FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gainsforth, Z Butterworth, AL Bonal, L Brownlee, DE Huss, GR Joswiak, D Ogliore, RC Telus, M Tyliczszak, T Westphal, AJ AF Gainsforth, Z. Butterworth, A. L. Bonal, L. Brownlee, D. E. Huss, G. R. Joswiak, D. Ogliore, R. C. Telus, M. Tyliczszak, T. Westphal, A. J. TI COORDINATED TEM/STXM/IMS ANALYSIS OF A TYPE IIA CHONDRULE FRAGMENT FROM COMET 81P/WILD2 STARDUST TRACK C2052, 2, 74 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc C1 [Gainsforth, Z.; Butterworth, A. L.; Ogliore, R. C.; Westphal, A. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bonal, L.; Huss, G. R.; Telus, M.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Brownlee, D. E.; Joswiak, D.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Tyliczszak, T.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 6 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A60 EP A60 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700111 ER PT J AU Heber, VS Guan, Y Jurewicz, AJG Kallio, AP Olinger, C Woolum, DS McKeegan, KD Burnett, DS AF Heber, V. S. Guan, Y. Jurewicz, A. J. G. Kallio, A. P. Olinger, C. Woolum, D. S. McKeegan, K. D. Burnett, D. S. TI SOLAR WIND ABUNDANCES OF C AND O SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc C1 [Heber, V. S.; Kallio, A. P.; McKeegan, K. D.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Guan, Y.; Burnett, D. S.] CALTECH, Pasadena, CA 91125 USA. [Jurewicz, A. J. G.] Arizona State Univ, Tempe, AZ USA. [Olinger, C.] LANL, Los Alamos, AZ USA. [Woolum, D. S.] CSU, Dept Phys, Fullerton, CA USA. EM heber@ess.ucla.edu NR 0 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A78 EP A78 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700148 ER PT J AU Ishii, HA Bradley, JP Bonal, L Krot, AN Nagashima, K Huss, GR AF Ishii, H. A. Bradley, J. P. Bonal, L. Krot, A. N. Nagashima, K. Huss, G. R. TI NITROGEN CARRIER IDENTIFIED IN N-15 EXTREME HOTSPOTS IN THE ISHEYEVO (CH/CB) METEORITE SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc C1 [Ishii, H. A.; Bradley, J. P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Bonal, L.; Krot, A. N.; Nagashima, K.; Huss, G. R.] Univ Hawaii Manoa, HIGP, SOEST, Honolulu, HI 96822 USA. EM hope.ishii@llnl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A91 EP A91 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700172 ER PT J AU Matrajt, G Messenger, S Bradley, J Aguiar, J Ito, M Stephan, T Liu, N Joswiak, D Brownlee, D AF Matrajt, G. Messenger, S. Bradley, J. Aguiar, J. Ito, M. Stephan, T. Liu, N. Joswiak, D. Brownlee, D. TI COORDINATED TEM, NANOSIMS, AND TOF-SIMS ANALYSES OF CARBONACEOUS PHASES IN IDPs SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc C1 [Matrajt, G.; Joswiak, D.; Brownlee, D.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Messenger, S.; Ito, M.] ARES NASA JSC, Robert M Walker Lab Space Sci, Houston, TX 77573 USA. [Bradley, J.; Aguiar, J.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Stephan, T.; Liu, N.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A127 EP A127 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700244 ER PT J AU Postberg, F Trieloff, M Srama, R Hillier, JK Gainsforth, Z Westphal, AJ Bugiel, S Grun, E Armes, S Kearsley, A Tyliszczak, T Schwarz, WH AF Postberg, F. Trieloff, M. Srama, R. Hillier, J. K. Gainsforth, Z. Westphal, A. J. Bugiel, S. Gruen, E. Armes, S. Kearsley, A. Tyliszczak, T. Schwarz, W. H. TI LAB SIMULATON OF INTERSTELLAR DUST: A NEW APPROACH FOR HYPERVELOCITY IMPACT STUDIES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc C1 [Postberg, F.; Trieloff, M.; Schwarz, W. H.] Ruprecht Karls Univ Heidelberg, Inst Geowissenschaften, D-69120 Heidelberg, Germany. [Srama, R.; Bugiel, S.; Gruen, E.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, J. K.] Open Univ, PSSRI, Milton Keynes MK7 6AA, Bucks, England. [Gainsforth, Z.; Westphal, A. J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Armes, S.] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England. [Tyliszczak, T.] Adv Light Source, Lawrence Berkeley Lab, Berkeley, CA USA. EM frank.postberg@mpi-hd.mpg.de NR 9 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A165 EP A165 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700319 ER PT J AU Simon, SB Sutton, SR Grossman, L AF Simon, S. B. Sutton, S. R. Grossman, L. TI FIRST Ti-XANES ANALYSES OF OLIVINE IN AMOEBOID OLIVINE AGGREGATES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc C1 [Simon, S. B.; Sutton, S. R.; Grossman, L.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Sutton, S. R.] Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Chicago, IL 60637 USA. [Grossman, L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. EM sbs8@uchicago.edu NR 5 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A189 EP A189 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700367 ER PT J AU Stroud, RM Chisholm, MF Alexander, CMO Heck, PR AF Stroud, R. M. Chisholm, M. F. Alexander, C. M. O'D. Heck, P. R. TI SPATIALLY RESOLVED SP2 AND SP3 CARBON IN NANODIAMOND RESIDUES FROM THE ALLENDE AND MURCHISON METEORITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc ID DIAMONDS C1 [Stroud, R. M.] Naval Res Lab, Washington, DC USA. [Chisholm, M. F.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Alexander, C. M. O'D.] Carnegie Inst Washington, Washington, DC 20005 USA. [Heck, P. R.] Field Museum Nat Hist, Chicago, IL 60605 USA. EM stroud@nrl.navy.mil RI Heck, Philipp/C-6092-2012 NR 5 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A198 EP A198 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700385 ER PT J AU Wozniakiewicz, PJ Ishii, HA Kearsley, AT Burchell, MJ Bradley, JP Teslich, N Cole, MJ AF Wozniakiewicz, P. J. Ishii, H. A. Kearsley, A. T. Burchell, M. J. Bradley, J. P. Teslich, N. Cole, M. J. TI STARDUST CRYSTALLINE RESIDUES: SURVIVING COMET DUST OR CRYSTALLIZED IMPACT MELTS? SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc ID HYPERVELOCITY IMPACT; CRATERS; ALUMINUM; FOILS C1 [Wozniakiewicz, P. J.; Ishii, H. A.; Bradley, J. P.; Teslich, N.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Kearsley, A. T.] IARC, Dept Mineral, NHM, London SW7 5BD, England. [Burchell, M. J.; Cole, M. J.] Univ Kent, Ctr Astrophys & Planetary Sci, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. EM wozniakiewic1@llnl.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A218 EP A218 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700423 ER PT J AU Gao, HC Barua, S Liang, YL Wu, L Dong, YY Reed, S Chen, JR Culley, D Kennedy, D Yang, YF He, ZL Nealson, KH Fredrickson, JK Tiedje, JM Romine, M Zhou, JZ AF Gao, Haichun Barua, Soumitra Liang, Yili Wu, Lin Dong, Yangyang Reed, Samantha Chen, Jingrong Culley, Dave Kennedy, David Yang, Yunfeng He, Zhili Nealson, Kenneth H. Fredrickson, James K. Tiedje, James M. Romine, Margaret Zhou, Jizhong TI Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration SO MICROBIAL BIOTECHNOLOGY LA English DT Article ID GLOBAL TRANSCRIPTOME ANALYSIS; SOLUBLE FUMARATE REDUCTASE; PUTREFACIENS MR-1; OUTER-MEMBRANE; ESCHERICHIA-COLI; CBB(3) OXIDASES; DIMETHYL-SULFOXIDE; GENOME SEQUENCE; SHOCK RESPONSE; PROTEIN AB Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis. C1 [Gao, Haichun; Wu, Lin; Dong, Yangyang] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China. [Gao, Haichun; Wu, Lin; Dong, Yangyang] Zhejiang Univ, Inst Microbiol, Hangzhou 310058, Zhejiang, Peoples R China. [Gao, Haichun; Barua, Soumitra; Liang, Yili; Chen, Jingrong; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Gao, Haichun; Barua, Soumitra; Liang, Yili; Chen, Jingrong; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Gao, Haichun; Barua, Soumitra; Yang, Yunfeng; He, Zhili; Zhou, Jizhong] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Reed, Samantha; Culley, Dave; Kennedy, David; Fredrickson, James K.; Romine, Margaret] Pacific NW Natl Lab, Richland, WA 99354 USA. [Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. RP Gao, HC (reprint author), Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China. EM haichung@zju.edu.cn; jzhou@rccc.ou.edu RI He, Zhili/C-2879-2012; Yang, Yunfeng/H-9853-2013; Gao, Haichun/A-2160-2014; OI Yang, Yunfeng/0000-0001-8274-6196; Kennedy, David/0000-0003-0763-501X; Romine, Margaret/0000-0002-0968-7641 FU The U.S. Department of Energy through the Shewanella Federation, Office of Biological and Environmental Research, Office of Science; Department of Energy [DOE-AC05-00OR22725]; National Natural Science Foundation of China [30870032] FX This research was supported by The U.S. Department of Energy under the Genomics: GTL Program through the Shewanella Federation, Office of Biological and Environmental Research, Office of Science. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy under contract DOE-AC05-00OR22725. This research was also supported by National Natural Science Foundation of China (30870032) to H. Gao. NR 44 TC 42 Z9 42 U1 1 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1751-7907 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD JUL PY 2010 VL 3 IS 4 BP 455 EP 466 DI 10.1111/j.1751-7915.2010.00181.x PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 753BF UT WOS:000289738500009 PM 21255343 ER PT J AU Hotta, K Kim, CY Fox, DT Koppisch, AT AF Hotta, Kinya Kim, Chu-Young Fox, David T. Koppisch, Andrew T. TI Siderophore-mediated iron acquisition in Bacillus anthracis and related strains SO MICROBIOLOGY-SGM LA English DT Review ID BACTERIUM MARINOBACTER-HYDROCARBONOCLASTICUS; PETROBACTIN BIOSYNTHESIS; STEALTH SIDEROPHORE; COORDINATION CHEMISTRY; PATHOGENIC BACTERIA; CARBON-DIOXIDE; IMMUNE-SYSTEM; CITRIC-ACID; TRANSPORT; VIRULENCE AB Recent observations have shed light on some of the endogenous iron-acquisition mechanisms of members of the Bacillus cereus sensu lato group. In particular, pathogens in the B. cereus group use siderophores with both unique chemical structures and biological roles. This review will focus on recent discoveries in siderophore biosynthesis and biology in this group, which contains numerous human pathogens, most notably the causative agent of anthrax, Bacillus anthracis. C1 [Hotta, Kinya; Kim, Chu-Young] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore. [Fox, David T.; Koppisch, Andrew T.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Fox, DT (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM dfox@lanl.gov; koppisch@lanl.gov RI Kim, Chu-Young/D-8849-2012; Hotta, Kinya/A-2574-2009 OI Kim, Chu-Young/0000-0003-3744-7802; Hotta, Kinya/0000-0002-9427-0081 NR 57 TC 30 Z9 32 U1 1 U2 14 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD JUL PY 2010 VL 156 BP 1918 EP 1925 DI 10.1099/mic.0.039404-0 PN 7 PG 8 WC Microbiology SC Microbiology GA 631EH UT WOS:000280328900003 PM 20466767 ER PT J AU Chathoth, SM Mamontov, E Melnichenko, YB Zamponi, M AF Chathoth, Suresh M. Mamontov, Eugene Melnichenko, Yuri B. Zamponi, Michaela TI Diffusion and adsorption of methane confined in nano-porous carbon aerogel: A combined quasi-elastic and small-angle neutron scattering study SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Aerogel; Methane; Diffusivity; Neutron scattering ID MOLECULAR-DYNAMICS; SELF-DIFFUSION; ZEOLITE; SEQUESTRATION; MOBILITY; ZSM-5; COAL AB The diffusion of methane confined in nano-porous carbon aerogel with the average pore size 48 angstrom and porosity similar to 60% was investigated as a function of pressure at T = 298 K using quasi-elastic neutron scattering (QENS). The diffusivity of methane shows a clear effect of confinement: it is about two orders of magnitude lower than in bulk at the same thermodynamic conditions and is close to the diffusivity of liquid methane at 100 K (i.e. similar to 90 K below the liquid-gas critical temperature T(c) approximate to 191 K). The diffusion coefficient (D) of methane initially increases with pressure by a factor of similar to 2.5 from 3.47 +/- 0.41 x 10(-10) m(2) s(-1) at 0.482 MPa to D = 8.55 +/- 0.33 x 10(-10) m(2) s(-1) at 2.75 MPa and starts to decrease at higher pressures. An explanation of the observed non-monotonic behavior of the diffusivity in the confined fluid is based on the results of small-angle neutron scattering experiments of the phase behavior of methane in a similar carbon aerogel sample. The initial increase of the diffusion coefficient with pressure is explained as due to progressive filling of bigger pores in which molecular mobility in the internal pore volume is less affected by the sluggish liquid-like molecular mobility in the adsorbed phase. Subsequent decrease of D, is associated with the effect of intermolecular collisions, which result in a lower total molecular mobility with pressure, as in the bulk state. The results are compared with the available QENS data on the methane diffusivity in zeolites, metal organic frameworks, and porous silica as well as with the molecular dynamics simulations of methane in nano-porous carbons and silica zeolites. (C) 2010 Elsevier Inc. All rights reserved. C1 [Chathoth, Suresh M.; Mamontov, Eugene; Melnichenko, Yuri B.; Zamponi, Michaela] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zamponi, Michaela] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, Germany. RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM melnichenkoy@ornl.gov RI Mavila Chathoth, Suresh/E-7560-2010; Mamontov, Eugene/Q-1003-2015 OI Mavila Chathoth, Suresh/0000-0002-4120-6959; Mamontov, Eugene/0000-0002-5684-2675 FU Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; ORNL FX The authors wish to thank G.D. Wignall for careful reading the manuscript and helpful suggestions. This Research at Oak Ridge National Laboratory's Spallation Neutron Source and High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. NR 24 TC 22 Z9 23 U1 4 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD JUL PY 2010 VL 132 IS 1-2 BP 148 EP 153 DI 10.1016/j.micromeso.2010.02.012 PG 6 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 594QC UT WOS:000277551300019 ER PT J AU Hansen, BL Bronkhorst, CA Ortiz, M AF Hansen, B. L. Bronkhorst, C. A. Ortiz, M. TI Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID MICROSTRUCTURAL EVOLUTION; DEFORMATION; STRAIN; RELAXATION; PARAMETERS; BOUNDARIES; SIMULATION; ENERGY AB A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g. grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self-hardening of a crystal slip. Latent hardening occurs as the formation of new dislocation walls limits motion of new mobile dislocations, thus hardening future slip systems. Self-hardening is accomplished by an evolution of the subgrain structure length scale. The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall energy and the boundary layer energies. The nonlocal terms are also directly minimized within the subgrain model as they affect deformation response. The geometrical relationship between the dislocation walls and slip planes affecting the dislocation mean free path is taken into account, giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements while modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependence due to the formation of the subgrain structures. Validation is accomplished by comparison with single crystal tension test results. C1 [Hansen, B. L.; Bronkhorst, C. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hansen, B. L.; Ortiz, M.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Hansen, BL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bhansen@lanl.gov RI Bronkhorst, Curt/B-4280-2011 OI Bronkhorst, Curt/0000-0002-2709-1964 FU California Institute of Technology; Los Alamos National Laboratory FX The authors like to acknowledge the support of the Advanced Simulation and Computing Program (ASC) both at the California Institute of Technology and at Los Alamos National Laboratory in funding this work. NR 38 TC 8 Z9 8 U1 3 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD JUL PY 2010 VL 18 IS 5 AR 055001 DI 10.1088/0965-0393/18/5/055001 PG 42 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 613TM UT WOS:000279003900001 ER PT J AU Lapuk, A Marr, H Jakkula, L Pedro, H Bhattacharya, S Purdom, E Hu, Z Simpson, K Pachter, L Durinck, S Wang, N Parvin, B Fontenay, G Speed, T Garbe, J Stampfer, M Bayandorian, H Dorton, S Clark, TA Schweitzer, A Wyrobek, A Feiler, H Spellman, P Conboy, J Gray, JW AF Lapuk, Anna Marr, Henry Jakkula, Lakshmi Pedro, Helder Bhattacharya, Sanchita Purdom, Elizabeth Hu, Zhi Simpson, Ken Pachter, Lior Durinck, Steffen Wang, Nicholas Parvin, Bahram Fontenay, Gerald Speed, Terence Garbe, James Stampfer, Martha Bayandorian, Hovig Dorton, Shannon Clark, Tyson A. Schweitzer, Anthony Wyrobek, Andrew Feiler, Heidi Spellman, Paul Conboy, John Gray, Joe W. TI Exon-Level Microarray Analyses Identify Alternative Splicing Programs in Breast Cancer SO MOLECULAR CANCER RESEARCH LA English DT Article ID GENE-EXPRESSION; CELL-LINES; IDENTIFICATION; TRANSCRIPTOME; FEATURES; NETWORK; EVENTS; ARRAYS; TUMORS; ESRP1 AB Protein isoforms produced by alternative splicing (AS) of many genes have been implicated in several aspects of cancer genesis and progression. These observations motivated a genome-wide assessment of AS in breast cancer. We accomplished this by measuring exon level expression in 31 breast cancer and nonmalignant immortalized cell lines representing luminal, basal, and claudin-low breast cancer subtypes using Affymetrix Human Junction Arrays. We analyzed these data using a computational pipeline specifically designed to detect AS with a low false-positive rate. This identified 181 splice events representing 156 genes as candidates for AS. Reverse transcription-PCR validation of a subset of predicted AS events confirmed 90%. Approximately half of the AS events were associated with basal, luminal, or claudin-low breast cancer subtypes. Exons involved in claudin-low subtype-specific AS were significantly associated with the presence of evolutionarily conserved binding motifs for the tissue-specific Fox2 splicing factor. Small interfering RNA knockdown of Fox2 confirmed the involvement of this splicing factor in subtype-specific AS. The subtype-specific AS detected in this study likely reflects the splicing pattern in the breast cancer progenitor cells in which the tumor arose and suggests the utility of assays for Fox-mediated AS in cancer subtype definition and early detection. These data also suggest the possibility of reducing the toxicity of protein-targeted breast cancer treatments by targeting protein isoforms that are not present in limiting normal tissues. Mol Cancer Res; 8(7); 961-74. (C) 2010 AACR. C1 [Lapuk, Anna; Marr, Henry; Jakkula, Lakshmi; Bhattacharya, Sanchita; Hu, Zhi; Durinck, Steffen; Wang, Nicholas; Parvin, Bahram; Fontenay, Gerald; Garbe, James; Stampfer, Martha; Dorton, Shannon; Wyrobek, Andrew; Feiler, Heidi; Spellman, Paul; Conboy, John; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Purdom, Elizabeth; Speed, Terence] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Pedro, Helder; Pachter, Lior] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Bayandorian, Hovig] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Clark, Tyson A.; Schweitzer, Anthony] Affymetrix Inc, Santa Clara, CA USA. [Gray, Joe W.] Univ Calif San Francisco, San Francisco, CA 94143 USA. [Simpson, Ken; Speed, Terence] Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia. RP Gray, JW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM alapuk@prostatecentre.com; JWGray@lbl.gov RI Speed, Terence /B-8085-2009 OI Speed, Terence /0000-0002-5403-7998 FU U.S. Department of Energy [DE-AC02-05CH11231, USAMRMC W81XWH-07-1-0663]; NIH [CA58207, CA112970, CA 126477, HL045182]; FCT SFRH/BD [33203 2007] FX Director, Office of Science, Office of Biological & Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, USAMRMC W81XWH-07-1-0663 and NIH grants CA58207, CA112970, and CA 126477 (J.G. Conboy) by NIH grant HL045182 (J.W. Gray); and by the FCT SFRH/BD 33203 2007 (H. Pedro). NR 41 TC 67 Z9 67 U1 0 U2 6 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 J9 MOL CANCER RES JI Mol. Cancer Res. PD JUL PY 2010 VL 8 IS 7 BP 961 EP 974 DI 10.1158/1541-7786.MCR-09-0528 PG 14 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 625HH UT WOS:000279885600003 PM 20605923 ER PT J AU Goley, ED Comolli, LR Fero, KE Downing, KH Shapiro, L AF Goley, Erin D. Comolli, Luis R. Fero, Katherine E. Downing, Kenneth H. Shapiro, Lucy TI DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter SO MOLECULAR MICROBIOLOGY LA English DT Article ID DAUGHTER CELL-SEPARATION; PENICILLIN-BINDING PROTEINS; ESCHERICHIA-COLI CHROMOSOME; GRAM-NEGATIVE BACTERIA; DIVISION MACHINERY; BACILLUS-SUBTILIS; SEPTUM FORMATION; CRESCENTUS; MUREIN; LOCALIZATION AB P>Cell division in Gram-negative organisms requires coordinated invagination of the multilayered cell envelope such that each daughter receives an intact inner membrane, peptidoglycan (PG) layer and outer membrane (OM). Here, we identify DipM, a putative LytM endopeptidase in Caulobacter crescentus, and show that it plays a critical role in maintaining cell envelope architecture during growth and division. DipM localized to the division site in an FtsZ-dependent manner via its PG-binding LysM domains. Although not essential for viability, Delta dipM cells exhibited gross morphological defects, including cell widening and filamentation, indicating a role in cell shape maintenance and division that we show requires its LytM domain. Strikingly, cells lacking DipM also showed OM blebbing at the division site, at cell poles and along the cell body. Cryo electron tomography of sacculi isolated from cells depleted of DipM revealed marked thickening of the PG as compared to wild type, which we hypothesize leads to loss of trans-envelope contacts between components of the Tol-Pal complex. We conclude that DipM is required for normal envelope invagination during division and to maintain a sacculus of constant thickness that allows for maintenance of OM connections throughout the cell envelope. C1 [Goley, Erin D.; Fero, Katherine E.; Shapiro, Lucy] Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA. [Comolli, Luis R.; Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Shapiro, L (reprint author), Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA 94305 USA. EM shapiro@stanford.edu OI Goley, Erin/0000-0002-8518-2303 FU US Department of Energy [DE-FG02-05ER64136, DE-AC02-05CH11231]; NIH [R01 GM 32506] FX We thank Martin Thanbichler and Christine Jacobs-Wagner for informing us that they are working on DipM and for collectively agreeing on a gene and protein name. We are especially grateful to members of the Shapiro and McAdams laboratories for helpful discussions and to Esteban Toro, Monica Schwartz, Natalie Dye, and Grant Bowman for comments on the manuscript. We thank Martin Thanbichler for HU2 antibody preparation, Michael Fero for developing KAMS imaging software, Lu Gan for the detailed sacculus isolation protocol, James Gober for alpha-FtsZ antibody and John Werner and Zemer Gitai for the collaboration that led to identification of DipM. EDG is a Helen Hay Whitney Foundation postdoctoral fellow. This work was supported in part by the US Department of Energy under Contracts No. DE-FG02-05ER64136 (LS) and No. DE-AC02-05CH11231 (KDH), and by the NIH under Grant R01 GM 32506 (LS). NR 66 TC 27 Z9 27 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X J9 MOL MICROBIOL JI Mol. Microbiol. PD JUL PY 2010 VL 77 IS 1 BP 56 EP 73 DI 10.1111/j.1365-2958.2010.07222.x PG 18 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 615WG UT WOS:000279168200007 PM 20497504 ER PT J AU Lewis, NE Hixson, KK Conrad, TM Lerman, JA Charusanti, P Polpitiya, AD Adkins, JN Schramm, G Purvine, SO Lopez-Ferrer, D Weitz, KK Eils, R Konig, R Smith, RD Palsson, BO AF Lewis, Nathan E. Hixson, Kim K. Conrad, Tom M. Lerman, Joshua A. Charusanti, Pep Polpitiya, Ashoka D. Adkins, Joshua N. Schramm, Gunnar Purvine, Samuel O. Lopez-Ferrer, Daniel Weitz, Karl K. Eils, Roland Koenig, Rainer Smith, Richard D. Palsson, Bernhard O. TI Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE Escherichia coli; genome-scale models; microarray; optimality; proteomics ID TANDEM MASS-SPECTROMETRY; IN-SILICO MODELS; ADAPTIVE EVOLUTION; GENE-EXPRESSION; METABOLIC NETWORKS; PROTEIN; ADAPTATION; PATTERNS; STRAINS; K-12 AB After hundreds of generations of adaptive evolution at exponential growth, Escherichia coli grows as predicted using flux balance analysis (FBA) on genome-scale metabolic models (GEMs). However, it is not known whether the predicted pathway usage in FBA solutions is consistent with gene and protein expression in the wild-type and evolved strains. Here, we report that >98% of active reactions from FBA optimal growth solutions are supported by transcriptomic and proteomic data. Moreover, when E. coli adapts to growth rate selective pressure, the evolved strains upregulate genes within the optimal growth predictions, and downregulate genes outside of the optimal growth solutions. In addition, bottlenecks from dosage limitations of computationally predicted essential genes are overcome in the evolved strains. We also identify regulatory processes that may contribute to the development of the optimal growth phenotype in the evolved strains, such as the downregulation of known regulons and stringent response suppression. Thus, differential gene and protein expression from wild-type and adaptively evolved strains supports observed growth phenotype changes, and is consistent with GEM-computed optimal growth states. Molecular Systems Biology 6: 390; published online 27 July 2010; doi:10.1038/msb.2010.47 Subject Categories: functional genomics; simulation and data analysis C1 [Lewis, Nathan E.; Charusanti, Pep; Palsson, Bernhard O.] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA. [Hixson, Kim K.; Polpitiya, Ashoka D.; Adkins, Joshua N.; Purvine, Samuel O.; Lopez-Ferrer, Daniel; Weitz, Karl K.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hixson, Kim K.; Polpitiya, Ashoka D.; Adkins, Joshua N.; Purvine, Samuel O.; Lopez-Ferrer, Daniel; Weitz, Karl K.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Conrad, Tom M.