO nanochannels. The coaxial nanotubes were alternated by sacrificial spacers of ALD Al(2)O(3), to be chemically removed to release the nanotubes from the AAO template. In this study, we synthesized a novel nanostructure with up to five nested coaxial nanotubes within AAO templates. This synthesis can be extended to fabricate n-times tube-in-tube nanostructures of different materials with applications in multisensors, broadband detectors, nanocapacitors, and photovoltaic cells. C1 [Gu, Diefeng; Baumgart, Helmut; Namkoong, Gon] Old Dominion Univ, Dept Elect Engn, Norfolk, VA 23529 USA. [Gu, Diefeng; Baumgart, Helmut; Abdel-Fattah, Tarek M.; Namkoong, Gon] Appl Res Ctr, CNU&ODU, Jefferson Lab, Newport News, VA 23606 USA. [Abdel-Fattah, Tarek M.] Christopher Newport Univ, Dept Biol Chem & Environm Sci, Newport News, VA 23606 USA. RP Baumgart, H (reprint author), Old Dominion Univ, Dept Elect Engn, Norfolk, VA 23529 USA. EM hbaumgar@odu.edu RI Gu, Diefeng/F-4515-2010 NR 23 TC 49 Z9 49 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 753 EP 758 DI 10.1021/nn901250w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800022 PM 20085347 ER PT J AU Crossland, EJW Cunha, P Scroggins, S Moratti, S Yurchenko, O Steiner, U Hillmyer, M Ludwigs, S AF Crossland, Edward J. W. Cunha, Pedro Scroggins, Steve Moratti, Stephen Yurchenko, Olena Steiner, Ullrich Hillmyer, M. Ludwigs, Sabine TI Soft-Etch Mesoporous Hole-Conducting Block Copolymer Templates SO ACS NANO LA English DT Article DE block copolymers; self-assembly; organic photovoltaics; porous materials ID THIN-FILMS; DIBLOCK COPOLYMERS; POLYMER BRUSHES; DONOR; ARRAYS; NANOSTRUCTURES; DESIGN AB We present a mesoporous hole-conducting polymer film resulting from spontaneous block copolymer self-assembly based on a simple spin-coating protocol, A diblock copolymer consisting of a triphenylamine side group polymer and a poly(D,L-lactide) block (PSTPA-b-PLA) is shown to microphase separate to form ordered 13 nm cylindrical PLA microdomains embedded in the semiconducting PSTPA matrix. Partially ordered and film-spanning PLA domains could be identified in films immediately after spin coating from toluene solutions on conducting substrates. Selective mild etching of the minority PLA domains (in weak aqueous base) leads to a mesoporous hole-conducting polymer matrix. The pore structure is replicated electrochemically in platinum, demonstrating the viability of this approach to producing nano-organized heterojunction structures in thin films. C1 [Crossland, Edward J. W.; Steiner, Ullrich; Ludwigs, Sabine] Univ Freiburg, Freiburg Inst Adv Studies FRIAS, D-79104 Freiburg, Germany. [Crossland, Edward J. W.; Cunha, Pedro; Steiner, Ullrich] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Scroggins, Steve] Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Scroggins, Steve] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Moratti, Stephen] Univ Otago, Dept Chem, Dunedin, New Zealand. [Yurchenko, Olena; Ludwigs, Sabine] Univ Freiburg, Freiburg Mat Res Ctr, D-79104 Freiburg, Germany. [Yurchenko, Olena; Ludwigs, Sabine] Univ Freiburg, Inst Macromol Chem, D-79104 Freiburg, Germany. [Hillmyer, M.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. RP Ludwigs, S (reprint author), Univ Freiburg, Freiburg Inst Adv Studies FRIAS, D-79104 Freiburg, Germany. EM sabine.ludwigs@makro.uni-freiburg.de RI Moratti, Stephen/B-4422-2009; Steiner, Ullrich/K-4777-2013 OI Steiner, Ullrich/0000-0001-5936-339X FU National Science Foundation; Leverhulme Trust; DFG; Landesstiftung BW FX The authors thank Dr. Chris Newman, Cavendish Laboratories, for homopolymer FET measurements, and Prof. Jurgen Heinze for discussing the CV data. E.C. was supported by the EPSRC, M.H. acknowledges support from the National Science Foundation and the Leverhulme Trust. S.L. and U.S. acknowledge the European RTN-6 network Polyfilm. S.L. thanks the DFG for a grant within the Emmy Noether Program and a junior fellowship in the Freiburg Institute for Advanced Studies (FRIAS). S.L. acknowledges the Landesstiftung BW for the funding of O.Y. NR 26 TC 17 Z9 17 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 962 EP 966 DI 10.1021/nn901447a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800048 PM 20099866 ER PT J AU Sun, C Su, KH Valentine, J Rosa-Bauza, YT Ellman, JA Elboudwarej, O Mukherjee, B Craik, CS Shuman, MA Chen, FF Zhang, X AF Sun, Cheng Su, Kai-Hung Valentine, Jason Rosa-Bauza, Yazmin T. Ellman, Jonathan A. Elboudwarej, Omeed Mukherjee, Bipasha Craik, Charles S. Shuman, Marc A. Chen, Fanqing Frank Zhang, Xiang TI Time-Resolved Single-Step Protease Activity Quantification Using Nanoplasmonic Resonator Sensors SO ACS NANO LA English DT Article DE plasmonic resonator; surface-enhanced Raman scattering; sensing; prostate cancer; protease ID ENHANCED RAMAN-SCATTERING; PROSTATE-SPECIFIC ANTIGEN; PARTITION LAYER; SPECTROSCOPY; CANCER; SERS; NANOPARTICLES; PROTEINS; DISEASE; PSA AB Protease activity measurement has broad application in drug screening, diagnosis and disease staging, and molecular profiling. However, conventional immunopeptidemetric assays (IMPA) exhibit low fluorescence signal-to-noise ratios, preventing reliable measurements at lower concentrations in the clinically important picomolar to nanomolar range. Here, we demonstrated a highly sensitive measurement of protease activity using a nanoplasmonic resonator (NPR). NPRs enhance Raman signals by 6.1 x 10(10) times in a highly reproducible manner, enabling fast detection of proteolytically active prostate-specific antigen (paPSA) activities in real-time, at a sensitivity level of 6 pM (0.2 ng/mL) with a dynamic range of 3 orders of magnitude. Experiments on extracellular fluid (ECF) from the paPSA-positive cells demonstrate specific detection in a complex biofluid background. This method offers a fast, sensitive, accurate, and one-step approach to detect the proteases' activities in very small sample volumes. C1 [Rosa-Bauza, Yazmin T.; Ellman, Jonathan A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Elboudwarej, Omeed; Mukherjee, Bipasha; Chen, Fanqing Frank] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Craik, Charles S.; Shuman, Marc A.; Chen, Fanqing Frank] Univ Calif San Francisco, Ctr Comprehens Canc, San Francisco, CA 94143 USA. [Sun, Cheng; Su, Kai-Hung; Valentine, Jason; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Sun, Cheng] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. RP Sun, C (reprint author), Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. EM c-sun@northwestern.edu; f_chen@lbl.gov; xiang@berkeley.edu RI Sun, Cheng/B-7609-2009; Zhang, Xiang/F-6905-2011; Valentine, Jason/A-6121-2012; Sun, Cheng/A-8111-2010; Ellman, Jonathan/C-7732-2013 OI Sun, Cheng/0000-0002-2744-0896; FU National Institutes of Health (NIH) [PN2EY018228]; National Science Foundation (NSF) [CMMI-0751621]; NSFSST/Collaborative Research Program [DMI-0427679]; NHLBI/NIH [HL078534]; NCI/NIH [R1CA95393-01]; DARPA; UCSF Prostate Cancer SPORE [P50 CA89520]; U.S. Department of Energy, at the University of California/Lawrence Berkeley National Laboratory [DE-AC03-76SF00098]; [P01 CA072006] FX We thank Dr. R. Oulton for useful discussion and help with the manuscript. This work is supported by National Institutes of Health (NIH) through NIH Roadmap for Medical Research (PN2EY018228), National Science Foundation (NSF) Nanoscale Science and Engineering Center (CMMI-0751621), and NSFSST/Collaborative Research Program (DMI-0427679). F.C. is supported by NHLBI/NIH HL078534 and NCI/NIH R1CA95393-01, DARPA, and UCSF Prostate Cancer SPORE award (NIH Grant P50 CA89520). J.A,E. and Y.T.R.-B. were supported by P01 CA072006. This work was performed under the auspices of the U.S. Department of Energy, at the University of California/Lawrence Berkeley National Laboratory, under Contract No. DE-AC03-76SF00098. NR 34 TC 21 Z9 21 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 978 EP 984 DI 10.1021/nn900757p PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800050 PM 20121209 ER PT J AU Kang, J Kim, YH AF Kang, Joongoo Kim, Yong-Hyun TI Half-Solidity of Tetrahedral-like Al-55 Clusters SO ACS NANO LA English DT Article DE aluminum clusters; stability; melting transition; DFT; molecular dynamics ID MOLECULAR-DYNAMICS; ALUMINUM CLUSTERS; TRANSITION; UBIQUITIN; PROTEINS; SYSTEMS AB A new dynamic melting state, which has both solid and liquid characteristics, is revealed from first-principles molecular dynamics simulations of Al-55 clusters. In thermal fluctuations near the melting point, the low-energy tetrahedral-like Al-55 survives through rapid, collective surface transformations-such as parity conversions and correlated diffusion of two distant vacancies-without losing its structural orders. The emergence of the collective motions is solely due to efficient thermal excitation of soft phonon modes at nanoscale. A series of spontaneous surface reconfigurations result in a mixture or effective flow of surface atoms as is random color shuffling of a Rubik's cube. This novel flexible solid state (termed as half-solidity) provides useful insights into understanding stability, flexibility, and functionality of nanosystems near or below melting temperatures. C1 [Kang, Joongoo; Kim, Yong-Hyun] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea. RP Kim, YH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yong.hyun.kim@kaist.ac.kr RI Kim, Yong-Hyun/C-2045-2011 OI Kim, Yong-Hyun/0000-0003-4255-2068 FU DOE [DE-AC36-08GO28308]; Ministry of Education, Science and Technology [R31-2008-000-10071-0] FX We thank S.-H. Wei and D. Blake for discussions and for reading the manuscript. This work was funded by the DOE EERE CSP and NREL LDRD programs under Contract No. DE-AC36-08GO28308. Y.-H. Kim was also supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10071-0). NR 28 TC 12 Z9 12 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 1092 EP 1098 DI 10.1021/nn901536a PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800064 PM 20055435 ER PT J AU Pint, CL Xu, YQ Moghazy, S Cherukuri, T Alvarez, NT Haroz, EH Mahzooni, S Doorn, SK Kono, J Pasquali, M Hauge, RH AF Pint, Cary L. Xu, Ya-Qiong Moghazy, Sharief Cherukuri, Tonya Alvarez, Noe T. Haroz, Erik H. Mahzooni, Salma Doorn, Stephen K. Kono, Junichiro Pasquali, Matteo Hauge, Robert H. TI Dry Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization of Their Optical Properties for Diameter Distribution and Alignment SO ACS NANO LA English DT Article DE carbon nanotubes; carpets; optical absorption; Raman spectroscopy ID RAMAN-SPECTROSCOPY; GROWTH; FILMS; SPECTRA; CATALYST; CARPETS; ARRAYS; FLUORESCENCE; TRANSISTORS; SELECTIVITY AB A scalable and facile approach Is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process. C1 [Cherukuri, Tonya; Alvarez, Noe T.; Pasquali, Matteo; Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Pint, Cary L.; Haroz, Erik H.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Pasquali, Matteo] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Pint, Cary L.; Moghazy, Sharief; Cherukuri, Tonya; Alvarez, Noe T.; Haroz, Erik H.; Mahzooni, Salma; Kono, Junichiro; Hauge, Robert H.] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Xu, Ya-Qiong] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Xu, Ya-Qiong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Doorn, Stephen K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Hauge, RH (reprint author), Rice Univ, Dept Chem, Houston, TX 77005 USA. EM hauge@rice.edu RI Pint, Cary/C-5053-2009; Hauge, Robert/A-7008-2011; Xu, Yaqiong/D-8649-2012; Pasquali, Matteo/A-2489-2008; Pint, Cary/I-6785-2013 OI Hauge, Robert/0000-0002-3656-0152; Pasquali, Matteo/0000-0001-5951-395X; FU Lockheed Martin LANCER program at Rice University FX The authors thank R.B. Weisman for use of the NIR microscope for fluorescence measurements, and C.L.P. thanks F. Leonard, S. Sinton, C. Cates, and others from Lockheed Martin for enlightening discussions, and S. Ripley for valuable experimental assistance. This work was supported by the Lockheed Martin LANCER program at Rice University. NR 81 TC 63 Z9 63 U1 7 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 1131 EP 1145 DI 10.1021/nn9013356 PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800069 PM 20092353 ER PT J AU Sierra-Sastre, Y Dayeh, SA Picraux, ST Batt, CA AF Sierra-Sastre, Yajaira Dayeh, Shadi A. Picraux, S. T. Batt, Carl A. TI Epitaxy of Ge Nanowires Grown from Biotemplated Au Nanoparticle Catalysts SO ACS NANO LA English DT Article DE biotemplates; S-layer proteins; nanoparticles; nanowires; germanium; vapor-liquid-solid; chemical-vapor-deposition ID S-LAYER PROTEIN; GERMANIUM NANOWIRES; SILICON NANOWIRES; HIGH-DENSITY; ARRAYS; BIONANOFABRICATION; DIRECTION; LATTICES; MASK AB Semiconductor nanowires (NWs) are being actively investigated due to their unique functional properties which result from their quasi-one-dimensional structure, However, control over the crystallographic growth direction, diameter, location, and morphology of high-density NWs is essential to achieve the desirable properties and to integrate these NWs into miniaturized devices. This article presents evidence for the suitability of a biological templated catalyst approach to achieve high-density, epitaxial growth of NWs via the vapor-liquid-solid (VLS) mechanism. Bacterial surface-layer protein lattices from Deinococcus radiodurans were adsorbed onto germanium substrates of (111), (110), and (100) crystallographic orientations and used to template gold nanoparticles (AuNPs) of different diameters. Orientation-controlled growth of GeNWs was achieved from very small size (5-20 nm) biotemplated AuNP catalysts on all of the substrates studied. Biotemplated GeNWs exhibited improved morphologies, higher densities (NW/mu m(2)), and more uniform length as compared to GeNWs grown from nontemplated AuNPs on the substrate surfaces, The results offer an integrated overview of the interplay of parameters such as catalyst size, catalyst density, substrate crystallographic orientation, and the presence of the protein template in determining the morphology and growth direction of GeNWs. A comparison between templated and nontemplated growth provides additional insight into the mechanism of VLS growth of biotemplated NWs. C1 [Sierra-Sastre, Yajaira] Cornell Univ, Dept Chem & Biol Chem, Ithaca, NY 14853 USA. [Batt, Carl A.] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA. [Dayeh, Shadi A.; Picraux, S. T.] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. RP Sierra-Sastre, Y (reprint author), Cornell Univ, Dept Chem & Biol Chem, Ithaca, NY 14853 USA. EM ys253@cornell.edu RI Dayeh, Shadi/H-5621-2012 FU National Science Foundation [NSF-0403990, ECS-0335765, DMR0520404]; U.S. DOE; NNSA; Laboratory Directed Research and Development Program at Los Alamos National Laboratory FX The National Science Foundation (NSF-0403990), U.S. DOE, NNSA, and the Laboratory Directed Research and Development Program at Los Alamos National Laboratory are acknowledged for supporting this work. Y.S.S. also thanks the Cornell Provost Diversity Graduate Fellowship for partial financial support. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility, the Cornell Nanoscale Science and Technology Facility (NSF Grant ECS-0335765), and the Microscopy Facility at the Cornell Center for Materials Research (NSF-MRSEC Programs DMR0520404). NR 30 TC 15 Z9 15 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2010 VL 4 IS 2 BP 1209 EP 1217 DI 10.1021/nn901664r PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 556ZI UT WOS:000274635800077 PM 20128609 ER PT J AU Baker, EN Dauter, Z Einspahr, H Weiss, MS AF Baker, Edward N. Dauter, Zbigniew Einspahr, Howard Weiss, Manfred S. TI In defence of our science - validation now! SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Editorial Material C1 [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand. [Dauter, Zbigniew] NCI, Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Weiss, Manfred S.] Macromol Crystallog BESSY MX, Elektronenspeicherring BESSY 2, Inst F 12, D-12489 Berlin, Germany. RP Baker, EN (reprint author), Univ Auckland, Sch Biol Sci, Private Bag 92-019, Auckland 1, New Zealand. RI Weiss, Manfred/B-6857-2013 NR 1 TC 6 Z9 6 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2010 VL 66 BP 115 EP 115 DI 10.1107/S0907444910001332 PN 2 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 546OT UT WOS:000273820800001 PM 20124690 ER PT J AU Adams, PD Afonine, PV Bunkoczi, G Chen, VB Davis, IW Echols, N Headd, JJ Hung, LW Kapral, GJ Grosse-Kunstleve, RW McCoy, AJ Moriarty, NW Oeffner, R Read, RJ Richardson, DC Richardson, JS Terwilliger, TC Zwart, PH AF Adams, Paul D. Afonine, Pavel V. Bunkoczi, Gabor Chen, Vincent B. Davis, Ian W. Echols, Nathaniel Headd, Jeffrey J. Hung, Li-Wei Kapral, Gary J. Grosse-Kunstleve, Ralf W. McCoy, Airlie J. Moriarty, Nigel W. Oeffner, Robert Read, Randy J. Richardson, David C. Richardson, Jane S. Terwilliger, Thomas C. Zwart, Peter H. TI PHENIX: a comprehensive Python-based system for macromolecular structure solution SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID STATISTICAL DENSITY MODIFICATION; FAST TRANSLATION FUNCTIONS; MOLECULAR REPLACEMENT; MAXIMUM-LIKELIHOOD; STRUCTURE VALIDATION; CRYSTAL-STRUCTURE; NUCLEIC-ACIDS; ATOM CONTACTS; RNA BACKBONE; MODEL BIAS AB Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms. C1 [Adams, Paul D.; Afonine, Pavel V.; Echols, Nathaniel; Grosse-Kunstleve, Ralf W.; Moriarty, Nigel W.; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Adams, Paul D.] UC Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Bunkoczi, Gabor; McCoy, Airlie J.; Oeffner, Robert; Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England. [Chen, Vincent B.; Davis, Ian W.; Headd, Jeffrey J.; Kapral, Gary J.; Richardson, David C.; Richardson, Jane S.] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA. [Hung, Li-Wei; Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Adams, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM pdadams@lbl.gov RI Terwilliger, Thomas/K-4109-2012; Read, Randy/L-1418-2013; Adams, Paul/A-1977-2013; OI Terwilliger, Thomas/0000-0001-6384-0320; Read, Randy/0000-0001-8273-0047; Adams, Paul/0000-0001-9333-8219; Hung, Li-Wei/0000-0001-6690-8458 FU NIH [GM063210]; Phenix Industrial Consortium; US Department of Energy [DE-AC02-05CH11231]; Wellcome Trust (UK) FX The authors would like to thank the NIH (grant GM063210) and the Phenix Industrial Consortium for support of the Phenix project. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. RJR is supported by a Principal Research Fellowship from the Wellcome Trust (UK). We are grateful to Luc Bourhis and Marat Mustyakimov for contributions to the computational crystallography toolbox and PHENIX, Paul Emsley and Bernhard Lohkamp for their guidance interfacing PHENIX with Coot, the CCP4 developers for making the CCP4 library available for inclusion in PHENIX, Kevin Cowtan for providing C++ sequence-alignment code, Garib Murshudov and Alexei Vagin for making the monomer library available and our colleagues in the crystallographic community for numerous scientific discussions. We are deeply indebted to David Abrahams for numerous discussions and for accommodating our requirements when developing the Boost. Python library. NR 78 TC 6689 Z9 6720 U1 42 U2 295 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2010 VL 66 BP 213 EP 221 DI 10.1107/S0907444909052925 PN 2 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 546OT UT WOS:000273820800013 PM 20124702 ER PT J AU Thimmaiah, S Miller, GJ AF Thimmaiah, Srinivasa Miller, Gordon J. TI Pd2.28(1)Zn10.37(1)Al0.35(1), a ternary gamma-brass-type structure SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID PHASE AB Palladium zinc aluminium (2.28/10.37/0.35), Pd2.28(1)Zn10.37(1)-Al-0.35(1), represents the upper limit of Al substitution into the parent cubic gamma-brass Pd2+xZn11-x. The structure can be described in terms of a 26-atom cluster consisting of an inner tetrahedron (IT), an outer tetrahedron (OT), an octahedron (OH) and a cuboctahedron (CO), with the substituted Al atoms partially occupying the IT (.3m) and CO (..m) sites. C1 [Thimmaiah, Srinivasa] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Thimmaiah, S (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM srini@iastate.edu RI Thimmaiah, Srinivasa/H-1049-2012 FU US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was carried out at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the US Department of Energy. NR 12 TC 4 Z9 4 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD FEB PY 2010 VL 66 BP I5 EP U129 DI 10.1107/S1600536810000723 PN 2 PG 9 WC Crystallography SC Crystallography GA 550GB UT WOS:000274115200003 PM 21579591 ER PT J AU Baker, EN Dauter, Z Einspahr, H Weiss, MS AF Baker, Edward N. Dauter, Zbigniew Einspahr, Howard Weiss, Manfred S. TI In defence of our science - validation now! SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Editorial Material C1 [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand. [Dauter, Zbigniew] Argonne Natl Lab, NCI, Biosci Div, Argonne, IL 60439 USA. [Weiss, Manfred S.] Elektronenspeicherring BESSY II, Inst F12, Macromol Crystallog BESSY MX, D-12489 Berlin, Germany. RP Baker, EN (reprint author), Univ Auckland, Sch Biol Sci, Private Bag 92-019, Auckland 1, New Zealand. NR 1 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2010 VL 66 BP 112 EP 112 DI 10.1107/S1744309110001326 PN 2 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 549WR UT WOS:000274085600001 PM 20124704 ER PT J AU Mottura, A Warnken, N Miller, MK Finnis, MW Reed, RC AF Mottura, A. Warnken, N. Miller, M. K. Finnis, M. W. Reed, R. C. TI Atom probe tomography analysis of the distribution of rhenium in nickel alloys SO ACTA MATERIALIA LA English DT Article DE Nickel alloys; Atom probe tomography; Rhenium-effect ID NI-BASE SUPERALLOYS; CR-AL SUPERALLOY; TEMPORAL EVOLUTION; PHASE; CHEMISTRY; INTERDIFFUSION; NANOSTRUCTURE; SPECTROSCOPY; NANOSCALE; SYSTEMS AB Atom probe tomography (APT) is used to characterise the distributions of rhenium in a binary Ni-Re alloy and the nickel-based single-crystal CMSX-4 superalloy. A purpose-built algorithm is developed to quantify the size distribution of solute clusters, and applied to the APT datasets to critique the hypothesis that rhenium is prone to the formation of clusters in these systems. No evidence is found to indicate that rhenium forms solute clusters above the level expected from random fluctuations. In CMSX-4, enrichment of Re is detected in the matrix phase close to the matrix/precipitate (gamma/gamma') phase boundaries. Phase field modelling indicates that this is due to the migration of the gamma/gamma' interface during cooling from the temperature of operation. Thus, neither clustering of rhenium nor interface enrichments can be the cause of the enhancement in high temperature mechanical properties conferred by rhenium, alloying. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Warnken, N.; Reed, R. C.] Univ Birmingham, Dept Met & Mat, Birmingham B15 2TT, W Midlands, England. [Mottura, A.; Finnis, M. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Finnis, M. W.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RP Reed, RC (reprint author), Univ Birmingham, Dept Met & Mat, Birmingham B15 2TT, W Midlands, England. EM r.reed@bham.ac.uk RI Warnken, Nils/K-2537-2013; Mottura, Alessandro/D-6204-2016 OI Mottura, Alessandro/0000-0002-6020-8597 FU EPSRC [EP/D04619X/1]; Scientific User Facilities Division, Office of Science, U.S. Department of Energy FX Four of the authors (Mottura, Warnken, Finnis and Reed) acknowledge funding from the EPSRC Grant EP/D04619X/1. Research at the ORNL's SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Science, U.S. Department of Energy. NR 39 TC 42 Z9 43 U1 6 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2010 VL 58 IS 3 BP 931 EP 942 DI 10.1016/j.actamat.2009.10.008 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 558SH UT WOS:000274765600020 ER PT J AU Weyant, CM Almer, J Faber, KT AF Weyant, C. M. Almer, J. Faber, K. T. TI Through-thickness determination of phase composition and residual stresses in thermal barrier coatings using high-energy X-rays SO ACTA MATERIALIA LA English DT Article DE Plasma spraying; X-ray diffraction; Crystalline oxides; Coatings; Residual stresses ID STABILIZED-ZIRCONIA TBCS; PLASMA-SPRAYED COATINGS; GROWN OXIDE; MICROSTRUCTURAL EVOLUTION; DEPOSITION TEMPERATURE; ELASTOPLASTIC ANALYSIS; LAYERED MATERIALS; TANTALUM OXIDE; DIFFRACTION; SPECTROSCOPY AB High-energy X-rays were used to determine the local phase composition and residual stresses through the thickness of as-sprayed and heat-treated plasma-sprayed thermal barrier coatings consisting of a NiCoCrAlY bond coat and an yttria-stabilized zirconia (YSZ) topcoat produced with through-thickness segmentation cracks. The as-sprayed residual stresses reflected the combined influence of quenching stresses from the plasma spray process, thermal expansion mismatch between the topcoat, bond coat and substrate, and stress relief from the segmentation cracks. Heat treatments led to the formation of a thermally grown oxide (TGO) which was in compression in the plane, as well as relief of quenching stresses and development of a stress gradient in the YSZ topcoat. The high-energy X-ray technique used in this study revealed the effects that TGO and segmentation cracks have on the in-plane stress state of the entire coating. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Weyant, C. M.; Faber, K. T.] Northwestern Univ, Robert R McCormick Sch Engn & Appl Sci, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Weyant, CM (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY USA. EM christopher.weyant@stonybrook.edu RI Faber, Katherine/B-6741-2009 FU US Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 49 TC 20 Z9 25 U1 4 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2010 VL 58 IS 3 BP 943 EP 951 DI 10.1016/j.actamat.2009.10.010 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 558SH UT WOS:000274765600021 ER PT J AU Jana, S Mishra, RS Baumann, JB Grant, G AF Jana, S. Mishra, R. S. Baumann, J. B. Grant, G. TI Effect of friction stir processing on fatigue behavior of an investment cast Al-7Si-0.6 Mg alloy SO ACTA MATERIALIA LA English DT Article DE Aluminum alloys; Friction stir processing; Fatigue; Microstructure ID CRACK GROWTH-CHARACTERISTICS; ALUMINUM-ALLOYS; HEAT-TREATMENT; A356 ALLOY; MICROSTRUCTURE; STRENGTH; DEFECTS; MECHANISMS; PARTICLES; FRACTURE AB Cast aluminum alloys in general show poor fatigue performance due to the presence of defects. Friction stir processing (FSP) can be used as a tool to enhance the mechanical properties of cast alloys by eliminating such defects. In the present study FSP led to a five times improvement in fatigue life of an investment cast Al-7Si-0.6 Mg hypoeutectic alloy. The reason for such an enhancement was linked to the closure of casting porosities, which acted as crack nucleation sites in the as cast condition. Porosities acted as notches in the as cast alloy and led to an order of magnitude higher crack growth rate. As FSP eliminated the porosities and refined the Si particles the crack growth rate dropped, due to elimination of the notch effect, together with increased crack path tortuosity. Finally, short crack behavior was noted in both the cast and FSP specimens. The critical crack length, where a transition from a short crack to a long crack behavior took place is related to the respective microstructural characteristic dimensions. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Mishra, R. S.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Baumann, J. B.] Boeing Co, St Louis, MO 63166 USA. [Jana, S.; Grant, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Mishra, RS (reprint author), Missouri Univ Sci & Technol, Dept Mat Sci & Engn, B37 McNutt Hall, Rolla, MO 65409 USA. EM rsmishra@mst.edu RI Mishra, Rajiv/A-7985-2009 OI Mishra, Rajiv/0000-0002-1699-0614 FU NSF-IIP [0531019]; agency of the US Government FX This work was performed under the NSF-IUCRC for Friction Stir Processing. The additional support of NSF-IIP (0531019), GM and Friction Stir Link for the Missouri S&T site is acknowledged. This report was prepared as an account of work sponsored by an agency of the US Government. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. NR 49 TC 33 Z9 34 U1 4 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2010 VL 58 IS 3 BP 989 EP 1003 DI 10.1016/j.actamat.2009.10.015 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 558SH UT WOS:000274765600026 ER PT J AU Taylor, CD Lookman, T Lillard, RS AF Taylor, Christopher D. Lookman, Turab Lillard, R. Scott TI Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of alpha-U and phase-transformation to UH3 SO ACTA MATERIALIA LA English DT Article DE Hydrides; Thermodynamics; Density functional theory; Uranium; Phase transformation ID BILBAO CRYSTALLOGRAPHIC SERVER; BRILLOUIN-ZONE INTEGRATIONS; CRYSTALS; NONSTOICHIOMETRY; SOLUBILITY; SURFACES; HYDRIDE; METALS AB Total energy calculations based on density functional theory (DFT) have been performed for various uranium-hydrogen configurations relevant to the uranium hydriding reaction. Herein, we investigate the transformation of the supersaturated alpha-U lattice to the alpha-UH3 lattice, where alpha-UH3 is believed to be a precursor to the formation of beta-UH3, the stable phase of UH3. The total energy DFT calculations for alpha- and beta-UH3 were validated by comparing the predicted and measured decomposition temperatures of the hydride at standard pressure. Calculated energies also confirm the metastability of alpha-UH3 vs. beta-UH3. Computational group theory and DFT calculations elucidate this transition, and indicate that the transformation itself is kinetically facile. On the basis of this work, it is proposed that the formation of the volume-expanded, H-saturated alpha-U phase is the primary kinetic barrier to hydride formation. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Taylor, Christopher D.; Lookman, Turab; Lillard, R. Scott] Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Corros & Environm Effects Lab, Los Alamos, NM 87545 USA. RP Taylor, CD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Corros & Environm Effects Lab, MST 6, Los Alamos, NM 87545 USA. EM cdtaylor@lanl.gov OI Lookman, Turab/0000-0001-8122-5671 NR 42 TC 24 Z9 24 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2010 VL 58 IS 3 BP 1045 EP 1055 DI 10.1016/j.actamat.2009.10.021 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 558SH UT WOS:000274765600031 ER PT J AU Pant, P Budai, JD Narayan, J AF Pant, P. Budai, J. D. Narayan, J. TI Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation SO ACTA MATERIALIA LA English DT Article DE Epitaxy; Nonpolar; Anisotropic strain; X-ray; TEM ID M-PLANE; EPITAXY; TEMPERATURE; SAPPHIRE AB Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO parallel to[1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO parallel to[-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pant, P.; Narayan, J.] N Carolina State Univ, Dept Mat Sci & Engn, EB I, Raleigh, NC 27695 USA. [Budai, J. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pant, P (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, EB I, Centennial Campus, Raleigh, NC 27695 USA. EM ppant@ncsu.edu RI Budai, John/R-9276-2016 OI Budai, John/0000-0002-7444-1306 FU National Science Foundation; DOE Office of Science, Division of Material Sciences & Engineering under contract with ORNL FX The research was supported by the National Science Foundation. The work was also supported by the DOE Office of Science, Division of Material Sciences & Engineering under contract with ORNL, managed by UT-Battelle, LLC. NR 18 TC 48 Z9 48 U1 3 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2010 VL 58 IS 3 BP 1097 EP 1103 DI 10.1016/j.actamat.2009.10.026 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 558SH UT WOS:000274765600035 ER PT J AU Lee, G Kim, JY Budiman, AS Tamura, N Kunz, M Chen, K Burek, MJ Greer, JR Tsui, TY AF Lee, Gyuhyon Kim, Ju-Young Budiman, Arief Suriadi Tamura, Nobumichi Kunz, Martin Chen, Kai Burek, Michael J. Greer, Julia R. Tsui, Ting Y. TI Fabrication, structure and mechanical properties of indium nanopillars SO ACTA MATERIALIA LA English DT Article DE Plastic deformation; X-ray diffraction; Compression test; Electroplating; Yield phenomena ID CRYSTAL PLASTICITY; SIZE DEPENDENCE; MICRON SCALE; COMPRESSION; NANOWIRES; BEHAVIOR; PILLARS; COPPER; GOLD AB Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is similar to 9 times greater than bulk and is similar to 1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lee, Gyuhyon; Burek, Michael J.; Tsui, Ting Y.] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada. [Tamura, Nobumichi; Kunz, Martin; Chen, Kai] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Budiman, Arief Suriadi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Kim, Ju-Young; Greer, Julia R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Tsui, TY (reprint author), Univ Waterloo, Waterloo Inst Nanotechnol, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada. EM tttsui@uwaterloo.ca RI Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU Canadian NSERC Discovery; RTI; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy [DE-AC02-05CH11231]; NSF [0416243]; Director, Los Alamos National Laboratory (LANL); Director's Postdoctoral Fellowship program [20090513PRD2] FX The authors gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech and the Western Nanofabrication Facility at the University of Western Ontario. T.Y. Tsui thanks Easo George, George M. Pharr, and Joost J. Vlassak for valuable discussions. His research projects are partially supported by Canadian NSERC Discovery and RTI Grants. TYT would like to thank Arash Tajik for his assistance in this project. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. The move of the micro-diffraction program from ALS beamline 7.3.3 onto to the ALS superbend source 12.3.2 was enabled through the NSF Grant #0416243. One of the authors (ASB) is supported by the Director, Los Alamos National Laboratory (LANL), under the Director's Postdoctoral Fellowship program (#20090513PRD2). NR 29 TC 24 Z9 24 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2010 VL 58 IS 4 BP 1361 EP 1368 DI 10.1016/j.actamat.2009.10.042 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 556TS UT WOS:000274616000017 ER PT J AU Durakiewicz, T Riseborough, PS Batista, CD Yang, Y Oppeneer, PM Joyce, JJ Bauer, ED Graham, KS AF Durakiewicz, T. Riseborough, P. S. Batista, C. D. Yang, Y. Oppeneer, P. M. Joyce, J. J. Bauer, E. D. Graham, K. S. TI Quest for Band Renormalization and Self-Energy in Correlated f-Electron Systems SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 8th National Meeting of the Synchrotron Radiation Users CY SEP 24-26, 2009 CL Podlesice, POLAND ID ANGLE-RESOLVED PHOTOEMISSION; SUPERCONDUCTORS; TRANSITION; ITINERANT AB Coexisting low-energy scales are observed in f-electron materials. The information about some of low-energy scales is imprinted in the electron self-energy, which can be measured by angle-resolved photoemission (ARPES). Such measurements in d-electron materials over the last decade were based on high energy- and momentum-resolution ARPES techniques used to extract the self-energy information from measured spectra. Simultaneously, many-body theoretical approaches have been developed to find a link between the self-energy and many-body interactions. Here we show the transcription of such methods from d-electrons to f-electrons by presenting the first example of low energy scales in the f-electron material USb2, measured with synchrotron-based ARPES. The proposed approach will help in answering the fundamental questions about the complex nature of the heavy fermion state. C1 [Durakiewicz, T.; Batista, C. D.; Yang, Y.; Joyce, J. J.; Bauer, E. D.; Graham, K. S.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. [Riseborough, P. S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Oppeneer, P. M.] Uppsala Univ, Dept Phys & Mat Sci, S-75121 Uppsala, Sweden. RP Durakiewicz, T (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Mailstop K764, Los Alamos, NM 87545 USA. EM tomasz@lanl.gov RI Bauer, Eric/D-7212-2011; Riseborough, Peter/D-4689-2011; OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 14 TC 1 Z9 1 U1 1 U2 6 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD FEB PY 2010 VL 117 IS 2 BP 264 EP 267 PG 4 WC Physics, Multidisciplinary SC Physics GA 599YN UT WOS:000277950400003 ER PT J AU Catalli, K Shim, SH Prakapenka, VB Zhao, J Sturhahn, W AF Catalli, K. Shim, S. -H. Prakapenka, V. B. Zhao, J. Sturhahn, W. TI X-ray diffraction and Mossbauer spectroscopy of Fe3+-bearing Mg-silicate post-perovskite at 128-138 GPa SO AMERICAN MINERALOGIST LA English DT Article DE Post-perovskite; spin state of iron; ferric iron; X-ray diffraction; Mossbauer spectroscopy ID SPIN FERROUS IRON; EQUATION-OF-STATE; EARTHS MANTLE; PHASE; POSTPEROVSKITE; COMPRESSION; MGSIO3; LAYER AB The effect of ferric iron oil the properties of Mg-silicate post-perovskite (PPv) were studied Up to 138 GPa using synchrotron X-ray diffraction and Mossbauer spectroscopy. Our diffraction Measurements revealed that the incorporation of Fe3+ has virtually no effect oil the volume of PPv,, in contrast to Fe2+, which increases the volume. Therefore, incorporation of Fe3+ increases the density of PPv much more effectively than Fe. Mossbauer spectroscopy suggests that Fe3+ enters PPv through charge-coupled Substitution and is high spin ill the bipolar prismatic site and low spin in the octahedral site (i.e., mixed spin state). Our results may have important implications I'm the gravitational stability of lower-mantle heterogeneities. C1 [Catalli, K.; Shim, S. -H.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Prakapenka, V. B.; Zhao, J.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Sturhahn, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Catalli, K (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM krystle@mit.edu OI Shim, Sang-Heon/0000-0001-5203-6038 NR 32 TC 17 Z9 17 U1 1 U2 15 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD FEB-MAR PY 2010 VL 95 IS 2-3 BP 418 EP 421 DI 10.2138/am.2010.3352 PG 4 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 555KG UT WOS:000274509000025 ER PT J AU Vardeman, SB Wendelberger, JR Burr, T Hamada, MS Moore, LM Jobe, JM Morris, MD Wu, HQ AF Vardeman, Stephen B. Wendelberger, Joanne R. Burr, Tom Hamada, Michael S. Moore, Leslie M. Jobe, J. Marcus Morris, Max D. Wu, Huaiqing TI Elementary Statistical Methods and Measurement Error SO AMERICAN STATISTICIAN LA English DT Article DE Accuracy; Bias; Calibration; Data collection; Linearity; Precision; Repeatability; Reproducibility; Statistical education AB How the sources of physical variation interact with a data collection plan determines what can be learned from the resulting dataset, and in particular, how measurement error is reflected in the dataset. The implications of this fact are rarely given much attention in most statistics courses. Even the most elementary statistical methods have their practical effectiveness limited by measurement variation; and understanding how measurement variation interacts with data collection and the methods is helpful in quantifying the nature of measurement error. We illustrate how simple one- and two-sample statistical methods can be effectively used in introducing important concepts of metrology and the implications of those concepts when drawing conclusions from data. C1 [Vardeman, Stephen B.; Morris, Max D.; Wu, Huaiqing] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. [Vardeman, Stephen B.] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50011 USA. [Wendelberger, Joanne R.; Burr, Tom; Hamada, Michael S.; Moore, Leslie M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Jobe, J. Marcus] Miami Univ, Farmer Sch Business, Oxford, OH 45056 USA. RP Vardeman, SB (reprint author), Iowa State Univ, Dept Stat, Ames, IA 50011 USA. EM vardeman@iastate.edu OI Wendelberger, Joanne/0000-0001-5879-3945 NR 3 TC 1 Z9 1 U1 1 U2 5 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0003-1305 J9 AM STAT JI Am. Stat. PD FEB PY 2010 VL 64 IS 1 BP 46 EP 51 DI 10.1198/tast.2009.09079 PG 6 WC Statistics & Probability SC Mathematics GA 561EC UT WOS:000274957500012 ER PT J AU Baer, DR Gaspar, DJ Nachimuthu, P Techane, SD Castner, DG AF Baer, D. R. Gaspar, D. J. Nachimuthu, P. Techane, S. D. Castner, D. G. TI Application of surface chemical analysis tools for characterization of nanoparticles SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Review DE Nanoparticles; Nanotechnology; X-ray spectroscopy (XPS XRF EDX); Catalysts ID X-RAY PHOTOELECTRON; AUGER-ELECTRON-SPECTROSCOPY; WALLED CARBON NANOTUBES; ENERGY ION-SCATTERING; DETERMINING OVERLAYER THICKNESS; TOF-SIMS; SUPPORTED CATALYSTS; OXIDE NANOPARTICLES; SHELL NANOPARTICLES; GOLD NANOPARTICLES AB The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), low-energy ion scattering (LEIS), and scanning-probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface-analysis methods for the characterization of nanoparticles are discussed and summarized, with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties. C1 [Baer, D. R.; Nachimuthu, P.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Gaspar, D. J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Techane, S. D.; Castner, D. G.] Univ Washington, Natl ESCA & Surface Anal Ctr Biomed Problems, Dept Bioengn, Seattle, WA 98195 USA. [Techane, S. D.; Castner, D. G.] Univ Washington, Natl ESCA & Surface Anal Ctr Biomed Problems, Dept Chem Engn, Seattle, WA 98195 USA. RP Baer, DR (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM don.baer@pnl.gov RI Gaspar, Dan/H-6166-2011; Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU US Department of Energy (DOE); NIH [EB-002027, GM-074511]; NSF FX This paper has evolved from research programs supported by the US Department of Energy (DOE) and research conducted as part of the Environmental Molecular Sciences Laboratory (EMSL) User Program. It has benefited from interactions with colleagues from around the world and input from experts associated with ISO TC 201 Surface Chemical Analysis and ASTM Committee E42 on Surface Analysis. Aspects of the work have been supported by the DOE Offices of Basic Energy Sciences and Biological and Environmental Research. Portions of this work were conducted in EMSL, a DOE user facility operated by Pacific Northwest National Laboratory for the DOE Office of Biological and Environmental Research. We thank MH Engelhard for the XPS data on the iron nanoparticles. DGC and SDT thank NIH grants EB-002027 and GM-074511 for support and for funding some of the experimental work described in this paper. SDT thanks the NSF for an IGERT fellowship. NR 112 TC 116 Z9 119 U1 20 U2 154 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD FEB PY 2010 VL 396 IS 3 BP 983 EP 1002 DI 10.1007/s00216-009-3360-1 PG 20 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 546WN UT WOS:000273845200005 PM 20052578 ER PT J AU Gray, GA Williams, PJ Brown, WM Faulon, JL Sale, KL AF Gray, Genetha A. Williams, Pamela J. Brown, W. Michael Faulon, Jean-Loup Sale, Kenneth L. TI Disparate data fusion for protein phosphorylation prediction SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Ensemble classification; Phosphorylation; Base classifier; Fusion ID SIGNATURE MOLECULAR DESCRIPTOR; EXTENDED VALENCE SEQUENCES; HIDDEN MARKOV-MODELS; NEURAL-NETWORK; SPEECH RECOGNITION; WIDE PREDICTION; SITES; ALGORITHMS; LOCATION; KINASES AB New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem. C1 [Gray, Genetha A.; Williams, Pamela J.] Sandia Natl Labs, Computat Sci & Math Res Dept, Livermore, CA 94551 USA. [Brown, W. Michael] Sandia Natl Labs, Computat Biol Dept, Albuquerque, NM 87185 USA. [Faulon, Jean-Loup] Sandia Natl Labs, Computat Biosci Dept, Albuquerque, NM 87185 USA. [Sale, Kenneth L.] Sandia Natl Labs, Biosyst Res Dept, Livermore, CA 94551 USA. RP Gray, GA (reprint author), Sandia Natl Labs, Computat Sci & Math Res Dept, POB 969,MS 9159, Livermore, CA 94551 USA. EM gagray@sandia.gov; pwillia@sandia.gov; wmbrown@sandia.gov; jfaulon@sandia.gov; klsale@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000.] FX The authors would like to acknowledge Joshua Griffin for his development of Ruby scripts to compare the experimentally verified and predicted phosphorylation sites. His efforts saved us countless hours of work. We also gratefully acknowledge the Laboratory Directed Research and Development program at Sandia National Laboratories for their support of this research. Sandia National Laboratories is a multi- program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 62 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 J9 ANN OPER RES JI Ann. Oper. Res. PD FEB PY 2010 VL 174 IS 1 BP 219 EP 235 DI 10.1007/s10479-008-0347-9 PG 17 WC Operations Research & Management Science SC Operations Research & Management Science GA 554SS UT WOS:000274455300015 ER PT J AU Castro, HF Classen, AT Austin, EE Norby, RJ Schadt, CW AF Castro, Hector F. Classen, Aimee T. Austin, Emily E. Norby, Richard J. Schadt, Christopher W. TI Soil Microbial Community Responses to Multiple Experimental Climate Change Drivers SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ELEVATED ATMOSPHERIC CO2; 16S RIBOSOMAL-RNA; FINE-ROOT PRODUCTION; CARBON-DIOXIDE; WATER AVAILABILITY; TALLGRASS PRAIRIE; ENZYME-ACTIVITIES; TREMBLING ASPEN; DIVERSITY; TEMPERATURE AB Researchers agree that climate change factors such as rising atmospheric [CO(2)] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO(2) concentration (ambient, +300 ppm), temperature (ambient, +3 degrees C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO(2)] but decreased in warmed plots under ambient atmospheric [CO(2)]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously. C1 [Castro, Hector F.; Austin, Emily E.; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Classen, Aimee T.; Austin, Emily E.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. RP Schadt, CW (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM schadtcw@ornl.gov RI yang, lixia/D-7815-2011; Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012; Schadt, Christopher/B-7143-2008 OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828; Schadt, Christopher/0000-0001-8759-2448 FU U.S. Department of Energy, Office of Science, Biological, and Environmental Research Program [DE-FG02-02ER63366, DE-AC05-00OR22725]; Oak Ridge National Laboratory FX Research was sponsored by the U.S. Department of Energy, Office of Science, Biological, and Environmental Research Program (grant DE-FG02-02ER63366) and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 65 TC 201 Z9 211 U1 21 U2 226 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2010 VL 76 IS 4 BP 999 EP 1007 DI 10.1128/AEM.02874-09 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 552XS UT WOS:000274328900003 PM 20023089 ER PT J AU Hamilton-Brehm, SD Mosher, JJ Vishnivetskaya, T Podar, M Carroll, S Allman, S Phelps, TJ Keller, M Elkins, JG AF Hamilton-Brehm, Scott D. Mosher, Jennifer J. Vishnivetskaya, Tatiana Podar, Mircea Carroll, Sue Allman, Steve Phelps, Tommy J. Keller, Martin Elkins, James G. TI Caldicellulosiruptor obsidiansis sp nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID THERMOANAEROBIUM-ACETIGENUM; CLOSTRIDIUM-THERMOCELLUM; GEN-NOV; SACCHAROLYTICUS; PRETREATMENT; ALIGNMENT; CULTURES; SPRINGS; ETHANOL; BIOMASS AB A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 mu m long by 0.2 mu m wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H-2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073). C1 [Hamilton-Brehm, Scott D.; Mosher, Jennifer J.; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J.; Keller, Martin; Elkins, James G.] Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Elkins, JG (reprint author), Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, POB 2008,MS6038, Oak Ridge, TN 37831 USA. EM elkinsjg@ornl.gov RI Allman, Steve/A-9121-2011; phelps, tommy/A-5244-2011; Keller, Martin/C-4416-2012; Elkins, James/A-6199-2011; Vishnivetskaya, Tatiana/A-4488-2008 OI Allman, Steve/0000-0001-6538-7048; Elkins, James/0000-0002-8052-5688; Vishnivetskaya, Tatiana/0000-0002-0660-023X FU Office of Biological and Environmental Research in the DOE Office of Science; Oak Ridge National Laboratory; UT-Battelle, LLC [DE-AC05-00OR22725] FX This work was supported by the BioEnergy Science Center (BESC), which is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 31 TC 39 Z9 42 U1 1 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2010 VL 76 IS 4 BP 1014 EP 1020 DI 10.1128/AEM.01903 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 552XS UT WOS:000274328900005 PM 20023107 ER PT J AU Liang, YT He, ZL Wu, LY Deng, Y Li, GH Zhou, JZ AF Liang, Yuting He, Zhili Wu, Liyou Deng, Ye Li, Guanghe Zhou, Jizhong TI Development of a Common Oligonucleotide Reference Standard for Microarray Data Normalization and Comparison across Different Microbial Communities SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DESULFOVIBRIO-VULGARIS HILDENBOROUGH; GENE-EXPRESSION RATIOS; CDNA MICROARRAYS; REFERENCE SAMPLE; REFERENCE DESIGN; DNA MICROARRAYS; DIVERSITY; BIODEGRADATION; CRITERIA; STRESS AB High-density functional gene arrays have become a powerful tool for environmental microbial detection and characterization. However, microarray data normalization and comparison for this type of microarray remain a challenge in environmental microbiology studies because some commonly used normalization methods (e. g., genomic DNA) for the study of pure cultures are not applicable. In this study, we developed a common oligonucleotide reference standard (CORS) method to address this problem. A unique 50-mer reference oligonucleotide probe was selected to co-spot with gene probes for each array feature. The complementary sequence was synthesized and labeled for use as the reference target, which was then spiked and cohybridized with each sample. The signal intensity of this reference target was used for microarray data normalization and comparison. The optimal amount or concentration were determined to be ca. 0.5 to 2.5% of a gene probe for the reference probe and ca. 0.25 to 1.25 fmol/mu l for the reference target based on our evaluation with a pilot array. The CORS method was then compared to dye swap and genomic DNA normalization methods using the Desulfovibrio vulgaris whole-genome microarray, and significant linear correlations were observed. This method was then applied to a functional gene array to analyze soil microbial communities, and the results demonstrated that the variation of signal intensities among replicates based on the CORS method was significantly lower than the total intensity normalization method. The developed CORS provides a useful approach for microarray data normalization and comparison for studies of complex microbial communities. C1 [Liang, Yuting; He, Zhili; Wu, Liyou; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Inst Environmen Genom, Norman, OK 73019 USA. [Liang, Yuting; He, Zhili; Wu, Liyou; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Liang, Yuting] Jiangsu Polytech Univ, Jiangsu 213164, Peoples R China. [Li, Guanghe] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Liang, Yuting; He, Zhili; Wu, Liyou; Deng, Ye; Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environmen Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI He, Zhili/C-2879-2012; Deng, Ye/A-2571-2013; OI ?, ?/0000-0002-7584-0632 FU U.S. Department of Energy; Environmental Remediation Science Program, Office of Biological and Environmental Research; Office of Science, Oklahoma Center for the Advancement of Science and Technology; National Natural Scientific Foundation of China [40730738] FX We thank Gene Wickham for design of the random reference probe. This study was supported by the U.S. Department of Energy under the Genomics GTL program through the Virtual Institute of Microbial Stress and Survival (http://vimss.lbl.gov); by the Environmental Remediation Science Program, Office of Biological and Environmental Research; by the Office of Science, Oklahoma Center for the Advancement of Science and Technology, under the Oklahoma Applied Research Support Program; and by the National Natural Scientific Foundation of China (no. 40730738). NR 32 TC 50 Z9 52 U1 3 U2 16 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2010 VL 76 IS 4 BP 1088 EP 1094 DI 10.1128/AEM.02749-09 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 552XS UT WOS:000274328900014 PM 20038701 ER PT J AU Beller, HR Goh, EB Keasling, JD AF Beller, Harry R. Goh, Ee-Been Keasling, Jay D. TI Genes Involved in Long-Chain Alkene Biosynthesis in Micrococcus luteus SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SARCINA-LUTEA; NONISOPRENOID HYDROCARBONS; FATTY ACIDS; PROTEIN; IDENTIFICATION; BIOCHEMISTRY; BIOLOGY AB Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27: 3 and 29: 3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27: 2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29: 1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during fatty acid biosynthesis. C1 [Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Beller, Harry R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Goh, Ee-Been; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Beller, HR (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM HRBeller@lbl.gov RI Keasling, Jay/J-9162-2012; Beller, Harry/H-6973-2014 OI Keasling, Jay/0000-0003-4170-6088; FU U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U. S. Department of Energy FX We thank Yisheng Kang and Eric Steen (JBEI) for providing the fatty acid-overproducing E. coli DH1 strain; Charles Greenblatt (Hebrew University) for providing early access to the draft genome sequence of Micrococcus luteus; Alyssa Redding and Tanveer Batth (Functional Genomics Department, Technology Division, JBEI) for mass spectrometric analysis of protein samples; Rudy Alvarado, Vladimir Tolstikov, and Saeed Khazaie (University of California at Davis Genome Center), as well as Doug Stevens and Steven Lai (Waters Corporation), for providing GC-TOF analyses; and Taek Soon Lee and Steven Singer (JBEI) for helpful comments on the manuscript. J. D. K. has a financial interest in LS9, Inc., and Amyris.; This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org/) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. NR 24 TC 67 Z9 67 U1 4 U2 42 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2010 VL 76 IS 4 BP 1212 EP 1223 DI 10.1128/AEM.02312-09 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 552XS UT WOS:000274328900029 PM 20038703 ER PT J AU Hamel, BL Stewart, BW Kim, AG AF Hamel, Barbara L. Stewart, Brian W. Kim, Ann G. TI Tracing the interaction of acid mine drainage with coal utilization byproducts in a grouted mine: Strontium isotope study of the inactive Omega Coal Mine, West Virginia (USA) SO APPLIED GEOCHEMISTRY LA English DT Article ID FLY-ASH; SYSTEMATICS; RESIDUES; ELEMENTS; SR AB In order to ameliorate acidic discharge, the inactive Omega Coal Mine, West Virginia was partially filled by injection of a grout consisting of 98% coal utilization byproducts (CUB), including fluidized bed combustion ash and fly ash. and 2% Portland cement. In this study, discharge chemistry and Sr isotope ratios were determined to identify and quantify the extent of interaction between mine waters and the CUB-cement grout. Eight sampling sites were monitored around the downdip perimeter of the mine. The major and trace element chemistry of the discharges was generally not sufficient to distinguish between discharges that interacted with grout and those that did not. Elements that showed the most separation include K and As, which were elevated in some waters that interacted with CUB-cement grout. In contrast, the Sr isotope ratios clearly distinguished discharges from grouted and non-grouted areas. Discharges that bypassed the grouted portions had (87)Sr/(86)Sr ratios ranging from 0.71510 to 0.71594, while two discharges that interacted with grout had ratios in the range of 0.71401-0.71456. The Treatment Inlet, which includes both grouted and ungrouted discharges, yielded intermediate isotopic ratios. Leaching experiments on CUB-cement grout, coal and surrounding rocks are consistent with the isotopic trends observed in the discharges. Based on these results, waters that interacted with grout received 30-40% of their Sr from the CUB-cement grout material. These results suggest that the grout material is chemically eroding at a rate of approximately 0.04% per year. This novel application of the Sr isotope system illustrates its ability to sensitively track and quantify fluid interaction with coal and CUB-based grout. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hamel, Barbara L.; Stewart, Brian W.] Univ Pittsburgh, Dept Geol & Planetary Sci, SRCC 200, Pittsburgh, PA 15260 USA. [Kim, Ann G.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Stewart, BW (reprint author), Univ Pittsburgh, Dept Geol & Planetary Sci, SRCC 200, Pittsburgh, PA 15260 USA. EM bstewart@pitt.edu FU US Department of Energy (USDOE) FX This study was funded by the US Department of Energy (USDOE) under the University Partnership Program. We appreciate thorough reviews by R. Seal and an anonymous reviewer, which greatly improved the manuscript. We thank B.K. Games at the University of Pittsburgh and Robert Thompson from the Parsons Project at the USDOE for analytical assistance. We also thank D. Shreve and M. Reese from WVDEP for their expertise and assistance at the site, S. Lamey and C. Cardone at the DOE for their assistance during sample collection, D. Hreha and K. Rygle of the Parsons Project for their analytical work, and R. Gray (now of DiGioia, Gray & Associates, LLC) for providing samples of core material from the grouting project. NR 30 TC 8 Z9 8 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD FEB PY 2010 VL 25 IS 2 BP 212 EP 223 DI 10.1016/j.apgeochem.2009.11.006 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 561EE UT WOS:000274957800003 ER PT J AU Kaplan, DI Serkiz, SM Allison, JD AF Kaplan, Daniel I. Serkiz, Steven M. Allison, Jerry D. TI Europium sorption to sediments in the presence of natural organic matter: A laboratory and modeling study SO APPLIED GEOCHEMISTRY LA English DT Article ID HUMIC-ACID; LANDFILL LEACHATE; FULVIC-ACID; ADSORPTION; EU(III); ALUMINA; SUBSTANCES; COMPLEXES; HEMATITE; MONTMORILLONITE AB Cellulosic materials, such as wood, paper products and cardboard that have been co-disposed with low-level nuclear waste have been shown to produce leachate with natural organic matter (NOM) concentrations of hundreds of mg/L C and, as such, have the potential to influence the fate and transport of radio-nuclides in the subsurface environment. The objective of this study was to examine the influence of NOM on the sorption of Eu (an analogue for trivalent radionuclides) to two coastal plain sediments from the US Department of Energy's Savannah River Site. Particular attention was directed at quantifying Eu interactions with NOM sorbed to sediments (NOM(sed)) in laboratory experiments and developing conditional stability constants for that interaction using the thermodynamic equilibrium speciation model MINTEQA2. Europium sorption to the two sediments systematically increased as pH increased from 3.9 to 6.7. With increasing additions of NOM to the aqueous phase from 0 to 222 mg/L C, Eu sorption initially increased to a maximum at 10 mg/L C NOM(aq) and then decreased with increasing NOM(aq) concentrations. Increases in Eu sorption at low NOM additions was attributed to the sorption of NOM to the sediment surface increasing the number of sorption sites on the low cation-exchange capacity sediments and/or increasing the association constant (log K) for the Eu-sediment surface reaction. Decreases in Eu sorption at higher NOM levels was attributed to Eu(aq) complexation to NOM(aq) being more favored than Eu sorption to the solid phase. A component additivity model was developed to describe the Eu-NOM-sediment system by the additive effects of the three binary system models: Eu-NOM, Eu-sediment and NOM-sediment. The model generally captured the data trends in the ternary system. Conditional stability constants developed from the experimental data for the complexation of Eu to NOM(sed) were as much as four orders of magnitude greater than Eu complexation with NOM(aq), presumably due to the NOM(sed) deriving additional negative (attractive) charge from the sediment surface. At high initial NOM(aq) levels, >99 mg/L C, the model captured the trend of reduced Eu sorption but tended to over-estimate Eu sorption. The additivity approach of combining binary models to form a ternary model was only successful when the unique complexation properties of the NOM(sed) were properly calculated. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Kaplan, Daniel I.; Serkiz, Steven M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Allison, Jerry D.] Gainesville State Coll, Div Nat Sci Engn & Technol, Gainesville, GA 30503 USA. RP Kaplan, DI (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM daniel.kaplan@srnl.doe.gov FU Department of Energy [DE-AC09-96SR18500] FX This project was supported by the Department of Energy's Office of Environmental Management and Environmental Remediation Science Program within the Office of Science. Work at the Savannah River National Laboratory (SRNL) was performed under the auspices of the US Department of Energy (DOE) contract DE-AC09-96SR18500. NR 44 TC 7 Z9 7 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD FEB PY 2010 VL 25 IS 2 BP 224 EP 232 DI 10.1016/j.apgeochem.2009.11.007 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 561EE UT WOS:000274957800004 ER PT J AU Buric, MP Falk, J Woodruff, SD AF Buric, Michael P. Falk, Joel Woodruff, Steven D. TI Conversion of a TEM10 beam into two nearly Gaussian beams SO APPLIED OPTICS LA English DT Article ID SPONTANEOUS RAMAN-SCATTERING; LASER; MODE; SELECTION; QUALITY; ELEMENTS AB To achieve high output power and/or high efficiencies, laser systems are often designed to operate with either high-order or multiorder transverse modes. This comes at the expense of beam quality. Herein, a technique for converting the two lobes of a higher-order (Hermite-Gaussian TEM10) beam into two TEM00 beams is discussed. It is shown that nearly 94% of the power in a single lobe of the TEM10 beam spatially overlaps an appropriately chosen TEM00 beam. Beam quality (defined by the M-2 beam quality factor) is increased by separating the two TEM10 lobes with an edge aperture. A single-mode optical fiber can be used as a spatial filter to eliminate residual higher-order mode content. This study suggests that more than 90% of the power in a TEM10 beam can be converted into two separate TEM00 beams. (C) 2010 Optical Society of America C1 [Buric, Michael P.; Falk, Joel; Woodruff, Steven D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Buric, Michael P.; Falk, Joel] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA. RP Falk, J (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM falk@engr.pitt.edu FU National Energy Technology Laboratory research in Energy Systems and Dynamics under Research and Development Solutions (RDS) [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory research in Energy Systems and Dynamics under Research and Development Solutions (RDS) contract DE-AC26-04NT41817. NR 16 TC 3 Z9 3 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD FEB 1 PY 2010 VL 49 IS 4 BP 739 EP 744 DI 10.1364/AO.49.000739 PG 6 WC Optics SC Optics GA 554OF UT WOS:000274443600029 PM 20119028 ER PT J AU Jagannadham, K Howe, J Allard, LF AF Jagannadham, K. Howe, J. Allard, L. F. TI Laser physical vapor deposition of nanocrystalline dots using nanopore filters SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID ANODIC ALUMINUM-OXIDE; QUANTUM DOTS; SIZE DEPENDENCE; NANOWIRES; TEMPLATE; SUPERLATTICES; NANOMATERIALS; GROWTH AB Nanocrystalline dots of n-type Bi(2)Te(2.7)Se(0.3) thermoelectric compound and of silicon were deposited by laser physical vapor deposition using polycarbonate or alumina nanopore filters as templates. The films were characterized by scanning electron microscopy and transmission electron microscopy. Using a pore size of 0.2 mu m in the nanopore filters, a uniform distribution of crystallites with size 3 to 4 nm and separated from each other was observed by high-resolution transmission electron microscopy. The dots were all single crystals, as seen by the resolved crystal lattice planes. The compositions of the crystallites, of both the thermoelectric compound and silicon, were analyzed by energy dispersive X-ray analysis. The composition of the thermoelectric compound nanocrystals differed significantly from that of the bulk target, likely due to vapor pressure differences of the constituent elements. The results are promising for synthesis of nanocrystalline dots with controlled size but compositional control is a different task that is not carried out. The observations illustrate that nonstoichiometry is a result of difference in the vapor pressure of different elements in the compound. The method of synthesis is found to be suitable for deposition of quantum dots below certain size determined by the size of the pores in the porous filter. C1 [Jagannadham, K.] N Carolina State Univ, Raleigh, NC 27695 USA. [Howe, J.; Allard, L. F.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Jagannadham, K (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM jag_kasichainula@ncsu.edu RI Howe, Jane/G-2890-2011; Jagannadham, Kasichainula/A-2953-2008 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies; Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725] FX Part of this research was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract number DE-AC05-00OR22725. NR 29 TC 3 Z9 3 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD FEB PY 2010 VL 98 IS 2 BP 285 EP 292 DI 10.1007/s00339-009-5432-7 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 524QQ UT WOS:000272158200006 ER PT J AU Braiman, A Rudakov, F Thundat, T AF Braiman, Avital Rudakov, Fedor Thundat, Thomas TI Highly selective separation of DNA fragments using optically directed transport SO APPLIED PHYSICS LETTERS LA English DT Article DE bio-optics; DNA; laser beam applications; molecular biophysics; photoelectrochemistry ID MICROLITHOGRAPHIC ARRAYS; AGAROSE GELS; ELECTROPHORESIS; MACROMOLECULES; TWEEZERS; POLYELECTROLYTES; TRAP AB We present a design that allows selective separation of biomolecules of a particular size without performing complete separation of the sample by size. By focusing a laser beam onto a photoelectrode in contact with an electrolyte medium, a highly localized and optically controlled photoelectrophoretic trap is created. Moving the light beam along the photoelectrode consequently moves the trap. We demonstrate that by manipulating the speed of the photoelectrophoretic trap biomolecules of a particular size can be selectively separated from the mixture. We achieve a qualitative agreement between our experimental results and numerical simulations. C1 [Braiman, Avital] Brown Univ, Div Engn, Providence, RI 02912 USA. [Rudakov, Fedor] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Thundat, Thomas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Braiman, A (reprint author), Brown Univ, Div Engn, Providence, RI 02912 USA. EM rudakovfm@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank Dr. Adam Bange, James Harkins, David Hedden, Dr. Travis Humble, and Dr. Henry Lin for helpful advice and assistance. A. B. would like to thank Professor Jimmy Xu for valuable discussions and devoted guidance. F.R.'s research was performed as a Eugene P. Wigner Fellow and staff member at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. A.B.'s research was performed under the Traveling Scholar program at Oak Ridge National Laboratory. NR 18 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 053701 DI 10.1063/1.3298743 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500118 ER PT J AU Goiran, M Millot, M Poumirol, JM Gherasoiu, I Walukiewicz, W Leotin, J AF Goiran, Michel Millot, Marius Poumirol, Jean-Marie Gherasoiu, Iulian Walukiewicz, Wladek Leotin, Jean TI Electron cyclotron effective mass in indium nitride SO APPLIED PHYSICS LETTERS LA English DT Article DE band structure; effective mass; electron density; III-V semiconductors; indium compounds; polarons; semiconductor epitaxial layers; Shubnikov-de Haas effect; wide band gap semiconductors ID MOLECULAR-BEAM EPITAXY; BAND-GAP; INN AB We report on cyclotron effective mass measurement in indium nitride epilayers grown on c-sapphire, using the thermal damping of Shubnikov-de-Haas oscillations obtained in the temperature range 2-70 K and under magnetic field up to 60 T. We unravel an isotropic electron cyclotron effective mass equal to 0.062 +/- 0.002m(0) for samples having electron concentration near 10(18) cm(-3). After nonparabolicity and polaron corrections we estimate a bare mass at the bottom of the band equal to 0.055 +/- 0.002m(0). C1 [Goiran, Michel; Millot, Marius; Poumirol, Jean-Marie; Leotin, Jean] Univ Toulouse, CNRS, LNCMI, UPR 3228, F-31400 Toulouse, France. [Gherasoiu, Iulian] RoseSt Labs Energy, Phoenix, AZ 85034 USA. [Walukiewicz, Wladek] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Goiran, M (reprint author), Univ Toulouse, CNRS, LNCMI, UPR 3228, 143 Ave Rangueil, F-31400 Toulouse, France. EM goiran@lncmp.org RI Gherasoiu, Iulian/H-3369-2013; OI Gherasoiu, Iulian/0000-0003-2686-9196; Millot, Marius/0000-0003-4414-3532 FU EuroMagNET II FX Authors acknowledge helpful discussions with P. Rinke, M. Winkelnkemper, and D. Charrier. Part of this work was supported by EuroMagNET II. NR 19 TC 28 Z9 28 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 052117 DI 10.1063/1.3304169 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500058 ER PT J AU Hayward, TJ Bryan, MT Fry, PW Fundi, PM Gibbs, MRJ Im, MY Fischer, P Allwood, DA AF Hayward, T. J. Bryan, M. T. Fry, P. W. Fundi, P. M. Gibbs, M. R. J. Im, M. -Y. Fischer, P. Allwood, D. A. TI Pinning induced by inter-domain wall interactions in planar magnetic nanowires SO APPLIED PHYSICS LETTERS LA English DT Article DE magnetic domain walls; magnetic moments; nanomagnetics; nanowires ID DYNAMICS AB We have investigated pinning potentials created by inter-domain wall magnetostatic interactions in planar magnetic nanowires. We show that these potentials can take the form of an energy barrier or an energy well depending on the walls' relative monopole moments, and that the applied magnetic fields required to overcome these potentials are significant. Both transverse and vortex wall pairs are investigated and it is found that transverse walls interact more strongly due to dipolar coupling between their magnetization structures. Simple analytical models which allow the effects of inter-domain wall interactions to be estimated are also presented. C1 [Hayward, T. J.; Bryan, M. T.; Fundi, P. M.; Gibbs, M. R. J.; Allwood, D. A.