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Lerman, Joshua A.] Univ Calif San Diego, Syst Biol & Bioinformat Program, La Jolla, CA 92093 USA. [Schramm, Gunnar; Eils, Roland; Koenig, Rainer] Univ Heidelberg, Dept Bioinformat & Funct Genom, Inst Pharm & Mol Biotechnol & Bioquant, Heidelberg, Germany. [Schramm, Gunnar; Eils, Roland; Koenig, Rainer] German Canc Res Ctr, Dept Theoret Bioinformat, Heidelberg, Germany. RP Palsson, BO (reprint author), Univ Calif San Diego, Dept Bioengn, 417 Powell Focht Bioengn Hall,9500 Gilman Dr, La Jolla, CA 92093 USA. EM palsson@ucsd.edu RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; Eils, Roland/B-6121-2009; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Eils, Roland/0000-0002-0034-4036; Charusanti, Pep/0000-0003-0009-6615; Lerman, Joshua/0000-0003-0377-2674; Lewis, Nathan/0000-0001-7700-3654 FU NIH National Center for Research Resources [RR18522]; U S Department of Energy Office of Biological and Environmental Research (DOE/BER); Fulbright fellowship; NSF IGERT [DGE-0504645]; NIH [R01 GM062791, R01 GM57089]; NIAID [IAA Y1-A1-8401] FX We thank Eric Knight at the University of Iceland for experimental input, Ron Milo at the Weizmann Institute of Science for suggestions pertaining to this work, Marc Abrams, Aarash Bordbar, Jeff Orth, and Dr Daniel R Hyduke at UCSD for input on the manuscript, and the following at PNNL: Angela Zhang, Priscilla A Moore, David J Anderson for aiding in sample preparation and data acquisition and Gordon A Anderson and Nikola Tolic for helpful input and data deposition. A portion of this work was performed in EMSL, using capabilities developed under the support of the NIH National Center for Research Resources (RR18522) and the U S Department of Energy Office of Biological and Environmental Research (DOE/BER), EMSL is a DOE/BER national scientific user facility located on the Pacific Northwest National Laboratory campus in Richland, WA. This work was funded in part by a Fulbright fellowship, an NSF IGERT Plant Systems Biology training grant (# DGE-0504645), NIH grants R01 GM062791 and R01 GM57089, and NIAID IAA Y1-A1-8401. NR 54 TC 134 Z9 136 U1 5 U2 24 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD JUL PY 2010 VL 6 AR 390 DI 10.1038/msb.2010.47 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 684CI UT WOS:000284524200004 PM 20664636 ER PT J AU Harrigan, MJ Newberg, HJ Newberg, LA Yanny, B Beers, TC Lee, YS Fiorentin, PR AF Harrigan, Matthew J. Newberg, Heidi Jo Newberg, Lee A. Yanny, Brian Beers, Timothy C. Lee, Young Sun Fiorentin, Paola Re TI Statistical properties of blue horizontal branch stars in the spheroid: detection of a moving group similar to 50 kpc from the Sun SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; Galaxy: halo; Galaxy: structure ID DIGITAL-SKY-SURVEY; MILKY-WAY SATELLITE; GALACTIC HALO; DATA RELEASE; GLOBULAR-CLUSTER; DWARF GALAXY; DEBRIS STREAM; URSA-MAJOR; KINEMATICS; SAGITTARIUS AB A new moving group comprising at least four blue horizontal branch (BHB) stars is identified at (l, b) = (65 degrees, 48 degrees). The horizontal branch at g(0) = 18.9 mag implies a distance of 50 kpc from the Sun. The heliocentric radial velocity is < V(r)> = -157 +/- 4 km s(-1), corresponding to V(gsr) = -10 km s(-1); the dispersion in line-of-sight velocity is consistent with the instrumental errors for these stars. The mean metallicity of the moving group is [Fe/H] similar to -2.4, which is significantly more metal poor than the stellar spheroid. We estimate that the BHB stars in the outer halo have a mean metallicity of [Fe/H] = -2.0, with a wide scatter and a distribution that does not change much as a function of distance from the Sun. We explore the systematics of Sloan Digital Sky Survey DR7 surface gravity metallicity determinations for faint BHB stars, and present a technique for estimating the significance of clumps discovered in multidimensional data. This Hercules Corona Borealis stream cannot be distinguished in density, and highlights the need to collect many more spectra of Galactic stars to unravel the merger history of the Galaxy. C1 [Harrigan, Matthew J.; Newberg, Heidi Jo] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Newberg, Lee A.] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA. [Newberg, Lee A.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, CSCE, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA, E Lansing, MI 48824 USA. [Fiorentin, Paola Re] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Fiorentin, Paola Re] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Harrigan, MJ (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM harrim6@rpi.edu; newbeh@rpi.edu OI Re Fiorentin, Paola/0000-0002-4995-0475 FU National Science Foundation [AST 06-07618]; Marie Curie Research Training Network European Leadership in Space Astrometry (ELSA) [MRTN-CT-2006-033481]; Alfred P. Sloan Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max-Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck Institute for Astronomy (MPIA); Max-Planck Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; Physics Frontier Centers/JINA: Joint Institute for Nuclear Astrophysics, National Science Foundation [PHY 02-16783, PHY 08-22648] FX This project was funded by the National Science Foundation under grant number AST 06-07618. TCB and YSL acknowledge partial support from grants PHY 02-16783 and PHY 08-22648, Physics Frontier Centers/JINA: Joint Institute for Nuclear Astrophysics, awarded by the National Science Foundation. PRF acknowledges support through the Marie Curie Research Training Network European Leadership in Space Astrometry (ELSA) under contract MRTN-CT-2006-033481. Many thanks to Ron Wilhelm, who answered our questions about potential RR Lyrae stars and stellar metallicities. Thanks also to Xiang-Xiang Xue, who advised us on her methods for measuring the surface gravities of blue stars in the SDSS.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max-Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck Institute for Astronomy (MPIA), the Max-Planck Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 74 TC 5 Z9 5 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2010 VL 405 IS 3 BP 1796 EP 1808 DI 10.1111/j.1365-2966.2010.16552.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613ZB UT WOS:000279022900025 ER PT J AU Bridle, S Balan, ST Bethge, M Gentile, M Harmeling, S Heymans, C Hirsch, M Hosseini, R Jarvis, M Kirk, D Kitching, T Kuijken, K Lewis, A Paulin-Henriksson, S Scholkopf, B Velander, M Voigt, L Witherick, D Amara, A Bernstein, G Courbin, F Gill, M Heavens, A Mandelbaum, R Massey, R Moghaddam, B Rassat, A Refregier, A Rhodes, J Schrabback, T Shawe-Taylor, J Shmakova, M van Waerbeke, L Wittman, D AF Bridle, Sarah Balan, Sreekumar T. Bethge, Matthias Gentile, Marc Harmeling, Stefan Heymans, Catherine Hirsch, Michael Hosseini, Reshad Jarvis, Mike Kirk, Donnacha Kitching, Thomas Kuijken, Konrad Lewis, Antony Paulin-Henriksson, Stephane Schoelkopf, Bernhard Velander, Malin Voigt, Lisa Witherick, Dugan Amara, Adam Bernstein, Gary Courbin, Frederic Gill, Mandeep Heavens, Alan Mandelbaum, Rachel Massey, Richard Moghaddam, Baback Rassat, Anais Refregier, Alexandre Rhodes, Jason Schrabback, Tim Shawe-Taylor, John Shmakova, Marina van Waerbeke, Ludovic Wittman, David TI Results of the GREAT08 Challenge: an image analysis competition for cosmological lensing SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; methods: statistical; techniques: image processing; cosmology: observations; large-scale structure of Universe ID GALAXY SHAPE MEASUREMENT; COSMIC SHEAR; INTRINSIC ALIGNMENTS; POWER SPECTRA; DARK ENERGY; WEAK; REQUIREMENTS; REDSHIFT; CALIBRATION; TOMOGRAPHY AB We present the results of the Gravitational LEnsing Accuracy Testing 2008 (GREAT08) Challenge, a blind analysis challenge to infer weak gravitational lensing shear distortions from images. The primary goal was to stimulate new ideas by presenting the problem to researchers outside the shear measurement community. Six GREAT08 Team methods were presented at the launch of the Challenge and five additional groups submitted results during the 6-month competition. Participants analyzed 30 million simulated galaxies with a range in signal-to-noise ratio, point spread function ellipticity, galaxy size and galaxy type. The large quantity of simulations allowed shear measurement methods to be assessed at a level of accuracy suitable for currently planned future cosmic shear observations for the first time. Different methods perform well in different parts of simulation parameter space and come close to the target level of accuracy in several of these. A number of fresh ideas have emerged as a result of the Challenge including a re-examination of the process of combining information from different galaxies, which reduces the dependence on realistic galaxy modelling. The image simulations will become increasingly sophisticated in future GREAT Challenges, meanwhile the GREAT08 simulations remain as a benchmark for additional developments in shear measurement algorithms. C1 [Bridle, Sarah; Kirk, Donnacha; Voigt, Lisa; Witherick, Dugan; Shawe-Taylor, John] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Bethge, Matthias; Harmeling, Stefan; Hirsch, Michael; Hosseini, Reshad; Schoelkopf, Bernhard] MPI Biol Cybernet, Dept Empir Inference, D-72076 Tubingen, Germany. [Bethge, Matthias; Hosseini, Reshad] Univ Tubingen, Ctr Integrat Neurosci, D-72076 Tubingen, Germany. [Bethge, Matthias; Hosseini, Reshad] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Gentile, Marc; Courbin, Frederic] EPFL, Observ Sauverny, CH-1290 Versoix, Switzerland. [Heymans, Catherine; Kitching, Thomas; Heavens, Alan; Massey, Richard] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, Mike; Bernstein, Gary] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Kuijken, Konrad; Velander, Malin; Schrabback, Tim] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Lewis, Antony] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Lewis, Antony] Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Paulin-Henriksson, Stephane; Rassat, Anais; Refregier, Alexandre] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Amara, Adam] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Gill, Mandeep] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Mandelbaum, Rachel] Inst Adv Study, Princeton, NJ 08540 USA. [Moghaddam, Baback; Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Moghaddam, Baback; Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Shmakova, Marina] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [van Waerbeke, Ludovic] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Wittman, David] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Bridle, S (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM sarah.bridle@ucl.ac.uk RI Bethge, Matthias/B-1554-2008; Scholkopf, Bernhard/A-7570-2013; Witherick, Dugan/C-9403-2014; Mandelbaum, Rachel/N-8955-2014; OI Witherick, Dugan/0000-0002-9175-0151; Mandelbaum, Rachel/0000-0003-2271-1527; Wittman, David/0000-0002-0813-5888; Rassat, Anais/0000-0002-5476-6461; Massey, Richard/0000-0002-6085-3780 FU PASCAL Network; Royal Society; STFC [RA0888]; Jet Propulsion Laboratory under a contract from NASA; NASA FX We thank the PASCAL Network for support. We thank the GREAT08 Team and participants at the GREAT08 Mid-Challenge Workshop and GREAT08 Final Workshop including Hakon Dahle, Domenico Marinucci and Uros Seljak. We thank the organizers of Cosmostats09 for hosting the GREAT08 Challenge Final Workshop within Cosmostats09 in Ascona. We thank the Aspen Center for Physics where part of this work was carried out. We are grateful to Jeremy Yates for help with setting up the GREAT08 server. SLB thanks the Royal Society for support in the form of a University Research Fellowship. TDK is supported by STFC Rolling grant RA0888. JR is supported in part by the Jet Propulsion Laboratory, which is run by Caltech under a contract from NASA. MS was supported in part by the programme 11288 provided by NASA through a grant from the STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 52 TC 108 Z9 108 U1 1 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2010 VL 405 IS 3 BP 2044 EP 2061 DI 10.1111/j.1365-2966.2010.16598.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613ZB UT WOS:000279022900050 ER PT J AU Stone, CL Buitrago, MLP Boore, JL Frederick, RD AF Stone, Christine L. Posada Buitrago, Martha Lucia Boore, Jeffrey L. Frederick, Reid D. TI Analysis of the complete mitochondrial genome sequences of the soybean rust pathogens Phakopsora pachyrhizi and P-meibomiae SO MYCOLOGIA LA English DT Article DE Basidiomycota; codon usage; comparative genomics; gene order; genome organization; intron; LAGLIDADG motif; mitochondrial DNA ID TRANSFER-RNA GENES; ORGANIZATION; PROGRAM; FUNGUS; PHYLOGENIES; GENERATION; EVOLUTION; ALIGNMENT; SEARCH; DNA AB The mitochondrial (mt) genomes of two soybean rust pathogens, Phakopsota pachyrhizi and P. meibomiae, have been sequenced. The mt genome of P. pachyrhizi is a circular 31 825-bp molecule with a mean GC content of 34.6%, while P. meibomiae possesses a 32520-bp circular molecule with a mean GC content of 34.9%. Both mt genomes contain the genes encoding ATP synthase subunits 6, 8 and 9 (atp6, atp8 and atp9), cytochrome oxidase subunits I, II and III (cox1, cox2 and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductiase subunits (nad1, nad2, nad3, nad4, nad4L, nad5 and nad6), the large and small mt ribosomal RNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 24 tRNA genes that, recognize codons for all amino acids. The order of the protein-coding genes and tRNA is identical in the two Phakopsora species, and all genes are transcribed from the same DNA strand clockwise. Introns were identified in the cox1, cob and yid genes of both species, with three of the introns having ORFs with motifs similar to the LAGLIDADG endonucleases of other fungi. Phylogenetic analysis of the 14 shared protein-coding genes agrees with commonly accepted fungal taxonomy. C1 [Stone, Christine L.; Frederick, Reid D.] USDA ARS, Foreign Dis Weed Sci Res Unit, Ft Detrick, MD 21702 USA. [Posada Buitrago, Martha Lucia; Boore, Jeffrey L.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Posada Buitrago, Martha Lucia; Boore, Jeffrey L.] Lawrence Berkeley Natl Lab, Walnut Creek, CA 94598 USA. RP Frederick, RD (reprint author), USDA ARS, Foreign Dis Weed Sci Res Unit, 1301 Ditto Ave, Ft Detrick, MD 21702 USA. EM Reid.Frederick@ars.usda.gov RI POSADA, MARTHA/G-7927-2012 FU US Department of Energy's Office of Science, Biological and Environmental Research; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank Paul Tooley and Doug Luster for their critical review of this manuscript. The use of trade, firm or corporation names in this publication is for the information and benefit of the reader. Such use does not constitute an official endorsement or approval by the USDA Agricultural Research Service of any product or service to the exclusion of others that may be suitable. This work was performed partly under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory, under contract No. DE-AC02-05CH11231. NR 48 TC 13 Z9 13 U1 1 U2 9 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 J9 MYCOLOGIA JI Mycologia PD JUL-AUG PY 2010 VL 102 IS 4 BP 887 EP 897 DI 10.3852/00-198 PG 11 WC Mycology SC Mycology GA 621KP UT WOS:000279577000013 PM 20648755 ER PT J AU Li, YM Somorjai, GA AF Li, Yimin Somorjai, Gabor A. TI Nanoscale Advances in Catalysis and Energy Applications SO NANO LETTERS LA English DT Article DE Nanotechnology; nanocatalysis; chemical conversion; energy conversion; energy conservation; nanomaterial synthesis ID MONODISPERSE PLATINUM NANOPARTICLES; SENSITIZED SOLAR-CELLS; PYRROLE HYDROGENATION; HETEROGENEOUS CATALYSIS; SEMICONDUCTOR NANOWIRES; SELECTIVE OXIDATION; METHANE ACTIVATION; MESOPOROUS SILICA; CARBON NANOTUBES; SOLID CATALYSTS AB In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Li, Yimin/F-5817-2012; Li, Yimin/F-5821-2012 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No DE-AC02-05CH11231 NR 92 TC 209 Z9 214 U1 17 U2 188 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2289 EP 2295 DI 10.1021/nl101807g PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200001 PM 20524636 ER PT J AU Kurepa, J Paunesku, T Vogt, S Arora, H Rabatic, BM Lu, JJ Wanzer, MB Woloschak, GE Smalle, JA AF Kurepa, Jasmina Paunesku, Tatjana Vogt, Stefan Arora, Hans Rabatic, Bryan M. Lu, Jinju Wanzer, M. Beau Woloschak, Gayle E. Smalle, Jan A. TI Uptake and Distribution of Ultrasmall Anatase TiO2 Alizarin Red S Nanoconjugates in Arabidopsis thaliana SO NANO LETTERS LA English DT Article DE Anatase TiO2 nanoparticles; TiO2 nanoconjugates; Arabidopsis thahana; X-ray fluorescence microscopy ID PUMPKIN PLANTS; SEED COAT; NANOPARTICLES; ROOT; PHYTOTOXICITY; MICROSCOPY; NANO-TIO2; TOXICITY; SPINACH; GROWTH AB While few publications have documented the uptake of nanoparticles in plants, this is the first study describing uptake and distribution of the ultrasmall anatase TiO2 in the plant model system Arabidopsis We modified the nanoparticle surface with Alizarin red S and sucrose and demonstrated that nanoconjugates traversed cell walls, entered into plant cells, and accumulated in specific subcellular locations Optical and X-ray fluorescence microscopy coregistered the nanoconjugates in cell vacuoles and nuclei C1 [Kurepa, Jasmina; Smalle, Jan A.] Univ Kentucky, Program Mol Biol, Dept Plant & Soil Sci, Lexington, KY 40546 USA. [Paunesku, Tatjana; Arora, Hans; Rabatic, Bryan M.; Lu, Jinju; Wanzer, M. Beau; Woloschak, Gayle E.] Northwestern Univ, Dept Radiat Oncol, Feinberg Sch Med, Chicago, IL 60611 USA. [Vogt, Stefan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Woloschak, GE (reprint author), Univ Kentucky, Program Mol Biol, Dept Plant & Soil Sci, Lexington, KY 40546 USA. RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; Paunesku, Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Paunesku, Tatjana/0000-0001-8698-2938; Woloschak, Gayle/0000-0001-9209-8954 FU NIH [EB002100-03]; KTRD Center in Lexington, Kentucky; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are grateful to Tara L Burke for performing the seed germination assays, AiGuo Wu for instructions on nanoparticle synthesis and characterization, Katarina Petras for nanoparticle sizing assistance, Lenell Reynolds and Northwestern Cell Imaging Facility for assistance with TEM, and Dr Lydia Finney with assistance in beamline setup This work was supported in part by the NIH Grant EB002100-03 and by the KTRD Center in Lexington, Kentucky Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No DE-AC02-06CH11357 NR 47 TC 94 Z9 103 U1 7 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2296 EP 2302 DI 10.1021/nl903518f PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200002 PM 20218662 ER PT J AU Tam, E Podsiadlo, P Shevchenko, E Ogletree, DF Delplancke-Ogletree, MP Ashby, PD AF Tam, Enrico Podsiadlo, Paul Shevchenko, Elena Ogletree, D. Frank Delplancke-Ogletree, Marie-Paule Ashby, Paul D. TI Mechanical Properties of Face-Centered Cubic Supercrystals of Nanocrystals SO NANO LETTERS LA English DT Article DE Nanocrystals; supercrystals; modulus; hardness; fracture toughness ID MONODISPERSE FEPT NANOPARTICLES; FRACTURE-TOUGHNESS; TENSILE-STRENGTH; THIN-FILMS; SUPERLATTICES; INDENTATION; POLYMER; NANOINDENTATION; COMPOSITES; CRYSTALS AB We report the first nanoindentation studies of well-ordered nanocrystal supercrystals composed of 7 nm lead sulfide nanocrystals stabilized with oleic acid ligands as a model system Their modulus and hardness were found to be similar to hard polymers at 17 GPa and 70 MPa, respectively, and the fracture toughness was 40 KPa/m(1/2), revealing the brittle nature of these materials The mechanical properties arc dominated by the organic capping agents surrounding the inorganic cores The close-packed structure distributes stress evenly increasing the modulus and hardness The relatively short ligands are not likely to be highly interdigitated leading to low dissipation during crack propagation and a low-fracture toughness value C1 [Tam, Enrico; Delplancke-Ogletree, Marie-Paule] Univ Libre Bruxelles, Chem & Mat Dept, B-1050 Brussels, Belgium. [Podsiadlo, Paul; Shevchenko, Elena] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Ogletree, D. Frank; Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ashby, PD (reprint author), Univ Libre Bruxelles, Chem & Mat Dept, CPI 65-63,Av F-D Roosevelt 50, B-1050 Brussels, Belgium. RI Ogletree, D Frank/D-9833-2016 OI Ogletree, D Frank/0000-0002-8159-0182 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; French Community of Belgium FX Work at the Molecular Foundry and Center for Nanoscale Materials were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract Nos DE-AC02-05CH11231 and DE-AC02-06CH11357, respectively E T was supported by an ARC Project of the French Community of Belgium NR 38 TC 44 Z9 44 U1 2 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2363 EP 2367 DI 10.1021/nl1001313 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200012 PM 20515036 ER PT J AU Htoon, H Malko, AV Bussian, D Vela, J Chen, Y Hollingsworth, JA Klimov, VI AF Htoon, H. Malko, A. V. Bussian, D. Vela, J. Chen, Y. Hollingsworth, J. A. Klimov, V. I. TI Highly Emissive Multiexcitons in Steady-State Photoluminescence of Individual "Giant" CdSe/CdS Core/Shell Nanocrystals SO NANO LETTERS LA English DT Article DE Nanocrystal; quantum dot; charged nanocrystal; single-dot photoluminescence; multiexciton; Auger recombination ID CADMIUM SELENIDE NANOCRYSTALS; POWER-LAW BEHAVIOR; SEMICONDUCTOR NANOCRYSTALS; QUANTUM DOTS; BLINKING; GAIN AB The development of nanocrystal quantum dots (NQDs) with suppressed nonradiative Auger recombination has been an important goal in colloidal nanostructure research motivated by the needs of prospective applications in lasing devices, light-emitting diodes, and photovoltaic cells Here, we conduct single-nanocrystal spectroscopic studies of recently developed core shell NQDs (so-called "giant" NQDs) that comprise a small CdSe core surrounded by a 16-monolayer-thick CdS shell Using both continuous-wave and pulsed excitation, we observe strong emission features due both to neutral and charged biexcitons, as well as multiexcitons of higher order The development of pronounced multiexcitonic peaks in steady-state photoluminescence of individual nanocrystals. as well as continuous growth of the emission intensity in the range of high pump levels, point toward a significant suppression of nonradiative Auger decay that normally renders multiexcitons nonemissive The unusually high multiexciton emission efficiencies in these systems open interesting opportunities for studies of multiexciton phenomena using well-established methods of single-dot spectroscopy, as well as new exciting prospects for applications, that have previously been hampered by nonradiative Auger decay C1 [Htoon, H.; Bussian, D.; Vela, J.; Chen, Y.; Hollingsworth, J. A.; Klimov, V. I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Htoon, H.; Bussian, D.; Hollingsworth, J. A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Htoon, H.; Hollingsworth, J. A.; Klimov, V. I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. [Malko, A. V.] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. RP Htoon, H (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RI Vela, Javier/I-4724-2014; OI Vela, Javier/0000-0001-5124-6893; Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 FU US Department of Energy (DOE); NIH-NIGMS [1R01 GM084702-01]; Chemical Sciences, Biosciences and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, US DOE; Office of BES; Los Alamos National Laboratory FX This work was conducted in part in the Center for Integrated Nanotechnologies (CINT) Jointly operated by Los Alamos and Sandia National Laboratories (LANL and SNL) for the US Department of Energy (DOE) H and J A H acknowledge partial support by NIH-NIGMS Grant 1R01 GM084702-01 The work by A V M at LANL was conducted as part of the CINT user program D B acknowledges support by the Chemical Sciences, Biosciences and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, US DOE V I K is supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the Office of BES. Office of Science, U S DOE J V and Y C acknowledge support by Los Alamos National Laboratory Directed Research and Development Funds NR 28 TC 94 Z9 95 U1 6 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2401 EP 2407 DI 10.1021/nl1004652 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200018 PM 20515013 ER PT J AU Liang, XG Jung, YS Wu, SW Ismach, A Olynick, DL Cabrini, S Bokor, J AF Liang, Xiaogan Jung, Yeon-Sik Wu, Shiwei Ismach, Ariel Olynick, Deirdre L. Cabrini, Stefano Bokor, Jeffrey TI Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography SO NANO LETTERS LA English DT Article DE Graphene; nanoimprint; nanoelectronics; nanofabrication; nanolithography; nanomaterial ID LARGE-AREA; FILMS AB We fabricated hexagonal graphene nanomeshes (GNMs) with sub-10 nm ribbon width The fabrication combines nanoimprint lithography, block-copolymer self-assembly for high-resolution nanoimprint template patterning, and electrostatic printing of graphene Graphene field-effect transistors (GFETs) made from GNMs exhibit very different electronic characteristics in comparison with unpatterned GFETs even at room temperature We observed multiplateaus in the drain current gate voltage dependence as well as an enhancement of ON/OFF current ratio with reduction of the average ribbon width of GNMs These effects are attributed to the formation of electronic subbands and a bandgap in GNMs Such mesoscopic graphene structures and the nanofabrication methods could be employed to construct future electronic devices based on graphene superlattices C1 [Liang, Xiaogan; Jung, Yeon-Sik; Wu, Shiwei; Olynick, Deirdre L.; Cabrini, Stefano; Bokor, Jeffrey] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Ismach, Ariel; Bokor, Jeffrey] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA. RP Liang, XG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Wu, Shiwei/F-4542-2010; JUNG, YEON SIK/C-1798-2011; ismach, ariel/A-9913-2015 OI Wu, Shiwei/0000-0001-9838-9066; JUNG, YEON SIK/0000-0002-7709-8347; ismach, ariel/0000-0002-4328-9591 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U S Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U S Department of Energy under Contract No DE-AC02-05CH11231 The authors would like to thank Dr Yuegang Zhang for the help with electrical measurement NR 29 TC 176 Z9 178 U1 13 U2 164 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2454 EP 2460 DI 10.1021/nl100750v PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200027 PM 20540552 ER PT J AU Dell'Angela, M Kladnik, G Cossaro, A Verdini, A Kamenetska, M Tamblyn, I Quek, SY Neaton, JB Cvetko, D Morgante, A Venkataraman, L AF Dell'Angela, M. Kladnik, G. Cossaro, A. Verdini, A. Kamenetska, M. Tamblyn, I. Quek, S. Y. Neaton, J. B. Cvetko, D. Morgante, A. Venkataraman, L. TI Relating Energy Level Alignment and Amine-Linked Single Molecule Junction Conductance SO NANO LETTERS LA English DT Article DE Photoemission spectroscopy; metal-organic interface; density functional theory; single molecule conductance; benzenediamine ID ABSORPTION FINE-STRUCTURE; CHARGE-TRANSFER; SURFACES; ADSORPTION; CHEMISTRY; DYNAMICS; THERMOELECTRICITY; SPECTROSCOPIES; SIMULATION; INTERFACES AB Using photoemission spectroscopy, we determine the relationship between electronic energy level alignment at a metal molecule interface and single-molecule junction transport data We measure the position of the highest occupied molecular orbital (HOMO) relative to the Au metal Fermi level for three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet and resonant X-ray photoemission spectroscopy We compare these results to scanning tunnelling microscope-based break-junction measurements of single molecule conductance and to first-principles calculations We find that the energy difference between the HOMO and Fermi level for the three molecules adsorbed on Au(111) correlate well with changes in conductance and agree well with quasiparticle energies computed from first-principles calculations incorporating self-energy corrections On the Au(110) that presents Au atoms with lower-coordination, critical in break-junction conductance measurements, we see chat the HOMO level shifts further from the Fermi level These results provide the first direct comparison of spectroscopic energy level alignment measurements with single molecule junction transport data C1 [Tamblyn, I.; Quek, S. Y.; Neaton, J. B.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. [Dell'Angela, M.; Cossaro, A.; Verdini, A.; Morgante, A.] CNR, IOM Lab Nazl TASC, I-34012 Trieste, Italy. [Dell'Angela, M.; Morgante, A.] Univ Trieste, Dept Phys, Trieste, Italy. [Kladnik, G.; Cvetko, D.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Kamenetska, M.; Venkataraman, L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. RP Neaton, JB (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. RI Tamblyn, Isaac/B-4542-2010; Kladnik, Gregor/J-5763-2012; Neaton, Jeffrey/F-8578-2015; VERDINI, ALBERTO/H-6516-2013; Morgante, Alberto/C-5199-2010; Quek, Su Ying/I-2934-2014 OI Tamblyn, Isaac/0000-0002-8146-6667; Neaton, Jeffrey/0000-0001-7585-6135; Dell'Angela, Martina/0000-0003-1228-2458; Venkataraman, Latha/0000-0002-6957-6089; VERDINI, ALBERTO/0000-0001-8880-2080; Morgante, Alberto/0000-0001-9021-2944; FU NSF [CHE-0641523, CHE-07-44185]; Office of Science, Office of Basic Energy Sciences, of the U S Department of Energy; NSEC at Columbia University; Italian Academy at Columbia University FX This work was supported in part by the NSEC program of the NSF (Grant CHE-0641523), and a NSF Career Grant (CHE-07-44185) Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and were supported by the Office of Science, Office of Basic Energy Sciences, of the U S Department of Energy A M gratefully acknowledges the NSEC at Columbia University and the Italian Academy at Columbia University for the warm hospitality and financial support during his visit NR 40 TC 75 Z9 75 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2470 EP 2474 DI 10.1021/nl100817h PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200030 PM 20578690 ER PT J AU Mazumdar, D Shelke, V Iliev, M Jesse, S Kumar, A Kalinin, SV Baddorf, AP Gupta, A AF Mazumdar, Dipanjan Shelke, Vilas Iliev, Milko Jesse, Stephen Kumar, Amit Kalinin, Sergei V. Baddorf, Arthur P. Gupta, Arunava TI Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO3 Thin Films SO NANO LETTERS LA English DT Article DE Ferroelectricity; multiferroics; piezoresponse force microscopy; morphotropic phase transition; spintronics; ferroelectric tunnel junction ID MULTIFERROICS; POLARIZATION; ORIGIN; STRAIN; STATES AB We have investigated the nanoscale switching properties of strain-engineered BiFeO3 thin films deposited on LaAlO3 substrates using a combination of scanning probe techniques Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry Through local switching-spectroscopy measurements and piezoresponse force microscopy. we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications C1 [Mazumdar, Dipanjan; Shelke, Vilas; Gupta, Arunava] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Iliev, Milko] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Jesse, Stephen; Kumar, Amit; Kalinin, Sergei V.; Baddorf, Arthur P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mazumdar, D (reprint author), Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. RI Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Kumar, Amit/C-9662-2012; ILIEV, MILKO/A-5941-2008; Jesse, Stephen/D-3975-2016; Mazumdar, Dipanjan /G-9615-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Kumar, Amit/0000-0002-1194-5531; ILIEV, MILKO/0000-0002-9685-542X; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU ONR [N00014-09-0119]; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U S Department of Energy; State of Texas through the Texas Center for Superconductivity at the University of Houston FX The work at the University of Alabama was supported by ONR (Grant N00014-09-0119) A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U S Department of Energy The work of M I was supported by the State of Texas through the Texas Center for Superconductivity at the University of Houston NR 34 TC 96 Z9 99 U1 7 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2555 EP 2561 DI 10.1021/nl101187a PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200044 PM 20586433 ER PT J AU Sheikholeslami, S Jun, YW Jain, PK Alivisatos, AP AF Sheikholeslami, Sassan Jun, Young-wook Jain, Prashant K. Alivisatos, A. Paul TI Coupling of Optical Resonances in a Compositionally Asymmetric Plasmonic Nanoparticle Dimer SO NANO LETTERS LA English DT Article DE Surface plasmon resonance; plasmon coupling; hybridization model; nanoparticle dimers ID DISCRETE-DIPOLE APPROXIMATION; METAL NANOSTRUCTURES; GOLD NANOPARTICLES; PARTICLE PAIRS; NANOSHELLS; SCATTERING; SILVER; DNA; HYBRIDIZATION; SPECTROSCOPY AB Electromagnetic coupling between plasmon resonant nanoparticles follows principles of molecular hybridization, that is, particle plasmons hybridize to form a lower energy bonding plasmon mode and a higher energy antibonding plasmon mode For coupling between equivalent particles (homodimer), the in-phase mode is optically allowed, whereas the out-of-phase mode is dark due to the cancellation of the equivalent dipole moments We probe, using polarized scattering spectroscopy. the coupling in a pair of nonequivalent particles (silver/gold nanoparticle heterodimer) that allows us to observe both in-phase and out-of-phase plasmon modes The hybridization model postulates that the bonding modes should be red shifted with respect to the gold particle plasmon resonance and the antibonding modes blue shifted with respect to the silver particle plasmon resonance In practice, the antibonding modes are red shifted with respect to the silver plasmon resonance This anomalous shift is due to the coupling of the silver particle plasmon resonance to the quasi-continuum of interband transitions in gold, which dominate in the spectral region of the silver particle plasmon resonance The hybridization model, which considers only free-electron behavior of the metals, fails to account for this coupling C1 [Sheikholeslami, Sassan; Jun, Young-wook; Jain, Prashant K.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Jain, Prashant K.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Sheikholeslami, Sassan; Jun, Young-wook; Jain, Prashant K.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Jun, Young-wook/A-4141-2008; Jain, Prashant/A-4779-2009; Alivisatos , Paul /N-8863-2015 OI Jain, Prashant/0000-0002-7306-3972; Alivisatos , Paul /0000-0001-6895-9048 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U S Department of Energy [DE-AC02-05CH11231]; UCB Miller Institute FX We thank Man Sheldon for discussion This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U S Department of Energy under Contract No DE-AC02-05CH11231 P J thanks the UCB Miller Institute for the Miller fellowship NR 37 TC 183 Z9 185 U1 12 U2 163 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2655 EP 2660 DI 10.1021/nl101380f PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200060 PM 20536212 ER PT J AU Cao, J Gu, Y Fan, W Chen, LQ Ogletree, DF Chen, K Tamura, N Kunz, M Barrett, C Seidel, J Wu, J AF Cao, J. Gu, Y. Fan, W. Chen, L. Q. Ogletree, D. F. Chen, K. Tamura, N. Kunz, M. Barrett, C. Seidel, J. Wu, J. TI Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram SO NANO LETTERS LA English DT Article DE Strain; phase transition; correlated electron nanomaterials; vanacium dioxide; mechanical strength ID METAL-INSULATOR-TRANSITION; CR-DOPED VO2; THIN-FILMS; MOTT-HUBBARD; BAND THEORY; STRAIN; FERROELECTRICITY; ORGANIZATION; NANOBEAMS; NANOWIRES AB Single-crystal micro- and nanomaterials often exhibit higher yield strength than their bulk counterparts This enhancement is widely recognized in structural materials but is rarely exploited to probe fundamental physics of electronic materials Vanadium dioxide exhibits coupled electronic and structural phase transitions that involve different structures existing at different strain states Full understanding of the driving mechanism of these coupled transitions necessitates concurrent structural and electrical measurements over a wide phase space Taking advantages of the superior mechanical property of micro/nanocrystals of VO(2), we map and explore its stress-temperature phase diagram over a phase space that is more than an order of magnitude broader than previously attained New structural and electronic aspects were observed crossing phase boundaries at high-strain states Our work shows that the actively tuning strain in micro/nanoscale electronic materials provides an effective route to investigate their fundamental properties beyond what can be accessed in their bulk counterpart C1 [Cao, J.; Fan, W.; Barrett, C.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Seidel, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cao, J.; Ogletree, D. F.; Barrett, C.; Seidel, J.; Wu, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ogletree, D. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Chen, K.; Tamura, N.; Kunz, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gu, Y.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Fan, W.] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011; Kunz, Martin/K-4491-2012; Gu, Yijia/A-6418-2013; Chen, LongQing/I-7536-2012; Chen, Kai/O-5662-2014; Ogletree, D Frank/D-9833-2016 OI Wu, Junqiao/0000-0002-1498-0148; Kunz, Martin/0000-0001-9769-9900; Gu, Yijia/0000-0001-8036-6309; Chen, LongQing/0000-0003-3359-3781; Chen, Kai/0000-0002-4917-4445; Ogletree, D Frank/0000-0002-8159-0182 FU Lawrence Berkeley National Laboratory (LBNL) under U S Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) [EEC-0832819, DMR-0507146]; Office of Science, Office of Basic Energy Sciences, of the U S Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory (LBNL) under U S Department of Energy Contract No DE-AC02-05CH11231 [Dr J Cao and measurements], by the National Science Foundation (NSF) under Grant EEC-0832819 [material synthesis and device fabrication], and NSF DMR-0507146 [theory and modeling] Portions of this work were performed as user projects at the Molecular Foundry [in situ SEMI and at the Advanced Light Source [mu XRD], LBNL, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U S Department of Energy under Contract No DE-AC02-05CH11231 We thank Dr E Saiz and Dr M Raschke for useful discussions NR 35 TC 103 Z9 104 U1 9 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2667 EP 2673 DI 10.1021/nl101457k PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200062 PM 20586406 ER PT J AU Joo, SH Park, JY Renzas, JR Butcher, DR Huang, WY Somorjai, GA AF Joo, Sang Hoon Park, Jeong Y. Renzas, J. Russell Butcher, Derek R. Huang, Wenyu Somorjai, Gabor A. TI Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation SO NANO LETTERS LA English DT Article DE Ruthenium; nanoparticles; model nanocatalyst; CO oxidation; size effect ID CO OXIDATION; IN-SITU; ATOMIC-SCALE; STEADY-STATE; PLATINUM; SHAPE; NANOCRYSTALS; SPECTROSCOPY; KINETICS; METALS AB Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac)(3) precursor in the presence of poly(vinylpyrrolidone) stabilizer The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O-2) showed an activity dependence on the Ru NP size The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Park, JY (reprint author), Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea. RI Joo, Sang Hoon/E-5898-2010; Park, Jeong Young/A-2999-2008; Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Office of Science, Office of Basic Energy Sciences of the U S Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Science, and Technology [31-2008-000-10055-0] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U S Department of Energy under Contract No DE-AC02-05CH11231 J Y P acknowledges the support by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (31-2008-000-10055-0) Authors thank the Berkeley Electron Microscopy Lab for the use of TEM machine, and also thank Professor A Paul Alivisatos for use of XRD diffractometer NR 35 TC 163 Z9 165 U1 17 U2 171 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2709 EP 2713 DI 10.1021/nl101700j PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200069 PM 20568824 ER PT J AU Stephanopoulos, N Liu, MH Tong, GJ Li, Z Liu, Y Yan, H Francis, MB AF Stephanopoulos, Nicholas Liu, Minghui Tong, Gary J. Li, Zhe Liu, Yan Yan, Hao Francis, Matthew B. TI Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami SO NANO LETTERS LA English DT Article DE Viral capsids; self-assembly; DNA origami; biomolecular materials ID TOBACCO-MOSAIC-VIRUS; PROTEIN CAGE ARCHITECTURES; FREE VIRAL CAPSIDS; BUILDING-BLOCKS; SURFACE MODIFICATION; CONTRAST AGENTS; NANOSTRUCTURES; BACTERIOPHAGE-MS2; NANOPARTICLES; INTERIOR AB DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles The resulting structures consisted of multiple capsids with even spacing (similar to 100 nm) We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures C1 [Liu, Minghui; Li, Zhe; Liu, Yan; Yan, Hao] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Liu, Minghui; Li, Zhe; Liu, Yan; Yan, Hao] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. [Stephanopoulos, Nicholas; Tong, Gary J.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Stephanopoulos, Nicholas; Tong, Gary J.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yan, H (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RI Li, Zhe/K-7316-2012; Liu, Yan/K-1999-2014 OI Liu, Yan/0000-0003-0906-2606 FU Office of Science, Materials Sciences and Engineering Division, of the U S Department of Energy [DE-AC02-05CH11231]; NIH; ONR; ARO; NSF; DOE; Sloan Research Foundation; U S Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001016] FX Research efforts for N S and M B F were supported by the Director, Office of Science, Materials Sciences and Engineering Division, of the U S Department of Energy under Contract No DE-AC02-05CH11231 H Y acknowledges funding from the NIH, ONR, ARO, NSF, DOE and the Sloan Research Foundation Y and Y L were supported as part of the Center for Bto-Inspired Solar Fuel Production, an Energy Frontier Research Center funded by the U S Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001016 M L, Z L, Y L, and H Y would like to thank Suchetan Pal and Zhao Zhao for assistance with TEM and the EM facility in the School of Life Sciences at Arizona State University, and Yonggang Ke for helpful discussions N S, G J T, and M B F would like to thank David Unruh and Prof Jean Frechet for assistance with and use of their AFM NR 45 TC 78 Z9 79 U1 2 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2714 EP 2720 DI 10.1021/nl1018468 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200070 PM 20575574 ER PT J AU Hentschel, M Saliba, M Vogelgesang, R Giessen, H Alivisatos, AP Liu, N AF Hentschel, Mario Saliba, Michael Vogelgesang, Ralf Giessen, Harald Alivisatos, A. Paul Liu, Na TI Transition from Isolated to Collective Modes in Plasmonic Oligomers SO NANO LETTERS LA English DT Article DE Plasmons; coupling; Fano resonances; dark mode; oligomer ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; FANO RESONANCES; GOLD; NANOPARTICLES; HYBRIDIZATION; METAMATERIAL; DIMERS; OPTICS; ANALOG AB We demonstrate the transition from isolated to collective optical modes in plasmonic oligomers. Specifically, we investigate the resonant behavior of planar plasmonic hexamers and heptamers with gradually decreasing the interparticle gap separation A pronounced Fano resonance is observed in the plasmonic heptamer for separations smaller than 60 nm The spectral characteristics change drastically upon removal of the central nanoparticle Our work paves the road toward complex hierarchical plasmonic oligmers with tailored optical properties C1 [Alivisatos, A. Paul; Liu, Na] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul; Liu, Na] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hentschel, Mario; Saliba, Michael; Giessen, Harald] Univ Stuttgart, Inst Phys 4, D-70569 Stuttgart, Germany. [Hentschel, Mario; Saliba, Michael; Giessen, Harald] Univ Stuttgart, Res Ctr Scope, D-70569 Stuttgart, Germany. [Hentschel, Mario; Saliba, Michael; Vogelgesang, Ralf] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Liu, N (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Liu, Na/C-8190-2014; Vogelgesang, Ralf/B-4460-2009; Hentschel, Mario/N-2093-2015; Alivisatos , Paul /N-8863-2015; Saliba, Michael/I-1945-2016 OI Vogelgesang, Ralf/0000-0002-1026-3205; Alivisatos , Paul /0000-0001-6895-9048; Saliba, Michael/0000-0002-6818-9781 FU Deutsche Forschungsgemeinschaft [SPP1391, FOR73, FOR557]; BMBF [13N9048, 13N10146]; BW-Stiftung; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX We thank T Weiss, P Braun, and M Dressel for useful discussions and comments We acknowledge S Hein for his material visualizations M Hentschel, M Saliba, R Vogelgesang, and H Giessen were financially supported by Deutsche Forschungsgemeinschaft (SPP1391, FOR73, and FOR557), by BMBF (13N9048 and 13N10146), and by BW-Stiftung N Liu and A P Alivisatos were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract DE-AC02-05CH11231 NR 32 TC 300 Z9 304 U1 9 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2010 VL 10 IS 7 BP 2721 EP 2726 DI 10.1021/nl101938p PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 632IP UT WOS:000280416200071 PM 20586409 ER PT J AU Kasen, D AF Kasen, Daniel TI ASTROPHYSICS The supernova has two faces SO NATURE LA English DT Editorial Material ID GRAVITATIONALLY CONFINED DETONATION; MASS WHITE-DWARF; IA-SUPERNOVAE; DELAYED DETONATION; MODEL; DEFLAGRATIONS; DIVERSITY C1 [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Kasen, D (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM kasen@ucolick.org NR 17 TC 0 Z9 0 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 1 PY 2010 VL 466 IS 7302 BP 37 EP 38 DI 10.1038/466037a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 618HW UT WOS:000279343800026 PM 20596004 ER PT J AU Young, L Kanter, EP Krassig, B Li, Y March, AM Pratt, ST Santra, R Southworth, SH Rohringer, N DiMauro, LF Doumy, G Roedig, CA Berrah, N Fang, L Hoener, M Bucksbaum, PH Cryan, JP Ghimire, S Glownia, JM Reis, DA Bozek, JD Bostedt, C Messerschmidt, M AF Young, L. Kanter, E. P. Kraessig, B. Li, Y. March, A. M. Pratt, S. T. Santra, R. Southworth, S. H. Rohringer, N. DiMauro, L. F. Doumy, G. Roedig, C. A. Berrah, N. Fang, L. Hoener, M. Bucksbaum, P. H. Cryan, J. P. Ghimire, S. Glownia, J. M. Reis, D. A. Bozek, J. D. Bostedt, C. Messerschmidt, M. TI Femtosecond electronic response of atoms to ultra-intense X-rays SO NATURE LA English DT Article ID K-SHELL; FLUORESCENCE YIELDS; CROSS-SECTIONS; LASER; PHOTOIONIZATION; IONIZATION; NEON; LIGHT; SCATTERING; RADIATION AB An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10(18) W cm(-2), 1.5-0.6 nm, similar to 10(5) X-ray photons per angstrom(2)). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems. C1 [Young, L.; Kanter, E. P.; Kraessig, B.; Li, Y.; March, A. M.; Pratt, S. T.; Santra, R.; Southworth, S. H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, R.] Univ Chicago, Chicago, IL 60637 USA. [Rohringer, N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [DiMauro, L. F.; Doumy, G.; Roedig, C. A.] Ohio State Univ, Columbus, OH 43210 USA. [Berrah, N.; Fang, L.; Hoener, M.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Hoener, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bucksbaum, P. H.; Cryan, J. P.; Ghimire, S.; Glownia, J. M.; Reis, D. A.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Bozek, J. D.; Bostedt, C.; Messerschmidt, M.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. RP Young, L (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM young@anl.gov RI Messerschmidt, Marc/F-3796-2010; Bozek, John/E-4689-2010; Rohringer, Nina/B-8030-2012; Bozek, John/E-9260-2010; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014; OI Messerschmidt, Marc/0000-0002-8641-3302; Bozek, John/0000-0001-7486-7238; Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567; Li, Yuelin/0000-0002-6229-7490 FU Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-AC02-06CH11357, DE-FG02-04ER15614, DE-FG02-92ER14299]; US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Alexander von Humboldt Foundation; Department of Energy, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division and Division of Materials Science and Engineering; US Department of Energy's Office of Basic Energy Sciences FX We thank P. Emma, Z. Huang, R. Iverson, F. J. Decker, J. Frisch, and J. Turner for discussions that allowed us to realize, and subsequently utilize, the flexibility of the LCLS to maximum benefit. We are indebted to the operations staff for the performance of the LCLS in the many modes and energies that we requested throughout the course of this experiment. We thank the software engineers for producing advanced control, data acquisition and analysis capabilities during the experiment. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy (DE-AC02-06CH11357, DE-FG02-04ER15614, DE-FG02-92ER14299). N.R. was supported by the US Department of Energy by Lawrence Livermore National Laboratory (DE-AC52-07NA27344). M. H. thanks the Alexander von Humboldt Foundation for a Feodor Lynen fellowship. P. H. B., J. P. C., S. G., J. M. G. and D. A. R. were supported through the PULSE Institute, which is jointly funded by the Department of Energy, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division and Division of Materials Science and Engineering. Portions of this research were carried out at the LCLS at the SLAC National Accelerator Laboratory. LCLS is funded by the US Department of Energy's Office of Basic Energy Sciences. NR 57 TC 386 Z9 389 U1 7 U2 123 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 1 PY 2010 VL 466 IS 7302 BP 56 EP U66 DI 10.1038/nature09177 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 618HW UT WOS:000279343800034 PM 20596013 ER PT J AU Pennacchio, LA Visel, A AF Pennacchio, Len A. Visel, Axel TI Limits of sequence and functional conservation SO NATURE GENETICS LA English DT Editorial Material ID TRANSCRIPTION FACTOR-BINDING; ENHANCERS; ELEMENTS; GENOME AB Sequence conservation of noncoding DNA across species can indicate functional conservation. However, a new study demonstrates notable differences between human and mouse stem cell regulatory networks, suggesting caution in generalizing from sequence to functional conservation. C1 [Pennacchio, Len A.; Visel, Axel] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. RP Pennacchio, LA (reprint author), Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. EM lapennacchio@lbl.gov; avisel@lbl.gov RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU NHGRI NIH HHS [R01 HG003988, R01 HG003988-05]; NHLBI NIH HHS [R21 HL098940, R21 HL098940-02]; NIDCR NIH HHS [U01 DE020060-01, U01 DE020060]; NINDS NIH HHS [R01 NS062859, R01 NS062859-03] NR 12 TC 5 Z9 5 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD JUL PY 2010 VL 42 IS 7 BP 557 EP 558 DI 10.1038/ng0710-557 PG 2 WC Genetics & Heredity SC Genetics & Heredity GA 616WO UT WOS:000279242400004 PM 20581875 ER PT J AU He, X Wang, Y Wu, N Caruso, AN Vescovo, E Belashchenko, KD Dowben, PA Binek, C AF He, Xi Wang, Yi Wu, Ning Caruso, Anthony N. Vescovo, Elio Belashchenko, Kirill D. Dowben, Peter A. Binek, Christian TI Robust isothermal electric control of exchange bias at room temperature SO NATURE MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MAGNETIC-FIELDS; SEMICONDUCTORS; SPINTRONICS; ELECTRONICS; METALS; MEMORY; CR2O3; LOGIC AB Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature. C1 [He, Xi; Wang, Yi; Wu, Ning; Belashchenko, Kirill D.; Dowben, Peter A.; Binek, Christian] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [He, Xi; Wang, Yi; Wu, Ning; Belashchenko, Kirill D.; Dowben, Peter A.; Binek, Christian] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Caruso, Anthony N.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Vescovo, Elio] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Binek, C (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM cbinek2@unl.edu RI Belashchenko, Kirill/A-9744-2008; He, Xi/F-2572-2011; Wu, Ning/F-4244-2012; Binek, Christian/P-5937-2014 OI Belashchenko, Kirill/0000-0002-8518-1490; He, Xi/0000-0001-6603-2388; FU NSF [DMR-0547887]; Nebraska Research Initiative (NRI); NSF MRSEC [0820521]; NRC/NRI FX This work is supported by NSF through Career DMR-0547887, by the Nebraska Research Initiative (NRI), by the NSF MRSEC Grant No. 0820521 and by the NRC/NRI supplement to MRSEC. K.D.B. is a Cottrell Scholar of Research Corporation. Technical help from S-Q. Shi, V.R. Shah and L.P. Yue in the calculation of DOS, taking XRD and AFM data is acknowledged, respectively. We are thankful to Crystal GmbH for providing excellent Cr2O3 single crystals. NR 36 TC 198 Z9 201 U1 26 U2 154 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD JUL PY 2010 VL 9 IS 7 BP 579 EP 585 DI 10.1038/NMAT2785 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 613WG UT WOS:000279014300020 PM 20562879 ER PT J AU Ortalan, V Uzun, A Gates, BC Browning, ND AF Ortalan, Volkan Uzun, Alper Gates, Bruce C. Browning, Nigel D. TI Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite SO NATURE NANOTECHNOLOGY LA English DT Article ID ELECTRON-IRRADIATION; CATALYSTS; MICROSCOPY; STABILITY; MESOPORES; OXIDATION AB Zeolites are aluminosilicate materials that contain regular three-dimensional arrays of molecular-scale pores, and they can act as hosts for catalytically active metal clusters(1). The catalytic properties of such zeolites depend on the sizes and shapes of the clusters, and also on the location of the clusters within the pores. Transmission electron microscopy has been used to image single atoms and nanoclusters on surfaces(2), but the damage caused by the electron beam has made it difficult to image zeolites(3,4). Here, we show that aberration-corrected scanning transmission electron microscopy can be used to determine the locations of individual metal atoms and nanoclusters within the pores of a zeolite. We imaged the active sites of iridium catalysts anchored in dealuminated HY zeolite crystals, determined their locations and approximate distance from the crystal surface, and deduced a possible cluster formation mechanism. C1 [Ortalan, Volkan; Uzun, Alper; Gates, Bruce C.