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. [Fry, P. W.] Univ Sheffield, Nanosci & Technol Ctr, Sheffield S3 7HQ, S Yorkshire, England. [Im, M. -Y.; Fischer, P.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Hayward, TJ (reprint author), Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. EM t.hayward@sheffield.ac.uk RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012 OI Fischer, Peter/0000-0002-9824-9343; FU EPSRC [GR/T02959/01, EP/F024886/1, EP/F069359/1, EP/D056683/1]; U.S. Department of Energy FX This work was supported by EPSRC (Grant Nos. GR/T02959/01, EP/F024886/1, EP/F069359/1, and EP/D056683/1) and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy. NR 10 TC 30 Z9 30 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 052502 DI 10.1063/1.3275752 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500061 ER PT J AU Lieten, RR Degroote, S Clemente, F Leys, M Borghs, G AF Lieten, R. R. Degroote, S. Clemente, F. Leys, M. Borghs, G. TI Hydrogen and inert species in solid phase epitaxy SO APPLIED PHYSICS LETTERS LA English DT Article DE adsorption; amorphous semiconductors; crystallisation; elemental semiconductors; germanium; noncrystalline structure; semiconductor epitaxial layers; semiconductor growth; solid phase epitaxial growth; vacuum deposited coatings; vacuum deposition ID THIN-FILMS; GE GROWTH; SI; QUALITY; SURFACES; SI(100) AB The incorporation of hydrogen during deposition of amorphous germanium can influence solid phase epitaxy in many ways. We show that Ge-H bonds are not important during the crystallization process. However, atomic hydrogen is important during deposition to obtain a highly disordered layer. We have found that highly disordered layers can also be obtained when using a beam of inert gas species during ultrahigh vacuum deposition. These inert species effectively increase the disorder of the layer by limiting the surface mobility of adsorbed germanium atoms. In this way subsequent solid phase epitaxy can be improved significantly. C1 [Lieten, R. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lieten, R. R.; Degroote, S.; Clemente, F.; Leys, M.; Borghs, G.] IMEC, B-3001 Leuven, Belgium. RP Lieten, RR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM ruben.lieten@imec.be FU Belgian American Educational Foundation (BAEF) FX Author R. R. L. acknowledges support as Research Fellow of the Belgian American Educational Foundation (BAEF). NR 17 TC 10 Z9 10 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 052109 DI 10.1063/1.3293453 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500050 ER PT J AU Pesce, PBC Araujo, PT Nikolaev, P Doorn, SK Hata, K Saito, R Dresselhaus, MS Jorio, A AF Pesce, P. B. C. Araujo, P. T. Nikolaev, P. Doorn, S. K. Hata, K. Saito, R. Dresselhaus, M. S. Jorio, A. TI Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination SO APPLIED PHYSICS LETTERS LA English DT Article DE carbon nanotubes; chemical vapour deposition; diameter measurement; Raman spectra; transmission electron microscopy AB We study a single-wall carbon nanotube (SWNT) sample grown by water-assisted chemical vapor deposition with both resonance Raman scattering (RRS) and high resolution transmission electron microscopy. High resolution transmission electron microscopy measurements of 395 SWNTs determined the diameter distribution of the sample, allowing us to calibrate an RRS radial breathing mode (RBM) map obtained with 51 laser excitation energies from 1.26 to 1.73 eV. Thus, we determined the diameter dependence of the RRS RBM cross-section, which in turn allows the determination of the diameter distribution of any SWNT sample by measuring the RBM Raman signal. C1 [Pesce, P. B. C.; Araujo, P. T.; Jorio, A.] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. [Nikolaev, P.] NASA, Lyndon B Johnson Space Ctr, ERC Inc, Houston, TX 77258 USA. [Doorn, S. K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Hata, K.] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan. [Saito, R.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Dresselhaus, M. S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Dresselhaus, M. S.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Jorio, A.] Inst Nacl Metrol Normalizacao & Qualidade Ind INM, Div Mat Metrol, BR-25250020 Duque De Caxias, RJ, Brazil. RP Pesce, PBC (reprint author), Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. EM pedrop@fisica.ufmg.br RI Saito, Riichiro/B-1132-2008; hata, kenji/B-3262-2009; Jorio, Ado/F-2141-2010; Medicina Molecular, Inct/J-8737-2013; Nikolaev, Pavel/B-9960-2009 OI Jorio, Ado/0000-0002-5978-2735; FU MCT-CNPq (Brazil); AFOSR/SOARD (USA) [FA9550-08-1-236]; NASA [NNJ05HI05C]; NEXT [20241023]; NSF [DMR-07-04197] FX We thank J. S. Park, who kindly supplied us with additional data for the comparative analysis in Ref. 20. Brazilian authors acknowledge MCT-CNPq (Brazil) and AFOSR/SOARD (USA) (Award No. FA9550-08-1-236). P. N. acknowledges NASA under Contract No. NNJ05HI05C. S. K. D. acknowledges LANL LDRD program (USA). R. S. acknowledges NEXT (Grant No. 20241023). M. S. D. acknowledges NSF (Grant No. DMR-07-04197). NR 19 TC 12 Z9 12 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 051910 DI 10.1063/1.3297904 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500038 ER PT J AU Polikarpov, E Swensen, JS Cosimbescu, L Koech, PK Rainbolt, JE Padmaperuma, AB AF Polikarpov, Evgueni Swensen, James S. Cosimbescu, Lelia Koech, Phillip K. Rainbolt, James E. Padmaperuma, Asanga B. TI Emission zone control in blue organic electrophosphorescent devices through chemical modification of host materials SO APPLIED PHYSICS LETTERS LA English DT Article DE charge exchange; organic light emitting diodes; organic semiconductors; phosphorescence ID PHOSPHORESCENT OLEDS; ELECTROLUMINESCENT DEVICES; STABILITY; EFFICIENCY AB We report blue organic light-emitting devices with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C(2')] picolinate as an emitter doped into a series of phosphine oxide-based host materials that have significantly different charge transport properties: 4-(diphenylphosphoryl)-N,N-diphenylaniline (HM-A1), N-(4-diphenylphosphoryl phenyl) carbazole (PO12), 9-[6-(diphenylphosphoryl)pyridin-3-yl]-9H-carbazole (HM-A5), and 6-(diphenylphosphoryl)-N,N-diphenylpyridin-3-amine (HM-A6). Depending on the nature of the host material, the location of the emission zone can be moved within the emissive layer from the hole transport layer interface to the electron-transport layer interface. The charge transport properties of the materials were evaluated using single carrier devices. C1 [Polikarpov, Evgueni; Swensen, James S.; Cosimbescu, Lelia; Koech, Phillip K.; Rainbolt, James E.; Padmaperuma, Asanga B.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Polikarpov, E (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM asanga.padmaperuma@pnl.gov OI Koech, Phillip/0000-0003-2996-0593 FU U.S. Department of Energy [M68004043, DE-AC06-76RLO 1830] FX This project was funded by the Solid Sate Lighting Program of the U.S. Department of Energy, within the Building Technologies Program (BT), Award No. M68004043 and managed by the National Energy Technology Laboratory (NETL). Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the U. S. Department of Energy (DOE) under Contract No. DE-AC06-76RLO 1830. The authors also thank Professor Franky So and Dr. Neetu Chopra of University of Florida, Gainesville for helpful discussions. NR 19 TC 12 Z9 12 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 053306 DI 10.1063/1.3298556 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500105 ER PT J AU Puzyrev, YS Tuttle, BR Schrimpf, RD Fleetwood, DM Pantelides, ST AF Puzyrev, Y. S. Tuttle, B. R. Schrimpf, R. D. Fleetwood, D. M. Pantelides, S. T. TI Theory of hot-carrier-induced phenomena in GaN high-electron-mobility transistors SO APPLIED PHYSICS LETTERS LA English DT Article DE density functional theory; gallium compounds; high electron mobility transistors; hot carriers; hydrogenation; III-V semiconductors; luminescence; vacancies (crystal); wide band gap semiconductors ID 1ST-PRINCIPLES CALCULATIONS; NITRIDES; DEFECTS AB It has long been known that GaN high-electron-mobility transistors can degrade significantly under hot electron stress. More recently, an increase in the yellow luminescence was observed under similar stress conditions. The two phenomena have been attributed to defects but no specific physical mechanism has been proposed. Here we report first-principles density-functional calculations of hydrogenated Ga vacancies and show that hydrogen release by hot electrons provides an explanation for both phenomena. C1 [Puzyrev, Y. S.; Tuttle, B. R.; Fleetwood, D. M.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Tuttle, B. R.] Penn State Behrend Coll, Dept Phys, Erie, PA 16563 USA. [Schrimpf, R. D.; Fleetwood, D. M.; Pantelides, S. T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Puzyrev, YS (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM yevgeniy.s.puzyrev@vanderbilt.edu RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 FU Office of Naval research MURI [N-00014-08-100655]; Vanderbilt University FX This work was supported in part by the Office of Naval research MURI under Grant No. N-00014-08-100655 and by the McMinn Endowment at Vanderbilt University. NR 21 TC 22 Z9 22 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 053505 DI 10.1063/1.3293008 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500112 ER PT J AU Richard, MI Highland, MJ Fister, TT Munkholm, A Mei, J Streiffer, SK Thompson, C Fuoss, PH Stephenson, GB AF Richard, M. -I. Highland, M. J. Fister, T. T. Munkholm, A. Mei, J. Streiffer, S. K. Thompson, Carol Fuoss, P. H. Stephenson, G. B. TI In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN SO APPLIED PHYSICS LETTERS LA English DT Article DE gallium compounds; III-V semiconductors; indium compounds; MOCVD; semiconductor growth; stress relaxation; wide band gap semiconductors; X-ray diffraction ID LOCALIZED EXCITONS; ELASTIC PROPERTIES; THERMAL-EXPANSION; LIGHT-EMISSION; QUANTUM-WELLS; LAYERS; EPILAYERS; GAN AB Composition and strain inhomogeneities strongly affect the optoelectronic properties of InGaN but their origin has been unclear. Here we report real-time x-ray reciprocal space mapping that reveals the development of strain and composition distributions during metal-organic chemical vapor deposition of In(x)Ga(1-x)N on GaN. Strong, correlated inhomogeneities of the strain state and In fraction x arise during growth in a manner consistent with models for instabilities driven by strain relaxation. C1 [Richard, M. -I.; Highland, M. J.; Fister, T. T.; Fuoss, P. H.; Stephenson, G. B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Richard, M. -I.] Univ Paul Cezanne Aix Marseille, IM2NP, Fac Sci St Jerome, F-13397 Marseille, France. [Highland, M. J.; Stephenson, G. B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Munkholm, A.; Mei, J.] Philips Lumileds Lighting Co, San Jose, CA 95131 USA. [Thompson, Carol] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Richard, MI (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stephenson@anl.gov RI Richard, Marie-Ingrid/F-6693-2012 OI Richard, Marie-Ingrid/0000-0002-8172-3141 FU U. S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at Argonne National Laboratory including use of the Advanced Photon Source and Center for Nanoscal Materials was supported by the U. S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 25 TC 17 Z9 17 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 051911 DI 10.1063/1.3293441 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500039 ER PT J AU Sichel, RJ Grigoriev, A Do, DH Baek, SH Jang, HW Folkman, CM Eom, CB Cai, ZH Evans, PG AF Sichel, Rebecca J. Grigoriev, Alexei Do, Dal-Hyun Baek, Seung-Hyub Jang, Ho-Won Folkman, Chad M. Eom, Chang-Beom Cai, Zhonghou Evans, Paul G. TI Anisotropic relaxation and crystallographic tilt in BiFeO3 on miscut SrTiO3 (001) SO APPLIED PHYSICS LETTERS LA English DT Article DE bismuth compounds; epitaxial growth; polarisation; relaxation; strontium compounds; substrates; thin films; X-ray diffraction ID THIN-FILM HETEROSTRUCTURES; LAYERS; DISLOCATIONS; NUCLEATION AB Epitaxial BiFeO3 thin films on miscut (001) SrTiO3 substrates relax via mechanisms leading to an average rotation of the crystallographic axes of the BiFeO3 layer with respect to the substrate. The angle of the rotation reaches a maximum in the plane defined by the surface normal of the film and the direction of the surface miscut. X-ray microdiffraction images show that each BiFeO3 mosaic block is rotated by a slightly different angle and contains multiple polarization domains. These effects lead to a complicated overall symmetry in BiFeO3 thin films. This relaxation mechanism can be extended to other complex oxides. C1 [Sichel, Rebecca J.; Grigoriev, Alexei; Do, Dal-Hyun; Baek, Seung-Hyub; Jang, Ho-Won; Folkman, Chad M.; Eom, Chang-Beom; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sichel, RJ (reprint author), Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. EM evans@engr.wisc.edu RI Evans, Paul/A-9260-2009; Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014; Jang, Ho Won/D-9866-2011 OI Evans, Paul/0000-0003-0421-6792; Jang, Ho Won/0000-0002-6952-7359 FU National Science Foundation [DMR-0705370, ECCS-0708759]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [W-31-109-Eng-38]; Office of Naval Research [N00014-07-1-0215] FX This work was supported by the National Science Foundation under Grant No. DMR-0705370. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. C. B. E. acknowledges the financial support of the National Science Foundation through Grant No. ECCS-0708759 and the Office of Naval Research through Grant No. N00014-07-1-0215. NR 15 TC 10 Z9 10 U1 2 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 051901 DI 10.1063/1.3299256 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500029 ER PT J AU Su, MF Olsson, RH Leseman, ZC El-Kady, I AF Su, M. F. Olsson, R. H., III Leseman, Z. C. El-Kady, I. TI Realization of a phononic crystal operating at gigahertz frequencies SO APPLIED PHYSICS LETTERS LA English DT Article DE finite difference time-domain analysis; phononic crystals; slabs AB We report on the experimental realization of a phononic crystal, designed to operate at gigahertz frequencies. Detailed studies of the structure have been performed using finite difference time domain method to determine effects of slab modes in finite-thickness slabs, thus enabling precise guidance of experimental efforts. In particular, we find the slab mode effects mitigated in ultrathin (thickness less than lattice periodicity) and ultrathick (thickness more than ten times lattice periodicity) slabs. Gigahertz-frequency phononic crystals are well poised to find usage as high-Q resonators, waveguides, and coupling elements in a variety of application areas including RF communications. C1 [Su, M. F.; El-Kady, I.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Olsson, R. H., III] Sandia Natl Labs, Dept Adv MEMS, Albuquerque, NM 87185 USA. [Leseman, Z. C.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. RP Su, MF (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia National Laboratories FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by the Sandia Corporation, Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 7 TC 41 Z9 41 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 053111 DI 10.1063/1.3280376 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500092 ER PT J AU Wierer, JJ Fischer, AJ Koleske, DD AF Wierer, J. J., Jr. Fischer, A. J. Koleske, D. D. TI The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices SO APPLIED PHYSICS LETTERS LA English DT Article DE carrier lifetime; current density; dielectric polarisation; electron-hole recombination; gallium compounds; III-V semiconductors; indium compounds; photovoltaic effects; piezoelectricity; semiconductor diodes; semiconductor heterojunctions; wide band gap semiconductors ID MULTIPLE-QUANTUM WELLS; CENTERS; GAN AB The impact of piezoelectric polarization and nonradiative recombination on the short-circuit current densities (J(sc)) of (0001) face GaN/InGaN photovoltaic devices is demonstrated. P-i-n diodes consisting of 170 nm thick intrinsic In(0.09)Ga(0.91)N layers sandwiched by GaN layers exhibit low J(sc)similar to 40 mu A/cm(2). The piezoelectric polarization at the GaN/InGaN heterointerfaces creates drift currents opposite in direction needed for efficient carrier collection. Also, nonradiative recombination centers produce short carrier lifetimes, limiting J(sc). Alternative structures with intrinsic InGaN layers sandwiched by n-type InGaN or graded In(y)Ga(1-y)N (y=0-0.09) layer and a p-type In(0.015)Ga(0.985)N layer have favorable potentials, longer carrier lifetimes, and improve J(sc) to similar to 0.40 mA/cm(2). C1 [Wierer, J. J., Jr.; Fischer, A. J.; Koleske, D. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wierer, JJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwierer@sandia.gov RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU Laboratory Directed Research and Development program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge funding support from the Laboratory Directed Research and Development program as well as technical contributions by K. Fullmer, A. Coley, and C. Carmignani. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 16 TC 48 Z9 52 U1 4 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 1 PY 2010 VL 96 IS 5 AR 051107 DI 10.1063/1.3301262 PG 3 WC Physics, Applied SC Physics GA 552UQ UT WOS:000274319500007 ER PT J AU Wiggins, M McKenney, K Dieckmann, J Brodrick, J AF Wiggins, Matthew McKenney, Kurtis Dieckmann, John Brodrick, James TI Solid-State Lighting, Part 2: Applications SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Wiggins, Matthew; McKenney, Kurtis; Dieckmann, John] TIAX LLC, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Wiggins, M (reprint author), TIAX LLC, Cambridge, MA USA. NR 7 TC 1 Z9 1 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD FEB PY 2010 VL 52 IS 2 BP 78 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 555KT UT WOS:000274510400020 ER PT J AU Saunders, MJ Graves, SW Sklar, LA Oprea, TI Edwards, BS AF Saunders, Matthew J. Graves, Steven W. Sklar, Larry A. Oprea, Tudor I. Edwards, Bruce S. TI High-Throughput Multiplex Flow Cytometry Screening for Botulinum Neurotoxin Type A Light Chain Protease Inhibitors SO ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES LA English DT Article ID SNARE MOTIF; SEROTYPE-A; IN-VITRO; EBSELEN; ANTIOXIDANT; SUBSTRATE; AGENTS; METALLOPROTEINASES; PROTEOLYSIS; DISCOVERY AB Given their medical importance, proteases have been studied by diverse approaches and screened for small molecule protease inhibitors. Here, we present a multiplexed microsphere-based protease assay that uses high-throughput flow cytometry to screen for inhibitors of the light chain protease of botulinum neurotoxin type A (BoNTALC). Our assay uses a full-length substrate and several deletion mutants screened in parallel to identify small molecule inhibitors. The use of multiplex flow cytometry has the advantage of using full-length substrates, which contain already identified distal-binding elements for the BoNTALC, and could lead to a new class of BoNTALC inhibitors. In this study, we have screened 880 off patent drugs and bioavailable compounds to identify ebselen as an in vitro inhibitor of BoNTALC. This discovery demonstrates the validity of our microsphere-based approach and illustrates its potential for high-throughput screening for inhibitors of proteases in general. C1 [Saunders, Matthew J.; Graves, Steven W.] Univ New Mexico, Ctr Biomed Engn, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Saunders, Matthew J.; Sklar, Larry A.; Oprea, Tudor I.; Edwards, Bruce S.] Univ New Mexico, Ctr Mol Discovery, Albuquerque, NM 87131 USA. [Saunders, Matthew J.; Sklar, Larry A.; Oprea, Tudor I.; Edwards, Bruce S.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Oprea, Tudor I.] Univ New Mexico, Div Biocomp, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. [Saunders, Matthew J.; Graves, Steven W.] Los Alamos Natl Lab, Natl Flow Cytometry Resource, Los Alamos, NM USA. RP Saunders, MJ (reprint author), Univ New Mexico, Ctr Biomed Engn, Dept Chem & Nucl Engn, MSC01 1140-1, Albuquerque, NM 87131 USA. EM msaunders@salud.unm.edu RI Oprea, Tudor/A-5746-2011 OI Oprea, Tudor/0000-0002-6195-6976 FU National Flow Cytometry Resource from the National Center for Research Resources, NIH [RR001315]; Joint Sciences Technologies Laboratory [JSTL 26Q4]; University of New Mexico Center for Molecular Discovery [MH077425, MH084690]; Cancer Center [CA118100] FX This work was supported by the National Flow Cytometry Resource from the National Center for Research Resources, NIH grant RR001315. Additional funding was supplied by a Joint Sciences Technologies Laboratory grant JSTL 26Q4 and by the University of New Mexico Center for Molecular Discovery MH077425 and MH084690 and Cancer Center CA118100. NR 33 TC 13 Z9 13 U1 1 U2 11 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1540-658X J9 ASSAY DRUG DEV TECHN JI ASSAY DRUG DEV. TECHNOL. PD FEB PY 2010 VL 8 IS 1 BP 37 EP 46 DI 10.1089/adt.2009.0219 PG 10 WC Biochemical Research Methods; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA 560GX UT WOS:000274891400002 PM 20035615 ER PT J AU Plotkin, RM Anderson, SF Brandt, WN Diamond-Stanic, AM Fan, XH Hall, PB Kimball, AE Richmond, MW Schneider, DP Shemmer, O Voges, W York, DG Bahcall, NA Snedden, S Bizyaev, D Brewington, H Malanushenko, V Malanushenko, E Oravetz, D Pan, K AF Plotkin, Richard M. Anderson, Scott F. Brandt, W. N. Diamond-Stanic, Aleksandar M. Fan, Xiaohui Hall, Patrick B. Kimball, Amy E. Richmond, Michael W. Schneider, Donald P. Shemmer, Ohad Voges, Wolfgang York, Donald G. Bahcall, Neta A. Snedden, Stephanie Bizyaev, Dmitry Brewington, Howard Malanushenko, Viktor Malanushenko, Elena Oravetz, Dan Pan, Kaike TI OPTICALLY SELECTED BL LACERTAE CANDIDATES FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE SEVEN SO ASTRONOMICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: active; quasars: general; surveys ID ABSORPTION-LINE QUASARS; RADIO BLAZAR SURVEY; ROSAT ALL-SKY; SURVEY COMMISSIONING DATA; ACTIVE GALACTIC NUCLEI; SPACE-TELESCOPE SURVEY; 5TH DATA RELEASE; X-RAY; HIGH-REDSHIFT; LUMINOSITY FUNCTION AB We present a sample of 723 optically selected BL Lac candidates from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) spectroscopic database encompassing 8250 deg(2) of sky; our sample constitutes one of the largest uniform BL Lac samples yet derived. Each BL Lac candidate has a high-quality SDSS spectrum from which we determine spectroscopic redshifts for similar to 60% of the objects. Redshift lower limits are estimated for the remaining objects utilizing the lack of host galaxy flux contamination in their optical spectra; we find that objects lacking spectroscopic redshifts are likely at systematically higher redshifts. Approximately 80% of our BL Lac candidates match to a radio source in FIRST/NVSS, and similar to 40% match to a ROSAT X-ray source. The homogeneous multi-wavelength coverage allows subdivision of the sample into 637 radio-loud BL Lac candidates and 86 weak-featured radio-quiet objects. The radio-loud objects broadly support the standard paradigm unifying BL Lac objects with beamed radio galaxies. We propose that the majority of the radio-quiet objects may be lower-redshift (z < 2.2) analogs to high-redshift weak line quasars (i.e., active galactic nucleus with unusually anemic broad emission line regions). These would constitute the largest sample of such objects, being of similar size and complementary in redshift to the samples of high-redshift weak line quasars previously discovered by the SDSS. However, some fraction of the weak-featured radio-quiet objects may instead populate a rare and extreme radio-weak tail of the much larger radio-loud BL Lac population. Serendipitous discoveries of unusual white dwarfs, high-redshift weak line quasars, and broad absorption line quasars with extreme continuum dropoffs blueward of rest-frame 2800 angstrom are also briefly described. C1 [Plotkin, Richard M.; Anderson, Scott F.; Kimball, Amy E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Diamond-Stanic, Aleksandar M.; Fan, Xiaohui] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Hall, Patrick B.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Shemmer, Ohad] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Voges, Wolfgang] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Voges, Wolfgang] Max Planck Digital Lib, D-80799 Munich, Germany. [York, Donald G.] Univ Chicago, Chicago, IL 60637 USA. [York, Donald G.] Fermi Inst, Chicago, IL 60637 USA. [Bahcall, Neta A.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Dan; Pan, Kaike] Apache Point Observ, Sunspot, NM 88349 USA. RP Plotkin, RM (reprint author), Univ Washington, Dept Astron, POB 351580, Seattle, WA 98195 USA. EM plotkin@astro.washington.edu; anderson@astro.washington.edu RI Brandt, William/N-2844-2015; Plotkin, Richard/I-3221-2016; OI Brandt, William/0000-0002-0167-2453; Plotkin, Richard/0000-0002-7092-0326; Shemmer, Ohad/0000-0003-4327-1460 FU NASA/ADP [NNG05GC45G]; National Aeronautics and Space Administration [GO9-0126X]; National Aeronautics Space Administration [NAS8-3060]; NASA LTSA [NAG5-13035]; NSF [AST-0507259] FX We thank the referee for providing excellent suggestions for improving this manuscript. R. M. P. and S. F. A. gratefully acknowledge support from NASA/ADP grant NNG05GC45G. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO9-0126X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-3060. W. N. B. acknowledges support from NASA LTSA grant NAG5-13035. A. E. K. acknowledges support from NSF grant AST-0507259 to the University of Washington and an NSF Graduate Research Fellowship. This research has made use of software provided by the Chandra X-ray Center (CXC) in the application package CIAO. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, CaseWestern Reserve University, University of Chicago, Drexel University, Fermilab, the Institute forAdvanced Study, the Japan ParticipationGroup, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 85 TC 66 Z9 66 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD FEB PY 2010 VL 139 IS 2 BP 390 EP 414 DI 10.1088/0004-6256/139/2/390 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 544FY UT WOS:000273640200008 ER PT J AU Graham, ML Pritchet, CJ Sullivan, M Howell, DA Gwyn, SDJ Astier, P Balland, C Basa, S Carlberg, RG Conley, A Fouchez, D Guy, J Hardin, D Hook, IM Pain, R Perrett, K Regnault, N Rich, J Balam, D Fabbro, S Hsiao, EY Mourao, A Palanque-Delabrouille, N Perlmutter, S Ruhlman-Kleider, V Suzuki, N Fakhouri, HK Walker, ES AF Graham, M. L. Pritchet, C. J. Sullivan, M. Howell, D. A. Gwyn, S. D. J. Astier, P. Balland, C. Basa, S. Carlberg, R. G. Conley, A. Fouchez, D. Guy, J. Hardin, D. Hook, I. M. Pain, R. Perrett, K. Regnault, N. Rich, J. Balam, D. Fabbro, S. Hsiao, E. Y. Mourao, A. Palanque-Delabrouille, N. Perlmutter, S. Ruhlman-Kleider, V. Suzuki, N. Fakhouri, H. K. Walker, E. S. TI THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE supernovae: general ID VLT DEEP SURVEY; STAR-FORMATION; HOST GALAXIES; SKY SURVEY; LUMINOSITY; SPACE; FIELD; PROGENITORS; MASS; ULTRAVIOLET AB We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is similar to 1-5 times the rate in all early-type galaxies, and that any enhancement is always less than or similar to 2 sigma. Rates in these subsets are consistent with predictions of the two-component "A+B" SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the "A+B" model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data. C1 [Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Hsiao, E. Y.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8T 1M8, Canada. [Sullivan, M.; Hook, I. M.; Walker, E. S.] Univ Oxford Astrophys, Oxford OX1 3RH, England. [Howell, D. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gwyn, S. D. J.] NRC Herzberg Inst Astrophys, Canadian Astron Data Ctr, Victoria, BC V9E 2E7, Canada. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] CNRS, IN2P3, LPNHE, F-75252 Paris 05, France. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 06, F-75252 Paris 05, France. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 07, F-75252 Paris 05, France. [Basa, S.] LAM, F-13388 Marseille 13, France. [Carlberg, R. G.; Perrett, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Conley, A.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Fouchez, D.] CNRS, IN2P3, CPPM, F-13288 Marseille 9, France. [Fouchez, D.] Univ Aix Marseille 2, F-13288 Marseille 9, France. [Hook, I. M.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Rich, J.; Palanque-Delabrouille, N.; Ruhlman-Kleider, V.] CEA Saclay, DSM, Irfu, Spp, F-91191 Gif Sur Yvette, France. [Fabbro, S.; Mourao, A.] CENTRA Ctr M Astrofis, Lisbon, Portugal. [Fabbro, S.; Mourao, A.] IST, Dept Phys, Lisbon, Portugal. [Hsiao, E. Y.; Perlmutter, S.; Suzuki, N.; Fakhouri, H. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Graham, ML (reprint author), Univ Victoria, Dept Phys & Astron, POB 3055 STN CSC, Victoria, BC V8T 1M8, Canada. RI Carlberg, Raymond/I-6947-2012; Perlmutter, Saul/I-3505-2015; Mourao, Ana/K-9133-2015; OI Carlberg, Raymond/0000-0002-7667-0081; Perlmutter, Saul/0000-0002-4436-4661; Mourao, Ana/0000-0002-0855-1849; Sullivan, Mark/0000-0001-9053-4820 FU National Research Council (NRC) of Canada; Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France; University of Hawaii; Association of Universities for Research in Astronomy, Inc.; National Science Foundation (United States); Science and Technology Facilities Council (United Kingdom); National Research Council (Canada),; CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) Gemini [GS-2003B-Q-8, GN-2003B-Q-9,, GS-2004A-Q-11, GN2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005AQ-11, GN-2005A-Q-11, GS-2005B-Q-6, GN-2005B-Q-7, GN2006A-Q-7, GN-2006B-Q-10]; National Aeronautics and Space Administration; National Science Foundation; NSERC; University of Victoria; Province of British Columbia through the Ministry of Advanced Education; Fundaca para a Ciencia e Tecnologia, Portugal [SFRH/BPD/31817/006, POCTI/CTE-AST/57664/2004] FX We gratefully acknowledge the CFHT Queued Service Observations team, all SNLS collaboration members, Olivier Ilbert and Henry McCracken for early access to and correspondence regarding the photometric redshift galaxy catalog, and Enrico Cappellaro for access to the C99 galaxy and supernova samples. M. L. G. acknowledges Colin Borys, Dave Patton, and Stephane Amouts for their advice. This work is based in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the CFHT which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is also based in part of data products produced at the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey, a collaborative project of NRC and CNRS. This work is also based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) Gemini identification numbers of the programs under which these observations were taken are: GS-2003B-Q-8, GN-2003B-Q-9, GS-2004A-Q-11, GN2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005AQ-11, GN-2005A-Q-11, GS-2005B-Q-6, GN-2005B-Q-7, GN2006A-Q-7, and GN-2006B-Q-10. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication has also made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work has been supported by NSERC and the University of Victoria. M. L. G. gratefully acknowledges the financial support of the Province of British Columbia through the Ministry of Advanced Education. M. S. acknowledges support from the Royal Society. S. F. acknowledges support from Fundaca para a Ciencia e Tecnologia, Portugal, under grant SFRH/BPD/31817/006 and project POCTI/CTE-AST/57664/2004. NR 71 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD FEB PY 2010 VL 139 IS 2 BP 594 EP 605 DI 10.1088/0004-6256/139/2/594 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 544FY UT WOS:000273640200021 ER PT J AU Kim, DW Protopapas, P Alcock, C Byun, YI Kyeong, J Lee, BC Wright, NJ Axelrod, T Bianco, FB Chen, WP Coehlo, NK Cook, KH Dave, R King, SK Lee, T Lehner, MJ Lin, HC Marshall, SL Porrata, R Rice, JA Schwamb, ME Wang, JH Wang, SY Wen, CY Zhang, ZW AF Kim, D. -W. Protopapas, P. Alcock, C. Byun, Y. -I. Kyeong, J. Lee, B. -C. Wright, N. J. Axelrod, T. Bianco, F. B. Chen, W. -P. Coehlo, N. K. Cook, K. H. Dave, R. King, S. -K. Lee, T. Lehner, M. J. Lin, H. -C. Marshall, S. L. Porrata, R. Rice, J. A. Schwamb, M. E. Wang, J. -H. Wang, S. -Y. Wen, C. -Y. Zhang, Z. -W. TI THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE delta SCUTI STARS SO ASTRONOMICAL JOURNAL LA English DT Article DE stars: variables: delta Scuti; methods: data analysis; surveys ID VARIABLE-STARS; STROMGREN PHOTOMETRY; GAMMA-DORADUS; SCT STARS; CATALOG; ASTEROSEISMOLOGY; PULSATION; CLUSTER; CLASSIFICATION; SATELLITE AB We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of less than or similar to 1 hr) such as delta Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced. Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude d Scuti stars. The light curves of TAOS d Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu). C1 [Kim, D. -W.; Protopapas, P.; Alcock, C.; Wright, N. J.; Bianco, F. B.; Lehner, M. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kim, D. -W.; Protopapas, P.; Dave, R.] Harvard Univ, Sch Engn & Appl Sci, Initiat Innovat Comp, Cambridge, MA 02138 USA. [Kim, D. -W.; Byun, Y. -I.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Kyeong, J.; Lee, B. -C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Axelrod, T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Bianco, F. B.; Lehner, M. J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Chen, W. -P.; Lin, H. -C.; Wang, J. -H.; Zhang, Z. -W.] Natl Cent Univ, Inst Astron, Jhongli 320, Taoyuan County, Taiwan. [Coehlo, N. K.; Rice, J. A.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Cook, K. H.; Marshall, S. L.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [King, S. -K.; Lee, T.; Lehner, M. J.; Wang, J. -H.; Wang, S. -Y.; Wen, C. -Y.; Zhang, Z. -W.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Porrata, R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Kim, DW (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Lee, Typhoon/N-8347-2013 FU National Research Foundation of Korea [2009-0075376]; NSC [96-2112-M-008-024-MY3]; National Science Foundation [AST-0501681]; NASA [NNG04G113G]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; Stanford Linear Accelerator Center [DE-AC02-76SF00515]; FAS Research Computing Group at the Harvard; [AS-88-TP-A02] FX Y.-I. Byun acknowledges the support of the National Research Foundation of Korea through Grant 2009-0075376. The work at National Central University was supported by the grant NSC 96-2112-M-008-024-MY3. Work at Academia Sinica was supported in part by the thematic research program AS-88-TP-A02. Work at the Harvard College Observatory was supported in part by the National Science Foundation under grant AST-0501681 and by NASA under grant NNG04G113G. S. L. M.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and by Stanford Linear Accelerator Center under Contract DE-AC02-76SF00515. K. H. Cook's work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. We also thank J. D. Hartman at Harvard-Smithsonian Center for Astrophysics for useful discussion.; The detrending and the analysis of data sets in this paper were run on the Odyssey cluster supported by the FAS Research Computing Group at the Harvard. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. NR 60 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2010 VL 139 IS 2 BP 757 EP 764 DI 10.1088/0004-6256/139/2/757 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 544FY UT WOS:000273640200033 ER PT J AU Perez-Ramirez, D Postigo, AD Gorosabel, J Aloy, MA Johannesson, G Guerrero, MA Osborne, JP Page, KL Warwick, RS Horvath, I Veres, P Jelinek, M Kubanek, P Guziy, S Bremer, M Winters, JM Riva, A Castro-Tirado, AJ AF Perez-Ramirez, D. de Ugarte Postigo, A. Gorosabel, J. Aloy, M. A. Johannesson, G. Guerrero, M. A. Osborne, J. P. Page, K. L. Warwick, R. S. Horvath, I. Veres, P. Jelinek, M. Kubanek, P. Guziy, S. Bremer, M. Winters, J. M. Riva, A. Castro-Tirado, A. J. TI Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: gamma-ray bursts: individual: GRB 080913; techniques: photometric; Cosmology: observations ID GAMMA-RAY BURSTS; COMPACT OBJECT MERGERS; NEUTRON-STAR MERGERS; BLACK-HOLES; CORE-COLLAPSE; HOST GALAXY; AXISYMMETRICAL SIMULATIONS; HIGH-REDSHIFT; AFTERGLOW; GRB-050724 AB Aims. We present multiwavelength observations of one of the most distant gamma-ray bursts detected so far, GRB080913. Based on these observations, we consider whether it could be classified as a short-duration GRB and discuss the implications for the progenitor nature and energy extraction mechanisms. Methods. Multiwavelength X-ray, near IR and millimetre observations were made between 20.7 h and similar to 16.8 days after the event. Results. Whereas a very faint afterglow was seen at the 3.5m CAHA telescope in the nIR, the X-ray afterglow was clearly detected in both Swift and XMM-Newton observations. An upper limit is reported in the mm range. We have modeled the data assuming a collimated theta(0) greater than or similar to 3 degrees blast wave with an energy injection at similar to 0.5 days carrying 5 similar to 10(52) erg or approximately 12 times the initial energy of the blast wave. We find that GRB 080913 shares many of the gamma-ray diagnostics with the more recent burst GRB 090423 for being classified as short had they ocurred at low redshift. If the progenitor were a compact binary merger, it is likely composed by a NS and BH. The Blandford-Znajek (BZ) mechanism is the preferred one to extract energy from the central, maximally-rotating BH. Both the magnetic field close to the event horizon (B) and the BH mass (M-bh) are restricted within a relatively narrow range, such that (B/3 x 10(16) G)(M-bh/7 M-circle dot) similar to 1. Similar constraints on the central BH hold for collapsar-like progenitor systems if the BZ-mechanism works for the system at hand. C1 [Perez-Ramirez, D.] Univ Jaen, Dept Fis, Jaen 23071, Spain. [Perez-Ramirez, D.; Osborne, J. P.; Page, K. L.; Warwick, R. S.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [de Ugarte Postigo, A.] European So Observ, Santiago 19, Chile. [Gorosabel, J.; Guerrero, M. A.; Jelinek, M.; Kubanek, P.; Guziy, S.; Castro-Tirado, A. J.] CSIC, IAA, E-18080 Granada, Spain. [Aloy, M. A.] Univ Valencia, Dept Astron & Astrophys, E-46100 Valencia, Spain. [Johannesson, G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Johannesson, G.] Stanford Univ, SLAC, Natl Accelerator Lab, Stanford, CA 94305 USA. [Horvath, I.; Veres, P.] Bolyai Mil Univ, Dept Phys, H-1581 Budapest, Hungary. [Veres, P.] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1117 Budapest, Hungary. [Kubanek, P.] Univ Valencia, ICMOL, GACE, Edif Inst Invest, Valencia 46980, Spain. [Guziy, S.] Nikolaev State Univ, UA-54030 Nikolayev, Ukraine. [Bremer, M.; Winters, J. M.] IRAM, F-38406 St Martin Dheres, France. [Riva, A.] Osserv Astron Brera, INAF, I-23807 Merate, Lc, Italy. RP Perez-Ramirez, D (reprint author), Univ Jaen, Dept Fis, Campus Las Lagunillas, Jaen 23071, Spain. EM dperez@ujaen.es RI Kubanek, Petr/G-7209-2014; Aloy, Miguel/K-9941-2014; Johannesson, Gudlaugur/O-8741-2015; Jelinek, Martin/E-5290-2016; OI Aloy, Miguel/0000-0002-5552-7681; Johannesson, Gudlaugur/0000-0003-1458-7036; Jelinek, Martin/0000-0003-3922-7416; Riva, Alberto/0000-0002-6928-8589; Castro-Tirado, A. J./0000-0003-2999-3563; Guerrero, Martin/0000-0002-7759-106X; de Ugarte Postigo, Antonio/0000-0001-7717-5085 FU Centre National de la Recherche Scientifique (France); Max Planck Gesellschaft (Germany); Instituto Geografico Nacional (Spain); NASA; NSF; Jose Castillejo; ESO; STFC; OTKA [T48870, K77795]; Spanish MICINN [AYA2007-63677, AYA2008-03467/ESP, AYA2007-67626-C03-01, CSD2007-00050] FX We thank the generous allocation of observing time by different Time Allocation Committees. This work is partially based on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut fur Astronomie and the Instituto de Astrofisica de Andalucia (CSIC). IRAM is an international institute funded by the Centre National de la Recherche Scientifique (France), the Max Planck Gesellschaft (Germany) and the Instituto Geografico Nacional (Spain). This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester and of data products from the Two Micron All Sky Survey (2MASS), 2MASS, which is a joint project of the Univ. of Massachusetts and the IR Processing and Analysis Center/CalTech, funded by NASA and NSF. We thank the assistance of D. Cristobal Hornillos. DPR acknowledges support from the "Jose Castillejo" program. AdUP acknowledges support from an ESO fellowship. M. A. A. is a Ramon y Cajal Fellow. J.O. and K. P. acknowledge the support of the STFC. I. H. and V. P. acknowledge support from OTKA grants T48870 and K77795. This research has also been partially supported by the Spanish MICINN under the programmes AYA2007-63677, AYA2008-03467/ESP, AYA2007-67626-C03-01 and CSD2007-00050. NR 56 TC 6 Z9 6 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2010 VL 510 AR A105 DI 10.1051/0004-6361/200811151 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 574RB UT WOS:000276009100024 ER PT J AU Abraham, J Abreu, P Aglietta, M Aguirre, C Ahn, EJ Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Arganda, E Argiro, S Arisaka, K Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Aublin, J Ave, M Avila, G Backer, T Badagnani, D Barber, KB Barbosa, AF Barroso, SLC Baughman, B Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Bleve, C Blumer, H Bohacova, M Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Caramete, L Caruso, R Carvalho, W Castellina, A Catalano, O Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Chye, J Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fracchiolla, CE Fraenkel, ED Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Gelmini, G Gemmeke, H Ghia, PL Giaccari, U Giller, M Glass, H Goggin, LM Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gora, D Gorgi, A Gouffon, P Grashorn, E Grebe, S Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Gutierrez, J Hague, JD Halenka, V Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Jiraskova, S Kaducak, M Kampert, KH Karova, T Kasper, P Kegl, B Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kruppke-Hansen, D Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Lautridou, P Leao, MSAB Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Lemiere, A Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Garcia, RL Lyberis, H Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martinez, J Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M McNeil, RR Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meyhandan, R Micheletti, MI Miele, G Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Moura, CA Mueller, S Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Newman-Holmes, C Newton, D Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehischlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Ortolani, F Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Piegaia, R Pierog, T Pimenta, M Pinto, T Pirrpnello, V Pisanti, O Platino, M Pochon, J Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravel, O Ravignani, D Redondo, A Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizzi, V Robledo, C Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, A Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB Smialkowski, A Smida, R Smith, BE Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadowski, Z Tamashiro, A Tamburro, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Thao, NT Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tuci, V Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Vazquez, JR Vazquez, RA Veberic, D Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczyn'ska, B Wilczyn'ski, H Wileman, C Winnick, MG Wu, H Wundheiler, B Yamamoto, T Younk, P Yuan, G Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Aguirre, C. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Arganda, E. Argiro, S. Arisaka, K. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Barber, K. B. Barbosa, A. F. Barroso, S. L. C. Baughman, B. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Bleve, C. Bluemer, H. Bohacova, M. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Catalano, O. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Chye, J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello, W. J. M., Jr. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. Facal San Luis, P. Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Garrido, X. Gelmini, G. Gemmeke, H. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Goggin, L. M. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. do Amaral, M. Goncalves Gonzalez, D. Gonzalez, J. G. Gora, D. Gorgi, A. Gouffon, P. Grashorn, E. Grebe, S. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Gutierrez, J. Hague, J. D. Halenka, V. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Horandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kaducak, M. Kampert, K. H. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kruppke-Hansen, D. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Lee, J. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lucero, A. Garcia, R. Luna Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Marquez Falcon, H. R. Martello, D. Martinez, J. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. McNeil, R. R. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Moura, C. A. Mueller, S. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Newman-Holmes, C. Newton, D. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehischlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirrpnello, V. Pisanti, O. Platino, M. Pochon, J. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravel, O. Ravignani, D. Redondo, A. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizzi, V. Robledo, C. Rodriguez, G. Martino, J. Rodriguez Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, A. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Smialkowski, A. Smida, R. Smith, B. E. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadowski, Z. Tamashiro, A. Tamburro, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Thao, N. T. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Todero Peixoto, C. J. Tome, B. Tonachini, A. Torres, I. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tuci, V. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Vazquez, J. R. Vazquez, R. A. Veberic, D. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczyn'ska, B. Wilczyn'ski, H. Wileman, C. Winnick, M. G. Wu, H. Wundheiler, B. Yamamoto, T. Younk, P. Yuan, G. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory (vol 32, pg 89, 2009) SO ASTROPARTICLE PHYSICS LA English DT Correction C1 [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] Consejo Nacl Invest Cient & Tecn, CNEA, UNCuyo, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Colombo, E.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Krieger, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sidelnik, I.; Suarez, F.; Wainberg, O.; Wundheiler, B.] UTN FRBA, CONICET, Comis Nacl Energia Atom, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Abraham, J.; De La Vega, G.; Garcia, B.; Videla, M.] CNEA, CONICET, UTN FRM, Observ Meteorol Parque Gral San Martin, Mendoza, Argentina. [Avila, G.; Contreras, F.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Plurinational S, Bolivia. [Barbosa, A. F.; dos Anjos, J. C.; Rezende, F. A. S.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Fracchiolla, C. E.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [de Souza, V.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Carvalho, W.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello, W. J. M., Jr.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Todero Peixoto, C. J.] Univ Fed ABC, Santo Andre, SP, Brazil. [de Mello Neto, J. R. T.; Lago, B. L.; Santos, E. M.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [do Amaral, M. Goncalves] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Nucl & Particle Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Halenka, V.; Hrabovsky, M.; Rossler, T.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijaervi, T.; Urban, M.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Allard, D.; Beau, T.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Rouille-d'Orfeuil, A.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol APC, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Louedec, K.; Garcia, R. Luna; Ragaigne, D. Monnier; Strazzeri, E.; Wu, H.] Univ Paris 11, CNRS, IN2P3, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 06, LPNHE, Paris 05, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 07, CNRS, IN2P3, Paris 05, France. [Belletoile, A.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France. [Dallier, R.; Lautridou, P.; Ravel, O.; Revenu, B.] CNRS, IN2P3, SUBATECH, Nantes, France. [Becker, K. H.; Kampert, K. H.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Bluemer, H.; Daumiller, K.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehischlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schroeder, F.; Schuessler, F.; Ulrich, R.; Unger, M.; Valino, I.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Asch, T.; Cazon, L.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Schmidt, A.; Tcherniakhovski, D.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Leuthold, M.; Scharf, N.; Schiffer, P.; Schulte, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gora, D.; Maris, I. C.; Melissas, M.; Tamburro, A.] Univ Karlsruhe TH, Inst Expt Kernphys IEKP, Karlsruhe, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Pontz, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizzi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizzi, V.; Salamida, F.] Ist Nazl Fis Nucl, Laquila, Italy. [De Donato, C.; Miramonti, L.] Univ Milan, Milan, Italy. [De Donato, C.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Moura, C. A.; Pisanti, O.; Valore, L.] Univ Naples Federico 2, Naples, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Moura, C. A.; Pisanti, O.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirrpnello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirrpnello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Aglietta, M.; Argiro, S.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Schmidt, T.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Lopez, R.; Martinez Bravo, O.; Robledo, C.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Martinez, J.; Pelayo, R.] Inst Politecn Nacl, Mexico City, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Valdes Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Horneffer, A.; Jiraskova, S.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Fraenkel, E. D.; Harmsma, S.; Meyhandan, R.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.; Petrovic, J.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Wilczyn'ska, B.; Wilczyn'ski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Gutierrez, J.; Hebrero, G.; McEwen, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.; Thao, N. T.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Facal San Luis, P.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez-Cabo, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Watson, A. A.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Harton, J. L.; Knapik, R.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Gonzalez, J. G.; Hojvat, C.; Kaducak, M.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Dorofeev, A.; Matthews, J.; McNeil, R. R.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Fick, B.; Morris, C.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Bellido, J. A.; Coutu, S.; Criss, A.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.; Healy, M. D.; Kusenko, A.; Lee, J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacova, M.; Cronin, J.; Facal San Luis, P.; Ionita, F.; Olinto, A.; Pavlidou, V.; Privitera, P.; Schmidt, F.; Venters, T.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM 87131 USA. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Goggin, L. M.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. RP Bleve, C (reprint author), Univ Salento, Dipartimento Fis, Lecce, Italy. EM Carla.Bleve@le.infn.it RI Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Anjos, Joao/C-8335-2013; Petrolini, Alessandro/H-3782-2011; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; De Mitri, Ivan/C-1728-2017; Nosek, Dalibor/F-1129-2017; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Prouza, Michael/F-8514-2014; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Rosado, Jaime/K-9109-2014; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Miele, Gennaro/F-3628-2010; Dias, Sandra/F-8134-2010; Dutan, Ioana/C-2337-2011; Caramete, Laurentiu/C-2328-2011; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Venters, Tonia/D-2936-2012; Fauth, Anderson/F-9570-2012; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Garcia Pinto, Diego/J-6724-2014; Di Giulio, Claudio/B-3319-2015; Pavlidou, Vasiliki/C-2944-2011; Arneodo, Francesco/E-5061-2015 OI Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Shellard, Ronald/0000-0002-2983-1815; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Petrolini, Alessandro/0000-0003-0222-7594; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; De Mitri, Ivan/0000-0002-8665-1730; Nosek, Dalibor/0000-0001-6219-200X; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Prouza, Michael/0000-0002-3238-9597; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Rosado, Jaime/0000-0001-8208-9480; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Miele, Gennaro/0000-0002-2028-0578; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Garcia Pinto, Diego/0000-0003-1348-6735; Di Giulio, Claudio/0000-0002-0597-4547; Pavlidou, Vasiliki/0000-0002-0870-1368; Arneodo, Francesco/0000-0002-1061-0510 NR 1 TC 3 Z9 3 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2010 VL 33 IS 1 BP 65 EP 67 DI 10.1016/j.astropartphys.2009.10.005 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 559KN UT WOS:000274823400008 ER PT J AU Acciari, VA Aliu, E Beilicke, M Benbow, W Boltuch, D Bottcher, M Bradbury, SM Bugaev, V Byrum, K Cesarini, A Ciupik, L Cogan, P Cui, W Dickherber, R Duke, C Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gibbs, K Guenette, R Gillanders, GH Godambe, S Grube, J Hanna, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McArthur, S McCann, A Moriarty, P Nagai, T Ong, RA Otte, AN Pandel, D Perkins, JS Pichel, A Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Thibadeau, S Vassiliev, VV Vincent, S Wakely, SP Weekes, TC Weinstein, A Weisgarber, T Williams, DA AF Acciari, V. A. Aliu, E. Beilicke, M. Benbow, W. Boltuch, D. Boettcher, M. Bradbury, S. M. Bugaev, V. Byrum, K. Cesarini, A. Ciupik, L. Cogan, P. Cui, W. Dickherber, R. Duke, C. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gibbs, K. Guenette, R. Gillanders, G. H. Godambe, S. Grube, J. Hanna, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McArthur, S. McCann, A. Moriarty, P. Nagai, T. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Thibadeau, S. Vassiliev, V. V. Vincent, S. Wakely, S. P. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. TI DISCOVERY OF VARIABILITY IN THE VERY HIGH ENERGY gamma-RAY EMISSION OF 1ES 1218+304 WITH VERITAS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE BL Lacertae objects: individual (1ES 1218+304=VER J1221+301); galaxies: active; gamma rays: galaxies ID ACTIVE GALACTIC NUCLEI; EXTRAGALACTIC BACKGROUND LIGHT; PEAKED BL-LACERTAE; W-COMAE; BLAZARS; SPECTRA; ACCELERATION; JET; CONSTRAINTS; TELESCOPE AB We present results from an intensive VERITAS monitoring campaign of the high-frequency peaked BL Lac object 1ES 1218+304 in 2008/2009. Although 1ES 1218+304 was detected previously by MAGIC and VERITAS at a persistent level of similar to 6% of the Crab Nebula flux, the new VERITAS data reveal a prominent flare reaching similar to 20% of the Crab. While very high energy (VHE) flares are quite common in many nearby blazars, the case of 1ES 1218+304 (redshift z = 0.182) is particularly interesting since it belongs to a group of blazars that exhibit unusually hard VHE spectra considering their redshifts. When correcting the measured spectra for absorption by the extragalactic background light, 1ES 1218+304 and a number of other blazars are found to have differential photon indices Gamma <= 1.5. The difficulty in modeling these hard spectral energy distributions in blazar jets has led to a range of theoretical gamma-ray emission scenarios, one of which is strongly constrained by these new VERITAS observations. We consider the implications of the observed light curve of 1ES 1218+304, which shows day scale flux variations, for shock acceleration scenarios in relativistic jets, and in particular for the viability of kiloparsec-scale jet emission scenarios. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Gibbs, K.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Beilicke, M.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boltuch, D.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Boltuch, D.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boettcher, M.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Grube, J.; Pandel, D.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Nagai, T.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depaul Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Ong, R. A.; Vassiliev, V. V.; Weinstein, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. OI Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; STFC in the U.K.; Science Foundation Ireland FX This research is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation, the Smithsonian Institution, by NSERC in Canada, by STFC in the U.K. and by Science Foundation Ireland. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. NR 36 TC 28 Z9 28 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2010 VL 709 IS 2 BP L163 EP L167 DI 10.1088/2041-8205/709/2/L163 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551LD UT WOS:000274209300015 ER PT J AU De Pasquale, M Schady, P Kuin, NPM Page, MJ Curran, PA Zane, S Oates, SR Holland, ST Breeveld, AA Hoversten, EA Chincarini, G Grupe, D Abdo, AA Ackermann, M Ajello, M Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bissaldi, E Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Dermer, CD de Angelis, A de Palma, F Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Fishman, G Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE McGlynn, S Meegan, C Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Preece, R Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stamatikos, M Starck, JL Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Toma, K Torres, DF Tosti, G Tramacere, A Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Winer, BL Wood, KS Wu, XF Yamazaki, R Ylinen, T Ziegler, M AF De Pasquale, M. Schady, P. Kuin, N. P. M. Page, M. J. Curran, P. A. Zane, S. Oates, S. R. Holland, S. T. Breeveld, A. A. Hoversten, E. A. Chincarini, G. Grupe, D. Abdo, A. A. Ackermann, M. Ajello, M. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Dermer, C. D. de Angelis, A. de Palma, F. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Fishman, G. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. McGlynn, S. Meegan, C. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Preece, R. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Starck, J. -L. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Toma, K. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Ylinen, T. Ziegler, M. TI SWIFT AND FERMI OBSERVATIONS OF THE EARLY AFTERGLOW OF THE SHORT GAMMA-RAY BURST 090510 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: individual (GRB090510); relativistic processes; shock waves ID LIGHT CURVES; EXTENDED EMISSION; TELESCOPE; BREAKS; PROMPT; JETS; GRBS AB We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the gamma-ray burst outflow, poorly known in short bursts. We discuss internal and external shock models for the broadband energy emission of this object. C1 [De Pasquale, M.; Schady, P.; Kuin, N. P. M.; Page, M. J.; Curran, P. A.; Zane, S.; Oates, S. R.; Breeveld, A. A.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Holland, S. T.; Celik, Oe.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hoversten, E. A.; Grupe, D.; Gehrels, N.; Meszaros, P.; Toma, K.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Chincarini, G.] Univ Milano Bicocca, I-20126 Milan, Italy. [Chincarini, G.] Osservatorio Astron Brera INAF, I-23807 Merate, LC, Italy. [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CNRS, Lab AIM,CEA IRFU,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bissaldi, E.; Greiner, J.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Briggs, M. S.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.] Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, IN2P3, CNRS, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.] Univ Bordeaux, UMR 5797, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Fishman, G.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] Sci Data Ctr, ASI, I-00044 Frascati, Roma, Italy. [Gehrels, N.; McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 2298510, Japan. [Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wu, X. F.] J CPNPC, Nanjing 210093, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP De Pasquale, M (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM mdp@mssl.ucl.ac.uk; mjp@mssl.ucl.ac.uk; Veronique.Pelassa@lpta.in2p3.fr; toma@astro.psu.edu RI Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Curran, Peter/B-5293-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Torres, Diego/O-9422-2016; OI Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Curran, Peter/0000-0003-3003-4626; Axelsson, Magnus/0000-0003-4378-8785; Moretti, Elena/0000-0001-5477-9097; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Dingus, Brenda/0000-0001-8451-7450; Rando, Riccardo/0000-0001-6992-818X; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018 FU STFC FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. S.Z. acknowledges STFC support. This work used data supplied by the UK Swift SDC at the University of Leicester. NR 46 TC 94 Z9 94 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2010 VL 709 IS 2 BP L146 EP L151 DI 10.1088/2041-8205/709/2/L146 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551LD UT WOS:000274209300012 ER PT J AU Ezoe, Y Ishikawa, K Ohashi, T Miyoshi, Y Terada, N Uchiyama, Y Negoro, H AF Ezoe, Y. Ishikawa, K. Ohashi, T. Miyoshi, Y. Terada, N. Uchiyama, Y. Negoro, H. TI DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Jupiter, Io); X-rays: general ID JOVIAN MAGNETOSPHERE; XMM-NEWTON; PARTICLES; MODEL AB We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over similar to 16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 +/- 0.2 with the 1-5 keV X-ray luminosity of (3.3 +/- 0.5) x 10(15) erg s(-1). We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is greater than or similar to 10 times larger than the value estimated from the empirical model of Jovian charge particles. C1 [Ezoe, Y.; Ishikawa, K.; Ohashi, T.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Miyoshi, Y.] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Terada, N.] Tohoku Univ, Dept Geophys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Uchiyama, Y.] Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Negoro, H.] Nihon Univ, Dept Phys, Chiyoda Ku, Tokyo 1018308, Japan. RP Ezoe, Y (reprint author), Tokyo Metropolitan Univ, Dept Phys, 1-1 Minami Osawa, Tokyo 1920397, Japan. EM ezoe@phys.metro-u.ac.jp RI Miyoshi, Yoshizumi/B-5834-2015; XRAY, SUZAKU/A-1808-2009 OI Miyoshi, Yoshizumi/0000-0001-7998-1240; NR 32 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2010 VL 709 IS 2 BP L178 EP L182 DI 10.1088/2041-8205/709/2/L178 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 551LD UT WOS:000274209300018 ER PT J AU Collins, DC Xu, H Norman, ML Li, H Li, ST AF Collins, David C. Xu, Hao Norman, Michael L. Li, Hui Li, Shengtai TI COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: theory; methods: numerical; magnetohydrodynamics (MHD) ID PIECEWISE PARABOLIC METHOD; CLUSTER MAGNETIC-FIELDS; III STAR-FORMATION; GALAXY CLUSTERS; RIEMANN SOLVER; X-RAY; NUMERICAL MAGNETOHYDRODYNAMICS; IDEAL MAGNETOHYDRODYNAMICS; CONSTRAINED TRANSPORT; ALPHA FOREST AB In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers. C1 [Collins, David C.; Xu, Hao; Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Xu, Hao; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Collins, DC (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Xu, Hao/B-8734-2014; OI Xu, Hao/0000-0003-4084-9925; Li, Shengtai/0000-0002-4142-3080 FU NSF [AST-0708960, AST-0808184, AST-0807768]; NASA [NNX08AH26G]; IGPP at Los Alamos National Laboratory FX The authors thank the referees, whose comments helped improve this work. This work has been supported in part by NSF grants AST-0708960, AST-0808184, AST-0807768, and by NASA grant NNX08AH26G. Additional support was provided by IGPP at Los Alamos National Laboratory. Simulations described in this paper were performed at the San Diego Supercomputer Center with computing time provided by NRAC allocation MCA98N020 and LANL Institutional HPC clusters. NR 51 TC 44 Z9 44 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2010 VL 186 IS 2 BP 308 EP 333 DI 10.1088/0067-0049/186/2/308 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 552IU UT WOS:000274283900006 ER PT J AU Tueller, J Baumgartner, WH Markwardt, CB Skinner, GK Mushotzky, RF Ajello, M Barthelmy, S Beardmore, A Brandt, WN Burrows, D Chincarini, G Campana, S Cummings, J Cusumano, G Evans, P Fenimore, E Gehrels, N Godet, O Grupe, D Holland, S Kennea, J Krimm, HA Koss, M Moretti, A Mukai, K Osborne, JP Okajima, T Pagani, C Page, K Palmer, D Parsons, A Schneider, DP Sakamoto, T Sambruna, R Sato, G Stamatikos, M Stroh, M Ukwata, T Winter, L AF Tueller, J. Baumgartner, W. H. Markwardt, C. B. Skinner, G. K. Mushotzky, R. F. Ajello, M. Barthelmy, S. Beardmore, A. Brandt, W. N. Burrows, D. Chincarini, G. Campana, S. Cummings, J. Cusumano, G. Evans, P. Fenimore, E. Gehrels, N. Godet, O. Grupe, D. Holland, S. Kennea, J. Krimm, H. A. Koss, M. Moretti, A. Mukai, K. Osborne, J. P. Okajima, T. Pagani, C. Page, K. Palmer, D. Parsons, A. Schneider, D. P. Sakamoto, T. Sambruna, R. Sato, G. Stamatikos, M. Stroh, M. Ukwata, T. Winter, L. TI THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: active; gamma rays: observations; novae, cataclysmic variables; surveys; X-rays: binaries ID ACTIVE GALACTIC NUCLEI; INTEGRAL SOURCES; XMM-NEWTON; OPTICAL SPECTROSCOPY; CATALOG; TELESCOPE; PULSAR; IDENTIFICATION; COUNTERPART; BINARIES AB We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8 sigma level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of similar to 30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z similar to 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8 sigma) of 2.2 x 10(-11) erg cm(-2) s(-1) (1 mCrab) over most of the sky in the 14-195 keV band. C1 [Tueller, J.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Mushotzky, R. F.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Holland, S.; Krimm, H. A.; Koss, M.; Mukai, K.; Okajima, T.; Parsons, A.; Sakamoto, T.; Sambruna, R.; Stamatikos, M.; Ukwata, T.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Baumgartner, W. H.; Mukai, K.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Holland, S.; Krimm, H. A.; Koss, M.; Mukai, K.] CRESST, Columbia, MD 21044 USA. [Markwardt, C. B.; Skinner, G. K.; Koss, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Ajello, M.] SLAC Natl Lab, Menlo Pk, CA 94025 USA. [Ajello, M.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Beardmore, A.; Evans, P.; Godet, O.; Osborne, J. P.; Page, K.] Univ Leicester, Dept Phys & Astron, Xray & Observat Astron Grp, Leicester LE1 7RH, Leics, England. [Brandt, W. N.; Burrows, D.; Grupe, D.; Kennea, J.; Pagani, C.; Schneider, D. P.; Stroh, M.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Chincarini, G.; Campana, S.; Moretti, A.] INAF, OAB, I-20121 Milan, Italy. [Cusumano, G.] INAF, IASF Palermo, Ist Astrofis Spaziale & Fis Cosm Palermo, I-90146 Palermo, Italy. [Fenimore, E.; Palmer, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Okajima, T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Sakamoto, T.; Stamatikos, M.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Sato, G.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 2298510, Japan. [Ukwata, T.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Winter, L.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. RP Tueller, J (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM Wayne.Baumgartner@nasa.gov RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Lujan Center, LANL/G-4896-2012; Parsons, Ann/I-6604-2012; Koss, Michael/B-1585-2015; Brandt, William/N-2844-2015; OI Koss, Michael/0000-0002-7998-9581; Brandt, William/0000-0002-0167-2453; Campana, Sergio/0000-0001-6278-1576; Cusumano, Giancarlo/0000-0002-8151-1990; moretti, alberto/0000-0002-9770-0315 NR 59 TC 138 Z9 138 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2010 VL 186 IS 2 BP 378 EP 405 DI 10.1088/0067-0049/186/2/378 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 552IU UT WOS:000274283900009 ER PT J AU Pokkuluri, PR Londer, YY Yang, X Duke, NEC Erickson, J Orshonsky, V Johnson, G Schiffer, M AF Pokkuluri, P. R. Londer, Y. Y. Yang, X. Duke, N. E. C. Erickson, J. Orshonsky, V. Johnson, G. Schiffer, M. TI Structural characterization of a family of cytochromes c(7) involved in Fe(III) respiration by Geobacter sulfurreducens SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Cytochrome c(7) structure; Heme-puckering; Multiheme cytochrome; Electron transfer; Fe(III) reduction; Geobacter sulfurreducens ID C-TYPE CYTOCHROMES; X-RAY-DIFFRACTION; ANGSTROM RESOLUTION; DESULFUROMONAS-ACETOXIDANS; ELECTRON-TRANSFER; ESCHERICHIA-COLI; HETEROLOGOUS EXPRESSION; MULTIDOMAIN CYTOCHROME; TETRAHEME CYTOCHROME; CRYSTAL-STRUCTURE AB Periplasmic cytochromes c(7) are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c(7). The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, in the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c(7) within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe (III) oxide compared to ferric citrate. The structures have the highest degree of conservation around "heme IV"; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c(7) could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, "heme I" and "heme III", differ within the family. The above observations suggest that each of the five cytochromes c(7) could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pokkuluri, P. R.; Londer, Y. Y.; Yang, X.; Duke, N. E. C.; Erickson, J.; Orshonsky, V.; Johnson, G.; Schiffer, M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Schiffer, M (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mschiffer@anl.gov FU U.S. Department of Energy's [DE-AC02-06CH11357] FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research GTL program under contract No. DE-AC02-06CH11357. Use of the Structural Biology Center beamlines was supported by the U.S. Department of Energy's Office of Biological and Environmental Research. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Prof. C.A. SaIgueiro (FCT/UNL, Lisbon) contributed many useful discussions and critical reading of the manuscript. This work is a part of collaboration with Prof. D. R. Lovley (University of Massachusetts, Amherst) under the Genomics:GTL project. NR 46 TC 25 Z9 26 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD FEB PY 2010 VL 1797 IS 2 BP 222 EP 232 DI 10.1016/j.bbabio.2009.10.007 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 556FD UT WOS:000274574200012 PM 19857457 ER PT J AU Perry, JJP Shin, DS Getzoff, ED Tainer, JA AF Perry, J. J. P. Shin, D. S. Getzoff, E. D. Tainer, J. A. TI The structural biochemistry of the superoxide dismutases SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Review DE Superoxide dismutase; Reactive oxygen species; Amyotrophic lateral sclerosis; Lou Gehrig's disease; Protein crystallography ID AMYOTROPHIC-LATERAL-SCLEROSIS; NITRIC-OXIDE SYNTHASE; MOTOR-NEURON DISEASE; DIFFERENTIAL SCANNING CALORIMETRY; AMINO-ACID SUBSTITUTION; MNSOD GENE POLYMORPHISM; WERNER-SYNDROME PROTEIN; X-RAY CRYSTALLOGRAPHY; PROSTATE-CANCER RISK; ESCHERICHIA-COLI AB The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition: manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology. (C) 2009 Elsevier B.V. All rights reserved. C1 [Perry, J. J. P.; Shin, D. S.; Getzoff, E. D.; Tainer, J. A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Perry, J. J. P.; Shin, D. S.; Getzoff, E. D.; Tainer, J. A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Perry, J. J. P.] Amrita Univ, Sch Biotechnol, Kollam 690525, Kerala, India. [Tainer, J. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM jat@scripps.edu FU National Institutes of Health [GM39345, GM37684] FX We dedicate this review to all patients and their families, and the pioneering researchers in the SOD field, especially Irwin Friclovich and Joseph McCord, who discovered SOD activity; David and Jane Richardson, who tackled the three-dimensional structure of SOD; Stefan Marklund, who discovered SOD3; James Lepock, who characterized SOD stability; Robert Hallewell, who cloned human SODI; Joan Valentine who characterized the Cu and Zn ion binding; Barry Halliwell, who characterized superoxide toxicity; Joseph Beckman and Bruce Freeman, who identified the cytotoxicity resulting from interactions of superoxide with nitric oxide; Danielle Touati, who used genetics to show the role of SOD in cells; Bernard Babior, who discovered superoxide in the oxidative burst of macrophages; Martha Ludwig, who characterized the first FeSOD structures; Teepu Siddique and Robert Brown, who identified SOD mutations in ALS patients; Don Cleveland, who identified aggregates containing SOD1 as common to FALS disease; and Larry Oberley who defined SOD roles in cancer. We thank Michael Pique for 30+ years of insightful SOD computer graphics, and members of the Tainer and the Getzoff laboratories at TSRI for their critical comments on this manuscript. Work on SOD in the authors' laboratories was funded by the National Institutes of Health (GM39345 and GM37684). NR 290 TC 131 Z9 141 U1 5 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD FEB PY 2010 VL 1804 IS 2 SI SI BP 245 EP 262 DI 10.1016/j.bbapap.2009.11.004 PG 18 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 559YM UT WOS:000274868600002 PM 19914407 ER PT J AU Abreu, IA Cabelli, DE AF Abreu, Isabel A. Cabelli, Diane E. TI Superoxide dismutases-a review of the metal-associated mechanistic variations SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Review DE Superoxide Dismutase; Manganese Superoxide Dismutase (MnSOD); CopperZinc Superoxide Dismutase (CuZnSOD); Iron Superoxide Dismutase (FeSOD); Nickel Superoxide Dismutase (NiSOD); Amyotrophic Lateral Sclerosis (ALS); Pulse Radiolysis; Stopped Flow technique ID AMYOTROPHIC-LATERAL-SCLEROSIS; ENHANCED PEROXIDASE-ACTIVITY; AMINO-ACID SUBSTITUTION; FE-S CLUSTER; ESCHERICHIA-COLI; HYDROGEN-PEROXIDE; PULSE-RADIOLYSIS; ACTIVE-SITE; CRYSTAL-STRUCTURE; SACCHAROMYCES-CEREVISIAE AB Superoxide dismutases are enzymes that function to catalytically convert superoxide radical to oxygen and hydrogen peroxide. These enzymes carry out catalysis at near diffusion controlled rate constants via a general mechanism that involves the sequential reduction and oxidation of the metal center, with the concomitant oxidation and reduction of superoxide radicals. That the catalytically active metal can be copper, iron, manganese or, recently, nickel is one of the fascinating features of this class of enzymes. In this review, we describe these enzymes in terms of the details of their catalytic properties, with an emphasis on the mechanistic differences between the enzymes. The focus here will be concentrated mainly on two of these enzymes, copper, zinc superoxide dismutase and manganese superoxide dismutase, and some relatively subtle variations in the mechanisms by which they function. Published by Elsevier B.V. C1 [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Abreu, Isabel A.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, Plant Genet Engn Grp, P-2784505 Oeiras, Portugal. RP Cabelli, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM Cabelli@bnl.gov RI Abreu, Isabel/I-5081-2013 OI Abreu, Isabel/0000-0002-5566-2146 FU Fundacao para a Ciencia e Tecnologia, Portugal [SFRH/BPD/20581/2004/BH49] FX The authors would like to thank Dr. Celia Romao for valuable assistance with Figs. 5 and 7. I.A.A. was supported by a Post-doctoral fellowship (SFRH/BPD/20581/2004/BH49) from Fundacao para a Ciencia e Tecnologia, Portugal. NR 99 TC 139 Z9 146 U1 10 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD FEB PY 2010 VL 1804 IS 2 SI SI BP 263 EP 274 DI 10.1016/j.bbapap.2009.11.005 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 559YM UT WOS:000274868600003 PM 19914406 ER PT J AU Cannon, GC Heinhorst, S Kerfeld, CA AF Cannon, Gordon C. Heinhorst, Sabine Kerfeld, Cheryl A. TI Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation SO BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS LA English DT Review DE Carboxysome; Carbonic anhydrase; CO2-concentrating mechanism; Cyanobacteria; Chemoautotrophs ID CYANOBACTERIUM SYNECHOCOCCUS PCC7942; THIOBACILLUS-NEAPOLITANUS; CONCENTRATING MECHANISMS; HALOTHIOBACILLUS-NEAPOLITANUS; METHANOSARCINA-THERMOPHILA; ACTIVE-SITE; SYNECHOCYSTIS PCC6803; SHELL; PHOTOSYNTHESIS; PROTEIN AB Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2. concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cannon, Gordon C.; Heinhorst, Sabine] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. [Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Cannon, GC (reprint author), Univ So Mississippi, Dept Chem & Biochem, 118 Coll Dr 5043, Hattiesburg, MS 39406 USA. EM gordon.cannon@usm.edu FU National Science Foundation (NSF) [MCB-0818680, MCB-0851070]; NSF [MCB-0444568]; US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DEAC52-07NA27344] FX We thank Seth Axen for assistance in preparing the figures. The authors' current carboxysome research is supported by National Science Foundation (NSF) grants MCB-0818680 (to G.C.C. and S.H.) and MCB-0851070 (to G.C.C., S.H. and C.A.K). The authors' previous CA studies were funded by NSF grant MCB-0444568 (to G.C.Q. CAK's work is performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract number DEAC52-07NA27344. NR 66 TC 52 Z9 54 U1 3 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-9639 J9 BBA-PROTEINS PROTEOM JI BBA-Proteins Proteomics PD FEB PY 2010 VL 1804 IS 2 SI SI BP 382 EP 392 DI 10.1016/j.bbapap.2009.09.026 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 559YM UT WOS:000274868600015 PM 19818881 ER PT J AU Tosh, DK Yoo, LS Chinn, M Hong, K Kilbey, SM Barrett, MO Fricks, IP Harden, TK Gao, ZG Jacobson, KA AF Tosh, Dilip K. Yoo, Lena S. Chinn, Moshe Hong, Kunlun Kilbey, S. Michael, II Barrett, Matthew O. Fricks, Ingrid P. Harden, T. Kendall Gao, Zhan-Guo Jacobson, Kenneth A. TI Polyamidoamine (PAMAM) Dendrimer Conjugates of "Clickable" Agonists of the A(3) Adenosine Receptor and Coactivation of the P2Y(14) Receptor by a Tethered Nucleotide SO BIOCONJUGATE CHEMISTRY LA English DT Article ID SELECTIVE AGONISTS; ANTAGONIST; RADIOLIGAND; ACTIVATION; CHEMISTRY; THERAPY; LIGANDS; CELLS; FLUID AB We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarbanucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K-i of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment. C1 [Tosh, Dilip K.; Yoo, Lena S.; Chinn, Moshe; Gao, Zhan-Guo; Jacobson, Kenneth A.] NIDDK, Mol Recognit Sect, Bioorgan Chem Lab, NIH, Bethesda, MD 20892 USA. [Hong, Kunlun; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Barrett, Matthew O.; Fricks, Ingrid P.; Harden, T. Kendall] Univ N Carolina, Sch Med, Dept Pharmacol, Chapel Hill, NC 27599 USA. RP Jacobson, KA (reprint author), NIDDK, Mol Recognit Sect, Bioorgan Chem Lab, NIH, Bldg 8A,Rm B1A-19, Bethesda, MD 20892 USA. EM kajacobs@helix.nih.gov RI Jacobson, Kenneth/A-1530-2009; Hong, Kunlun/E-9787-2015 OI Jacobson, Kenneth/0000-0001-8104-1493; Hong, Kunlun/0000-0002-2852-5111 FU NIH, NIDDK; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank Dr. John Lloyd and Dr. Noel Whittaker (NIDDK) for the mass spectral determinations. We thank Dr. Bruce Liang (Univ. of Connecticut) for helpful discussion. This research was supported by the Intramural Research Program of the NIH, NIDDK. Research conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 42 TC 29 Z9 30 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD FEB PY 2010 VL 21 IS 2 BP 372 EP 384 DI 10.1021/bc900473v PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 555MG UT WOS:000274514300023 PM 20121074 ER PT J AU Roy, HE Brodie, EL Chandler, D Goettel, MS Pell, JK Wajnberg, E Vega, FE AF Roy, Helen E. Brodie, Eoin L. Chandler, Dave Goettel, Mark S. Pell, Judith K. Wajnberg, Eric Vega, Fernando E. TI Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens SO BIOCONTROL LA English DT Article DE Ecology; Evolution; Entomopathogenic fungi; Biological control; Tri-trophic interactions; Modelling; Rhizosphere; Endophytes; Behavioural ecology; Molecular tools ID DIVERSITY; CLASSIFICATION; POPULATIONS; PATHOGENS AB Entomopathogens are important natural enemies of many insect and mite species and as such have been recognised as providing an important ecosystem service. Indeed, fungal entomopathogens have been widely investigated as biological control agents of pest insects in attempts to improve the sustainability of crop protection. However, even though our understanding of the ecology of fungal entomopathogens has vastly increased since the early 1800s, we still require in-depth ecological research that can expand our scientific horizons in a manner that facilitates widespread adoption of these organisms as efficient biological control agents. Fungal entomopathogens have evolved some intricate interactions with arthropods, plants and other microorganisms. The full importance and complexity of these relationships is only just becoming apparent. It is important to shift our thinking from conventional biological control, to an understanding of an as yet unknown "deep space". The use of molecular techniques and phylogenetic analyses have helped us move in this direction, and have provided important insights on fungal relationships. Nevertheless, new techniques such as the PhyloChip and pyrosequencing might help us see beyond the familiar fields, into areas that could help us forge a new understanding of the ecology of fungal entomopathogens. C1 [Roy, Helen E.] NERC Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England. [Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Chandler, Dave] Univ Warwick, Warwick HRI, Warwick CV35 9EF, England. [Goettel, Mark S.] Agr & Agri Food Canada, Lethbridge Res Ctr, Lethbridge, AB T1J 4B1, Canada. [Pell, Judith K.] Rothamsted Res, Dept Plant & Invertebrate Ecol, Harpenden AL5 2JQ, Herts, England. [Wajnberg, Eric] INRA, F-06903 Sophia Antipolis, France. [Vega, Fernando E.] ARS, Sustainable Perennial Crops Lab, USDA, Beltsville, MD 20705 USA. RP Roy, HE (reprint author), NERC Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England. EM Hele@ceh.ac.uk RI Wajnberg, Eric/A-4862-2009; Roy, Helen/A-1488-2010; Brodie, Eoin/A-7853-2008; OI Wajnberg, Eric/0000-0002-6700-7114; Brodie, Eoin/0000-0002-8453-8435; Vega, Fernando E./0000-0001-8103-5640 FU Natural Environment Research Council; Department for Environment, Food and Rural Affairs of the United Kingdom; Biotechnology and Biological Sciences Research Council of the United Kingdom (BBSRC) FX The Rockefeller Foundation Bellagio Study and Conference Center in Italy hosted the June 2008 meeting Entomopathogenic fungi in sustainable agriculture: use against insects and beyond (organised by F. E. Vega and M. S. Goettel). This meeting was the inspiration for this special edition and we express our sincere gratitude to the staff at The Rockefeller Foundation and at the Bellagio Study and Conference Centre. HER is supported by the Natural Environment Research Council. JKP is supported by the Department for Environment, Food and Rural Affairs of the United Kingdom (Defra) and the Biotechnology and Biological Sciences Research Council of the United Kingdom (BBSRC). Rothamsted Research is an Institute of BBSRC. NR 40 TC 11 Z9 14 U1 2 U2 31 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6141 J9 BIOCONTROL JI Biocontrol PD FEB PY 2010 VL 55 IS 1 BP 1 EP 6 DI 10.1007/s10526-009-9244-7 PG 6 WC Entomology SC Entomology GA 541UF UT WOS:000273445500001 ER PT J AU Boonchayaanant, B Gu, BH Wang, W Ortiz, ME Criddle, CS AF Boonchayaanant, Benjaporn Gu, Baohua Wang, Wei Ortiz, Monica E. Criddle, Craig S. TI Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium? SO BIODEGRADATION LA English DT Article DE Uranium reduction; Sulfate-reducing bacteria; Hydrogen sulfide; Growth kinetics; Ferrous iron ID HIGHLY CONTAMINATED AQUIFER; URANIUM REDUCTION; SUBMICROMOLAR LEVELS; CELL-WALL; IRON; BIOREMEDIATION; BIOREDUCTION; GROUNDWATER; KINETICS; SORPTION AB In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce U(VI). This study evaluated the relative importance of these processes for Desulfovibrio aerotolerans, a SRB isolated from a U(VI)-contaminated site. For the conditions evaluated, the observed rate of SRB-mediated U(VI) reduction can be explained by the abiotic reaction of U(VI) with the microbially-generated H(2)S. The presence of trace ferrous iron appeared to enhance the extent of hydrogen sulfide-mediated U(VI) reduction at 5 mM bicarbonate, but had no clear effect at 15 mM. During the hydrogen sulfide-mediated reduction of U(VI), a floc formed containing uranium and sulfur. U(VI) sequestered in the floc was not available for further reduction. C1 [Boonchayaanant, Benjaporn; Criddle, Craig S.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Gu, Baohua; Wang, Wei] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Ortiz, Monica E.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. RP Criddle, CS (reprint author), Stanford Univ, Dept Civil & Environm Engn, 473 Via Ortega,Yang & Yamazaki Environm & Energy, Stanford, CA 94305 USA. EM ccriddle@stanford.edu RI Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; OI Gu, Baohua/0000-0002-7299-2956; Boonchayaanant Suwannasilp, Benjaporn/0000-0003-4321-5370 FU Environmental Remediation Science Program (ERSP); U.S. Department of Energy [DOEAC05-00OR22725] FX This work was funded by the Environmental Remediation Science Program (ERSP), U.S. Department of Energy, under grant number DOEAC05-00OR22725. We thank two anonymous reviewers for thoughtful reviews and recommendations that significantly improved the manuscript. NR 43 TC 15 Z9 16 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 J9 BIODEGRADATION JI Biodegradation PD FEB PY 2010 VL 21 IS 1 BP 81 EP 95 DI 10.1007/s10532-009-9283-x PG 15 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 536ZO UT WOS:000273082700008 PM 19597947 ER PT J AU Hooper, SD Dalevi, D Pati, A Mavromatis, K Ivanova, NN Kyrpides, NC AF Hooper, Sean D. Dalevi, Daniel Pati, Amrita Mavromatis, Konstantinos Ivanova, Natalia N. Kyrpides, Nikos C. TI Estimating DNA coverage and abundance in metagenomes using a gamma approximation SO BIOINFORMATICS LA English DT Article ID MICROBIAL COMMUNITIES; VIRAL COMMUNITIES; GENOME; DIVERSITY AB Motivation: Shotgun sequencing generates large numbers of short DNA reads from either an isolated organism or, in the case of metagenomics projects, from the aggregate genome of a microbial community. These reads are then assembled based on overlapping sequences into larger, contiguous sequences (contigs). The feasibility of assembly and the coverage achieved (reads per nucleotide or distinct sequence of nucleotides) depend on several factors: the number of reads sequenced, the read length and the relative abundances of their source genomes in the microbial community. A low coverage suggests that most of the genomic DNA in the sample has not been sequenced, but it is often difficult to estimate either the extent of the uncaptured diversity or the amount of additional sequencing that would be most effcacious. In this work, we regard a metagenome as a population of DNA fragments (bins), each of which may be covered by one or more reads. We employ a gamma distribution to model this bin population due to its flexibility and ease of use. When a gamma approximation can be found that adequately fits the data, we may estimate the number of bins that were not sequenced and that could potentially be revealed by additional sequencing. We evaluated the performance of this model using simulated metagenomes and demonstrate its applicability on three recent metagenomic datasets. C1 [Hooper, Sean D.; Pati, Amrita; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.] Genome Biol Program, Dept Energy, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Dalevi, Daniel] Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. RP Hooper, SD (reprint author), Genome Biol Program, Dept Energy, Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM sean.d.hooper@genpat.uu.se RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX US Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. NR 27 TC 10 Z9 11 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD FEB 1 PY 2010 VL 26 IS 3 BP 295 EP 301 DI 10.1093/bioinformatics/btp687 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 553CP UT WOS:000274342800001 PM 20008478 ER PT J AU Kent, MS Cheng, G Murton, JK Carles, EL Dibble, DC Zendejas, F Rodriquez, MA Tran, H Holmes, B Simmons, BA Knierim, B Auer, M Banuelos, JL Urquidi, J Hjelm, RP AF Kent, M. S. Cheng, G. Murton, J. K. Carles, E. L. Dibble, D. C. Zendejas, F. Rodriquez, M. A. Tran, H. Holmes, B. Simmons, B. A. Knierim, B. Auer, M. Banuelos, J. L. Urquidi, J. Hjelm, R. P. TI Study of Enzymatic Digestion of Cellulose by Small Angle Neutron Scattering SO BIOMACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; MAJOR STRUCTURAL FEATURES; FIBRILLAR STRUCTURE; NATIVE CELLULOSE; SUPERMOLECULAR STRUCTURE; INSOLUBLE CELLULOSE; ELEMENTARY FIBRILS; PICEA-ABIES; HYDROLYSIS; FIBERS AB Small angle neutron scattering (SANS) was used to study the structure of Avicel (FD100) microcrystalline cellulose during enzymatic digestion. Digestions were performed in either of two modes a static, quiescent mode or a dynamic mode using a stirred suspension recycled through a flow cell. The scattering pattern for as-received Avicel in D(2)O buffer is comprised of a low Q power law region resulting from the surface fractal character of the microcrystalline fibers and a high Q roll-off due to scattering from water-filled nanopores with radii similar to 20 angstrom. For digestions in the dynamic mode the high Q roll-off decreased in magnitude within similar to 1 h after addition of enzymes, whereas in the static digestions no change was observed in the high Q roll-off, even after 60 h These results indicate that only with significant agitation does enzyme digestion affect the structure of the nanopores C1 [Kent, M. S.; Murton, J. K.; Carles, E. L.; Rodriquez, M. A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Cheng, G.; Dibble, D. C.; Zendejas, F.; Tran, H.; Holmes, B.; Simmons, B. A.] Sandia Natl Labs, Livermore, CA 94551 USA. [Kent, M. S.; Cheng, G.; Murton, J. K.; Carles, E. L.; Dibble, D. C.; Tran, H.; Holmes, B.; Simmons, B. A.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Knierim, B.; Auer, M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banuelos, J. L.; Urquidi, J.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Hjelm, R. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kent, MS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87123 USA. RI Lujan Center, LANL/G-4896-2012; Banuelos, Jose/L-1561-2013 OI Banuelos, Jose/0000-0003-4644-526X FU U S Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; United States Department of Energy [DE-AC04-94AL85000]; National Instititute of Standards and Technology; U S Department of Commerce; High Flux Isotope Reactor (HFIR); Los Alamos Neutron Science Center (LANSCE); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Dept of Energy FX This work was part of the DOE Joint BioEnergy Institute (http.//www.jbei.org) supported by the U S Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S Department of Energy Sandia is it multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000 We acknowledge the support of the National Instititute of Standards and Technology, U S Department of Commerce, the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, and the Los Alamos Neutron Science Center (LANSCE) at the Los Alamos National Laboratory in providing neutron research facilities used in this work. HFTR and LANSCE Eire sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Dept of Energy. NR 59 TC 17 Z9 17 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD FEB PY 2010 VL 11 IS 2 BP 357 EP 368 DI 10.1021/bm9008952 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 551MZ UT WOS:000274215000007 PM 20041636 ER PT J AU Vivero-Escoto, JL Slowing, II Lin, VSY AF Vivero-Escoto, Juan L. Slowing, Igor I. Lin, Victor S. -Y. TI Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa SO BIOMATERIALS LA English DT Article DE Mesoporous silica nanoparticles; Cancer cells; Cell growth inhibition; Phenanthridium; DNA and RNA intercalators; Endocytosis ID RESPONSIVE CONTROLLED-RELEASE; ETHIDIUM-BROMIDE; DRUG-DELIVERY; FLOW-CYTOMETRY; NUCLEIC ACIDS; DNA; PHENANTHRIDINIUM; NANOSPHERE; MOLECULES; MITOCHONDRIAL AB A series of organically functionalized, MCM-41 type mesoporous silica nanoparticle materials (PAP-LP-MSN and AP-PAP-MSN) with different pore sizes (5.7 nm and 2.5 nm, respectively) were synthesized and characterized. We selectively decorated the exterior particle surface of PAP-LP-MSN and the interior pore surface of AP-PAP-MSN with an oligonucleotide intercalating phenanthridinium functionality. While phenanthridinium itself is a cell membrane impermeable molecule, we demonstrated that both phenanthridinium-immobilized PAP-LP-MSN and AP-PAP-MSN materials could indeed be internalized by live human cervical cancer cells (HeLa). We discovered that the PAP-LP-MSN nanoparticles with the phenanthridium groups located on the exterior surface were able to bind to cytoplasmic oligonucleotides, such as messenger RNAs, of HeLa cells resulting in severe cell growth inhibition. In contrast, the cytotoxicity of AP-PAP-MSN, where the same oligonucleotide intercalating molecules were anchored inside the pores, was significantly lowered upon the endocytosis by HeLa cells. We envision that this approach of combining the selective functionalization of the two different surfaces (exterior particle and interior pore surfaces) with morphology control of mesoporous silica nanoparticles would lead to a new generation of nanodevices with tunable biocompatibility and cell membrane trafficking properties for many biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Vivero-Escoto, Juan L.; Slowing, Igor I.; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. EM ivivero@iastate.edu; islowing@iastate.edu; vsylin@iastate.edu RI Vivero-Escoto, Juan/I-8015-2014; OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0809521]; Biopharmaceuticals & Bioindustrials Initiative of the Plant Science Institute of Iowa State University FX This research was supported by U.S. National Science Foundation (CHE-0809521) and the Biopharmaceuticals & Bioindustrials Initiative of the Plant Science Institute of Iowa State University. The authors thank Dr. C.-W. Wu for experimental assistance in TEM measurement of the materials and helpful discussions. NR 35 TC 50 Z9 52 U1 5 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD FEB PY 2010 VL 31 IS 6 BP 1325 EP 1333 DI 10.1016/j.biomaterials.2009.11.009 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 548RY UT WOS:000273985100035 PM 19932923 ER PT J AU Wilson, MK Abergel, RJ Arceneaux, JEL Raymond, KN Byers, BR AF Wilson, Melissa K. Abergel, Rebecca J. Arceneaux, Jean E. L. Raymond, Kenneth N. Byers, B. Rowe TI Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin SO BIOMETALS LA English DT Article DE Siderophores; Petrobactin; Bacillibactin; Iron; Anthrax ID MEDIATED IRON TRANSPORT; BIOSYNTHESIS; SUBTILIS; TEMPERATURE; ACQUISITION; INFECTION; BACTERIA; REQUIRES; ENCODES; CEREUS AB Bacillus anthracis secretes two siderophores, petrobactin (PB) and bacillibactin (BB). These siderophores were temporally produced during germination and outgrowth of spores (the usual infectious form of B. anthracis) in low-iron medium. The siderophore PB was made first while BB secretion began several hours later. Spore outgrowth early in an infection may require PB, whereas delayed BB production suggests a role for BB in the later stages of the infection. Incubation of cultures (inoculated as vegetative cells) at 37A degrees C, as compared to 2A degrees C, increased PB production and decreased secretion of BB, suggesting that the production of PB and BB responded to the host temperature signal. The dual siderophores of B. anthracis may fulfill independent roles in the life cycle of B. anthracis. C1 [Wilson, Melissa K.; Arceneaux, Jean E. L.; Byers, B. Rowe] Univ Mississippi, Med Ctr, Dept Microbiol, Jackson, MS 39216 USA. [Abergel, Rebecca J.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Byers, BR (reprint author), Univ Mississippi, Med Ctr, Dept Microbiol, Jackson, MS 39216 USA. EM bbyers@emeritus.umsmed.edu FU Intramural Research Grant Program at the University of Mississippi Medical Center; National Institutes of Health [AI11744] FX This research was supported by the Intramural Research Grant Program at the University of Mississippi Medical Center (BRB and JELA) and by National Institutes of Health Grant AI11744 (KNR). We thank P. Worsham for B. anthracis USAMRIID. NR 25 TC 19 Z9 19 U1 3 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0966-0844 J9 BIOMETALS JI Biometals PD FEB PY 2010 VL 23 IS 1 BP 129 EP 134 DI 10.1007/s10534-009-9272-x PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 536ZX UT WOS:000273083600012 PM 19816776 ER PT J AU Asatiani, N Abuladze, M Kartvelishvili, T Kulikova, N Asanishvili, L Holman, HY Sapojnikova, N AF Asatiani, Nino Abuladze, Marina Kartvelishvili, Tamar Kulikova, Nina Asanishvili, Lali Holman, Hoi-Ying Sapojnikova, Nelly TI Response of antioxidant defense system to chromium (VI)-induced cytotoxicity in human diploid cells SO BIOMETALS LA English DT Article DE Chromium (VI); Antioxidant enzymes; Cell cycle; ROS; Apoptosis ID ACTIVATED PROTEIN-KINASES; OXIDATIVE STRESS; GLUTATHIONE-REDUCTASE; ASCORBIC-ACID; DNA-DAMAGE; ENDOTHELIAL-CELLS; HYDROGEN-PEROXIDE; SUPEROXIDE ANION; HUMAN LUNG; IN-VITRO AB The aim of this study is to establish antioxidant indicators of chromium toxicity in fetal human lung fibroblasts (HLF). The results obtained corroborate and develop our earlier observation of low-dose and long-term action of Cr(VI) on human cells in culture. In the case of a nontoxic chromium dose, temporary oxidative stress is overcome by increased activity of the antioxidant system with correlation to cell cycle re-entry. The toxic concentrations misbalance the cell antioxidant defense systems and cause irreversible growth arrest and massive cell death by apoptosis. Sub-toxicity is defined as toxicity stretched in time. The activity of GPx (glutathione peroxidase) is proposed as a biomarker of oxidative stress caused by Cr(VI), and the GR (glutathione reductase) inhibition is considered as a marker of the toxicity developed under the complex Cr(VI) action. In HLF cells the glutathione dependent defense system is the first system destroyed in response to toxic chromium action. Only the balance between SOD (superoxide dismutase) and H(2)O(2) degrading enzymes (catalase and GPx), should play an important role in the fate of a cell, not individual enzymes. C1 [Asatiani, Nino; Abuladze, Marina; Kartvelishvili, Tamar; Asanishvili, Lali; Sapojnikova, Nelly] Andronikashvili Inst Phys, GE-0177 Tbilisi, Rep of Georgia. [Kulikova, Nina] I Javakhishvili Tbilisi State Univ, GE-0143 Tbilisi, Rep of Georgia. [Holman, Hoi-Ying] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sapojnikova, N (reprint author), Andronikashvili Inst Phys, 6 Tamarashvili St, GE-0177 Tbilisi, Rep of Georgia. EM n.sapojnikova@aiphysics.ge RI Holman, Hoi-Ying/N-8451-2014 OI Holman, Hoi-Ying/0000-0002-7534-2625 FU ISTC [G-349] FX The authors would like to thank Professor Len W. Poulter (Department of Immunology, UCL, London) for his kind gift of HLF cell line and Lia Lezhava for technical assistance. We are grateful to the ISTC for Project G-349 Grant research funding. NR 51 TC 6 Z9 8 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0966-0844 J9 BIOMETALS JI Biometals PD FEB PY 2010 VL 23 IS 1 BP 161 EP 172 DI 10.1007/s10534-009-9276-6 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 536ZX UT WOS:000273083600015 PM 19915997 ER PT J AU Jorquera, O Kiperstok, A Sales, EA Embirucu, M Ghirardi, ML AF Jorquera, Orlando Kiperstok, Asher Sales, Emerson A. Embirucu, Marcelo Ghirardi, Maria L. TI Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors SO BIORESOURCE TECHNOLOGY LA English DT Article DE Photobioreactors; Oil production; Microalgae; Life-cycle analysis; Energy ID MASS CULTIVATION; RACEWAY PONDS; CULTURE; SYSTEM; OPTIMIZATION; EFFICIENCY; BIODIESEL; SPIRULINA; OUTDOORS AB An analysis of the energy life-cycle for production of biomass using the oil-rich microalgae Nannochloropsis sp. was performed, which included both raceway ponds, tubular and flat-plate photobioreactors for algal cultivation. The net energy ratio (NER) for each process was calculated. The results showed that the use of horizontal tubular photobioreactors (PBRs) is not economically feasible ([NER] < 1) and that the estimated NERs for flat-plate PBRs and raceway ponds is >1. The NER for ponds and flat-plate PBRs could be raised to significantly higher values if the lipid content of the biomass were increased to 60% dw/cwd. Although neither system is currently competitive with petroleum, the threshold oil cost at which this would occur was also estimated. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Ghirardi, Maria L.] NREL, Golden, CO 80401 USA. [Jorquera, Orlando; Kiperstok, Asher] Univ Fed Bahia, Dept Environm Engn, Bahia Ctr Clean Technol TECLIM, Polytech Inst, BR-40210630 Salvador, BA, Brazil. [Sales, Emerson A.] Univ Fed Bahia, Inst Chem, Dept Phys Chem, BR-40210630 Salvador, BA, Brazil. RP Ghirardi, ML (reprint author), NREL, 1617 Cole Blvd, Golden, CO 80401 USA. EM maria.ghirardi@nrel.gov RI SALES, EMERSON/F-2005-2015; OI SALES, EMERSON/0000-0002-9607-7285; Jorquera, Orlando/0000-0003-4086-5474 NR 31 TC 247 Z9 250 U1 18 U2 135 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2010 VL 101 IS 4 BP 1406 EP 1413 DI 10.1016/j.biortech.2009.09.038 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 523KJ UT WOS:000272071800045 PM 19800784 ER PT J AU Peralta-Yahya, PP Keasling, JD AF Peralta-Yahya, Pamela P. Keasling, Jay D. TI Advanced biofuel production in microbes SO BIOTECHNOLOGY JOURNAL LA English DT Review DE Alcohols; Biofuels; Fatty acids; Isoprenoids; Metabolic engineering ID ENGINEERED ESCHERICHIA-COLI; HIGH-LEVEL PRODUCTION; DESIGNED DIVERGENT EVOLUTION; VIBRIO-FURNISSII M1; FREE FATTY-ACIDS; SACCHAROMYCES-CEREVISIAE; ISOPROPANOL PRODUCTION; ISOPRENOID PRODUCTION; MEVALONATE PATHWAY; CELLULAR PHENOTYPE AB The cost-effective production of biofuels from renewable materials will begin to address energy security and climate change concerns. Ethanol, naturally produced by microorganisms, is currently the major biofuel in the transportation sector. However, its low energy content and incompatibility with existing fuel distribution and storage infrastructure limits its economic use in the future. Advanced biofuels, such as long chain alcohols and isoprenoid- and fatty acid-based biofuels, have physical properties that more closely resemble petroleum-derived fuels, and as such are an attractive alternative for the future supplementation or replacement of petroleum-derived fuels. Here, we review recent developments in the engineering of metabolic pathways for the production of known and potential advanced biofuels by microorganisms. We concentrate on the metabolic engineering of genetically tractable organisms such as Escherichia coli and Saccharomyces cerevisiae for the production of these advanced biofuels. C1 [Peralta-Yahya, Pamela P.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Peralta-Yahya, Pamela P.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 69 TC 153 Z9 163 U1 6 U2 105 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD FEB PY 2010 VL 5 IS 2 BP 147 EP 162 DI 10.1002/biot.200900220 PG 16 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 565FT UT WOS:000275275500005 PM 20084640 ER PT J AU Gittard, SD Pierson, BE Ha, CM Wu, CAM Narayan, RJ Robinson, DB AF Gittard, Shaun D. Pierson, Bonnie E. Ha, Cindy M. Wu, Chung-An Max Narayan, Roger J. Robinson, David B. TI Supercapacitive transport of pharmacologic agents using nanoporous gold electrodes SO BIOTECHNOLOGY JOURNAL LA English DT Article DE Drug delivery; Dealloying; Nanotechnology; Supercapacitor ID TRANSDERMAL DRUG-DELIVERY; LOW-FREQUENCY SONOPHORESIS; CONTROLLED-RELEASE; MICRONEEDLE ARRAY; POROUS-ELECTRODES; CARBON AEROGEL; INJECTIONS; FILMS; 3-METHOXYTHIOPHENE; POLYMERIZATION AB In this study, nanoporous gold supercapacitors were produced by electrochemical dealloying of gold-silver alloy. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed completion of the dealloying process and generation of a porous gold material with similar to 10 nm diameter pores. Cyclic voltammetry and chronoamperometry of the nanoporous gold electrodes indicated that these materials exhibited supercapacitor behavior. The storage capacity of the electrodes measured by chronoamperometry was similar to 3 mC at 200 mV. Electrochemical storage and voltage-controlled delivery of two model pharmacologic agents, benzylammonium and salicylic acid, was demonstrated. These results suggest that capacitance-based storage and delivery of pharmacologic agents may serve as an alternative to conventional drug delivery methods. C1 [Ha, Cindy M.; Wu, Chung-An Max; Robinson, David B.] Sandia Natl Labs, Livermore, CA 94551 USA. [Gittard, Shaun D.; Pierson, Bonnie E.; Narayan, Roger J.] Univ N Carolina Chapel Hill, Joint Dept Biomed Engn, Raleigh, NC USA. [Gittard, Shaun D.; Pierson, Bonnie E.; Narayan, Roger J.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Robinson, DB (reprint author), Sandia Natl Labs, POB 969,Mail Stop 9291, Livermore, CA 94551 USA. EM drobins@sandia.gov RI Narayan, Roger/J-2789-2013 OI Narayan, Roger/0000-0002-4876-9869 NR 60 TC 15 Z9 15 U1 4 U2 26 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD FEB PY 2010 VL 5 IS 2 BP 192 EP 200 DI 10.1002/biot.200900250 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 565FT UT WOS:000275275500010 PM 20108274 ER PT J AU Rabinovici, GD Furst, AJ Alkalay, A Racine, CA O'Neil, JP Janabi, M Baker, SL Agarwal, N Bonasera, SJ Mormino, EC Weiner, MW Gorno-Tempini, ML Rosen, HJ Miller, BL Jagust, WJ AF Rabinovici, Gil D. Furst, Ansgar J. Alkalay, Adi Racine, Caroline A. O'Neil, James P. Janabi, Mustafa Baker, Suzanne L. Agarwal, Neha Bonasera, Stephen J. Mormino, Elizabeth C. Weiner, Michael W. Gorno-Tempini, Maria L. Rosen, Howard J. Miller, Bruce L. Jagust, William J. TI Increased metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid burden SO BRAIN LA English DT Article DE Alzheimer's disease; age of onset; amyloid-beta; [(18)F]-labelled fluorodeoxyglucose; [(11)C]-labelled Pittsburgh compound-B ID PITTSBURGH COMPOUND-B; CEREBRAL GLUCOSE-METABOLISM; FRONTOTEMPORAL LOBAR DEGENERATION; APOLIPOPROTEIN-E GENOTYPE; VOXEL-BASED ANALYSIS; FUNCTIONAL CONNECTIVITY; DEMENTIA SEVERITY; EPSILON-4 ALLELE; SENILE DEMENTIA; BRAIN ATROPHY AB Patients with early age-of-onset Alzheimer's disease show more rapid progression, more generalized cognitive deficits and greater cortical atrophy and hypometabolism compared to late-onset patients at a similar disease stage. The biological mechanisms that underlie these differences are not well understood. The purpose of this study was to examine in vivo whether metabolic differences between early-onset and late-onset Alzheimer's disease are associated with differences in the distribution and burden of fibrillar amyloid-beta. Patients meeting criteria for probable Alzheimer's disease (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's; Disease and Related Disorders Association criteria) were divided based on estimated age at first symptom (less than or greater than 65 years) into early-onset (n = 21, mean age-at-onset 55.2 +/- 5.9 years) and late-onset (n = 18, 72.0 +/- 4.7 years) groups matched for disease duration and severity. Patients underwent positron emission tomography with the amyloid-beta-ligand [(11)C]-labelled Pittsburgh compound-B and the glucose analogue [(18)F]-labelled fluorodeoxyglucose. A group of cognitively normal controls (n = 30, mean age 73.7 +/- 6.4) was studied for comparison. [(11)C]-labelled Pittsburgh compound-B images were analysed using Logan graphical analysis (cerebellar reference) and [(18)F]-labelled fluorodeoxyglucose images were normalized to mean activity in the pons. Group differences in tracer uptake were assessed on a voxel-wise basis using statistical parametric mapping, and by comparing mean values in regions of interest. To account for brain atrophy, analyses were repeated after applying partial volume correction to positron emission tomography data. Compared to normal controls, both early-onset and late-onset Alzheimer's disease patient groups showed increased [(11)C]-labelled Pittsburgh compound-B uptake throughout frontal, parietal and lateral temporal cortices and striatum on voxel-wise and region of interest comparisons (P < 0.05). However, there were no significant differences in regional or global [(11)C]-labelled Pittsburgh compound-B binding between early-onset and late-onset patients. In contrast, early-onset patients showed significantly lower glucose metabolism than late-onset patients in precuneus/posterior cingulate, lateral temporo-parietal and occipital corticies (voxel-wise and region of interest comparisons, P < 0.05). Similar results were found for [(11)C]-labelled Pittsburgh compound-B and [(18)F]-labelled fluorodeoxyglucose using atrophy-corrected data. Age-at-onset correlated positively with glucose metabolism in precuneus, lateral parietal and occipital regions of interest (controlling for age, education and Mini Mental State Exam, P < 0.05), while no correlations were found between age-at-onset and [(11)C]-labelled Pittsburgh compound-B binding. In summary, a comparable burden of fibrillar amyloid-beta was associated with greater posterior cortical hypometabolism in early-onset Alzheimer's disease. Our data are consistent with a model in which both early amyloid-beta accumulation and increased vulnerability to amyloid-beta pathology play critical roles in the pathogenesis of Alzheimer's disease in young patients. C1 [Rabinovici, Gil D.; Alkalay, Adi; Racine, Caroline A.; Bonasera, Stephen J.; Gorno-Tempini, Maria L.; Rosen, Howard J.; Miller, Bruce L.; Jagust, William J.] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA. [Rabinovici, Gil D.; Alkalay, Adi; Racine, Caroline A.; Gorno-Tempini, Maria L.; Rosen, Howard J.; Miller, Bruce L.; Jagust, William J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Rabinovici, Gil D.; Furst, Ansgar J.; Alkalay, Adi; Baker, Suzanne L.; Agarwal, Neha; Mormino, Elizabeth C.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Rabinovici, Gil D.; Furst, Ansgar J.; O'Neil, James P.; Janabi, Mustafa; Baker, Suzanne L.; Mormino, Elizabeth C.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rabinovici, Gil D.; Furst, Ansgar J.; O'Neil, James P.; Janabi, Mustafa; Baker, Suzanne L.; Mormino, Elizabeth C.; Jagust, William J.] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94720 USA. [Weiner, Michael W.] Dept Vet Affairs Med Ctr, Ctr Imaging Neurodegenerat Dis, San Francisco, CA 94121 USA. [Weiner, Michael W.] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA. RP Rabinovici, GD (reprint author), Univ Calif San Francisco, Memory & Aging Ctr, 350 Parnassus Ave,Suite 905, San Francisco, CA 94143 USA. EM grabinovici@memory.ucsf.edu RI Gorno-Tempini, Maria Luisa/E-7203-2012; OI Bonasera, Stephen/0000-0001-6808-2821 FU National Institute on Aging [K23-AG031861, R01-AG027859, P01-AG1972403, P50-AG023501]; Alzheimer's Association [NIRG-07-59422, ZEN-08-87090]; John Douglas French Alzheimer's Foundation; State of California Department of Health Services Alzheimer's Disease Research Center of California [04-33516] FX National Institute on Aging [grant numbers K23-AG031861 to G.D.R, R01-AG027859 to W.J.J, P01-AG1972403 and P50-AG023501 to B.L.M.]; Alzheimer's Association [grant numbers NIRG-07-59422 to G.D.R. and ZEN-08-87090 to W.J.J]; John Douglas French Alzheimer's Foundation [to G.D.R.] and State of California Department of Health Services Alzheimer's Disease Research Center of California [grant number 04-33516 to B.L.M]. NR 102 TC 117 Z9 117 U1 4 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-8950 J9 BRAIN JI Brain PD FEB PY 2010 VL 133 BP 512 EP 528 DI 10.1093/brain/awp326 PN 2 PG 17 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 558VY UT WOS:000274777700016 PM 20080878 ER PT J AU Ford, SR Walter, WR AF Ford, Sean R. Walter, William R. TI Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID BENHAM NUCLEAR EXPLOSION; WESTERN UNITED-STATES; SOUTHERN NEVADA; OMORI FORMULA; MAGNITUDE; PARAMETERS; CALIFORNIA; HAZARD; COMPLETENESS; SEISMICITY AB The behavior of aftershock sequences around the Nevada Test Site (NTS) in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquakelike aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M(X), or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M(99) within the first 7 days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M(99) for the same period. If the aftershock magnitude threshold is lowered and the M(90) criteria is used, then no explosions produce an aftershock greater than M(90) for durations that end more than 17 days after the mainshock. The other discriminant defines N(X), or the minimum cumulative number of aftershocks expected for a given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N(99) within 7 days after the mainshock. However, within the same period, all but one of the explosions produce fewer aftershocks than N(99). One explosion is added if the duration is shortened to 2 days after the mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance. C1 [Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ford, SR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sean@llnl.gov RI Walter, William/C-2351-2013; Ford, Sean/F-9191-2011 OI Walter, William/0000-0002-0331-0616; Ford, Sean/0000-0002-0376-5792 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We are very indebted to the authors of ZMAP (Wiemer, 2001). We are grateful for an internal review by Jerry Sweeney and a very helpful formal review by Max Werner and an anonymous reviewer. We thank Terri Hauk, who loaded the catalog, and Stan Rupert for overseeing the Lawrence Livermore National Laboratory (LLNL) seismic computational infrastructure. This work was performed under the auspices of the Lawrence Scholar Program and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-413235. NR 44 TC 4 Z9 4 U1 1 U2 3 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB 1 PY 2010 VL 100 IS 1 BP 364 EP 376 DI 10.1785/0120080349 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 550SM UT WOS:000274149900023 ER PT J AU Patton, HJ Gupta, IN AF Patton, Howard J. Gupta, Indra N. TI Comment on "An Upper Bound on Rg to Lg Scattering Using Modal Energy Conservation" by Jeffry L. Stevens, Heming Xu, and G. Eli Baker SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Editorial Material ID TEST-SITE; EXPLOSIONS; WAVES; GENERATION; NEVADA; MODELS C1 [Patton, Howard J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Patton, HJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM patton@lanl.gov NR 18 TC 1 Z9 1 U1 1 U2 1 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB 1 PY 2010 VL 100 IS 1 BP 408 EP 415 DI 10.1785/0120090109 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 550SM UT WOS:000274149900029 ER PT J AU Mansilla, E Marin, GH Nunez, L Drago, H Sturla, F Mertz, C Rivera, L Ichim, T Riordan, N Raimondi, C AF Mansilla, Eduardo Marin, Gustavo H. Nunez, Luis Drago, Hugo Sturla, Flavio Mertz, Carol Rivera, Luis Ichim, Thomas Riordan, Neil Raimondi, Clemente TI The Lysosomotropic Agent, Hydroxychloroquine, Delivered in a Biodegradable Nanoparticle System, Overcomes Drug Resistance of B-Chronic Lymphocytic Leukemia Cells In Vitro SO CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS LA English DT Article DE nanoparticles; cancer; monoclonal antibodies ID MEMBRANE PERMEABILIZATION; RHEUMATOID-ARTHRITIS; APOPTOSIS; CHLORAMBUCIL; THERAPY; CANCER; DIFFERENTIATION; FLUDARABINE; ACTIVATION; CASPASE-3 AB Nonviral delivery systems are relatively easy to produce in the large scale, are safe, and elicit a negligible immune response. Nanoparticles (NPs) offer promise as nonviral vectors as biocompatible and -degradable carriers of drugs with targeting to specific sites by surface receptors of monoclonal antibodies (mAbs). We investigated the effect of four PEG-PLGA (polyethylene glycol-polylactic-co-glycolic acid) NP systems on drug-resistant B-chronic lymphocytic leukemia (B-CLL) cells in vitro, three of them encapsulating the drug, hydroxylchloroquine (HDQ), two with NP surface coatings of mAbs (NP1) CD20, (NP2) CD19, and CD20, and one (NP3) with no mAb, but tagged with the fluorescent marker, fluorescein isothiocyanate. The fourth NP system(NP4) was coated with anti-CD19/FITC and anti-CD20/Alexa-Fluor (R) antibodies, but did not contain the active drug, HCQ. Our data indicate that PEG-PLGA nanoparticles with surface mAbs are suitable for selective drug delivery to B-CLL cells and produce a strong apoptotic effect when loaded with the lysosomotropic agent, HDQ. C1 [Mansilla, Eduardo; Marin, Gustavo H.; Raimondi, Clemente] Minist Hlth, CUCAIBA, Ensenada, Baja California, Mexico. [Nunez, Luis] Univ Chicago, Hosp Sect Pulm & Crit Care, Chicago, IL 60637 USA. [Drago, Hugo; Sturla, Flavio] Hosp Quemados, Buenos Aires, DF, Argentina. [Mertz, Carol] Argonne Natl Lab, Chem Sci & Engn Div, Chicago, IL USA. [Rivera, Luis] Univ Puerto Rico, Dept Chem, Mayaguez, PR USA. [Ichim, Thomas; Riordan, Neil] Medistem, San Diego, CA USA. RP Marin, GH (reprint author), Minist Hlth, CUCAIBA, ZP 1923, Ensenada, Baja California, Mexico. EM gmarin@netverk.com.ar RI Rinaldi2, Carlos/D-4479-2011 NR 28 TC 9 Z9 9 U1 0 U2 11 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1084-9785 J9 CANCER BIOTHER RADIO JI Cancer Biother. Radiopharm. PD FEB PY 2010 VL 25 IS 1 BP 97 EP 103 DI 10.1089/cbr.2009.0655 PG 7 WC Oncology; Medicine, Research & Experimental; Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Research & Experimental Medicine; Pharmacology & Pharmacy; Radiology, Nuclear Medicine & Medical Imaging GA 562KL UT WOS:000275048900012 PM 20187802 ER PT J AU Wang, XQ Zhu, Q Mahurin, SM Liang, CD Dai, S AF Wang, Xiqing Zhu, Qinq Mahurin, Shannon M. Liang, Chengdu Dai, Sheng TI Preparation of free-standing high quality mesoporous carbon membranes SO CARBON LA English DT Article ID SEPARATION AB Flat-sheet mesoporous carbon membranes with uniform pore size (e.g., 6.4 nm) and controllable thickness were prepared by pyrolysis of polymeric composite films, which were formed by self-assembly of phenolic resin and block copolymer under acidic conditions. Hexamethylenetetramine was selected as a solid cross-linker to control the rheology of polymeric carbon precursors so that the flat-sheet polymeric films could undergo carbonization without deformation, ensuring the preparation of mesoporous carbon membranes on a large scale with high quality. Gas transport properties through these mesoporous carbon membranes are also reported. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Wang, Xiqing; Zhu, Qinq; Mahurin, Shannon M.; Liang, Chengdu; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Wang, Xiqing/E-3062-2010; Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Dai, Sheng/0000-0002-8046-3931 FU US Department of Energy [DE-AC05-00OR22725] FX This work was sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, US Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Haoguo Zhu and Jim Kiggans were acknowledged for scientific discussion and technical help, respectively. NR 16 TC 34 Z9 36 U1 6 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2010 VL 48 IS 2 BP 557 EP 560 DI 10.1016/j.carbon.2009.09.059 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 532QK UT WOS:000272764300032 ER PT J AU Yung, MM Magrini-Bair, KA Parent, YO Carpenter, DL Feik, CJ Gaston, KR Pomeroy, MD Phillips, SD AF Yung, Matthew M. Magrini-Bair, Kimberly A. Parent, Yves O. Carpenter, Daniel L. Feik, Calvin J. Gaston, Katherine R. Pomeroy, Marc D. Phillips, Steven D. TI Demonstration and Characterization of Ni/Mg/K/AD90 Used for Pilot-Scale Conditioning of Biomass-Derived Syngas SO CATALYSIS LETTERS LA English DT Article DE Biomass gasification; Tar reforming; Catalytic syngas conditioning; Nickel reforming catalyst; Nickel aluminate (NiAl(2)O(4)) ID STEAM REFORMING CATALYSTS; NI-OLIVINE CATALYSTS; FLUIDIZED-BED; TAR REMOVAL; HOT GAS; GASIFICATION; AIR; DOLOMITE; HYDROGEN; ELIMINATION AB A fluidizable, Ni/Mg/K/AD90( 90% alpha-Al(2)O(3)) catalyst was evaluated in a pilot-scale study with oak-derived syngas for tar and methane reforming at 900 degrees C. The catalyst was operated in a semi-batch mode for ten individual reaction cycles, each separated by a regeneration protocol consisting of steaming followed by H(2) reduction. During the experiment, subsequent reaction cycles showed a decrease in activity as indicated by decreased initial methane conversion. During each reaction cycle, H(2)S poisoning was the dominant deactivation mechanism, while coking was deemed to be minor in comparison. Catalyst characterization by XRD and TPR suggest that the loss of activity for subsequent reaction cycles coincides with the formation of a NiAl(2)O(4) species that is not fully reduced under process conditions, which in turn results in a decreased number of potential metallic nickel (Ni(0)) sites available for hydrocarbon steam reforming. An increase in nickel crystallite size with time-on-stream was also observed using XRD, indicating that sintering may also play a role in loss of catalyst activity, although this is not considered the primary deactivation mechanism because activity loss was observed even when nickel crystallite sizes remained nearly constant. C1 [Yung, Matthew M.; Magrini-Bair, Kimberly A.; Carpenter, Daniel L.; Feik, Calvin J.; Gaston, Katherine R.; Pomeroy, Marc D.; Phillips, Steven D.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Parent, Yves O.] Chem Engn Consulting Serv LLC, Golden, CO 80403 USA. RP Yung, MM (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew.yung@nrel.gov OI Gaston, Katherine/0000-0002-1162-0905 FU U. S. Department of Energy's Biomass Program [DE-AC36-99GO-10337] FX We would like to gratefully acknowledge the U. S. Department of Energy's Biomass Program contract DE-AC36-99GO-10337 for funding this work. NR 31 TC 21 Z9 21 U1 0 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD FEB PY 2010 VL 134 IS 3-4 BP 242 EP 249 DI 10.1007/s10562-009-0246-y PG 8 WC Chemistry, Physical SC Chemistry GA 556TN UT WOS:000274615400008 ER PT J AU Oh, JE Monteiro, PJM Jun, SS Choi, S Clark, SM AF Oh, Jae Eun Monteiro, Paulo J. M. Jun, Ssang Sun Choi, Sejin Clark, Simon M. TI The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers SO CEMENT AND CONCRETE RESEARCH LA English DT Article DE Alkali-activated cement (D); Geopolymer (D); X-ray diffraction (B); Fly ash (D); Granulated blast furnace slag (D) ID ZEOLITE; PRODUCTS; MINERALS; TEMPERATURE; CANCRINITE; MECHANISM; CEMENT AB The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 degrees C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Oh, Jae Eun; Monteiro, Paulo J. M.; Choi, Sejin] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Jun, Ssang Sun] Korea Maritime Univ, Global Leading Offshore Plant Educ Ctr, Pusan 606791, South Korea. [Clark, Simon M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Clark, Simon M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Monteiro, PJM (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM monteiro@berkeley.edu RI Chen, Wei/A-5694-2010; Oh, Jae-Eun/F-8632-2011; Clark, Simon/B-2041-2013; OI Clark, Simon/0000-0002-7488-3438; Oh, Jae Eun/0000-0002-2318-3001 NR 32 TC 96 Z9 101 U1 8 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-8846 J9 CEMENT CONCRETE RES JI Cem. Concr. Res. PD FEB PY 2010 VL 40 IS 2 BP 189 EP 196 DI 10.1016/j.cemconres.2009.10.010 PG 8 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA 551PN UT WOS:000274221600002 ER PT J AU Colby, DA Bergman, RG Ellman, JA AF Colby, Denise A. Bergman, Robert G. Ellman, Jonathan A. TI Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation SO CHEMICAL REVIEWS LA English DT Review ID CHELATION-ASSISTED HYDROACYLATION; N-HETEROCYCLIC CARBENES; TRANSITION-METAL-COMPLEXES; CARBON-HYDROGEN BOND; DIRECT ORTHO ARYLATION; ONE-POT SYNTHESIS; INTERMOLECULAR HYDROACYLATION; COUPLING REACTION; ORTHO-ALKYLATION; ORGANIC-SYNTHESIS C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM bergman@cchem.berkeley.edu; jellman@uclink.berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU National Institutes of Health [GM069559]; National Science Foundation; Director and Office of Energy Research Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge the following agencies for funding: National Institutes of Health (Grant GM069559 to J.A.E.), the National Science Foundation (predoctoral fellowship to D.A.C.), and the Director and Office of Energy Research Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy (Contract DE-AC02-05CH11231 to R.G.B.). NR 223 TC 1923 Z9 1927 U1 66 U2 531 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 J9 CHEM REV JI Chem. Rev. PD FEB PY 2010 VL 110 IS 2 BP 624 EP 655 DI 10.1021/cr900005n PG 32 WC Chemistry, Multidisciplinary SC Chemistry GA 557YH UT WOS:000274705900003 PM 19438203 ER PT J AU Wehner, MF Smith, RL Bala, G Duffy, P AF Wehner, Michael F. Smith, Richard L. Bala, G. Duffy, Phillip TI The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model SO CLIMATE DYNAMICS LA English DT Article DE Extreme precipitation; Climate models; Return value; High resolution ID CLIMATE; ENSEMBLE AB We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated. C1 [Wehner, Michael F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Smith, Richard L.] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA. [Bala, G.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Duffy, Phillip] Climate Cent Inc, Palo Alto, CA 94301 USA. RP Wehner, MF (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS50F, Berkeley, CA 94720 USA. EM mfwehner@lbl.gov NR 24 TC 71 Z9 71 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2010 VL 34 IS 2-3 BP 241 EP 247 DI 10.1007/s00382-009-0656-y PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 546JZ UT WOS:000273808400005 ER PT J AU von Wilmsdorff, M Sprick, U Bouvier, ML Schulz, D Schmitt, A Gaebel, W AF von Wilmsdorff, Martina Sprick, Ulrich Bouvier, Marie-Luise Schulz, Daniela Schmitt, Andrea Gaebel, Wolfgang TI SEX-DEPENDENT BEHAVIORAL EFFECTS AND MORPHOLOGICAL CHANGES IN THE HIPPOCAMPUS AFTER PRENATAL INVASIVE INTERVENTIONS IN RATS: IMPLICATIONS FOR ANIMAL MODELS OF SCHIZOPHRENIA SO CLINICS LA English DT Article DE Psychiatric disease; Neurodevelopment; CA3 region; Working memory; Social contact ID NEONATAL EXCITOTOXIC LESIONS; SOCIAL-ISOLATION; FEMALE RATS; CORTICAL DEVELOPMENT; VENTRAL HIPPOCAMPUS; GENDER-DIFFERENCES; POSTPUBERTAL RATS; PYRAMIDAL NEURONS; JUVENILE RATS; ADULT-RATS AB OBJECTIVES: Although schizophrenia affects both human genders, there are gender-dependent differences with respect to age of onset, clinical characteristics, course and prognosis of the disease. METHODS: To investigate sex-dependent differences in motor coordination and activity as well as in cognitive and social behavior, we repeatedly tested female (n = 14) and male (n = 12) Fisher rats (postnatal days, PD 56-174) that had received intracerebroventricular injections of kainic acid as well as female (n = 15) and male (n = 16) control animals. The hippocampus was examined histologically. RESULTS: Compared to male controls, in the alcove test both female controls and female animals with prenatal intervention spent less time in a dark box before entering an unknown illuminated area. Again, animals that received prenatal injection (particularly females) made more perseveration errors in the T mare alternation task compared to controls. Female rats exhibited a higher degree of activity than males, suggesting these effects to be sex-dependent. Finally, animals that received prenatal intervention maintained longer lasting social contacts. Histological analyses showed pyramidal cells in the hippocampal area CA3 (in both hemispheres) of control animals to be longer than those found in treated animals. Sex-dependent differences were found in the left hippocampi of control animals and animals after prenatal intervention. CONCLUSION: These results demonstrate important differences between males and females in terms of weight gain, response to fear, working memory and social behavior. We also found sex-dependent differences in the lengths of hippocampal neurons. Further studies on larger sample sets with more detailed analyses of morphological changes are required to confirm our data. C1 [von Wilmsdorff, Martina; Bouvier, Marie-Luise; Gaebel, Wolfgang] Kliniken Heinrich Heine Univ, LVR Klinikum Dusseldorf, Dusseldorf, Germany. [Sprick, Ulrich] LWL Klin Dortmund, Dortmund, Germany. [Schulz, Daniela] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Schmitt, Andrea] Univ Gottingen, Dept Psychiat, Gottingen, Germany. RP von Wilmsdorff, M (reprint author), Kliniken Heinrich Heine Univ, LVR Klinikum Dusseldorf, Dusseldorf, Germany. EM martina.wilmsdorff@lvr.de RI Schulz, Daniela/H-5625-2011 NR 57 TC 10 Z9 10 U1 3 U2 4 PU HOSPITAL CLINICAS, UNIV SAO PAULO PI SAO PAULO PA FAC MEDICINA, UNIV SAO PAULO, SAO PAULO, SP 00000, BRAZIL SN 1807-5932 J9 CLINICS JI Clinics PD FEB PY 2010 VL 65 IS 2 BP 209 EP 219 DI 10.1590/S1807-59322010000200014 PG 11 WC Medicine, General & Internal SC General & Internal Medicine GA 567CX UT WOS:000275421000014 PM 20186306 ER PT J AU Lee, UD Yoo, CS Chen, JH Frank, JH AF Lee, Uen Do Yoo, Chun Sang Chen, Jacqueline H. Frank, Jonathan H. TI Effect of NO on extinction and re-ignition of vortex-perturbed hydrogen flames SO COMBUSTION AND FLAME LA English DT Article DE Hydrogen combustion; Counterflow flame; Extinction and re-ignition; Catalytic effect of nitric oxide; Direct numerical simulation ID CHARACTERISTIC BOUNDARY-CONDITIONS; NITRIC-OXIDE; EDGE FLAMES; MUTUAL SENSITIZATION; EXTENDED TEMPERATURE; OXIDATION; COUNTERFLOW; IGNITION; DIFFUSION; COMBUSTION AB The catalytic effect of nitric oxide (NO) on the dynamics of extinction and re-ignition of a vortex-perturbed non-premixed hydrogen-air flame is studied in a counterflow burner. A diffusion flame is established with counterflowing streams of nitrogen-diluted hydrogen at ambient temperature and air heated to a range of temperatures that brackets the auto-ignition temperature. Localized extinction is induced by impulsively driving a fuel-side toroidal vortex into the steady flame, and the recovery of the extinguished region is monitored by planar laser-induced fluorescence (PLIF) of the hydroxyl radical (OH). The dynamics of flame recovery depend on the air temperature and fuel concentration, and four different recovery modes are identified. These modes involve combinations of edge-flame propagation and the expansion of an auto-ignition kernel that forms within the extinguished region. The addition of a small amount of NO significantly alters the re-ignition process by shifting the balance between chain-termination and chain-propagation reactions to enhance auto-ignition. The ignition enhancement by this catalytic effect causes a shift in the conditions that govern the recovery modes. In addition, the effects of NO concentration and vortex strength on the flame recovery are examined. Direct numerical simulations of the flame-vortex interaction with and without NO doping show how the small amount of CH produced by NO-catalyzed reactions has a significant impact on the development of an auto-ignition kernel. This joint experimental and numerical study provides detailed insight into the interaction between transient flows and ignition processes. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Lee, Uen Do; Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94611 USA. RP Frank, JH (reprint author), Sandia Natl Labs, POB 969,MS 9051, Livermore, CA 94551 USA. EM jhfrank@sandia.gov RI Yoo, Chun Sang/E-5900-2010 OI Yoo, Chun Sang/0000-0003-1094-4016 FU US Department of Energy [DE-AC04-94-ALS5000]; Korean Government (MOEHRD) [KRF-2005-214-D00239] FX We thank Prof F.L. Dryer of Princeton University for providing the H2/O2/NOx chemical mechanism, Dr. S.A. Kaiser of Sandia National Laboratories (SNL) for valuable discussions, and R.J. Sigurdsson of SNL for assistance in the laboratory. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94-ALS5000. Uen Do Lee was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-214-D00239). NR 46 TC 4 Z9 4 U1 0 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2010 VL 157 IS 2 BP 217 EP 229 DI 10.1016/j.combustflame.2009.10.014 PG 13 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 545AB UT WOS:000273702400003 ER PT J AU Qiang, J AF Qiang, Ji TI A high-order fast method for computing convolution integral with smooth kernel SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Convolution integral; Green's function; Simpson rule; FFT AB In this paper we report on a high-order fast method to numerically calculate convolution integral with smooth non-periodic kernel. This method is based on the Newton-Cotes quadrature rule for the integral approximation and an FFT method for discrete summation. The method can have an arbitrarily high-order accuracy in principle depending on the number of points used in the integral approximation and a computational cost of O (N log(N)), where N is the number of grid points. For a three-point Simpson rule approximation, the method has an accuracy of O(h(4)), where h is the size of the computational grid. Applications of the Simpson rule based algorithm to the calculation of a one-dimensional continuous Gauss transform and to the calculation of a two-dimensional electric field from a charged beam are also presented. (C) 2009 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Qiang, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM JQiang@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Drs. J. Eastwood and J. Strain for helpful discussions. This research was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center. NR 10 TC 4 Z9 5 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2010 VL 181 IS 2 BP 313 EP 316 DI 10.1016/j.cpc.2009.10.005 PG 4 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 538NV UT WOS:000273192100008 ER PT J AU Torres, DJ Li, YHH Kong, SC AF Torres, David J. Li, Yuanhong H. Kong, Song-Charng TI Partitioning strategies for parallel KIVA-4 engine simulations SO COMPUTERS & FLUIDS LA English DT Article ID CODE AB Parallel KIVA-4 is described and simulated in four different engine geometries. The Message Passing-Interface (MPI) library was used to parallelize KIVA-4. Changes in the mesh size during a transient engine simulation present challenges to domain decomposition. In this study, three partitioning strategies were developed in light of the fact that cells can become deactivated and activated during a simulation which will affect the load balance between processors. The first approach partitions the domain vertically. Cells are partitioned in vertical columns to the direction of piston motion using METIS, a software package for partitioning unstructured graphs. The second approach partitions three regions - bowl, squish, and ports - sequentially in the vertical direction using hMETIS with constraints on boundary cells. In the third approach, the mesh is periodically repartitioned during the simulation using a combination of the first two approaches. The overall results show that good parallel performance can be obtained with four processors. The first partitioning strategy performs well compared to the other two more complex approaches for the grids tested in this study. On the other hand, the second approach shows some promise for larger grids with more than four processors. Published by Elsevier Ltd. C1 [Torres, David J.] Los Alamos Natl Lab, Fluid Dynam Grp T 3, Los Alamos, NM 87545 USA. [Li, Yuanhong H.; Kong, Song-Charng] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. RP Torres, DJ (reprint author), Los Alamos Natl Lab, Fluid Dynam Grp T 3, MS B216, Los Alamos, NM 87545 USA. EM dtorres@lanl.gov RI Li, Yuanhong/A-1965-2011 FU Office of Vehicle Technologies of the Department of Energy; Ford Motor Company and Richard Steeper at Sandia National Laboratory FX We acknowledge the support of the Office of Vehicle Technologies of the Department of Energy and collaborations with Ford Motor Company and Richard Steeper at Sandia National Laboratory. NR 10 TC 4 Z9 4 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD FEB PY 2010 VL 39 IS 2 BP 301 EP 309 DI 10.1016/j.compfluid.2009.09.008 PG 9 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 527XQ UT WOS:000272404900011 ER PT J AU Brightwell, R Underwood, KD Vaughan, C Stevenson, J AF Brightwell, Ron Underwood, Keith D. Vaughan, Courtenay Stevenson, Joel TI Performance evaluation of the Red Storm dual-core upgrade SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT International Supercomputing Conference CY JUN, 2007 CL Dresden, GERMANY DE MPP; multi-core; performance evaluation; supercomputing; dual-core AB In 2007, the Cray Red Storm system at Sandia National Laboratories completed an upgrade of the processor and network hardware. Single-core 2.0 GHz AMD Opteron processors were replaced with dual-core 2.4 GHz AMD Opterons, while the network interface hardware was upgraded from a sustained rate of 1.1 GBps to 2.0 GBps (without changing the router link rates). These changes more than doubled the theoretical peak floating-point performance of the compute nodes and doubled the bandwidth performance of the network. This paper provides an analysis of the impact of this upgrade on the performance of several applications and micro-benchmarks. Performance results show that the additional core provides a performance boost of 20-50% for real applications on a fixed problem size per-socket basis on up to 2048 cores and that scalability is impacted relatively little by the upgrade. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Brightwell, Ron; Vaughan, Courtenay; Stevenson, Joel] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Underwood, Keith D.] Intel Corp, Rio Rancho, NM USA. RP Brightwell, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rbbrigh@sandia.gov NR 16 TC 0 Z9 0 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2010 VL 22 IS 2 BP 175 EP 190 DI 10.1002/cpe.1526 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 544WU UT WOS:000273691500004 ER PT J AU Muller, MS van Waveren, M Lieberman, R Whitney, B Saito, H Kumaran, K Baron, J Brantley, WC Parrott, C Elken, T Feng, HY Ponder, C AF Mueller, Matthias S. van Waveren, Matthiis Lieberman, Ron Whitney, Brian Saito, Hideki Kumaran, Kalyan Baron, John Brantley, William C. Parrott, Chris Elken, Tom Feng, Huiyu Ponder, Carl TI SPEC MPI2007-an application benchmark suite for parallel systems using MPI SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT International Supercomputing Conference CY JUN, 2007 CL Dresden, GERMANY DE benchmark; MPI; performance AB The SPEC High-Performance Group has developed the benchmark suite SPEC MPI2007 and its run rules over the last few years. The purpose of the SPEC MPI2007 benchmark and its run rules is to further the cause of fair and objective benchmarking of high-performance computing systems. The rules help to ensure that the published results are meaningful, comparable to other results, and reproducible. MPI2007 includes 13 technical computing applications from the fields of computational fluid dynamics, molecular dynamics, electromagnetism, geophysics, ray tracing, and hydrodynamics. We describe the benchmark suite, and compare it with other benchmark suites. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Mueller, Matthias S.] Tech Univ Dresden, Ctr Informat Serv & High Performance Comp ZIH, D-01062 Dresden, Germany. [van Waveren, Matthiis] Fujitsu Syst Europe Ltd, Lyon, France. [Lieberman, Ron] Hewlett Packard Corp, Palo Alto, CA USA. [Whitney, Brian] Sun Microsyst Inc, Portland, OR USA. [Saito, Hideki] Intel, Parsippany, NJ USA. [Kumaran, Kalyan] Argonne Natl Lab, Argonne, IL 60439 USA. [Baron, John; Feng, Huiyu] Silicon Graph Int, Fremont, CA USA. [Brantley, William C.; Parrott, Chris] AMD, Austin, TX USA. [Elken, Tom; Feng, Huiyu] QLogic Corp, Aliso Viejo, CA USA. [Ponder, Carl] IBM Corp, Austin, TX 78758 USA. RP Muller, MS (reprint author), Tech Univ Dresden, Ctr Informat Serv & High Performance Comp ZIH, D-01062 Dresden, Germany. EM matthias.mueller@tu-dresden.de NR 30 TC 19 Z9 19 U1 0 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2010 VL 22 IS 2 BP 191 EP 205 DI 10.1002/cpe.1535 PG 15 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 544WU UT WOS:000273691500005 ER PT J AU Zahavi, E Johnson, G Kerbyson, DJ Lang, M AF Zahavi, Eitan Johnson, Gregory Kerbyson, Darren J. Lang, Michael TI Optimized Infiniband (TM) fat-tree routing for shift all-to-all communication patterns SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT International Supercomputing Conference CY JUN, 2007 CL Dresden, GERMANY DE InfiniBand; fat tree; packet routing ID NETWORKS AB Clustered systems have become a dominant architecture of scalable high-performance super computers. In these large-scale computers, the network performance and scalability is as critical as the compute-nodes speed. InfiniBand (TM) has become a commodity networking solution supporting the stringent latency, bandwidth and scalability requirements of these clusters. The network performance is also affected by its topology, packet routing and the communication patterns the distributed application exercises. Fat-trees are the topology structures used for constructing most large clusters as they are scalable, maintain cross-bisectional-bandwidth (CBB), and are practical to build using fixed-arity switches. In this paper, we propose a fat-tree routing algorithm that provides a congestion-free, all-to-all shift pattern leveraging on the InfiniBand (TM) static routing capability. The algorithm supports partially populated fat-trees built with switches of arbitrary number of ports and CBB ratios. To evaluate the proposed algorithm, detailed switch and host simulation models were developed and multiple fabric topologies were run. The results of these simulations as well as measurements on real clusters show an improvement in all-to-all delay by avoiding congestion on the fabric. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Zahavi, Eitan] Mellanox Technol Ltd, IL-20692 Shaar Yokneam, Yokneam, Israel. [Johnson, Gregory; Kerbyson, Darren J.; Lang, Michael] Los Alamos Natl Lab, PAL, Los Alamos, NM 87545 USA. RP Zahavi, E (reprint author), Mellanox Technol Ltd, IL-20692 Shaar Yokneam, Yokneam, Israel. EM eitan@mellanox.co.il NR 16 TC 21 Z9 21 U1 0 U2 7 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2010 VL 22 IS 2 BP 217 EP 231 DI 10.1002/cpe.1527 PG 15 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 544WU UT WOS:000273691500007 ER PT J AU Boyer, JL Rochford, J Tsai, MK Muckerman, JT Fujita, E AF Boyer, Julie L. Rochford, Jonathan Tsai, Ming-Kang Muckerman, James T. Fujita, Etsuko TI Ruthenium complexes with non-innocent ligands: Electron distribution and implications for catalysis SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE Ruthenium complexes; Redox-active ligands; Non-innocent ligands; Quinone; Oxidation; Catalysis ID TRANSITION-METAL-COMPLEXES; O-BENZOQUINONE DIIMINE; ACTIVE QUINONOID LIGANDS; WATER-OXIDATION; REDOX PROPERTIES; CHARGE-DISTRIBUTION; ELECTROCHEMICAL OXIDATION; BIS(QUINONE) COMPLEXES; DIOXOLENE COMPLEXES; MOLECULAR-STRUCTURE AB Ruthenium complexes with the non-innocent ligands (NILs) benzoquinone, iminobenzoquinone and benzoquinonediimine and their redox derivatives exhibit intriguing electronic properties. With the proper ligand set the NIL pi* orbitals mix extensively with the ruthenium d pi orbitals resulting in delocalized electron distributions and non-integer oxidation states, and in most of these systems a particular ruthenium oxidation state dominates. This review critically examines the electronic structure of Ru-NIL systems from both an experimental and computational (DFT) perspective. The electron distribution within these complexes can be modulated by altering both the ancillary ligands and the NIL, and in a few cases the resultant electron distributions are exploited for catalysis. The Ru-NIL systems that perform alcohol oxidation and water oxidation catalysis are discussed in detail. The Tanaka catalyst, an anthracene-bridged dinuclear Ru complex, is an intriguing example of a Ru-NIL framework in catalysis. Unlike other known ruthenium water oxidation catalysts, the two Ru atoms remain low valent during the catalytic cycle according to DFT calculations, some experimental evidence, and predictions based on the behavior of the related mononuclear species. (C) 2009 Elsevier B.V. All rights reserved. C1 [Boyer, Julie L.; Rochford, Jonathan; Tsai, Ming-Kang; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Fujita, E (reprint author), Brookhaven Natl Lab, Dept Chem, BLDG 555, Upton, NY 11973 USA. EM fujita@bnl.gov RI Fujita, Etsuko/D-8814-2013; Muckerman, James/D-8752-2013; OI Tsai, Ming-Kang/0000-0001-9189-5572 NR 129 TC 95 Z9 95 U1 2 U2 79 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD FEB PY 2010 VL 254 IS 3-4 SI SI BP 309 EP 330 DI 10.1016/j.ccr.2009.09.006 PG 22 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 548BH UT WOS:000273933300010 ER PT J AU Matthes, SA Covino, BS Bullard, SJ Williamson, KM AF Matthes, S. A. Covino, B. S., Jr. Bullard, S. J. Williamson, K. M. TI Field Test of High-Temperature Corrosion Sensors in a Waste-to-Energy Plant SO CORROSION LA English DT Article DE ash; corrosion; gaseous; high temperature; linear polarization resistance; waste incineration; waste to energy AB Electrochemical probes originally designed for use in aqueous environments were shown to measure corrosion rates in a high-temperature gaseous environment where electrolyte consisted of conductive ashes and liquid slag. The field trial of the probes was conducted over a five-month period to monitor fireside corrosion in a Waste-to-energy (WTE) plant. The three-electrode air-cooled corrosion sensors, each including a thermocouple to monitor sensor temperature, were installed in four different ports at approximately the same level of the WTE boiler. A total of 12 sensors were tested: six with electrodes using the carbon steel boiler tube material and six: using the nickel-chromium alloy used for Weld overlays for the electrodes. Corrosion rates and temperatures of the sensors were monitored continuously throughout the trial. Metallographic measurements of sensor thickness loss were used to calibrate the electrochemical corrosion rates. Air cooling of the sensors was found to be necessary to bring the sensors to the temperature of the boiler tubes, to better match the corrosion rate of the tubes. and to increase Survivability of the sensors and thermocouples. Varying the temperature of the sensors simulated corrosion rates of boiler tubes with steam temperatures above and. below that in the actual WTE plant. Temperatures of two of the sensors were successfully held at controlled temperatures close to the steam temperature for a three-hour test period. Trends in the corrosion rates of the two materials tested were similar though of different magnitude. An expression relating the corrosion rate of the boiler tube material to the corrosion rate of weld overlay was determined for a seven-day period in the middle of the field trial. Results from the field trial suggested that corrosion rate sensors controlled to the outer waterwall temperature can monitor successfully fireside corrosion in WTE plants and can be used as a process control tool by plant operators. C1 [Matthes, S. A.; Covino, B. S., Jr.; Bullard, S. J.; Williamson, K. M.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. RP Matthes, SA (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave,SW, Albany, OR 97321 USA. EM matthes@proaxis.com NR 14 TC 0 Z9 0 U1 0 U2 2 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD FEB PY 2010 VL 66 IS 2 AR 025001 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 553LO UT WOS:000274368400001 ER PT J AU Tan, L Allen, TR AF Tan, L. Allen, T. R. TI Effect of thermomechanical treatment on the corrosion of AA5083 SO CORROSION SCIENCE LA English DT Article DE Mass loss; Intergranular corrosion; Precipitates; Surface potential; Grain boundary ID AL-MG ALLOYS; INITIAL-STAGES; CRACKING; SEGREGATION AB Corrosion resistance degradation induced by the presence of P-phase (Al3Mg2) limits the performance of aluminum alloy 5083 for some critical applications. The effect of thermomechanical treatment on the corrosion of AA5083 is presented in this paper. The samples subjected to the thermomechanical treatment showed superior corrosion resistance compared to the as-received samples. The effects of grain boundary character distribution, grain shape, texture, and precipitates on corrosion are discussed based on experimental observations. Special boundaries are expected to have a weak effect on the overall corrosion resistance of the material compared to the other factors. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tan, L.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Tan, L (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008 MS6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 FU Office of Naval Research [N00014-08-1-0183]; NSF FX This work was supported by the Grant N00014-08-1-0183 from the Office of Naval Research. The authors thank the helpful program organization and discussion led by Dr. A. Perez. Thanks also to Dr. YK Yang for supplying a sample of an Al-10Mg model alloy. This research utilized NSF-supported shared facilities at the University of Wisconsin. NR 26 TC 48 Z9 51 U1 2 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD FEB PY 2010 VL 52 IS 2 BP 548 EP 554 DI 10.1016/j.corsci.2009.10.013 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 550JR UT WOS:000274124600031 ER PT J AU Wang, X Ingall, E Lai, B Stack, AG AF Wang, Xuefeng Ingall, Ellery Lai, Barry Stack, Andrew G. TI Self-Assembled Monolayers as Templates for Heme Crystallization SO CRYSTAL GROWTH & DESIGN LA English DT Article ID PIGMENT BETA-HEMATIN; MALARIA PIGMENT; HEMOZOIN FORMATION; PLASMODIUM-FALCIPARUM; SCHISTOSOMA-MANSONI; ORGANIC MONOLAYERS; ANTIMALARIAL-DRUGS; CRYSTAL-GROWTH; AMINO-ACIDS; NUCLEATION AB Homogeneous self-assembled monolayers (SAMs) of alkanethiols (HS(CH(2))(n)X) on Au(111) were used as substrates for crystallization of ferriprotoporphyrin IX (heme) in acidic aqueous solution. Different terminal functional groups (X = OH, COOH, NH(2), CH(3)) were used oil the SAMS as models of sites where heme crystallization takes place in blood-feeding organisms. Atomic force microscopy, X-ray diffraction (XRD), and X-ray absorption near edge spectroscopy (XANES) were employed to characterize particle morphology, density, crystallographic orientation, and the coordination environment. It was found that the morphology and extent of growth of particulates were strongly affected by the environment in which they crystallize. As has been previously observed, acicular crystals form in DMSO-methanol solution, whereas irregular aggregates of crystals form in acidic aqueous solution. Here tabular crystals were found to form on -NH(2) and -OH terminated SAMS, whereas inclined crystals formed on -COOH and -CH(3) terminated substrates. Particulate coverage on these SAMS decreased in the order of -NH(2), -COOH, -CH(3), and -OH. Chloroquine, a widely used antimalaria drug, slowed particle nucleation rate on the SAMS with varying efficacy but was most efficient on the -COOH SAM. XANES measurements showed that the coordination environment surrounding iron in the particles was found to be the same, regardless of the preparation method and matches existing spectra of hemozoin produced in vivo and synthetic beta-hematin. Different crystallographic planes were found to be expressed depending on the identity of the SAM using XRD, The interaction between the terminal functional group of the SAM and the density and orientation of crystals is discussed. C1 [Wang, Xuefeng; Ingall, Ellery; Stack, Andrew G.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stack, AG (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. EM andrew.stack@eas.gatech.edu RI Ingall, Ellery/A-5447-2008; Stack, Andrew/D-2580-2013; wang, xuefeng/D-4319-2013; wang, xuefeng/J-2365-2014 OI Ingall, Ellery/0000-0003-1954-0317; Stack, Andrew/0000-0003-4355-3679; FU U.S. Department of Energy, Office of Science, Off ice of Basic Energy Sciences [DE-AC02-06CH11357, DE-FG02-07ER15901]; U.S. National Science Foundation [0849494] FX Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Off ice of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported in part by the U.S. National Science Foundation Grant 0849494 to El and U.S. Department of Energy Grant DE-FG02-07ER15901 to A.G.S. NR 43 TC 14 Z9 14 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2010 VL 10 IS 2 BP 798 EP 805 DI 10.1021/cg901177c PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 559PC UT WOS:000274837000046 ER PT J AU Iwasa, A Clay, WA Dahl, JE Carlson, RMK Shen, ZX Sasagawa, T AF Iwasa, Akio Clay, Will A. Dahl, Jeremy E. Carlson, Robert M. K. Shen, Zhi-xun Sasagawa, Takao TI Environmentally Friendly Refining of Diamond-Molecules via the Growth of Large Single Crystals SO CRYSTAL GROWTH & DESIGN LA English DT Article AB Using it home-made transparent two-zone furnace, single crystals of diamond molecules (or diamondoids) up to similar to 1 cm(3) were grown under real time observation using the vapor transport technique. This process proved to be an environmentally friendly means of refining diamond molecules. Optical measurements were performed to evaluate the purity of diamond molecules before and after the process, which demonstrated that even a trace amount of impurities in commercial samples was successfully removed by our method. The thus-obtained high-purity single crystals will accelerate fundamental and applied research on diamond molecules in the solid state, especially in the field of optoelectronics. C1 [Iwasa, Akio; Sasagawa, Takao] Tokyo Inst Technol, Mat & Struct Lab, Kanagawa 2268303, Japan. [Clay, Will A.; Dahl, Jeremy E.; Shen, Zhi-xun] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Clay, Will A.; Dahl, Jeremy E.; Shen, Zhi-xun] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Carlson, Robert M. K.] Chevron Technol Ventures, Mol Diamond Technol, Richmond, CA 94802 USA. [Shen, Zhi-xun] Stanford Inst Mat & Energy Sci, SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Sasagawa, T (reprint author), Tokyo Inst Technol, Mat & Struct Lab, Kanagawa 2268303, Japan. EM sasagawa@msl.titech.ac.jp RI Sasagawa, Takao/E-6666-2014 OI Sasagawa, Takao/0000-0003-0149-6696 FU Chevron; Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The work in Japan was supported by a Research Grant from Iketani Science and Technology Foundation and a Grant-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology. The work in the USA was supported by Chevron through the Stanford-Chevron Diamondoid Program and the Department of Energy, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. NR 12 TC 7 Z9 7 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2010 VL 10 IS 2 BP 870 EP 873 DI 10.1021/cg901218t PG 4 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 559PC UT WOS:000274837000056 ER PT J AU Hooker, JM AF Hooker, Jacob M. TI Modular strategies for PET imaging agents SO CURRENT OPINION IN CHEMICAL BIOLOGY LA English DT Review ID POSITRON-EMISSION-TOMOGRAPHY; REPORTER GENE-EXPRESSION; PEPTIDES; PROBES; RADIOTRACERS; RADIOLABELS; PROTEINS; DELIVERY; HUMANS; LIVER AB In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Hooker, JM (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 555, Upton, NY 11973 USA. EM hooker@bnl.gov OI Hooker, Jacob/0000-0002-9394-7708 FU NIH [1F32EB008320-01]; Goldhaber Distinguished Fellowship FX This work was supported in part by the NIH (1F32EB008320-01) and the Goldhaber Distinguished Fellowship program at BNL. NR 50 TC 22 Z9 22 U1 2 U2 16 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1367-5931 J9 CURR OPIN CHEM BIOL JI Curr. Opin. Chem. Biol. PD FEB PY 2010 VL 14 IS 1 BP 105 EP 111 DI 10.1016/j.cbpa.2009.10.005 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 561AH UT WOS:000274946700016 PM 19880343 ER PT J AU Korkola, J Gray, JW AF Korkola, James Gray, Joe W. TI Breast cancer genomes - form and function SO CURRENT OPINION IN GENETICS & DEVELOPMENT LA English DT Review ID DNA COPY NUMBER; MAMMARY EPITHELIAL-CELL; GENE-EXPRESSION; EXTRACELLULAR-MATRIX; COLORECTAL CANCERS; TUMOR-SUSCEPTIBILITY; HER2 AMPLIFICATION; MOUSE MODEL; IN-VITRO; CARCINOMAS AB This review summarizes advances in our understanding of the genomic and epigenomic abnormalities in breast cancers that are being revealed by the increasingly powerful suite of genomic analysis technologies. It summarizes the remarkable genomic heterogeneity that characterizes the disease, describes mechanisms that shape cancer genomes as they evolve toward metastasis, summarizes important recurrent aberrations that exist in spite of the genomic chaos and that contribute to breast cancer pathophysiology, and describes the use of preclinical models to identify drugs that will be effective against subsets of breast cancers carrying specific genomic and epigenomic abnormalities. C1 [Korkola, James; Gray, Joe W.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94127 USA. RP Gray, JW (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,MS977-250, Berkeley, CA 94127 USA. EM jwgray@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health, National Cancer Institute [U54 112970, P50 CA 58207] FX This work was supported by the Director. Office of Science, Office of Biological & Environmental Research, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, by the National Institutes of Health, National Cancer Institute grants U54 112970, and P50 CA 58207. NR 97 TC 24 Z9 25 U1 0 U2 5 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-437X J9 CURR OPIN GENET DEV JI Curr. Opin. Genet. Dev. PD FEB PY 2010 VL 20 IS 1 BP 4 EP 14 DI 10.1016/j.gde.2009.11.005 PG 11 WC Cell Biology; Genetics & Heredity SC Cell Biology; Genetics & Heredity GA 564TL UT WOS:000275240200002 PM 20060285 ER PT J AU Sashital, DG Doudna, JA AF Sashital, Dipali G. Doudna, Jennifer A. TI Structural insights into RNA interference SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Review ID DOUBLE-STRANDED-RNA; ARGONAUTE SILENCING COMPLEX; RISC-LOADING COMPLEX; A-AEOLICUS ARGONAUTE; CRYSTAL-STRUCTURE; PASSENGER-STRAND; RIBONUCLEASE-III; SLICER ACTIVITY; PIWI PROTEIN; GUIDE-STRAND AB Virtually all animals and plants utilize small RNA molecules to control protein expression during different developmental stages and in response to viral infection. Structural and mechanistic studies have begun to illuminate three fundamental aspects of these pathways: small RNA biogenesis, formation of RNA-induced silencing complexes (RISCs), and targeting of complementary mRNAs. Here we review exciting recent progress in understanding how regulatory RNAs are produced and how they trigger specific destruction of mRNAs during RNA interference (RNAi). C1 [Sashital, Dipali G.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI Sashital, Dipali/0000-0001-7681-6987 FU Howard Hughes Medical Institute; National Institutes of Health; Damon Runyon Cancer Research Foundation FX We thank D Patel for communicating results in advance of publication and members of the Doudna laboratory for helpful discussions. Research in the Doudna laboratory is supported by the Howard Hughes Medical Institute and the National Institutes of Health. DGS is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation. NR 41 TC 51 Z9 55 U1 6 U2 28 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD FEB PY 2010 VL 20 IS 1 BP 90 EP 97 DI 10.1016/j.sbi.2009.12.001 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 568KK UT WOS:000275521000013 PM 20053548 ER PT J AU Rambo, RP Tainer, JA AF Rambo, Robert P. Tainer, John A. TI Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Review ID TUMOR-SUPPRESSOR P53; SAXS DATA; REPAIR; CONFORMATION; DOMAIN; EXCISION; INSIGHTS; COMPLEX; ELEMENT; BINDING AB Small-angle X-ray scattering (SAXS) is changing how we perceive biological structures, because it reveals dynamic macromolecular conformations and assemblies in solution. SAXS information captures thermodynamic ensembles, enhances static structures detailed by high-resolution methods, uncovers commonalities among diverse macromolecules, and helps define biological mechanisms. SAXS-based experiments on RNA riboswitches and ribozymes and on DNA-protein complexes including DNA-PK and p53 discover flexibilities that better define structure-function relationships. Furthermore, SAXS results suggest conformational variation is a general functional feature of macromolecules. Thus, accurate structural analyses will require a comprehensive approach that assesses both flexibility, as seen by SAXS, and detail, as determined by X-ray crystallography and NMR. Here, we review recent SAXS computational tools, technologies, and applications to nucleic acids and related structures. C1 [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Mol Biol, La Jolla, CA 92037 USA. [Rambo, Robert P.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Adv Light Source, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Adv Light Source, Berkeley, CA 94720 USA. EM jat@scripps.edu FU NCI NIH HHS [P01 CA092584, CA92584, P01 CA092584-079002, P01 CA092584-099002] NR 49 TC 91 Z9 91 U1 2 U2 39 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD FEB PY 2010 VL 20 IS 1 BP 128 EP 137 DI 10.1016/j.sbi.2009.12.015 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 568KK UT WOS:000275521000018 PM 20097063 ER PT J AU Marshall, SJ Bayne, SC Baier, R Tomsia, AP Marshall, GW AF Marshall, Sally J. Bayne, Stephen C. Baier, Robert Tomsia, Antoni P. Marshall, Grayson W. TI A review of adhesion science SO DENTAL MATERIALS LA English DT Article; Proceedings Paper CT Annual Meeting of the Academy-of-Dental-Materials CY OCT 29-31, 2009 CL Portland, OR SP Acad Dent Mat DE Adhesion; Adhesive; Adherend; Bonding; Interfaces AB Objective. Adhesion or cohesion includes an adherend, adhesive, and intervening interface. Adhesive joints may include one or more interfaces. Adhesion science focuses on understanding the materials properties associated with formation of the interfaces, changes in the interfaces with time, and events associated with failure of the interfaces. Methods. The key principles for good interface formation are creation of a clean surface, generation of a rough surface for interfacial interlocking, good wetting of the substratum by the adhesive/cohesive materials, adequate flow and adaptation for intimate interaction, and acceptable curing when phase changes are required for final joint formation. Results. Much more effort is needed in the future to carefully assess each of these using available testing methods that attempt to characterize the energetics of the interfaces. Bonding involves potential contributions from physical, chemical, and mechanical sources but primarily relies on micro-mechanical interaction for success. Characterization of the interface before adhesion, during service, and after failure would be much more useful for future investigations and remains as a great challenge. Significance. Scientists should more rigorously apply techniques such as comprehensive contact angle analysis ( rather than simple water wettability) for surface energy determination, and AFM in addition to SEM for surface texture analysis. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. C1 [Marshall, Sally J.] Univ Calif San Francisco, SD Prevent & Restorat Dent Sci, San Francisco, CA 94141 USA. [Bayne, Stephen C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Baier, Robert] SUNY Buffalo, Buffalo, NY USA. [Marshall, Sally J.; Tomsia, Antoni P.; Marshall, Grayson W.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Marshall, SJ (reprint author), Univ Calif San Francisco, SD Prevent & Restorat Dent Sci, 707 Parnassus Ave, San Francisco, CA 94141 USA. EM sally.marshall@ucsf.edu NR 16 TC 75 Z9 82 U1 2 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0109-5641 J9 DENT MATER JI Dent. Mater. PD FEB PY 2010 VL 26 IS 2 BP E11 EP E16 DI 10.1016/j.dental.2009.11.157 PG 6 WC Dentistry, Oral Surgery & Medicine; Materials Science, Biomaterials SC Dentistry, Oral Surgery & Medicine; Materials Science GA 552JS UT WOS:000274286700002 PM 20018362 ER PT J AU Janvilisri, T Scaria, J Gleed, R Fubini, S Bonkosky, MM Grohn, YT Chang, YF AF Janvilisri, Tavan Scaria, Joy Gleed, Robin Fubini, Susan Bonkosky, Michelle M. Groehn, Yrjoe T. Chang, Yung-Fu TI Development of a microarray for identification of pathogenic Clostridium spp. SO DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE LA English DT Article DE Clostridium; Diagnosis; Microarray ID DIFFICILE-ASSOCIATED DIARRHEA; MULTIPLEX PCR ASSAY; OLIGONUCLEOTIDE MICROARRAYS; MICROBIAL DIAGNOSTICS; LABORATORY DIAGNOSIS; PERFRINGENS; INFECTION; STRAINS; CULTURE AB In recent years, Clostridium spp. have rapidly reemerged as human and animal pathogens. The detection and identification of pathogenic Clostridium spp. is therefore critical for clinical diagnosis and antimicrobial therapy. Traditional diagnostic techniques for clostridia are laborious, are time consuming, and may adversely affect the therapeutic outcome. In this study, we developed an oligonucleotide diagnostic microarray for pathogenic Clostridium spp. The microarray specificity was tested against 65 Clostridium isolates. The applicability of this microarray in a clinical setting was assessed with the use of mock stool samples. The microarray was successful in discriminating at least 4 species with the limit of detection as low as 10(4) CFU/mL. In addition, the pattern of virulence and antibiotic resistance genes of tested strains were determined through the microarrays. This approach demonstrates the high-throughput detection and identification of Clostridium spp. and provides advantages over traditional methods. Microarray-based techniques are promising applications for clinical diagnosis and epidemiologic investigations. (C) 2010 Elsevier Inc. All rights reserved. C1 [Janvilisri, Tavan; Scaria, Joy; Groehn, Yrjoe T.; Chang, Yung-Fu] Cornell Univ, Coll Vet Med, Dept Populat Med & Diagnost Sci, Ithaca, NY 14853 USA. [Gleed, Robin; Fubini, Susan] Cornell Univ, Coll Vet Med, Dept Clin Sci, Ithaca, NY 14853 USA. [Bonkosky, Michelle M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Janvilisri, Tavan] Mahidol Univ, Fac Sci, Dept Biol, Bangkok 10400, Thailand. RP Chang, YF (reprint author), Cornell Univ, Coll Vet Med, Dept Populat Med & Diagnost Sci, Ithaca, NY 14853 USA. EM yc42@cornell.edu RI Scaria, Joy/E-1828-2011 FU National Institute of Allergy and Infectious Diseases; National Institutes of Health; Department of Health and Human Services [N01-AI-30054, ZC005-06] FX This project was supported with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under contract, N01-AI-30054, project no. ZC005-06. The authors thank Drs D.N. Gerding at Hines Veterans Affairs Hospital, A. Dascal at McGill University, L.G. Arroyo at University of Guelph, J.G. Songer at University of Arizona, B.M. Limbago at Centers for Disease Control and Prevention, and S.B. Melville at Virginia Polytechnic Institute and State University for providing us Clostridium isolates. Thanks are extended to Dr Sean McDonough for his critical reading of the manuscript. NR 31 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0732-8893 J9 DIAGN MICR INFEC DIS JI Diagn. Microbiol. Infect. Dis. PD FEB PY 2010 VL 66 IS 2 BP 140 EP 147 DI 10.1016/j.diagmicrobio.2009.09.014 PG 8 WC Infectious Diseases; Microbiology SC Infectious Diseases; Microbiology GA 594YI UT WOS:000277576900003 PM 19879710 ER PT J AU Hill, WR Smith, JG Stewart, AJ AF Hill, Walter R. Smith, John G. Stewart, Arthur J. TI Light, nutrients, and herbivore growth in oligotrophic streams SO ECOLOGY LA English DT Article DE algae; competition; Elimia clavaeformis; herbivore; light; nutrient hypothesis; nitrogen; phosphorus; snails; streams ID FRESH-WATER SNAIL; ELEMENTAL COMPOSITION; PRIMARY PRODUCTIVITY; FOREST STREAM; PERIPHYTON; LIMITATION; FOOD; PHOSPHORUS; RESPONSES; ECOSYSTEM AB The light : nutrient hypothesis posits that herbivore growth is increasingly constrained by low food quality as the ratio of light to nutrients increases in aquatic ecosystems. We tested predictions of this hypothesis by examining the effects of large seasonal cycles in light and nutrients on the mineral content of periphyton and the growth rate of a dominant herbivore (the snail Elimia clavaeformis) in two oligotrophic streams. Streambed irradiances in White Oak Creek and Walker Branch (eastern Tennessee, USA) varied dramatically on I seasonal basis due to leaf phenology in the surrounding deciduous forests and seasonal changes in Sun angle. Concentrations of dissolved nutrients varied inversely with light, causing light: nitrate and light: phosphate to range almost 100-fold over the course of any individual year. Periphyton nitrogen and phosphorus concentrations were much lower than the concentrations of these elements in snails, and they bottomed out in early spring when streambed irradiances were highest. Snail growth, however, peaked in early spring when light: nutrient ratios were highest and periphyton nutrient concentrations were lowest. Growth was linearly related to primary production (accounting for up to 85% of growth variance in individual years), which in turn was driven by seasonal variation in light. Conceptual models of herbivore growth indicate that growth should initially increase as increasing light levels stimulate primary production, but then level off, and then decrease as the negative effects of decreasing algal nutrient content override the positive effects of increased food production. Our results showed no evidence of an inflection point where increasing ratios of light to nutrients negatively affected growth. Snail growth in these intensively grazed streams is probably unaffected by periphyton nutrient content because exploitative competition for food reduces growth rates to levels where the demand for nitrogen and phosphorus is small enough to be satisfied by even low levels of these nutrients in periphyton. Competition for limited food resources in habitats where herbivore densities are uncontrolled by predation or other mortality factors should strongly influence the potential for herbivores to be limited by mineral deficits in their food. C1 [Hill, Walter R.; Smith, John G.; Stewart, Arthur J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Hill, Walter R.] Univ Illinois, Inst Nat Resource Sustainabil, Champaign, IL 61820 USA. RP Hill, WR (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37830 USA. EM wrhill@illinois.edu OI stewart, arthur/0000-0003-1968-5997 FU Oak Ridge National Laboratory's Environmental Protection and Waste Services Division; Walker Branch Long Term Measurement Program; University of Illinois Campus Research Board; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Brian Roberts for providing primary production data from Walker Branch in digital form. Research at White Oak Creek was supported by the Oak Ridge National Laboratory's Environmental Protection and Waste Services Division. Research at Walker Branch was supported by the Walker Branch Long Term Measurement Program and a grant to W. R. Hill from the University of Illinois Campus Research Board. Oak Ridge National Laboratory is managed by UT-Battelle under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 36 TC 19 Z9 20 U1 4 U2 48 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD FEB PY 2010 VL 91 IS 2 BP 518 EP 527 DI 10.1890/09-0703.1 PG 10 WC Ecology SC Environmental Sciences & Ecology GA 572GX UT WOS:000275816900023 PM 20392016 ER PT J AU Lu, ZG Zhou, XD Fisher, D Templeton, J Stevenson, J Wu, NJ Ignatiev, A AF Lu, Zigui Zhou, Xiao-dong Fisher, Daniel Templeton, Jared Stevenson, Jeffry Wu, Naijuan Ignatiev, Alex TI Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE IT-SOFC; Anode-supported; YSZ electrolyte; Dense SDC interlayer; Pulsed laser deposition; Ohmic resistance ID LA(SR)FEO3 SOFC CATHODE; ELECTRICAL-CONDUCTIVITY; LA; POLARIZATION; TEMPERATURE; IMPROVEMENT; FILMS; GD AB A power density of over 1.4 W cm(-2) at 0.7 V was achieved at 750 degrees C for an anode-supported YSZ thin electrolyte fuel cell with a dense Sm0.2Ce0.8O1.9 (SDC) interlayer fabricated by pulsed laser deposition, while the cell with a conventional porous SDC interlayer exhibited only 0.8 W cm(-2) at this voltage. The dense SDC interlayer significantly reduced the ohmic resistance of the fuel cell. For example, at 750 degrees C, the ohmic resistance of the fuel cell with a dense SDC interlayer was 0.08 Omega cm(2); while that of the cell with a porous SDC interlayer fabricated by conventional screen-printing was 0.16 Omega cm(2). The pronounced reduction in ohmic resistance might be due to the fully dense structure and thus improved electrical conductivity of the SDC interlayer, increased contact area at the interface between the dense SDC interlayer and the YSZ electrolyte. and suppressed Zr migration into the SDC interlayer. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lu, Zigui; Zhou, Xiao-dong; Templeton, Jared; Stevenson, Jeffry] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Fisher, Daniel; Wu, Naijuan; Ignatiev, Alex] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA. RP Zhou, XD (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM xiaodong.zhou@pnl.gov OI Lu, Zigui/0000-0001-9848-7088 FU US Department of Energy; Center for Advanced Materials; R.A. Welch Foundation [E-632] FX The authors would like to thank Jeff Bonnet for substrate preparation, Shelley Carlson and James Coleman for the SEM work. This work was supported by the US Department of Energy's Solid-state Energy Conversion Alliance Core Technology Program. Part of the support also came from the Center for Advanced Materials, and the R.A. Welch Foundation under Grant #E-632. NR 22 TC 32 Z9 32 U1 0 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD FEB PY 2010 VL 12 IS 2 BP 179 EP 182 DI 10.1016/j.elecom.2009.11.015 PG 4 WC Electrochemistry SC Electrochemistry GA 560CC UT WOS:000274878400001 ER PT J AU Pollak, E Lucas, IT Kostecki, R AF Pollak, Elad Lucas, Ivan T. Kostecki, Robert TI A study of lithium transport in aluminum membranes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium transport; Aluminum; Li-ion anode; Li-ion battery ID NEGATIVE ELECTRODE; ROOM-TEMPERATURE; ION-INSERTION; INTERCALATION; DIFFUSION; LI; BATTERIES; GRAPHITE; ALLOY; PERFORMANCE AB We employed the Devanathan-Stachurski experimental methodology for direct measurement of the rate of lithium transport in metals that can be used as negative electrodes in lithium-ion batteries. The measured Li transport rate in aluminum appears to be in relatively good agreement with previously reported results obtained using standard electrochemical techniques. However, Li transport rate measurements in aluminum membranes of different thicknesses reveal anomalies with regard to the standard diffusion controlled mass transfer model. We attribute this effect to a complex Li transport mechanism in Al membranes upon alloying. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pollak, Elad; Lucas, Ivan T.; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM R_Kostecki@lbl.gov RI LUCAS, Ivan /S-5742-2016 OI LUCAS, Ivan /0000-0001-8930-0437 FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 2 Z9 2 U1 1 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD FEB PY 2010 VL 12 IS 2 BP 198 EP 201 DI 10.1016/j.elecom.2009.11.023 PG 4 WC Electrochemistry SC Electrochemistry GA 560CC UT WOS:000274878400006 ER PT J AU Choi, M Nordmeyer, RA Cornell, E Dong, M Biggin, MD Jin, J AF Choi, Megan Nordmeyer, Robert A. Cornell, Earl Dong, Ming Biggin, Mark D. Jin, Jian TI A multichannel gel electrophoresis and continuous fraction collection apparatus for high-throughput protein separation and characterization SO ELECTROPHORESIS LA English DT Article DE Continuous elution electrophoresis; Counter free-flow; D. vulgaris; High throughput; Multichannel electrophoresis ID ZONE ELECTROPHORESIS; COMPLEXES; DESIGN AB To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A "Counter Free-Flow" elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this system using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of similar to 10-150 kDa; sample recovery rates were 50% or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 mu L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 mu g per channel and reduced resolution. C1 [Nordmeyer, Robert A.; Cornell, Earl; Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Choi, Megan; Dong, Ming; Biggin, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Jin, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, 1 Cyclotron Rd,MS 46-125, Berkeley, CA 94720 USA. EM JJin@lbl.gov FU Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to many members of the Protein Complex Analysis Project (PCAP) for their support and for discussions. This work was conducted under Department of Energy contract DE-AC02-05CH11231 awarded to Lawrence Berkeley National Laboratory. NR 15 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0173-0835 EI 1522-2683 J9 ELECTROPHORESIS JI Electrophoresis PD FEB PY 2010 VL 31 IS 3 BP 440 EP 447 DI 10.1002/elps.200900435 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 556PK UT WOS:000274603200002 PM 20119951 ER PT J AU Breault, RW AF Breault, Ronald W. TI Gasification Processes Old and New: A Basic Review of the Major Technologies SO ENERGIES LA English DT Review DE gasification; gasifier; IGCC; gas composition AB This paper has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the paper is to describe the twelve major gasifiers being marketed today. Some of these are already fully developed while others are in various stages of development. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. C1 NETL US DOE, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), NETL US DOE, POB 880, Morgantown, WV 26507 USA. EM Ronald.breault@netl.doe.gov OI Breault, Ronald/0000-0002-5552-4050 NR 11 TC 42 Z9 44 U1 2 U2 29 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2010 VL 3 IS 2 BP 216 EP 240 DI 10.3390/en3020216 PG 25 WC Energy & Fuels SC Energy & Fuels GA 583UK UT WOS:000276705200005 ER PT J AU Tanaka, R Sato, S Takanohashi, T Hunt, JE Winans, RE AF Tanaka, Ryuzo Sato, Shinya Takanohashi, Toshimasa Hunt, Jerry E. Winans, Randall E. TI Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption-Mass Spectrometry (vol 18, pg 1405, 2004) SO ENERGY & FUELS LA English DT Correction C1 [Tanaka, Ryuzo] Idemitsu Kosan Co Ltd, Cent Res Labs, Sodegaura, Chiba 2990293, Japan. [Sato, Shinya; Takanohashi, Toshimasa] Natl Inst Adv Ind Sci & Technol, Inst Energy Utilizat, Tsukuba, Ibaraki 3058569, Japan. [Hunt, Jerry E.; Winans, Randall E.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Tanaka, R (reprint author), Idemitsu Kosan Co Ltd, Cent Res Labs, 1280 Kamiizumi, Sodegaura, Chiba 2990293, Japan. NR 1 TC 1 Z9 1 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2010 VL 24 BP 1474 EP 1474 DI 10.1021/ef9015679 PG 1 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 555MH UT WOS:000274514400092 ER PT J AU Verbruggen, A Fischedick, M Moomaw, W Weir, T Nadai, A Nilsson, LJ Nyboer, J Sathaye, J AF Verbruggen, Aviel Fischedick, Manfred Moomaw, William Weir, Tony Nadai, Alain Nilsson, Lars J. Nyboer, John Sathaye, Jayant TI Renewable energy costs, potentials, barriers: Conceptual issues SO ENERGY POLICY LA English DT Article DE Renewable energy sources and technologies; Costs and prices; Potentials and barriers ID EFFICIENCY; INNOVATION; ECONOMICS; PROSPECTS; POLICY AB Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Verbruggen, Aviel] Univ Antwerp, Antwerp, Belgium. [Fischedick, Manfred] Wuppertal Inst Climate, Wuppertal, Germany. [Moomaw, William] Tufts Univ, Ctr Int Environm & Resource Policy, Medford, MA 02155 USA. [Weir, Tony] Univ S Pacific, Suva, Fiji. [Nilsson, Lars J.] Lund Univ, S-22100 Lund, Sweden. [Nyboer, John] Simon Fraser Univ, Sch Resource & Environm Management, Burnaby, BC V5A 1S6, Canada. [Sathaye, Jayant] Lawrence Berkeley Lab, Berkeley, CA USA. RP Verbruggen, A (reprint author), Univ Antwerp, Antwerp, Belgium. EM aviel.verbruggen@ua.ac.be OI Weir, Tony/0000-0001-8606-8732 NR 53 TC 70 Z9 71 U1 16 U2 72 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD FEB PY 2010 VL 38 IS 2 BP 850 EP 861 DI 10.1016/j.enpol.2009.10.036 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 548SD UT WOS:000273985700020 ER PT J AU Zhang, YQ Oldenburg, CM Finsterle, S AF Zhang, Yingqi Oldenburg, Curtis M. Finsterle, Stefan TI Percolation-theory and fuzzy rule-based probability estimation of fault leakage at geologic carbon sequestration sites SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Risk assessment; Faults and fractures; Fuzzy logic ID RESERVOIR OPERATION; LENGTH DISTRIBUTION; FRACTURE SYSTEMS; CONNECTIVITY; LOGIC; NETWORKS; FLOW; LAW; CLASSIFICATION; DISTRIBUTIONS AB Leakage of CO2 and displaced brine from geologic carbon sequestration (GCS) sites into potable groundwater or to the near-surface environment is a primary concern for safety and effectiveness of GCS. The focus of this study is on the estimation of the probability of CO2 leakage along conduits such as faults and fractures. This probability is controlled by (1) the probability that the CO2 plume encounters a conductive fault that could serve as a conduit for CO2 to leak through the sealing formation, and (2) the probability that the conductive fault(s) intersected by the CO2 plume are connected to other conductive faults in such a way that a connected flow path is formed to allow CO2 to leak to environmental resources that may be impacted by leakage. This work is designed to fit into the certification framework for geological CO2 storage, which represents vulnerable resources such as potable groundwater, health and safety, and the near-surface environment as discrete "compartments.'' The method we propose for calculating the probability of the network of conduits intersecting the CO2 plume and one or more compartments includes four steps: (1) assuming that a random network of conduits follows a power-law distribution, a critical conduit density is calculated based on percolation theory; for densities sufficiently smaller than this critical density, the leakage probability is zero; (2) for systems with a conduit density around or above the critical density, we perform a Monte Carlo simulation, generating realizations of conduit networks to determine the leakage probability of the CO2 plume (Pleak) for different conduit length distributions, densities and CO2 plume sizes; (3) from the results of Step 2, we construct fuzzy rules to relate P-leak to system characteristics such as system size, CO2 plume size, and parameters describing conduit length distribution and uncertainty; (4) finally, we determine the CO2 leakage probability for a given system using fuzzy rules. The method can be extended to apply to brine leakage risk by using the size of the pressure perturbation above some cutoff value as the effective plume size. The proposed method provides a quick way of estimating the probability of CO2 or brine leaking into a compartment for evaluation of GCS leakage risk. In addition, the proposed method incorporates the uncertainty in the system parameters and provides the uncertainty range of the estimated probability. C1 [Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, YQ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, MS 90R1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM yqzhang@lbl.gov RI Finsterle, Stefan/A-8360-2009; Oldenburg, Curtis/L-6219-2013; Zhang, Yingqi/D-1203-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Oldenburg, Curtis/0000-0002-0132-6016; FU CO2 Capture Project (CCP) of the Joint Industry Program (JIP); Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the CO2 Capture Project (CCP) of the Joint Industry Program (JIP), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. We thank Keni Zhang for providing his fracture network generation code. We also thank Christine Doughty and Hui-Hai Liu (LBNL) for constructive reviews, and Scott Imbus (Chevron) and Cal Cooper (ConocoPhillips) for support and encouragement. NR 54 TC 9 Z9 9 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD FEB PY 2010 VL 59 IS 7 BP 1447 EP 1459 DI 10.1007/s12665-009-0131-4 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 551BY UT WOS:000274182000007 ER PT J AU Baker-Austin, C Gore, A Oliver, JD Rangdale, R McArthur, JV Lees, DN AF Baker-Austin, Craig Gore, Anthony Oliver, James D. Rangdale, Rachel McArthur, J. Vaun Lees, David N. TI Rapid in situ detection of virulent Vibrio vulnificus strains in raw oyster matrices using real-time PCR SO ENVIRONMENTAL MICROBIOLOGY REPORTS LA English DT Article ID PATHOGENESIS; ASSAY; GENOTYPES; BACTERIA; GENE AB Vibrio vulnificus is a Gram-negative bacterial pathogen responsible for the vast majority of bacterially mediated fatalities from the consumption of raw or undercooked seafood in the USA. Vibrio vulnificus-associated septicaemia can occur rapidly (< 24 h); however, methods for the isolation and confirmation of V. vulnificus from seafood samples typically require several days. A real-time PCR assay was developed for V. vulnificus biotype 1 that provides a rapid means of identifying a gene fragment (vcgC) previously indicated as a strong predictor of potential virulence. PCR probe specificity was confirmed by amplification of 17 clinical V. vulnificus strains and by the lack of amplification with seven non-pathogenic V. vulnificus isolates and a wide range of closely related bacteria. Oyster and seawater samples were amended with a range of environmentally realistic concentrations of C-genotype V. vulnificus cells, which were quantitatively and unambiguously identified according to biotype. Of some significance, we utilized a sample processing and nucleic acid extraction procedure that allowed identification of pathogenic strains of V. vulnificus from oyster matrices without prior enrichment or culturing of strains. This outlined approach allowed the detection of as little as 50 cfu of V. vulnificus in less than 5 h, which compares favourably with culture-based approaches. The results indicate the applicability of this approach for monitoring purposes or as a potential diagnostic tool in clinical settings. C1 [Baker-Austin, Craig; Rangdale, Rachel; Lees, David N.] Ctr Environm Fisheries & Aquaculture Sci, Weymouth Lab, Weymouth, Dorset, England. [Gore, Anthony] Kings Coll London, London WC2R 2LS, England. [Oliver, James D.] Univ N Carolina, Dept Biol, Charlotte, NC 28223 USA. [McArthur, J. Vaun] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. RP Baker-Austin, C (reprint author), Ctr Environm Fisheries & Aquaculture Sci, Weymouth Lab, Weymouth, Dorset, England. EM craig.baker-austin@cefas.co.uk NR 18 TC 14 Z9 14 U1 3 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1758-2229 J9 ENV MICROBIOL REP JI Environ. Microbiol. Rep. PD FEB PY 2010 VL 2 IS 1 SI SI BP 76 EP 80 DI 10.1111/j.1758-2229.2009.00092.x PG 5 WC Environmental Sciences; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 619LO UT WOS:000279431900010 PM 23766001 ER PT J AU Haley, BJ Grim, CJ Hasan, NA Taviani, E Chun, J Brettin, TS Bruce, DC Challacombe, JF Detter, JC Han, CS Huq, A Nair, GB Colwell, RR AF Haley, Bradd J. Grim, Christopher J. Hasan, Nur A. Taviani, Elisa Chun, Jongsik Brettin, Thomas S. Bruce, David C. Challacombe, Jean F. Detter, J. Chris Han, Cliff S. Huq, Anwar Nair, G. Balakrish Colwell, Rita R. TI The pre-seventh pandemic Vibrio cholerae BX 330286 El Tor genome: evidence for the environment as a genome reservoir SO ENVIRONMENTAL MICROBIOLOGY REPORTS LA English DT Article ID VIRULENCE GENE-EXPRESSION; SEQUENCES; SOFTWARE; INCIDENT; REVEALS; STRAINS; O1 AB Vibrio cholerae O1 El Tor BX 330286 was isolated from a water sample in Australia in 1986, 9 years after an indigenous outbreak of cholera occurred in that region. This environmental strain encodes virulence factors highly similar to those of clinical strains, suggesting an ability to cause disease in humans. We demonstrate its high similarity in gene content and genome-wide nucleotide sequence to clinical V. cholerae strains, notably to pre-seventh pandemic O1 El Tor strains isolated in 1910 (V. cholerae NCTC 8457) and 1937 (V. cholerae MAK 757), as well as seventh pandemic strains isolated after 1960 globally. Here we demonstrate that this strain represents a transitory clone with shared characteristics between pre-seventh and seventh pandemic strains of V. cholerae. Interestingly, this strain was isolated 25 years after the beginning of the seventh pandemic, suggesting the environment as a genome reservoir in areas where cholera does not occur in sporadic, endemic or epidemic form. C1 [Haley, Bradd J.; Grim, Christopher J.; Hasan, Nur A.; Taviani, Elisa; Huq, Anwar; Colwell, Rita R.] Univ Maryland, Maryland Pathogen Res Inst, College Pk, MD 20742 USA. [Grim, Christopher J.; Colwell, Rita R.] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA. [Chun, Jongsik] Seoul Natl Univ, Sch Biol Sci, Seoul 151742, South Korea. [Chun, Jongsik] Int Vaccine Inst, Seoul 151818, South Korea. [Brettin, Thomas S.; Bruce, David C.; Detter, J. Chris; Han, Cliff S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM USA. [Challacombe, Jean F.; Nair, G. Balakrish] Natl Inst Cholera & Enter Dis, Kolkata, India. [Chun, Jongsik] Seoul Natl Univ, Inst Microbiol, Seoul 151742, South Korea. RP Colwell, RR (reprint author), Univ Maryland, Maryland Pathogen Res Inst, College Pk, MD 20742 USA. EM rcolwell@umiacs.umd.edu NR 27 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1758-2229 J9 ENV MICROBIOL REP JI Environ. Microbiol. Rep. PD FEB PY 2010 VL 2 IS 1 SI SI BP 208 EP 216 DI 10.1111/j.1758-2229.2010.00141.x PG 9 WC Environmental Sciences; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 619LO UT WOS:000279431900030 PM 23766018 ER PT J AU Mostrag, A Puzyn, T Haranczyk, M AF Mostrag, Aleksandra Puzyn, Tomasz Haranczyk, Maciej TI Modeling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic compounds SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Overall persistence; Long-range transport potential; Multimedia modeling; Exposure assessment; QSPR; Half-lives; Partition coefficients; Polychlorinated thianthrenes; Polychlorinated phenoxanthins; Polychorinated dibenzothiophenes; Polychlorinated diphenyl sulfides; Persistent organic pollutants ID AIR PARTITION-COEFFICIENTS; CHROMATOGRAPHIC RETENTION TIMES; HENRYS LAW CONSTANTS; DIPHENYL ETHERS; SCREENING CHEMICALS; MULTIMEDIA MODELS; TRANSPORT; DIBENZOTHIOPHENES; TOOL; CHLOROBENZENES AB Experimental data on partition coefficients and environmental half-lives of sulfur analogs of polychlorinated organic compounds are scarce. Consequently, little is known about their overall persistence and long-range transport potential, which are the most vital measures in the environmental exposure assessment. We performed Multimedia Modeling of environmental fate and transport to complement this paucity of scientific data. The main aim of our study was to investigate whether the sulfur analogs of polychlorinated dibenzo-p-dioxins, -dibenzofurans, and -diphenylethers are as environmentally persistent and/or mobile as their oxygen counterparts and to propose the environmental exposure-related classification of the examined sulfur compounds. Our study included all possible congeners of the sulfur analogs generated in a combinatorial approach. We predicted (1) lacking data on partition coefficients (log K (OW), log K (OA) and log K (AW)) for oxygen- and sulfur analogs using Quantitative Structure-Property Relationship (QSPR) modeling and (2) their half-lives in air, water, and soil using US EPA tool 'The PBT Profiler, v. 1.203 2006'. Subsequently, we introduced these results into multimedia mass balance model 'The OECD P(OV) and LRTP Screening Tool, v. 2.2'. Our study revealed that log K (OW) and log K (OA) are increasing by constant values of 0.60 and 1.07, respectively, and the values of log K (AW) are decreasing by 0.90, whenever one oxygen atom in the carbon skeleton is replaced by sulfur. The persistence ranking performed by the PBT Profiler showed that PCDDs, PCDFs, PCDEs, and their sulfur analogs belong to one half-life class. The Multimedia Modeling by the means of 'The OECD P(OV) and LRTP Screening Tool, v. 2.2' suggested that the long-range transport potential depends on the presence/absence of oxygen/sulfur atoms in particular molecules, their substitution pattern and the parent carbon skeleton. Sulfur analogs are generally less mobile than their oxygen analogs, but have similar overall persistence and much higher bioaccumulation potential. Thus, according to the classification of chemicals proposed by Klasmeier et al. (Environ Sci Technol 40:53-60, 2006), some of them show POP-like P(OV) and LRTP characteristics while the rest shows POP-like P(OV) characteristics. The sulfur analogs of PCDDs, PCDFs, or PCDEs bring environmental mobility comparable with the risk related to the oxygen ones; they belong to the pollutants of 'highest' or 'intermediate' priority. Further studies that would verify the necessity to include the studied sulfur molecules in the international lists of high-priority environmental pollutants are recommended. C1 [Puzyn, Tomasz] Univ Gdansk, Fac Chem, Lab Environm Chemometr, PL-80952 Gdansk, Poland. [Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Puzyn, T (reprint author), Univ Gdansk, Fac Chem, Lab Environm Chemometr, Sobieskiego 18-19, PL-80952 Gdansk, Poland. EM puzi@qsar.eu.org RI Haranczyk, Maciej/A-6380-2014; OI Haranczyk, Maciej/0000-0001-7146-9568; Puzyn, Tomasz/0000-0003-0449-8339 FU U. S. Department of Energy [DE-AC02-05CH11231] FX T. P. thanks the Foundation for Polish Science for granting him a fellowship and a research grant in the frame of the HOMING Program. M. H. is a 2008 Glenn T. Seaborg Fellow at Lawrence Berkeley National Laboratory. This research was supported in part (to M. H.) by the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 42 TC 13 Z9 13 U1 5 U2 37 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD FEB PY 2010 VL 17 IS 2 BP 470 EP 477 DI 10.1007/s11356-009-0257-7 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 546YQ UT WOS:000273851900022 PM 19937279 ER PT J AU Stewart, BD Mayes, MA Fendorf, S AF Stewart, Brandy D. Mayes, Melanie A. Fendorf, Scott TI Impact of Uranyl-Calcium-Carbonato Complexes on Uranium(VI) Adsorption to Synthetic and Natural Sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MICROBIAL REDUCTION; TERNARY COMPLEXES; SUBSURFACE MEDIA; SURFACE; FERRIHYDRITE; SORPTION; SPECIATION; GOETHITE; MODEL; SITE AB Adsorption on soil and sediment solids may decrease aqueous uranium concentrations and limit its propensity for migration in natural and contaminated settings. Uranium adsorption will be controlled in large part by its aqueous speciation, with a particular dependence on the presence of dissolved calcium and carbonate. Here we quantify the impact of uranyl speciation on adsorption to both goethite and sediments from the Hanford Clastic Dike and Oak Ridge Melton Branch Ridgetop formations. Hanford sediments were preconditioned with sodium acetate and acetic acid to remove carbonate grains, and Ca and carbonate were reintroduced at defined levels to provide a range of aqueous uranyl species. U(VI) adsorption is directly linked to UO(2)(2+) speciation, with the extent of retention decreasing with formation of ternary uranyl-calcium-carbonato species. Adsorption isotherms under the conditions studied are linear, and K(d) values decrease from 48 to 17 L kg(-1) for goethite, from 64 to 29 L kg(-1) for Hanford sediments, and from 95 to 51 L kg(-1) for Melton Branch sediments as the Ca concentration increases from 0 to 1 mM at pH 7. Our observations reveal that in carbonate-bearing waters, neutral to slightly acidic pH values (similar to 5) and limited dissolved calcium are optimal for uranium adsorption. C1 [Stewart, Brandy D.; Fendorf, Scott] Stanford Univ, Stanford, CA 94305 USA. [Mayes, Melanie A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fendorf, S (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM Fendorf@stanford.edu FU Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Program, of the U.S. Department of Energy [DE-AC02-05CH11231]; OBER-ERSP [ER63609-1021814]; Stanford NSF Environmental Molecular Science Institute [NSF-CHE-0431425]; National Science Foundation Chemistry and Earth Sciences Divisions FX We are grateful for the assistance of Dr. G. Li with the uranium analysis. This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; Support was also provided by OBER-ERSP under Grant Number ER63609-1021814 and by the Stanford NSF Environmental Molecular Science Institute (Grant NSF-CHE-0431425), funded by the National Science Foundation Chemistry and Earth Sciences Divisions. NR 34 TC 60 Z9 61 U1 2 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2010 VL 44 IS 3 BP 928 EP 934 DI 10.1021/es902194x PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 548HD UT WOS:000273950100015 PM 20058915 ER PT J AU Bruns, EA Perraud, V Zelenyuk, A Ezell, MJ Johnson, SN Yu, Y Imre, D Finlayson-Pitts, BJ Alexander, ML AF Bruns, Emily A. Perraud, Veronique Zelenyuk, Alla Ezell, Michael J. Johnson, Stanley N. Yu, Yong Imre, Dan Finlayson-Pitts, Barbara J. Alexander, M. Lizabeth TI Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RADICAL-INITIATED REACTIONS; TRANSFORM INFRARED-ANALYSIS; ALPHA-PINENE; NO3 RADICALS; HIGH-RESOLUTION; ATMOSPHERIC CHEMISTRY; SIZE DISTRIBUTIONS; AEROSOL FORMATION; VAPOR-PRESSURES; LINEAR ALKENES AB While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and FTIR spectroscopy on particles impacted on ZnSe windows were applied to NH4NO3, NaNO3, and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 degrees C and 1 atm in air with alpha- and beta-pinene, 3-carene, limonene, and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the alpha-pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzO8](+) were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the alpha- and beta-pinene, 3-carene, and limonene reactions, similar to 5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR. FTIR has the advantage that it provides identification and quantification of functional groups. The NO+/NO2+ ratio from HR-ToF-AMS can indicate organic nitrates if they are present at more than 15-60% of the inorganic nitrate, depending on whether the latter is NH4NO3 or NaNO3. However, unique identification of specific organic nitrates is not possible with either method. C1 [Bruns, Emily A.; Perraud, Veronique; Ezell, Michael J.; Johnson, Stanley N.; Finlayson-Pitts, Barbara J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Zelenyuk, Alla; Alexander, M. Lizabeth] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Imre, Dan] Imre Consulting, Richland, WA 99352 USA. RP Finlayson-Pitts, BJ (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM bjfinlay@uci.edu; lizabeth.alexander@pnl.gov RI Yu, Yong/G-6445-2010; bruns, emily/A-4558-2013; Perraud, Veronique/F-2830-2016 OI Perraud, Veronique/0000-0003-1247-9787 FU U.S. Department of Energy [DE-FG02-05ER64000]; U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division; Battelle Memorial Institute [DE-AC06-76RL0 1830]; National Science Foundation [CHE-0431312] FX We are grateful to the U.S. Department of Energy (Grant No. DE-FG02-05ER64000) for support of this work. This research was in part performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL) and supported by the U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under Contract No. DE-AC06-76RL0 1830. E.A.B. would like to thank the National Science Foundation for a Graduate Research Fellowship. Additional support was provided by the AirUCI Environmental Molecular Science Institute (Grant No. CHE-0431312) funded by the National Science Foundation. We thank P. Ziemann and J. Pankow for helpful discussions. NR 71 TC 49 Z9 50 U1 6 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 1 PY 2010 VL 44 IS 3 BP 1056 EP 1061 DI 10.1021/es9029864 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 548HD UT WOS:000273950100034 PM 20058917 ER PT J AU Rivas, AL Chowell, G Schwager, SJ Fasina, FO Hoogesteijn, AL Smith, SD Bisschop, SPR Anderson, KL Hyman, JM AF Rivas, A. L. Chowell, G. Schwager, S. J. Fasina, F. O. Hoogesteijn, A. L. Smith, S. D. Bisschop, S. P. R. Anderson, K. L. Hyman, J. M. TI Lessons from Nigeria: the role of roads in the geo-temporal progression of avian influenza (H5N1) virus SO EPIDEMIOLOGY AND INFECTION LA English DT Article DE Avian flu; emerging infections; geographical information systems; surveillance ID TRANSMISSION; SPREAD; EPIDEMIC; DISEASE; WATER AB The daily progression of the 2006 (January-June) Nigerian avian influenza (AI H5N1) epidemic was assessed in relation to both spatial variables and the generation interval of the invading virus. Proximity to the highway network appeared to promote epidemic dispersal: from the first AI generation interval onwards >20% of all cases were located at <5 km from the nearest major road. Fifty-seven per cent of all cases were located <= 31 km from three highway intersections. Findings suggest that the spatial features of emerging infections could be key in their control. When the spatial location of a transmission factor is well known, such as that of the highway network, and a substantial percentage of cases (e.g. >20%) are near that factor, early interventions focusing on transmission factors, such as road blocks that prevent poultry trade, may be more efficacious than interventions applied only to the susceptible population. C1 [Rivas, A. L.; Anderson, K. L.] N Carolina State Univ, Coll Vet Med, Raleigh, NC 27695 USA. [Rivas, A. L.; Schwager, S. J.; Smith, S. D.] Cornell Univ, Inst Resource Informat Sci, Ithaca, NY USA. [Chowell, G.] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ USA. [Chowell, G.] NIH, Div Epidemiol & Populat Studies, Fogarty Int Ctr, Bethesda, MD 20892 USA. [Fasina, F. O.] Natl Inst Vet Res, Vom, Plateau, Nigeria. [Fasina, F. O.; Bisschop, S. P. R.] Univ Pretoria, Fac Vet Sci, Poultry Reference Ctr, ZA-0002 Pretoria, South Africa. [Hoogesteijn, A. L.] CINVESTAV, Merida, Mexico. [Hyman, J. M.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Rivas, AL (reprint author), N Carolina State Univ, Coll Vet Med, 4700 Hillsborough St, Raleigh, NC 27695 USA. EM alrivas@ncsu.edu RI Chowell, Gerardo/F-5038-2012 OI Chowell, Gerardo/0000-0003-2194-2251 FU Centro de Investigaciones Avanzadas (CINVESTAV, Merida, YUC, Mexico); Center for Non-Linear Studies (Los Alamos National Laboratory, Los Alamos, NM, USA) FX We are grateful for the assistance of the Executive Director and the staff of the National Veterinary Research Institute of Nigeria, Mrs. Celia Abolnik (ARC-OVI, South Africa), and the support of the Centro de Investigaciones Avanzadas (CINVESTAV, Merida, YUC, Mexico) and the Center for Non-Linear Studies (Los Alamos National Laboratory, Los Alamos, NM, USA). NR 14 TC 16 Z9 17 U1 1 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0950-2688 J9 EPIDEMIOL INFECT JI Epidemiol. Infect. PD FEB PY 2010 VL 138 IS 2 BP 192 EP 198 DI 10.1017/S0950268809990495 PG 7 WC Public, Environmental & Occupational Health; Infectious Diseases SC Public, Environmental & Occupational Health; Infectious Diseases GA 546VT UT WOS:000273842600005 PM 19653927 ER PT J AU Jorg, T Krzakala, F Kurchan, J Maggs, AC Pujos, J AF Joerg, T. Krzakala, F. Kurchan, J. Maggs, A. C. Pujos, J. TI Energy gaps in quantum first-order mean-field-like transitions: The problems that quantum annealing cannot solve SO EPL LA English DT Article ID MODEL AB We study first-order quantum phase transitions in models where the mean-field treatment is exact, and in particular the exponentially fast closure of the energy gap with the system size at the transition. We consider exactly solvable ferromagnetic models, and show that they reduce to the Grover problem in a particular limit. We compute the coefficient in the exponential closure of the gap using an instantonic approach, and discuss the (dire) consequences for quantum annealing. Copyright (C) EPLA, 2010 C1 [Joerg, T.] LPTENS, F-75231 Paris 05, France. [Joerg, T.] CNRS, F-75231 Paris, France. [Joerg, T.] ENS, UMR 8549, F-75231 Paris 05, France. [Krzakala, F.; Maggs, A. C.; Pujos, J.] PCT, UMR Gulliver 7083, F-75005 Paris, France. [Krzakala, F.; Kurchan, J.; Maggs, A. C.; Pujos, J.] CNRS, F-75005 Paris, France. [Krzakala, F.; Kurchan, J.; Maggs, A. C.; Pujos, J.] ESPCI ParisTech, F-75005 Paris, France. [Krzakala, F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Krzakala, F.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Kurchan, J.] PMMH, UMR 7636, F-75005 Paris, France. RP Jorg, T (reprint author), LPTENS, 24 Rue Lhomond, F-75231 Paris 05, France. EM florent.krzakala@espci.fr RI Krzakala, Florent/D-8846-2012 NR 20 TC 23 Z9 23 U1 0 U2 1 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2010 VL 89 IS 4 AR 40004 DI 10.1209/0295-5075/89/40004 PG 6 WC Physics, Multidisciplinary SC Physics GA 575WK UT WOS:000276100300004 ER PT J AU Smythe, NC Gordon, JC AF Smythe, Nathan C. Gordon, John C. TI Ammonia Borane as a Hydrogen Carrier: Dehydrogenation and Regeneration SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Review DE Hydrogen storage; Dehydrogenation; Homogeneous catalysis; Transition metals; Ammonia borane ID BORON-NITROGEN BONDS; CATALYZED DEHYDROGENATION; THERMAL-DECOMPOSITION; H-2 RELEASE; STORAGE; COMPLEXES; CARBENE; AMINOBORANES; EFFICIENT; ADDUCTS AB Interest in sustainable non-hydrocarbon-based fuels for transportation has grown as the realization that the supply of fossil fuels is limited and the deleterious environmental effects of burning them has come into public focus. The use of hydrogen (H(2)) has been proposed as an alternative, but its use in pure form is undesirable due to the high pressures or low temperatures required to store useful quantities. Approaches to ameliorate this issue, which stem from the low volumetric energy density of H(2), include the pursuit of sorbents capable of containing H(2) in greater density than liquid H(2) at reasonable temperatures and pressures, metal hydrides such as NaBH(4), and chemical hydrides such as ammonia borane (AB, NH(3)BH(3)). AB contains 19.6 wt.-% H(2), which is well suited to practical applications, but issues with extracting the optimal quantities of H(2) at reasonable temperatures and at useful rates as well as recycling of the spent fuel back into AB with good efficiency and reasonable cost remain to be solved. These problems are inextricably intertwined, as the needs of the regeneration process dictate which catalysts are used (i.e. what kind of spent fuel is generated). This Microreview focuses on recent developments in transition metal complexes for the catalytic dehydrogenation of AB. Neither solvolysis of AB nor thermolysis of AB in the absence of a catalyst are covered in this review. C1 [Smythe, Nathan C.; Gordon, John C.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Gordon, JC (reprint author), Los Alamos Natl Lab, Div Chem, MS J582, Los Alamos, NM 87545 USA. EM jgordon@lanl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. We would like to thank Drs. Kevin Ott and Andrew Sutton for their suggestions and comments on improving this manuscript. NR 64 TC 159 Z9 159 U1 6 U2 143 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD FEB PY 2010 IS 4 BP 509 EP 521 DI 10.1002/ejic.200900932 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 556MJ UT WOS:000274595000001 ER PT J AU Wilson, AN East, MC Dracoulis, GD Byrne, AP Clark, RM Davidson, PM Fallon, P Gorgen, A Lane, GJ Macchiavelli, AO Ward, D AF Wilson, A. N. East, M. C. Dracoulis, G. D. Byrne, A. P. Clark, R. M. Davidson, P. M. Fallon, P. Goergen, A. Lane, G. J. Macchiavelli, A. O. Ward, D. TI On the character of three 8(+) states in Pb-192 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID PB ISOTOPES; EXCITATIONS; SHELL AB Three low-lying 8(+) states have been identified in Pb-192. A newly observed cascade of gamma-rays built directly on the 8(1)(+) state is compared to the previously identified, weakly rotational band above the 11(-) pi i(13/)2, h(9/2) isomer in the same nucleus, and to analogous structures in Pb-194. The similarity of all four structures lends support to the suggestion that the 8(1)(+) configurations are of a similar oblate deformation to the 11(-) isomers. The excitation energies of all three 8(+) states in Pb-192 and Pb-190 are compared to systematics. The possibility that one of the 8(+) states in Pb-192 is associated with a prolate shape is discounted. C1 [Wilson, A. N.; East, M. C.; Dracoulis, G. D.; Byrne, A. P.; Davidson, P. M.; Lane, G. J.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Wilson, A. N.; Byrne, A. P.] Australian Natl Univ, Dept Phys, Canberra, ACT 0200, Australia. [Clark, R. M.; Fallon, P.; Goergen, A.; Macchiavelli, A. O.; Ward, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Wilson, AN (reprint author), Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM Anna.Wilson@anu.edu.au RI Lane, Gregory/A-7570-2011; OI Lane, Gregory/0000-0003-2244-182X; Byrne, Aidan/0000-0002-7096-6455; Gorgen, Andreas/0000-0003-1916-9941; Wilson, Anna/0000-0001-6928-1689 FU Australian Nuclear Science and Technology Organization [02/03 - H-01]; Australian Research Council [DP0451780]; US Department of Energy [AC03-76SF00098] FX The authors would like to thank Bob Turkentine for the excellent quality of the target, and the operators of the 88 '' Cyclotron at LBNL for their assistance during the experiment. ANW gratefully acknowledges the support of the Scottish Universities Physics Alliance through a SUPA Fellowship. This work was carried out with support from the Australian Nuclear Science and Technology Organization through grant no. 02/03 - H-01, the Australian Research Council through grant no. DP0451780 and the US Department of Energy under Contract No. AC03-76SF00098. NR 23 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD FEB PY 2010 VL 43 IS 2 BP 145 EP 151 DI 10.1140/epja/i2010-10905-3 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 552OV UT WOS:000274303600004 ER PT J AU Pagliaro, P Prime, MB Swenson, H Zuccarello, B AF Pagliaro, P. Prime, M. B. Swenson, H. Zuccarello, B. TI Measuring Multiple Residual-Stress Components using the Contour Method and Multiple Cuts SO EXPERIMENTAL MECHANICS LA English DT Article DE Residual stress measurement; Contour method; Multiaxial stress; Neutron diffraction; Bueckner's principle; Finite element method ID EIGENSTRAIN-BASED MODEL; NEUTRON-DIFFRACTION; BUTT-WELD; PREDICTION; STEEL; MICROSTRUCTURE; VERIFICATION; ALUMINUM; JOINTS; ALLOY AB The conventional contour method determines one component of residual stress over the cross section of a part. The part is cut into two, the contour (topographic shape) of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple residual-stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The multiple-cut contour method results agree very well with independent measurements using neutron diffraction and with a computational, finite-element model of the indentation process. C1 [Pagliaro, P.; Prime, M. B.; Swenson, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pagliaro, P.; Zuccarello, B.] Univ Palermo, Dipartimento Meccan, I-90128 Palermo, Italy. RP Prime, MB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM prime@lanl.gov RI Pagliaro, Pierluigi/H-1644-2011; OI Prime, Michael/0000-0002-4098-5620 FU Universita degli Studi di Palermo FX This work was performed at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U. S. Department of Energy under contract DE-AC52-06NA25396. Mr. Pagliaro's work was sponsored by a fellowship from the Universita degli Studi di Palermo. NR 47 TC 43 Z9 46 U1 7 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD FEB PY 2010 VL 50 IS 2 BP 187 EP 194 DI 10.1007/s11340-009-9280-3 PG 8 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 553XG UT WOS:000274399500005 ER PT J AU Noyan, IC Brugger, A Betti, R Clausen, B AF Noyan, I. C. Bruegger, A. Betti, R. Clausen, B. TI Measurement of Strain/Load Transfer in Parallel Seven-wire Strands with Neutron Diffraction SO EXPERIMENTAL MECHANICS LA English DT Article DE Neutron strain measurement; Bridge cable; Parallel cable; Load sharing ID AXIAL TENSILE LOADS; WIRE ROPE STRANDS; THEORETICAL PREDICTIONS; REFINEMENT AB The elastic strains induced in the constituent wires of parallel wire strands under tensile loading were measured using neutron diffraction. The elastic strains carried by the individual wires depended very strongly on the boundary conditions at the grips and on radial clamping forces. The friction forces between the wires were quite significant and should not be neglected in analytical or numerical formulations of strain partitioning in parallel wire cables. C1 [Noyan, I. C.