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Ortalan, V (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM vortalan@ucdavis.edu OI Uzun, Alper/0000-0001-7024-2900; Browning, Nigel/0000-0003-0491-251X FU National Science Foundation (NSF) [CTS-0500511]; ExxonMobil; Department of Energy (DOE) [DE-FG02-04ER15600]; Division of Scientific User Facilities, Basic Energy Sciences, DOE FX This work was supported by the National Science Foundation (NSF) and ExxonMobil (V.O., by NSF Grant Opportunities for Academic Liaison with Industry, grant no. CTS-0500511) and by the Department of Energy (DOE) (A.U., grant no. DE-FG02-04ER15600). The STEM images were acquired at Oak Ridge National Laboratory's Shared Research Equipment User Facility, supported by the Division of Scientific User Facilities, Basic Energy Sciences, DOE. NR 30 TC 62 Z9 62 U1 23 U2 113 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2010 VL 5 IS 7 BP 506 EP 510 DI 10.1038/NNANO.2010.92 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 633TO UT WOS:000280529800012 PM 20495553 ER PT J AU Sochnikov, I Shaulov, A Yeshurun, Y Logvenov, G Bozovic, I AF Sochnikov, Ilya Shaulov, Avner Yeshurun, Yosef Logvenov, Gennady Bozovic, Ivan TI Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films SO NATURE NANOTECHNOLOGY LA English DT Article ID QUANTUM INTERFERENCE DEVICE; THIN-FILMS; VORTEX LATTICE; RINGS; PERIODICITY; TRANSITION; YBA2CU3O7; ARRAYS; LIMITS AB Measurements on nanoscale structures constructed from high-temperature superconductors are expected to shed light on the origin of superconductivity in these materials(1-7). To date, loops made from these compounds have had sizes of the order of hundreds of nanometres(8-11). Here, we report the results of measurements on loops of La(1.84)Sr(0.16)CuO(4), a high-temperature superconductor that loses its resistance to electric currents when cooled below similar to 38 K, with dimensions down to tens of nanometres. We observe oscillations in the resistance of the loops as a function of the magnetic flux through the loops. The oscillations have a period of h/2e, and their amplitude is much larger than the amplitude of the resistance oscillations expected from the Little-Parks effect(12,13). Moreover, unlike Little-Parks oscillations, which are caused by periodic changes in the superconducting transition temperature, the oscillations we observe are caused by periodic changes in the interaction between thermally excited moving vortices and the oscillating persistent current induced in the loops. However, despite the enhanced amplitude of these oscillations, we have not detected oscillations with a period of h/e, as recently predicted for nanoscale loops of superconductors with d-wave symmetry(1-6), or with a period of h/4e, as predicted for superconductors that exhibit stripes(7). C1 [Sochnikov, Ilya; Shaulov, Avner; Yeshurun, Yosef] Bar Ilan Univ, Dept Phys, Inst Superconduct, IL-52900 Ramat Gan, Israel. [Sochnikov, Ilya; Shaulov, Avner; Yeshurun, Yosef] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Logvenov, Gennady; Bozovic, Ivan] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sochnikov, I (reprint author), Bar Ilan Univ, Dept Phys, Inst Superconduct, IL-52900 Ramat Gan, Israel. EM ph89@mail.biu.ac.il FU Deutsche Forschungsgemeinschaft through the Deutsch-Israelische Projektkooperation [563363]; Israeli Ministry of Science and Technology; US Department of Energy [MA-509-MACA] FX The authors thank A. Frydman, B. Ya. Shapira, B. Rosenstein, E. Zeldov, Y. Oreg, O. Pelleg, A. Bollinger, A. Gozar, Z. Radovic and V. Vinokur for helpful discussions. Y.Y. and A.S. acknowledge support of the Deutsche Forschungsgemeinschaft through the Deutsch-Israelische Projektkooperation (grant no. 563363). I.S. thanks the Israeli Ministry of Science and Technology for an Eshkol scholarship. The work at BNL was supported by the US Department of Energy (contract no. MA-509-MACA). NR 30 TC 57 Z9 57 U1 3 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2010 VL 5 IS 7 BP 516 EP 519 DI 10.1038/NNANO.2010.111 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 633TO UT WOS:000280529800014 PM 20543834 ER PT J AU Mirrione, MM Konomos, DK Gravanis, I Dewey, SL Aguzzi, A Heppner, FL Tsirka, SE AF Mirrione, Martine M. Konomos, Dorothy K. Gravanis, Iordanis Dewey, Stephen L. Aguzzi, Adriano Heppner, Frank L. Tsirka, Stella E. TI Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice SO NEUROBIOLOGY OF DISEASE LA English DT Article DE Microglia; Seizure; Epilepsy; Lipopolysaccharide; Status epilepticus; Glucose; Metabolism; Positron emission tomography; Pilocarpine; Inflammation; Mouse; FDG; Imaging; Immune system ID TISSUE-PLASMINOGEN-ACTIVATOR; TEMPORAL-LOBE EPILEPSY; POSITRON-EMISSION-TOMOGRAPHY; INDUCED HIPPOCAMPAL INJURY; INDUCED STATUS EPILEPTICUS; CENTRAL-NERVOUS-SYSTEM; GLIAL TNF-ALPHA; IN-VIVO; FDG-PET; DENTATE GYRUS AB Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation. (C) 2010 Elsevier Inc. All rights reserved. C1 [Mirrione, Martine M.; Konomos, Dorothy K.; Gravanis, Iordanis; Dewey, Stephen L.; Tsirka, Stella E.] SUNY Stony Brook, Dept Pharmacol Sci Mol & Cellular Pharmacol, Stony Brook, NY 11794 USA. [Mirrione, Martine M.; Dewey, Stephen L.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dewey, Stephen L.] NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA. [Aguzzi, Adriano; Heppner, Frank L.] Univ Zurich Hosp, Inst Neuropathol, CH-8091 Zurich, Switzerland. [Heppner, Frank L.] Charite, Dept Neuropathol, D-10117 Berlin, Germany. RP Tsirka, SE (reprint author), SUNY Stony Brook, Dept Pharmacol Sci Mol & Cellular Pharmacol, Stony Brook, NY 11794 USA. EM stella@pharm.stonybrook.edu RI Aguzzi, Adriano/A-3351-2008; OI Aguzzi, Adriano/0000-0002-0344-6708 FU National Institutes of Health [RO1NS42168]; American Heart Association; DFG [SFB TRR43, Exc 25]; National Institute on Drug Abuse [DA15041]; Department of Energy; National Science Foundation; [R01NS046006] FX This work was supported by National Institutes of Health, RO1NS42168 and American Heart Association-Established Investigator Award (to S.E.T.), R01NS046006 and DFG SFB TRR43 and Exc 25 to F.L.H., National Institute on Drug Abuse (DA15041) and the Department of Energy (to S.L.D), and National Science Foundation Integrative Graduate Education and Research Traineeship, Minerals, Metals, Metalloids, and Toxicity (to S.E.T. and M.M.M). The authors would like to thank Drs. Joanna Fowler, Marian Evinger, and Joav Prives for helpful suggestions, and Dr. Holly Colognato for sharing equipment. Also, we would like to thank members of the BNL cyclotron facility, Dave Alexoff, Michael Schueller, David J. Schyler, Colleen Shea, and Youwen Xu for 18FDG preparation. NR 108 TC 33 Z9 34 U1 0 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0969-9961 J9 NEUROBIOL DIS JI Neurobiol. Dis. PD JUL PY 2010 VL 39 IS 1 SI SI BP 85 EP 97 DI 10.1016/j.nbd.2010.04.001 PG 13 WC Neurosciences SC Neurosciences & Neurology GA 613MR UT WOS:000278983900012 PM 20382223 ER PT J AU Baglin, CM AF Baglin, Coral M. TI Nuclear Data Sheets for A=168 SO NUCLEAR DATA SHEETS LA English DT Article ID RARE-EARTH NUCLEI; HIGH-SPIN STATES; GAMMA-VIBRATIONAL BAND; NEUTRON-DEFICIENT ISOTOPES; ODD-ODD LU-168; REDUCED TRANSITION-PROBABILITIES; PROTON INELASTIC-SCATTERING; STRONGLY DEFORMED-NUCLEI; ATOMIC-BEAM SPECTROSCOPY; MULTIPOLE-MIXING RATIOS AB Nuclear structure data pertaining to all nuclei with mass A=168 (Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt) have been evaluated and incorporated into the ENSDF data file This evaluation supersedes the previous publication (V S Shirley, Nuclear Data Sheets 71, 261 (1994) (literature cutoff date July 1993)) and subsequent ENSDF file revisions for Tb and Dy (C Baglin, literature cutoff date of 15 June 1999) and Hf (B Singh, literature cutoff date of 30 April 2001), and includes literature available by 15 June 2010 Since the above evaluations. the first excited states in Pt-168 have been identified (1998Ki20, 2009Go16) and alpha decay from Hg-172 has been observed (2009Sa27, 2004Ke06, 1999Se14) New levels in Dy-168 have been excited using the Er-170(Se-82,Kr-84 gamma) reaction (2010So03) (H1,xn gamma) studies have significantly expanded our knowledge of level structure in Lu-168 (1999Ka17, 2002Ha33), Ta-168 (2008QiZZ), Yb-168 (1995Fi01), Tm-168 (2007CaZW), Hf-168 (2009Ya21), Os-168 (2001Jo11, 2009Od02) and, for Tm-168, important information has come also from (d,2n gamma) and (alpha,n gamma) reactions (1995Si20) Revised decay schemes are available following new studies of Hf-168 epsilon decay (6 7 min) (1997Ba26), Lu-168 epsilon decay (1999Ba65), Ta-168 epsilon decay (2007Me08) and Au-172 alpha decay (2009Ha42) Significant new information for Er-168 is available from (p,t) (2006Bu09), (d,p) and (t,d) (1996Ma50). (gamma,gamma') (1996Ma18), (Xe-136, X gamma) (2010Dr02), (U-238,U-238'gamma) (2003Wu07) and (n,n'gamma) (1998Be20, 1998Be62) reactions, and the availability of gamma gamma coin data (1994Ju02, 1996Gi09) for the (n,gamma) E=thermal reaction has resulted in sonic significant level scheme revisions C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Baglin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Science, Office of Nuclear Physics of the U S Department of Energy [DE-AC02-03CH11231] FX This work was supported by the Director, Office of Science. Office of Nuclear Physics of the U S Department of Energy under contract DE-AC02-03CH11231 NR 374 TC 20 Z9 20 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUL PY 2010 VL 111 IS 7 BP 1807 EP + DI 10.1016/j.nds.2010.07.001 PG 273 WC Physics, Nuclear SC Physics GA 641KO UT WOS:000281124500001 ER PT J AU Kim, ES Oh, CH Patterson, M AF Kim, Eung S. Oh, Chang H. Patterson, Mike TI Study on the tritium behaviors in the VHTR system. Part 1. Development of tritium analysis code for VHTR and verification SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB A tritium permeation analyses code (TPAC) has been developed at Idaho National Laboratory (INL) by using MATLAB SIMULINK package for analysis of tritium behaviors in the VHTR integrated with hydrogen production and process heat application systems. The modeling is based on the mass balance of tritium-containing species and hydrogen (i.e., HT, H(2), HTO, HTSO(4), and TI) coupled with a variety of tritium source, sink, and permeation models. The code includes: (1) tritium sources from ternary fission and neutron reactions with (6)Li, (7)Li (10)B, and (3)He; (2) tritium purification system; (3) leakage of tritium with coolant; (4) permeation through pipes, vessels, and heat exchangers; (5) electrolyzer for high temperature steam electrolysis (HTSE); and (6) isotope exchange for SI process. Verification of the code has been performed by comparisons with the analytical solutions, the experimental data, and the benchmark code results based on the Peach Bottom reactor design. The results showed that all the governing equations are well implemented into the code and correctly solved. This paper summarizes all the background, the theory, the code structures, and some verification results related to the TPAC code development at INL (C) 2010 Elsevier B.V. All rights reserved. C1 [Kim, Eung S.; Oh, Chang H.; Patterson, Mike] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Oh, CH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Chang.Oh@inl.gov OI Patterson, Michael/0000-0002-8698-3284 FU U.S. Government through the Department of Energy [DE-AC07-051D14517] FX The submitted manuscript has been authored by a contractor of the U.S. Government through the Department of Energy's Nuclear Hydrogen Initiative and Power Conversion Program under DOE Idaho Operations Office Contract DE-AC07-051D14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 11 TC 3 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2010 VL 240 IS 7 BP 1758 EP 1767 DI 10.1016/j.nucengdes.2010.02.023 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 608UO UT WOS:000278611700006 ER PT J AU Kim, ES Oh, CH Patterson, M AF Kim, Eung S. Oh, Chang H. Patterson, Mike TI Study on the tritium behaviors in the VHTR system. Part 2: Analyses on the tritium behaviors in the VHTR/HTSE system SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Tritium behaviors in the very high temperature gas reactor (VHTR)/high temperature steam electrolysis (HTSE) system have been analyzed by the TPAC developed by Idaho National Laboratory (INL). The reference system design and conditions were based on the indirect parallel configuration between a VHTR and a HTSE. The analyses were based on the SOBOL method, a modern uncertainty and sensitivity analyses method using variance decomposition and Monte Carlo method. A total of 14 parameters have been taken into account associated with tritium sources, heat exchangers, purification systems, and temperatures. Two sensitivity indices (first order index and total index) were considered, and 15,360 samples were totally used for solution convergence. As a result, important parameters that affect tritium concentration in the hydrogen product have been identified and quantified with the rankings. Several guidelines and recommendations for reducing modeling uncertainties have been also provided throughout the discussions along with some useful ideas for mitigating tritium contaminations in the hydrogen product. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kim, Eung S.; Oh, Chang H.; Patterson, Mike] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Oh, CH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Chang.Oh@inl.gov OI Patterson, Michael/0000-0002-8698-3284 FU U.S. Government through the Department of Energy [DE-AC07-051D14517] FX The submitted manuscript has been authored by a contractor of the U.S. Government through the Department of Energy's Nuclear Hydrogen Initiative and Power Conversion Program under DOE Idaho Operations Office Contract DE-AC07-051D14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 15 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2010 VL 240 IS 7 BP 1768 EP 1778 DI 10.1016/j.nucengdes.2010.02.024 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 608UO UT WOS:000278611700007 ER PT J AU Talamo, A AF Talamo, Alberto TI A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID MONTE-CARLO; BURNABLE POISON; FUEL; CONFIGURATIONS; REACTOR AB In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core. Published by Elsevier B.V. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 FU U.S. Department of Energy [DE-AC02-06CH11357] FX Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. NR 27 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2010 VL 240 IS 7 BP 1919 EP 1927 DI 10.1016/j.nucengdes.2010.03.025 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 608UO UT WOS:000278611700021 ER PT J AU Doyle, EJ DeBoo, JC Ferron, JR Jackson, GL Luce, TC Murakami, M Osborne, TH Park, JM Politzer, PA Reimerdes, H Budny, RV Casper, TA Challis, CD Groebner, RJ Holcomb, CT Hyatt, AW La Haye, RJ McKee, GR Petrie, TW Petty, CC Rhodes, TL Shafer, MW Snyder, PB Strait, EJ Wade, MR Wang, G West, WP Zeng, L AF Doyle, E. J. DeBoo, J. C. Ferron, J. R. Jackson, G. L. Luce, T. C. Murakami, M. Osborne, T. H. Park, J. -M. Politzer, P. A. Reimerdes, H. Budny, R. V. Casper, T. A. Challis, C. D. Groebner, R. J. Holcomb, C. T. Hyatt, A. W. La Haye, R. J. McKee, G. R. Petrie, T. W. Petty, C. C. Rhodes, T. L. Shafer, M. W. Snyder, P. B. Strait, E. J. Wade, M. R. Wang, G. West, W. P. Zeng, L. TI Demonstration of ITER operational scenarios on DIII-D SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 22nd IAEA Fusion Energy Conference CY OCT 13-18, 2008 CL Palais des Nations, Geneva, SWITZERLAND SP Int Atom Energy Agcy HO Palais des Nations ID PHYSICS BASIS; CONFINEMENT; ENERGY; JET AB The DIII-D programme has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e. g. the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for beta(N) and H(98), have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modelling, as well as for performance extrapolation to ITER. In all four scenarios, normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of >= 400MW of fusion power production and Q >= 10. These studies also address many of the key physics issues related to the ITER design, including the L-H transition power threshold, the size of edge localized modes, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the physics requirements for the poloidal field coil set at 15 MA, based on observations that the inductance in the baseline scenario case evolves to a value that lies outside the original ITER specification. C1 [Doyle, E. J.; Rhodes, T. L.; Wang, G.; Zeng, L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Doyle, E. J.; Rhodes, T. L.; Wang, G.; Zeng, L.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. [DeBoo, J. C.; Ferron, J. R.; Jackson, G. L.; Luce, T. C.; Osborne, T. H.; Politzer, P. A.; Groebner, R. J.; Hyatt, A. W.; La Haye, R. J.; Petrie, T. W.; Petty, C. C.; Snyder, P. B.; Strait, E. J.; Wade, M. R.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Murakami, M.; Park, J. -M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Reimerdes, H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Budny, R. V.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Casper, T. A.; Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Challis, C. D.] Euratom CCFE Fusion Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [McKee, G. R.; Shafer, M. W.] Univ Wisconsin, Dept Energy Phys, Madison, WI USA. RP Doyle, EJ (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM edoyle@ucla.edu NR 31 TC 21 Z9 21 U1 1 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2010 VL 50 IS 7 AR 075005 DI 10.1088/0029-5515/50/7/075005 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 607SX UT WOS:000278528000005 ER PT J AU Maqueda, RJ Stotler, DP AF Maqueda, R. J. Stotler, D. P. CA NSTX Team TI Intermittent divertor filaments in the National Spherical Torus Experiment and their relation to midplane blobs SO NUCLEAR FUSION LA English DT Article ID SCRAPE-OFF-LAYER; ALCATOR C-MOD; DIII-D; EDGE TURBULENCE; TRANSPORT; NSTX; PLASMAS; FLUCTUATIONS; EQUILIBRIUM; CONVECTION AB While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in D-alpha; e. g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of 'magnetic shear disconnection' due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621). C1 [Maqueda, R. J.] Nova Photon Inc, Princeton, NJ 08540 USA. [Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Maqueda, RJ (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. EM rmaqueda@pppl.gov RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 FU US DOE [DE-FG02-04ER54767, DE-AC-09CH11466]; PPPL FX RJM thanks S.J. Zweben from PPPL for his support and discussions, S. A. Sabbagh from Columbia University for the EFIT equilibrium reconstructions, S. D. Loch from Auburn University for his help with ADAS data and J.R. Myra and D. A. D'Ippolito from Lodestar Research Corp. for useful discussions.; This work is supported by US DOE under grants DE-FG02-04ER54767 and DE-AC-09CH11466. NR 31 TC 20 Z9 20 U1 0 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2010 VL 50 IS 7 AR 075002 DI 10.1088/0029-5515/50/7/075002 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 607SX UT WOS:000278528000002 ER PT J AU Ryan, CG Kirkham, R Hough, RM Moorhead, G Siddons, DP de Jonge, MD Paterson, DJ De Geronimo, G Howard, DL Cleverley, JS AF Ryan, C. G. Kirkham, R. Hough, R. M. Moorhead, G. Siddons, D. P. de Jonge, M. D. Paterson, D. J. De Geronimo, G. Howard, D. L. Cleverley, J. S. TI Elemental X-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Symposium on Radiation Physics CY SEP 20-25, 2009 CL Melbourne, AUSTRALIA DE SXRF; PIXE; Dynamic analysis; X-ray microprobe; Silicon detector; Trace element imaging; Fundamental parameter method ID NUCLEAR MICROPROBE; PROTON MICROPROBE; SILICON; PIXE; MICROANALYSIS; SYNCHROTRON; FLUIDS AB The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capability of the method to produce high definition elemental images up to similar to 100 M pixels in size. (C) 2009 EURATOM. Published by Elsevier B.V. All rights reserved. C1 [Ryan, C. G.; Hough, R. M.; Cleverley, J. S.] CSIRO Explorat & Min, Clayton, Vic 3168, Australia. [Siddons, D. P.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Kirkham, R.; Moorhead, G.] CSIRO Mat Sci & Engn, Clayton, Vic, Australia. [De Geronimo, G.] Brookhaven Natl Lab, Instrumentat Div, Brookhaven, NY USA. [de Jonge, M. D.; Paterson, D. J.; Howard, D. L.] Australian Synchrotron, Clayton, Vic, Australia. [Ryan, C. G.; Moorhead, G.] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia. [Ryan, C. G.] Univ Tasmania, CODES Ctr Excellence, Hobart, Tas, Australia. RP Ryan, CG (reprint author), CSIRO Explorat & Min, C-o CSIRO MSE Rivett Bld,Normanby Rd, Clayton, Vic 3168, Australia. EM chris.ryan@csiro.au RI Cleverley, James/C-3829-2011; de Jonge, Martin/C-3400-2011; Moorhead, Gareth/B-6634-2009; Ryan, Chris/A-6032-2011; Kirkham, Robin/C-9786-2010 OI Moorhead, Gareth/0000-0002-9299-9549; Ryan, Chris/0000-0003-2891-3912; Kirkham, Robin/0000-0003-1012-3496 NR 16 TC 77 Z9 77 U1 3 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2010 VL 619 IS 1-3 BP 37 EP 43 DI 10.1016/j.nima.2009.11.035 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 627GA UT WOS:000280026300011 ER PT J AU de Jonge, MD Paterson, D McNulty, I Rau, C Brandes, JA Ingall, E AF de Jonge, Martin D. Paterson, David McNulty, Ian Rau, Christoph Brandes, Jay A. Ingall, Ellery TI An energy and intensity monitor for X-ray absorption near-edge structure measurements SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Symposium on Radiation Physics CY SEP 20-25, 2009 CL Melbourne, AUSTRALIA DE XANES; X-ray energy monitor; X-ray intensity monitor; Phosphorus ID CALIBRATION AB An in-line X-ray beam energy and intensity monitor has been developed for use in focussed X-ray absorption near-edge spectroscopy (XANES) measurements. The monitor uses only the X-ray intensity that would otherwise bypass our zone-plate focussing optic and relies on a measurement of photoemission current. The monitor is inexpensive, easy to align, and provides valuable feedback about the X-ray energy. Operation of the monitor is demonstrated for measurements of phosphorus XANES. The precision of the energy determination is around 0.5 eV. (C) 2010 Published by Elsevier B.V. C1 [de Jonge, Martin D.; Paterson, David] Australian Synchrotron, Clayton, Vic 3168, Australia. [McNulty, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. [Rau, Christoph] Diamond Light Source Ltd, Didcot, Oxon, England. [Brandes, Jay A.] Skidaway Inst Oceanog, Savannah, GA 31411 USA. [Ingall, Ellery] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP de Jonge, MD (reprint author), Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia. EM martin.dejonge@synchrotorn.org.au RI Ingall, Ellery/A-5447-2008; de Jonge, Martin/C-3400-2011 OI Ingall, Ellery/0000-0003-1954-0317; NR 8 TC 3 Z9 3 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2010 VL 619 IS 1-3 BP 154 EP 156 DI 10.1016/j.nima.2010.01.001 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 627GA UT WOS:000280026300040 ER PT J AU Roslan, RE Saad, WHM Saripan, MI Hashim, S Choong, WS AF Roslan, R. E. Saad, W. H. Mohd Saripan, M. I. Hashim, S. Choong, W. -S. TI The performance of a wire mesh collimator SPECT camera for different breast volumes in prone position SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 11th International Symposium on Radiation Physics CY SEP 20-25, 2009 CL Melbourne, AUSTRALIA DE Wire-mesh collimator; Multihole collimator; SPECT camera; TBR; SNR; Breast; Prone position ID MONTE-CARLO-SIMULATION; GAMMA-CAMERAS AB The multihole collimator is the most commonly used collimator in conventional SPECT cameras for general purpose imaging. However, there are some limitations with this collimator, which includes the lack of sensitivity as a trade-off for obtaining better spatial resolution. This paper looks at the performance of a wire mesh collimator that was introduced recently in order to improve the ability of SPECT cameras in mapping breast cancer cells, utilizing the Technetium-99 m 140 key radiotracer. In this work, various volumes of breast are modelled and simulated using Monte Carlo N-Particle (MCNP5) code, derived based on the real cup sizes and volumes in prone position. The size of tumour is 1 cm in diameter with tumour to background ratios (TBRs) ranging between TBR from 1:1 to TBR 20:1, and located 2 cm inside breast skin. The results show that wire mesh collimator 1 (WM-1) has the highest sensitivity and signal to noise ratio (SNR) in comparison with wire mesh collimator 2 (WM-2) and the multihole collimator (MHC). This indicates the potential of using a wire mesh collimator for early mapping of breast cancer cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Roslan, R. E.; Saad, W. H. Mohd; Saripan, M. I.] Univ Putra Malaysia, Fac Engn, Dept Comp & Commun Syst Engn, Upm Serdang 43400, Selangor, Malaysia. [Hashim, S.] Univ Teknol Malaysia, Fac Sci, Skudai 81310, Johor, Malaysia. [Choong, W. -S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Saripan, MI (reprint author), Univ Putra Malaysia, Fac Engn, Dept Comp & Commun Syst Engn, Upm Serdang 43400, Selangor, Malaysia. EM iqbal@eng.upm.edu.my RI Saripan, M Iqbal/A-9582-2010; Administrator, CCSE/A-6016-2010; Hashim, Suhairul/K-6357-2012 OI Saripan, M Iqbal/0000-0002-3005-5331; Hashim, Suhairul/0000-0001-8758-4288 NR 10 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2010 VL 619 IS 1-3 BP 385 EP 387 DI 10.1016/j.nima.2009.11.005 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 627GA UT WOS:000280026300092 ER PT J AU Luo, YX Rasmussen, JO Hamilton, JH Ramayya, AV Liu, SH Jones, EF Gore, PM Goodin, C Stone, NJ Zhu, SJ Hwang, JK Li, K Crowell, HL Lee, IY Ter-Akopian, GM Daniel, AV Stoyer, MA Donangelo, R Ma, WC Cole, JD AF Luo, Y. X. Rasmussen, J. O. Hamilton, J. H. Ramayya, A. V. Liu, S. H. Jones, E. F. Gore, P. M. Goodin, C. Stone, N. J. Zhu, S. J. Hwang, J. K. Li, Ke Crowell, H. L. Lee, I. Y. Ter-Akopian, G. M. Daniel, A. V. Stoyer, M. A. Donangelo, R. Ma, W. C. Cole, J. D. TI Octupole excitations in Cs-141,Cs-144 and the pronounced decrease of dipole moments with neutron number in odd-Z neutron-rich Cs-141,Cs-143,Cs-144 SO NUCLEAR PHYSICS A LA English DT Article DE RADIOACTIVITY Cf-252(SF); measured E gamma, I gamma, gamma gamma-coin, ICCs, angular correlations using Gammasphere, Cs-141,Cs-144; deduced levels, J, pi, bands, B(E1)/B(E2), dipole moment Comparison with systematics of adjacent nuclei ID INTRINSIC REFLECTION ASYMMETRY; SPONTANEOUS FISSION; BARIUM ISOTOPES; BAND-STRUCTURES; XE ISOTOPES; HIGH-SPIN; NUCLEI; DEFORMATION; E1; TRANSITION AB The level scheme of odd-Z neutron-rich Cs-141 (Z = 55, N = 86) was extended and expanded and that of Cs-144 (N = 89) was identified for the first time by means of gamma-gamma-gamma coincidence measurements of prompt gamma rays in the spontaneous fission of Cf-252 with Gammasphere. Spin/parity was assigned to the levels based on angular correlations and level systematics in Cs-141,Cs-143. Parity doublets characteristic of both simplex quantum number s = +i and s = -i were proposed in Cs-141. The tests by using rotational frequency ratio omega(-) (I)/omega(+) (I) imply octupole vibrations in Cs-141 and Cs-143. B(E 1)/ B(E2) values and electric dipole mo-ments D-0 were calculated for Cs-141, and re-determined for Cs-143. It was found that B(E1)/B(E2) values of Cs-141 are simplex-dependent and the average value is one order of magnitude larger than that of Cs-143, and the deduced dipole moment D-0 of Cs-141 is considerably larger than that of Cs-143, and comparable to the N = 86 isotone Ba-142. For Cs-144 the yrast sequence looks like a well-deformed rotational band, but no octupole band structure was identified in this nucleus. The overall variations of Do in Cs-141,Cs-143,Cs-144 exhibit a pronounced drop of dipole moment with increasing neutron number in this odd-Z isotopic chain, which may be analogous in nature to the quenching of D-0 observed in even-even Ba-146 (Z = 56, N = 90) and Ra-224 (Z = 88, N = 136), and to the drop of D-0 in the odd-Z neutron-rich La-147 (Z = 57, N = 90) reported by our collaboration. Published by Elsevier B.V. C1 [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Luo, Y. X.; Hamilton, J. H.; Ramayya, A. V.; Liu, S. H.; Jones, E. F.; Gore, P. M.; Goodin, C.; Zhu, S. J.; Hwang, J. K.; Li, Ke; Crowell, H. L.; Daniel, A. V.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Ter-Akopian, G. M.; Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Donangelo, R.] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Cole, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RP Luo, YX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM yxluo@lbl.gov RI Sistemas Complexos, Inct/J-8597-2013; OI Hwang, Jae-Kwang/0000-0002-4100-3473 FU US DOE [DE-FG-05-88ER40407, DE-FG02-95ER40934, DE-AC03-76SF00098, DE-FG02-95ER40939, DE-AC07-761DO1570, W-7405-ENG48]; Major State Basic Research Development Program [2007CB815005]; NNSF of China [10775078]; HESF [20070003149] FX The work at Vanderbilt University, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Mississippi State University and Idaho National Laboratory was supported by the US DOE Grants DE-FG-05-88ER40407, DE-FG02-95ER40934, DE-AC03-76SF00098, DE-FG02-95ER40939, DE-AC07-761DO1570 and Contract W-7405-ENG48. The work at Tsinghua University in Beijing was supported by the Major State Basic Research Development Program Contract 2007CB815005, the NNSF of China Grant 10775078, and the Special Program of HESF Grant 20070003149. The Joint Institute for Heavy Ion Research is supported by its members, Vanderbilt University, University of Tennessee and Oak Ridge National Laboratory and the US DOE. The work at the Federal University of Rio de Janeiro was partially supported by CNPq and FAPERJ. NR 54 TC 7 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUL 1 PY 2010 VL 838 BP 1 EP 19 DI 10.1016/j.nuclphysa.2010.03.003 PG 19 WC Physics, Nuclear SC Physics GA 603JT UT WOS:000278205600001 ER PT J AU Gougar, HD Ougouag, AM Terry, WK Ivanov, KN AF Gougar, H. D. Ougouag, A. M. Terry, W. K. Ivanov, K. N. TI Automated Design and Optimization of Pebble-Bed Reactor Cores SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID BURNABLE POISON PLACEMENT; HIGH-TEMPERATURE REACTOR; GENETIC ALGORITHMS GA; LOADING PATTERN; COOLED REACTOR; PWR REACTORS; FUEL AB This paper presents a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble bed cores. The method employs PEBBED, a reactor physics code specifically designed to solve for the asymptotic burnup state of pebble bed reactors in conjunction with a genetic algorithm to obtain a core with acceptable properties. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. A novel representation of the distribution of pebbles enables efficient coupling of the burn up and neutron diffusion solvers. Complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to manipulation using modern optimization techniques. The user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. For this study, the design of two pebble bed high-temperature reactor concepts subjected to demanding physical constraints demonstrated the technique's efficacy. C1 [Gougar, H. D.; Ougouag, A. M.; Terry, W. K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Ivanov, K. N.] Penn State Univ, University Pk, PA 16802 USA. RP Gougar, HD (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Hans.Gougar@inl.gov OI Ougouag, Abderrafi/0000-0003-4436-380X FU DOE, Office of Nuclear Energy, Science, and Technology, under DOE Idaho Operations Office [DE-AC07-99ID13727]; DOE Nuclear Engineering Research Initiative [NERI-02-195]; NGNP [23843] FX This work was supported by the DOE, Office of Nuclear Energy, Science, and Technology, under DOE Idaho Operations Office contract DE-AC07-99ID13727. Parts of this work (the novel recirculation algorithm, the optimization capability, and the development of the nodal diffusion solver) were supported by a DOE Nuclear Engineering Research Initiative grant (NERI-02-195). The coupling of PEBBED with THERMIX and COMBINE was conducted at INL with the support of the NGNP project (project 23843). All sources of support are gratefully acknowledged. NR 63 TC 6 Z9 6 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2010 VL 165 IS 3 BP 245 EP 269 PG 25 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 631BY UT WOS:000280322800001 ER PT J AU Cao, Y Lee, JC AF Cao, Yan Lee, John C. TI Spatial Corrections for Pulsed-Neutron Reactivity Measurements SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID REACTOR AB For pulsed-neutron experiments performed in a subcritical reactor, the reactivity obtained from the area-ratio method is sensitive to detector positions. The spatial effects are induced by the presence of both the prompt neutron harmonics and the delayed neutron harmonics in the reactor. The traditional kinetics distortion factor is only limited to correcting the spatial effects caused by the fundamental prompt-alpha mode. In this paper, we derive spatial correction factors f(p) and f(d) to account for spatial effects induced by the prompt neutron harmonics and the delayed neutron harmonics, respectively. Our numerical simulations with the FX2-TH time-dependent multigroup diffusion code indicate that the high-order prompt neutron harmonics lead to significant spatial effects and cannot be neglected in calculating the spatial correction factors. The prompt spatial correction factor f(p) can be simply determined by the ratio of the normalized detector responses corresponding to the fundamental k-mode and the prompt neutron flux integrated over the pulse period. Thus, it is convenient to calculate and provides physically intuitive explanations on the spatial dependence of reactivity measured in the MUSE-4 experiments: overestimation of the subcriticality in regions close to the external neutron source and underestimation of the subcriticality away from the source but within the fuel region. C1 [Cao, Yan] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lee, John C.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Cao, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, Bldg 208,9700 S Cass Ave, Argonne, IL 60439 USA. EM ycao@anl.gov NR 25 TC 2 Z9 2 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2010 VL 165 IS 3 BP 270 EP 282 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 631BY UT WOS:000280322800002 ER PT J AU Booth, TE Gubernatis, JE AF Booth, Thomas E. Gubernatis, James E. TI Exact Regional Monte Carlo Weight Cancellation for Second Eigenfunction Calculations SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID POWER ITERATION AB Recently, we proposed a modified power iteration method that simultaneously determines the dominant and subdominant eigenvalues and eigenfunctions of a matrix or a continuous operator. One advantage of this method is the convergence rate to the dominant eigenfunction being vertical bar k(3)vertical bar/k(1) instead of vertical bar k(2)vertical bar/k(1), a potentially significant acceleration. One challenge for a Monte Carlo implementation of this method is that the second eigenfunction is represented by particles of both positive and negative weights that somehow must sum (cancel) to estimate the second eigenfunction faithfully. Our previous Monte Carlo work has demonstrated the improved convergence rate by using a point flux estimator method and a binning method to effect this cancellation. This paper presents an exact method that cancels over a region instead of at points or in small bins and has the potential of being significantly more efficient than the other two. C1 [Booth, Thomas E.; Gubernatis, James E.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Booth, TE (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM teb@lanl.gov FU U.S. Department of Energy FX We gratefully acknowledge support of the U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program. NR 10 TC 11 Z9 11 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2010 VL 165 IS 3 BP 283 EP 291 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 631BY UT WOS:000280322800003 ER PT J AU Evans, TM Clarno, KT Morel, JE AF Evans, Thomas M. Clarno, Kevin T. Morel, Jim E. TI A Transport Acceleration Scheme for Multigroup Discrete Ordinates with Upscattering SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DIFFUSION SYNTHETIC ACCELERATION; REDUCTION AB We have developed a modification of the two-grid upscatter acceleration scheme of Adams and Morel. The modified scheme uses a low-angular-order discrete ordinates equation to accelerate Gauss-Seidel multigroup iteration. This modification ensures that the scheme does not suffer from consistency problems that can affect diffusion-accelerated methods in multidimensional, multimaterial problems. The new transport two-grid scheme is very simple to implement for different spatial discretizations because it uses the same transport operator. The scheme has also been demonstrated to be very effective on three-dimensional, multimaterial problems. On simple one-dimensional graphite and heavy-water slabs modeled in three dimensions with reflecting boundary conditions, we see reductions in the number of Gauss-Seidel iterations by factors of 75 to 1000. We have also demonstrated the effectiveness of the new method on neutron well-logging problems. For forward problems, the new acceleration scheme reduces the number of Gauss-Seidel iterations by more than an order of magnitude with a corresponding reduction in the run time. For adjoint problems, the speedup is not as dramatic, but the new method still reduces the run time by greater than a factor of 6. C1 [Evans, Thomas M.; Clarno, Kevin T.] Oak Ridge Natl Lab, Radiat Transport & Crit Grp, Oak Ridge, TN 37831 USA. [Morel, Jim E.] Texas A&M Univ, Dept Nucl Engn, Zachry Engn Ctr 129, College Stn, TX 77843 USA. RP Evans, TM (reprint author), Oak Ridge Natl Lab, Radiat Transport & Crit Grp, POB 2008, Oak Ridge, TN 37831 USA. EM evanstm@ornl.gov OI Clarno, Kevin/0000-0002-5999-2978 FU U.S. Department of Energy [DEAC05-00OR22725] FX Work for this paper was supported by Oak Ridge National Laboratory, which is managed and operated by UT-Batelle, LLC, for the U.S. Department of Energy under contract DEAC05-00OR22725. NR 22 TC 6 Z9 6 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2010 VL 165 IS 3 BP 292 EP 304 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 631BY UT WOS:000280322800004 ER PT J AU Fichtl, ED Warsa, JS Densmore, JD AF Fichtl, Erin D. Warsa, James S. Densmore, Jeffery D. TI The Newton-Krylov Method Applied to Negative-Flux Fixup in S-N Transport Calculations SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DIFFUSION SYNTHETIC ACCELERATION; EQUATIONS; GMRES AB Under some circumstances, spatial discretizations of the S-N transport equation will lead to negativity in the scalar flux; therefore, negative-flux fixup schemes are often employed to ensure that the flux is positive. The nonlinear nature of these schemes precludes the use of powerful linear iterative solvers such as Krylov methods; thus, solutions are generally computed using so-called source iteration (SI), which is a simple fixed-point iteration. In this paper, we use Newton's method to solve fixed-source S-N transport problems with negative-flux fixup, for which the analytic form of the Jacobian is shown to be nonsingular. It is necessary to invert the Jacobian at each Newton iteration. Generally, an exact inversion is prohibitively expensive and furthermore is not necessary for convergence of Newton's method. In the inexact Newton-Krylov method, the Jacobian is inverted using a Krylov method, which completes at some prescribed tolerance. This tolerance may be quite large in the initial stages of the Newton iteration. In this paper, we compare the use of the exact Jacobian with two approximations of the Jacobian in the inexact Newton-Krylov method. The first approximation is a finite difference approximation. The second is that used in the Jacobian-free Newton-Krylov (JFNK) method, which performs a,finite difference approximation without actually generating the Jacobian itself Numerical results comparing standard SI with the three methods demonstrate that Newton-Krylov can outperform SI, particularly for diffusive materials. The results also show that the additional level of approximation introduced by the JFNK approach does not adversely affect convergence, indicating that JFNK will be robust and efficient in large-scale applications. C1 [Fichtl, Erin D.; Warsa, James S.; Densmore, Jeffery D.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp, Los Alamos, NM 87545 USA. RP Fichtl, ED (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp, POB 1663, Los Alamos, NM 87545 USA. EM efichtl@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX The authors would like to thank S. Hamilton of Emory University for the use of his transport code to produce numerical results and J. Morel of Texas A&M University for insightful discussions on the use of JFNK for transport applications. This information has been authored by an employee or employees of the Los Alamos National Security LLC (LANS), operator of the Los Alamos National Laboratory under contract DE-AC52-06NA25396 with the U.S. Department of Energy. NR 22 TC 3 Z9 4 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2010 VL 165 IS 3 BP 331 EP 341 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 631BY UT WOS:000280322800007 ER PT J AU Danko, G Birkholzer, J Bahrami, D Halecky, N AF Danko, G. Birkholzer, J. Bahrami, D. Halecky, N. TI TEMPERATURE, HUMIDITY, AND AIRFLOW IN THE EMPLACEMENT DRIFTS USING CONVECTION AND DISPERSION TRANSPORT MODELS SO NUCLEAR TECHNOLOGY LA English DT Article DE MULTIFLUX model; coupled convection; nuclear waste disposal ID YUCCA-MOUNTAIN AB A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rock mass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective airflow as well as heat and mass transport in a representative emplacement drift, embedded in a three-dimensional, mountain-scale rock mass with edge cooling, are explicitly simulated for the first time in the literature, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rock mass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominates the drift airspace for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot drift sections to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent dispersion models, in addition to showing differences in temperature, humidity, and condensation rate distributions along the drift length. A new dispersive model is also formulated for comparison, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project. C1 [Danko, G.; Bahrami, D.] Univ Nevada, Dept Min Engn, Reno, NV 89557 USA. [Birkholzer, J.; Halecky, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Danko, G (reprint author), Univ Nevada, Dept Min Engn, Reno, NV 89557 USA. EM danko@unr.edu RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 FU U.S. Department of Energy [DE-AC02-05CH11231]; Nye County Nuclear Waste Project Office FX This manuscript has been authored by Lawrence Berkeley National Laboratory and the University of Nevada, Reno, under contract DE-AC02-05CH11231 with the U.S. Department of Energy. Financial support from the Nye County Nuclear Waste Project Office is also acknowledged. NR 15 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2010 VL 171 IS 1 BP 74 EP 87 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 627GM UT WOS:000280027500006 ER PT J AU Kessinger, GF Jurgensen, AR Missimer, DM Morrell, JS AF Kessinger, G. F. Jurgensen, A. R. Missimer, D. M. Morrell, J. S. TI THE HIGH-TEMPERATURE CHEMICAL REACTIVITY OF Li2O SO NUCLEAR TECHNOLOGY LA English DT Article DE actinide oxide reduction; Li2O phase stability; Li2O-CaO reactivity ID LITHIUM-OXIDE; REDUCTION; DIOXIDE; METAL AB The ultimate purpose of this study was to investigate the use of a Li-Ca mixture for direct reduction of actinide oxides to actinide metals at temperatures below 1500 degrees C. For such a process to be successful, the products of the reduction reaction, actinide metals, Li2O, and CaO must all be liquid at the reaction temperature so that the resulting actinide metal can coalesce and be recovered as a monolith. Since the established melting temperature of Li2O is in the range of 1427 to 1700 degrees C and the melting temperature of CaO is 2654 degrees C, the Li2O-CaO (lithium oxide calcium oxide) pseudobinary system was investigated in an attempt to identify the presence of low-melting eutectic compositions. The results of our investigation indicate that there is no evidence of ternary Li-Ca-O phases or solutions melting below 1200 degrees C. In the 1200 to 1500 degrees C range utilizing MgO crucibles, there is some evidence for the formation of a ternary phase; however, it was not possible to determine the phase composition. The results of experiments performed with ZrO2 crucibles in the same temperature range did not show the formation of the possible ternary phase seen in the earlier experiment involving MgO crucibles, so it was not possible to confirm the possibility that a ternary Li-Ca-O or Li-Mg-O phase was formed. It appears that the Li2O-CaO materials reacted, to some extent, with all of the container materials, alumina (Al2O3), magnesia (MgO), zirconia (ZrO2), and 95% Pt-5% Au; however, to clarify the situation additional experiments are required. In addition to the primary purpose of this study, the results of this investigation led to the following conclusions. First, the melting temperature of Li2O may be as low as 1250 degrees C, which is considerably lower than the previously published values in the range 1427 to 1700 degrees C. Second, lithium oxide (Li2O) vaporizes congruently. Third, lithium carbonate and Li2O react with 95% Pt-5% Au and also react with pure Pt. Fourth, it is likely that some or all of the past high-temperature phase behavior and vaporization experiments involving Li2O(s) at temperatures above 1250 degrees C have actually involved Li2O(l). If these past measurements were actually measurements performed on Li2O(l) instead of the solid, the thermochemical data for phases and species in the Li-O system will require re-evaluation. C1 [Kessinger, G. F.; Jurgensen, A. R.; Missimer, D. M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Morrell, J. S.] B&W Y12 LLC, Oak Ridge, TN 37831 USA. RP Kessinger, GF (reprint author), Savannah River Natl Lab, Mail Drop 20, Aiken, SC 29808 USA. EM glen.kessinger@srnl.doe.gov NR 16 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2010 VL 171 IS 1 BP 108 EP 122 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 627GM UT WOS:000280027500008 ER PT J AU Aziz, RK Breitbart, M Edwards, RA AF Aziz, Ramy K. Breitbart, Mya Edwards, Robert A. TI Transposases are the most abundant, most ubiquitous genes in nature SO NUCLEIC ACIDS RESEARCH LA English DT Article ID OCEAN SAMPLING EXPEDITION; METAGENOMIC ANALYSIS; MICROBIAL COMMUNITIES; VIRAL COMMUNITIES; HUMAN GENOME; GUT MICROBIOME; RAST SERVER; SELFISH DNA; HUMAN FECES; EVOLUTION AB Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and-consequently-evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist. C1 [Aziz, Ramy K.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Aziz, Ramy K.] Cairo Univ, Dept Microbiol & Immunol, Fac Pharm, Cairo 11562, Egypt. [Breitbart, Mya] Univ S Florida, Coll Marine Sci, Tampa, FL 33620 USA. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Aziz, RK (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM ramy.aziz@salmonella.org; redwards@sciences.sdsu.edu RI Aziz, Ramy/B-2918-2009; Breitbart, Mya/B-1366-2009 OI Aziz, Ramy/0000-0002-4448-7100; Breitbart, Mya/0000-0003-3210-2899 FU National Science Foundation, Division of Biological Infrastructure [DBI-0850356, DBI-0850206]; National Institutes of Health [HHSN266200400042C] FX National Science Foundation, Division of Biological Infrastructure (DBI-0850356 to R. A. E. and DBI-0850206 to M. B.); the NMPDR project was supported by National Institutes of Health (HHSN266200400042C). Funding for open access charge: National Science Foundation, Division of Biological Infrastructure (DBI-0850356 to R. A. E.). NR 101 TC 91 Z9 93 U1 1 U2 28 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2010 VL 38 IS 13 BP 4207 EP 4217 DI 10.1093/nar/gkq140 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 633WV UT WOS:000280538600009 PM 20215432 ER PT J AU Lauck, F Smith, CA Friedland, GF Humphris, EL Kortemme, T AF Lauck, Florian Smith, Colin A. Friedland, Gregory F. Humphris, Elisabeth L. Kortemme, Tanja TI RosettaBackrub-a web server for flexible backbone protein structure modeling and design SO NUCLEIC ACIDS RESEARCH LA English DT Article ID CONFORMATIONAL VARIABILITY; COMPUTATIONAL REDESIGN; SEQUENCE DIVERSITY; STABILITY CHANGES; POINT MUTATIONS; PREDICTION; SPECIFICITY; DYNAMICS; DOCKING; FLEXIBILITY AB The RosettaBackrub server (http://kortemmelab.ucsf.edu/backrub) implements the Backrub method, derived from observations of alternative conformations in high-resolution protein crystal structures, for flexible backbone protein modeling. Backrub modeling is applied to three related applications using the Rosetta program for structure prediction and design: (I) modeling of structures of point mutations, (II) generating protein conformational ensembles and designing sequences consistent with these conformations and (III) predicting tolerated sequences at protein-protein interfaces. The three protocols have been validated on experimental data. Starting from a user-provided single input protein structure in PDB format, the server generates near-native conformational ensembles. The predicted conformations and sequences can be used for different applications, such as to guide mutagenesis experiments, for ensemble-docking approaches or to generate sequence libraries for protein design. C1 [Lauck, Florian; Smith, Colin A.; Kortemme, Tanja] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA. [Friedland, Gregory F.] Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA. [Friedland, Gregory F.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94551 USA. [Humphris, Elisabeth L.] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06511 USA. RP Kortemme, T (reprint author), Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, 1700 4th St, San Francisco, CA 94158 USA. EM kortemme@cgl.ucsf.edu RI Smith, Colin/E-5713-2012 OI Smith, Colin/0000-0002-4651-167X FU National Science Foundation [EF-0849400, MCB-0744541]; National Institute of Health Roadmap Initiative in Nanomedicine [2PN2EY016525, 2PN2EY016546]; DOD; Genentech Scholars program FX National Science Foundation (EF-0849400, MCB-0744541); National Institute of Health Roadmap Initiative in Nanomedicine (2PN2EY016525; 2PN2EY016546); DOD NDSEG fellowship program and the Genentech Scholars program (to C. A. S). Funding for open access charge: National Science Foundation. NR 53 TC 39 Z9 39 U1 1 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2010 VL 38 SU 2 BP W569 EP W575 DI 10.1093/nar/gkq369 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 679GD UT WOS:000284148900092 PM 20462859 ER PT J AU Noel, JK Whitford, PC Sanbonmatsu, KY Onuchic, JN AF Noel, Jeffrey K. Whitford, Paul C. Sanbonmatsu, Karissa Y. Onuchic, Jose N. TI SMOG@ctbp: simplified deployment of structure-based models in GROMACS SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MOLECULAR SIMULATION; MINIMAL MODELS; PROTEINS; DYNAMICS AB Molecular dynamics simulations with coarse-grained and/or simplified Hamiltonians are an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Structure-based Hamiltonians, simplified models developed from the energy landscape theory of protein folding, have become a standard tool for investigating biomolecular dynamics. SMOG@ctbp is an effort to simplify the use of structure-based models. The purpose of the web server is two fold. First, the web tool simplifies the process of implementing a well-characterized structure-based model on a state-of-the-art, open source, molecular dynamics package, GROMACS. Second, the tutorial-like format helps speed the learning curve of those unfamiliar with molecular dynamics. A web tool user is able to upload any multi-chain biomolecular system consisting of standard RNA, DNA and amino acids in PDB format and receive as output all files necessary to implement the model in GROMACS. Both C(alpha) and all-atom versions of the model are available. SMOG@ctbp resides at http://smog.ucsd.edu. C1 [Noel, Jeffrey K.; Onuchic, Jose N.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. [Noel, Jeffrey K.; Onuchic, Jose N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Whitford, Paul C.