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bruegger, A.; Betti, R.] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA. [Clausen, B.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM USA. RP Noyan, IC (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM icn2@columbia.edu RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Brugger, Adrian/0000-0001-9164-0385 FU Department of Energy [DE-AC52-06NA25396] FX We would like to thank Dr. Donald W. Brown (MST-8, Los Alamos National Laboratory) for helping plan the experiment. The samples were manufactured by Mr. Johny Manchery, Senior Laboratory Technician, of the Carleton Laboratory of Columbia University. Mr. Thomas A. Sisneros from Lujan Center modified the grips and assisted with the sample set-up. We thank Prof. Chris Marianetti of Columbia University for discussions and for welding the wires in Specimen B. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 20 TC 8 Z9 8 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD FEB PY 2010 VL 50 IS 2 BP 265 EP 272 DI 10.1007/s11340-009-9313-y PG 8 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 553XG UT WOS:000274399500013 ER PT J AU Hjort, K Bergstrom, M Adesina, MF Jansson, JK Smalla, K Sjoling, S AF Hjort, Karin Bergstrom, Maria Adesina, Modupe F. Jansson, Janet K. Smalla, Kornelia Sjoling, Sara TI Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE metagenomic library; chitinase; terminal restriction fragment length polymorphism (T-RFLP); Streptomycetes; suppressive soil ID 16S RIBOSOMAL-RNA; FRAGMENT-LENGTH-POLYMORPHISM; MICROBIAL DIVERSITY; COMMUNITY STRUCTURE; PHYLOGENETIC-RELATIONSHIPS; UNCULTURED MICROORGANISMS; CHITINOLYTIC ENZYMES; MOLECULAR DIVERSITY; BIOLOGICAL-CONTROL; BIOCONTROL AGENT AB Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study, we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF103 of the isolate Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used. C1 [Hjort, Karin; Bergstrom, Maria; Sjoling, Sara] Sodertorn Univ, Sch Life Sci, SE-14189 Huddinge, Sweden. [Hjort, Karin; Jansson, Janet K.] Swedish Univ Agr Sci, Dept Microbiol, S-75007 Uppsala, Sweden. [Adesina, Modupe F.; Smalla, Kornelia] Fed Res Ctr Cultivated Plants, Julius Kuhn Inst, Inst Epidemiol & Pathogen Diagnost, Braunschweig, Germany. [Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Sjoling, S (reprint author), Sodertorn Univ, Sch Life Sci, SE-14189 Huddinge, Sweden. EM sara.sjoling@sh.se RI Smalla, Kornelia/H-4002-2011 FU EU [QLK 3-2002-2068, KBBE-222625]; US Department of Energy with Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Baltic Sea Foundation FX This study was funded by the EU Metacontrol project (QLK 3-2002-2068) and in part by the EU Metaexplore project (KBBE-222625), the US Department of Energy Contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory and the Baltic Sea Foundation. NR 49 TC 42 Z9 44 U1 2 U2 21 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2010 VL 71 IS 2 BP 197 EP 207 DI 10.1111/j.1574-6941.2009.00801.x PG 11 WC Microbiology SC Microbiology GA 536SV UT WOS:000273065000003 PM 19922433 ER PT J AU Liu, B Hu, W Robertson, GP Kim, YS Jiang, Z Guiver, MD AF Liu, B. Hu, W. Robertson, G. P. Kim, Y. S. Jiang, Z. Guiver, M. D. TI Sulphonated Biphenylated Poly(aryl ether ketone)s for Fuel Cell Applications SO FUEL CELLS LA English DT Article DE DMFC; Fuel Cells; MEA; Membrane; Proton Exchange Membrane ID PROTON-EXCHANGE MEMBRANES; ACID GROUPS; POLYMERS; SYSTEMS; PHENYL AB New series of fully aromatic poly(ether ketone)s with a biphenyl pendant groups were synthesised. A direct comparison of sulphonation reaction among monophenylated poly(ether ether ketone) (Ph-PEEK), biphenylated poly(ether ether ketone) (BiPh-PEEK) and PEEK (Victrex) was thoroughly investigated. Several advantages of the pendant-phenyl poly(ether ketone)s compared with commercial PEEK were identified, including ready control over the site of sulphonation and degree of sulphonation (DS), and mild and rapid sulphonation. The basic membrane physical properties comprising of thermal and mechanical properties, dimensional stability and proton conductivity were studied. One new membrane, sulphonated biphenylated poly(ether ether ketone) (BiPh-SPEEKDK) having a good combination of membrane properties was fabricated into a membrane electrode assembly (MEA), and it showed excellent direct methanol fuel cell (DMFC) performance. C1 [Liu, B.; Hu, W.; Jiang, Z.] Jilin Univ, Alan G MacDiarmid Inst, Changchun 130012, Peoples R China. [Robertson, G. P.; Guiver, M. D.] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. [Kim, Y. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Liu, B (reprint author), Jilin Univ, Alan G MacDiarmid Inst, Changchun 130012, Peoples R China. EM liubj@jlu.edu.cn RI Liu, Brian/A-5069-2013; Guiver, Michael/I-3248-2016 OI Guiver, Michael/0000-0003-2619-6809 FU National Natural Science Foundation of China [50973040]; Science and Technology Development Plan of Jilin Province, China [20090322]; US DOE FX Financial support for this project was provided by the National Natural Science Foundation of China (no. 50973040) and the Science and Technology Development Plan of Jilin Province, China (no. 20090322). Dr. Yu Seung Kim thanks the US DOE Fuel Cell Technologies Program for financial support. NR 23 TC 11 Z9 11 U1 2 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-6846 J9 FUEL CELLS JI Fuel Cells PD FEB PY 2010 VL 10 IS 1 BP 45 EP 53 DI 10.1002/fuce.200900076 PG 9 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA 562GW UT WOS:000275039100005 ER PT J AU Zhi, M Cayan, FN Celik, I Gemmen, R Pakalapati, SR Wu, NQ AF Zhi, M. Cayan, F. N. Celik, I. Gemmen, R. Pakalapati, S. R. Wu, N. Q. TI Temperature and Impurity Concentration Effects on Degradation of Nickel/Yttria-stabilised Zirconia Anode in PH3-Containing Coal Syngas SO FUEL CELLS LA English DT Article DE Anode; Degradation; Durability; Impurity; Solid Oxide Fuel Cell ID OXIDE FUEL-CELLS; NI/YSZ-CERMET; SOFC ANODES; OXIDATION; METHANE; GAS AB Degradation of the Ni/yttria-stabilised zirconia (YSZ) anode of the solid oxide fuel cell has been evaluated in the coal syngas containing different PH3 concentrations in the temperature range from 750 to 900 degrees C. Thermodynamic equilibrium calculations show that PH3 in the coal syngas gas is converted Mostly to P2O3 at 750-900 degrees C. The phosphorous impurity reacts with the Ni-YSZ anode to form phosphates. The P-impurity poisoning leads to the deactivation of the Ni catalyst and to the reduction in the electronic conductivity of the anode. The impurity poisoning effect on the anode is exacerbated by increase in the temperature and/or the PH3 concentration. C1 [Zhi, M.; Cayan, F. N.; Celik, I.; Pakalapati, S. R.; Wu, N. Q.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Gemmen, R.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Wu, NQ (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM nick.wu@mail.wvu.edu RI Zhi, Mingjia/A-6866-2010; Wu, Nianqiang/B-9798-2015 OI Zhi, Mingjia/0000-0002-4291-0809; Wu, Nianqiang/0000-0002-8888-2444 FU Office of Basic Energy Sciences of U.S. Department of Energy; National Energy Technology Laboratory; WV State EPSCoR Office; West Virginia University [DE-FG02-06ER46299]; NSF [EPS 0554328] FX This work is jointly sponsored by the Office of Basic Energy Sciences of U.S. Department of Energy, National Energy Technology Laboratory, WV State EPSCoR Office and West Virginia University under the DOE EPSCoR Program (DE-FG02-06ER46299). Dr. R. Bajura is the Administrative Manager and Dr. I. Celik is the Technical Manager. The XPS used in this work is in part supported by the NSF RII grant (EPS 0554328). NR 32 TC 6 Z9 6 U1 0 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-6846 J9 FUEL CELLS JI Fuel Cells PD FEB PY 2010 VL 10 IS 1 BP 174 EP 180 DI 10.1002/fuce.200900016 PG 7 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA 562GW UT WOS:000275039100022 ER PT J AU Fox, EB Greenway, SD Clark, EA AF Fox, Elise B. Greenway, Scott D. Clark, Elliot A. TI RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE proton exchange membrane electrolysis; radiation degradation; Nafion (R) 117 ID WATER DETRITIATION SYSTEM; DURABILITY; DEGRADATION; POLYMERS AB Proton exchange membrane electrolyzers (PEMEs) have potential interest for use for hydrogen isotope separation from water. In order for PEMEs to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying total dosage and dose rate and in water or air. Analytical tools, such as infrared spectroscopy, ion exchange capacity, dynamic mechanical analysis, and total inorganic carbon-total organic carbon (TIC-TOC) were used to characterize the exposed membranes. The water from saturated membranes was analyzed by fluoride and sulfate emissions and TIC-TOC, which provided important data on the stability of the membranes during radiation exposure. C1 [Fox, Elise B.; Greenway, Scott D.; Clark, Elliot A.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Fox, EB (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM elise.fox@srnl.doe.gov RI Greenway, Scott/A-8084-2011; Fox, Elise/G-5438-2013 OI Fox, Elise/0000-0002-4527-5820 FU Savannah River Site; U.S. Department of Energy [DE-AC09-08SR22470] FX We wish to thank A. Ekechukwu and R. L. Rabun III. Additional thanks go to K. White, F. Fondeur, and I White for analytical analysis assistance and to G. Creech for membrane irradiation. This work was supported by Savannah River Site plant-directed research and development programs. This document was prepared in conjunction with work accomplished under contract DE-AC09-08SR22470 with the U.S. Department of Energy. NR 18 TC 3 Z9 3 U1 0 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2010 VL 57 IS 2 BP 103 EP 111 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 550MK UT WOS:000274131800001 ER PT J AU Ongena, JPHE Voitsekhovitch, I Evrard, M McCune, D AF Ongena, J. P. H. E. Voitsekhovitch, I. Evrard, M. McCune, D. TI NUMERICAL TRANSPORT CODES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th Carolus Magnus Summer School on Plasma and Fusions Energy Physics CY AUG 31-SEP 11, 2009 CL Belgium, GERMANY ID TRITIUM TRANSPORT; TOKAMAK; PLASMA AB This paper gives a brief introduction on numerical transport codes. The relevant equations that are used in these codes are established, and on the basis of these equations, the necessary calculations needed to resolve them are pointed out. Finally, some examples are given, illustrating their application. C1 [Ongena, J. P. H. E.; Evrard, M.] EURATOM, Ecole Royale Mil, Lab Phys Plasmas, B-1000 Brussels, Belgium. [Voitsekhovitch, I.] EURATOM, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [McCune, D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ongena, JPHE (reprint author), EURATOM, Ecole Royale Mil, Lab Phys Plasmas, B-1000 Brussels, Belgium. NR 24 TC 0 Z9 0 U1 2 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD FEB PY 2010 VL 57 IS 2T BP 381 EP 390 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 592PS UT WOS:000277392200041 ER PT J AU Shearer, CK Burger, PV Neal, C Sharp, Z Spivak-Birndorf, L Borg, L Fernandes, VA Papike, JJ Karner, J Wadhwa, M Gaffney, A Shafer, J Geissman, J Atudorei, NV Herd, C Weiss, BP King, PL Crowther, SA Gilmour, JD AF Shearer, C. K. Burger, P. V. Neal, C. Sharp, Z. Spivak-Birndorf, L. Borg, L. Fernandes, V. A. Papike, J. J. Karner, J. Wadhwa, M. Gaffney, A. Shafer, J. Geissman, J. Atudorei, N. -V. Herd, C. Weiss, B. P. King, P. L. Crowther, S. A. Gilmour, J. D. TI Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Review ID IONIZATION MASS-SPECTROMETER; OXYGEN-ISOTOPE RATIOS; LODRANITE PARENT BODY; CORE FORMATION; I-XE; ORDINARY CHONDRITES; ACAPULCO METEORITE; POLYMICT UREILITE; PLANETARY BASALTS; NATURAL GOETHITES AB The recently recovered paired Antarctic achondrites Graves Nunatak 06128 and 06129 (GRA) are meteorites that represent unique high-temperature asteroidal processes that are identified in only a few other meteorites. The GRA meteorites contain high abundances of sodic plagioclase, relatively Fe-rich pyroxenes and olivine, abundant phosphates, and low temperature alteration. They represent products of very early planetesimal melting (4565.9 +/- 0.3 Ma) of an unsampled geochemical reservoir from an asteroid that has characteristics similar to the brachinite parent body. The magmatism represented by these meteorites is contrary to the commonly held belief that the earliest stages of melting on all planetary bodies during the first 2-30 Ma of solar system history were fundamentally basaltic in nature. These sodic plagioclase-rich rocks represent a series of early asteroidal high-temperature processes: (stage 1) melting and partial extraction of a low-temperature Fe-Ni-S melt, (stage 2) small degrees of disequilibrium partial melting of a sodium- or alkali-rich chondritic parent body with additional incorporation of Fe-Ni-S melt that was not fully extracted during stage 1, (stage 3) volatile-enhanced rapid extraction and emplacement of the Na-rich, high-normative plagioclase melt, (stage 4) final emplacement and accumulation of plagioclase and phosphates, (stage 5) subsolidus reequilibration of lithology between 962 and 600 degrees C at an fO(2) Of IW to IW + 1.1, and (stage 6) replacement of merrillite and pyroxene by Cl-apatite resulting from the interaction between magmatic minerals and a Cl-rich fluid/residuum melt. The subsolidus events started as early as 4561.1 Ma and may have continued for upwards of 144 million years. The existence of assemblages similar to GRA on several other planetary bodies with different geochemical characteristics (ureilite, winonaites, IAB irons) implies that this type of early asteroidal melting was not rare. Whereas, eucrites and angrites represent extensive melting of a parent body with low concentrations of moderately-volatile elements, GRA represents low-degrees of melting of a parent body with chondritic abundances of moderately volatile elements. The interpretation of the low-temperature mineral assemblage is somewhat ambiguous. Textural features suggest multiple episodes of alteration. The earliest stage follows the interaction of magmatic assemblages with a Cl-rich fluid. The last episode of alteration appears to cross-cut the fusion crust and earlier stages or alteration. Stable isotopic measurements of the alteration can be interpreted as indicating that an extraterrestrial volatile component was preserved in GRA. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Shearer, C. K.; Burger, P. V.; Papike, J. J.; Karner, J.; King, P. L.] Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Neal, C.; Shafer, J.] Univ Notre Dame, Dept Civil Eng & Geo Sci, Notre Dame, IN 46556 USA. [Spivak-Birndorf, L.; Wadhwa, M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Borg, L.; Gaffney, A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Fernandes, V. A.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. [Fernandes, V. A.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Herd, C.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E1, Canada. [Weiss, B. P.] MIT, Dept Earth Atmos & Planetary Sci, Cambridge, MA 02139 USA. [Crowther, S. A.; Gilmour, J. D.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. RP Shearer, CK (reprint author), Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM cshearer@umn.edu RI Gilmour, Jamie/G-7515-2011; Fernandes, Vera/B-4653-2013; Gaffney, Amy/F-8423-2014; Crowther, Sarah/P-7082-2014; King, Penelope/A-1791-2011; OI Gilmour, Jamie/0000-0003-1990-8636; Fernandes, Vera/0000-0003-0848-9229; Gaffney, Amy/0000-0001-5714-0029; King, Penelope/0000-0002-8364-9168; Crowther, Sarah/0000-0002-5396-1775 FU NASA, Cosmochemistry FX The first author wishes to thank every member of the consortium for making significant contributions in providing the varied types of data within the paper and the interpretation of their data. The first author assumes sole responsibility for any misinterpretation in the process of combining these varied data sets in an attempt of placing the data within the context of coherent conclusions. Further, the consortium provided more data and images than could possibly be incorporated into this paper. I apologize if your effort and vision was not completely incorporated into the paper. The consortium also thank the Sasha Krot (AE) for his prompt handing of the paper and providing coherent instructions on making this paper better. The reviewers (Jeff Taylor, Mac Rutherford, and Christina Floss) provided invaluable insights that were missed by the first author in the initial draft. Finally, the consortium members also acknowledge their institutions and funding sources (NASA, Cosmochemistry program) for their support. NR 110 TC 33 Z9 33 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2010 VL 74 IS 3 BP 1172 EP 1199 DI 10.1016/j.gca.2009.10.029 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 546BC UT WOS:000273781100023 ER PT J AU Akatov, AA Nikonov, BS Omel'yanenko, BI Stefanovskaya, OI Stefanovsky, SV Suntsov, DY Marra, JC AF Akatov, A. A. Nikonov, B. S. Omel'yanenko, B. I. Stefanovskaya, O. I. Stefanovsky, S. V. Suntsov, D. Yu. Marra, J. C. TI Influence of the content of a surrogate of iron aluminate high-level wastes on the phase composition and structure of glassy materials for their immobilization SO GLASS PHYSICS AND CHEMISTRY LA English DT Article DE radioactive wastes; materials for burial; alkali borosilicate glasses ID VITRIFICATION AB Alkali borosilicate glassy materials with high iron and aluminum oxide concentrations, which simulate vitrified high-level wastes from the Savannah River Site (United States) at their content ranging from 50 to 70 wt %, have been investigated using X-ray powder diffraction, optical and electron microscopy, and infrared spectroscopy. Quenched and slowly cooled samples containing 50 wt % wastes are glasses. Samples containing 60 and 70 wt % wastes, which were quenched on a metal slab, are predominantly glasses with an insignificant content of the spinel formed in a trevorite-magnetite solid solution. The slowly cooled samples also contain nepheline, and its amount increases with an increase in the waste content in the glassy materials. C1 [Akatov, A. A.] Tech Univ, St Petersburg State Technol Inst, St Petersburg 198013, Russia. [Nikonov, B. S.; Omel'yanenko, B. I.] Russian Acad Sci, Inst Geol Ore Deposits Petrog Mineral & Geochem I, Moscow 119017, Russia. [Stefanovskaya, O. I.; Stefanovsky, S. V.; Suntsov, D. Yu.] State Unitary Enterprise City Moscow, United Ecol Technol & Res Ctr RAW Conditioning &, Moscow 119121, Russia. [Marra, J. C.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Akatov, AA (reprint author), Tech Univ, St Petersburg State Technol Inst, Moskovskii Pr 26, St Petersburg 198013, Russia. EM profstef@mtu-net.ru RI Akatov, Andrey/H-5893-2016 OI Akatov, Andrey/0000-0002-1453-5837 NR 17 TC 5 Z9 5 U1 0 U2 5 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1087-6596 J9 GLASS PHYS CHEM+ JI Glass Phys. Chem. PD FEB PY 2010 VL 36 IS 1 BP 45 EP 52 DI 10.1134/S1087659610010098 PG 8 WC Materials Science, Ceramics SC Materials Science GA 567QF UT WOS:000275461000009 ER PT J AU Hollinger, DY Ollinger, SV Richardson, AD Meyers, TP Dail, DB Martin, ME Scott, NA Arkebauer, TJ Baldocchi, DD Clark, KL Curtis, PS Davis, KJ Desai, AR Dragoni, D Goulden, ML Gu, L Katul, GG Pallardy, SG Paw, KT Schmid, HP Stoy, PC Suyker, AE Verma, SB AF Hollinger, D. Y. Ollinger, S. V. Richardson, A. D. Meyers, T. P. Dail, D. B. Martin, M. E. Scott, N. A. Arkebauer, T. J. Baldocchi, D. D. Clark, K. L. Curtis, P. S. Davis, K. J. Desai, A. R. Dragoni, D. Goulden, M. L. Gu, L. Katul, G. G. Pallardy, S. G. Paw U, K. T. Schmid, H. P. Stoy, P. C. Suyker, A. E. Verma, S. B. TI Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration SO GLOBAL CHANGE BIOLOGY LA English DT Article DE albedo; nitrogen; vegetation ID CANOPY REFLECTANCE; BIOSPHERE MODEL; CARBON-DIOXIDE; PHOTOSYNTHETIC RATE; DECIDUOUS FOREST; CLIMATE-CHANGE; ENERGY FLUXES; BOREAL FOREST; UNITED-STATES; LEAF NITROGEN AB Vegetation albedo is a critical component of the Earth's climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site-years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climate models that rely on a common two-stream albedo submodel provided accurate predictions of boreal needle-leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two-stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo=0.01+0.071%N, r2=0.91; forests, grassland, and maize: albedo=0.02+0.067%N, r2=0.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two-stream albedo model and foliage nitrogen concentration. These nitrogen-based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes. C1 [Hollinger, D. Y.] US Forest Serv, No Res Stn, USDA, Durham, NH 03824 USA. [Ollinger, S. V.; Richardson, A. D.; Martin, M. E.] Univ New Hampshire, Inst Earth Oceans & Space, Complex Syst Res Ctr, Durham, NH 03824 USA. [Meyers, T. P.] ATDD, ARL, NOAA, Oak Ridge, TN USA. [Dail, D. B.] Univ Maine, Dept Plant Soil & Environm Sci, Orono, ME USA. [Scott, N. A.] Queens Univ, Dept Geog, Kingston, ON K7L 3N6, Canada. [Arkebauer, T. J.] Univ Nebraska, Dept Agron & Hort, Lincoln, NE USA. [Baldocchi, D. D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Clark, K. L.] US Forest Serv, No Res Stn, USDA, Silas Little, NJ USA. [Curtis, P. S.] Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA. [Davis, K. J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Desai, A. R.] Univ Wisconsin, Atmospher & Ocean Sci Dept, Madison, WI USA. [Dragoni, D.] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Goulden, M. L.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Gu, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Katul, G. G.] Duke Univ, Nicholas Sch Environm & Earth Sci, Durham, NC USA. [Pallardy, S. G.] Univ Missouri, Sch Nat Resources, Columbia, MO USA. [Paw U, K. T.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Schmid, H. P.] IFU, FZK IMK, Inst Meteorol & Climate Res, Garmisch Partenkirchen, Germany. [Stoy, P. C.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Suyker, A. E.; Verma, S. B.] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA. RP Hollinger, DY (reprint author), US Forest Serv, No Res Stn, USDA, 271 Mast Rd, Durham, NH 03824 USA. EM dhollinger@fs.fed.us RI Gu, Lianhong/H-8241-2014; Ollinger, Scott/N-3380-2014; Meyers, Tilden/C-6633-2016; Stoy, Paul/D-3709-2011; Katul, Gabriel/A-7210-2008; Richardson, Andrew/F-5691-2011; Goulden, Michael/B-9934-2008; Hollinger, David/G-7185-2012; Schmid, Hans Peter/I-1224-2012; Garmisch-Pa, Ifu/H-9902-2014; Desai, Ankur/A-5899-2008; Baldocchi, Dennis/A-1625-2009 OI Gu, Lianhong/0000-0001-5756-8738; Ollinger, Scott/0000-0001-6226-1431; Stoy, Paul/0000-0002-6053-6232; Katul, Gabriel/0000-0001-9768-3693; Richardson, Andrew/0000-0002-0148-6714; Schmid, Hans Peter/0000-0001-9076-4466; Desai, Ankur/0000-0002-5226-6041; Baldocchi, Dennis/0000-0003-3496-4919 FU Office of Science (BER), US Department of Energy, Interagency Agreement [DE-AI02-07ER64355]; NASA's Carbon Cycle Science Program; Interdisciplinary Science Program; USDA Forest Service Northern Research Station FX We thank the Northeast Wilderness Trust and GMO, LLC for providing access to the research site in Howland, Maine. This research was supported by the Office of Science (BER), US Department of Energy, Interagency Agreement No. DE-AI02-07ER64355, and NASA's Carbon Cycle Science Program and Interdisciplinary Science Program with contributions from the Harvard Forest and Hubbard Brook Long-Term Ecological Research programs and the USDA Forest Service Northern Research Station. NR 75 TC 64 Z9 65 U1 4 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2010 VL 16 IS 2 BP 696 EP 710 DI 10.1111/j.1365-2486.2009.02028.x PG 15 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 554EX UT WOS:000274419400017 ER PT J AU Farr, CP Alecksen, TJ Heronimus, RS Simonds, MH Farrar, DR Miller, ML Baker, KR AF Farr, C. P. Alecksen, T. J. Heronimus, R. S. Simonds, M. H. Farrar, D. R. Miller, M. L. Baker, K. R. TI Recovery of Depleted Uranium Fragments from Soil SO HEALTH PHYSICS LA English DT Article DE operational topic; decontamination; detection limits; uranium, depleted AB A "proof of concept" was conducted to determine the effectiveness of a survey method for cost-effective recovery of depleted uranium (DU) fragments from contaminated soil piles at Sandia National Laboratories. First, DU fragments ranging from less than a gram up to 48 g were covered by various thicknesses of soil and used for detector efficiency measurements. The efficiencies were measured for three different sodium iodide detectors: a 5.1-cm by 5.1-cm (2-inch by 2-inch) detector, a 7.6-cm by 7.6-cm (3-inch by 3-inch) detector, and a Field Instrument for the Detection of Low Energy Radiation (FIDLER) detector. The FIDLER detector was found to be superior to the other detectors in each measurement. Next, multiple 7.6-cm (3-inch) layers of soil, taken from the contaminated piles, were applied to a clean pad of soil. Each layer was scanned by an array of eight FIDLER detectors pulled by a tractor. The array, moving 10.2 to 12.7 cm s(-1) (4 to 5 inches per second), automatically recorded radiation count data along with associated detector coordinates at 3-s intervals. The DU fragments were located and identified with a handheld system consisting of a FIDLER detector and a positioning system and then removed. After DU removal, the affected areas were re-scanned and a new lift of contaminated soil was applied. The detection capability of the system as a function of DU fragment mass and burial depth was modeled and determined to be sufficient to ensure that the dose-based site concentration goals would be met. Finally, confirmation soil samples were taken from random locations and from decontaminated soil areas. All samples had concentrations of U-238 that met the goal of 400-500 pCi g(-1). Health Phys. 98(Supplement 1):S6-S11; 2010 C1 [Farr, C. P.; Alecksen, T. J.; Heronimus, R. S.; Simonds, M. H.; Farrar, D. R.; Baker, K. R.] Environm Restorat Grp Inc, Albuquerque, NM 87113 USA. [Miller, M. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Farr, CP (reprint author), Environm Restorat Grp Inc, 8809 Washington St NE,Suite 150, Albuquerque, NM 87113 USA. EM KenBaker@ERGoffice.coni NR 2 TC 1 Z9 1 U1 3 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2010 VL 98 IS 2 SU S BP S6 EP S11 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 542RN UT WOS:000273512800003 PM 20065668 ER PT J AU O'Connell, P Rabovsky, J Foulke, J AF O'Connell, Peter Rabovsky, Joel Foulke, Judith TI Evaluation of Radiological Versus Chemical Toxicity Limits for Varying Enrichments of Uranium for Department of Energy Facilities SO HEALTH PHYSICS LA English DT Article DE operational topic; radiation protections; risk analysis; uranium AB On 8 June 2007, the Department of Energy amended its occupational radiation protection rule Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. The Department of Energy revised the radiation weighting factors, tissue weighting factors, and most of the dosimetric terms used in Title 10 Code of Federal Regulations Part 835 to reflect the recommendations for assessing dose and associated terminology from ICRP Publication 60, 1990 Recommendations of the ICRP on Radiological Protection. In support of the amendment, the Department of Energy is revising its guidance documents on evaluation of radiological vs. chemical toxicity limits for varying enrichments of uranium. The revised guidance is based on the updated dosimetric models and provides a useful tool for evaluating when either radiological or chemical toxicity concerns are more limiting. Health Phys. 98(Supplement 1):S17-S21; 2010 C1 [O'Connell, Peter; Rabovsky, Joel; Foulke, Judith] US DOE, Off Hlth & Safety HS10, Washington, DC 20585 USA. RP O'Connell, P (reprint author), US DOE, Off Hlth & Safety HS10, 1000 Independence Ave SW, Washington, DC 20585 USA. EM peter.o'connell@hq.doe.gov NR 10 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2010 VL 98 IS 2 SU S BP S17 EP S21 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 542RN UT WOS:000273512800005 PM 20065666 ER PT J AU Wendt, K Gottwald, T Hanstorp, D Mattolat, C Raeder, S Rothe, S Schwellnus, F Havener, C Lassen, J Liu, Y AF Wendt, Klaus Gottwald, Tina Hanstorp, Dag Mattolat, Christoph Raeder, Sebastian Rothe, Sebastian Schwellnus, Fabio Havener, Charles Lassen, Jens Liu, Yuan TI The selective and efficient laser ion source and trap project LIST for on-line production of exotic nuclides SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 8th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research - Recent Achievements and Future Prospects (LASER 2009) CY JUN 22-25, 2009 CL Poznan, POLAND SP Flerov Lab Nucl React, Joint Inst Nucl Res Dubna, Adam Mickiewicz Univ, Fac Phys DE Resonance ionization spectroscopy; Laser ion source; Radioisotopes; Ion trap ID OFF-LINE; IONIZATION; SPECTROSCOPY; RESONANCE; FACILITY; TRIUMF; NI; GE AB Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti: Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST. C1 [Wendt, Klaus; Gottwald, Tina; Mattolat, Christoph; Raeder, Sebastian; Schwellnus, Fabio] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Hanstorp, Dag] Gothenburg Univ, Dept Phys, S-41296 Gothenburg, Sweden. [Rothe, Sebastian] CERN, CH-1211 Geneva 23, Switzerland. [Havener, Charles; Liu, Yuan] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lassen, Jens] TRIUMF, ISAC Div, Vancouver, BC V6T 2A3, Canada. RP Wendt, K (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55128 Mainz, Germany. EM Klaus.wendt@uni-mainz.de NR 24 TC 4 Z9 4 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD FEB PY 2010 VL 196 IS 1-3 BP 151 EP 160 DI 10.1007/s10751-010-0156-9 PG 10 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 068HY UT WOS:000313358300015 ER PT J AU Savard, G AF Savard, Guy CA CPT Collaboration TI Report on recent activities at the CPT mass spectrometer SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 8th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research - Recent Achievements and Future Prospects (LASER 2009) CY JUN 22-25, 2009 CL Poznan, POLAND SP Flerov Lab Nucl React, Joint Inst Nucl Res Dubna, Adam Mickiewicz Univ, Fac Phys DE Mass-spectrometry; Canadian Penning Trap (CPT) mass spectrometer; Astrophysical rp-process; Cf-252 source AB The present report gives a short summary of current work at the CPT mass spectrometer and provides a list of recent references for work published in the last few years. C1 [Savard, Guy] Argonne Natl Lab, Argonne, IL 60439 USA. [Savard, Guy] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Savard, G (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM savard@anl.gov NR 9 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD FEB PY 2010 VL 196 IS 1-3 BP 205 EP 207 DI 10.1007/s10751-010-0159-6 PG 3 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 068HY UT WOS:000313358300021 ER PT J AU Block, M Ackermann, D Blaum, K Droese, C Dworschak, M Eibach, M Eliseev, S Fleckenstein, T Haettner, E Herfurth, F Hessberger, FP Hofmann, S Ketelaer, J Ketter, J Kluge, HJ Marx, G Mazzocco, M Novikov, YN Plass, WR Popeko, A Rahaman, S Rodriguez, D Scheidenberger, C Schweikhard, L Thirolf, PG Vorobyev, GK Weber, C AF Block, M. Ackermann, D. Blaum, K. Droese, C. Dworschak, M. Eibach, M. Eliseev, S. Fleckenstein, T. Haettner, E. Herfurth, F. Hessberger, F. P. Hofmann, S. Ketelaer, J. Ketter, J. Kluge, H. -J. Marx, G. Mazzocco, M. Novikov, Yu. N. Plass, W. R. Popeko, A. Rahaman, S. Rodriguez, D. Scheidenberger, C. Schweikhard, L. Thirolf, P. G. Vorobyev, G. K. Weber, C. TI Penning trap mass measurements of transfermium elements with SHIPTRAP SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 8th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research - Recent Achievements and Future Prospects (LASER 2009) CY JUN 22-25, 2009 CL Poznan, POLAND SP Flerov Lab Nucl React, Joint Inst Nucl Res Dubna, Adam Mickiewicz Univ, Fac Phys DE Penning trap mass spectrometer; Transactinides; Superheavy elements ID NUCLEI AB Penning traps are widely used for high-precision mass measurements of radionuclides related to nuclear astrophysics studies and the evolution of nuclear structure far away from stability. With the stopping of secondary beams in gas cells together with advanced ion-beam manipulation techniques their reach has been extended to rare isotopes of essentially all elements. The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt has recently demonstrated that even high-precision mass measurements of transfermium elements can be performed despite low production rates of only about one particle per second. This important milestone opens new perspectives for the study of superheavy elements with ion traps. C1 [Block, M.; Ackermann, D.; Dworschak, M.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H. -J.; Novikov, Yu. N.; Scheidenberger, C.; Vorobyev, G. K.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Blaum, K.; Eliseev, S.; Ketter, J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Droese, C.; Marx, G.; Schweikhard, L.] Ernst Moritz Arndt Univ Greifswald, D-17489 Greifswald, Germany. [Eibach, M.; Ketelaer, J.] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany. [Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.] Univ Giessen, D-35390 Giessen, Germany. [Mazzocco, M.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Mazzocco, M.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Novikov, Yu. N.] PNPI RAS, Gatchina 188300, Leningrad Distr, Russia. [Popeko, A.] JINR, Flerov Lab Nucl React, Dubna 141980, Russia. [Rahaman, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rodriguez, D.] Univ Granada, Dept FAMN, E-18071 Granada, Spain. [Thirolf, P. G.; Weber, C.] Univ Munich, D-85748 Garching, Germany. RP Block, M (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. EM m.block@gsi.de RI Block, Michael/I-2782-2015; Novikov, Iurii/M-7784-2013 OI Block, Michael/0000-0001-9282-8347; Novikov, Iurii/0000-0002-5369-7142 NR 16 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD FEB PY 2010 VL 196 IS 1-3 BP 225 EP 231 DI 10.1007/s10751-010-0161-z PG 7 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 068HY UT WOS:000313358300025 ER PT J AU Cekic, B Umicevic, A Ivanovski, V Belosevic-Cavor, J Koteski, V Hu, RW Petrovic, C AF Cekic, Bozidar Umicevic, A. Ivanovski, V. Belosevic-Cavor, J. Koteski, V. Hu, Rongwei Petrovic, C. TI Thermal evolution of the electric field gradient at Ta-181 in alpha HfNi SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 8th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research - Recent Achievements and Future Prospects (LASER 2009) CY JUN 22-25, 2009 CL Poznan, POLAND SP Flerov Lab Nucl React, Joint Inst Nucl Res Dubna, Adam Mickiewicz Univ, Fac Phys DE HfNi; Electric field gradient; PAC; APW plus lo ID INTERMETALLIC COMPOUNDS; HYDROGEN ABSORPTION; MOSSBAUER; HYDRIDES; SORPTION; PHASE; HF2NI AB The perturbed angular correlation method has been employed to study the temperature dependence of the Ta-181 hyperfine interaction parameters in the poly-crystalline intermetallic compound alpha HfNi. At ambient temperature the frequency of the electric quadrupole interaction was omega(Q) = 26.0(2) Mrad/s and the asymmetry parameter eta = 0.22(1). The magnitude of the observed electric field gradient decreases with increasing temperature from 78 to 900 K. The calculations were done using the augmented plane wave plus local orbitals method as implemented in the WIEN2k code, using the generalized gradient approximation. In addition, a supercell calculation with Ta impurity located at the hafnium site was performed. The obtained result is in a good agreement with the experiment. C1 [Cekic, Bozidar; Umicevic, A.; Ivanovski, V.; Belosevic-Cavor, J.; Koteski, V.] Inst Nucl Sci Vinca, Lab Nucl & Plasma Phys, Belgrade 11001, Serbia. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hu, Rongwei] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Cekic, B (reprint author), Inst Nucl Sci Vinca, Lab Nucl & Plasma Phys, POB 522, Belgrade 11001, Serbia. EM cekic@vinca.rs RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 NR 19 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD FEB PY 2010 VL 196 IS 1-3 BP 339 EP 347 DI 10.1007/s10751-009-0135-1 PG 9 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 068HY UT WOS:000313358300034 ER PT J AU Solontoi, M Ivezic, Z West, AA Claire, M Juric, M Becker, A Jones, L Hall, PB Kent, S Lupton, RH Knapp, GR Quinn, T Gunn, JE Schneider, D Loomis, C AF Solontoi, Michael Ivezic, Zeljko West, Andrew A. Claire, Mark Juric, Mario Becker, Andrew Jones, Lynne Hall, Patrick B. Kent, Steve Lupton, Robert H. Knapp, Gillian R. Quinn, Tom Gunn, James E. Schneider, Don Loomis, Craig TI Detecting active comets in the SDSS SO ICARUS LA English DT Article DE Comets; Photometry; Comets, Coma ID DIGITAL SKY SURVEY; JUPITER-FAMILY COMETS; DATA RELEASE; DISTANT COMETS; CCD PHOTOMETRY; ENSEMBLE PROPERTIES; TROJAN ASTEROIDS; TELESCOPE; SYSTEM; CATALOG AB Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r similar to 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only similar to 0.06 mag for the g - r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime. (C) 2009 Elsevier Inc. All rights reserved. C1 [Solontoi, Michael; Ivezic, Zeljko; Claire, Mark; Becker, Andrew; Jones, Lynne; Quinn, Tom] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [West, Andrew A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Juric, Mario; Lupton, Robert H.; Knapp, Gillian R.; Gunn, James E.; Loomis, Craig] Princeton Univ Observ, Princeton, NJ 08544 USA. [Hall, Patrick B.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [Kent, Steve] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Schneider, Don] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Solontoi, M (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. EM solontoi@astro.washington.edu RI West, Andrew/H-3717-2014 FU Alfred P. Sloan Foundation; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; The authors would also like to thank the two anonymous referees for their comments on this work. NR 37 TC 6 Z9 6 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2010 VL 205 IS 2 BP 605 EP 618 DI 10.1016/j.icarus.2009.07.042 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 556OB UT WOS:000274599400022 ER PT J AU Moses, RW Cai, DM AF Moses, Ronald W., Jr. Cai, D. Michael TI Efficient Numerical Modal Solutions for RF Propagation in Lossy Circular Waveguides SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Electromagnetic; propagation; tunnels; waveguides ID TUNNELS AB The propagation of electromagnetic waves is reconsidered in the context of cylindrical tunnels through material of uniform electrical properties. In the absence of internal conductors, the wave solutions reduce to well-known analytic expressions, requiring the solution of a single transcendental equation in complex phase space. Any given tunnel configuration has a wide range of solutions in phase and frequency space. Identifying these solutions can be a significant numerical challenge. Both the Newton-Raphson method and the winding number technique have been described in previous publications, and each can be prone to missing solutions. This paper reviews these two solution techniques and develops a combination of the two to provide a fast and efficient procedure for locating the roots in well-defined regions of phase space. C1 [Moses, Ronald W., Jr.; Cai, D. Michael] Los Alamos Natl Lab, Space Data Syst Grp, Los Alamos, NM 87545 USA. RP Moses, RW (reprint author), Los Alamos Natl Lab, Space Data Syst Grp, Los Alamos, NM 87545 USA. EM rwmoses@earthlink.net FU DOE Nonproliferation and Verification RD Office [NA-22] FX This work was supported by the DOE Nonproliferation and Verification R&D Office (NA-22). NR 7 TC 3 Z9 3 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD FEB PY 2010 VL 58 IS 2 BP 525 EP 530 DI 10.1109/TAP.2009.2037758 PG 6 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 551LL UT WOS:000274210700030 ER PT J AU Wilson, J Krakowsky, AM Herget, CJ AF Wilson, Judith Krakowsky, Arthur M. Herget, Charles J. TI Starting Early: Increasing Elementary (K-8) Student Science Achievement With Retired Scientists and Engineers SO IEEE TRANSACTIONS ON EDUCATION LA English DT Article DE Education; engineering; K-8 outreach program; science; training AB Teaching Opportunities for Partners in Science (TOPS) is an outreach program using volunteers (the "partners") for: 1) assisting teachers in grades K-8 with preparation and delivery of science and engineering (S&E) lessons in the classroom; 2) providing content knowledge to teachers when needed to teach quality science and engineering lessons; 3) motivating students with career and educational models and information; and 4) educating families through after-school family science events. The outreach program began with partners who were retired scientists and engineers. Currently, the source of volunteers includes scientists and engineers who are employed or on leave as well as retired. The program began in 1993 at the San Joaquin County Office of Education, Stockton, CA, with three Partners at three elementary schools. The program now has 33 Partners at 32 schools in a five-county region in central California. Most partners volunteer to serve a minimum of a half-day per week during the school year; however, the schedule can be flexible to accommodate differing needs of the Partners. The partners attend a TOPS Institute during the summer preceding each school year. The Institute serves as a training course for new partners. This paper covers the history of the TOPS program, the selection and training of partners, the relationship between the partners and classroom teachers, development of lessons, comments from a partner and a classroom teacher, and the results of an evaluation of the program. C1 [Wilson, Judith] San Joaquin Cty Off Educ, Sci Project, Stockton, CA 95206 USA. [Krakowsky, Arthur M.] Lawrence Livermore Natl Lab, Dept Elect Engn, Livermore, CA 94550 USA. [Wilson, Judith] San Joaquin Cty Off Educ, Special Project, Stockton, CA 95206 USA. [Herget, Charles J.] Herget Associates, Alameda, CA 94501 USA. RP Wilson, J (reprint author), San Joaquin Cty Off Educ, Sci Project, Stockton, CA 95206 USA. EM c.herget@ieee.org NR 6 TC 8 Z9 8 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9359 J9 IEEE T EDUC JI IEEE Trans. Educ. PD FEB PY 2010 VL 53 IS 1 BP 26 EP 31 DI 10.1109/TE.2009.2022546 PG 6 WC Education, Scientific Disciplines; Engineering, Electrical & Electronic SC Education & Educational Research; Engineering GA 551LP UT WOS:000274211300005 ER PT J AU Higgins, MB Morris, ME Caldwell, M Christodoulou, CG AF Higgins, Matthew B. Morris, Marvin E. Caldwell, Michele Christodoulou, Christos G. TI Measurement and Modeling of the Indirect Coupling of Lightning Transients into the Sago Mine SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Buried cables; cables; electromagnetic coupling; electromagnetic measurements; lightning; model validation; modeling ID RETURN-STROKE MODELS; ELECTROMAGNETIC-FIELDS; INDUCED DISTURBANCES; BURIED CABLES; LINES AB This paper describes measurements and analytical modeling of the indirect coupling of electromagnetic fields produced by horizontal and vertical lightning currents into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. Only the results from the indirect drive and the associated analysis shall be covered in this paper. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and our modeling show that vertical lightning currents are not likely to have produced lethal voltages in the Sago mine, but a large, horizontal current above the ground could have created a large voltage on a long, insulated cable. Indirect transfer function measurements compare extremely well with analytical and numerical models developed for the Sago site, which take into account measured soil and rock overburden properties. C1 [Higgins, Matthew B.; Caldwell, Michele] Sandia Natl Labs, Electromagnet Effects Grp, Albuquerque, NM 87185 USA. [Morris, Marvin E.] Sandia Natl Labs, Electromagnet & Plasma Phys Anal Grp, Albuquerque, NM 87185 USA. [Christodoulou, Christos G.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP Higgins, MB (reprint author), Sandia Natl Labs, Electromagnet Effects Grp, POB 5800, Albuquerque, NM 87185 USA. EM mbhiggi@sandia.gov; memorri@sandia.gov; mcaldw@sandia.gov; cgc@unm.edu FU Mine Safety and Health Administration; U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported in part by the Mine Safety and Health Administration. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 46 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD FEB PY 2010 VL 52 IS 1 BP 136 EP 146 DI 10.1109/TEMC.2009.2036928 PG 11 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 558HD UT WOS:000274730800016 ER PT J AU Wheeler, J Bark, K Savall, J Cutkosky, M AF Wheeler, Jason Bark, Karlin Savall, Joan Cutkosky, Mark TI Investigation of Rotational Skin Stretch for Proprioceptive Feedback With Application to Myoelectric Systems SO IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING LA English DT Article DE Haptic displays; myoelectric prostheses; proprioception ID SENSORY-FEEDBACK; PROSTHESIS; INFORMATION; HUMANS; KNEE; HAND AB We present a new wearable haptic device that provides a sense of position and motion by inducing rotational skin stretch on the user's skin. In the experiments described in this paper, the device was used to provide proprioceptive feedback from a virtual prosthetic arm controlled with myoelectric sensors on the bicep and tricep muscles in 15 able-bodied participants. Targeting errors in blind movements with the haptic device were compared to cases where no feedback and contralateral proprioception were provided. Average errors were lower with the device than with no feedback but larger than with contralateral proprioceptive feedback. Participants also had lower visual demand with the device than with no feedback while tracking a 30 moving range. The results indicate that the rotational skin stretch may ultimately be effective for proprioceptive feedback in myoelectric prostheses, particularly when vision is otherwise occupied. C1 [Wheeler, Jason; Bark, Karlin; Savall, Joan; Cutkosky, Mark] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Wheeler, Jason] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Wheeler, J (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM jwwheel@sandia.gov FU Sandia National Laboratories; Tekes; Finnish government research organization; National Science Foundation [IIS-0554188] FX Manuscript received October 21, 2008; revised June 23, 2009; accepted August 27, 2009. First published January 12, 2010; current version published February 24, 2010. The work of J. Wheeler was supported by the Sandia National Laboratories. The work of K. Bark was supported in part by Tekes, a Finnish government research organization and in part by the National Science Foundation under IIS-0554188. NR 35 TC 30 Z9 31 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1534-4320 J9 IEEE T NEUR SYS REH JI IEEE Trans. Neural Syst. Rehabil. Eng. PD FEB PY 2010 VL 18 IS 1 BP 58 EP 66 DI 10.1109/TNSRE.2009.2039602 PG 9 WC Engineering, Biomedical; Rehabilitation SC Engineering; Rehabilitation GA 562KP UT WOS:000275049400007 PM 20071271 ER PT J AU Pfund, DM Jarman, KD Milbrath, BD Kiff, SD Sidor, DE AF Pfund, David Michael Jarman, Kenneth D. Milbrath, Brian D. Kiff, Scott D. Sidor, Daniel E. TI Low Count Anomaly Detection at Large Standoff Distances SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Anomaly detection; gamma-ray spectroscopy; radiation monitoring ID RADIATION PORTAL MONITORS; GAMMA-RAY AB Searching for hidden illicit sources of gamma radiation in an urban environment is difficult. Background radiation profiles are variable and cluttered with transient acquisitions from naturally occurring radioactive materials and medical isotopes. Potentially threatening sources likely will be nearly hidden in this noise and encountered at high standoff distances and low threat count rates. We discuss an anomaly detection algorithm that characterizes low count sources as threatening or non-threatening and operates well in the presence of high benign source variability. We discuss the algorithm parameters needed to reliably find sources both close to the detector and far away from it. These parameters include the cutoff frequencies of background tracking filters and the integration time of the spectrometer. This work is part of the development of the Standoff Radiation Imaging System (SORIS) as part of DNDO's Standoff Radiation Detection System Advanced Technology Demonstration (SORDS-ATD) program. C1 [Pfund, David Michael; Jarman, Kenneth D.; Milbrath, Brian D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kiff, Scott D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Sidor, Daniel E.] Univ Rochester, Rochester, NY 14627 USA. RP Pfund, DM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM david.pfund@pnl.gov; kj@pnl.gov; brian.milbrath@pnl.gov; skiff@sandia.gov; sidor@optics.rochester.edu RI Jarman, Kenneth/B-6157-2011 OI Jarman, Kenneth/0000-0002-4396-9212 FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office FX Manuscript received May 08, 2009; revised September 22, 2009. Current version published February 10, 2010. This work was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office. This is Pacific Northwest National Laboratory (PNNL) Report PNWD-SA-8577. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 18 TC 10 Z9 10 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2010 VL 57 IS 1 BP 309 EP 316 DI 10.1109/TNS.2009.2035805 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 553UA UT WOS:000274391100008 ER PT J AU Warren, GA Caggiano, JA Bertozzi, W Korbly, SE Ledoux, RJ Park, WH AF Warren, Glen A. Caggiano, Joseph A. Bertozzi, William Korbly, Stephen E. Ledoux, Robert J. Park, William H. TI On the Search for Nuclear Resonance Fluorescence Signatures of U-235 and U-238 Above 3 MeV SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Bremsstrahlung; gamma rays; nuclear physics; uranium ID LASER AB Nuclear resonance fluorescence is a physical process that provides an isotope-specific signature that could be used for the identification and characterization of materials. The technique involves the detection of prompt discrete-energy photons emitted from a sample that is exposed to MeV-energy photons. Potential applications of the technique range from detection of high explosives to characterization of special nuclear materials such as U-235. We conducted a pair of measurements to search for a nuclear resonance fluorescence response of U-235 above 3 MeV and of U-238 above 5 MeV using an 8 g sample of highly enriched uranium and a 90 g sample of depleted uranium. No new signatures were observed. The minimum detectable integrated cross section for U-235 varies from 4 eV b at 3 MeV up to 120 eV b at 8 MeV. C1 [Warren, Glen A.; Caggiano, Joseph A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bertozzi, William; Korbly, Stephen E.; Ledoux, Robert J.; Park, William H.] Passport Syst Inc, N Billerica, MA 01862 USA. RP Warren, GA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM glen.warren@pnl.gov; jac.caggiano@pnl.gov; bertozzi@passportsystems.com; Korbly@passportsystems.com; ledoux@pass-portsystems.com; park.william@gmail.com FU U.S. Department of Homeland Security Domestic Nuclear Detection Office (DNDO) [N6600105D6011]; U.S. Department of Energy Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development [NA-22] FX Manuscript received June 30, 2009; revised December 01, 2009. Current version published February 10, 2010. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RL01830. PNNL's contribution to this project was supported by the U.S. Department of Homeland Security Domestic Nuclear Detection Office (DNDO) and the U.S. Department of Energy Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22). The support of Passports Systems, Inc. to this project was provided by DNDO Contract N6600105D6011. NR 7 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2010 VL 57 IS 1 BP 317 EP 322 DI 10.1109/TNS.2009.2038470 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 553UA UT WOS:000274391100009 ER PT J AU van Vuure, TL Ankner, JF Browning, JF Clonts, LG Crow, ML Cooper, RG Remec, I Richards, JD Riedel, RA Robertson, JL AF van Vuure, T. L. Ankner, J. F. Browning, J. F. Clonts, L. G. Crow, M. L. Cooper, R. G. Remec, I. Richards, J. D. Riedel, R. A. Robertson, J. L. TI First Measurements of the Inclined Boron Layer Thermal-Neutron Detector for Reflectometry SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Boron; neutron detectors; position sensitive particle detectors; reflectometry AB A prototype detector based on the inclined boron layer principle is introduced. For typical measurement conditions at the Liquids Reflectometer at the Spallation Neutron Source, its count rate capability is shown to be superior to that of the current detector by nearly two orders of magnitude. C1 [van Vuure, T. L.; Ankner, J. F.; Browning, J. F.; Clonts, L. G.; Crow, M. L.; Cooper, R. G.; Remec, I.; Richards, J. D.; Riedel, R. A.; Robertson, J. L.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP van Vuure, TL (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. EM vanvuuretl@ornl.gov OI Browning, James/0000-0001-8379-259X; Ankner, John/0000-0002-6737-5718 FU U.S. Department of Energy [DE-AC05-00OR22725] FX Manuscript received March 02, 2009; revised September 20, 2009. Current version published February 10, 2010. This work was authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 8 TC 3 Z9 3 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2010 VL 57 IS 1 BP 323 EP 327 DI 10.1109/TNS.2009.2036913 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 553UA UT WOS:000274391100010 ER PT J AU Kamil, S Oliker, L Pinar, A Shalf, J AF Kamil, Shoaib Oliker, Leonid Pinar, Ali Shalf, John TI Communication Requirements and Interconnect Optimization for High-End Scientific Applications SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Interconnections; topology; performance analysis ID MODEL; SYSTEMS AB The path toward realizing next-generation petascale and exascale computing is increasingly dependent on building supercomputers with unprecedented numbers of processors. To prevent the interconnect from dominating the overall cost of these ultrascale systems, there is a critical need for scalable interconnects that capture the communication requirements of ultrascale applications. It is, therefore, essential to understand high-end application communication characteristics across a broad spectrum of computational methods, and utilize that insight to tailor interconnect designs to the specific requirements of the underlying codes. This work makes several unique contributions toward attaining that goal. First, we conduct one of the broadest studies to date of high-end application communication requirements, whose computational methods include: finite difference, lattice Boltzmann, particle-in-cell, sparse linear algebra, particle-mesh ewald, and FFT-based solvers. Using derived communication characteristics, we next present the fit-tree approach for designing network infrastructure that is tailored to application requirements. The fit-tree minimizes the component count of an interconnect without impacting application performance compared to a fully connected network. Finally, we propose a methodology for reconfigurable networks to implement fit-tree solutions. Our Hybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, uses both passive (circuit) and active (packet) commodity switch components to dynamically reconfigure interconnects to suit the topological requirements of scientific applications. Overall, our exploration points to several promising directions for practically addressing the interconnect requirements of future ultrascale systems. C1 [Kamil, Shoaib; Oliker, Leonid; Shalf, John] Univ Calif Berkeley, Lawrence Berkeley Lab, NERSC, CRD, Berkeley, CA 94720 USA. [Kamil, Shoaib] Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA. [Pinar, Ali] Sandia Natl Labs, Livermore, CA 94550 USA. RP Kamil, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, NERSC, CRD, 1 Cyclotron Rd,MS 50A1148, Berkeley, CA 94720 USA. EM sakamil@lbl.gov; loliker@lbl.gov; apinar@sandia.gov; jshalf@lbl.gov NR 23 TC 21 Z9 21 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD FEB PY 2010 VL 21 IS 2 BP 188 EP 202 DI 10.1109/TPDS.2009.61 PG 15 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 535EZ UT WOS:000272951300005 ER PT J AU Khan, FH Tolbert, LM Webb, WE AF Khan, Faisal H. Tolbert, Leon M. Webb, William E. TI Start-Up and Dynamic Modeling of the Multilevel Modular Capacitor-Clamped Converter SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE DC-DC power conversion; power capacitors; power conversion; power electronics; power semiconductor switches ID DC-DC CONVERTER; DESIGN; FLOW AB This paper will present the analytical proof of concept of the multilevel modular capacitor-clamped converter (MMCCC). The quantitative analysis of the charge transfer mechanism among the capacitors of the MMCCC explains the start-up and steady-state voltage balancing. Once these capacitor voltages are found for different time intervals, the start-up and steady-state voltages at various nodes of the MMCCC can be obtained. This analysis provides the necessary proof that explains the stable operation of the converter when a load is connected to the low-voltage side of the circuit. In addition, the analysis also shows how the LV side of the converter is (1/N)th of the HV side excitation when the conversion ratio of the circuit is N. In addition to the analytical and simulation results, experimental results are included to support the analytical proof of concept. C1 [Khan, Faisal H.] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. [Webb, William E.] Elect Power Res Inst, Knoxville, TN 37932 USA. [Tolbert, Leon M.] Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Khan, FH (reprint author), Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. EM faisal.khan@utah.edu; tolbert@utk.edu; wwebb@epri.com OI Tolbert, Leon/0000-0002-7285-609X FU Oak Ridge National Laboratory [4000007596] FX Thisworkwas supported by Oak Ridge National Laboratory under UT-Battelle Contract 4000007596. Recommended for publication by Associate Editor A. Rufer. NR 28 TC 27 Z9 28 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD FEB PY 2010 VL 25 IS 2 BP 519 EP 531 DI 10.1109/TPEL.2009.2025273 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA 558HN UT WOS:000274731800028 ER PT J AU Zarghami, M Crow, ML Sarangapani, J Liu, YL Atcitty, S AF Zarghami, Mahyar Crow, Mariesa L. Sarangapani, Jagannathan Liu, Yilu Atcitty, Stan TI A Novel Approach to Interarea Oscillation Damping by Unified Power Flow Controllers Utilizing Ultracapacitors SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Electrochemical capacitors (ECs); oscillation damping; power system stability; unified power flow controller (UPFC) ID STATIC VAR COMPENSATORS; SYSTEM OSCILLATIONS; FACTS DEVICES; STABILIZERS; SWINGS; UPFC AB This paper discusses a novel approach for damping interarea oscillations in a bulk power network using multiple unified power flow controllers (UPFCs) utilizing ultracapacitors, also known more generally as electrochemical capacitors (ECs). In this paper, a new control is introduced to mitigate interarea oscillations by directly controlling the UPFCs' sending and receiving bus voltages that better utilizes the stored energy in the ECs. The results of this controller are compared with and without ECs. The proposed control provides better interarea oscillation mitigation when applied to multiple UPFCs in the 118-bus IEEE test system. C1 [Zarghami, Mahyar] ABB Inc, Raleigh, NC 27610 USA. [Liu, Yilu] Univ Tennessee, Knoxville, TN 37996 USA. [Atcitty, Stan] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Crow, Mariesa L.; Sarangapani, Jagannathan] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA. RP Zarghami, M (reprint author), ABB Inc, Raleigh, NC 27610 USA. OI Crow, Mariesa/0000-0002-2087-9599 FU Department of Energy (DOE) [DE-AC04-94AL85000]; National Science Foundation [BD-0071-D, ECCS 0701643] FX This work was supported in part by the Department of Energy (DOE) Energy Storage Program through Sandia National Laboratories (a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States DOE's National Nuclear Security Administration, under contract DE-AC04-94AL85000) under Contract BD-0071-D and in part by the National Science Foundation under Grant ECCS 0701643. Paper no. TPWRS-00209-2009. NR 20 TC 31 Z9 32 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2010 VL 25 IS 1 BP 404 EP 412 DI 10.1109/TPWRS.2009.2036703 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 548AI UT WOS:000273930800042 ER PT J AU Lu, N Taylor, T Jiang, W Jin, CL Correia, J Leung, LR Wong, PC AF Lu, Ning Taylor, Todd Jiang, Wei Jin, Chunlian Correia, James, Jr. Leung, L. Ruby Wong, Pak Chung TI Climate Change Impacts on Residential and Commercial Loads in the Western US Grid SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Climate change; commercial load; fault-induced delayed voltage recovery; load composition; load modeling; power system stability; residential load; temperature sensitivity AB This paper presents a multidisciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in ten major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration levels of air-conditioning (a/c) systems in this region are likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads. C1 [Lu, Ning; Taylor, Todd; Jiang, Wei; Jin, Chunlian; Correia, James, Jr.; Leung, L. Ruby; Wong, Pak Chung] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lu, N (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Correia, Jr, James/A-9455-2010 OI Correia, Jr, James/0000-0003-1092-8999 FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX This work was supported by the Pacific Northwest National Laboratory, operated for the U.S. Department of Energy by Battelle, under Contract DE-AC05-76RL01830. Paper no. TPWRS-00810-2008. NR 14 TC 12 Z9 13 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2010 VL 25 IS 1 BP 480 EP 488 DI 10.1109/TPWRS.2009.2030387 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 548AI UT WOS:000273930800050 ER PT J AU Stewart, EM Tumilty, R Fletcher, J Lutz, A Ault, G McDonald, J AF Stewart, Emma M. Tumilty, R. Fletcher, John Lutz, Andrew Ault, G. McDonald, Jim TI Analysis of a Distributed Grid-Connected Fuel Cell During Fault Conditions SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Distributed generation; inverter; integration power control; solid oxide fuel cell (SOFC) ID POWER DISTRIBUTION-SYSTEMS; TRANSIENT ANALYSIS; DYNAMIC-MODEL; GENERATION; SIMULATION; OPERATION; TRANSPORT; CIRCUITS; MASS; LOAD AB The effect of a short circuit fault and a voltage sag fault on a distributed grid-connected solid oxide fuel cell (SOFC) is investigated in this paper. The fuel cell is modeled in Simulink and the performance is verified against experimental load testing data. Grid faults are simulated, and conclusions are drawn on the fuel cell response and the effects of the fault condition on internal fuel cell parameters. C1 [Stewart, Emma M.; Tumilty, R.; Fletcher, John; Ault, G.; McDonald, Jim] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Lutz, Andrew] Sandia Natl Labs, Livermore, CA 94551 USA. RP Stewart, EM (reprint author), BEW Engn Inc, San Ramon, CA 94583 USA. EM emmamstewart@gmail.com; r.tumilty@strath.ac.uk; john.fletcher@eee.strath.ac.uk; aelutz@sandia.gov; g.ault@eee.strath.ac.uk; j.mcdonald@eee.strath.ac.uk NR 32 TC 7 Z9 9 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2010 VL 25 IS 1 BP 497 EP 505 DI 10.1109/TPWRS.2009.2036776 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 548AI UT WOS:000273930800052 ER PT J AU Szajna-Fuller, E Bakac, A AF Szajna-Fuller, Ewa Bakac, Andreja TI Base-Catalyzed Insertion of Dioxygen into Rhodiurn-Hydrogen Bonds: Kinetics and Mechanism SO INORGANIC CHEMISTRY LA English DT Article ID PD-II-HYDROPEROXIDE; MOLECULAR-OXYGEN; RHODIUM(III) HYDRIDES; AEROBIC OXIDATION; AQUEOUS-SOLUTIONS; METHYL KETONES; ATOM TRANSFER; COMPLEXES; SUPEROXO; THERMODYNAMICS AB The reaction between molecular oxygen and rhodium hydrides L(OH)RhH(+) (L = (NH(3))(4), trans-L(1), and cis-L(1), where L(1) = cyclam) in basic aqueous solutions rapidly produces the corresponding hydroperoxo complexes. Over the pH range 8 < pH < 12, the kinetics exhibit a first order dependence on [OH(-)]. The dependence on [O(2)] is less than first order and approaches saturation at the highest concentrations used. These data suggest an attack by OH(-) at the hydride with k = (1.45 +/- 0.25) x 10(3) M(-1) s(-1) for trans-L(1)(OH) RhH(+) at 25 degrees C, resulting in heterolytic cleavage of the Rh - H bond and formation of a reactive Rh(I) intermediate, A competition between O(2) and H(2)O for Rh(I) is the source of the observed dependence on O(2). In support of this mechanism, there is a significant kinetic isotope effect for the initial step, L(1)(OH(D))RhH(D)(+) + OH(D)(-) reversible arrow(k1)(k-1) L(1)(OH(D))Rh(1) + H(D)(2)O, k(1H)/k(1D) = 1.7, and k(-1H)/k(-1D) = 3.0. The activation parameters for k(1) for trans L1(OH)RhH(+) are Delta H double dagger = 64.6 +/- 1.3 KJ mol(-1) and Delta S(t) = 40 +/- 4 J mol(-1) K(-1). C1 [Szajna-Fuller, Ewa; Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Bakac, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM bakac@ameslab.gov NR 32 TC 15 Z9 15 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2010 VL 49 IS 3 BP 781 EP 785 DI 10.1021/ic901808t PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 546CH UT WOS:000273785500005 PM 19860459 ER PT J AU Neiner, D Okamoto, NL Yu, P Leonard, S Condron, CL Toney, MF Ramasse, QM Browning, ND Kauzlarich, SM AF Neiner, Doinita Okamoto, Norihiko L. Yu, Ping Leonard, Sharon Condron, Cathie L. Toney, Michael F. Ramasse, Quentin M. Browning, Nigel D. Kauzlarich, Susan M. TI Synthesis and Characterization of K8-x(H-2)(y)Si-46 SO INORGANIC CHEMISTRY LA English DT Article ID SILICON CLATHRATE COMPOUNDS; SI; OXIDATION; COMPOUND; NAXSI136; METALS; ROUTE; NMR; NA AB A hydrogen-containing inorganic clathrate with the nominal composition, K-7(H-2)(3)Si-46, has been prepared in 98% yield by the reaction of K4Si4 with NH4Br. Rietveld refinement of the powder X-ray diffraction data is consistent with the clathrate type I structure. Elemental analysis and H-1 MAS NMR confirmed the presence of hydrogen in this material. Type I clathrate structure is built up from a Si framework with two types of cages where the guest species, in this case K and H2, can reside: a large cage composed of 24 Si, in which the guest resides in the 6d position, and a smaller one composed of 20 Si, in which the guest occupies the 2a position (cubic space group Pm (3) over barn). Potassium occupancy was examined using spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM). The high-angle annular dark-field (HAADF) STEM experimental and simulated images indicated that the K is deficient in both the 2a and the 6d sites. H-1 and Si-29 MAS NMR are consistent with the presence of H-2 in a restricted environment and the clathrate I structure, respectively. FTIR and Si-29{H-1} CP MAS NMR results show no evidence for a Si-H bond, suggesting that hydrogen is present as H-2 in interstitial sites. Thermal gravimetry (TG) mass spectrometry (MS) provide additional confirmation of H-2 with hydrogen loss at similar to 400 degrees C. C1 [Leonard, Sharon; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Okamoto, Norihiko L.