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Theoret Biol & Biophys Theoret Div, Los Alamos, NM 87545 USA. RP Onuchic, JN (reprint author), Univ Calif San Diego, Ctr Theoret Biol Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM jonuchic@ctbp.ucsd.edu FU Center for Theoretical Biological Physics, National Science Foundation [PHY-0822283, NSF-MCB-0543906]; LANL LDRD; National Institutes of Health [R01-GM072686]; National Institutes of Health at University of California at San Diego [T32GM08326]; LANL; Center for Theoretical Biological Physics at UCSD FX Center for Theoretical Biological Physics, National Science Foundation (PHY-0822283, NSF-MCB-0543906); the LANL LDRD program; National Institutes of Health (R01-GM072686); National Institutes of Health Molecular Biophysics Training Program at University of California at San Diego (T32GM08326 to J.K.N.). P. C. W. is currently funded by a LANL Director's Fellowship. Funding for open access charge: Center for Theoretical Biological Physics at UCSD. NR 14 TC 138 Z9 138 U1 1 U2 28 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2010 VL 38 SU 2 BP W657 EP W661 DI 10.1093/nar/gkq498 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 679GD UT WOS:000284148900106 PM 20525782 ER PT J AU Novichkov, PS Rodionov, DA Stavrovskaya, ED Novichkova, ES Kazakov, AE Gelfand, MS Arkin, AP Mironov, AA Dubchak, I AF Novichkov, Pavel S. Rodionov, Dmitry A. Stavrovskaya, Elena D. Novichkova, Elena S. Kazakov, Alexey E. Gelfand, Mikhail S. Arkin, Adam P. Mironov, Andrey A. Dubchak, Inna TI RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach SO NUCLEIC ACIDS RESEARCH LA English DT Article ID TRANSCRIPTIONAL REGULATORY NETWORKS; DATABASE; RECONSTRUCTION; PROTEOBACTERIA; PREDICTION; BACTERIA; SITES AB RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov. C1 [Novichkov, Pavel S.; Novichkova, Elena S.; Kazakov, Alexey E.; Arkin, Adam P.; Dubchak, Inna] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rodionov, Dmitry A.] Burnham Inst Med Res, La Jolla, CA 92037 USA. [Rodionov, Dmitry A.; Stavrovskaya, Elena D.; Kazakov, Alexey E.; Gelfand, Mikhail S.; Mironov, Andrey A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. [Stavrovskaya, Elena D.; Gelfand, Mikhail S.; Mironov, Andrey A.] Moscow MV Lomonosov State Univ, Fac Bioengn & Bioinformat, Moscow 119992, Russia. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA. [Dubchak, Inna] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Novichkov, PS (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM psnovichkov@lbl.org; rodionov@burnham.org RI Mironov, Andrey/C-8024-2012; Gelfand, Mikhail/F-3425-2012; Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Rodionov, Dmitry/0000-0002-0939-390X FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation [DBI-0850546]; Howard Hughes Medical Institute [55005610]; Russian Foundation for Basic Research [08-04-01000, 09-04-92745, 10-04-01768, 09-04-92742]; Russian Academy of Sciences; Federal Agency on Education [P2581]; Russian Science Agency [2.740.11.0101]; Russian President's grant for young scientists [MK-422.2009.4] FX The US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program: GTL through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy; National Science Foundation (award DBI-0850546 to D.A.R.); Howard Hughes Medical Institute (55005610 to M.S.G.); Russian Foundation for Basic Research (08-04-01000 to A.E.K., 09-04-92745 to M.S.G., 10-04-01768 to D.A.R., 09-04-92742 to A.A.M.); Russian Academy of Sciences (program 'Molecular and Cellular Biology' to D.A.R and M.S.G.); Federal Agency on Education (P2581 to E.D.S.); Russian Science Agency (contract 2.740.11.0101 to M.S.G.); and Russian President's grant for young scientists (MK-422.2009.4 to D.A.R.). Funding for open access charge: The US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program. NR 25 TC 76 Z9 76 U1 2 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2010 VL 38 SU 2 BP W299 EP W307 DI 10.1093/nar/gkq531 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 679GD UT WOS:000284148900048 PM 20542910 ER PT J AU Schneidman-Duhovny, D Hammel, M Sali, A AF Schneidman-Duhovny, Dina Hammel, Michal Sali, Andrej TI FoXS: a web server for rapid computation and fitting of SAXS profiles SO NUCLEIC ACIDS RESEARCH LA English DT Article ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; BIOLOGICAL MACROMOLECULES; NEUTRON-SCATTERING; PROTEIN COMPLEXES; ASSEMBLIES; SOLVENT; MODELS AB Small angle X-ray scattering (SAXS) is an increasingly common technique for low-resolution structural characterization of molecules in solution. SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can contribute to many applications, such as comparing a conformation in solution with the corresponding X-ray structure, modeling a flexible or multi-modular protein, and assembling a macromolecular complex from its subunits. These applications require rapid computation of a SAXS profile from a molecular structure. FoXS (Fast X-Ray Scattering) is a rapid method for computing a SAXS profile of a given structure and for matching of the computed and experimental profiles. Here, we describe the interface and capabilities of the FoXS web server (http://salilab.org/foxs). C1 [Schneidman-Duhovny, Dina; Sali, Andrej] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Schneidman-Duhovny, Dina; Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci QB3, San Francisco, CA 94158 USA. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Sali, A (reprint author), Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. EM sali@salilab.org FU Sandler Family Supporting Foundation; National Institutes of Health [R01 GM083960, U54 RR022220, PN2 EY016525]; DOE; Pfizer Inc. at Lawrence Berkeley National Laboratory; Weizmann Institute FX Weizmann Institute Advancing Women in Science Postdoctoral Fellowship to DSD; Sandler Family Supporting Foundation, National Institutes of Health (R01 GM083960); National Institutes of Health (U54 RR022220); National Institutes of Health (PN2 EY016525); DOE program Integrated Diffraction Analysis Technologies (IDAT), Pfizer Inc. SIBYLS beamline at Lawrence Berkeley National Laboratory. Funding for open access charge: National Institutes of Health (R01 GM083960). NR 30 TC 214 Z9 215 U1 4 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2010 VL 38 SU 2 BP W540 EP W544 DI 10.1093/nar/gkq461 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 679GD UT WOS:000284148900087 PM 20507903 ER PT J AU Cai, ZQ Tong, C Vassilevski, PS Wang, CB AF Cai, Zhiqiang Tong, Charles Vassilevski, Panayot S. Wang, Chunbo TI Mixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE incompressible Newtonian flow; mixed finite element; multigrid; Stokes equations ID LEAST-SQUARES METHODS; LINEAR ELASTICITY; FORMULATION; H(DIV) AB In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress-velocity formulation. The pseudostress is approximated by the Raviart-Thomas (RT) element of index k >= 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi-optimal accuracy. The indefinite system of linear equations resulting from the discretization is decoupled by the penalty method. The penalized pseudostress system is solved by the H(div) type of multigrid method and the velocity is then calculated explicitly. Alternative preconditioning approaches that do not involve penalizing the system are also discussed. Finally, numerical experiments are presented. (C) 2009 Wiley Periodicals, Inc. Muller Methods Partial Differential Eq 26: 957-978, 2010 C1 [Cai, Zhiqiang; Wang, Chunbo] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Tong, Charles; Vassilevski, Panayot S.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Cai, ZQ (reprint author), Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA. EM zcai@math.purdues.edu FU U.S. Department of Energy [W-7405-Eng-48] FX Contract grant sponsor: U.S. Department of Energy by University of California Lawrence Livermore National Laboratory: Contract grant number: W-7405-Eng-48 NR 23 TC 21 Z9 21 U1 0 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0749-159X J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2010 VL 26 IS 4 BP 957 EP 978 DI 10.1002/num.20467 PG 22 WC Mathematics, Applied SC Mathematics GA 610BI UT WOS:000278703900013 ER PT J AU Willson, JD Winne, CT Pilgrim, MA Romanek, CS Gibbons, JW AF Willson, John D. Winne, Christopher T. Pilgrim, Melissa A. Romanek, Christopher S. Gibbons, J. Whitfield TI Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approach SO OIKOS LA English DT Article ID ISLA DAPHNE MAJOR; INTERSPECIFIC COMPETITION; FINCHES GEOSPIZA; ECOSYSTEM PROCESSES; SEMINATRIX-PYGAEA; ISOLATED WETLAND; DARWINS FINCHES; MIXING MODELS; BODY-SIZE; POPULATION AB Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short-term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems. C1 [Willson, John D.; Winne, Christopher T.; Pilgrim, Melissa A.; Romanek, Christopher S.; Gibbons, J. Whitfield] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Willson, JD (reprint author), Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM willson@uga.edu FU South Carolina Dept of Natural Resources Scientific Collection [G-05-03, G-06-04]; Dept of Energy [DE-FC-09-075R22506]; National Science Foundation FX Assistance in collecting and processing snakes was provided by Sarah E. DuRant, Brian D. Todd and especially Andrew M. Durso and Evan A. Eskew. Sarah E. DuRant provided insightful advice on data analysis and writing. Heather Brant aided in stable isotope analyses. All snakes and amphibians were collected under South Carolina Dept of Natural Resources Scientific Collection permits (G-05-03 and G-06-04). This material is based upon work supported by the Dept of Energy under Award Number DE-FC-09-075R22506. Support for JDW was provided by a Graduate Research Fellowship from the National Science Foundation. NR 59 TC 34 Z9 34 U1 2 U2 50 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0030-1299 J9 OIKOS JI Oikos PD JUL PY 2010 VL 119 IS 7 BP 1161 EP 1171 DI 10.1111/j.1600-0706.2009.17939.x PG 11 WC Ecology SC Environmental Sciences & Ecology GA 607SC UT WOS:000278525800013 ER PT J AU Marcet, Z Hang, ZH Chan, CT Kravchenko, I Bower, JE Cirelli, RA Klemens, F Mansfield, WM Miner, JF Pai, CS Chan, HB AF Marcet, Z. Hang, Z. H. Chan, C. T. Kravchenko, I. Bower, J. E. Cirelli, R. A. Klemens, F. Mansfield, W. M. Miner, J. F. Pai, C. S. Chan, H. B. TI Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays SO OPTICS LETTERS LA English DT Article ID SLIT ARRAYS; THIN-FILMS; LIGHT AB We measure the transmission of IR radiation through double-layer metal films with periodic arrays of subwavelength holes. When the two metal films are placed in sufficiently close proximity, two types of transmission resonances emerge. For the surface plasmon mode, the electromagnetic field is concentrated on the outer surface of the entire metallic layer stack. In contrast, for the guided mode, the field is confined to the gap between the two metal layers. Our measurements indicate that, as the two layers are laterally shifted from perfect alignment, the peak transmission frequency of the guided mode decreases significantly, while that of the surface plasmon mode remains largely unchanged, in agreement with numerical calculations. (C) 2010 Optical Society of America C1 [Marcet, Z.; Chan, H. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Hang, Z. H.; Chan, C. T.; Chan, H. B.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Kravchenko, I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Bower, J. E.; Cirelli, R. A.; Klemens, F.; Mansfield, W. M.; Miner, J. F.; Pai, C. S.] Alcatel Lucent, Bell Labs, Murray Hill, NJ 07974 USA. RP Chan, HB (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM hochan@ust.hk RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU National Science Foundation (NSF) [ECS-0621944]; South East Alliance for Graduate Education and the Professoriate; Hong Kong Research Grants Council (RGC) [600308]; Division of Scientific User Facilities, U.S. Department of Energy at Oak Ridge National Laboratory FX Z. M. and H. B. C. are supported by the National Science Foundation (NSF) ECS-0621944. Z. M. acknowledges support from South East Alliance for Graduate Education and the Professoriate. Z. H. H. and C. T. C. are supported by Hong Kong Research Grants Council (RGC) grant 600308. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. We thank J. D. Fowlkes and G. Suen for assistance with the focus ion beam. NR 26 TC 10 Z9 11 U1 2 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2010 VL 35 IS 13 BP 2124 EP 2126 PG 3 WC Optics SC Optics GA 619NC UT WOS:000279435900004 PM 20596167 ER PT J AU Bender, DA Sheik-Bahae, M AF Bender, Daniel A. Sheik-Bahae, Mansoor TI Complementary ultrashort laser pulse characterization using MOSAIC and SHG FROG SO OPTICS LETTERS LA English DT Article ID 2ND-HARMONIC GENERATION AB A new (to our knowledge) method for generating the modified spectrum autointerferometric correlation (MOSAIC) trace from the second-harmonic generation frequency-resolved optical gating (SHG FROG) dataset is shown. Examples are presented illustrating enhanced visual sensitivity, applicability, and complementary qualitative pulse characterization using SHG FROG. (C) 2010 Optical Society of America C1 [Bender, Daniel A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Bender, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dabende@sandia.gov NR 10 TC 1 Z9 1 U1 1 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2010 VL 35 IS 13 BP 2191 EP 2193 PG 3 WC Optics SC Optics GA 619NC UT WOS:000279435900027 PM 20596190 ER PT J AU Shverdin, MY Jovanovic, I Semenov, VA Betts, SM Brown, C Gibson, DJ Shuttlesworth, RM Hartemann, FV Siders, CW Barty, CPJ AF Shverdin, M. Y. Jovanovic, I. Semenov, V. A. Betts, S. M. Brown, C. Gibson, D. J. Shuttlesworth, R. M. Hartemann, F. V. Siders, C. W. Barty, C. P. J. TI High-power picosecond laser pulse recirculation SO OPTICS LETTERS LA English DT Article ID GAMMA-RAYS; ULTRAVIOLET AB We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses. (C) 2010 Optical Society of America C1 [Shverdin, M. Y.; Jovanovic, I.; Semenov, V. A.; Betts, S. M.; Brown, C.; Gibson, D. J.; Shuttlesworth, R. M.; Hartemann, F. V.; Siders, C. W.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Shverdin, MY (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM shverdin2@llnl.gov FU U.S. Department of Energy (DOE) by University of California, Lawrence Livermore National Laboratory [W-7405-ENG-48]; [DOE/NA-22] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by University of California, Lawrence Livermore National Laboratory under contract W-7405-ENG-48. We also acknowledge support of DOE/NA-22. NR 8 TC 6 Z9 6 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2010 VL 35 IS 13 BP 2224 EP 2226 PG 3 WC Optics SC Optics GA 619NC UT WOS:000279435900036 PM 20596201 ER PT J AU Taylor, ZP Horn, SP Mora, CI Orvis, KH Cooper, LW AF Taylor, Zachary P. Horn, Sally P. Mora, Claudia I. Orvis, Kenneth H. Cooper, Lee W. TI A multi-proxy palaeoecological record of late-Holocene forest expansion in lowland Bolivia SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE Bolivia; Palaeoecology; C12/C13; Milankovitch forcing; Pollen analysis; Amazon basin; Lake sediments ID PRECAMBRIAN SHIELD REGION; CARBON-ISOTOPE RECORD; MODERN POLLEN SPECTRA; LAST GLACIAL MAXIMUM; SOUTHERN-HEMISPHERE; CLIMATE HISTORY; ORGANIC-MATTER; LAKE TITICACA; AMAZON BASIN; VEGETATION CHANGES AB Pollen, charcoal, and bulk sediment stable carbon isotope analysis of a 2.4 m sediment core from Laguna Yaguaru in eastern Bolivia, located near the modern ecotone between the humid, evergreen Amazon rainforest and the seasonally-dry, semi-deciduous Chiquitano dry forest, provides a >5600 year record of environmental change in an area sensitive to changes in the strength of the South American monsoon. The core consists of organic sediment interrupted by a 15 cm mineral facies deposited similar to 5270 yr BP in a low-energy flood event in the Yaguaru basin. Pollen data indicate that the basin contained a cattail (Typha) marsh prior to the flood. Some dry forest elements were present, probably growing within small patches of forest within a matrix of generally open vegetation including marsh, savanna, and savanna woodland. Above the flood-layer. Typha pollen is absent, indicating open-water conditions, and pollen assemblages are similar to modern pollen spectra from Bolivian dry forests. Around 1200 BP charcoal concentrations decrease, carbon isotope ratios become more negative, and Celtis pollen rises dramatically, signaling forest expansion and the development of the modern closed-canopy dry forest at Laguna Yaguaru. The wetter conditions implied by this forest expansion suggest the region was affected by the strengthening South American monsoon at this time. The timing of the arrival of monsoon moisture at Yaguaru is consistent with nearby records, allowing a similar to 700 year delay for the migration of the monsoon to reach the more southerly location of Yaguaru. (C) 2010 Elsevier B.V. All rights reserved. C1 [Taylor, Zachary P.; Horn, Sally P.; Orvis, Kenneth H.] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA. [Mora, Claudia I.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. [Cooper, Lee W.] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. RP Taylor, ZP (reprint author), Univ Tennessee, Dept Geog, 304 Burchfiel Geog Bldg, Knoxville, TN 37996 USA. EM ztaylor1@utk.edu RI Cooper, Lee/E-5251-2012; Horn, Sally/B-1918-2013; Mora, Claudia/B-5511-2017 OI Cooper, Lee/0000-0001-7734-8388; Horn, Sally/0000-0002-0575-3664; Mora, Claudia/0000-0003-2042-0208 NR 76 TC 9 Z9 9 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD JUL 1 PY 2010 VL 293 IS 1-2 BP 98 EP 107 DI 10.1016/j.palaeo.2010.05.004 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 626ZJ UT WOS:000280007000008 ER PT J AU English, NB Dettman, DL Williams, DG AF English, Nathan B. Dettman, David L. Williams, David G. TI A 26-year stable isotope record of humidity and El Nino-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE Stable isotopes; Radiocarbon; Dendrochronology; Acanthochronology; Terrestrial climate proxies; El Nino; Cactus; Saguaro; Carnegiea gigantea ID BOMB C-14 DATA; WATER-STORAGE; CENTRAL ANDES; CLIMATE; CACTACEAE; RATIOS; GROWTH; CARBON; AGE; VARIABILITY AB Seasonal and annual variations of rainfall and humidity are recorded in the carbon and oxygen stable isotope ratios of sequentially grown spines found on the columnar cactus, Carnegiea gigantea. A 26-year long composite delta(18)O and delta(13)C isotope record from the spines of five saguaro cacti was created using bomb radiocarbon and semi-annual variations in delta(13)C. Once dating errors in the composite record are corrected, mean annual spine delta(18)O is negatively correlated (P<0.001) with total annual precipitation (TAP) from November through October and positively correlated (P<0.01) with mean annual nighttime vapor pressure deficit (VPD). Year-to-year decreases (>2 parts per thousand) in the maximum annual spine delta(18)O are positively correlated (P<0.01) with the Southern Oscillation Index (SOI). We attribute these decreases to enhanced winter rainfall associated with the El Nino phase of the El Nino-Southern Oscillation. Minimum annual delta(13)C is negatively correlated with TAP (P<0.05) and mean nighttime VPD (P<0.05). These results bolster proposed mechanistic models of isotopic variation in the spines of columnar cactus and demonstrate how isotopic spine series may be used as climate proxies in regions of the Americas where trees suitable for traditional or isotopic dendrochonology are absent. Published by Elsevier B.V. C1 [English, Nathan B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dettman, David L.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Williams, David G.] Univ Wyoming, Dept Renewable Resources, Laramie, WY 82071 USA. [Williams, David G.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA. RP English, NB (reprint author), Los Alamos Natl Lab, EES 14,MS J495, Los Alamos, NM 87545 USA. EM nenglish@lanl.gov RI English, Nathan/B-4615-2008; Williams, David/A-6407-2014 OI English, Nathan/0000-0002-6936-8079; Williams, David/0000-0003-3627-5260 FU United States Environmental Protection Agency (EPA) FX The research presented in this paper was funded by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program, a William G. McGinnies Scholarship, and a Geological Society of America student grant to N.B. English. This work was also supported by funding from the National Science Foundation to the authors (Grant #IOS 0717395 and #IOS 0717403). We are thankful to K. Anchukaitis, J. Betancourt, W. Beck, G. Bowen, J. Bower, J. Cole, T. Drezner, C. Eastoe, Q. Hua, S. Leavitt, J. Mauseth, J. Pigati, B. Osmond, J. Overpeck, E. Pierson, D. Potts, J. Quade, T. Shanahan, and R. Turner. All experiments comply with the current laws of the United States and Arizona. NR 36 TC 11 Z9 11 U1 3 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD JUL 1 PY 2010 VL 293 IS 1-2 BP 108 EP 119 DI 10.1016/j.palaeo.2010.05.005 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 626ZJ UT WOS:000280007000009 ER PT J AU Terauchi, AM Peers, G Kobayashi, MC Niyogi, KK Merchant, SS AF Terauchi, Aimee M. Peers, Graham Kobayashi, Marilyn C. Niyogi, Krishna K. Merchant, Sabeeha S. TI Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Acetate; Algae; LhcSR; Non-photochemical quenching; Respiration ID ELECTRON-TRANSPORT CHAIN; COMPLEX-I; CHLOROPHYLL FLUORESCENCE; PLASTOQUINONE REDUCTION; SIMULTANEOUS-EQUATIONS; PHOTOOXIDATIVE STRESS; THYLAKOID MEMBRANES; ESCHERICHIA-COLI; PHOTOSYSTEM-I; FLAVODOXIN AB To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO(2)-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state. Phototrophic cells maintain both photosynthetic and respiratory function and their associated Fe-containing proteins in conditions where heterotrophic cells lose photosynthetic capacity and have reduced oxygen evolution activity. Maintenance of NPQ capacity might contribute to protection of the photosynthetic apparatus in iron-limited phototrophic cells. Acetate-grown iron-limited cells maintain high growth rates by suppressing photosynthesis but increasing instead respiration. These cells are also able to maintain a reduced plastoquinone pool. C1 [Terauchi, Aimee M.; Merchant, Sabeeha S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Peers, Graham; Kobayashi, Marilyn C.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Niyogi, Krishna K.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Merchant, Sabeeha S.] Univ Calif Los Angeles, Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Merchant, SS (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM sabeeha@chem.ucla.edu FU Department of Energy [DE-FD02-04ER15529]; U.S. Department of Energy [449A449B]; National Research Service Award [GM070104]; UCLA graduate division FX We thank Patrice Hamel for antibodies against Nuo6-8, Susanne Preiss for antibodies against D1, Michel Guertin for antibodies against LhcSR, and Jean-David Rochaix for antibodies against PsaD. We are grateful to Janette Kropat for the measurement of iron shown in Fig. 2 and to Marina Sharifi for assistance with HPLC analysis, to Davin Malasarn for his assistance with Visual Minteq and to Naomi Ginsberg for extrapolating the data shown in Table 3 using Matlab. This research was supported by grants from the Department of Energy (DE-FD02-04ER15529) to S.S.M. and from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (FWP number 449A449B) to K.K.N. Aimee Terauchi was supported by an Institutional Ruth L. Kirschstein National Research Service Award (GM070104) and a Dissertation Year Fellowship from the UCLA graduate division. NR 65 TC 36 Z9 36 U1 0 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 J9 PHOTOSYNTH RES JI Photosynth. Res. PD JUL PY 2010 VL 105 IS 1 BP 39 EP 49 DI 10.1007/s11120-010-9562-8 PG 11 WC Plant Sciences SC Plant Sciences GA 612ML UT WOS:000278902700005 PM 20535560 ER PT J AU Chowdhury, DR Aruna, I Nedic, A Kruis, FE Schmechel, R AF Chowdhury, Dibakar Roy Aruna, Ivaturi Nedic, Aleksandar Kruis, Frank Einar Schmechel, Roland TI Field effects on SnOx and SnO2 nanoparticles synthesized in the gas phase SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article DE Nanoparticle; X-ray photoelectron spectroscopy; Field effect transistor; Stoichiometry; Gas phase synthesis ID THIN-FILM TRANSISTORS; OXIDE; TRANSPARENT; DEPOSITION; NANOBELTS; TRANSPORT; NANOWIRES AB The present study reports for the first time the influence of stoichiometry of SnO2 nanoparticles synthesized in the gas phase at atmospheric pressure towards the field effect behaviour. The field effect was measured by using the nanoparticles as active material in a transistor channel. The transistors fabricated from the stoichiometric SnO2 nanoparticles (similar to 20 nm) obtained by post-deposition low-temperature (300 degrees C) oxidation of the SnO nanoparticles clearly demonstrate n-type behaviour in contrast to the high electrical conductance exhibited by the non-stoichiometric SnOx nanoparticles obtained by high temperature (650 degrees C) in-flight oxidation. X-ray Photoelectron Spectroscopy (XPS) studies confirm the stoichiometry of the in-flight as well as the post-oxidized nanoparticles. Published by Elsevier B.V. C1 Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany. Univ Duisburg Essen, CeNIDE, D-47057 Duisburg, Germany. RP Chowdhury, DR (reprint author), Los Alamos Natl Lab, CINT, MS K771, Los Alamos, NM 87545 USA. EM dibakar.roy-chowdury@uni-due.de; roland.schmechel@uni-due.de RI Schmechel, Roland/S-3013-2016; Roy Chowdhury, Dibakar/B-5064-2012 FU Alexander von Humboldt Foundation (AvH); Deutsche Forschungsgemeinschaft (DFG) [SFB445] FX The work of D.R.C. forms part of the research program of the Dutch Polymer Institute (DPI), project #627. One of the authors (I.A) is grateful to the Alexander von Humboldt Foundation (AvH) for the fellowship. Another author A.N. acknowledges the support of Deutsche Forschungsgemeinschaft (DFG) in the framework of the collaborative research program "Nanoparticles from the gas phase: formation, structure, properties" (SFB445). The authors acknowledge Dr. Wie Xia (Laboratory of Industrial Chemistry, Ruhr University Bochum, Germany) for performing the XPS measurements and Nathalie Reckers (Faculty of Physics, University of Duisburg-Essen, Germany) for SEM measurements. NR 18 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD JUL PY 2010 VL 42 IS 9 BP 2471 EP 2476 DI 10.1016/j.physe.2010.06.005 PG 6 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 638LZ UT WOS:000280897700050 ER PT J AU Aggarwal, KM Keenan, FP Heeter, RF AF Aggarwal, K. M. Keenan, F. P. Heeter, R. F. TI Energy levels, radiative rates and electron impact excitation rates for transitions in H-like N VII, O VIII, F IX, Ne X and Na XI SO PHYSICA SCRIPTA LA English DT Article ID HYDROGEN-LIKE ATOMS; RATE COEFFICIENTS; IONS; PROBABILITIES; LINES AB We report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in H-like N VII, O VIII, F IX, Ne X and Na XI. The general-purpose relativistic atomic structure package (grasp) is adopted for calculating energy levels and radiative rates, while the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used for determining the collision strengths and subsequently the excitation rates. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 25 levels of the above five ions. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths so obtained are reported over a wide temperature range below 10(7) K. Additionally, lifetimes are also given for all the calculated energy levels of the above five ions. C1 [Aggarwal, K. M.; Keenan, F. P.