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Yu, Ping] Univ Calif Davis, NMR Facil, Davis, CA 95616 USA. [Condron, Cathie L.; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Ramasse, Quentin M.; Browning, Nigel D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94270 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM smkauzlarich@ucdavis.edu RI Okamoto, Norihiko/A-7345-2010; OI Okamoto, Norihiko/0000-0003-0199-7271; Browning, Nigel/0000-0003-0491-251X FU Center of Excellence for Chemical Hydrides [DE-FC36-05GO15055]; Department of Energy [DE-FG02-03ER46057]; Japan Society for the Promotion or Science for Young Scientists; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge Dr. Alexandra Navrotsky for use of the powder diffractometer. We wish to thank David G. Mori. an, who carried out the image processing using 2dx software. This work was supported by the Center of Excellence for Chemical Hydrides under Contract No. DE-FC36-05GO15055, by the Department of Energy under Contract No. DE-FG02-03ER46057, and by the Japan Society for the Promotion or Science for Young Scientists. Part of this work was carried out at the National Center for Electron Microscopy, under the auspices of the U.S. Department of Energy under contract number DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy. Orrice of Basic Energy Sciences. NR 31 TC 14 Z9 15 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2010 VL 49 IS 3 BP 815 EP 822 DI 10.1021/ic9004592 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 546CH UT WOS:000273785500009 PM 20039690 ER PT J AU Rochford, J Tsai, MK Szalda, DJ Boyer, JL Muckerman, JT Fujita, E AF Rochford, Jonathan Tsai, Ming-Kang Szalda, David J. Boyer, Julie L. Muckerman, James T. Fujita, Etsuko TI Oxidation State Characterization of Ruthenium 2-Iminoquinone Complexes through Experimental and Theoretical Studies SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; ELECTROCHEMICAL OXIDATION; ELECTRONIC-STRUCTURE; CHARGE-DISTRIBUTION; QUINONE COMPLEXES; REDOX BEHAVIOR; LIGANDS; SEMIQUINONE; ENERGIES; ELEMENTS AB The synthesis of complexes [Ru(II)(trpy)(2-imino-4-tert-butylquinone)(Cl)](+) and [Ru(II)(trpy)(NIL)(OAc)](+) (where trpy = 2:2',6':2 ''-terpyridyl, NIL = 2-imino-4-tert-butylquinone, 2-imino-4-methylquinone, 2-iminoquinone, 2-imino-4-chloroquinone, 2-imino-5-chloroquinone, 2-imino-4,6-di-tert-butyl-N-phenyl-quinone, 2-imino-4,6-di-tert-butyl-N-(2'-trifluoromethylphenyl)-quinone) is reported. The oxidation states of these complexes, as well as the previously reported [Ru(III)(trpy)(2-iminosemiquinone)(Cl)](+) complex, are investigated by spectroscopic, electrochemical and theoretical methods resulting in the latter complex being reassigned as [Ru(II)(trpy)(2-iminoquinone)(Cl)](+). Evidence for the presence of two structural isomers was found for all complexes, and crystal structures for both isomers of the [Ru(II)(trpy)(2-imino-4-tert-butylquinone)(Cl)]ClO(4) complex are reported, as well as for the cis isomer of [Ru(II)(trpy)(2-imino-4,6-di-tert-butyl-N-phenyl-quinone)(OAc)]PF(6). Redox control is also demonstrated based on the Hammett parameters of the substituents on the 2-iminoquinone ligand. C1 [Rochford, Jonathan; Tsai, Ming-Kang; Boyer, Julie L.; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Muckerman, James T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Szalda, David J.] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. RP Fujita, E (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM fujita@bnl.gov RI Fujita, Etsuko/D-8814-2013; Muckerman, James/D-8752-2013 NR 51 TC 10 Z9 10 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2010 VL 49 IS 3 BP 860 EP 869 DI 10.1021/ic901194k PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 546CH UT WOS:000273785500014 PM 20038122 ER PT J AU Schelter, EJ Wu, RL Scott, BL Thompson, JD Cantat, T John, KD Batista, ER Morris, DE Kiplinger, JL AF Schelter, Eric J. Wu, Ruilian Scott, Brian L. Thompson, Joe D. Cantat, Thibault John, Kevin D. Batista, Enrique R. Morris, David E. Kiplinger, Jaqueline L. TI Actinide Redox-Active Ligand Complexes: Reversible Intramolecular Electron-Transfer in U(dpp-BIAN)(2)/U(dpp-BIAN)(2)(THF) SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; MIXED-VALENCY; COPPER(II) COMPLEXES; CRYSTAL-STRUCTURES; PARAMETER SETS; URANIUM; COORDINATION; OXIDATION; PSEUDOPOTENTIALS; REACTIVITY AB Actinide complexes of the redox-active ligand (dpp-BIAN)(2-) (dpp-BIAN = 1,2-bis(2,6-diisopropylphenylimino)acenaphthylene), U(dpp-BIAN)(2) (1), U(dpp-BIAN)(2)(THF) (1-THF), and Th(dpp-BIAN)(2)(THF) (2-THF), have been prepared. Solid-state magnetic and single-crystal X-ray data for complex 1 indicate a ground-state U-IV-pi*(4) configuration, whereas a (dpp-BIAN)(2-)-to-uranium electron transfer occurs for 1-THF, resulting in a U-III-pi*(3) ground configuration. The solid-state magnetic data also indicate that interconversion between the two forms of the complex is possible, limited only by the ability of tetrahydrofuran (THF) vapor to penetrate the solid upon cooling of the sample. In contrast to those in the solid state, spectroscopic data acquired in THF indicate only the presence of the U-IV-pi*(4) form for 1-THF in solution, evidenced by electronic absorption spectra and by measurement of the solution magnetic moment in THF-d(8) using the Evans method. Also reported is the electrochemistry of the complexes collected in CH2Cl2, CF3C6H5, and THF. As expected from the solution spectroscopic data, only small differences are observed in half-wave potentials of ligand-based processes in the presence of THF, consistent with the solution U-IV-pi*(4) configuration of the complexes in all cases. Density functional theory calculations were undertaken for complexes 1 and 1-THF to determine if intrinsic energetic or structural factors underlie the observed charge-transfer process. While the calculated optimized geometries agree well with experimental results, it was not possible to arrive at a convergent solution for 1-THF in the U-III-pi*(3) configuration, However, perturbations in the orbital energies in 1 versus 1-THF for the U-IV-pi*(4) configuration do point to a diminished highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap in 1-THF, consistent with the solid-state magnetic data, These results represent the first example of a stable and well-defined, reversible intramolecular elect-on transfer in an actinide complex with redox-active ligands. C1 [Schelter, Eric J.; Wu, Ruilian; Scott, Brian L.; Thompson, Joe D.; Cantat, Thibault; John, Kevin D.; Batista, Enrique R.; Morris, David E.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Cantat, Thibault/A-8167-2010; Schelter, Eric/E-2962-2013; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Cantat, Thibault/0000-0001-5265-8179; Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 NR 66 TC 31 Z9 31 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2010 VL 49 IS 3 BP 924 EP 933 DI 10.1021/ic901636f PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 546CH UT WOS:000273785500021 PM 20039611 ER PT J AU Rothenberger, A Wang, HH Chung, D Kanatzidis, MG AF Rothenberger, Alexander Wang, Hsien-Hau Chung, DuckYoung Kanatzidis, Mercouri G. TI Structural Diversity by Mixing Chalcogen Atoms in the Chalcophosphate System K/In/P/Q (Q = S, Se) SO INORGANIC CHEMISTRY LA English DT Article ID 2ND-HARMONIC GENERATION RESPONSE; ALKALI-METAL; DIMENSIONAL COMPOUNDS; INDIUM SELENIDE; FLUX; PHASE; RB; THIOPHOSPHATE; CHEMISTRY; ANIONS AB The new thiophosphate salt K(4)In(2)(PS(4))(2)(P(2)S(6)) (1), the selenophosphate salts K(5)In(3)(mu(3)-Se)(P(2)Se(6))(3) (2), K(6)In(4)(mu-Se)(2)center dot(P(2)Se(6))(3) (3), and the mixed seleno-/thiophosphate salt K(4)In(4)(mu-Se)(P(2)S(2.36)Se(3.64))(3) (4) are described. For the first time, a structurally different outcome of a chalcophosphate reaction was observed when sulfur and selenium are mixed, for example, by the use of K(2)S/P(2)Se(5)/In instead of K(2)Se/P(2)Se(5)/Se/In or K(2)S/P(2)S(5)/In. In compounds 1-4 indium atoms exist in a variety coordination environments. While in 1, indium is octahedrally coordinated, in 2-4 tetrahedral, trigonal-biopyramidal, and octahedral coordination environments are found for indium atoms. This remarkable structural diversity possibly is a reason, why particularly indium chalcophosphate flux reactions often produce a large variety of compounds at intermediate temperatures. In the mixed seleno-/thiophosphate salt K(4)In(4)(mu-Se)(P(2)S(2.36)Se(3.64))(3) (4) most of the chalcogen sites around the tetrahedrally coordinated P atoms show mixed S/Se occupancy. There is, however, a preference for Se binding to In ions and S binding to potassium ions. C1 [Rothenberger, Alexander; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wang, Hsien-Hau; Chung, DuckYoung; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Rothenberger, Alexander/B-9119-2015 FU DFG [RO 3069/4-1]; National Science Foundation [DIMR-0801855]; U.S, DOE, office or Science [DE-AC02-06CH11357] FX Financial support from the DFG (RO 3069/4-1) and from the National Science Foundation (DIMR-0801855) is acknowledged. This work was also supported by the U.S, DOE, office or Science under Contract No. DE-AC02-06CH11357. NR 32 TC 7 Z9 7 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2010 VL 49 IS 3 BP 1144 EP 1151 DI 10.1021/ic902105j PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 546CH UT WOS:000273785500044 PM 20030374 ER PT J AU Smith, K Wang, CY AF Smith, Kandler Wang, Chao-Yang TI Preface to special issue on electrical energy storage for future transportation and renewable energy SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Editorial Material C1 [Smith, Kandler] Natl Renewable Energy Lab, Golden, CO USA. [Wang, Chao-Yang] Penn State Univ, University Pk, PA 16802 USA. RP Smith, K (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM kandler.smith@nrel.gov NR 0 TC 1 Z9 1 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0363-907X J9 INT J ENERG RES JI Int. J. Energy Res. PD FEB PY 2010 VL 34 IS 2 SI SI BP 95 EP 96 DI 10.1002/er.1650 PG 2 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA 560SR UT WOS:000274923500001 ER PT J AU Abraham, DP Dees, DW Christophersen, J Ho, C Jansen, AN AF Abraham, D. P. Dees, D. W. Christophersen, J. Ho, C. Jansen, A. N. TI Performance of high-power lithium-ion cells under pulse discharge and charge conditions SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article DE reference electrode; transportation; energy storage; impedance; HPPC ID POSITIVE ELECTRODES; BATTERIES; IMPEDANCE; CATHODE; LINI0.8CO0.15AL0.05O2; MECHANISMS AB Lithium-ion cells being designed for transportation applications must sustain high current pulses under rapid discharge and rapid charge conditions without significant degradation of cell performance. In this article we examine the pulse discharge and charge performance of cells, containing a LiNi(0.8)Co(0.15)Al(0.05)O(2)-based cathode, a graphite-based anode, and a LiPF(6)-bearing EC:EMC electrolyte, at current rates ranging from 3 to 25 C. Impedance data indicate that 18650-type cells containing this chemistry can withstand 18s discharge pulses at rates up to 17C in the 3.7-4.0V voltage window. Data from cells containing a LiSn micro-reference electrode show that the positive electrode impedance increases, whereas the negative electrode impedance decreases, with increasing magnitude of the discharge current pulse. The discharge pulse-current that can be sustained by the cell is limited by lithium diffusion into oxide particles of the positive electrode. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Abraham, D. P.; Dees, D. W.; Jansen, A. N.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Christophersen, J.; Ho, C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abraham@cmt.anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU U.S. Department of Energy Office of Science [AC02-06CH11357] FX Support from the FrecdomCAR and Vehicle Technologies Program, specifically from D. Howell at the U.S. Department of Energy, is gratefully acknowledged. We are grateful to P. Schliltz, I. Bloom and G. Henriksen at Argonne, and K. Gering at INL for their contributions. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 19 TC 16 Z9 16 U1 3 U2 39 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0363-907X J9 INT J ENERG RES JI Int. J. Energy Res. PD FEB PY 2010 VL 34 IS 2 SI SI BP 190 EP 203 DI 10.1002/er.1665 PG 14 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA 560SR UT WOS:000274923500010 ER PT J AU Smith, K Kim, GH Darcy, E Pesaran, A AF Smith, Kandler Kim, Gi-Heon Darcy, Eric Pesaran, Ahmad TI Thermal/electrical modeling for abuse-tolerant design of lithium ion modules SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article ID THERMAL-BEHAVIOR; BATTERY; CELLS AB Proper understanding of heat generation and design of heat dissipation paths arc critical for ensuring the safety of lithium ion modules during abuse events such as external shorts. Additionally, the behavior of positive thermal coefficient (PTC) current limiting devices-generally effective at the single-cell level-can be difficult to predict for a multi-cell module. To help guide battery pack design, a coupled thermal/electrical model of a commercial 18650-size cell and a module with 16 cells in parallel (16P) are developed. Cell electrical response is modeled using an equivalent circuit, including the temperature-dependent behavior of the PTC. Cell thermal response is modeled with a high-resolution thermal model from which a simpler 5-node thermal circuit model is extracted. Cell models are integrated into a module-level model considering cell-to-cell electrical and thermal interactions via conduction, convection. and radiation. The module-level model is validated with a 16P external short experiment and applied in a parametric study to assess thermal safety margin. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Smith, Kandler; Kim, Gi-Heon; Pesaran, Ahmad] Natl Renewable Energy Lab, Ctr Transportat Technol & Syst, Golden, CO USA. [Darcy, Eric] NASA, Lyndon B Johnson Space Ctr, Div Energy Syst, Houston, TX 77058 USA. RP Smith, K (reprint author), Natl Renewable Energy Lab, Ctr Transportat Technol & Syst, 1617 Cole Blvd, Golden, CO USA. EM kandler.smith@nrel.gov NR 14 TC 45 Z9 48 U1 6 U2 54 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0363-907X J9 INT J ENERG RES JI Int. J. Energy Res. PD FEB PY 2010 VL 34 IS 2 SI SI BP 204 EP 215 DI 10.1002/er.1666 PG 12 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA 560SR UT WOS:000274923500011 ER PT J AU Corley, CD Cook, DJ Mikler, AR Singh, KP AF Corley, Courtney D. Cook, Diane J. Mikler, Armin R. Singh, Karan P. TI Text and Structural Data Mining of Influenza Mentions in Web and Social Media SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE disease surveillance; public health epidemiology; health informatics; graph-based data mining; web and social media; social network analysis ID SURVEILLANCE AB Text and structural data mining of web and social media (WSM) provides a novel disease surveillance resource and can identify online communities for targeted public health communications (PHC) to assure wide dissemination of pertinent information. WSM that mention influenza are harvested over a 24-week period, 5 October 2008 to 21 March 2009. Link analysis reveals communities for targeted PHC. Text mining is shown to identify trends in flu posts that correlate to real-world influenza-like illness patient report data. We also bring to bear a graph-based data mining technique to detect anomalies among flu blogs connected by publisher type, links, and user-tags. C1 [Corley, Courtney D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cook, Diane J.] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. [Mikler, Armin R.] Univ N Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA. [Singh, Karan P.] Univ N Texas, Hlth Sci Ctr, Dept Biostat, Ft Worth, TX 76107 USA. RP Corley, CD (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM court@pnl.gov FU National Science Foundation (NSF) [NSF IIS-0505819]; Technosocial Predictive Analytics Initiative, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) FX We would like to thank the National Science Foundation (NSF) for partial support under grant NSF IIS-0505819 and the Technosocial Predictive Analytics Initiative, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. The contents of this publication are the responsibility of the authors and do not necessarily represent the official views of the NSF. NR 24 TC 56 Z9 56 U1 8 U2 67 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD FEB PY 2010 VL 7 IS 2 BP 596 EP 615 DI 10.3390/ijerph7020596 PG 20 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 561JK UT WOS:000274972000017 PM 20616993 ER PT J AU Balaji, P Chan, A Gropp, W Thakur, R Lusk, E AF Balaji, Pavan Chan, Anthony Gropp, William Thakur, Rajeev Lusk, Ewing TI THE IMPORTANCE OF NON-DATA-COMMUNICATION OVERHEADS IN MPI SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Blue Gene/P; MPI; non-data-communication overheads AB With processor speeds no longer doubling every 18-24 months owing to the exponential increase in power consumption and heat dissipation, modern high-end computing systems tend to rely less on the performance of single processing units and instead rely on achieving high performance by using the parallelism of a massive number of low-frequency/low-power processing cores. Using such low-frequency cores, however, puts a premium on end-host pre- and post-communication processing required within communication stacks, such as the Message Passing Interface (MPI) implementation. Similarly, small amounts of serialization within the communication stack that were acceptable on small/medium systems can be brutal on massively parallel systems. Thus, in this paper, we study the different non-data-communication overheads within the MPI implementation on the IBM Blue Gene/P system. Specifically, we analyze various aspects of MPI, including the MPI stack overhead itself, overhead of allocating and queueing requests, queue searches within the MPI stack, multi-request operations, and various others. Our experiments, that scale up to 131,072 cores of the largest Blue Gene/P system in the world (80% of the total system size), reveal several insights into overheads in the MPI stack, which were not previously considered significant, but can have a substantial impact on such massive systems. C1 [Balaji, Pavan; Chan, Anthony; Thakur, Rajeev; Lusk, Ewing] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Gropp, William] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. RP Balaji, P (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM BALAJI@MCS.ANL.GOV; CHAN@MCS.ANL.GOV; WGROPP@ILLINOIS.EDU; THAKUR@MCS.ANL.GOV; LUSK@MCS.ANL.GOV OI Gropp, William/0000-0003-2905-3029 FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-FG0208ER25835] FX This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357 and in part by the Office of Advanced Scientific Computing Research, Office of Science, U. S. Department of Energy award DE-FG0208ER25835. NR 14 TC 6 Z9 6 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD FEB PY 2010 VL 24 IS 1 BP 5 EP 15 DI 10.1177/1094342009359258 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 560JG UT WOS:000274898000002 ER PT J AU Balaji, P Buntinas, D Goodell, D Gropp, W Thakur, R AF Balaji, Pavan Buntinas, Darius Goodell, David Gropp, William Thakur, Rajeev TI FINE-GRAINED MULTITHREADING SUPPORT FOR HYBRID THREADED MPI PROGRAMMING SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE MPI; threads; hybrid programming; fine-grained locks AB As high-end computing systems continue to grow in scale, recent advances in multi-and many-core architectures have pushed such growth toward more dense architectures, that is, more processing elements per physical node, rather than more physical nodes themselves. Although a large number of scientific applications have relied so far on an MPI-everywhere model for programming high-end parallel systems; this model may not be sufficient for future machines, given their physical constraints such as decreasing amounts of memory per processing element and shared caches. As a result, application and computer scientists are exploring alternative programming models that involve using MPI between address spaces and some other threaded model, such as OpenMP, Pthreads, or Intel TBB, within an address space. Such hybrid models require efficient support from an MPI implementation for MPI messages sent from multiple threads simultaneously. In this paper, we explore the issues involved in designing such an implementation. We present four approaches to building a fully thread-safe MPI implementation, with decreasing levels of critical-section granularity (from coarse-grain locks to fine-grain locks to lock-free operations) and correspondingly increasing levels of complexity. We present performance results that demonstrate the performance implications of the different approaches. C1 [Balaji, Pavan; Buntinas, Darius; Goodell, David; Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Gropp, William] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. RP Balaji, P (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM BALAJI@MCS.ANL.GOV OI Gropp, William/0000-0003-2905-3029 FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-08ER25835] FX This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357 and Award DE-FG02-08ER25835. We thank Sameer Kumar and others in the MPI group at IBM Research and IBM Rochester for discussions about efficient support for thread safety in MPI. NR 18 TC 18 Z9 19 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD FEB PY 2010 VL 24 IS 1 BP 49 EP 57 DI 10.1177/1094342009360206 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 560JG UT WOS:000274898000005 ER PT J AU Traff, JL Ripke, A Siebert, C Balaji, P Thakur, R Gropp, W AF Traeff, Jesper Larsson Ripke, Andreas Siebert, Christian Balaji, Pavan Thakur, Rajeev Gropp, William TI A PIPELINED ALGORITHM FOR LARGE, IRREGULAR ALL-GATHER PROBLEMS SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE message-passing interface; collective operations; all-gather problem; pipelining; NEC SX-8; Linux clusters; IBM Blue Gene/P; SiCortex ID ALLGATHER; NETWORKS; MPICH AB We describe and evaluate a new pipelined algorithm for large, irregular all-gather problems. In the irregular all-gather problem each process in a set of processes contributes individual data of possibly different size, and all processes have to collect all data from all processes. The pipelined algorithm is useful for the implementation of the MPI_Allgatherv collective operation of the Message-Passing Interface (MPI) for large problems. By conception, the new algorithm is well suited to implementation on clustered multiprocessors, such as symmetric multiprocessing (SMP) clusters. The new algorithm has been implemented within different MPI libraries. Benchmark results on NEC SX-8, Linux clusters with InfiniBand and Gigabit Ethernet, IBM Blue Gene/P, and SiCortex systems show huge performance gains in accordance with the expected behavior. C1 [Traeff, Jesper Larsson; Ripke, Andreas; Siebert, Christian] NEC Europe Ltd, NEC Labs Europe, D-53757 St Augustin, Germany. [Balaji, Pavan; Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Gropp, William] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. RP Traff, JL (reprint author), NEC Europe Ltd, NEC Labs Europe, Rathausallee 10, D-53757 St Augustin, Germany. EM TRAFF@IT.NECLAB.EU OI Gropp, William/0000-0003-2905-3029 FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX This paper is a revised version of the conference presentation "A simple, pipelined algorithm for large, irregular all-gather problems" that appeared in "Recent Advances in Parallel Virtual Machine and Message Passing Interface. 15th European PVM/MPI Users' Group Meeting ( Lecture Notes in Computer Science, Vol. 5205), Springer, 2008, pp. 84-93". This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 12 TC 2 Z9 2 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD FEB PY 2010 VL 24 IS 1 BP 58 EP 68 DI 10.1177/1094342009359013 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 560JG UT WOS:000274898000006 ER PT J AU Brightwell, R AF Brightwell, Ron TI EXPLOITING DIRECT ACCESS SHARED MEMORY FOR MPI ON MULTI-CORE PROCESSORS SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE MPI; shared memory; multi-core; lightweight kernel; operating system AB In 2008, the Catamount lightweight kernel was extended to support direct access shared memory between processes running on the same compute node. This extension, called SMARTMAP, allows each process read/write access to another process' memory by extending the virtual address of each process. Simple virtual address bit manipulation can be used to access the same virtual address in a different process' address space. In this paper we describe an implementation of the Message Passing Interface (MPI) that uses SMARTMAP for intra-node message passing. SMARTMAP has several advantages over POSIX shared memory techniques for implementing MPI. We present performance results comparing MPI using SMARTMAP to the existing MPI transport layer on a quad-core Cray XT platform. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brightwell, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM RBBRIGH@SANDIA.GOV FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Trammell Hudson is responsible for the implementation of SMARTMAP in Catamount, which was an outcome of discussions between the author, Kevin Pedretti, and Kurt Ferreira. This work would also not have been possible without John Van Dyke, who is responsible for implementing virtual node mode support in Catamount. The author would also like to thank Sue Kelly and the Cray support staff at Sandia for assistance with the Red Storm development systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 12 TC 3 Z9 3 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD FEB PY 2010 VL 24 IS 1 BP 69 EP 77 DI 10.1177/1094342009359014 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 560JG UT WOS:000274898000007 ER PT J AU Siegel, SF Siegel, AR AF Siegel, Stephen F. Siegel, Andrew R. TI MADRE: THE MEMORY-AWARE DATA REDISTRIBUTION ENGINE SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material DE MPI; parallel programming; redistribution; collective communication AB We report on the development of a new computational framework for efficiently carrying out parallel data redistribution in a limited memory environment. This new library, MADRE (Memory-Aware Data Redistribution Engine), is an open-source, C/MPI-based toolkit designed for quick and easy integration into application codes that have demanding data migration needs. At the same time, MADRE exposes a lower-level application programming interface that greatly facilitates the development and incorporation of new algorithms into the MADRE framework, thus serving as a potential organizing entity for continued research in this area. Finally, we develop, describe, and test in detail several new parallel redistribution algorithms that are incorporated into the MADRE distribution. C1 [Siegel, Stephen F.] Univ Delaware, Dept Comp & Informat Sci, Verified Software Lab, Newark, DE 19716 USA. [Siegel, Andrew R.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Siegel, SF (reprint author), Univ Delaware, Dept Comp & Informat Sci, Verified Software Lab, Newark, DE 19716 USA. EM SIEGEL@CIS.UDEL.EDU; SIEGELA@MCS.ANL.GOV NR 11 TC 2 Z9 2 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD FEB PY 2010 VL 24 IS 1 BP 93 EP 104 DI 10.1177/1094342009359016 PG 12 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 560JG UT WOS:000274898000009 ER PT J AU Ferrandon, MS Lewis, MA Tatterson, DF Gross, A Doizi, D Croize, L Dauvois, V Roujou, JL Zanella, Y Carles, P AF Ferrandon, Magali S. Lewis, Michele A. Tatterson, David F. Gross, Adam Doizi, Denis Croize, L. Dauvois, V. Roujou, J. L. Zanella, Y. Carles, P. TI Hydrogen production by the Cu-Cl thermochemical cycle: Investigation of the key step of hydrolysing CuCl2 to Cu2OCl2 and HCl using a spray reactor SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Thermochemical cycle; Cu-Cl cycle; Hydrogen production; Hydrolysis; Spray reactor ID ELECTROLYSIS AB One of the most challenging steps in the thermochemical Cu-Cl cycle for the production of hydrogen is the hydrolysis Of CuCl2 into Cu2OCl2 and HCl while avoiding the need for excess water and the undesired thermolysis reaction, which gives CuCl and Cl-2. Argonne National Laboratory has designed a spray reactor where an aqueous solution of CuCl2 is atomized into a heated zone, into which steam/Ar are injected in co- or counter-current flow. The solid products of the reaction were analyzed by XRD and SEM. With a pneumatic nebulizer, the counter-current flow design gave high yields Of Cu2OCl2 compared to the co-current flow design, but some CuCl2 remained unreacted in both designs. With an ultrasonic nozzle, essentially 100% yields Of Cu2OCl2 were obtained. Some CuCl was present in the products with both types of atomizers but this is believed to be due to decomposition of Cu2OCl2 rather than CuCl2. Analyses of gaseous products from the hydrolysis reactions in a fixed bed were conducted at the Commissariat L'Energie Atomique using ultraviolet-visible spectrometry and conductivity. At a reaction temperature of 390 degrees C, the desired HCl was formed while no Cl-2 was detected until the bed temperature was above 400 degrees C. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Ferrandon, Magali S.; Lewis, Michele A.; Gross, Adam] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Tatterson, David F.] Orion Consulting Co, Downers Grove, IL 60515 USA. [Doizi, Denis; Croize, L.; Dauvois, V.; Roujou, J. L.; Zanella, Y.; Carles, P.] CE Saclay, CEA, Dept Phys Chem, F-91191 Gif Sur Yvette, France. RP Ferrandon, MS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ferrandon@anl.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 20 TC 25 Z9 26 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2010 VL 35 IS 3 BP 992 EP 1000 DI 10.1016/j.ijhydene.2009.09.086 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 560ZI UT WOS:000274944000014 ER PT J AU Jo, JH Jeon, CO Lee, SY Lee, DS Park, JM AF Jo, Ji Hye Jeon, Che Ok Lee, Seung Yoon Lee, Dae Sung Park, Jong Moon TI Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Clostridium tyrobutyricum; [FeFe]-hydrogenase; Homologous overexpression; Hydrogen production ID ENHANCED HYDROGEN-PRODUCTION; BUTYRIC-ACID FERMENTATION; ESCHERICHIA-COLI STRAINS; FEFE HYDROGENASES; CRYSTAL-STRUCTURE; SHUTTLE VECTOR; DELETED MUTANT; FOOD WASTE; WILD-TYPE; ACETOBUTYLICUM AB The H(2)-evoving [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1 was isolated to elucidate molecular characterization and modular structure of the hydrogenase. Then, homologous overexpression of the hydrogenase gene was for the first time performed to enhance hydrogen production. The hydA open reading frame (ORF) was 1734-bp, encodes 577 amino acids with a predicted molecular mass of 63,970 Da, and presents 80% and 75% identity at the amino acid level with the [FeFe]-hydrogenase genes of Clostridium kluyveri DSM 555 and Clostridium acetobutylicum ATCC 824, respectively. One histidine residue and 19 cysteine residues, known to fasten one [2Fe-2S] cluster, three [4Fe-4S] clusters and one H-cluster, were conserved in hydA of C. tyrobutyricum. A 2327-bp DNA region containing the ORF and the putative promoter region was amplified and subcloned into a pJIR418 shuttle vector. The gene transfer of the recombinant plasmid into C. tyrobutyricum JM1 was performed by a modified electrotransformation method. Homologous overexpression of the [FeFe]-hydrogenase gene resulted in a 1.7-fold and 1.5-fold increase in hydrogenase activity and hydrogen yield concomitant with the shift of metabolic pathway. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Lee, Dae Sung] Kyungpook Natl Univ, Dept Environm Engn, Taegu 702701, South Korea. [Jo, Ji Hye] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Jeon, Che Ok] Chung Ang Univ, Dept Life Sci, Seoul 156756, South Korea. [Lee, Seung Yoon] Korea Water Resources Corp, K Water Res Inst, Taejon 305703, South Korea. [Park, Jong Moon] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 790784, Gyeongbuk, South Korea. RP Lee, DS (reprint author), Kyungpook Natl Univ, Dept Environm Engn, 1370 Sankyuk Dong, Taegu 702701, South Korea. EM daesung@knu.ac.kr; jmpark@postech.ac.kr FU Ministry of Education, Science and Technology [2009-0079288, 2009-0093819]; Korean Government [KRF-2008-357-D00155]; Ministry of Knowledge and Economy (MKE) FX This work was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079288) and by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-357-D00155). This work was also supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093819) and by the second phase of the Brain Korea 21 Program in 2009. This work is also the outcome of a Manpower Development Program for Energy & Resources supported by the Ministry of Knowledge and Economy (MKE). NR 37 TC 22 Z9 23 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2010 VL 35 IS 3 BP 1065 EP 1073 DI 10.1016/j.ijhydene.2009.11.102 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 560ZI UT WOS:000274944000022 ER PT J AU Aceves, SM Espinosa-Loza, F Ledesma-Orozco, E Ross, TO Weisberg, AH Brunner, TC Kircher, O AF Aceves, Salvador M. Espinosa-Loza, Francisco Ledesma-Orozco, Elias Ross, Timothy O. Weisberg, Andrew H. Brunner, Tobias C. Kircher, Oliver TI High-density automotive hydrogen storage with cryogenic capable pressure vessels SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Cryogenics; High pressure; Cryo-compressed ID VEHICLES AB LLNL is developing cryogenic capable pressure vessels with thermal endurance 5-10 times greater than conventional liquid hydrogen (LH(2)) tanks that can eliminate evaporative losses in routine usage of (L)H(2) automobiles. in a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH(2)), LH(2) or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH(2)). When filled with LH(2) or CcH(2), these vessels contain 2-3 times more fuel than conventional ambient temperature compressed H(2) vessels. LLNL has demonstrated fueling with LH(2) onboard two vehicles. The generation 2 vessel, installed onboard an H(2)-powered Toyota Prius and fueled with LH(2) demonstrated the longest unrefueled driving distance and the longest cryogenic H(2) hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Ross, Timothy O.; Weisberg, Andrew H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brunner, Tobias C.; Kircher, Oliver] BMW Grp, D-80788 Munich, Germany. RP Aceves, SM (reprint author), Lawrence Livermore Natl Lab, POB 808,L-792, Livermore, CA 94551 USA. EM saceves@llnl.gov; tobias.a.brunner@bmw.de; oliver.kircher@bmw.de RI aceves, salvador/G-9052-2011 OI aceves, salvador/0000-0001-5687-7256 FU DOE, Office of Hydrogen and Fuel Cell Technologies, Monterey Gardiner, Technology Development Manager; U.S. Department of Energy [DE-AC52-07NA27344] FX This project was funded by DOE, Office of Hydrogen and Fuel Cell Technologies, Monterey Gardiner, Technology Development Manager. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work has furthermore been done under CRADA TC02119 between LLNL and the BMW Group. NR 22 TC 56 Z9 57 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2010 VL 35 IS 3 BP 1219 EP 1226 DI 10.1016/j.ijhydene.2009.11.069 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 560ZI UT WOS:000274944000037 ER PT J AU Gao, F Yang, YF Liu, J Shao, HX AF Gao, Feng Yang, Yifu Liu, Jun Shao, Huixia TI Single-particle investigation on the activation process of a hydrogen storage alloy SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Single particle; Ultramicroelectrode; Hydrogen storage alloys; Activation; Ni-MH battery ID MICROELECTRODE TECHNIQUE; NICKEL-HYDROXIDE; SURFACE MODIFICATION; NI/MH BATTERIES; ELECTRODE; LANI5; MMNI(3.55)CO(0.75)MN(0.4)AL(0.3); X=0.1-0.5; MODEL; NI AB Using an improved apparatus to investigate the activation process of single particles of hydrogen storage alloy LaNi3.55Co0.75Mn0.4Al0.3, we directly showed the particle's morphology changes during the activation process. Electrochemical proper-ties were systematically monitored during the activation process of the single particles. We finally proposed a new parameter - normalized output rate (NOR) - to evaluate the output performance of the electrode material. in addition to revealing what occurred during the activation process, we provided a program for the quick testing of electrode materials. (C) 2009 Published by Elsevier Ltd on behalf of Professor T. Nejat Veziroglu. C1 [Gao, Feng; Yang, Yifu; Shao, Huixia] Wuhan Univ, Dept Chem, Wuhan 430072, Peoples R China. [Liu, Jun] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Yang, YF (reprint author), Wuhan Univ, Dept Chem, Wuhan 430072, Peoples R China. EM yang-y-f1@vip.sina.com; jun.liu@lbl.gov FU National High-Tech Research and Development Project [2006 AA11A152] FX This research was financially supported by the National High-Tech Research and Development Project (Project "863") with Contract No. 2006 AA11A152. NR 27 TC 3 Z9 4 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD FEB PY 2010 VL 35 IS 3 BP 1273 EP 1279 DI 10.1016/j.ijhydene.2009.11.084 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 560ZI UT WOS:000274944000044 ER PT J AU Liu, XB Wang, M Meng, J Ben-Naim, E Guo, ZY AF Liu, X. B. Wang, M. Meng, J. Ben-Naim, E. Guo, Z. Y. TI Minimum Entransy Dissipation Principle for Optimization of Transport Networks SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION LA English DT Article DE transport network optimization; entransy dissipation rate; Murray's law ID HEAT-CONDUCTION; POROUS-MEDIA; VOLUME; POINT; LAW AB The concept of entransy, which describes the capability of heat conduction in the continuum and was originally used for optimization of heat transfer devices, has been extended for optimization of transport networks in this contribution. Based on the definition of the entransy dissipation rate for transport networks, the analysis indicates that the minimum entransy dissipation rate leads to the optimal transfer performance of transport network subject to a given constraint. The present optimization analyses agree well with the existing experimental data and optimization theories for transport networks. C1 [Wang, M.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Liu, X. B.; Meng, J.; Guo, Z. Y.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. [Wang, M.; Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Study, Los Alamos, NM 87545 USA. RP Wang, M (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM mwang@lanl.gov RI Wang, Moran/A-1150-2010; 柳, 雄斌/H-7429-2016 OI 柳, 雄斌/0000-0002-6954-8547 FU Major State Basic Research Development Program of China [2007CB206901]; LANL [20080727PRD2] FX This work is supported by the Major State Basic Research Development Program of China (No.2007CB206901). MW thanks the support by LANL's LDRD Project 20080727PRD2 through the J. R. Oppenheimer Fellowship. NR 16 TC 18 Z9 25 U1 0 U2 13 PU FREUND PUBLISHING HOUSE LTD PI TEL AVIV PA PO BOX 35010, TEL AVIV 61350, ISRAEL SN 1565-1339 J9 INT J NONLIN SCI NUM JI Int. J. Nonlinear Sci. Numer. Simul. PD FEB PY 2010 VL 11 IS 2 BP 113 EP 120 PG 8 WC Engineering, Multidisciplinary; Mathematics, Applied; Mechanics; Physics, Mathematical SC Engineering; Mathematics; Mechanics; Physics GA 603UA UT WOS:000278232400006 ER PT J AU Olmschenk, S Hayes, D Matsukevich, DN Maunz, P Moehring, DL Monroe, C AF Olmschenk, S. Hayes, D. Matsukevich, D. N. Maunz, P. Moehring, D. L. Monroe, C. TI QUANTUM LOGIC BETWEEN DISTANT TRAPPED IONS SO INTERNATIONAL JOURNAL OF QUANTUM INFORMATION LA English DT Article DE Trapped ions; photons; heralded gate; quantum teleportation ID SINGLE-PHOTON SOURCE; PODOLSKY-ROSEN CHANNELS; ATOMIC IONS; CLOCK TRANSITION; ENTANGLED STATES; PAUL TRAP; YB-II; TELEPORTATION; QUBITS; INTERFERENCE AB Trapped atomic ions have proven to be one of the most promising candidates for the realization of quantum computation due to their long trapping times, excellent coherence properties, and exquisite control of the internal atomic states. Integrating ions (quantum memory) with photons (distance link) offers a unique path to large-scale quantum computation and long-distance quantum communication. In this article, we present a detailed review of the experimental implementation of a heralded photon-mediated quantum gate between remote ions, and the employment of this gate to perform a teleportation protocol between two ions separated by a distance of about one meter. C1 [Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Maunz, P.; Monroe, C.] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA. [Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Maunz, P.; Monroe, C.] NIST, College Pk, MD 20742 USA. [Moehring, D. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Olmschenk, S (reprint author), Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA. EM steven.olmschenk@gmail.com RI Matsukevich, Dzmitry/C-9134-2009; Olmschenk, Steven/D-4960-2011; Monroe, Christopher/G-8105-2011 OI Olmschenk, Steven/0000-0003-0105-7714; FU IARPA; NSF; NSF Physics Frontier Center at the Joint Quantum Institute FX We would like to thank Luming Duan and Kelly Younge for their valuable contributions. This work is supported by IARPA under ARO contract, the NSF PIF Program, and the NSF Physics Frontier Center at the Joint Quantum Institute. NR 133 TC 13 Z9 13 U1 1 U2 15 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-7499 J9 INT J QUANTUM INF JI Int. J. Quantum Inf. PD FEB-MAR PY 2010 VL 8 IS 1-2 BP 337 EP 394 DI 10.1142/S0219749910006381 PG 58 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 603FR UT WOS:000278194600014 ER PT J AU Sowa, MB Goetz, W Baulch, JE Pyles, DN Dziegielewski, J Yovino, S Snyder, AR De Toledo, SM Azzam, EI Morgan, WF AF Sowa, Marianne B. Goetz, Wilfried Baulch, Janet E. Pyles, Dinah N. Dziegielewski, Jaroslaw Yovino, Susannah Snyder, Andrew R. De Toledo, Sonia M. Azzam, Edouard I. Morgan, William F. TI Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE bystander effects; human cells; ionising radiation; low-LET ID INDUCED GENOMIC INSTABILITY; MEDIATED INTERCELLULAR COMMUNICATION; TARGETED CYTOPLASMIC IRRADIATION; CHARGED-PARTICLE MICROBEAM; HUMAN SKIN FIBROBLASTS; LOW-DOSE RADIATION; IONIZING-RADIATION; MAMMALIAN-CELLS; ALPHA-PARTICLES; NONIRRADIATED CELLS AB Purpose: To investigate radiation-induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and methods: We used medium transfer and targeted irradiation to examine radiation-induced bystander effects in primary human fibroblast (AG01522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10-100 cGy. Results: The results showed no evidence of a low-LET radiation-induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor did we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 McV alpha-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans. C1 [Sowa, Marianne B.; Morgan, William F.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Goetz, Wilfried; Baulch, Janet E.; Pyles, Dinah N.; Yovino, Susannah; Morgan, William F.] Univ Maryland, Radiat Oncol Res Lab, Baltimore, MD 21201 USA. [Goetz, Wilfried; Baulch, Janet E.; Pyles, Dinah N.; Yovino, Susannah; Morgan, William F.] Univ Maryland, Greenebaum Canc Ctr, Baltimore, MD 21201 USA. [Dziegielewski, Jaroslaw] Univ Virginia, Dept Radiat Oncol, Charlottesville, VA USA. [Snyder, Andrew R.] Targanox, Boston, MA USA. [De Toledo, Sonia M.; Azzam, Edouard I.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Radiol, Newark, NJ 07103 USA. RP Sowa, MB (reprint author), Pacific NW Natl Lab, MS P7-56, Richland, WA 99354 USA. EM Marianne.sowa@pnl.gov FU Biological and Environmental Research Program (BER); U.S. Department of Energy [DE-AC06-76RLO, DE-FG02-05ER64082]; NASA [NNJ06HD31G, NNX07AT42G]; NIH-National Cancer Institute [CA92262-01] FX We thank J. Corcoran for preparation of the Figures and L. M. Markillie for performing statistical analysis of the data. This work was supported by the Biological and Environmental Research Program (BER), U.S. Department of Energy, Grant No. DE-AC06-76RLO (MBS) and DE-FG02-05ER64082 (WFM). Work performed at Brookhaven National Laboratory was supported by NASA, Grant No. NNJ06HD31G (WFM) and NNX07AT42G (JEB). Work performed at UMDNJ-New Jersey Medical School was supported by NIH-National Cancer Institute, Grant No. CA92262-01 (EIA). NR 55 TC 43 Z9 45 U1 0 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD FEB PY 2010 VL 86 IS 2 BP 102 EP 113 DI 10.3109/09553000903419957 PG 12 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 556YH UT WOS:000274629400003 PM 20148696 ER PT J AU Robinett, RD Wilson, DG AF Robinett, Rush D., III Wilson, David G. TI Collective plume tracing: A minimal information approach to collective control SO INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL LA English DT Article DE Hamiltonian systems; Fisher information; collective systems; exergy ID DECENTRALIZED CONTROL; MATHEMATICAL-THEORY; COMMUNICATION; VEHICLES; LINKS AB A team of simple robots are used to trace a chemical plume to its source in order to find buried landmines. The goal of this paper is to analyze and design 'emergent' behaviors to enable the team of simple robots to perform plume tracing with the assistance of information theory. The first step in the design process is to define a fundamental trade-off for collective systems between processing, memory, and communications for each robot in order to execute the desired collective behaviors. The baseline problem is to determine the minimum values for processing, memory, and communications simultaneously. This will enable the designer to determine the required information flow and how effectively the information resources are being utilized in collective systems. The solution to this baseline problem is an 8-bit processor, no memory, and three words to communicate. The details of this solution are described in this paper. The second step is to extend the previous kinematic solution to a more general Hamiltonian-based solution to develop a Fisher Information Equivalency. The Fisher Information Equivalency leads directly to necessary and sufficient conditions for stability and control of nonlinear collective systems via physical and information exergy flows. In particular, the creation of a 'virtual/information potential' by the team of robots via the decentralized distributed networked sensors produces a direct relationship between proportional feedback control, stored exergy in the system, and Fisher Information. This nonlinear stability formulation through Fisher Information directly provides an optimization problem to 'tune' the performance of the team of robots as a function of required information resources. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Robinett, Rush D., III; Wilson, David G.] Sandia Natl Labs, Energy Resources & Syst Anal Ctr, Albuquerque, NM 87185 USA. RP Wilson, DG (reprint author), Sandia Natl Labs, Energy Resources & Syst Anal Ctr, POB 5800, Albuquerque, NM 87185 USA. EM dwilso@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 37 TC 4 Z9 4 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1049-8923 J9 INT J ROBUST NONLIN JI Int. J. Robust Nonlinear Control PD FEB PY 2010 VL 20 IS 3 BP 253 EP 268 DI 10.1002/rnc.1420 PG 16 WC Automation & Control Systems; Engineering, Electrical & Electronic; Mathematics, Applied SC Automation & Control Systems; Engineering; Mathematics GA 544TO UT WOS:000273682400001 ER PT J AU N'Guessan, AL Elifantz, H Nevin, KP Mouser, PJ Methe, B LWoodard, T Manley, K Williams, KH Wilkins, MJ Larsen, JT Long, PE Lovley, DR AF N'Guessan, A. Lucie Elifantz, Hila Nevin, Kelly P. Mouser, Paula J. Methe, Barbara LWoodard, Trevor Manley, Kimberly Williams, Kenneth H. Wilkins, Michael J. Larsen, Joern T. Long, Philip E. Lovley, Derek R. TI Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer SO ISME JOURNAL LA English DT Article DE geobacteraceae; phosphate-limitation; uranium bioremediation; gene expression ID RHIZOBIUM SINORHIZOBIUM MELILOTI; DISSIMILATORY METAL REDUCTION; BACTERIAL COMMUNITY STRUCTURE; IN-SITU BIOSTIMULATION; ESCHERICHIA-COLI; PST OPERON; FAMILY GEOBACTERACEAE; TRANSCRIPTIONAL ANALYSIS; QUANTIFYING EXPRESSION; STARVATION RESPONSE AB Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes. The ISME Journal (2010) 4, 253-266; doi: 10.1038/ismej.2009.115; published online 10 December 2009 C1 [N'Guessan, A. Lucie; Long, Philip E.] Pacific NW Natl Lab, Dept Microbiol, Richland, WA 99352 USA. [N'Guessan, A. Lucie; Elifantz, Hila; Nevin, Kelly P.; Mouser, Paula J.; LWoodard, Trevor; Manley, Kimberly; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Methe, Barbara] J Craig Venter Inst, Microbial & Environm Genom Grp, Rockville, MD USA. [Williams, Kenneth H.; Larsen, Joern T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wilkins, Michael J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP N'Guessan, AL (reprint author), Pacific NW Natl Lab, Dept Microbiol, POB 999, Richland, WA 99352 USA. EM lucie.nguessan@pnl.gov RI Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155 FU Office of Science (BER), U.S. Department of Energy [DE-FC02-02ER63446, DE-FG02-07ER64377]; LBNL-DOE [DE-AC02-05CH11231] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement No. DE-FC02-02ER63446 and Grant No. DE-FG02-07ER64377, as well as LBNL-DOE Contract No. DE-AC02-05CH11231. NR 58 TC 25 Z9 26 U1 6 U2 19 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD FEB PY 2010 VL 4 IS 2 BP 253 EP 266 DI 10.1038/ismej.2009.115 PG 14 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 559DG UT WOS:000274800300011 PM 20010635 ER PT J AU Egami, T AF Egami, T. TI Understanding the Properties and Structure of Metallic Glasses at the Atomic Level SO JOM LA English DT Article ID FREE-VOLUME MODEL; AMORPHOUS SOLIDS; RELAXATION; TRANSITION; DIFFUSION; LIQUID AB Liquids and glasses have been well known to human kind for millennia. And yet major mysteries remain in the behavior of glasses and liquids at the atomic level, and identifying the microscopic mechanisms that control the properties of glasses is one of the most challenging unsolved problems in physical sciences. For this reason, applying simplistic approaches to explain the behavior of metallic glasses can lead to serious errors. On the other hand because metallic glasses are atomic glasses with relatively simple structure, they may offer better opportunities to advance our fundamental understanding on the nature of the glass. The difficulties inherent to the problem and some recent advances are reviewed here. C1 [Egami, T.] Univ Tennessee, Joint Inst Neutron Sci, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Egami, T (reprint author), Univ Tennessee, Joint Inst Neutron Sci, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM egami@utk.edu FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Engergy FX The author is grateful to his colloborators for valuable input, T Nagase in particular for his comments and information regarding radiation damage in metallic glasses. This work has been sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Engergy. NR 40 TC 33 Z9 34 U1 4 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD FEB PY 2010 VL 62 IS 2 BP 70 EP 75 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 551LO UT WOS:000274211000014 ER PT J AU Yang, Y Ye, JC Lu, J Gao, YF Liaw, PK AF Yang, Yong Ye, Jianchao Lu, Jian Gao, Yanfei Liaw, Peter K. TI Metallic Glasses: Gaining Plasticity for Microsystems SO JOM LA English DT Article ID SHEAR BANDS; MECHANICAL-BEHAVIOR; INHOMOGENEOUS FLOW; AMORPHOUS-ALLOYS; BULK; DEFORMATION; STRENGTH; FRACTURE; MICROPILLARS; COMPRESSION AB Since the 1960s, metallic glasses (MGs) have attracted tremendous research interest in materials science and engineering, given their unique combination of mechanical properties. However, the industrial applications of MGs have been hindered due to their lack of ductility in bulk form at room temperature. In contrast, it was observed that MGs could exhibit excellent plasticity at the small size scale. In this article, we summarize the related experimental findings having been reported so far together with the possible origins of such a size effect in MGs. The enhanced plasticity of MGs in small volumes, together with their high mechanical strengths and remarkable thermoplastic formability, strongly implies that MGs are the promising materials for fabricating the next generation of micro- and nano-devices. C1 [Yang, Yong; Ye, Jianchao; Lu, Jian] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China. [Gao, Yanfei; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Yanfei] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Yang, Y (reprint author), Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China. EM mmyyang@polyu.edu.hk RI Gao, Yanfei/F-9034-2010; ye, jianchao/A-6388-2011; Yang, Yong/G-9148-2011 OI Gao, Yanfei/0000-0003-2082-857X; Yang, Yong/0000-0002-0491-8295 FU GRF; Hong Kong Government; National Science Foundation International Materials Institutes (IMI) [PolyU 5203/08E, DMR-0231320]; National Science Foundation [DMR 0909037]; [1-ZV4J] FX Y.Y. acknowledges the internal research fund (Grant # 1-ZV4J), provided for newly recruited staff, by the Hong Kong Polytechnic University for conducting the current research. J. Lu is greateful for the financial support from GRF, the Hong Kong Government, with the grant number of PolyU 5203/08E. P.K.L. would like to greatly acknowledge the support of the National Science Foundation International Materials Institutes (IMI) Program (DMR-0231320). YFG. acknowledges support from the National Science Foundation (DMR 0909037). The authors apprectiate the provision of testing materials by Prof. C.T. Liu, Prof. J.S.C. Jang, Prof. Y. Yokoyama, and Dr. G. Wang. NR 59 TC 21 Z9 21 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD FEB PY 2010 VL 62 IS 2 BP 93 EP 98 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 551LO UT WOS:000274211000017 ER PT J AU Bedeaux, BC Trott, WM Castaneda, JN AF Bedeaux, Brett C. Trott, Wayne M. Castaneda, Jaime N. TI Velocity measurements of inert porous materials driven by infrared-laser-ablated thin-film titanium SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE blackbody radiation; hydrodynamics; laser ablation; metallic thin films; porous materials; solid-state plasma; titanium; vaporisation ID SWITCHED RUBY-LASER; SHOCKED SURFACES; INITIATION AB This article presents and interprets a series of experiments performed to measure the velocity of four inert low-density porous materials that were accelerated by an ablated thin-film titanium metal, created by vaporizing a 250-nm-thick layer of titanium with a high-energy, Q-switched, pulsed, and 1.054 mu m neodymium-glass laser. Inert powder materials were chosen to match, among other characteristics, the morphology of energetic materials under consideration for use in detonator applications. The observed behavior occurs near the thin-film titanium ablation layer, through complex physical mechanisms, including laser absorption in the metal layer, ablation and formation of confined plasma that is a blackbody absorber of the remaining photon energy, and vaporization of the remaining titanium metal. One-dimensional hydrodynamic modeling provided a basis of comparison with the measured velocities. We found, as predicted in wave-propagation-code modeling, that an Asay foil can indicate total momentum of the driven material that is mechanically softer (lower in shock impedance) than the foil. The key conclusion is that the specific impulse delivered by the laser transfers a corresponding momentum to soft, organic power columns that are readily compacted. Impulse from the laser is less efficient in transferring momentum to hard inorganic particles that are less readily compacted. C1 [Bedeaux, Brett C.; Trott, Wayne M.; Castaneda, Jaime N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bedeaux, BC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bcbedea@sandia.gov FU U. S. Department of Energy [DE-AC04-94AL85000, SAND2009-2455J] FX The authors thank Dr. Marcia Cooper and operations personnel at the Sandia National Laboratories Explosive Components Facility for their help and cooperation in the laboratory characterization of the inert powder materials. The authors express appreciation for funding facilitated by Mary E. Gonzales, Jim Wilder Jr., Joe Thomes, and Sara Pecak, all of whom were or are still at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. SAND2009-2455J was the Sandia National Laboratories document number assigned to this article. NR 40 TC 1 Z9 1 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB PY 2010 VL 107 IS 3 AR 034912 DI 10.1063/1.3273317 PG 9 WC Physics, Applied SC Physics GA 555MZ UT WOS:000274517300126 ER PT J AU Grierson, DS Sumant, AV Konicek, AR Friedmann, TA Sullivan, JP Carpick, RW AF Grierson, D. S. Sumant, A. V. Konicek, A. R. Friedmann, T. A. Sullivan, J. P. Carpick, R. W. TI Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE amorphous state; bonds (chemical); carbon; EXAFS; Raman spectra; rapid thermal annealing; thermal stability; thin films; XANES ID DIAMOND-LIKE CARBON; CATHODIC-ARC DEPOSITION; THIN-FILMS; STRESS; MICROSCOPY; EVOLUTION; HARDNESS; MODULUS; VACUUM AB We perform a quantitative investigation of the energetics of thermally induced sp(3)-> sp(2) conversion of carbon-carbon bonds in tetrahedral amorphous carbon (ta-C) films by using near-edge x-ray absorption fine structure (NEXAFS) and Raman spectroscopy. We investigate the evolution of the bonding configuration in ta-C thin films subjected to high temperature annealing in flowing Argon gas using a rapid thermal annealing furnace over the range of 200-1000 degrees C. We observe no substantial change in bonding structure below 600 degrees C. Changes in the NEXAFS and Raman spectra start to appear above 600 degrees C, and by 1000 degrees C a significant increase in the sp(2) bonding in the film is observed. No oxygen bonding is detected in the NEXAFS spectra, but we do observe an isosbestic point, demonstrating that the thermally driven sp(3)-> sp(2) conversion reaction occurs without passing through an intermediate transition state. This allows us to use NEXAFS spectra of thermally annealed ta-C films to quantitatively determine that the activation energy for directly converting the sp(3)-bonded carbon to the sp(2)-bonded configuration is 3.5 +/- 0.9 eV. C1 [Grierson, D. S.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Sumant, A. V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Konicek, A. R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Friedmann, T. A.; Sullivan, J. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Carpick, R. W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. RP Grierson, DS (reprint author), Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. EM dsgrierson@wisc.edu FU Air Forc [FA9550-08-1-0024]; DOE [DE-AC02-05CH11231, DE-AC02-06CH11357] FX Funding was provided by the Air Force under Grant No. FA9550-08-1-0024. The NEXAFS work was at the ALS which was supported by the DOE under Contract No. DE-AC02-05CH11231. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would also like to acknowledge help from Dr. J. Denlinger for his assistance with NEXAFS measurements at the ALS. NR 29 TC 30 Z9 30 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB PY 2010 VL 107 IS 3 AR 033523 DI 10.1063/1.3284087 PG 5 WC Physics, Applied SC Physics GA 555MZ UT WOS:000274517300040 ER PT J AU Lin, SH Rappoport, TG Berciu, M Janko, B AF Lin, Shi-Hsin Rappoport, Tatiana G. Berciu, Mona Janko, Boldizsar TI The effect of impurities on spin-polarized Zeeman bound states in dilute magnetic semiconductor-superconductor hybrids SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE bound states; magnetic impurities; semiconductor quantum wells; semimagnetic semiconductors; spin polarised transport; superconducting semiconductors; wave functions; Zeeman effect ID FIELDS; CONFINEMENT; SCATTERING; (GA,MN)AS; ELECTRONS; SPLINES; PHYSICS; TUBES; FLUX AB We investigate the effect of single and multiple impurities on the Zeeman-localized, spin-polarized bound states in dilute magnetic semiconductor hybrid system. Such bound states appear whenever a dilute magnetic semiconductor showing giant Zeeman effect is exposed to an external magnetic field showing nanoscale inhomogeneity. We consider the specific example of a superconductor-dilute magnetic semiconductor hybrid, calculate the energy spectrum and the wave functions of the bound states in the presence of a single impurity, and monitor the evolution of the bound state as a function of the impurity strength and impurity location with respect to the center of the Zeeman trapping potential. Our results have important experimental implications as they predict robust spin textures even for ideal samples. We find that for all realistic impurity strengths the Zeeman bound state survives the presence of the impurity. We also investigate the effect of a large number of impurities and perform ensemble averages with respect to the impurity locations. We find that the spin-polarized Zeeman bound states are very robust, and they remain bound to the external field inhomogeneity throughout the experimentally relevant region of impurity concentration and scattering strength. C1 [Lin, Shi-Hsin; Janko, Boldizsar] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Rappoport, Tatiana G.] Univ Fed Rio de Janeiro, Inst Fis, BR-528970 Rio De Janeiro, Brazil. [Berciu, Mona] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Janko, Boldizsar] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lin, SH (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM albert.shihsin.lin@gmail.com RI Rappoport, Tatiana/J-8626-2014; Berciu, Mona/O-4889-2014; OI Rappoport, Tatiana/0000-0002-1878-5956 FU CNPq; FAPERJ; L'Oreal Brazil; National Science Foundation [NSF-DMR 06-201014]; U.S. Department of Energy Basic Energy Sciences; Institute for Theoretical Sciences; Joint Institute of Argonne National Laboratory; University of Notre Dame; NSERC; CIfAR Nanoelectronics FX T. G. R. would like to acknowledge the Brazilian agencies CNPq and FAPERJ and L'Oreal Brazil for the financial support. S. L. acknowledges the Graduate Summer Fellow of the Center for Applied Mathematics, University of Notre Dame. B. J. and S. L. acknowledge the financial support of the National Science Foundation under Grant No. NSF-DMR 06-201014, the U.S. Department of Energy Basic Energy Sciences and the Institute for Theoretical Sciences, a Joint Institute of Argonne National Laboratory and the University of Notre Dame. M. B. acknowledges support from the Research Corporation, NSERC, and CIfAR Nanoelectronics. NR 30 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB PY 2010 VL 107 IS 3 AR 034307 DI 10.1063/1.3275886 PG 8 WC Physics, Applied SC Physics GA 555MZ UT WOS:000274517300093 ER PT J AU Reiley, DK Breshears, DD Zedler, PH Ebinger, MH Meyer, CW AF Reiley, David K. Breshears, David D. Zedler, Paul H. Ebinger, Michael H. Meyer, Clifton W. TI Soil carbon heterogeneity in pinon-juniper woodland patches: Effect of woody plant variation on neighboring intercanopies is not detectable SO JOURNAL OF ARID ENVIRONMENTS LA English DT Article DE Carbon; Fine vs. coarse soil fractions; Spatial distribution; Semi-arid; Management and sequestration; Pinyon ID CHANGE-TYPE DROUGHT; SEMIARID WOODLAND; UNITED-STATES; NEW-MEXICO; DIE-OFF; VEGETATION; ECOSYSTEMS; MICROCLIMATE; SEQUESTRATION; DISTURBANCE AB Soil carbon often varies significantly among vegetation patch types, but less known is how the size and species of plants in the tree canopy patches and the cover types of the intercanopy patches affect the carbon storage, and whether vegetation characteristics affect storage in adjacent patches. To assess this, we measured fine-fraction soil carbon in a semiarid woodland in New Mexico USA for canopy patches of two co-dominant woody species, Pinus edulis and Juniperus monosperma that were paired with intercanopy patch locations covered by herbaceous grass (Bouteloua gracilis) or bare ground. Soil carbon at shallow depths was greater in canopy than intercanopy patches by a factor of 2 or more, whereas within intercanopy patches soil carbon in grass locations exceeded that in bare locations only after accounting for coarse-fraction carbon. Hypothesized differences among canopy patches associated with species or size were not detected (although some size-depth interactions consistent with expectations were ;detected), nor, importantly, were effects of species or size of woody plant on intercanopy soil carbon. The results are notable because where applicable they justify estimates of soil carbon inventories based on readily observable heterogeneity in above-ground plant cover without considering the size and species of the woody plants. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Breshears, David D.] Univ Arizona, Sch Nat Resources & Environm, Inst Environm, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Reiley, David K.; Zedler, Paul H.] Univ Wisconsin, Nelson Inst Environm Studies, Madison, WI 53706 USA. [Zedler, Paul H.] Univ Wisconsin Arboretum, Madison, WI 53711 USA. [Ebinger, Michael H.; Meyer, Clifton W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources & Environm, Inst Environm, Tucson, AZ 85721 USA. EM daveb@email.arizona.edu RI Breshears, David/B-9318-2009 OI Breshears, David/0000-0001-6601-0058 NR 59 TC 4 Z9 4 U1 0 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0140-1963 J9 J ARID ENVIRON JI J. Arid. Environ. PD FEB PY 2010 VL 74 IS 2 BP 239 EP 246 DI 10.1016/j.jaridenv.2009.08.015 PG 8 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 539JK UT WOS:000273250000009 ER PT J AU ReVelle, DO AF ReVelle, D. O. TI Modified ray-mode (phase) theory: Understanding counter-wind propagation effects from atmospheric explosions SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Ray-mode (phase) propagation theory; Acoustic-gravity wave and infrasound; propagation from atmospheric explosions Refraction; diffraction and scattering of acoustic-gravity waves in the atmosphere Middle atmospheric structural parameters; including temperature; sound speed; atmospheric resonant frequencies; atmospheric turbulence and internal gravity waves; mean horizontal wind motions ID ACOUSTIC-GRAVITY WAVES; UNDERWATER ACOUSTICS; STRATIFIED ATMOSPHERE; SOUND-PROPAGATION; EARTHS ATMOSPHERE; OCEAN; TEMPERATURE; APPROXIMATION; ATTENUATION; INFRASOUND AB We have incorporated horizontal winds into ray-mode theory including the full spectrum of acoustic-gravity waves for a perfectly stratified, range-independent, steady-state model atmosphere for frequencies from 10(-4) to similar to 10Hz. This approach has also been applied to a specific atmospheric propagation problem that has long defied a solution, namely counter-wind propagation arrivals at a location similar to 300 km up-wind of the source. Our modified ray-mode theory predicts reliable up-wind solutions, but only if small-scale sound speed fluctuations were added to the mean seasonal sound speed profiles. Since full-waveguide theory and modified ray-mode mode theory incorporate diffraction and scattering propagation effects, we have performed additional analyses to determine the mechanism through which these fluctuations produce the up-wind signals. We have concluded that the dominant mechanism is through diffraction due to the presence of semi-permanent turbulence and internal gravity waves located near the stratopause. Published by Elsevier Ltd. C1 Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. RP ReVelle, DO (reprint author), Los Alamos Natl Lab, Geophys Grp, EES-17, Los Alamos, NM 87545 USA. EM revelle@lanl.gov NR 66 TC 3 Z9 3 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD FEB PY 2010 VL 72 IS 2-3 BP 241 EP 261 DI 10.1016/j.jastp.2009.11.017 PG 21 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 560UW UT WOS:000274930000015 ER PT J AU Young, M Artsatbanov, V Beller, HR Chandra, G Chater, KF Dover, LG Goh, EB Kahan, T Kaprelyants, AS Kyrpides, N Lapidus, A Lowry, SR Lykidis, A Mahillon, J Markowitz, V Mavromatis, K Mukamolova, GV Oren, A Rokem, JS Smith, MCM Young, DI Greenblatt, CL AF Young, Michael Artsatbanov, Vladislav Beller, Harry R. Chandra, Govind Chater, Keith F. Dover, Lynn G. Goh, Ee-Been Kahan, Tamar Kaprelyants, Arseny S. Kyrpides, Nikos Lapidus, Alla Lowry, Stephen R. Lykidis, Athanasios Mahillon, Jacques Markowitz, Victor Mavromatis, Konstantinos Mukamolova, Galina V. Oren, Aharon Rokem, J. Stefan Smith, Margaret C. M. Young, Danielle I. Greenblatt, Charles L. TI Genome Sequence of the Fleming Strain of Micrococcus luteus, a Simple Free-Living Actinobacterium SO JOURNAL OF BACTERIOLOGY LA English DT Review ID RESUSCITATION-PROMOTING FACTORS; PENICILLIN-BINDING PROTEINS; STREPTOMYCES-COELICOLOR A3(2); STATIONARY-PHASE CULTURES; MYCOBACTERIUM-TUBERCULOSIS; ESCHERICHIA-COLI; CORYNEBACTERIUM-GLUTAMICUM; CELL-DIVISION; TEICHURONIC ACID; SARCINA-LUTEA AB Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to beta-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome. C1 [Young, Michael; Young, Danielle I.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3DD, Ceredigion, Wales. [Artsatbanov, Vladislav; Kaprelyants, Arseny S.] Bah Inst Biochem, Moscow 119071, Russia. [Beller, Harry R.; Goh, Ee-Been] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Chandra, Govind; Chater, Keith F.] John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England. [Dover, Lynn G.] Northumbria Univ, Biomol & Biomed Res Ctr, Sch Appl Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. [Kahan, Tamar] Hebrew Univ Jerusalem, Bioinformat Unit, Fac Med, Jerusalem, Israel. [Kyrpides, Nikos; Lapidus, Alla; Lowry, Stephen R.; Lykidis, Athanasios; Mavromatis, Konstantinos] DOE Joint Genome Inst, Walnut Creek, CA 94958 USA. [Mahillon, Jacques] Catholic Univ Louvain, Lab Food & Environm Microbiol, B-1348 Louvain, Belgium. [Markowitz, Victor] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Mukamolova, Galina V.] Univ Leicester, Dept Infect Immun & Inflammat, Leicester LE1 9HN, Leics, England. [Oren, Aharon] Hebrew Univ Jerusalem, Dept Plant & Environm Sci, Inst Life Sci, IL-91904 Jerusalem, Israel. [Oren, Aharon] Hebrew Univ Jerusalem, Moshe Shilo Minerva Ctr Marine Biogeochem, IL-91904 Jerusalem, Israel. [Rokem, J. Stefan; Greenblatt, Charles L.] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Microbiol & Mol Genet, IMRIC, IL-91120 Jerusalem, Israel. [Smith, Margaret C. M.] Univ Aberdeen, Inst Med Sci, Aberdeen AB25 2ZD, Scotland. RP Young, M (reprint author), Aberystwyth Univ, Inst Biol Environm & Rural Sci, Penglais Campus, Aberystwyth SY23 3DD, Ceredigion, Wales. EM miy@aber.ac.uk RI Dover, Lynn/F-3021-2010; Lapidus, Alla/I-4348-2013; PONNERASSERY, Sudheesh/C-4589-2014; Beller, Harry/H-6973-2014; Kyrpides, Nikos/A-6305-2014; OI Chandra, Govind/0000-0002-7882-6676; Dover, Lynn/0000-0002-4776-2665; Lapidus, Alla/0000-0003-0427-8731; Kyrpides, Nikos/0000-0002-6131-0462; Smith, Maggie/0000-0002-4150-0496 FU British Council; Israeli Ministry of Science and Technology; Hebrew University; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; UK BBSRC; MCB RAS program FX We are grateful to the British Council, the Israeli Ministry of Science and Technology, and the Hebrew University for funding a workshop on the M. luteus genome held on 13 to 18 April 2008 in Jerusalem. For H.R.B. and E.B.G., this study was part of the DOE Joint Bio-Energy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. M.Y. thanks the UK BBSRC for financial support, and V.A. and A.S.K. thank the MCB RAS program for financial support. NR 142 TC 22 Z9 163 U1 9 U2 51 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD FEB 1 PY 2010 VL 192 IS 3 BP 841 EP 860 DI 10.1128/JB.01254-09 PG 20 WC Microbiology SC Microbiology GA 544PW UT WOS:000273672000024 PM 19948807 ER PT J AU Thompson, J Hill, KK Smith, TJ Pikis, A AF Thompson, John Hill, Karen K. Smith, Theresa J. Pikis, Andreas TI The Gene CBO0515 from Clostridium botulinum Strain Hall A Encodes the Rare Enzyme N-5-(Carboxyethyl) Ornithine Synthase, EC 1.5.1.24 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID LACTOCOCCUS-LACTIS K1; STREPTOCOCCUS-LACTIS; NADP+ OXIDOREDUCTASE; N5-(L-1-CARBOXYETHYL)-L-ORNITHINE; PURIFICATION; SEQUENCE; DEHYDROGENASE; NEUROTOXIN; PROTEIN AB Sequencing of the genome of Clostridium botulinum strain Hall A revealed a gene (CBO0515), whose putative amino acid sequence was suggestive of the rare enzyme N-5-(1-carboxyethyl) ornithine synthase. To test this hypothesis, CBO0515 has been cloned, and the encoded polypeptide was purified and characterized. This unusual gene appears to be confined to proteolytic strains assigned to group 1 of C. botulinum. C1 [Thompson, John; Pikis, Andreas] NIDCR, Microbial Biochem & Genet Unit, Oral Infect & Immun Branch, NIH,DHHS, Bethesda, MD 20892 USA. [Pikis, Andreas] US FDA, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA. [Hill, Karen K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Smith, Theresa J.] USA, Med Res Inst Infect Dis, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. RP Thompson, J (reprint author), NIDCR, Microbial Biochem & Genet Unit, Oral Infect & Immun Branch, NIH,DHHS, Bldg 30,Rm 325,Convent Dr MSC-4350, Bethesda, MD 20892 USA. EM jthompson@dir.nidcr.nih.gov FU Intramural Research Program of the National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD FX This investigation was supported by the Intramural Research Program of the National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD. NR 20 TC 0 Z9 1 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD FEB PY 2010 VL 192 IS 4 BP 1151 EP 1155 DI 10.1128/JB.01044-09 PG 5 WC Microbiology SC Microbiology GA 549DF UT WOS:000274021900026 PM 19933367 ER PT J AU Chang, C Tesar, C Gu, MY Babnigg, G Joachimiak, A Pokkuluri, PR Szurmant, H Schiffer, M AF Chang, Changsoo Tesar, Christine Gu, Minyi Babnigg, Gyorgy Joachimiak, Andrzej Pokkuluri, P. Raj Szurmant, Hendrik Schiffer, Marianne TI Extracytoplasmic PAS-Like Domains Are Common in Signal Transduction Proteins SO JOURNAL OF BACTERIOLOGY LA English DT Article ID C-TYPE HEME; BACILLUS-SUBTILIS; 2-COMPONENT SYSTEM; SENSOR DOMAIN; GEOBACTER-SULFURREDUCENS; CRYSTAL-STRUCTURES; BACTERIA; EXPRESSION; COMPLEXES; MECHANISM AB We present the crystal structure of the extracytoplasmic domain of the Bacillus subtilis PhoR sensor histidine kinase, part of a two-component system involved in adaptation to low environmental phosphate concentrations. In addition to the PhoR structure, we predict that the majority of the extracytoplasmic domains of B. subtilis sensor kinases will adopt a fold similar to the ubiquitous PAS domain. C1 [Chang, Changsoo; Tesar, Christine; Gu, Minyi; Babnigg, Gyorgy; Joachimiak, Andrzej; Pokkuluri, P. Raj; Schiffer, Marianne] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Szurmant, Hendrik] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA. RP Schiffer, M (reprint author), 9700 S Cass Ave,Bldg 202,A-145, Argonne, IL 60439 USA. EM Szurmant@scripps.edu; mschiffer@anl.gov FU National Institutes of Health [GM62414-01, GM019416]; U. S. Department of Energy; Office of Science, Biological and Environmental Research Genomics [DE-AC02-06CH11357]; DOE [DE-AC02-06CH11357]; U. S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the following: National Institutes of Health (grant GM62414-01) and the U. S. Department of Energy, Office of Science, Biological and Environmental Research Genomics: GTL program, under contract no. DE-AC02-06CH11357. H. S. was supported by National Institutes of Health grant GM019416 awarded to J. A. Hoch. The use of SBC beamlines and APS are supported by the DOE under contract no. DE-AC02-06CH11357. The manuscript was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U. S. Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. NR 35 TC 21 Z9 23 U1 0 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD FEB PY 2010 VL 192 IS 4 BP 1156 EP 1159 DI 10.1128/JB.01508-09 PG 4 WC Microbiology SC Microbiology GA 549DF UT WOS:000274021900027 PM 20008068 ER PT J AU Lawrence, PK Kittichotirat, W Bumgarner, RE McDermott, JE Herndon, DR Knowles, DP Srikumaran, S AF Lawrence, Paulraj K. Kittichotirat, Weerayuth Bumgarner, Roger E. McDermott, Jason E. Herndon, David R. Knowles, Donald P. Srikumaran, Subramaniam TI Genome Sequences of Mannheimia haemolytica Serotype A2: Ovine and Bovine Isolates SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PASTEURELLA-HAEMOLYTICA; GENES; LEUKOTOXIN; VIRULENCE; DOMAINS; CLONING AB This report describes the genome sequences of Mannheimia haemolytica serotype A2 isolated from pneumonic lungs of two different ruminant species, one from Ovis aries, designated ovine (O), and the other from Bos taurus, designated bovine (B). C1 [Lawrence, Paulraj K.; Knowles, Donald P.; Srikumaran, Subramaniam] Washington State Univ, Dept Vet Microbiol & Pathol, Pullman, WA 99164 USA. [Kittichotirat, Weerayuth; Bumgarner, Roger E.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [McDermott, Jason E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Herndon, David R.; Knowles, Donald P.] Washington State Univ, USDA ARS, Anim Dis Res Unit, Pullman, WA 99164 USA. RP Srikumaran, S (reprint author), Washington State Univ, Dept Vet Microbiol & Pathol, Pullman, WA 99164 USA. EM ssrikumaran@vetmed.wsu.edu RI Bumgarner, Roger/K-3531-2015; OI Bumgarner, Roger/0000-0002-8168-6985; McDermott, Jason/0000-0003-2961-2572 FU Roche Applied Science FX We are grateful to Roche Applied Science for funding this sequencing project. NR 18 TC 15 Z9 15 U1 0 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD FEB PY 2010 VL 192 IS 4 BP 1167 EP 1168 DI 10.1128/JB.01527-09 PG 2 WC Microbiology SC Microbiology GA 549DF UT WOS:000274021900030 PM 19966002 ER PT J AU Messer, RLW Seta, F Mickalonis, J Brown, Y Lewis, JB Wataha, JC AF Messer, Regina L. W. Seta, Francesca Mickalonis, John Brown, Yolanda Lewis, Jill B. Wataha, John C. TI Corrosion of Phosphate-Enriched Titanium Oxide Surface Dental Implants (TiUnite (R)) Under In Vitro Inflammatory and Hyperglycemic Conditions SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE corrosion; titanium (alloys); cell culture ID STAINLESS-STEEL; ELECTROCHEMICAL CORROSION; ORAL IMPLANTS; SALINE; SERUM; BEHAVIOR; RELEASE; SURGERY; BONE AB Endosseous dental implants use is increasing in patients with systemic conditions that compromise wound healing. Manufacturers recently have redesigned implants to ensure more reliable and faster osseointegration. One design strategy has been to create a porous phosphate-enriched titanium oxide (TiUnite (R)) surface to increase surface area and enhance interactions with bone. In the current study, the corrosion properties of TiUnite (R) implants were studied in cultures of monocytic cells and solutions simulating inflammatory and hyperglycemic conditions. Furthermore, to investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties, the enhanced surface implants as well as machined titanium implants were placed into human cadaver mandibular bone, the bone removed, and the corrosion properties measured. Implant corrosion behavior was characterized by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy. In selected samples, THP1 cells were activated with lipopolysaccharide prior to implant exposure to simulate an inflammatory environment. No significant differences in corrosion potentials were measured between the TiUnite (R) implants and the machined titanium implants in previous studies. TiUnite (R) implants exhibited lower corrosion rates in all simulated conditions than observed in PBS, and EIS measurements revealed two time constants which shifted with protein-containing electrolytes. In addition, the TiUnite (R) implants displayed a significantly lower corrosion rate than the machined titanium implants after placement into bone. The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface titanium implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part 13: Appl Biomater 9213: 525-534, 2010 C1 [Messer, Regina L. W.; Seta, Francesca; Brown, Yolanda; Lewis, Jill B.] Med Coll Georgia, Dept Oral Biol, Augusta, GA 30912 USA. [Mickalonis, John] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC USA. [Wataha, John C.] Univ Washington, Dept Restorat Dent, Seattle, WA 98195 USA. RP Messer, RLW (reprint author), Med Coll Georgia, Dept Oral Biol, Augusta, GA 30912 USA. EM rmesser@mail.mcg.edu FU Nobel Biocare FX The authors acknowledge Nobel Biocare for Supplying the implants for this study and the support by the Medical College of Georgia Research Center. The assistance of Mark Williamson from the Savannah River National Labortory with SEM observations is also appreciated. NR 39 TC 12 Z9 13 U1 0 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD FEB PY 2010 VL 92B IS 2 BP 525 EP 534 DI 10.1002/jbm.b.31548 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 552CZ UT WOS:000274266200028 PM 20024965 ER PT J AU Sperling, LJ Nieuwkoop, AJ Lipton, AS Berthold, DA Rienstra, CM AF Sperling, Lindsay J. Nieuwkoop, Andrew J. Lipton, Andrew S. Berthold, Deborah A. Rienstra, Chad M. TI High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field SO JOURNAL OF BIOMOLECULAR NMR LA English DT Article DE Nanocrystalline proteins; Solid-state NMR spectroscopy; Spectral resolution; Ultra-high magnetic field ID SOLID-STATE NMR; IMMUNOGLOBULIN BINDING DOMAIN; ANGLE-SPINNING NMR; CHEMICAL-SHIFT; MICROCRYSTALLINE UBIQUITIN; CONFORMATIONAL-ANALYSIS; ESCHERICHIA-COLI; ASSIGNMENTS; RESONANCE; DSBA AB Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-(13)C,(15)N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ((1)H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine C delta 1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. C1 [Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Rienstra, Chad M.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Rienstra, Chad M.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. [Lipton, Andrew S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Rienstra, Chad M.] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. RP Rienstra, CM (reprint author), Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA. EM rienstra@scs.uiuc.edu FU National Institute of Heath [GM073770, GM075937]; Molecular Biophysics Training Grant; Department of Energy Office of Biological and Environmental Research FX The authors thank the National Institute of Heath for funding through NIGMS (GM073770), NIGMS/Roadmap Initiative (GM075937) and Molecular Biophysics Training Grant (to LJS and AJN), David Hoyt, Jesse Sears, and Paul Ellis at the Environmental Molecular Science Laboratory (a national scientific user facility sponsored by the Department of Energy Office of Biological and Environmental Research) located at Pacific Northwest National Laboratory and operated for DOE by Batelle for their assistance in acquiring the 900 MHz data, Dr. Donghua Zhou for pulse sequence code, Dr. Trent Franks and Benjamin Fisher of the VOICE NMR Facility for technical assistance. NR 33 TC 8 Z9 8 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0925-2738 J9 J BIOMOL NMR JI J. Biomol. NMR PD FEB PY 2010 VL 46 IS 2 BP 149 EP 155 DI 10.1007/s10858-009-9389-9 PG 7 WC Biochemistry & Molecular Biology; Spectroscopy SC Biochemistry & Molecular Biology; Spectroscopy GA 549XQ UT WOS:000274088200003 PM 19953303 ER PT J AU Kramer, I Loots, GG Studer, A Keller, H Kneissel, M AF Kramer, Ina Loots, Gabriela G. Studer, Anne Keller, Hansjoerg Kneissel, Michaela TI Parathyroid Hormone (PTH)-Induced Bone Gain Is Blunted in SOST Overexpressing and Deficient Mice SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Article DE PTH; SOST; OSTEOCYTES; GENETIC MOUSE MODELS; OSTEOPOROSIS ID VAN-BUCHEM-DISEASE; WNT SIGNALING PATHWAY; INTERMITTENT TREATMENT; OSTEOBLASTIC CELLS; SCLEROSTIN; PTH; OSTEOCYTES; DELETION; PROTEIN; RECEPTOR AB Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100 mu g/kg PTH(1-34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80 mu g/kg PTH(1-34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, mu CT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism. (C) 2010 American Society for Bone and Mineral Research. C1 [Kramer, Ina; Studer, Anne; Keller, Hansjoerg; Kneissel, Michaela] Novartis Inst BioMed Res, Musculoskeletal Dis Area, CH-4002 Basel, Switzerland. [Loots, Gabriela G.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA USA. [Loots, Gabriela G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genom & Dev, Berkeley, CA 94720 USA. [Loots, Gabriela G.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. RP Kneissel, M (reprint author), Novartis Inst BioMed Res, Musculoskeletal Dis Area, CH-4002 Basel, Switzerland. EM michaela.kneissel@novartis.com FU National Institutes of Health (NIH) [HD47853]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank Margot Bruederlin, Heidi Jeker, Sabrina Kohler, Marcel Mercies, Megan Montgomery, Marco Pegurri, and Keiko Petrosky for excellent technical assistance. GGL was supported by National Institutes of Health (NIH) Grant HD47853. GGL's work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 50 TC 104 Z9 108 U1 0 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0884-0431 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2010 VL 25 IS 2 BP 178 EP 189 DI 10.1359/jbmr.090730 PG 12 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 564LJ UT WOS:000275215500002 PM 19594304 ER PT J AU Wang, XP Huang, SH Richmond, MG AF Wang, Xiaoping Huang, Shih-Huang Richmond, Michael G. TI Chloride Metathesis and Dimethylamide Transfer in the Reaction of TaCl(NMe2)(4) with ZnMe2 and MeMgCl: Spectroscopic Studies and X-ray Diffraction Structures of TaCl(Me)(NMe2)(3) and ZnCl2(NHMe2)(2) SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY LA English DT Article DE Tantalum compounds; Zinc compounds; Organometallics; Metal amides; Crystallography ID CRYSTAL-STRUCTURE; SILYL COMPLEXES; TANTALUM(V); HYDRIDE; LIGANDS; AMIDE; ALKYL AB Treatment of TaCl(NMe2)(4) with ZnMe2 in pentane furnishes a mixture of TaCl(Me)(NMe2)(3), TaMe(NMe2)(4), and Ta(NMe2)(5) as the principal reaction products based on H-1 NMR spectroscopy. Depending upon the work-up conditions employed, the compounds TaCl(Me)(NMe2)(3) and ZnCl2(NHMe2)(2) have been isolated and their molecular structures established by X-ray crystallography. TaCl(Me)(NMe2)(3) crystallizes in the orthorhombic space group Pna2(1), a = 13.644(4) , b = 12.934(4) , c = 6.992(2) , V = 1233.9(7) (3), Z = 4, and d (calc) = 1.958 Mg/m(3); R = 0.0316 and wR (2) = 0.0707 for 2630 reflections with I > 2 sigma(I). The molecular structure of TaCl(Me)(NMe2)(3) consists of a trigonal bipyramidal core and contains axial and equatorial chlorine and methyl groups, respectively. ZnCl2(NHMe2)(2) crystallizes in the orthorhombic space group P2(1)2(1)2(1), a = 5.759(1) , b = 10.810(2) , c = 15.174(3) , V = 944.1(3) (3), Z = 4, d (calc) = 1.593 Mg/m(3); R = 0.0213 and wR (2) = 0.0494 for 1872 reflections with I > 2 sigma(I). ZnCl2(NHMe2)(2) exhibits a tetrahedral motif and represents the first reported four-coordinate zinc(II) compound containing acyclic monodentate secondary amine groups. The reaction between TaCl(NMe2)(4) and MeMgCl afforded a mixture of tantalum products, of which TaCl(Me)(NMe2)(3) and Ta(NMe2)(5) were found as the major products by H-1 NMR spectroscopy. C1 [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Huang, Shih-Huang; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangx@ornl.gov; cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012; G, Neela/H-3016-2014 OI Wang, Xiaoping/0000-0001-7143-8112; FU Robert A. Welch Foundation [B-1093-MGR]; U.S. Department of Energy, Office of Science [DE-AC05-00OR22725] FX Financial support from the Robert A. Welch Foundation (Grant B-1093-MGR) is greatly appreciated, and X. Wang acknowledges the support by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC05-00OR22725 managed by UT Battelle, LLC. NR 18 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1074-1542 J9 J CHEM CRYSTALLOGR JI J. Chem. Crystallogr. PD FEB PY 2010 VL 40 IS 2 BP 173 EP 178 DI 10.1007/s10870-009-9630-0 PG 6 WC Crystallography; Spectroscopy SC Crystallography; Spectroscopy GA 544UD UT WOS:000273683900017 ER PT J AU Hagos, S Zhang, CD Tao, WK Lang, S Takayabu, YN Shige, S Katsumata, M Olson, B L'Ecuyer, T AF Hagos, Samson Zhang, Chidong Tao, Wei-Kuo Lang, Steve Takayabu, Yukari N. Shige, Shoichi Katsumata, Masaki Olson, Bill L'Ecuyer, Tristan TI Estimates of Tropical Diabatic Heating Profiles: Commonalities and Uncertainties SO JOURNAL OF CLIMATE LA English DT Article ID TRMM PR DATA; SPECTRAL RETRIEVAL; VERTICAL PROFILES; CLOUD CLUSTERS; TOGA COARE; MICROWAVE RADIOMETER; CONVECTIVE SYSTEMS; RADAR OBSERVATIONS; MOISTURE BUDGETS; ENERGY BUDGET AB This study aims to evaluate the consistency and discrepancies in estimates of diabatic heating profiles associated with precipitation based on satellite observations and microphysics and those derived from the thermodynamics of the large-scale environment. It presents a survey of diabatic heating profile estimates from four Tropical Rainfall Measuring Mission (TRMM) products, four global reanalyses, and in situ sounding measurements from eight field campaigns at various tropical locations. Common in most of the estimates are the following: (i) bottom-heavy profiles, ubiquitous over the oceans, are associated with relatively low rain rates, while top-heavy profiles are generally associated with high rain rates; (ii) temporal variability of latent heating profiles is dominated by two modes, a deep mode with a peak in the upper troposphere and a shallow mode with a low-level peak; and (iii) the structure of the deep modes is almost the same in different estimates and different regions in the tropics. The primary uncertainty is in the amount of shallow heating over the tropical oceans, which differs substantially among the estimates. C1 [Hagos, Samson; Zhang, Chidong] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Tao, Wei-Kuo; Lang, Steve; Olson, Bill] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Takayabu, Yukari N.] Univ Tokyo, Ctr Climate Syst Res, Tokyo, Japan. [Shige, Shoichi] Osaka Prefecture Univ, Dept Aerosp Engn, Osaka, Japan. [Katsumata, Masaki] JAMSTEC RIGC, Yokosuka, Kanagawa, Japan. [L'Ecuyer, Tristan] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM samson.hagos@pnl.gov RI hagos, samson /K-5556-2012; L'Ecuyer, Tristan/C-7040-2013; L'Ecuyer, Tristan/E-5607-2012; PMM, JAXA/K-8537-2016 OI L'Ecuyer, Tristan/0000-0002-7584-4836; FU NASA TRMM/GPM FX We express our sincere gratitude to the editor and anonymous reviewers, as well as Paul Ciesielski, Steve Esbensen, Richard Johnson, Yasu-Masa Kodama, Steve Kruger, Wen-wen Tung, Xiaoqing Wu, Xiping Zeng, and Minghua Zhang, who provided or helped us acquire the various sounding datasets. This study was support by the NASA TRMM/GPM project. NR 44 TC 23 Z9 24 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD FEB PY 2010 VL 23 IS 3 BP 542 EP 558 DI 10.1175/2009JCLI3025.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 553DT UT WOS:000274346700004 ER PT J AU Francois, MM Swartz, BK AF Francois, Marianne M. Swartz, Blair K. TI Interface curvature via volume fractions, heights, and mean values on nonuniform rectangular grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Volume-of-fluid; Curvature; Height function; Mean value; Nonuniform grids; Numerical differentiation ID FLUID METHOD AB Estimating the local curvature of an interface involves the local determination of normals to the interface, and the rates that they turn along the interface. This is challenging in volume-of-fluid type methods since the interface between materials is specified by the relative amount it cuts off from the computational cells that it crosses (also referred to as volume fraction data) rather than by a discrete set of points lying on the interface itself. In this work, we generalize the height function method to non-uniform rectangular grids. We demonstrate analytically and numerically that-using three successive (adjacent) integral mean values (or "column" heights)-interface curvature can be estimated to second-order accuracy, the first derivative (interface normal) to third-order accuracy, and the curve location to fourth-order accuracy-each at its own special points. We also show that there are special points where the curvature can be estimated to fourth-order accuracy when using five successive mean values instead. Underlying all this is a result about the accuracy of the jth-derivative of the kth-degree polynomial that interpolates a function F at k + 1 stencil points placed irregularly in an interval of width h. Namely, for all smooth enough functions F and for k fixed and h getting small, there are k + 1 - i special points in the interval at which the error in the jth derivative is of order O(h(k+2-j)). (This is one order higher than the usual O(h(k+1-j)) error holding over the whole interval for that derivative.) The special points in the interval are the k + 1 - j (real) zeroes of certain F-independent polynomials, of degree k + 1 - j, with coefficients depending on the interval's stencil points. In our case, let F(x) be an indefinite integral of the unknown interfacial curve f(x). Then F(x(i)) at k + 1 successive stencil points x(i) is calculated using cumulative sums of the k successive integral mean values of f, weighted by the successive interval sizes. The k + 1 points (x(i), F(x(i))) are now interpolated by a kth degree polynomial (PF)(x). It's first derivative (PF)((1)) approximates the unknown curve f; while (PF)((2)) and (PF)((3)), respectively, approximate f((1)) and f((2)). Thus, the results above using three successive mean values correspond to k = 3 and j = 3, 2, 1. The curvature result using five successive mean values correspond to k = 5 and j = 3. For this last case, since the curvature kappa =f((2))/(1 + (f((t)))(2))(3/2), we use the facts that f((1)) = F-(2) = (PF)((2)) + O(h(4)) on the whole stencil interval, not just at the three special points having O(h(4)) accuracy for f((2)). (C) 2009 Elsevier Inc. All rights reserved. C1 [Francois, Marianne M.] Los Alamos Natl Lab, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. RP Francois, MM (reprint author), Los Alamos Natl Lab, Computat Phys & Methods CCS 2, MS B296,POB 1663, Los Alamos, NM 87545 USA. EM mmfran@lanl.gov; bks@lanl.gov RI Francois, Marianne/B-2423-2012; OI Francois, Marianne/0000-0003-3062-6234 NR 16 TC 14 Z9 14 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2010 VL 229 IS 3 BP 527 EP 540 DI 10.1016/j.jcp.2009.10.022 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 537AI UT WOS:000273084800001 ER PT J AU Dorr, MR Fattebert, JL Wickett, ME Belak, JF Turchi, PEA AF Dorr, M. R. Fattebert, J. -L. Wickett, M. E. Belak, J. F. Turchi, P. E. A. TI A numerical algorithm for the solution of a phase-field model of polycrystalline materials SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Phase-field model; Polycrystalline microstructure; Method of lines; Newton-Krylov methods ID BINARY-ALLOYS; GRAIN-GROWTH; SOLIDIFICATION; SIMULATION; EVOLUTION; SYSTEMS; TRANSFORMATION; PLUTONIUM; EQUATIONS; DIFFUSION AB We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a cluaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconclitioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples. (C) 2009 Elsevier Inc. All rights reserved. C1 [Dorr, M. R.; Fattebert, J. -L.; Wickett, M. E.; Belak, J. F.; Turchi, P. E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Dorr, MR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM dorr1@llnl.gov; fattebert1@llnl.gov; wickett1@llnl.gov; belak1@llnl.gov; turchi1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 36 TC 14 Z9 14 U1 6 U2 33 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2010 VL 229 IS 3 BP 626 EP 641 DI 10.1016/j.jcp.2009.09.041 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 537AI UT WOS:000273084800005 ER PT J AU Wang, MR Kang, QJ AF Wang, Moran Kang, Qinjun TI Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Electrokinetic flows; Lattice Boltzmann method; Multiphysical transport; Poisson-Boltzmann model; Dynamic model; Microfluidics and nanofluidics ID ON-A-CHIP; POISSON-BOLTZMANN; ELECTROOSMOTIC FLOWS; POROUS-MEDIA; CHANNEL FLOWS; SIMULATION; EQUATION; MICROFLUIDICS; TRANSPORT; NANOCHANNELS AB We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson-Boltzmann model for electrokinetic flows in microchannels. Our results show that for homogeneously charged long channels, the Poisson-Boltzmann model is applicable for a wide range of electric double layer thickness. For the electric potential distribution, the Poisson-Boltzmann model can provide good predictions until the electric double layers fully overlap, meaning that the thickness of the double layer equals the channel width. For the electroosmotic velocity, the Poisson-Boltzmann model is valid even when the thickness of the double layer is 10 times of the channel width. For heterogeneously charged microchannels, a higher zeta potential and an enhanced velocity field may cause the Poisson-Boltzmann model to fail to provide accurate predictions. The ionic diffusion coefficients have little effect on the steady flows for either homogeneously or heterogeneously charged channels. However the ionic valence of solvent has remarkable influences on both the electric potential distribution and the flow velocity even in homogeneously charged microchannels. Both theoretical analyses and numerical results indicate that the valence and the concentration of the counter-ions dominate the Debye length, the electrical potential distribution, and the ions transport. The present results may improve the understanding of the electrokinetic transport characteristics in microchannels. Published by Elsevier Inc. C1 [Wang, Moran; Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, MR (reprint author), Los Alamos Natl Lab, Mail Stop T003, Los Alamos, NM 87545 USA. EM mwang@lanl.gov; qkang@lanl.gov RI Wang, Moran/A-1150-2010; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU LANL's LORD [20080727PRD2]; J. R. Oppenheimer Fellowship FX This work is supported by LANL's LORD Project 20080727PRD2, through the J. R. Oppenheimer Fellowship awarded to M.W. The authors would like to thank Dr. Wang JK and Prof. Chen SY for helpful discussions. NR 75 TC 55 Z9 57 U1 3 U2 41 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2010 VL 229 IS 3 BP 728 EP 744 DI 10.1016/j.jcp.2009.10.006 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 537AI UT WOS:000273084800010 ER PT J AU Kopp, J Schwetz, T Zupan, J AF Kopp, Joachim Schwetz, Thomas Zupan, Jure TI Global interpretation of direct Dark Matter searches after CDMS-II results SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter experiments ID EFFICIENCY; CRYSTAL; LIMITS AB We perform a global fit to data from Dark Matter (DM) direct detection experiments, including the recent CDMS-II results. We discuss possible interpretations of the DAMA annual modulation signal in terms of spin-independent and spin-dependent DM-nucleus interactions, both for elastic and inelastic scattering. We find that for the spin-dependent in elastic scattering off protons a good fit to all data is obtained. We present a simple toy model realizing such a scenario. In all there maining cases the DAMA allowed regions are disfavored by other experiments or suffer from severe fine tuning of DM parameters with respect to the galactic escape velocity. Finally, we also entertain the possibility that the two events observed in CDMS-II are an actual signal of elastic DM scattering, and we compare the resulting CDMS-II allowed regions to the exclusion limits from other experiments. C1 [Kopp, Joachim] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Schwetz, Thomas] Max Planck Inst Nucl Phys, D-69029 Heidelberg, Germany. [Zupan, Jure] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Zupan, Jure] Josef Stefan Inst, Ljubljana 1000, Slovenia. RP Kopp, J (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM jkopp@fnal.gov; schwetz@mpi-hd.mpg.de; jure.zupan@cern.ch RI Kopp, Joachim/B-5866-2013 NR 63 TC 83 Z9 83 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2010 IS 2 AR 014 DI 10.1088/1475-7516/2010/02/014 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 575XA UT WOS:000276102300021 ER PT J AU Stern, D Jimenez, R Verde, L Kamionkowski, M Stanford, SA AF Stern, Daniel Jimenez, Raul Verde, Licia Kamionkowski, Marc Stanford, S. Adam TI Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy experiments; galaxy clusters; galaxy surveys ID DIGITAL SKY SURVEY; ANGULAR POWER SPECTRUM; STELLAR POPULATION SYNTHESIS; PROBE WMAP OBSERVATIONS; HUBBLE-SPACE-TELESCOPE; GALAXY REDSHIFT SURVEY; DEEP CLUSTER SURVEY; COSMOLOGICAL PARAMETERS; GLOBULAR-CLUSTERS; OBSERVATIONAL EVIDENCE AB We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H (z) = 97 +/- 62 km sec(-1) Mpc(-1) at z similar or equal to 0.5 and H (z) = 90 +/- 40 km sec(-1) Mpc(-1) at z similar or equal to 0.9. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H (z) measurements by constraining the dark-energy equation of state parameterized by w(0) and w(a) and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H (z) data, the number of relativistic degrees of freedom to be 4 +/- 0.5 and their total mass to be < 0.2 eV, both at 1 sigma. C1 [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain. [Jimenez, Raul; Verde, Licia] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain. [Kamionkowski, Marc] CALTECH, Pasadena, CA 91125 USA. [Stanford, S. Adam] Univ Calif Davis, Davis, CA 95616 USA. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. RP Stern, D (reprint author), CALTECH, Jet Prop Lab, Mail Stop 169-506, Pasadena, CA 91109 USA. EM stern@thisvi.jpl.nasa.gov; raul@icc.ub.edu; licia@icc.ub.edu; kamion@tapir.caltech.edu; stanford@physics.ucdavis.edu OI Kamionkowski, Marc/0000-0001-7018-2055; Verde, Licia/0000-0003-2601-8770; Jimenez, Raul/0000-0002-3370-3103 FU Spanish Ministry for Science and Innovation [AYA 2008-03531]; European Union [FP7 PEOPLE-2002IRG4-4-IRG, 202182]; DoE [DEFG03-92-ER40701]; Gordon and Betty Moore Foundation FX The work of DS was carried out at the Jet Propulsion Laboratory, operated by the California Institute of Technology under a contract with NASA. The work of RJ and LV is supported by funds from the Spanish Ministry for Science and Innovation AYA 2008-03531 and the European Union (FP7 PEOPLE-2002IRG4-4-IRG#202182). MK was supported by DoE DEFG03-92-ER40701 and the Gordon and Betty Moore Foundation. We thank the members of the SPICES and VVDS teams for making their spectroscopic data publicly available, and we acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Finally, the authors wish to recognize and acknowledge the very significant role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 84 TC 225 Z9 228 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2010 IS 2 AR 008 DI 10.1088/1475-7516/2010/02/008 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 575XA UT WOS:000276102300027 ER PT J AU Awadalla, SA Mackenzie, J Chen, H Redden, B Bindley, G Duff, MC Burger, A Groza, M Buliga, V Bradley, JP Dai, ZR Teslich, N Black, DR AF Awadalla, S. A. Mackenzie, J. Chen, H. Redden, B. Bindley, G. Duff, M. C. Burger, A. Groza, M. Buliga, V. Bradley, J. P. Dai, Z. R. Teslich, N. Black, D. R. TI Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM.) SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE CZT; THM; Secondary phases; Surface treatment ID SEMIINSULATING CDZNTE; CDTE; PERFORMANCE; (CD,ZN)TE AB This work focuses on the 3. Results and discussion characterization of 10 x 10 x 1 0 mm(3) THM-grown CdZnTe detector-grade crystals that have been post-growth annealed to remove the secondary phases (SPs). All three detectors showed an average energy resolution of similar to 1.63% for a small guarded pixel with 3.5 min diameter, measured using (137)Cs-662 keV with an average peak-to-Compton ratio of 2.7. The characterization showed vestiges of SPs and micro-twins present in some of the crystals indicating that the SPs prior to annealing were large and had size in the range of 100-500 mu m. The various detectable structural features, such as micron twins, strains and sub-micron level of Te inclusions seemed to have little or no influence in the radiation spectrometer performance of the detectors; this is possibly because they are either having low density or electrically inactive. (C) 2009 Elsevier B.V. All rights reserved. C1 [Awadalla, S. A.; Mackenzie, J.; Chen, H.; Redden, B.; Bindley, G.] Redlen Technol, Sidney, BC V8L 5Y8, Canada. [Duff, M. C.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Burger, A.; Groza, M.; Buliga, V.] Fisk Univ, Nashville, TN 37208 USA. [Bradley, J. P.; Dai, Z. R.; Teslich, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Black, D. R.] NIST, Gaithersburg, MD 20899 USA. RP Awadalla, SA (reprint author), Redlen Technol, Sidney, BC V8L 5Y8, Canada. EM salah.awadalla@redlen.com RI Dai, Zurong/E-6732-2010 NR 17 TC 36 Z9 38 U1 5 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 1 PY 2010 VL 312 IS 4 BP 507 EP 513 DI 10.1016/j.jcrysgro.2009.11.007 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 558RD UT WOS:000274761900006 ER PT J AU Guo, HS Neill, WS Chippior, W Li, HL Taylor, JD AF Guo, Hongsheng Neill, W. Stuart Chippior, Wally Li, Hailin Taylor, Joshua D. TI An Experimental and Modeling Study of HCCI Combustion Using n-Heptane SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Fall Technical Conference of the ASME Internal Combustion Engine Division CY NOV 05-08, 2006 CL Sacramento, CA SP Amer Soc Mech Engineers ID IGNITION AB Homogeneous charge compression ignition (HCCI) is an advanced low-temperature combustion technology being considered for internal combustion engines due to its potential for high fuel conversion efficiency and extremely low emissions of particulate matter and oxides of nitrogen (NO(x)). In its simplest form, HCCI combustion involves the auto-ignition of a homogeneous mixture of fuel, air, and diluents at low to moderate temperatures and high pressure. Previous research has indicated that fuel chemistry has a strong impact on HCCI combustion. This paper reports the preliminary results of an experimental and modeling study of HCCI combustion using n-heptane, a volatile hydrocarbon with well known fuel chemistry. A Co-operative Fuel Research (CFR) engine was modified by the addition of a port fuel injection system to produce a homogeneous fuel-air mixture in the intake manifold, which contributed to a stable and repeatable HCCI combustion process. Detailed experiments were performed to explore the effects of critical engine parameters such as intake temperature, compression ratio, air/fuel ratio, engine speed, turbocharging, and intake mixture throttling on HCCI combustion. The influence of these parameters on the phasing of the low-temperature reaction, main combustion stage, and negative temperature coefficient delay period are presented and discussed. A single-zone numerical simulation with detailed fuel chemistry was developed and validated. The simulations show good agreement with the experimental data and capture important combustion phase trends as engine parameters are varied. [DOI: 10.1115/1.3124667] C1 [Guo, Hongsheng; Neill, W. Stuart; Chippior, Wally] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. [Li, Hailin] W Virginia Univ, Morgantown, WV 26506 USA. [Taylor, Joshua D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Guo, HS (reprint author), Natl Res Council Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada. NR 29 TC 3 Z9 3 U1 2 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD FEB PY 2010 VL 132 IS 2 AR 022801 DI 10.1115/1.3124667 PG 10 WC Engineering, Mechanical SC Engineering GA 518CN UT WOS:000271667900016 ER PT J AU Matthews, WJ More, KL Walker, LR AF Matthews, Wendy J. More, Karren L. Walker, Larry R. TI Comparison of Three Microturbine Primary Surface Recuperator Alloys SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME Gas Turbine Technical Congress and Exposition CY JUN 08-12, 2009 CL Orlando, FL SP ASME AB Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 degrees C (similar to 1200 degrees F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 degrees C (similar to 1200 degrees F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25 + Nb AL 20-25 + Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this paper. [DOI: 10.1115/1.3157094] C1 [Matthews, Wendy J.] Capstone Turbine Corp, Chatsworth, CA 91311 USA. [More, Karren L.; Walker, Larry R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Matthews, WJ (reprint author), Capstone Turbine Corp, Chatsworth, CA 91311 USA. RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 NR 27 TC 2 Z9 2 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD FEB PY 2010 VL 132 IS 2 AR 022302 DI 10.1115/1.3157094 PG 6 WC Engineering, Mechanical SC Engineering GA 518CN UT WOS:000271667900013 ER PT J AU McIlroy, HM McEligot, DM Pink, RJ AF McIlroy, Hugh M., Jr. McEligot, Donald M. Pink, Robert J. TI Measurement of Flow Phenomena in a Lower Plenum Model of a Prismatic Gas-Cooled Reactor SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT 16th International Conference on Nuclear Engineering CY MAY 11-15, 2008 CL Orlando, FL SP ASME, Nucl Engn Div, JSME, Japan Soc Mech Engineers AB Mean-velocity-field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor similar to a General Atomics gas-turbine-modular helium reactor design. The data were obtained in the Matched-Index-of-Refraction (MIR) Facility at Idaho National Laboratory (INL) and are offered for assessing computational fluid dynamics software. This experiment has been selected as the first standard problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined cross flow-with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate geometry scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages in and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolutions compared with similar facilities at smaller scales. A three-dimensional particle image velocimetry system was used to collect the data. Inlet-jet Reynolds numbers (based on the jet diameter and the time-mean bulk velocity) are approximately 4300 and 12,400. Uncertainty analyses and a discussion of the standard problem are included. The measurements reveal developing, nonuniform, turbulent flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices), and presentations that describe the component flows at specific regions in the model. Information on inlet conditions is also presented. [DOI: 10.1115/1.3078784] C1 [McIlroy, Hugh M., Jr.; McEligot, Donald M.; Pink, Robert J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [McEligot, Donald M.] Univ Arizona, Tucson, AZ 85721 USA. RP McIlroy, HM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM hugh.mcilroy@inl.gov; robert.pink@inl.gov NR 11 TC 0 Z9 0 U1 0 U2 3 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD FEB PY 2010 VL 132 IS 2 AR 022901 DI 10.1115/1.3078784 PG 7 WC Engineering, Mechanical SC Engineering GA 518CN UT WOS:000271667900020 ER PT J AU Hickner, MA Chen, KS Siegel, NP AF Hickner, Michael A. Chen, Ken S. Siegel, Nathan P. TI Elucidating Liquid Water Distribution and Removal in an Operating Proton Exchange Membrane Fuel Cell via Neutron Radiography SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 5th International Conference on Fuel Cell Science, Engineering and Technology CY JUN 18-20, 2007 CL Brooklyn, NY ID QUANTIFICATION; TRANSPORT; PART AB Neutron radiography was used to quantify the steady-state water content and its distribution in a 50 cm(2) operating proton exchange membrane fuel cell. It was observed that the liquid water distribution near the corners of the gas-flow channels (GFCs) is influenced by the local gas-flow velocity as determined by the cathode stoichiometric flow ratio. At low velocity, the distribution of liquid water down the channel was found to be fairly uniform with only a slight reduction in liquid water content at the exit of the GFC corners. It was further observed that as the cathode gas-flow velocity is increased, a noticeable pattern develops in which liquid water is concentrated at the entrance to the GFC corners and becomes depleted in the corner and near the exit of the corner; liquid water content again increases further down the channel away from the corners. A single-phase computational fluid dynamics (CFD) model was developed and employed to help explain the observed water-distribution patterns. Flow-fields computed from our CFD model reveal recirculation regions in the GFC corners as well as in the areas of increased local gas-flow velocity, which help explain the experimentally observed liquid water distribution. [DOI: 10.1115/1.3115624] C1 [Chen, Ken S.] Sandia Natl Labs, Dept Nanoscale & React Proc, Albuquerque, NM 87185 USA. [Hickner, Michael A.] Sandia Natl Labs, Dept Fuels & Energy Transit, Albuquerque, NM 87185 USA. [Siegel, Nathan P.] Sandia Natl Labs, Dept Solar Technol, Albuquerque, NM 87185 USA. RP Chen, KS (reprint author), Sandia Natl Labs, Dept Nanoscale & React Proc, POB 5800, Albuquerque, NM 87185 USA. EM kschen@sandia.gov NR 12 TC 4 Z9 4 U1 3 U2 7 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD FEB PY 2010 VL 7 IS 1 AR 011001 DI 10.1115/1.3115624 PG 5 GA 518CL UT WOS:000271667600001 ER PT J AU VanOsdol, J Liese, E Tucker, D Gemmen, R James, R AF VanOsdol, John Liese, Eric Tucker, David Gemmen, Randall James, Robert TI Scaling a Solid Oxide Fuel Cell Gas Turbine Hybrid System to Meet a Range of Power Demand SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 5th International Conference on Fuel Cell Science, Engineering and Technology CY JUN 18-20, 2007 CL Brooklyn, NY AB In recent years there has been significant interest in using the heat generated from the normal operation of a solid oxide fuel cell (SOFC) to supplant the normal combustion process of a gas turbine system. By doing this a gas turbine fuel cell hybrid power generation system is formed. Because the heat produced by a SOFC is utilized by the turbine to produce work, the hybrid system can have an overall system efficiency that greatly exceeds those of either the stand alone SOFC system, or the stand alone gas turbine system. One of the most critical problems that must be addressed in gas turbine fuel cell hybrid technology is temperature control. A hybrid system that is designed to operate efficiently for a given base load may not be easily extended to accommodate peek load. In this paper a simple hybrid system configuration using a standard SOFC and a single compressor-turbine pair is presented. This simple system is used to establish the effect that key configuration parameters have on system temperatures. The configuration model is then scaled over a range of fuel input and power output to show the limitations of the system. The system is modeled using the ASPEN PLUS (R) simulation software with special modules to calculate fuel cell performance. [DOI: 10.1115/1.3115623] C1 [VanOsdol, John; Liese, Eric; Tucker, David; Gemmen, Randall; James, Robert] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP VanOsdol, J (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM jvanos@netl.doe.gov NR 7 TC 1 Z9 1 U1 1 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD FEB PY 2010 VL 7 IS 1 AR 015001 DI 10.1115/1.3115623 PG 8 GA 518CL UT WOS:000271667600024 ER PT J AU Bai, Y Burdman, G Hill, CT AF Bai, Yang Burdman, Gustavo Hill, Christopher T. TI Topological interactions in warped extra dimensions SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Field Theories in Higher Dimensions ID BULK AB Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore. C1 [Bai, Yang; Burdman, Gustavo; Hill, Christopher T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Burdman, Gustavo] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM bai@fnal.gov; burdman@if.usp.br; hill@fnal.gov RI Burdman, Gustavo/D-3285-2012 FU John Simon Guggenheim Memorial Foundation; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); United States Department of Energy [DE-AC02-07CH11359] FX The authors are grateful to Bill Bardeen, Hsin-Chia Cheng, John Terning and Zhenyu Han for useful discussions and suggestions. G. B. acknowledges support from the John Simon Guggenheim Memorial Foundation and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). Y. B. and G. B thank the Aspen Center for Physics for its hospitality. Fermilab is operated by Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359 with the United States Department of Energy. NR 37 TC 7 Z9 7 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2010 IS 2 AR 049 DI 10.1007/JHEP02(2010)049 PG 35 WC Physics, Particles & Fields SC Physics GA 564NZ UT WOS:000275223100049 ER PT J AU Chu, CS Ho, CM AF Chu, Chong-Sun Ho, Chiu Man TI Nonequilibrium dynamics in noncommutative spacetime SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Non-Commutative Geometry; Thermal Field Theory ID FIELD-THEORIES; D-BRANE; UNITARITY; GEOMETRY AB We study the effects of spacetime noncommutativity on the nonequilibrium dynamics of particles in a thermal bath. We show that the noncommutative thermal bath does not suffer from any further IR/UV mixing problem in the sense that all the finite-temperature non-planar quantities are free from infrared singularities. We also point out that the combined effect of finite temperature and noncommutative geometry has a distinct effect on the nonequilibrium dynamics of particles propagating in a thermal bath: depending on the momentum of the mode of concern, noncommutative geometry may switch on or switch off their decay and thermalization. This could have significant impacts on the nonequilibrium phenomena in the early universe at which spacetime noncommutativity may be present. Our results suggest a re-examination of some of the important processes in the early universe such as reheating after inflation, baryogenesis and the freeze-out of superheavy dark matter candidates. C1 [Chu, Chong-Sun] Univ Durham, Ctr Particle Theory, Durham DH1 3LE, England. [Chu, Chong-Sun] Univ Durham, Dept Math, Durham DH1 3LE, England. [Ho, Chiu Man] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ho, Chiu Man] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Ho, Chiu Man] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Chu, CS (reprint author), Univ Durham, Ctr Particle Theory, Durham DH1 3LE, England. EM chong-sun.chu@durham.ac.uk; chiuman.ho@vanderbilt.edu RI Chu, chong-sun/J-8842-2012; Ho, Chiu Man /C-2741-2013 NR 41 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2010 IS 2 AR 098 DI 10.1007/JHEP02(2010)098 PG 20 WC Physics, Particles & Fields SC Physics GA 564NZ UT WOS:000275223100097 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L De Wolf, EA Hashemi, M Janssen, X Maes, T Mucibello, L Ochesanu, S Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Mozer, MU Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Marage, PE Vander Velde, C Vanlaer, P Wickens, J Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Basegmez, S Bruno, G Caudron, J Gil, EC De Jeneret, JDF Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Maltoni, F Militaru, O Ovyn, S Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Herquet, P Alves, GA Pol, ME Souza, MHG Carvalho, W Da Costa, EM Damiao, DDJ Martins, CDO De Souza, SF Mundim, L Oguri, V Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Damgov, J Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Stoykova, S Sultanov, G Trayanov, R Vankov, I Hadjiiska, R Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Zang, J Zhang, Z Ban, Y Guo, S Hu, Z Mao, Y Qian, SJ Teng, H Zhu, B Montoya, CAC Moreno, BG Rios, AAO Sanabria, JC Godinovic, N Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Papadakis, A Ptochos, F Razis, PA Tsiakkouri, D Zinonos, Z Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Macnpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Descamps, J Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Rousseau, D Titov, M Verrecchia, P Baffioni, S Bianchini, L Broutin, C Busson, P Charlot, C Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Paganini, P Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Le Bihan, AC Mikami, Y Ripp-Baudot, I Speck, J Van Hove, P Baty, C Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fassi, F Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Pandoulas, D Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Actis, O Bender, W Biallass, P Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Kirsch, M Klimkovich, T Kreuzer, P Lanske, D Merschmeyer, M Meyer, A Pieta, H Reithler, H Schmitz, SA Sowa, M Steggemann, J Teyssier, D Zeidler, C Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrens, U Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Kleinwort, C Kluge, H Knutsson, A Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Meyer, AB Mnich, J Olzem, J Parenti, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Volyanskyy, D Wissing, C Autermann, C Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Sander, C Schleper, P Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Blum, P Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Frey, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Karafasoulis, K Kyriakis, A Loukas, D Markou, A Markou, C Mavrommatis, C Petrakou, E Zachariadou, A Agapitos, A Gouskos, L Katsas, P Panagiotou, A Saganis, K Xaxiris, E Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Nayak, A Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Fahim, A Jafari, A Najafabadi, MM Moshaii, A Mehdiabadi, SP Zeinali, M Felcini, M Abbrescia, M Barbone, L Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pierro, GA Polese, G Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Tupputi, S Zito, G Abbiendi, G Bonacorsi, D Braibant-Giacomelli, S Capiluppi, P Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Montanari, A Navarria, FL Odorici, F Perrotta, A Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Landi, G Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Menasce, D Miccio, V Moroni, L Negri, P Paganoni, M Pedrini, D Pullia, A Ragazzi, S Redaelli, N Sala, S Salerno, R Tabarelli de Fatis, T Tancini, V Taroni, S Cimmino, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Biasotto, M Carlin, R Checchia, P De Mattia, M Dorigo, T Fanzago, F Gasparini, F Giubilato, P Gonella, F Gresele, A Gulmini, M Lacaprara, S Lazzizzera, I Maron, G Mattiazzo, S Meneguzzo, AT Passaseo, M Pegoraro, M Pozzobon, N Ronchese, P Torassa, E Tosi, M Vanini, S Ventura, S Zotto, P Baesso, P Berzano, U Pagano, D Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Nappi, A Santocchia, A Servoli, L Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Bocci, A Castaldi, R Dell'Orso, R Dutta, S Fiori, F Foa, L Gennai, S Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Sarkar, S Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Rovelli, C Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Borgia, MA Botta, C Cartiglia, N Castello, R Costa, M Dellacasa, G Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Penzo, A Chang, S Chung, J Kim, DH Kim, GN Kong, DJ Park, H Son, DC Kim, Z Song, S Jung, SY Hong, B Kim, H Kim, JH Lee, KS Moon, DH Park, SK Rhee, HB Sim, KS Kim, J Choi, M Park, IC Choi, S Choi, Y Choi, YK Goh, J Jo, Y Kwon, J Lee, J Lee, S Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Hernandez, AS Moreno, SC Ibarguen, HAS Linares, EC Pineda, AM Allfrey, P Krofcheck, D Aumeyr, T Butler, PH Signal, T Williams, JC Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Ribeiro, PQ Seixas, J Silva, P Varela, J Wohri, HK Altsybeev, I Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Vishnevskiy, A Volodko, A Zarubin, A Ivanov, Y Kim, V Levchenko, P Obrant, G Shcheglov, Y Shchetkovskiy, A Smirnov, I Sulimov, V Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Ilina, N Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Petrushanko, S Sarycheva, L Savrin, V Vardanyan, I Dremin, I Kirakosyan, M Konovalova, N Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Datsko, K Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Sytine, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Maletic, D Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De la Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Romero, L Santaolalla, J Willmott, C Albajar, C De Troconiz, JF Cuevas, J Menendez, JF Caballero, IG Iglesias, LL Garcia, JM Cabrillo, IJ Calderon, A Chuang, SH Merino, ID Gonzalez, CD Campderros, JD Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM del Arbol, PMR Matorras, F Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Beccati, B Bell, AJ Bellan, R Benedetti, D Bernet, C Bialas, W Bloch, P Bolognesi, S Bona, M Breuker, H Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Gowdy, S Guiducci, L Gutleber, J Hartl, C Harvey, J Hegner, B Henderson, C Hoffmann, HF Honma, A Huhtinen, M Innocente, V Janot, P Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Meijers, F Meridiani, P Mersi, S Meschi, E Moser, R Mulders, M Noy, M Orimoto, T Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Racz, A Rolandi, G Rovere, M Ryjov, V Sakulin, H Schafer, C Schlatter, WD Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Traczyk, P Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Casella, MC Chen, Z Cittolin, S Dambach, S Dissertori, G Dittmar, M Eggel, C Eugster, J Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C Milenovic, P Moortgat, F Nardulli, A Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Schinzel, D Sordini, V Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Trub, P Weber, M Wehrli, L Weng, J Amsler, C Chiochia, V De Visscher, S Rikova, MI Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Snoek, H Tsirigkas, D Wilke, L Chang, YH Chen, EA Chen, WT Go, A Kuo, CM Li, SW Lin, W Liu, MH Wu, JH Bartalini, P Chang, P Chang, YH Chao, Y Chen, KF Hou, WS Hsiung, Y Lei, YJ Lin, SW Lu, RS Shiu, JG Tzeng, YM Ueno, K Wang, CC Wang, M Adiguzel, A Ayhan, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gurpinar, E Karaman, T Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sahin, O Sengul, O Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Serin, M Sever, R Surat, UE Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Hansen, M Heath, GP Heath, HF Hill, C Huckvale, B Jackson, J Kreczko, L Mackay, CK Metson, S Newbold, DM Nirunpong, K Smith, VJ Ward, S Basso, L Bell, KW Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Hall, G Hays, J Iles, G Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Stoye, M Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Teodorescu, L Bose, T Clough, A Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Speer, T Tsang, KV Breedon, R Sanchez, MCD Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Tucker, J Valuev, V Wallny, R Babb, J Chandra, A Clare, R Ellison, JA Gary, JW Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Shen, BC Stringer, R Sturdy, J Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Norman, M Padhi, S Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Vartak, A Wurthwein, F Yagil, A Barge, D Blume, M Campagnari, C D'Alfonso, M Danielson, T Garberson, J Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lamb, J Lowette, S Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Apresyan, A Bornheim, A Bunn, J Gataullin, M Litvine, V Ma, Y Newman, HB Rogan, C Timciuc, V Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Jang, DW Jun, SY Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Ford, WT Heyburn, B Lopez, EL Nauenberg, U Stenson, K Ulmer, K Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Cassel, D Chatterjee, A Das, S Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Patterson, JR Puigh, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Vaughan, J Weng, Y Wittich, P Biselli, A Cirino, G Winn, D Albrow, M Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Binkley, M Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gottschalk, E Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM James, E Jensen, H Johnson, M Joshi, U Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lueking, L Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Prokofyev, O Sexton-Kennedy, E Sharma, S Smith, RP Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fu, Y Furic, IK Gartner, J Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Pakhotin, Y Gomez, JP Prescott, C Rapsevicius, V Remington, R Schmitt, M Scurlock, B Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Chen, J Dharmaratna, WGD Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Baarmand, MM Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatian, S Mironov, C Shabalina, E Smoron, A Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Chung, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Baringer, P Bean, A Benelli, G Grachov, O Murray, M Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Barfuss, AF Bolton, T Chakaberia, I Kaadze, K Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, D Boutemeur, M Eno, SC Ferencek, D Hadley, NJ Kellogg, RG Kirn, M Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M D'Enterria, D Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Petyt, D Rekovic, V Rusack, R Sasseville, M Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Sonnek, P Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Iashvili, I Kharchilava, A Kumar, A Smith, K Strang, M Alverson, G Barberis, E Baumgartel, D Boeriu, O Reucroft, S Swain, J Wood, D Anastassov, A Kubik, A Ofierzynski, RA Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Lynch, S Marinelli, N Morse, DM Ruchti, R Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Killewald, P Ling, TY Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatzerklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Sedov, A Shipsey, I Silvers, D Yoo, HD Zheng, Y Jindal, P Parashar, N Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Matveev, M Morales, J Padley, BP Redjimi, R Roberts, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Flacher, H Garcia-Bellido, A Gotra, Y Han, J Harel, A Korjenevski, S Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Hatakeyama, K Lungu, G Mesropian, C Yan, M Atramentov, O Gershtein, Y Halkiadakis, E Hits, D Lath, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Nguyen, CN Pivarski, J Safonov, A Sengupta, S Toback, D Weinberger, M Akchurin, N Jeong, C Lee, SW Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Brownson, E Engh, D Florez, C Johns, W Kurt, P Sheldon, P Arenton, MW Balazs, M Buehler, M Conetti, S Cox, B Hirosky, R Ledovskoy, A Neu, C Yohay, R Gollapinni, S Gunthoti, K Harr, R Karchin, PE Mattson, M Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Flood, K Gray, L Grogg, KS Grothe, M Hall-Wilton, R Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Reeder, D Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Ero, J. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. De Wolf, E. A. Hashemi, M. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Mozer, M. U. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Marage, P. E. Vander Velde, C. Vanlaer, P. Wickens, J. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Basegmez, S. Bruno, G. Caudron, J. Gil, E. Cortina De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Maltoni, F. Militaru, O. Ovyn, S. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Herquet, P. Alves, G. A. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Oguri, V. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Da Silva De Araujo, F. Torres Dias, F. A. Dias, M. A. F. Tomei, T. R. Fernandez Perez Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Damgov, J. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Stoykova, S. Sultanov, G. Trayanov, R. Vankov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Zang, J. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Carrillo Montoya, C. A. Gomez Moreno, B. Ocampo Rios, A. A. Sanabria, J. C. Godinovic, N. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Papadakis, A. Ptochos, F. Razis, P. A. Tsiakkouri, D. Zinonos, Z. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Macnpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Descamps, J. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Rousseau, D. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Paganini, P. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Le Bihan, A. -C. Mikami, Y. Ripp-Baudot, I. Speck, J. Van Hove, P. Baty, C. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fassi, F. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Pandoulas, D. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Actis, O. Bender, W. Biallass, P. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Kirsch, M. Klimkovich, T. Kreuzer, P. Lanske, D. Merschmeyer, M. Meyer, A. Pieta, H. Reithler, H. Schmitz, S. A. Sowa, M. Steggemann, J. Teyssier, D. Zeidler, C. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrens, U. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Kleinwort, C. Kluge, H. Knutsson, A. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Meyer, A. B. Mnich, J. Olzem, J. Parenti, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Volyanskyy, D. Wissing, C. Autermann, C. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Sander, C. Schleper, P. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Bluem, P. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Frey, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Karafasoulis, K. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Zachariadou, A. Agapitos, A. Gouskos, L. Katsas, P. Panagiotou, A. Saganis, K. Xaxiris, E. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Nayak, A. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Fahim, A. Jafari, A. Najafabadi, M. Mohammadi Moshaii, A. Mehdiabadi, S. Paktinat Zeinali, M. Felcini, M. Abbrescia, M. Barbone, L. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pierro, G. A. Polese, G. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Tupputi, S. Zito, G. Abbiendi, G. Bonacorsi, D. Braibant-Giacomelli, S. Capiluppi, P. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Landi, G. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. De Guio, F. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Menasce, D. Miccio, V. Moroni, L. Negri, P. Paganoni, M. Pedrini, D. Pullia, A. Ragazzi, S. Redaelli, N. Sala, S. Salerno, R. Tabarelli de Fatis, T. Tancini, V. Taroni, S. Cimmino, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Biasotto, M. Carlin, R. Checchia, P. De Mattia, M. Dorigo, T. Fanzago, F. Gasparini, F. Giubilato, P. Gonella, F. Gresele, A. Gulmini, M. Lacaprara, S. Lazzizzera, I. Maron, G. Mattiazzo, S. Meneguzzo, A. T. Passaseo, M. Pegoraro, M. Pozzobon, N. Ronchese, P. Torassa, E. Tosi, M. Vanini, S. Ventura, S. Zotto, P. Baesso, P. Berzano, U. Pagano, D. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Nappi, A. Santocchia, A. Servoli, L. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Bocci, A. Castaldi, R. Dell'Orso, R. Dutta, S. Fiori, F. Foa, L. Gennai, S. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Sarkar, S. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Rovelli, C. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Borgia, M. A. Botta, C. Cartiglia, N. Castello, R. Costa, M. Dellacasa, G. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Penzo, A. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Son, D. C. Kim, Zero Song, S. Jung, S. Y. Hong, B. Kim, H. Kim, J. H. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Sim, K. S. Kim, J. Choi, M. Park, I. C. Choi, S. Choi, Y. Choi, Y. K. Goh, J. Jo, Y. Kwon, J. Lee, J. Lee, S. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. Sanchez Hernandez, A. Carrillo Moreno, S. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Allfrey, P. Krofcheck, D. Aumeyr, T. Butler, P. H. Signal, T. Williams, J. C. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Ribeiro, P. Q. Seixas, J. Silva, P. Varela, J. Woehri, H. K. Altsybeev, I. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Vishnevskiy, A. Volodko, A. Zarubin, A. Ivanov, Y. Kim, V. Levchenko, P. Obrant, G. Shcheglov, Y. Shchetkovskiy, A. Smirnov, I. Sulimov, V. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Ilina, N. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Petrushanko, S. Sarycheva, L. Savrin, V. Vardanyan, I. Dremin, I. Kirakosyan, M. Konovalova, N. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Datsko, K. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Sytine, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Maletic, D. Puzovic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Diez Pardos, C. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. De Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Chuang, S. H. Diaz Merino, I. Diez Gonzalez, C. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Gonzalez Suarez, R. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Martinez Ruiz del Arbol, P. Matorras, F. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Beccati, B. Bell, A. J. Bellan, R. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bolognesi, S. Bona, M. Breuker, H. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Coarasa Perez, J. A. Covarelli, R. Cure, B. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Gowdy, S. Guiducci, L. Gutleber, J. Hartl, C. Harvey, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Huhtinen, M. Innocente, V. Janot, P. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Meridiani, P. Mersi, S. Meschi, E. Moser, R. Mulders, M. Noy, M. Orimoto, T. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Racz, A. Rolandi, G. Rovere, M. Ryjov, V. Sakulin, H. Schaefer, C. Schlatter, W. D. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Traczyk, P. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Casella, M. C. Chen, Z. Cittolin, S. Dambach, S. Dissertori, G. Dittmar, M. Eggel, C. Eugster, J. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Milenovic, P. Moortgat, F. Nardulli, A. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Schinzel, D. Sordini, V. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Trueb, P. Weber, M. Wehrli, L. Weng, J. Amsler, C. Chiochia, V. De Visscher, S. Rikova, M. Ivova Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Snoek, H. Tsirigkas, D. Wilke, L. Chang, Y. H. Chen, E. A. Chen, W. T. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Wu, J. H. Bartalini, P. Chang, P. Chang, Y. H. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Lei, Y. J. Lin, S. W. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Ueno, K. Wang, C. C. Wang, M. Adiguzel, A. Ayhan, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gurpinar, E. Karaman, T. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sahin, O. Sengul, O. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Serin, M. Sever, R. Surat, U. E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Hansen, M. Heath, G. P. Heath, H. F. Hill, C. Huckvale, B. Jackson, J. Kreczko, L. Mackay, C. K. Metson, S. Newbold, D. M. Nirunpong, K. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Hall, G. Hays, J. Iles, G. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A. -M. Marrouche, J. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Stoye, M. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Teodorescu, L. Bose, T. Clough, A. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Speer, T. Tsang, K. V. Breedon, R. De la Barca Sanchez, M. Calderon Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Wallny, R. Babb, J. Chandra, A. Clare, R. Ellison, J. A. Gary, J. W. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Shen, B. C. Stringer, R. Sturdy, J. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Norman, M. Padhi, S. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Blume, M. Campagnari, C. D'Alfonso, M. Danielson, T. Garberson, J. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lamb, J. Lowette, S. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Apresyan, A. Bornheim, A. Bunn, J. Gataullin, M. Litvine, V. Ma, Y. Newman, H. B. Rogan, C. Timciuc, V. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Jang, D. W. Jun, S. Y. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Ford, W. T. Heyburn, B. Luiggi Lopez, E. Nauenberg, U. Stenson, K. Ulmer, K. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Cassel, D. Chatterjee, A. Das, S. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Patterson, J. R. Puigh, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Vaughan, J. Weng, Y. Wittich, P. Biselli, A. Cirino, G. Winn, D. Albrow, M. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Binkley, M. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. James, E. Jensen, H. Johnson, M. Joshi, U. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lueking, L. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Smith, R. P. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Pakhotin, Y. Piedra Gomez, J. Prescott, C. Rapsevicius, V. Remington, R. Schmitt, M. Scurlock, B. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Chen, J. Dharmaratna, W. G. D. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Baarmand, M. M. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatian, S. Mironov, C. Shabalina, E. Smoron, A. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Chung, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Barfuss, A. F. Bolton, T. Chakaberia, I. Kaadze, K. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, D. Boutemeur, M. Eno, S. C. Ferencek, D. Hadley, N. J. Kellogg, R. G. Kirn, M. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. D'Enterria, D. Everaerts, P. Gomez Ceballos, G. Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Petyt, D. Rekovic, V. Rusack, R. Sasseville, M. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Sonnek, P. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Strang, M. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Reucroft, S. Swain, J. Wood, D. Anastassov, A. Kubik, A. Ofierzynski, R. A. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Lynch, S. Marinelli, N. Morse, D. M. Ruchti, R. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Killewald, P. Ling, T. Y. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatzerklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Sedov, A. Shipsey, I. Silvers, D. Yoo, H. D. Zheng, Y. Jindal, P. Parashar, N. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Matveev, M. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Flacher, H. Garcia-Bellido, A. Gotra, Y. Han, J. Harel, A. Korjenevski, S. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Hatakeyama, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Gershtein, Y. Halkiadakis, E. Hits, D. Lath, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Toback, D. Weinberger, M. Akchurin, N. Jeong, C. Lee, S. W. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Brownson, E. Engh, D. Florez, C. Johns, W. Kurt, P. Sheldon, P. Arenton, M. W. Balazs, M. Buehler, M. Conetti, S. Cox, B. Hirosky, R. Ledovskoy, A. Neu, C. Yohay, R. Gollapinni, S. Gunthoti, K. Harr, R. Karchin, P. E. Mattson, M. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Flood, K. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Reeder, D. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at root s=0.9 and 2.36 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID SQUARE-ROOT-S; PARTICLE MULTIPLICITY; CM ENERGIES; DIFFRACTION; DEPENDENCE AB Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at root s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5), are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p<(p)over bar> and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Ero, J.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; De Wolf, E. A.; Hashemi, M.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Adler, V.; Beauceron, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Mozer, M. U.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Marage, P. E.; Vander Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Maltoni, F.; Militaru, O.; Ovyn, S.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Herquet, P.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Oguri, V.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Da Silva De Araujo, F. Torres] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Damgov, J.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Carrillo Montoya, C. A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Tsiakkouri, D.; Zinonos, Z.] Univ Cyprus, Nicosia, Cyprus. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Macnpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Bianchini, L.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Paganini, P.; Sirois, Y.; Thiebaux, C.; Zabi, A.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Le Bihan, A. -C.; Mikami, Y.; Ripp-Baudot, I.; Speck, J.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Baty, C.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fassi, F.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, Univ Lyon, CNRS, Inst Phys Nucl Lyon,IN2P3, Villeurbanne, France. [Roinishvili, V.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Pandoulas, D.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Actis, O.; Bender, W.; Biallass, P.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Kirsch, M.; Klimkovich, T.; Kreuzer, P.; Lanske, D.; Merschmeyer, M.; Meyer, A.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sowa, M.; Steggemann, J.; Teyssier, D.; Zeidler, C.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrens, U.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Meyer, A. B.; Mnich, J.; Olzem, J.; Parenti, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Volyanskyy, D.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Sander, C.; Schleper, P.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Bauer, J.; Bluem, P.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Frey, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Karafasoulis, K.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.; Zachariadou, A.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Agapitos, A.; Gouskos, L.; Katsas, P.; Panagiotou, A.; Saganis, K.; Xaxiris, E.] Univ Athens, Athens, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Nayak, A.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Fahim, A.; Jafari, A.; Najafabadi, M. Mohammadi; Moshaii, A.; Mehdiabadi, S. Paktinat; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Felcini, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Landi, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Broccolo, G.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.] Univ Florence, Florence, Italy. [Fabbri, F.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Cerati, G. B.; Govoni, P.; Malberti, M.; Miccio, V.; Negri, P.; Paganoni, M.; Pullia, A.; Ragazzi, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Univ Milano Bicocca, Milan, Italy. [Cimmino, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Biasotto, M.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Giubilato, P.; Gonella, F.; Gresele, A.; Gulmini, M.; Lacaprara, S.; Lazzizzera, I.; Maron, G.; Mattiazzo, S.; Meneguzzo, A. T.; Passaseo, M.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zotto, P.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Mattiazzo, S.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Tosi, M.; Vanini, S.; Zotto, P.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Servoli, L.; Volpe, R.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Volpe, R.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Bocci, A.; Castaldi, R.; Dell'Orso, R.; Dutta, S.; Fiori, F.; Foa, L.; Gennai, S.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Bocci, A.; Foa, L.; Gennai, S.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Borgia, M. A.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Dellacasa, G.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Borgia, M. A.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Romero, A.; Sacchi, R.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.] Univ Trieste, Trieste, Italy. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Song, S.] Chonnam Natl Univ, Kwangju, South Korea. [Jung, S. Y.] Konkuk Univ, Seoul, South Korea. [Hong, B.; Kim, H.; Kim, J. H.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, J.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Park, I. C.] Univ Seoul, Seoul, South Korea. [Choi, S.; Choi, Y.; Choi, Y. K.; Goh, J.; Jo, Y.; Kwon, J.; Lee, J.; Lee, S.] Sungkyunkwan Univ, Suwon, South Korea. [Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla Valdez, H.; Sanchez Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Aumeyr, T.; Butler, P. H.; Signal, T.; Williams, J. C.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Altsybeev, I.; Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Vishnevskiy, A.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Ivanov, Y.; Kim, V.; Levchenko, P.; Obrant, G.; Shcheglov, Y.; Shchetkovskiy, A.; Smirnov, I.; Sulimov, V.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Vardanyan, I.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Dremin, I.; Kirakosyan, M.; Konovalova, N.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Azhgirey, I.; Bitioukov, S.; Datsko, K.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Maletic, D.; Puzovic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; De Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Diaz Merino, I.; Diez Gonzalez, C.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Sharma, A.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Beccati, B.; Bell, A. J.; Bellan, R.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Covarelli, R.; Cure, B.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gowdy, S.; Guiducci, L.; Gutleber, J.; Hartl, C.; Harvey, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Huhtinen, M.; Innocente, V.; Janot, P.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Meridiani, P.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Noy, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Racz, A.; Rolandi, G.; Rovere, M.; Ryjov, V.; Sakulin, H.; Schaefer, C.; Schlatter, W. D.; Schwick, C.; Segoni, I.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Traczyk, P.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Erdmann, M.; Bertl, W.; Deiters, K.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, M.; Caminada, L.; Casella, M. C.; Chen, Z.; Cittolin, S.; Dambach, S.; Dissertori, G.; Dittmar, M.; Eggel, C.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Schinzel, D.; Sordini, V.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Trueb, P.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Rikova, M. Ivova; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Snoek, H.; Tsirigkas, D.; Wilke, L.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, E. A.; Chen, W. T.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Wu, J. H.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Lei, Y. J.; Lin, S. W.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Wang, C. C.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Ayhan, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gurpinar, E.; Karaman, T.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sahin, O.; Sengul, O.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Serin, M.; Sever, R.; Surat, U. E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Scienti fi c Ctr, UA-310108 Kharkov, Ukraine. [Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Hansen, M.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Kreczko, L.; Mackay, C. K.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Hall, G.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Stoye, M.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London, Imperial Coll, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bose, T.; Clough, A.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Andrea, J.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; De la Barca Sanchez, M. Calderon; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Chandra, A.; Clare, R.; Ellison, J. A.; Gary, J. W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Luthra, A.; Nguyen, H.; Shen, B. C.; Stringer, R.; Sturdy, J.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Norman, M.; Padhi, S.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Blume, M.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Garberson, J.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lamb, J.; Lowette, S.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Gataullin, M.; Litvine, V.; Ma, Y.; Newman, H. B.; Rogan, C.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Stenson, K.; Ulmer, K.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Cassel, D.; Chatterjee, A.; Das, S.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Patterson, J. R.; Puigh, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Vaughan, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Banerjee, S.; Albrow, M.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Binkley, M.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lueking, L.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Smith, R. P.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Piedra Gomez, J.; Prescott, C.; Rapsevicius, V.; Remington, R.; Schmitt, M.; Scurlock, B.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Chen, J.; Dharmaratna, W. G. D.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatian, S.; Mironov, C.; Shabalina, E.; Smoron, A.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Heydhausen, D.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Chung, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Hu, Z.; Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Kaadze, K.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, D.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; D'Enterria, D.; Everaerts, P.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Petyt, D.; Rekovic, V.; Rusack, R.; Sasseville, M.; Cremaldi, L. M.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Sonnek, P.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Baur, U.; Iashvili, I.; Kharchilava, A.; Smith, K.; Strang, M.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Reucroft, S.; Swain, J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Ofierzynski, R. A.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Lynch, S.; Marinelli, N.; Morse, D. M.; Ruchti, R.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Killewald, P.; Ling, T. Y.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatzerklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Jones, J.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Sedov, A.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Matveev, M.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Flacher, H.; Garcia-Bellido, A.; Gotra, Y.; Han, J.; Harel, A.; Korjenevski, S.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Yan, M.; Atramentov, O.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Gershtein, Y.; Halkiadakis, E.; Hits, D.; Lath, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Jeong, C.; Lee, S. W.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Brownson, E.; Engh, D.; Florez, C.; Johns, W.; Kurt, P.; Sheldon, P.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Gunthoti, K.; Harr, R.; Karchin, P. E.; Mattson, M.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Flood, K.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Reeder, D.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI USA. [Darmenov, N.; Kreuzer, P.; Saout, C.; Hajdu, C.; Szillasi, Z.; Lusito, L.; Dallavalle, G. M.; Giunta, M.; Lenzi, P.; Cerati, G. B.; Ghezzi, A.; Malberti, M.; Cimmino, A.; De Gruttola, M.; Bellan, P.; Volpe, R.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Cavallari, F.; Paramatti, R.; Pereira, A. Vilela; Varela, J.; Virdee, T.; Erhan, S.; Sharma, V.; Hall-Wilton, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Univ Fed ABC, Santo Andre, Brazil. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Fassi, F.] IN2P3, Villeurbanne, France. [Zhukov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Bhattacharya, S.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Guchait, M.] Tata Inst Fundamental Res, HECR, Mumbai 400005, Maharashtra, India. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Biasotto, M.; Gulmini, M.; Lacaprara, S.; Maron, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Dubinin, M.; Spiropulu, M.] CALTECH, Pasadena, CA 91125 USA. [Puzovic, J.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Beaudette, F.] Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Caminada, L.; Eggel, C.; Marchica, C.; Trueb, P.] Paul Scherrer Inst, Villigen, Switzerland. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. Mersin Univ, Mersin, Turkey. Izmir Inst Technol, Izmir, Turkey. Kafkas Univ, Kars, Turkey. Suleyman Demirel Univ, TR-32200 Isparta, Turkey. Ege Univ, Izmir, Turkey. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Pioppi, M.] Univ Perugia, INFN, Sez Perugia, I-06100 Perugia, Italy. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Baarmand, M. M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Gonzalez Suarez, Rebeca/L-6128-2014; Calvo Alamillo, Enrique/L-1203-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Gonzalez Caballero, Isidro/E-7354-2010; Horvath, Dezso/A-4009-2011; Palinkas, Jozsef/B-2993-2011; Tinoco Mendes, Andre David/D-4314-2011; kaya, mithat/D-8062-2011; Ganjour, Serguei/D-8853-2011; Ruiz, Alberto/E-4473-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Krammer, Manfred/A-6508-2010; Lokhtin, Igor/D-7004-2012; Zalewski, Piotr/H-7335-2013; Hill, Christopher/B-5371-2012; Kuleshov, Sergey/D-9940-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Alves, Gilvan/C-4007-2013; Codispoti, Giuseppe/F-6574-2014; Bellan, Riccardo/G-2139-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Vardanyan, Irina/K-7981-2012; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Kirakosyan, Martin/N-2701-2015; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Sznajder, Andre/L-1621-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Vinogradov, Alexander/M-5331-2015; Altsybeev, Igor/K-6687-2013; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Gulmez, Erhan/P-9518-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Konovalova, Nina/D-3882-2014; Paganoni, Marco/A-4235-2016; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012 OI Scodellaro, Luca/0000-0002-4974-8330; Gonzalez Suarez, Rebeca/0000-0002-6126-7230; Calvo Alamillo, Enrique/0000-0002-1100-2963; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ruiz, Alberto/0000-0002-3639-0368; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Hill, Christopher/0000-0003-0059-0779; Kuleshov, Sergey/0000-0002-3065-326X; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Heath, Helen/0000-0001-6576-9740; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Mackay, Catherine/0000-0003-4252-6740; Rovelli, Tiziano/0000-0002-9746-4842; Altsybeev, Igor/0000-0002-8079-7026; TUVE', Cristina/0000-0003-0739-3153; Gulmez, Erhan/0000-0002-6353-518X; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Dudko, Lev/0000-0002-4462-3192; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN (China); CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Russia); MAE (Russia); MSTDS (Serbia); MICINN; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK; TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA); European Union; Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation FX We congratulate and express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and other CMS Institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; and the Alexander von Humboldt Foundation. NR 33 TC 97 Z9 97 U1 1 U2 74 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2010 IS 2 AR 041 DI 10.1007/JHEP02(2010)041 PG 35 WC Physics, Particles & Fields SC Physics GA 564NZ UT WOS:000275223100041 ER PT J AU Krohn, D Thaler, J Wang, LT AF Krohn, David Thaler, Jesse Wang, Lian-Tao TI Jet trimming SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jets; Hadronic Colliders; QCD ID HADRON-HADRON COLLISIONS; ALGORITHMS AB Initial state radiation, multiple interactions, and event pileup can contaminate jets and degrade event reconstruction. Here we introduce a procedure, jet trimming, designed to mitigate these sources of contamination in jets initiated by light partons. This procedure is complimentary to existing methods developed for boosted heavy particles. We find that jet trimming can achieve significant improvements in event reconstruction, especially at high energy/luminosity hadron colliders like the LHC. C1 [Krohn, David; Wang, Lian-Tao] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Thaler, Jesse] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Thaler, Jesse] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Krohn, D (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. EM dkrohn@princeton.edu; jthaler@jthaler.net; lianwang@princeton.edu OI Thaler, Jesse/0000-0002-2406-8160 FU Miller Institute for Basic Research in Science; National Science Foundation [PHY-0756966]; Department of Energy [DE-FG02-90ER40542] FX The authors would like to thank Jason Gallicchio, Gavin Salam, Matt Schwartz, and Peter Skands for useful discussions. J.T. thanks the Miller Institute for Basic Research in Science for funding support. L.-T. W. is supported by the National Science Foundation under grant PHY-0756966 and the Department of Energy under grant DE-FG02-90ER40542. J.T. and L.-T. W. thank the Aspen Center for Physics for their hospitality during the initial stages of this work. NR 28 TC 148 Z9 148 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2010 IS 2 AR 084 DI 10.1007/JHEP02(2010)084 PG 21 WC Physics, Particles & Fields SC Physics GA 564NZ UT WOS:000275223100084 ER PT J AU Mernild, SH Liston, GE Hiemstra, CA Christensen, JH AF Mernild, Sebastian H. Liston, Glen E. Hiemstra, Christopher A. Christensen, Jens H. TI Greenland Ice Sheet Surface Mass-Balance Modeling in a 131-Yr Perspective, 1950-2080 SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID RIVER DRAINAGE-BASIN; SNOW-TRANSPORT MODEL; CLIMATE MODEL; BLOWING-SNOW; COMPLEX TERRAIN; MITTIVAKKAT GLACIER; AMMASSALIK ISLAND; UPPER TREELINE; UNITED-STATES; ARCTIC TUNDRA AB Fluctuations in the Greenland ice sheet (GrIS) surface mass balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. A state-of-the-art snow-evolution modeling system(SnowModel) was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere-ocean general circulation model (AOGCM) from 1950 through 2080. In situ meteorological station [Greenland Climate Network (GC-Net) and World Meteorological Organization (WMO) Danish Meteorological Institute (DMI)] observations from inside and outside the GrIS were used to validate and correct RCM output data before they were used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model's robustness. The authors simulated an; 90% increase in end-of-summer surface melt extent (0.483 x 10(6) km(2)) from 1950 to 2080 and a melt index (above 2000-m elevation) increase of 138% (1.96 x 10(6) km(2) x days). The greatest difference in melt extent occurred in the southern part of the GrIS, and the greatest changes in the number of melt days were seen in the eastern part of the GrIS (similar to 50%-70%) and were lowest in the west (similar to 20%-30%). The rate of SMB loss, largely tied to changes in ablation processes, leads to an enhanced average loss of 331 km(3) from 1950 to 2080 and an average SMB level of 299 km(3) for the period 2070-80. GrIS surface freshwater runoff yielded a eustatic rise in sea level from 0.8 +/- 0.1 (1950-59) to 1.9 +/- 0.1 mm (2070-80) sea level equivalent (SLE) yr(-1). The accumulated GrIS freshwater runoff contribution from surface melting equaled 160-mm SLE from 1950 through 2080. C1 [Mernild, Sebastian H.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Mernild, Sebastian H.] Univ Alaska Fairbanks, Water & Environm Res Ctr, Fairbanks, AK USA. [Liston, Glen E.; Hiemstra, Christopher A.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Christensen, Jens H.] Danish Meteorol Inst, Danish Climate Ctr, Copenhagen, Denmark. RP Mernild, SH (reprint author), Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Computat Phys Methods CCS 2, Mail Stop B296, Los Alamos, NM 87545 USA. EM mernild@lanl.gov RI Christensen, Jens/C-4162-2013 OI Christensen, Jens/0000-0002-9908-8203 FU University of Alaska Presidential IPY Postdoctoral Foundation; University of Alaska Fairbanks (UAF) Office of the Vice Chancellor for Research FX Very special thanks to the three anonymous reviewers for their insightful critique of this article. This work was supported by grants from the University of Alaska Presidential IPY Postdoctoral Foundation and the University of Alaska Fairbanks (UAF) Office of the Vice Chancellor for Research and conducted during the first author's IPY Post Doctorate Program at the UAF. Special thanks to the faculty of science and Institute of Low Temperature Science, Hokkido University, Japan, for hosting the first author from April through July 2008 and to Colorado State University, Cooperative Institute for Research in the Atmosphere, for hosting the first author through September and October 2008, and February 2009. Thanks to Martin Stendel and John Cappelen at the Danish Meteorological Institute (DMI) for providing HIRHAM4 RCM data and WMO meteorological data obtained from the near coast, and to the Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado at Boulder, for providing meteorological data from the Greenland Climate Network (GC-Net) automatic weather stations. Also, thanks to Theodore Scambos, CIRES, University of Colorado at Boulder, for providing the Greenland digital elevation model. NR 123 TC 47 Z9 47 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2010 VL 11 IS 1 BP 3 EP 25 DI 10.1175/2009JHM1140.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 566BN UT WOS:000275344800001 ER PT J AU Carroll-Portillo, A Spendier, K Pfeiffer, J Griffiths, G Li, HT Lidke, KA Oliver, JM Lidke, DS Thomas, JL Wilson, BS Timlin, JA AF Carroll-Portillo, Amanda Spendier, Kathrin Pfeiffer, Janet Griffiths, Gary Li, Haitao Lidke, Keith A. Oliver, Janet M. Lidke, Diane S. Thomas, James L. Wilson, Bridget S. Timlin, Jerilyn A. TI Formation of a Mast Cell Synapse: Fc epsilon RI Membrane Dynamics upon Binding Mobile or Immobilized Ligands on Surfaces SO JOURNAL OF IMMUNOLOGY LA English DT Article ID BASOPHIL LEUKEMIA-CELLS; IMMUNOLOGICAL SYNAPSE; LIPID RAFTS; T-CELLS; SIGNALING MOLECULES; ELECTRON-MICROSCOPY; LATERAL MOBILITY; PLASMA-MEMBRANE; CULTURED-CELLS; CROSS-LINKING AB Fc epsilon RI on mast cells form a synapse when presented with mobile, bilayer-incorporated Ag. In this study, we show that receptor reorganization within the contacting mast cell membrane is markedly different upon binding of mobile and immobilized ligands. Rat basophilic leukemia mast cells primed with fluorescent anti-DNP IgE were engaged by surfaces presenting either bilayer-incorporated, monovalent DNP-lipid (mobile ligand), or chemically cross-linked, multivalent DNP (immobilized ligand). Total internal reflection fluorescence imaging and electron microscopy methods were used to visualize receptor reorganization at the contact site. The spatial relationships of FC epsilon RI to other cellular components at the synapse, such as actin, cholesterol, and linker for activation of T cells, were also analyzed. Stimulation of mast cells with immobilized polyvalent ligand resulted in typical levels of degranulation. Remarkably, degranulation also followed interaction of mast cells, with bilayers presenting mobile, monovalent ligand. Receptors engaged with mobile ligand coalesce into large, cholesterol-rich clusters that occupy the central portion of the contacting membrane. These data indicate that FceRI cross-linking is not an obligatory step in triggering mast cell signaling and suggest that dense populations of mobile receptors are capable of initiating low-level degranulation upon ligand recognition. The Journal of Immunology, 2010,184: 1328-1338. C1 [Carroll-Portillo, Amanda; Pfeiffer, Janet; Oliver, Janet M.; Lidke, Diane S.; Wilson, Bridget S.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Spendier, Kathrin; Lidke, Keith A.; Thomas, James L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Carroll-Portillo, Amanda; Timlin, Jerilyn A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Griffiths, Gary; Li, Haitao] NHLBI, Imaging Probe Dev Ctr, NIH, Bethesda, MD 20892 USA. RP Wilson, BS (reprint author), Univ New Mexico, Hlth Sci Ctr, Dept Pathol, Albuquerque, NM 87114 USA. EM bwilson@salud.unm.edu; jatimli@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; National Institutes of Health [R01A1051575, P50GM085273]; Human Frontiers Science Program; Army Research Office [W911NF0510464]; New Mexico Spatiotemporal Modeling Center; National Center for Research Resources [I S10 RR14668, P20 RR11830, S 10 RR016918]; National Science Foundation [MCB9982161]; National Cancer Institute [P30 CA118100]; University of New Mexico Health Sciences Center; University of New Mexico Cancer Center FX This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories (to J.A.T.), by National Institutes of Health Grant R01A1051575 (to B.S.W.), by the Human Frontiers Science Program (to D.S.L.), by the Army Research Office Grant W911NF0510464 (to K.S.), and by National Institutes of Health Grant P50GM085273 supporting the New Mexico Spatiotemporal Modeling Center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S, Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The Cancer Center Fluorescence Microscopy Facility received support from National Center for Research Resources Grant I S10 RR14668, National Science Foundation Grant MCB9982161, National Center for Research Resources Grant P20 RR11830, National Cancer Institute Grant P30 CA118100, National Center for Research Resources Grant S 10 RR016918, the University of New Mexico Health Sciences Center, and the University of New Mexico Cancer Center. NR 77 TC 25 Z9 25 U1 0 U2 4 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 J9 J IMMUNOL JI J. Immunol. PD FEB 1 PY 2010 VL 184 IS 3 BP 1328 EP 1338 DI 10.4049/jimmunol.0903071 PG 11 WC Immunology SC Immunology GA 548JA UT WOS:000273956400025 PM 20042583 ER PT J AU Zhang, Q Bilki, B Butler, J May, E Mavromanolakis, G Norbeck, E Repond, J Underwood, D Xia, L AF Zhang, Q. Bilki, B. Butler, J. May, E. Mavromanolakis, G. Norbeck, E. Repond, J. Underwood, D. Xia, L. TI Environmental dependence of the performance of resistive plate chambers SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeters; Gaseous imaging and tracking detectors ID TEMPERATURE-DEPENDENCE; COSMIC-RAYS; RPC AB This paper reports on the performance of Resistive Plate Chambers (RPCs) as function of the gas flow rate through the chambers and of environmental conditions, such as atmospheric pressure, ambient temperature and air humidity. The chambers are read out by pads with an area of 1 x 1 cm(2) and 1-bit resolution per pad (binary readout). The performance measures include the noise rate as well as the detection efficiency and pad multiplicity for cosmic rays. The measurements extended over a period of almost one year and are sensitive to possible long-term aging effects. C1 [Zhang, Q.; May, E.; Repond, J.; Underwood, D.; Xia, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Butler, J.] Boston Univ, Boston, MA 02215 USA. [Mavromanolakis, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bilki, B.; Norbeck, E.] Univ Iowa, Iowa City, IA 52242 USA. [Zhang, Q.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Mavromanolakis, G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@hep.anl.gov OI Bilki, Burak/0000-0001-9515-3306 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by U. Chicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 16 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2010 VL 5 AR P02007 DI 10.1088/1748-0221/5/02/P02007 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 562BU UT WOS:000275024900002 ER PT J AU Santore, R McKee, M Bjornstad, D AF Santore, Rudy McKee, Michael Bjornstad, David TI Patent Pools as a Solution to Efficient Licensing of Complementary Patents? Some Experimental Evidence SO JOURNAL OF LAW & ECONOMICS LA English DT Article ID RESEARCH TOURNAMENTS; PROPERTY-RIGHTS; HOLDUP AB Production requiring licensing groups of complementary patents implements a coordination game among patent holders, who can price patents by choosing among combinations of fixed and royalty fees. Summed across patents, these fees become the total producer cost of the package of patents. Royalties, because they function as excise taxes, add to marginal costs, resulting in higher prices and reduced quantities of the downstream product and lower payoffs to the patent holders. Using fixed fees eliminates this inefficiency but yields a more complex coordination game in which there are multiple equilibria, which are very fragile in that small mistakes can lead the downstream firm to not license the technology, resulting in inefficient outcomes. We report on a laboratory market investigation of the efficiency effects of coordinated pricing of patents in a patent pool. We find that pool-like pricing agreements can yield fewer coordination failures in the pricing of complementary patents. C1 [Santore, Rudy] Univ Tennessee, Knoxville, TN 37996 USA. [McKee, Michael] Appalachian State Univ, Boone, NC 28608 USA. [Bjornstad, David] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Santore, R (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. NR 28 TC 0 Z9 0 U1 4 U2 19 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0022-2186 J9 J LAW ECON JI J. Law Econ. PD FEB PY 2010 VL 53 IS 1 BP 167 EP 183 PG 17 WC Economics; Law SC Business & Economics; Government & Law GA 618WO UT WOS:000279387000006 ER PT J AU Graf, MJ Nussinov, Z Balatsky, AV AF Graf, M. J. Nussinov, Z. Balatsky, A. V. TI The Glassy Response of Solid He-4 to Torsional Oscillations SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Torsion oscillator; Solid He-4; Glass; Supersolid ID NONCLASSICAL ROTATIONAL INERTIA; BOSE-EINSTEIN CONDENSATION; HELIUM; SUPERFLUIDITY; BEHAVIOR; CRYSTALS; SEARCH AB We calculated the glassy response of solid He-4 to torsional oscillations assuming a phenomenological glass model. Making only a few assumptions about the distribution of glassy relaxation times in a small subsystem of otherwise rigid solid He-4, we can account for the magnitude of the observed period shift and concomitant dissipation peak in several torsion oscillator experiments. The implications of the glass model for solid He-4 are threefold: (1) The dynamics of solid He-4 is governed by glassy relaxation processes. (2) The distribution of relaxation times varies significantly between different torsion oscillator experiments. (3) The mechanical response of a torsion oscillator does not require a supersolid component to account for the observed anomaly at low temperatures, though we cannot rule out its existence. C1 [Graf, M. J.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nussinov, Z.] Washington Univ, Dept Phys, St Louis, MO 63160 USA. [Balatsky, A. V.] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM graf@lanl.gov; alatsky@gmail.com FU US Dept. of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Center for Materials Innovation (CMI) of Washington University, St. Louis FX This work was partially supported by the by the US Dept. of Energy at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396 and by the Center for Materials Innovation (CMI) of Washington University, St. Louis.; We are grateful to A. T. Dorsey, S. E. Korshunov, J. Beamish, J. M. Goodkind, H. Kojima and J. C. Davis for many stimulating discussions on this topic. NR 48 TC 20 Z9 20 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD FEB PY 2010 VL 158 IS 3-4 BP 550 EP 559 DI 10.1007/s10909-009-9958-z PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 539GW UT WOS:000273243000029 ER PT J AU Curro, NJ Young, BL Urbano, RR Graf, MJ AF Curro, Nicholas J. Young, Ben-Li Urbano, Ricardo R. Graf, Matthias J. TI Hyperfine Fields and Magnetic Structure in the B Phase of CeCoIn5 SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE NMR; Superconductivity; Heavy fermion; Magnetism ID SUPERCONDUCTIVITY; ORDER AB We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B phase of CeCoIn5. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H parallel to [100] are consistent with magnetic order with wavevector Q = pi (1+delta/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along the [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [ 001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15 mu(B) along [001] and Q(n) = pi(1+delta/a, 1+delta/a, 1/c) with in-commensuration delta = 0.12 for field H parallel to [1 (1) over bar0]. Using these parameters, we find that a hyperfine field with dipolar contribution is consistent with findings from both experiments. We speculate that the B phase of CeCoIn5 represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system. C1 [Graf, Matthias J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Curro, Nicholas J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Young, Ben-Li] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan. [Urbano, Ricardo R.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Graf, MJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM curro@physics.ucdavis.edu; blyoung@mail.nctu.edu.tw; urbano@magnet.fsu.edu; graf@lanl.gov RI Urbano, Ricardo/F-5017-2012; Curro, Nicholas/D-3413-2009 OI Curro, Nicholas/0000-0001-7829-0237 FU Los Alamos National Laboratory; US Department of Energy [DE-AC52-06NA25396] FX We would like to thank R. Movshovich, V. Mitrovic, and M. Kenzelmann for valuable discussions and sharing their results. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy under grant no. DE-AC52-06NA25396. NR 31 TC 5 Z9 5 U1 1 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD FEB PY 2010 VL 158 IS 3-4 BP 635 EP 646 DI 10.1007/s10909-009-9967-y PG 12 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 539GW UT WOS:000273243000039 ER PT J AU Yin, L Xia, JS Sullivan, NS Zapf, VS Paduan-Filho, A AF Yin, L. Xia, J. S. Sullivan, N. S. Zapf, V. S. Paduan-Filho, A. TI Magnetic Susceptibility Measurements at Ultra-low Temperatures SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE AC susceptibility; Ultra-low temperature AB We report the design and operation of a device for ac magnetic susceptibility measurements that can operate down to 1 mK. The device, a modification of the standard mutual inductance bridge, is designed with detailed consideration of the thermalization and optimization of each element. First, in order to reduce local heating, the primary coil is made with superconducting wire. Second, a low-temperature transformer which is thermally anchored to the mixing chamber of a dilution refrigerator, is used to match the output of the secondary coil to a high-sensitivity bridge detector. The careful thermal anchoring of the secondary coil and the matching transformer is required to reduce the overall noise temperature and maximize sensitivity. The sample is immersed in liquid (3)He to minimize the Kapitza thermal resistance. The magnetic susceptibility of several magnetic compounds, such as the well-known spin gap compound NiCl(2)-4SC(NH(2))(2) and other powdered samples, have been successfully measured to temperatures well below 10 mK. C1 [Yin, L.; Xia, J. S.; Sullivan, N. S.] Univ Florida, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. [Zapf, V. S.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Paduan-Filho, A.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. RP Yin, L (reprint author), Univ Florida, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. EM yin@phys.ufl.edu; jsxia@phys.ufl.edu; sullivan@phys.ufl.edu RI YIN, LIANG/G-7585-2011; PaduanFilho, Armando/H-2443-2011; Zapf, Vivien/K-5645-2013 OI Zapf, Vivien/0000-0002-8375-4515 FU NSF [DMR 0654118]; State of Florida FX This research was carried out at the NHMFL High B/T Facility at the University of Florida which is supported by NSF Grant DMR 0654118 and by the State of Florida. NR 7 TC 5 Z9 5 U1 2 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD FEB PY 2010 VL 158 IS 3-4 BP 710 EP 715 DI 10.1007/s10909-009-0029-2 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 539GW UT WOS:000273243000046 ER PT J AU Wu, YF Kim, GY Anderson, IE Lograsso, TA AF Wu, Yufeng Kim, Gap-Yong Anderson, Iver E. Lograsso, Thomas A. TI Experimental Study on Viscosity and Phase Segregation of Al-Si Powders in Microsemisolid Powder Forming SO JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE design of experiments; forming processes; powder technology; viscosity ID FINITE-ELEMENT-ANALYSIS; SN-15 PCT PB; RHEOLOGICAL BEHAVIOR; SEMISOLID STATE; BACK EXTRUSION; ALUMINUM-ALLOY; SHEAR RATES; MUSHY ZONE; DEFORMATION; COMPOSITES AB Semisolid powder forming is a promising approach for near-net shape forming of features in macro-/microscale. In this paper, viscosity and phase segregation behavior of Al-Si powders in the semisolid state were studied with back extrusion experiments. The effects of process parameters including shear rate, extrusion ratio, heating time, and precompaction pressure were analyzed using the design of experiments method. The results showed that the effects of shear rate, extrusion, ratio and heating time were statistically significant factors influencing the viscosity. The semisolid state powders showed a shear thinning behavior. Moreover, microstructure analysis of extruded parts indicated severe phase segregation during the forming process. As the extrusion opening became small (similar to 400 mu m), the phase segregation increased. This study expanded the semisolid processing technology by exploring the use of powdered materials instead of typical bulk materials for applications in micro-/mesomanufacturing. Replacing bulk materials with powdered materials may add a new dimension to the technique by allowing tailoring of material properties. C1 [Wu, Yufeng; Kim, Gap-Yong] Iowa State Univ, Dept Mech Engn, Ames, IA 50010 USA. [Lograsso, Thomas A.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50010 USA. RP Wu, YF (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50010 USA. EM andywu@iastate.edu; gykim@iastate.edu; andersoni@ameslab.gov; lograsso@ameslab.gov RI wu, yufeng/K-5003-2013 FU U.S. Department of Energy; Iowa State University [DE-AC02-07CH11358] FX The authors greatly appreciate the financial support from Ames Laboratory of the U.S. Department of Energy. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 45 TC 5 Z9 5 U1 0 U2 7 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1087-1357 J9 J MANUF SCI E-T ASME JI J. Manuf. Sci. Eng.-Trans. ASME PD FEB PY 2010 VL 132 IS 1 AR 011003 DI 10.1115/1.4000636 PG 7 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA 555PE UT WOS:000274524200003 ER PT J AU Barabasha, RI Bei, HB Gao, YF Ice, GE George, EP AF Barabasha, Rozaliya I. Bei, Hongbin Gao, Yanfei Ice, Gene E. George, Easo P. TI 3D x-ray microprobe investigation of local dislocation densities and elastic strain gradients in a NiAl-Mo composite and exposed Mo micropillars as a function of prestrain SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID MECHANICAL-PROPERTIES; NICKEL MICROCRYSTALS; DEFORMATION; BEHAVIOR; STRENGTH; DAMAGE; ALLOY AB 3D spatially-resolved polychromatic microdiffraction was used to nondestructively obtain depth-dependent elastic strain gradients and dislocation densities in the constituent phases of a directionally solidified NiAl-Mo eutectic composite consisting of similar to 500-800 nm Mo fibers in a NiAl matrix. Measurements were made before and after the composite was compressed by 5% and 11%. The Mo fibers were analyzed both in their embedded state and after the matrix was etched to expose them as pillars. In the as-grown composite, due to differential thermal contraction during cooldown, the Mo phase is under compression and the NiAl phase is in tension. After the prestrains, the situation is reversed with the Mo phase in tension and NiAl matrix in compression. This result can be explained by taking into account the mismatch in yield strains of the constituent phases and the elastic constraints during unloading. The dislocation density in both the Mo and NiAl phases is found to increase after prestraining. Within experimental uncertainty there is little discernible difference in the total dislocation densities in the Mo phase of the 5% and 11% prestrained specimens. However, the density of the geometrically necessary dislocations and the deviatoric strain gradients increase with increasing prestrain in both the Mo and NiAl phases. C1 [Barabasha, Rozaliya I.; Bei, Hongbin; Ice, Gene E.; George, Easo P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Barabasha, Rozaliya I.; Gao, Yanfei; George, Easo P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Yanfei] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Barabasha, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM Barabashr@ornl.gov; Beih@ornl.gov RI Gao, Yanfei/F-9034-2010; George, Easo/L-5434-2014 OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990; NR 28 TC 13 Z9 13 U1 2 U2 12 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2010 VL 25 IS 2 BP 199 EP 206 DI 10.1557/JMR.2010.0043 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 550FT UT WOS:000274114400001 ER PT J AU Zhang, J Wang, YQ Tang, M Won, JH Valdez, JA Sickafus, KE AF Zhang, Jian Wang, Yongqiang Tang, Ming Won, Jonghan Valdez, James A. Sickafus, Kurt E. TI Order-to-disorder transformation in delta-phase Sc4Zr3O12 induced by light ion irradiation SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID RADIATION TOLERANCE; CERAMIC INSULATORS; CRYSTAL-STRUCTURES; ZIRCONIA; SPECTRUM; OXIDES; DAMAGE; MICROSTRUCTURE; PLUTONIUM; WASTE AB Polycrystalline delta-phase Sc4Zr3O12 was irradiated with 200 keV Ne+ ions at cryogenic temperature to fluences ranging from 2 x 10(18) to 1 x 10(21) Ne/m(2). Irradiation-induced structural evolution was examined by using grazing incidence x-ray diffraction and crosssectional transmission electron microscopy. An order-to-disorder (O-D) crystal structure transformation (from an ordered 8-phase to a disordered, fluorite phase) was observed to initiate by a fluence of 2 x 1018 Ne/m(2), corresponding to a peak ballistic damage dose of similar to 0.075 displacements per atom. This displacement damage dose is much lower than the O-D transformation dose threshold found in previous heavy ion irradiation experiments on delta-Sc4Zr3O12 [J.A. Valdez et al., Nucl. Instrum. Methods B 250, 148 (2006); K.E. Sickafus et al., Nat. Mater. 6, 217 (2007)]. In this study, we contrast the O-D transformation efficiency of the light Ne ions used in these experiments, to the heavy (Kr) ions used previously, and interpret the differences in terms of enhanced damage efficiency for light ions (greater fraction of surviving defects per defect produced). To better quantify this surviving defect phenomenon, we also present new, additional ion irradiation results on delta-Sc4Zr3O12, obtained from 300 keV Kr2+ and 100 keV He+ ion irradiation experiments. C1 [Zhang, Jian] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. [Zhang, Jian; Wang, Yongqiang; Tang, Ming; Won, Jonghan; Valdez, James A.; Sickafus, Kurt E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Zhang, J (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. EM zhang_j@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; China Scholarship Council; Ministry of Education of the People's Republic of China FX This work was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Partial support was provided to J.Z. by the China Scholarship Council, a nonprofit organization affiliated with the Ministry of Education of the People's Republic of China. NR 28 TC 9 Z9 9 U1 1 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2010 VL 25 IS 2 BP 248 EP 254 DI 10.1557/JMR.2010.0027 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 550FT UT WOS:000274114400009 ER PT J AU Stemshorn, AK Tsoi, G Vohra, YK Sinogeiken, S Wu, PM Huang, YL Rao, SM Wu, MK Yeh, KW Weir, ST AF Stemshorn, Andrew K. Tsoi, Georgiy Vohra, Yogesh K. Sinogeiken, Stanislav Wu, Phillip M. Huang, Yilin Rao, Sistla M. Wu, Maw-Kuen Yeh, Kuo W. Weir, Samuel T. TI Low temperature amorphization and superconductivity in FeSe single crystals at high pressures SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID PHASE; COPPER; METAL AB In this study, we report low temperature x-ray diffraction studies combined with electrical resistance measurements on single crystals of iron-based layered superconductor FeSe to a temperature of 10 K and a pressure of 44 GPa. The low temperature high pressure x-ray diffraction studies were performed using a synchrotron source and superconductivity at high pressure was studied using designer diamond anvils. At ambient temperature, the FeSe sample shows a phase transformation from a PbO-type tetragonal phase to a NiAs-type hexagonal phase at 10 +/- 2 GPa. On cooling, a structural distortion from a PbO-type tetragonal phase to an orthorhombic Cmma phase is observed below 100 K. At a low temperature of 10 K, compression of the orthorhombic Cmma phase results in a gradual transformation to an amorphous phase above 15 GPa. The transformation to the amorphous phase is completed by 40 GPa at 10 K. A loss of superconductivity is observed in the amorphous phase and a dramatic change in the temperature behavior of electrical resistance indicates formation of a semiconducting state at high pressures and low temperatures. The formation of the amorphous phase is attributed to a kinetic hindrance to the growth of a hexagonal NiAs phase under high pressures and low temperatures. C1 [Stemshorn, Andrew K.; Tsoi, Georgiy; Vohra, Yogesh K.] Univ Alabama, Dept Phys, Birmingham, AL 35294 USA. [Sinogeiken, Stanislav] Argonne Natl Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. [Wu, Phillip M.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Huang, Yilin; Rao, Sistla M.; Wu, Maw-Kuen; Yeh, Kuo W.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Weir, Samuel T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vohra, YK (reprint author), Univ Alabama, Dept Phys, Birmingham, AL 35294 USA. EM ykvohra@uab.edu RI Weir, Samuel/H-5046-2012; Wu, Phillip/M-9431-2014 OI Wu, Phillip/0000-0002-3210-9823 FU National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. Department of Energy (DOE) [DE-FG52 10NA29660]; Carnegie/DOE Alliance Center (CDAC) [DE-FC52-08NA28554] FX This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. Department of Energy (DOE) Grant No. DE-FG52 10NA29660. Andrew Stemshorn acknowledges support from the Carnegie/DOE Alliance Center (CDAC) under Grant No. DE-FC52-08NA28554. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. NR 19 TC 6 Z9 6 U1 2 U2 17 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2010 VL 25 IS 2 BP 396 EP 400 DI 10.1557/JMR.2010.0044 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 550FT UT WOS:000274114400028 ER PT J AU Halevy, I Beeri, O Hu, J AF Halevy, I. Beeri, O. Hu, J. TI Sc-strengthened commercial purity aluminum under high pressure SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID ELEVATED-TEMPERATURES; MECHANICAL-PROPERTIES; AL(SC) ALLOYS; AL3SC; PRECIPITATION; ADDITIONS; AMBIENT AB Aluminum alloyed with approximately 1,000 at. ppm Sc was studied by high-pressure energy dispersive X-ray diffraction in two different states, homogenized and aged to peak microhardness. The microhardness of the aged sample is about three times higher than the microhardness of the homogenized sample (as a result of the formation of nanosize Al(3)Sc precipitates in the aged sample). The results, which were refined using the Rietveld analysis technique, indicate a single cubic phase with no phase transition up to a pressure of 32 GPa. The Vinet equation was used to fit the volume-pressure curve to the equation-of-state. The bulk modulus (B (0)) is found to be 73 +/- A 5 GPa, and is equal to the value measured for an unalloyed aluminum sample. The fact that the bulk modulus does not change, despite a large difference in microhardness between the samples, is the result of the different origins of the two quantities. C1 [Halevy, I.] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA. [Halevy, I.; Beeri, O.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. [Hu, J.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Halevy, I (reprint author), CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA. EM halevyi@caltech.edu FU US Department of Energy [DE-FG02-98ER45721] FX This research is supported by the US Department of Energy through Grant DE-FG02-98ER45721. NR 12 TC 3 Z9 3 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2010 VL 45 IS 3 BP 589 EP 592 DI 10.1007/s10853-009-3931-8 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 536GU UT WOS:000273033700003 ER PT J AU Lee, YJ Lee, JH Kim, SR Kwon, WT Oh, H Klepeis, JHP Teat, SJ Kim, YH AF Lee, Yoon Joo Lee, Jung Hyun Kim, Soo Ryong Kwon, Woo Teck Oh, Hyunju Klepeis, Jae-hyun Park Teat, Simon J. Kim, Y. H. TI Synthesis and characterization of novel preceramic polymer for SiC SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SILICON-CARBIDE; POLYSILASTYRENE; COPOLYMERS; PRECURSORS; CERAMICS; RESIST AB Polyphenylcarbosilane as a novel preceramic polymer for SiC was synthesized by thermal rearrangement of polymethylphenylsilane at around 350-430 A degrees C. Characterization of the synthesized polyphenylcarbosilane was performed using Si-29 NMR, C-13 NMR and H-1 NMR spectroscopy, FT-IR spectroscopy and TG, XRD, and GPC analysis. From the FT-IR data, the band at 1035 cm(-1) was very strong and was assigned to the CH2 bending vibration in the Si-CH2-Si group, indicating the formation of polyphenylcarbosilane. The average molecular weight (M-w) of the polyphenylcarbosilane synthesized was 2,500, and it was found to easily dissolve in an organic solvent. TGA data indicate that polyphenylcarbosilane is thermally stable up to 200 A degrees C. However, rapid weight loss occurs above 200 A degrees C because of the decomposition of polyphenylcarbosilane, and the diffraction peak of the pyrolysis residue at 1200 A degrees C corresponds to beta-SiC ceramic. The ceramic yield calculated from TGA is approximately 60%. C1 [Lee, Yoon Joo; Lee, Jung Hyun; Kim, Soo Ryong; Kwon, Woo Teck; Kim, Y. H.] Korea Inst Ceram Engn & Technol, Seoul 153801, South Korea. [Oh, Hyunju] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea. [Klepeis, Jae-hyun Park; Teat, Simon J.] Univ Calif Berkeley, Adv Light Source, Berkeley, CA 94720 USA. RP Kim, YH (reprint author), Korea Inst Ceram Engn & Technol, Seoul 153801, South Korea. EM yhkokim@kicet.re.kr FU Korea government (MOST) [R01-2007-000-20320-0]; US DOE [DE-AC5207NA27344]; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2007-000-20320-0). The authors would like to thank Dr. Duk-Young Han in Korea Basic Science Institute, Seoul Branch for his assistance in data collection of the samples using Solid NMR, 200B instrument. J.-H.-P. K.' s work for methyltriphenylsilane structural studies was supported under the auspices of the US DOE by LLNL under Contract DE-AC5207NA27344. Single crystal X-ray diffraction data collection of methyltriphenylsilane was carried out at the Advanced Light Source (ALS). ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 16 TC 11 Z9 11 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2010 VL 45 IS 4 BP 1025 EP 1031 DI 10.1007/s10853-009-4034-2 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 536GV UT WOS:000273033800021 ER PT J AU Passian, A Koucheckian, S Yakubovich, SB Thundat, T AF Passian, A. Koucheckian, S. Yakubovich, S. B. Thundat, T. TI Properties of index transforms in modeling of nanostructures and plasmonic systems SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article AB In material structures with nanometer scale curvature or dimensions, electrons may be excited to oscillate in confined spaces. The consequence of such geometric confinement is of great importance in nano-optics and plasmonics. Furthermore, the geometric complexity of the probe-substrate/sample assemblies of many scanning probe microscopy experiments often poses a challenging modeling problem due to the high curvature of the probe apex or sample surface protrusions and indentations. Index transforms such as Mehler-Fock and Kontorovich-Lebedev, where integration occurs over the index of the function rather than over the argument, prove useful in solving the resulting differential equations when modeling optical or electronic response of such problems. By considering the scalar potential distribution of a charged probe in the presence of a dielectric substrate, we discuss certain implications and criteria of the index transform and prove the existence and the inversion theorems for the Mehler-Fock transform of the order m is an element of N(0). The probe charged to a potential V(0), measured at the apex, is modeled, in the noncontact case, as a one-sheeted hyperboloid of revolution, and in the contact case or in the limit of a very sharp probe, as a cone. Using the Mehler-Fock integral transform in the first case, and the Fourier integral transform in the second, we discuss the necessary conditions imposed on the potential distribution on the probe surface. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3294165] C1 [Passian, A.; Thundat, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Passian, A.; Thundat, T.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Koucheckian, S.] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA. [Yakubovich, S. B.] Univ Porto, Dept Pure Math, P-4169007 Oporto, Portugal. RP Passian, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov OI Yakubovich, Semyon/0000-0003-2522-6770 FU Laboratory Directed Research and Development (LDRD); UT-Battelle, LLC for the Department of Energy [DE-AC05-00960R22725] FX This work was supported by the 00472 project of the Laboratory Directed Research and Development (LDRD) program. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 378316123, is managed by UT-Battelle, LLC for the Department of Energy under Contract No. DE-AC05-00960R22725. NR 35 TC 6 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0022-2488 J9 J MATH PHYS JI J. Math. Phys. PD FEB PY 2010 VL 51 IS 2 AR 023518 DI 10.1063/1.3294165 PG 30 WC Physics, Mathematical SC Physics GA 562EJ UT WOS:000275032100054 ER PT J AU Han, J Papalambros, PY AF Han, Jeongwoo Papalambros, Panos Y. TI A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading SO JOURNAL OF MECHANICAL DESIGN LA English DT Article ID COLLABORATIVE OPTIMIZATION; DESIGN; CONVERGENCE; SYSTEMS AB Decomposition-based strategies, such as analytical target cascading (ATC), are often employed in design optimization of complex systems. Achieving convergence and computational efficiency in the coordination strategy that solves the partitioned problem is a key challenge. A new convergent strategy is proposed for ATC that coordinates interactions among subproblems using sequential linearizations. The linearity of subproblems is maintained using infinity norms to measure deviations between targets and responses. A subproblem suspension strategy is used to suspend temporarily inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. An individual subproblem trust region method is introduced for faster convergence. The proposed strategy is intended for use in design optimization problems where sequential linearizations are typically effective, such as problems with extensive monotonicities, a large number of constraints relative to variables, and propagation of probabilities with normal distributions. Experiments with test problems show that, relative to standard ATC coordination, the number of subproblem evaluations is reduced considerably while the solution accuracy depends on the degree of monotonicity and nonlinearity. [DOI: 10.1115/1.4000758] C1 [Han, Jeongwoo] Argonne Natl Lab, Argonne, IL 60439 USA. [Papalambros, Panos Y.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48104 USA. RP Han, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 362, Argonne, IL 60439 USA. EM jhan@anl.gov; pyp@umich.edu FU General Motors Corporation; Automotive Research Center; US Army Center of Excellence in Modeling; University of Michigan; NSF [DMI-0503737] FX This work was partially supported by a grant from the General Motors Corporation, the Automotive Research Center, a US Army Center of Excellence in Modeling and Simulation of Ground Vehicle Systems at the University of Michigan, and NSF under Grant No. DMI-0503737. This support is gratefully acknowledged. NR 32 TC 6 Z9 6 U1 1 U2 9 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1050-0472 J9 J MECH DESIGN JI J. Mech. Des. PD FEB PY 2010 VL 132 IS 2 AR 021003 DI 10.1115/1.4000758 PG 8 WC Engineering, Mechanical SC Engineering GA 553TW UT WOS:000274390700003 ER PT J AU Deshpande, A Gans, J Graves, SW Green, L Taylor, L Kim, HB Kunde, YA Leonard, PM Li, PE Mark, J Song, J Vuyisich, M White, PS AF Deshpande, Alina Gans, Jason Graves, Steven W. Green, Lance Taylor, Laura Kim, Heung Bok Kunde, Yuliya A. Leonard, Pascale M. Li, Po-E Mark, Jacob Song, Jian Vuyisich, Momchilo White, P. Scott TI A rapid multiplex assay for nucleic acid-based diagnostics SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Ligation-based assay; Luminex; MOL-PCR; Multiplex diagnostics; Surveillance; Microsphere array ID DEPENDENT PROBE AMPLIFICATION; FOOT-AND-MOUTH; RELATIVE QUANTIFICATION; DISEASE VIRUSES; ARRAY AB We have developed a rapid (under 4 hours), multiplex, nucleic acid assay, adapted to a microsphere array detection platform. We call this assay multiplex oligonucleotide ligation-PCR (MOL-PCR). Unlike other ligation-based assays that require multiple steps, our protocol consists of a single tube reaction, followed by hybridization to a Luminex microsphere array for detection. We demonstrate the ability of this assay to simultaneously detect diverse nucleic acid signatures (e.g., unique sequences, single nucleotide polymorphisms) in a single multiplex reaction. Detection probes consist of modular components that enable target detection, probe amplification, and subsequent capture onto microsphere arrays. To demonstrate the utility of our assay, we applied it to the detection of three biothreat agents, B. anthracis, Y. pestis, and F. tularensis. Combined with the ease and robustness of this assay, the results presented here show a strong potential of our assay for use in diagnostics and surveillance. Published by Elsevier B.V. C1 [Deshpande, Alina] Los Alamos Natl Lab, Decis Applicat Div, Los Alamos, NM 87545 USA. [Gans, Jason; Green, Lance; Taylor, Laura; Kim, Heung Bok; Kunde, Yuliya A.; Li, Po-E; Mark, Jacob; Song, Jian; Vuyisich, Momchilo; White, P. Scott] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Graves, Steven W.] 1 Univ New Mexico, Dept Chem & Nucl Engn, Ctr Biomed Engn, Albuquerque, NM 87131 USA. [Leonard, Pascale M.] New Mexico Dept Hlth, Div Sci Lab, Albuquerque, NM 87196 USA. RP Deshpande, A (reprint author), Los Alamos Natl Lab, Decis Applicat Div, Mail Stop K551, Los Alamos, NM 87545 USA. EM deshpande_a@lanl.gov OI Kim, Heungbok/0000-0002-4359-8423 FU Department of Homeland Security Science and Technology Directorate [HSHQDC-07-X-00907]; National Flow Cytometry Resource [NIH RR001315]; LANL-Laboratory Directed Research and Development [DRX9HG] FX This work was supported by the Department of Homeland Security Science and Technology Directorate (award # HSHQDC-07-X-00907 to PSW); The National Flow Cytometry Resource (award # NIH RR001315); and LANL-Laboratory Directed Research and Development (award # DRX9HG to SG). The material in this paper represents the position of Deshpande et al., and not necessarily that of DHS. NR 22 TC 21 Z9 24 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD FEB PY 2010 VL 80 IS 2 BP 155 EP 163 DI 10.1016/j.mimet.2009.12.001 PG 9 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 562EL UT WOS:000275032300008 PM 20006656 ER PT J AU Addae-Mensah, KA Retterer, S Opalenik, SR Thomas, D Lavrik, NV Wikswo, JP AF Addae-Mensah, Kweku A. Retterer, Scott Opalenik, Susan R. Thomas, Darrell Lavrik, Nickolay V. Wikswo, John P. TI Cryogenic Etching of Silicon: An Alternative Method for Fabrication of Vertical Microcantilever Master Molds SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Biological microelectromechanical systems (BioMEMS); deep reactive ion etching (DRIE); cryogenic DRIE; microelectromechanical systems (MEMS); polydimethylsiloxane (PDMS); vertical microcantilever arrays ID CELLULAR MECHANICS; STEM-CELLS; STICTION; PDMS; MICROSTRUCTURES; PLASMAS; FORCE; ARRAY; MEMS; SI AB This paper examines the use of deep reactive ion etching of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of an SiOxFy polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the O-2 flow rate and the capacitively coupled plasma power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using electron-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 mu m, and 2 mu m. [2008-0317] C1 [Addae-Mensah, Kweku A.; Wikswo, John P.] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA. [Retterer, Scott; Thomas, Darrell; Lavrik, Nickolay V.] CNMS, ORNL, Oak Ridge, TN 37830 USA. [Opalenik, Susan R.] Vanderbilt Univ, Dept Pathol, Sch Med, Nashville, TN 37232 USA. [Wikswo, John P.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Wikswo, John P.] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA. [Wikswo, John P.] VIIBRE, Nashville, TN 37235 USA. RP Addae-Mensah, KA (reprint author), Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA. EM kaddaem@gmail.com; Rettererst@ornl.gov; susan.opalenik@Vanderbilt.Edu; thomasdk@ornl.gov; lavriknv@ornl.gov; john.wikswo@vanderbilt.edu RI Retterer, Scott/A-5256-2011; Lavrik, Nickolay/B-5268-2011 OI Retterer, Scott/0000-0001-8534-1979; Lavrik, Nickolay/0000-0002-9543-5634 FU Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE); Whitaker Foundation; National Institutes of Health [R01 HLO68144] FX This work was supported in part by the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE), in part by the Whitaker Foundation, and in part by the National Institutes of Health (R01 HLO68144). NR 38 TC 8 Z9 8 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 EI 1941-0158 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2010 VL 19 IS 1 BP 64 EP 74 DI 10.1109/JMEMS.2009.2037440 PG 11 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 551MM UT WOS:000274213700007 ER PT J AU Guisinger, MM Chumley, TW Kuehl, JV Boore, JL Jansen, RK AF Guisinger, Mary M. Chumley, Timothy W. Kuehl, Jennifer V. Boore, Jeffrey L. Jansen, Robert K. TI Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae SO JOURNAL OF MOLECULAR EVOLUTION LA English DT Article DE Plastid genomics; Molecular evolution; Poales; Poaceae; Grass genomes; Typha latifolia ID TRANSFER-RNA GENES; COMPARATIVE CHLOROPLAST GENOMICS; NUCLEOTIDE SUBSTITUTION RATES; GRASS FAMILY POACEAE; INVERTED REPEAT; FLOWERING PLANTS; MITOCHONDRIAL GENOMES; TRACHELIUM-CAERULEUM; MULTIPLE INVERSIONS; MOLECULAR EVOLUTION AB Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes. C1 [Guisinger, Mary M.; Chumley, Timothy W.; Jansen, Robert K.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kuehl, Jennifer V.; Boore, Jeffrey L.] Lawrence Berkeley Natl Lab, Walnut Creek, CA 94598 USA. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. [Boore, Jeffrey L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Chumley, Timothy W.] Cent Washington Univ, Dept Biol Sci, Ellensburg, WA 98926 USA. RP Guisinger, MM (reprint author), Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA. EM mary.guisinger@mail.utexas.edu RI Guisinger, Mary/E-9790-2010; Guisinger, Mary/B-8156-2008; Jansen, Robert/F-6272-2011 NR 86 TC 64 Z9 68 U1 2 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2844 J9 J MOL EVOL JI J. Mol. Evol. PD FEB PY 2010 VL 70 IS 2 BP 149 EP 166 DI 10.1007/s00239-009-9317-3 PG 18 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA 558MH UT WOS:000274746600003 PM 20091301 ER PT J AU Hong, HP Thomas, D Waynick, A Yu, WH Smith, P Roy, W AF Hong, Haiping Thomas, Dustin Waynick, Andy Yu, Wenhua Smith, Pauline Roy, Walter TI Carbon nanotube grease with enhanced thermal and electrical conductivities SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Grease; Carbon nanotube; Thermal conductivity; Electrical conductivity; Synthesis ID SYSTEMS AB A stable and homogeneous grease based on carbon nanotubes (CNTs, single-wall and multiwall) in polyalphaolefin oil has been produced without using a chemical surfactant. For example, for a 11 wt% (7 vol%) single-wall CNT (diameter 1 2 nm, length 0.5-40 lm) loading, the thermal conductivity (TC) of the grease shows a 60-70% increase compared to that for no nanotube loading. In addition, the grease is electrically conductive, has a high dropping point, good temperature resistance, and does not react with copper at temperatures up to 177 degrees C. The performance of carbon nanotube grease could be much better with the improvement of nanotube quality and purity. A possible explanation for these results is that of a high loading of CNTs ([10 wt%), they become associated with each other by van der Waals forces in the grease to form three-dimensional percolation networks. Time-dependent magnetic results demonstrate that, even under the influence of a strong outside magnetic field, the TC value remains constant. This phenomenon can be attributed to the existence of networks that makes magnetic alignment of nanotubes impossible. C1 [Hong, Haiping; Thomas, Dustin] S Dakota Sch Mines & Technol, Dept Mat & Met Engn, Rapid City, SD 57701 USA. [Waynick, Andy] NCH Corp, Lubricant & Grease Lab, Irving, TX 75062 USA. [Yu, Wenhua] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Smith, Pauline; Roy, Walter] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. RP Hong, HP (reprint author), S Dakota Sch Mines & Technol, Dept Mat & Met Engn, Rapid City, SD 57701 USA. EM Haiping.Hong@sdsmt.edu FU Army Research Lab [DAAD19-02-2-0011] FX H. Hong would like to thank Army Research Lab (Cooperative agreement DAAD19-02-2-0011) for the financial support, and Jesse Wensel and Brian Wright for the thermal conductivity measurements of several grease samples. NR 13 TC 15 Z9 15 U1 1 U2 26 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD FEB PY 2010 VL 12 IS 2 SI SI BP 529 EP 535 DI 10.1007/s11051-009-9803-y PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 565TW UT WOS:000275318700016 ER PT J AU Stephen, JM Montano, R Donahue, CH Adair, JC Knoefel, J Qualls, C Hart, B Ranken, D Aine, CJ AF Stephen, Julia M. Montano, Rebecca Donahue, Christopher H. Adair, John C. Knoefel, Janice Qualls, Clifford Hart, Blaine Ranken, Doug Aine, Cheryl J. TI Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer's disease SO JOURNAL OF NEURAL TRANSMISSION LA English DT Article DE Somatosensory evoked fields; Aging; Alzheimer's disease; Mild cognitive impairment; Magnetoencephalography ID DISCONNECTION SYNDROME; VASCULAR DEMENTIA; CORPUS-CALLOSUM; STIMULATION; MAGNETOENCEPHALOGRAPHY; LOCALIZATION; POTENTIALS; MEG AB As a part of a larger study of normal aging and Alzheimer's disease (AD), which included patients with mild cognitive impairment (MCI), we investigated the response to median nerve stimulation in primary and secondary somatosensory areas. We hypothesized that the somatosensory response would be relatively spared given the reported late involvement of sensory areas in the progression of AD. We applied brief pulses of electric current to left and right median nerves to test the somatosensory response in normal elderly (NE), MCI, and AD. MEG responses were measured and were analyzed with a semi-automated source localization algorithm to characterize source locations and timecourses. We found an overall difference in the amplitude of the response of the primary somatosensory source (SI) based on diagnosis. Across the first three peaks of the SI response, the MCI patients exhibited a larger amplitude response than the NE and AD groups (P < 0.03). Additional relationships between neuropsychological measures and SI amplitude were also determined. There was no significant difference in amplitude for the contralateral secondary somatosensory source across diagnostic category. These results suggest that somatosensory cortex is affected early in the progression of AD and may have some consequence on behavioral and functional measures. C1 [Stephen, Julia M.] Mind Res Network, Albuquerque, NM 87106 USA. [Montano, Rebecca; Donahue, Christopher H.; Hart, Blaine; Aine, Cheryl J.] Univ New Mexico, Dept Radiol, Hlth Sci Ctr, Albuquerque, NM 87131 USA. [Adair, John C.] Univ New Mexico, Dept Neurol, Hlth Sci Ctr, Albuquerque, NM 87131 USA. [Knoefel, Janice] Univ New Mexico, Dept Internal Med, Hlth Sci Ctr, Albuquerque, NM 87131 USA. [Adair, John C.] New Mexico VA Healthcare Syst, Neurol Serv, Albuquerque, NM USA. [Knoefel, Janice] New Mexico VA Healthcare Syst, Internal Med Serv, Albuquerque, NM USA. [Qualls, Clifford] Univ New Mexico, Gen Clin Res Ctr, Hlth Sci Ctr, Albuquerque, NM 87131 USA. [Ranken, Doug] Los Alamos Natl Lab, Biophys Grp P 21, Los Alamos, NM USA. RP Stephen, JM (reprint author), Mind Res Network, 1101 Yale Blvd NE, Albuquerque, NM 87106 USA. EM jstephen@mrn.org RI Ranken, Douglas/J-4305-2012; OI Donahue, Christopher/0000-0003-1574-1162; Stephen, Julia/0000-0003-2486-747X FU NIH [R01AG020302, DE-FG02-07ER64415, GCRC-NIH 5M01-RR00997]; UNM Radiology; VA Research Office FX This work was supported by NIH R01AG020302, DE-FG02-07ER64415, UNM HSC GCRC-NIH 5M01-RR00997. We thank the Mind Research Network for their excellent IT support as well as UNM Radiology and the VA Research Office for their support. We also thank Denise Padilla for coordinating the project, Jennifer Bryant for her help acquiring the data, and S. Laura Lundy for help with neuropsychological testing. NR 32 TC 14 Z9 15 U1 0 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0300-9564 J9 J NEURAL TRANSM JI J. Neural Transm. PD FEB PY 2010 VL 117 IS 2 BP 217 EP 225 DI 10.1007/s00702-009-0343-5 PG 9 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 546LD UT WOS:000273811400009 PM 20013008 ER EF