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Heeter, R. F.] Lawrence Livermore Natl Lab, Phys & Adv Technol Directorate, Livermore, CA 94550 USA. RP Aggarwal, KM (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. EM k.aggarwal@qub.ac.uk FU Engineering and Physical Sciences and Science and Technology Facilities Councils of the UK; AWE Aldermaston FX This work was financed by the Engineering and Physical Sciences and Science and Technology Facilities Councils of the UK, and FPK is grateful to AWE Aldermaston for the award of a William Penney Fellowship. We thank P H Norrington for providing his revised GRASP and DARC codes prior to publication. NR 14 TC 4 Z9 4 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JUL PY 2010 VL 82 IS 1 AR 015006 DI 10.1088/0031-8949/82/01/015006 PG 16 WC Physics, Multidisciplinary SC Physics GA 621VP UT WOS:000279613500006 ER PT J AU Gherasoiu, I Yu, KM Reichertz, LA Kao, VM Hawkridge, M Ager, JW Walukiewicz, W AF Gherasoiu, I. Yu, K. M. Reichertz, L. A. Kao, V. M. Hawkridge, M. Ager, J. W. Walukiewicz, W. TI High quality InxGa1-xN thin films with x > 0.2 grown on silicon SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT E-MRS Fall Meeting on Wide Band Gap II-VI and III-V Semiconductors CY SEP 14-18, 2009 CL Warsaw, POLAND SP E-MRS DE III-V semiconductors; photoluminescence; Rutherford backscattering spectroscopy ID MOLECULAR-BEAM EPITAXY; GAN; POLARITY; DEPENDENCE; BUFFER AB Using plasma-assisted molecular beam epitaxy (PA-MBE) high quality InxGa1-xN layers with x in the range from 25 to 31% have been grown on silicon (111) substrates. The polarity of the layers has been found to impact the incorporation of in with Ga polar butters promoting the deposition of uniform composition InGaN. We have achieved films with indium fraction up to 31% and rocking curve width of 538 arcsec. Residual donor concentration as low as similar to 1.2 x 10(18) cm(-3) was measure in these films suggesting that p-typed doping with Mg can be achieved. The presence of AIN layers and the increasing thickness of the GaN buffer do not appear to have a significant contribution to the series resistance of the structure. The investigation of the InGan layers by X-ray diffraction did not reveal any significant phase separation occurring the MBE deposition although the photoluminescence spectrum exhibits low energy features that would require further investigation. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Gherasoiu, I.; Walukiewicz, W.] RoseSt Labs Energy, Phoenix, AZ USA. [Yu, K. M.; Reichertz, L. A.; Kao, V. M.; Hawkridge, M.; Ager, J. W.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Gherasoiu, I (reprint author), RoseSt Labs Energy, Phoenix, AZ USA. EM igheraso@yahoo.com RI Yu, Kin Man/J-1399-2012; Gherasoiu, Iulian/H-3369-2013 OI Ager, Joel/0000-0001-9334-9751; Yu, Kin Man/0000-0003-1350-9642; Gherasoiu, Iulian/0000-0003-2686-9196 NR 15 TC 14 Z9 14 U1 3 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD JUL PY 2010 VL 247 IS 7 BP 1747 EP 1749 DI 10.1002/pssb.200983462 PG 3 WC Physics, Condensed Matter SC Physics GA 630HK UT WOS:000280263700036 ER PT J AU Sakai, H Baek, SH Brown, SE Ronning, F Bauer, ED Thompson, JD AF Sakai, Hironori Baek, Seung-Ho Brown, Stuart E. Ronning, Filip Bauer, Eric D. Thompson, Joe D. TI Co-59 NMR shift anomalies and spin dynamics in the normal state of superconducting CeCoIn5: Verification of two-dimensional antiferromagnetic spin fluctuations SO PHYSICAL REVIEW B LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTIVITY; TRANSITION; CEIRIN5; NQR AB We have measured the Knight shifts (K) and nuclear relaxation times (T-1) for Co-59 in CeCoIn5 under external fields along a and c axes with the goal of establishing the anisotropy of antiferromagnetic (AFM) spin fluctuations (SF). In our approach, we revisit the problem of interpreting anomalies in the relationship between Knight shift K-a,K-c and static susceptibility chi(a,c): assuming a single component susceptibility implies a temperature-dependent hyperfine coupling A(a,c)(T). Once adopted, a known discrepancy between the behaviors of T-1(-1) for Co-59 and In-115(1) sites is eliminated to within experimental uncertainties and the variation with temperature is analyzed within the framework of two-dimensional AFM SF in proximity to a quantum-critical point. Moreover, the ratio [T-1a/T-1c] indicates easy-plane anisotropy for T < T* similar to 40 K, for the heavy-fermion state. C1 [Sakai, Hironori; Baek, Seung-Ho; Brown, Stuart E.; Ronning, Filip; Bauer, Eric D.; Thompson, Joe D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sakai, Hironori] Japan Atom Energy Agcy, Adv Sci Res Ctr, Ibaraki 3191195, Japan. [Brown, Stuart E.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA. RP Sakai, H (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sakai.hironori@jaea.go.jp RI Bauer, Eric/D-7212-2011; Baek, Seung-Ho/F-4733-2011 OI Baek, Seung-Ho/0000-0002-0059-8255 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; NSF [DMR-0804625] FX We thank R. Movshovich, Y.-F. Yang, R. R. Urbano, S. A. Kivelson, K. Kaneko, Y. Tokunaga, and S. Kambe for useful discussions. H. S. and S. E. B. wish to acknowledge the hospitality of Los Alamos National Laboratory. Work at Los Alamos National Laboratory was performed under the auspices of U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. S. E. B. acknowledges support from the NSF under Grant No. DMR-0804625. NR 23 TC 12 Z9 12 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 1 PY 2010 VL 82 IS 2 AR 020501 DI 10.1103/PhysRevB.82.020501 PG 4 WC Physics, Condensed Matter SC Physics GA 619ZL UT WOS:000279468700001 ER PT J AU Gledenov, YM Zhang, GH Khuukhenkhuu, G Sedysheva, MV Szalanski, PJ Koehler, PE Liu, JM Wu, H Liu, XA Chen, JX AF Gledenov, Yu. M. Zhang, Guohui Khuukhenkhuu, G. Sedysheva, M. V. Szalanski, P. J. Koehler, P. E. Liu, Jiaming Wu, Hao Liu, Xiang Chen, Jinxiang TI Cross-section measurement and analysis for the Sm-149(n,alpha)Nd-146 reaction at 6.0 MeV SO PHYSICAL REVIEW C LA English DT Article AB We have measured the Sm-149(n,alpha)Nd-146 cross section at 6.0 MeV to be 0.12 +/- 0.018 mb. This is the first reported result for this cross section in the MeV region and so should be helpful for constraining nuclear data evaluations (which differ by a factor of 40 for this reaction at this energy) and for testing and improving nuclear models. The experiment was performed at the at the 4.5-MV Van de Graaff accelerator of Peking University. Neutrons were produced via the H-2(d,n)He-3 reaction using a deuterium gas target, and absolute neutron flux was determined with a small U-238 fission chamber. Alpha particles were detected using a two-section gridded ionization chamber in which two large-area (Sm2O3)-Sm-149 samples were placed back-to-back so that the cross section and forward/backward ratio were measured for nearly the entire 4 pi solid angle. The data were compared to statistical-model predictions using the code TALYS. Good agreement between the measured and theoretical cross sections could be obtained with a small modification of the alpha-optical potential parameters from their default values in TALYS. However, we were not able to reproduce the measured forward/backward ratio. In addition, using the previously reported Sm-147(n,alpha)Nd-144 cross section at 6.0 MeV together with our new result, good agreement was found between the measured and predicted cross-section ratio for these two isotopes. Finally, none of the existing evaluated data libraries are in agreement with our new data to within the experimental uncertainties. C1 [Gledenov, Yu. M.; Sedysheva, M. V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Russia. [Zhang, Guohui; Liu, Jiaming; Wu, Hao; Liu, Xiang; Chen, Jinxiang] Peking Univ, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Khuukhenkhuu, G.] Natl Univ Mongolia, Nucl Res Ctr, Ulaanbaatar, Mongol Peo Rep. [Szalanski, P. J.] Univ Lodz, Inst Phys, PL-90131 Lodz, Poland. [Koehler, P. E.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Gledenov, YM (reprint author), Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Russia. EM guohuizhang@pku.edu.cn RI Szalanski, Pawel/F-9428-2011; Liu, Xiang/D-2005-2017 OI Szalanski, Pawel/0000-0002-2047-7792; Liu, Xiang/0000-0002-2634-1888 FU Russian Foundation for Basic Research [RFBR-NSFC 07-02-92104]; National Natural Science Foundation of China [10575006]; Ministry of Science and Technology of China [2008CB717803]; China Nuclear Data Center; US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX The authors are indebted to the operation team of the 4.5-MV Van de Graaff accelerator of Peking University for kind cooperation. This project was financially supported by the Russian Foundation for Basic Research (RFBR-NSFC 07-02-92104), the National Natural Science Foundation of China (10575006), the Ministry of Science and Technology of China (2008CB717803), the China Nuclear Data Center, and the US Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 12 TC 5 Z9 5 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 1 PY 2010 VL 82 IS 1 AR 014601 DI 10.1103/PhysRevC.82.014601 PG 4 WC Physics, Nuclear SC Physics GA 620AZ UT WOS:000279472700001 ER PT J AU Armour, W Kogut, JB Strouthos, C AF Armour, Wesley Kogut, John B. Strouthos, Costas TI Chiral symmetry breaking and monopole dynamics in noncompact QED(3) coupled to a four-Fermi interaction SO PHYSICAL REVIEW D LA English DT Article ID CRITICAL-BEHAVIOR; GAUGE-THEORY; MODEL; DIMENSIONS; QED3; ELECTRODYNAMICS; HYPERCOLOR AB We present results from the first lattice simulations of three-dimensional noncompact quantum electrodynamics (QED(3)) with N-f four-component fermion flavors coupled to a weak Z(2) chirally invariant four-fermi interaction. Results with N-f >= 4 show that the scaling near the strong coupling chiral transition or sharp crossover is determined by the 3d Gross-Neveu ultraviolet-stable renormalization group fixed point. Small deviations of the N-f = 4 critical exponents from the respective Gross-Neveu ones, hint at evidence for nonzero fermion mass generated by the gauge fields dynamics that might have been enhanced by the four-fermi coupling. It is also shown that the scaling region is suppressed at weak four-fermi couplings and large N-f values. Measurements of (i) a monopole susceptibility which is the polarizability of the monopole configurations, and (ii) the density of isolated monopoles, imply that for N-f >= 1 and weak gauge couplings the monopoles do not affect the theory's confining properties, because they are shielded. C1 [Armour, Wesley] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Kogut, John B.] US DOE, Div High Energy Phys, Washington, DC 20585 USA. [Kogut, John B.] Univ Maryland, Dept Phys TQHN, College Pk, MD 20742 USA. [Strouthos, Costas] Cyprus Inst, Computat Based Sci & Technol Res Ctr, CY-1645 Nicosia, Cyprus. RP Armour, W (reprint author), Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England. RI Armour, Wes/G-6883-2012; Strouthos, Costas/C-7086-2011 OI Armour, Wes/0000-0003-1756-3064; Strouthos, Costas/0000-0001-9972-6925 NR 63 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2010 VL 82 IS 1 AR 014503 DI 10.1103/PhysRevD.82.014503 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 622UF UT WOS:000279690600001 ER PT J AU Chen, H Wilks, SC Meyerhofer, DD Bonlie, J Chen, CD Chen, SN Courtois, C Elberson, L Gregori, G Kruer, W Landoas, O Mithen, J Myatt, J Murphy, CD Nilson, P Price, D Schneider, M Shepherd, R Stoeckl, C Tabak, M Tommasini, R Beiersdorfer, P AF Chen, Hui Wilks, S. C. Meyerhofer, D. D. Bonlie, J. Chen, C. D. Chen, S. N. Courtois, C. Elberson, L. Gregori, G. Kruer, W. Landoas, O. Mithen, J. Myatt, J. Murphy, C. D. Nilson, P. Price, D. Schneider, M. Shepherd, R. Stoeckl, C. Tabak, M. Tommasini, R. Beiersdorfer, P. TI Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID PAIR PRODUCTION; ULTRAINTENSE LASERS; FEMTOSECOND-LASER; ELECTRON; BEAMS; PULSES; ANNIHILATION; PLASMAS; TARGETS; PHOTON AB Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is similar to 2 X 10(-4). The jets have similar to 20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of similar to 1 MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry. C1 [Chen, Hui; Wilks, S. C.; Bonlie, J.; Chen, C. D.; Chen, S. N.; Elberson, L.; Kruer, W.; Price, D.; Schneider, M.; Shepherd, R.; Tabak, M.; Tommasini, R.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Meyerhofer, D. D.; Myatt, J.; Nilson, P.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn & Phys, Rochester, NY 14623 USA. [Courtois, C.; Landoas, O.] DIF, CEA, DAM, F-91297 Arpajon, France. [Gregori, G.; Mithen, J.; Murphy, C. D.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Nilson, Philip/A-2493-2011; Tommasini, Riccardo/A-8214-2009; OI Tommasini, Riccardo/0000-0002-1070-3565; chen, sophia n./0000-0002-3372-7666; Chen, Hou-Tong/0000-0003-2014-7571 FU U.S. DOE [DE-AC52-07NA27344, DE-FC52-08NA28302]; LLNL [LDRD-08-LW-058]; ILSA; EPSRC [EP/G007187/1]; Roger Van Maren; Don Correll; Bill Goldstein FX This work was performed under the auspices of the U.S. DOE by LLNL under Contracts No. DE-AC52-07NA27344 and No. DE-FC52-08NA28302 at LLE, and was funded with LLNL LDRD-08-LW-058 and ILSA. G. G., C. M., and J. M. were supported by the EPSRC (#EP/G007187/1) and John Fell Fund. We thank the staff at the LLNL Jupiter Laser Facility and the LLE OMEGA EP laser. We acknowledge support from Roger Van Maren, Don Correll, and Bill Goldstein, and discussions with Peter Norreys and Robert Heeter. NR 37 TC 94 Z9 96 U1 5 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2010 VL 105 IS 1 AR 015003 DI 10.1103/PhysRevLett.105.015003 PG 4 WC Physics, Multidisciplinary SC Physics GA 620EG UT WOS:000279481200002 PM 20867455 ER PT J AU Hao, ZF Dadap, JI Knox, KR Yilmaz, MB Zaki, N Johnson, PD Osgood, RM AF Hao, Zhaofeng Dadap, J. I. Knox, K. R. Yilmaz, M. B. Zaki, N. Johnson, P. D. Osgood, R. M. TI Nonequilibrium Band Mapping of Unoccupied Bulk States below the Vacuum Level by Two-Photon Photoemission SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON DYNAMICS; METALS; GAS AB We demonstrate angle-resolved, tunable, two-photon photoemission (2PPE) to map a bulk unoccupied band, viz. the Cu sp band 0 to 1 eV below the vacuum level, in the vicinity of the L point. This short-lived bulk band is seen due to the strong optical pump rate, and the observed transition energies and their dispersion with photon energy (h) over bar omega are in excellent agreement with tight-binding band-structure calculations. The variation of the final-state energy with (h) over bar omega has a measured slope of similar to 1.64 in contrast to values of 1 or 2 observed for 2PPE from two-dimensional states. This unique variation illustrates the significant role of the perpendicular momentum (h) over bark(perpendicular to) in 2PPE. C1 [Hao, Zhaofeng; Dadap, J. I.; Knox, K. R.; Yilmaz, M. B.; Zaki, N.; Osgood, R. M.] Columbia Univ, Ctr Integrated Sci & Engn, New York, NY 10027 USA. [Hao, Zhaofeng] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China. [Yilmaz, M. B.] Fatih Univ, Dept Phys, TR-34500 Istanbul, Turkey. [Johnson, P. D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. RP Dadap, JI (reprint author), Columbia Univ, Ctr Integrated Sci & Engn, New York, NY 10027 USA. EM jerry@cumsl.msl.columbia.edu RI Dadap, Jerry/K-2788-2012; OI Yilmaz, Mehmet Burak/0000-0002-3450-5395 FU DOE [DE-FG 02-04-ER-46157, DE-AC02-98-CH-10886] FX We thank D. Papaconstantopoulos for generously providing us the tight-binding code for our band-structure calculations, and U. Hofer for enlightening discussions. This research was supported by DOE, Contract No. DE-FG 02-04-ER-46157 and No. DE-AC02-98-CH-10886. NR 35 TC 7 Z9 7 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2010 VL 105 IS 1 AR 017602 DI 10.1103/PhysRevLett.105.017602 PG 4 WC Physics, Multidisciplinary SC Physics GA 620EQ UT WOS:000279482200001 PM 20867478 ER PT J AU Welch, DR Cohen, SA Genoni, TC Glasser, AH AF Welch, D. R. Cohen, S. A. Genoni, T. C. Glasser, A. H. TI Formation of Field-Reversed-Configuration Plasma with Punctuated-Betatron-Orbit Electrons SO PHYSICAL REVIEW LETTERS LA English DT Article ID ROTATING MAGNETIC-FIELD; GENERATION; SIMULATION; CURRENTS; TOKAMAK; ION AB We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMF(o)). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMF(o), carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMF(o) phase. The predicted plasma density and electron energy distribution compare favorably with RMF(o) experiments. C1 [Welch, D. R.; Genoni, T. C.] Voss Sci, Albuquerque, NM 87108 USA. [Cohen, S. A.] Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Glasser, A. H.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. RP Welch, DR (reprint author), Voss Sci, Albuquerque, NM 87108 USA. FU U.S. Department of Energy [DE-AC02-76-CHO-3073] FX This work was supported, in part, by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073. We acknowledge helpful discussions with Donald Voss and code assistance from Robert Clark, Christopher Mostrom, and Clayton Myers. NR 30 TC 6 Z9 6 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2010 VL 105 IS 1 AR 015002 DI 10.1103/PhysRevLett.105.015002 PG 4 WC Physics, Multidisciplinary SC Physics GA 620EG UT WOS:000279481200001 PM 20867454 ER PT J AU Zhuravlev, KK Jackson, JM Wolf, AS Wicks, JK Yan, J Clark, SM AF Zhuravlev, Kirill K. Jackson, J. M. Wolf, A. S. Wicks, J. K. Yan, J. Clark, S. M. TI Isothermal compression behavior of (Mg,Fe)O using neon as a pressure medium SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE (Mg,Fe)O; Lower mantle; Spin crossover; Phase transition ID EARTHS LOWER MANTLE; X-RAY-DIFFRACTION; SPIN TRANSITION; MAGNESIOWUSTITE; IRON; WUSTITE; STATE; FERROPERICLASE; ELASTICITY; EQUATIONS AB We present isothermal volume compression behavior of two polycrystalline (Mg,Fe)O samples with FeO = 39 and 78 mol% up to similar to 90 GPa at 300 K using synchrotron X-ray diffraction and neon as a pressure-transmitting medium. For the iron-rich (Mg0.22Fe0.78)O sample, a structural transition from the B1 structure to a rhombohedral structure was observed at 41.6 GPa, with no further indication of changes in structural or compression behavior changes up to 93 GPa. In contrast, a change in the compression behavior of (Mg0.61Fe0.39)O was observed during compression at P a parts per thousand yen 71 GPa and is indicative of a spin crossover occurring in the Fe2+ component of (Mg0.61Fe0.39)O. The low-spin state exhibited a volume collapse of similar to 3.5%, which is a larger value than what was observed for a similar composition in a laser-heated NaCl medium. Upon decompression, the volume of the high-spin state was recovered at approximately 65 GPa. We therefore bracket the spin crossover at 65 a parts per thousand currency sign P (GPa) a parts per thousand currency sign 77 at 300 K (Mg0.61Fe0.39)O. We observed no deviation from the B1 structure in (Mg0.61Fe0.39)O throughout the pressure range investigated. C1 [Zhuravlev, Kirill K.; Jackson, J. M.; Wolf, A. S.; Wicks, J. K.] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA. [Yan, J.] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhuravlev, KK (reprint author), Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. EM kirillzhuravlev@gmail.com RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU National Science Foundation EAR Geophysics [0711542]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES [EAR 06-49658] FX We thank E. Hamecher (Caltech) for help with conducting experiments, S. Mackwell (Lunar & Planetary Institute, TX) for synthesizing and providing the (Mg0.22Fe0.78)O sample. The powdered (Mg0.61Fe0.39)O sample was synthesized with the help of Y. Fei (Carnegie Institution of Washington). I. Kantor and an anonymous reviewer provided helpful suggestions that improved the manuscript. This work was supported by the National Science Foundation EAR Geophysics 0711542 (JMJ). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work were supported by COMPRES under NSF Cooperative Agreement EAR 06-49658. NR 41 TC 17 Z9 17 U1 1 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD JUL PY 2010 VL 37 IS 7 BP 465 EP 474 DI 10.1007/s00269-009-0347-6 PG 10 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 617YB UT WOS:000279316700006 ER PT J AU Balabekyan, AR Danagulyan, AS Drnoyan, JR Demekhina, NA Hovhannisyan, GH Adam, J Kalinnikov, VG Krivopustov, MI Pronskikh, VS Stegailov, VI Solnyshkin, AA Tsoupko-Sitnikov, VM Mashnik, SG Gudima, KK AF Balabekyan, A. R. Danagulyan, A. S. Drnoyan, J. R. Demekhina, N. A. Hovhannisyan, G. H. Adam, J. Kalinnikov, V. G. Krivopustov, M. I. Pronskikh, V. S. Stegailov, V. I. Solnyshkin, A. A. Tsoupko-Sitnikov, V. M. Mashnik, S. G. Gudima, K. K. TI Recoil Studies in the Reaction of C-12 Ions with the Enriched Isotope Sn-118 SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID HIGH-ENERGY; STATISTICAL MULTIFRAGMENTATION; NUCLEAR MULTIFRAGMENTATION; HOT NUCLEI; PROTONS; FRAGMENTATION; SYSTEMATICS; PRODUCTS; SILVER; MODEL AB The recoil properties of the product nuclei from the interaction of 2.2 GeV/nucleon C-12 ions from Nuclotron of the Laboratory of High Energies, Joint Institute for Nuclear Research at Dubna with a Sn-118 target have been studied via catcher foils method. The experimental data were analyzed using the mathematical formalism of the standard two-step vector model. The results for C-12 ions are compared with those for deuterons and protons. Three different Los Alamos versions of the Quark-Gluon String Model were used for comparison with our experimental data. C1 [Balabekyan, A. R.; Danagulyan, A. S.; Drnoyan, J. R.; Hovhannisyan, G. H.] Yerevan State Univ, Yerevan, Armenia. [Drnoyan, J. R.; Demekhina, N. A.; Adam, J.; Kalinnikov, V. G.; Krivopustov, M. I.; Pronskikh, V. S.; Stegailov, V. I.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. M.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Demekhina, N. A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, J.] INF AS, Rez, Czech Republic. [Mashnik, S. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gudima, K. K.] Moldavian Acad Sci, Inst Appl Phys, Kishinev, Moldova. RP Balabekyan, AR (reprint author), Yerevan State Univ, Yerevan, Armenia. EM balabekyan@ysu.am RI Adam, Jindrich /G-9788-2014 FU US DOE FX The authors would like to express their gratitude to the operating personnel of the JINR Nuclotron and Synchrophasotron for providing good beam parameters. This work was supported partially by the US DOE. NR 34 TC 2 Z9 2 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD JUL PY 2010 VL 73 IS 7 BP 1176 EP 1184 DI 10.1134/S1063778810070112 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 628QV UT WOS:000280136600011 ER PT J AU Colvin, JD Fournier, KB May, MJ Scott, HA AF Colvin, Jeffrey D. Fournier, Kevin B. May, Mark J. Scott, Howard A. TI A computational study of x-ray emission from laser-irradiated Ge-doped foams SO PHYSICS OF PLASMAS LA English DT Article ID CONVERSION EFFICIENCY; PLASMAS; IONIZATION; ENERGY AB New advances in fabrication of low-density high-Z-doped foams have opened new windows on understanding how materials that are not in local thermodynamic equilibrium (LTE) are heated and radiate. Simulations are discussed in this paper of the x-ray spectral emissions from laser-irradiated very low-density Ge-doped silica aerogel targets using a two-dimensional radiation-hydrodynamics code incorporating a modern non-LTE superconfiguration atomic model. Details of the computational model are presented, and it is shown that, for the long-scale-length, subcritical-density, similar to 2-3 keV electron temperature plasmas created in experiments at the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], the simulations provide a close match to both the measured Ge L-shell emission (similar to 1-1.5 keV) and the measured Ge K-shell emission (similar to 10-11 keV), but only by accounting properly for nonlocal thermal conduction. The older average-atom atomic model is shown to be inadequate for these non-LTE plasmas. [doi:10.1063/1.3460817] C1 [Colvin, Jeffrey D.; Fournier, Kevin B.; May, Mark J.; Scott, Howard A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Colvin, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Defense Threat Reduction Agency [IACRO 09-45501] FX The authors owe a debt of gratitude to Stephen Moon of the Lawrence Livermore National Laboratory for initiating this work several years ago. The authors also acknowledge useful and enlightening discussions on all aspects of this work with Stephanie Hansen, currently of Sandia National Laboratories, Albuquerque. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, with some support received from the U.S. Defense Threat Reduction Agency under the IACRO 09-45501, "Evaluation of Lasers for X-Ray Production on NIF." NR 29 TC 17 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 073111 DI 10.1063/1.3460817 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600051 ER PT J AU Goldston, RJ AF Goldston, R. J. TI Downstream heat flux profile versus midplane T profile in tokamaks (vol 17, 012503, 2010) SO PHYSICS OF PLASMAS LA English DT Correction ID PLASMAS C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Goldston, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 3 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 079901 DI 10.1063/1.3457481 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600072 ER PT J AU Liu, YQ Chu, MS In, Y Okabayashi, M AF Liu, Yueqiang Chu, M. S. In, Y. Okabayashi, M. TI Resonant field amplification with feedback-stabilized regime in Current driven resistive wall mode SO PHYSICS OF PLASMAS LA English DT Article ID DIII-D; HYDROMAGNETIC-STABILITY; TOKAMAKS AB The stability and resonant field response of current driven resistive wall modes are numerically studied for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low pressure plasmas. The resonant field response of the feedback-stabilized resistive wall mode is investigated both analytically and numerically, and compared with the response from intrinsically stable or marginally stable modes. The modeling qualitatively reproduces the experimental results. Furthermore, based on some recent results and on the indirect numerical evidence in this work, it is suggested that the mode stability behavior observed in DIII-D experiments is due to the kink-peeling mode stabilization by the separatrix geometry. The phase inversion radius of the computed plasma displacement does not generally coincide with the radial locations of rational surfaces, also supporting experimental observations. [doi: 10.1063/1.3455540] C1 [Liu, Yueqiang] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Chu, M. S.] Gen Atom Co, San Diego, CA 92186 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Liu, YQ (reprint author), Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM yueqiang.liu@ccfe.ac.uk FU United Kingdom Engineering and Physical Sciences Research Council [EP/G003955]; European Communities; U.S. Department of Energy [DE-FG03-956ER54309] FX This work was partly funded by the United Kingdom Engineering and Physical Sciences Research Council under Grant No. EP/G003955 and the European Communities under the contract of association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also supported by the U.S. Department of Energy under Grant No. DE-FG03-956ER54309. NR 23 TC 6 Z9 6 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 072510 DI 10.1063/1.3455540 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600029 ER PT J AU Thompson, MC Badakov, H Rosenzweig, JB Travish, G Barov, N Piot, P Fliller, R Kazakevich, GM Santucci, J Li, J Tikhoplav, R AF Thompson, M. C. Badakov, H. Rosenzweig, J. B. Travish, G. Barov, N. Piot, P. Fliller, R. Kazakevich, G. M. Santucci, J. Li, J. Tikhoplav, R. TI Observations of low-aberration plasma lens focusing of relativistic electron beams at the underdense threshold SO PHYSICS OF PLASMAS LA English DT Article ID PROPAGATION; PULSES; BUNCH AB Focusing of a 15 MeV electron bunch by a plasma lens operated at the threshold of the underdense regime has been demonstrated. The strong, 1.7 cm focal length, plasma lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. It is shown through analytic analysis and simulation that the observed spherical aberration of this underdense lens, when expressed as the fractional departure of the focusing strength from its linear expectation, is Delta K/K=0.08 +/- 0.04. This is significantly lower than the minimum theoretical value for the spherical aberration of an overdense plasma lens. Parameter scans showing the dependence of focusing performance on beam charge, as well as time resolved measurements of the focused electron bunch, are reported. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457924] C1 [Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travish, G.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Thompson, M. C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Barov, N.] Far Tech Inc, San Diego, CA 92121 USA. [Piot, P.; Fliller, R.; Kazakevich, G. M.; Santucci, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piot, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Li, J.; Tikhoplav, R.] Univ Rochester, Rochester, NY 14627 USA. RP Thompson, MC (reprint author), Tri Alpha Energy Inc, Foothill Ranch, CA 92610 USA. RI Travish, Gil/H-4937-2011 OI Travish, Gil/0000-0002-4787-0949 FU U.S. Department of Energy [DE-FG03-92ER40693, W-7405-ENG-48] FX One of the authors (M.C.T.) acknowledges helpful discussions with S. G. Anderson on the topic of emittance measurement. This work was performed under the auspices of the U.S. Department of Energy under Contract Nos. DE-FG03-92ER40693 and W-7405-ENG-48. NR 36 TC 4 Z9 4 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 073105 DI 10.1063/1.3457924 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600045 ER PT J AU Vu, HX DuBois, DF Russell, DA Myatt, JF AF Vu, H. X. DuBois, D. F. Russell, D. A. Myatt, J. F. TI The reduced-description particle-in-cell model for the two plasmon decay instability SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PRODUCED PLASMAS; DRIVEN PARAMETRIC-INSTABILITIES; ION-ACOUSTIC-WAVES; 2-PLASMON DECAY; SATURATION; EMISSION; SCATTERING AB Recently, motivated by the resurgent interest in suprathermal electron generation by two plasmon decay (TPD) in direct-drive laser-fusion [J. A. Delettrez et al., Bull. Am. Phys. Soc. 53, 248 (2008); V. A. Smalyuk et al., Phys. Rev. Lett. 100, 185005 (2008); B. Yaakobi et al., Phys. Plasmas 12, 062703 (2005)1 the fully kinetic, reduced-description, particle-in-cell (RPIC) methodology has been extended to include TPD. It provides a computationally efficient fully kinetic simulation tool, especially in nonlinear regimes where the Langmuir decay instability (LDI) is a dominant saturation mechanism. This RPIC methodology is an extension of the modeling of laser-plasma instabilities in underdense plasmas reported previously [H. X. Vu, B. Bezzerides, and D. F. DuBois, J. Comput. Phys. 156, 12 (1999)]. The relationship between RPIC and the extended Zakharov model previously used for TPD [D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995)] is explored theoretically and tested in simulations. The modification of the electron velocity distribution-in particular, the generation of hot electrons-as calculated in RPIC leads to weakening of the wave turbulence excited by TPD compared to the Zaldiarov model predictions but the locations in wave vector space of important spectral features, e.g., arising from the LDI, of the nonlinear wave fluctuations are exactly the same in the two approaches. New results involving two oblique, overlapping laser beams, a common geometrical feature in direct-drive schemes, are presented. The two laser beams can cooperatively excite common primary Langmuir waves which initiate the LDI process. 2010 American Institute of Physics. [doi:10.1063/1.3457927] C1 [Vu, H. X.] Univ Calif San Diego, La Jolla, CA 92093 USA. [DuBois, D. F.; Russell, D. A.] Lodestar Res Corp, Boulder, CO 80301 USA. [DuBois, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Myatt, J. F.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Vu, HX (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. FU U.S. Department of Energy, Office of Inertial Confinement Fusion [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority; National Nuclear Security Agency through its High-Energy Density Laboratory [DE-FG52-09NA29545] FX This research was supported by (1) the U.S. Department of Energy, Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority and (2) the National Nuclear Security Agency through its High-Energy Density Laboratory Plasmas Grant No. DE-FG52-09NA29545. The support of the DOE does not constitute an endorsement by the DOE of the views expressed in this article. NR 37 TC 21 Z9 21 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 072701 DI 10.1063/1.3457927 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600035 ER PT J AU Wang, WX Diamond, PH Hahm, TS Ethier, S Rewoldt, G Tang, WM AF Wang, W. X. Diamond, P. H. Hahm, T. S. Ethier, S. Rewoldt, G. Tang, W. M. TI Nonlinear flow generation by electrostatic turbulence in tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID ANOMALOUS MOMENTUM TRANSPORT; TOROIDAL ROTATION; PLASMAS; SIMULATIONS AB Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEMs). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in. the presence of broken symmetry in the parallel wavenumber spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E x B shear. The ITG turbulence driven "intrinsic" torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by intrinsic torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a "flow pinch" In CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy, and particle fluxes, elucidating the roles of resonant and non-resonant particles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3459096] C1 [Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Diamond, P. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Wang, WX (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wwang@pppl.gov FU U.S. DOE [DE-AC02-09CH11466]; SciDAC project for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas FX We would like to acknowledge useful discussions with Dr. F. L. Hinton, Dr. S. M. Kaye, Dr. J. Lang, Dr. W. W. Lee, Dr. C. J. McDevitt, and Dr. W. Solomon. This work was supported by U.S. DOE under Contract No. DE-AC02-09CH11466 and the SciDAC project for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Simulations were performed at the National Energy Research Scientific Computing Center (NERSC) and the National Center for Computational Sciences (NCCS). NR 41 TC 43 Z9 43 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 072511 DI 10.1063/1.3459096 PG 20 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600030 ER PT J AU Welch, DR Rose, DV Thoma, C Clark, RE Mostrom, CB Stygar, WA Leeper, RJ AF Welch, D. R. Rose, D. V. Thoma, C. Clark, R. E. Mostrom, C. B. Stygar, W. A. Leeper, R. J. TI Kinetic simulation of thermonuclear-neutron production by a 10(7)-A deuterium Z pinch SO PHYSICS OF PLASMAS LA English DT Article ID EVOLUTION; BEAMS AB Fully kinetic simulations have demonstrated that at sufficiently high currents, half of the neutrons produced by a deuterium Z-pinch are thermonuclear in origin. At 150-kA pinch current, O. A. Anderson et al. [Phys. Rev. 110, 1375 (1958)] clearly shows that essentially all of the neutrons produced by a deuterium pinch are not thermonuclear, but are initiated by an instability that creates beam-target neutrons. Since this paper, many subsequent authors have supported this result while others have claimed that pinch neutrons are, on the contrary, thermonuclear. To resolve this issue, fully kinetic, collisional, and electromagnetic simulations of the complete time evolution of a deuterium pinch have been performed. The simulations were performed with the implicit particle-in-cell code LSP, as described in D. R. Welch et al. [Phys. Rev. Lett. 103, 255002 (2009)]. At 10(6) -A pinch currents, most of the neutrons are, indeed, beam-target in origin. At 15-MA current, half of the neutrons are thermonuclear and half are beam-target driven by instabilities that produce a power law fall off in the ion energy distribution function at large energy. Simulation results suggest that from 7- to 15-MA current, the fraction of thermonuclear neutrons is not sensitive to current and that the strong dependence of neutron yield on current will continue at currents greater than 15 MA. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457932] C1 [Welch, D. R.; Rose, D. V.; Thoma, C.; Clark, R. E.; Mostrom, C. B.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.; Leeper, R. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to acknowledge John Porter for support of this research and Craig Olson and Thomas Mehlhorn for encouraging the development of these numerical techniques. We would also like to thank Michael Frese for his assistance with MACH2. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy's National Nuclear Security Administration, under Contract No. DE-AC04-94AL85000. NR 29 TC 32 Z9 35 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2010 VL 17 IS 7 AR 072702 DI 10.1063/1.3457932 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 641FQ UT WOS:000281110600036 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Missed metric moment SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2010 VL 23 IS 7 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 621MR UT WOS:000279583500020 ER PT J AU Zhao, QA Gallego-Giraldo, L Wang, HZ Zeng, YN Ding, SY Chen, F Dixon, RA AF Zhao, Qiao Gallego-Giraldo, Lina Wang, Huanzhong Zeng, Yining Ding, Shi-You Chen, Fang Dixon, Richard A. TI An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula SO PLANT JOURNAL LA English DT Article DE NAC transcription factor; lignification; cell wall development; stomatal guard cell; anther dehiscence; bioenergy ID SECONDARY WALL; GENE-EXPRESSION; INSERTIONAL MUTAGENESIS; MONOLIGNOL BIOSYNTHESIS; LIGNIN BIOSYNTHESIS; CELLULOSE SYNTHESIS; DOWN-REGULATION; FORAGE QUALITY; FERULIC ACID; FACTORS NST1 AB P>To identify genes controlling secondary cell wall biosynthesis in the model legume Medicago truncatula, we screened a Tnt1 retrotransposon insertion mutant population for plants with altered patterns of lignin autofluorescence. From more than 9000 R1 plants screened, four independent lines were identified with a total lack of lignin in the interfascicular region. The mutants also showed loss of lignin in phloem fibers, reduced lignin in vascular elements, failure in anther dehiscence and absence of phenolic autofluorescence in stomatal guard cell walls. Microarray and PCR analyses confirmed that the mutations were caused by the insertion of Tnt1 in a gene annotated as encoding a NAM (no apical meristem)-like protein (here designated Medicago truncatula NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1, MtNST1). MtNST1 is the only family member in Medicago, but has three homologs (AtNST1-AtNST3) in Arabidopsis thaliana, which function in different combinations to control cell wall composition in stems and anthers. Loss of MtNST1 function resulted in reduced lignin content, associated with reduced expression of most lignin biosynthetic genes, and a smaller reduction in cell wall polysaccharide content, associated with reduced expression of putative cellulose and hemicellulose biosynthetic genes. Acid pre-treatment and cellulase digestion released significantly more sugars from cell walls of nst1 mutants compared with the wild type. We discuss the implications of these findings for the development of alfalfa (Medicago sativa) as a dedicated bioenergy crop. C1 [Zhao, Qiao; Gallego-Giraldo, Lina; Wang, Huanzhong; Chen, Fang; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Zeng, Yining; Ding, Shi-You] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Zeng, Yining; Ding, Shi-You; Chen, Fang; Dixon, Richard A.] BESC, Oak Ridge, TN USA. RP Dixon, RA (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM radixon@noble.org RI Ding, Shi-You/O-1209-2013 FU National Science Foundation [703285]; USDA-DOE [DE-FG02-06ER64303]; State Regents of Oklahoma (Oklahoma Bioenergy Center); US Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the DOE Office of Science; Samuel Roberts Noble Foundation FX We thank Lisa Jackson, Gail Shadle, and Liying Qi for assistance with mutant screening and lignin analyses, Drs Jiangqi Wen and Xiaofei Cheng for forward and reverse genetic screening, Dr Yuhong Tang for microarray analysis, and Drs Jin Nakashima, Elison Blancaflor and Li Quan for help with pollen staining and light microscopy, Dr Scott Russell (University of Oklahoma) for assistance with SEM analysis, and Drs Rujin Chen, Catalina Pislariu and Jianghua Chen for their critical reading of the manuscript. The M. truncatula plants utilized in this research project, which are jointly owned by the Centre National de la Recherche Scientifique, Gif-sur-Yvette, France, and the Samuel Roberts Noble Foundation, Ardmore, OK, USA, were created through research funded, in part, by grant 703285 from the National Science Foundation. This work was supported by grants to RAD from the USDA-DOE Feedstock Genomics program (award number DE-FG02-06ER64303) and the State Regents of Oklahoma (Oklahoma Bioenergy Center), the US Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the DOE Office of Science, and by the Samuel Roberts Noble Foundation. NR 49 TC 52 Z9 56 U1 4 U2 26 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD JUL PY 2010 VL 63 IS 1 BP 100 EP 114 DI 10.1111/j.1365-313X.2010.04223.x PG 15 WC Plant Sciences SC Plant Sciences GA 619CL UT WOS:000279406400008 PM 20408998 ER PT J AU Vanholme, R Demedts, B Morreel, K Ralph, J Boerjan, W AF Vanholme, Ruben Demedts, Brecht Morreel, Kris Ralph, John Boerjan, Wout TI Lignin Biosynthesis and Structure SO PLANT PHYSIOLOGY LA English DT Article ID CINNAMYL-ALCOHOL-DEHYDROGENASE; CELL-WALL FORMATION; O-METHYLTRANSFERASE ACTIVITY; DOMAIN TRANSCRIPTION FACTOR; ARABIDOPSIS-THALIANA; DOWN-REGULATION; CAD-DEFICIENT; PHENYLPROPANOID METABOLISM; FERULATE 5-HYDROXYLASE; SECONDARY METABOLISM C1 [Vanholme, Ruben; Demedts, Brecht; Morreel, Kris; Boerjan, Wout] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Vanholme, Ruben; Demedts, Brecht; Morreel, Kris; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium. [Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Boerjan, W (reprint author), Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM wout.boerjan@psb.vib-ugent.be OI Boerjan, Wout/0000-0003-1495-510X FU Research Foundation [G.0352.05N]; Stanford University; European Commission [KBBE-2007-3-1-01, KBBE-2007-3-1-02, KBBE-2007-1-2-05]; Agency for Innovation by Science and Technology; Bijzonder Onderzoeksfonds-Zware Apparatuur of the Ghent University for the FT-ICR-MS [174PZA05]; Ghent University [AUGE/014]; Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science) [BER DE-FC02-07ER64494] FX This work was supported by the Research Foundation-Flanders (grant no. G.0352.05N), by the Stanford University Global Climate and Energy Project (grants "Towards New Degradable Lignin Types" to W. B. and "Efficient Biomass Conversion: Delineating the Best Lignin Monomer-Substitutes" to J.R.), by the European Commission Framework VII projects RENEWALL (grant no. KBBE-2007-3-1-01), ENERGYPOPLAR (grant no. KBBE-2007-3-1-02), and NOVELTREE (grant no. KBBE-2007-1-2-05), by the Agency for Innovation by Science and Technology (predoctoral fellowships to R. V. and B. D.), by grants from the Bijzonder Onderzoeksfonds-Zware Apparatuur of the Ghent University for the FT-ICR-MS (grant no. 174PZA05) and from the Hercules program of Ghent University for the Synapt Q-Tof (grant no. AUGE/014), and by the Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science grant no. BER DE-FC02-07ER64494). NR 112 TC 491 Z9 518 U1 63 U2 334 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JUL PY 2010 VL 153 IS 3 BP 895 EP 905 DI 10.1104/pp.110.155119 PG 11 WC Plant Sciences SC Plant Sciences GA 619AX UT WOS:000279400200001 PM 20472751 ER PT J AU Alonso, AP Piasecki, RJ Wang, Y LaClair, RW Shachar-Hill, Y AF Alonso, Ana P. Piasecki, Rebecca J. Wang, Yan LaClair, Russell W. Shachar-Hill, Yair TI Quantifying the Labeling and the Levels of Plant Cell Wall Precursors Using Ion Chromatography Tandem Mass Spectrometry SO PLANT PHYSIOLOGY LA English DT Article ID PENTOSE-PHOSPHATE PATHWAY; INTRACELLULAR METABOLITES; LIQUID-CHROMATOGRAPHY; AMINO-ACIDS; EXTRACTION; BIOSYNTHESIS; NETWORKS; GROWTH; CYCLE; MODE AB The biosynthesis of cell wall polymers involves enormous fluxes through central metabolism that are not fully delineated and whose regulation is poorly understood. We have established and validated a liquid chromatography tandem mass spectrometry method using multiple reaction monitoring mode to separate and quantify the levels of plant cell wall precursors. Target analytes were identified by their parent/daughter ions and retention times. The method allows the quantification of precursors at low picomole quantities with linear responses up to the nanomole quantity range. When applying the technique to Arabidopsis (Arabidopsis thaliana) T87 cell cultures, 16 hexose-phosphates (hexose-Ps) and nucleotide-sugars (NDP-sugars) involved in cell wall biosynthesis were separately quantified. Using hexose-P and NDP-sugar standards, we have shown that hot water extraction allows good recovery of the target metabolites (over 86%). This method is applicable to quantifying the levels of hexose-Ps and NDP-sugars in different plant tissues, such as Arabidopsis T87 cells in culture and fenugreek (Trigonella foenum-graecum) endosperm tissue, showing higher levels of galacto-mannan precursors in fenugreek endosperm. In Arabidopsis cells incubated with [U-C-13(Fru)]sucrose, the method was used to track the labeling pattern in cell wall precursors. As the fragmentation of hexose-Ps and NDP-sugars results in high yields of [PO3](-) and/or [H2PO4](-) ions, mass isotopomers can be quantified directly from the intensity of selected tandem mass spectrometry transitions. The ability to directly measure C-13 labeling in cell wall precursors makes possible metabolic flux analysis of cell wall biosynthesis based on dynamic labeling experiments. C1 [Alonso, Ana P.; Piasecki, Rebecca J.; Wang, Yan; LaClair, Russell W.; Shachar-Hill, Yair] Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Alonso, Ana P.; Piasecki, Rebecca J.; LaClair, Russell W.; Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Alonso, AP (reprint author), Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM alonsoa@msu.edu RI Shachar-Hill, Yair/B-6165-2013 OI Shachar-Hill, Yair/0000-0001-8793-5084 FU Great Lakes Bioenergy Research Center (U.S. Department of Energy, Office of Biological and Environmental Research, Office of Science) [DE-FC02-07ER64494]; National Science Foundation, Research Coordination Networks in Biological Sciences [0090281] FX This work was supported by the Great Lakes Bioenergy Research Center (U.S. Department of Energy, Office of Biological and Environmental Research, Office of Science grant no. DE-FC02-07ER64494) and was supported in part by the National Science Foundation, Research Coordination Networks in Biological Sciences (grant no. 0090281). NR 34 TC 33 Z9 33 U1 0 U2 17 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JUL PY 2010 VL 153 IS 3 BP 915 EP 924 DI 10.1104/pp.110.155713 PG 10 WC Plant Sciences SC Plant Sciences GA 619AX UT WOS:000279400200003 PM 20442274 ER PT J AU van Parijs, FRD Morreel, K Ralph, J Boerjan, W Merks, RMH AF van Parijs, Frederik R. D. Morreel, Kris Ralph, John Boerjan, Wout Merks, Roeland M. H. TI Modeling Lignin Polymerization. I. Simulation Model of Dehydrogenation Polymers SO PLANT PHYSIOLOGY LA English DT Article ID PULPING EFFICIENCY; COMPUTER SIMREL; LIGNIFICATION; CHEMISTRY; CELLULOSE; GUAIACYL; POPLAR; BIOSYNTHESIS; SYRINGYL; MONOMERS AB Lignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions controlling the primary structure of lignin polymers. Our model predicts two controlling factors for the beta-O-4 content of syringyl-guaiacyl lignins: the supply rate of monolignols and the relative amount of supplied sinapyl alcohol monomers. We have analyzed the in silico degradability of the resulting lignin polymers by cutting the resulting lignin polymers at beta-O-4 bonds. These are cleaved in analytical methods used to study lignin composition, namely thioacidolysis and derivatization followed by reductive cleavage, under pulping conditions, and in some lignocellulosic biomass pretreatments. C1 [van Parijs, Frederik R. D.; Merks, Roeland M. H.] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands. [van Parijs, Frederik R. D.; Merks, Roeland M. H.] Netherlands Inst Syst Biol, Netherlands Consortium Syst Biol, NL-1090 GB Amsterdam, Netherlands. [Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53706 USA. [van Parijs, Frederik R. D.; Morreel, Kris; Boerjan, Wout] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [van Parijs, Frederik R. D.; Morreel, Kris; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium. RP Merks, RMH (reprint author), Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands. EM roeland.merks@cwi.nl RI Merks, Roeland/A-2249-2008; OI Merks, Roeland/0000-0002-6152-687X; Boerjan, Wout/0000-0003-1495-510X FU Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; Stanford's Global Climate and Energy Project; Marie Curie Intra-European Fellowship [MEIF-CT-2005-025084]; Marie Curie European Reintegration [PERG03-GA-2008-230974]; Netherlands Genomics Initiative/Netherlands Organization for Scientific Research FX This work was supported by the Department of Energy Great Lakes Bioenergy Research Center (grant no. DE-FC02-07ER64494), by Stanford's Global Climate and Energy Project (grants to W.B., F.R. D.v.P., and J.R.), by a Marie Curie Intra-European Fellowship (no. MEIF-CT-2005-025084 to R.M.H.M.) and a Marie Curie European Reintegration Grant (no. PERG03-GA-2008-230974 to R.M.H.M.), and by the Netherlands Consortium for Systems Biology, which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of Stanford University, the Sponsors of the Global Climate and Energy Project, or others involved with the Global Climate and Energy Project. NR 44 TC 18 Z9 18 U1 2 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JUL PY 2010 VL 153 IS 3 BP 1332 EP 1344 DI 10.1104/pp.110.154468 PG 13 WC Plant Sciences SC Plant Sciences GA 619AX UT WOS:000279400200035 PM 20472753 ER PT J AU Shultzaberger, RK Malashock, DS Kirsch, JF Eisen, MB AF Shultzaberger, Ryan K. Malashock, Daniel S. Kirsch, Jack F. Eisen, Michael B. TI The Fitness Landscapes of cis-Acting Binding Sites in Different Promoter and Environmental Contexts SO PLOS GENETICS LA English DT Article ID COLI RNA-POLYMERASE; TETRACYCLINE-RESISTANCE OPERON; ESCHERICHIA-COLI; TRANSCRIPTIONAL ACTIVATION; INFORMATION-CONTENT; COMPLEX-FORMATION; SEQUENCE LOGOS; EXPRESSION; INITIATION; PROTEIN AB The biophysical nature of the interaction between a transcription factor and its target sequences in vitro is sufficiently well understood to allow for the effects of DNA sequence alterations on affinity to be predicted. But even in relatively simple in vivo systems, the complexities of promoter organization and activity have made it difficult to predict how altering specific interactions between a transcription factor and DNA will affect promoter output. To better understand this, we measured the relative fitness of nearly all Escherichia coli sigma(70) -35 binding sites in different promoter and environmental contexts by competing four randomized -35 promoter libraries controlling the expression of the tetracycline resistance gene (tet) against each other in increasing concentrations of drug. We sequenced populations after competition to determine the relative enrichment of each -35 sequence. We observed a consistent relationship between the frequency of recovery of each -35 binding site and its predicted affinity for sigma(70) that varied depending on the sequence context of the promoter and drug concentration. Overall the relative fitness of each promoter could be predicted by a simple thermodynamic model of transcriptional regulation, in which the rate of transcriptional initiation (and hence fitness) is dependent upon the overall stability of the initiation complex, which in turn is dependent upon the energetic contributions of all sites within the complex. As implied by this model, a decrease in the free energy of association at one site could be compensated for by an increase in the binding energy at another to produce a similar output. Furthermore, these data show that a large and continuous range of transcriptional outputs can be accessed by merely changing the -35, suggesting that evolved or engineered mutations at this site could allow for subtle and precise control over gene expression. C1 [Shultzaberger, Ryan K.; Kirsch, Jack F.; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Malashock, Daniel S.] Univ Calif Berkeley, Grad Grp Comparat Biochem, Berkeley, CA 94720 USA. [Kirsch, Jack F.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Eisen, Michael B.] Ernest Orlando Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. RP Shultzaberger, RK (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mbeisen@berkeley.edu OI Eisen, Michael/0000-0002-7528-738X FU National Human Genome Research Institute [HG002779] FX This work was supported by National Human Genome Research Institute grant HG002779 to MBE. MBE is an investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 34 TC 13 Z9 13 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JUL PY 2010 VL 6 IS 7 AR e1001042 DI 10.1371/journal.pgen.1001042 PG 14 WC Genetics & Heredity SC Genetics & Heredity GA 633ON UT WOS:000280512700038 PM 20686658 ER PT J AU Vary, JP Honkanen, H Li, J Maris, P Shirokov, AM Brodsky, SJ Harindranath, A De Teramond, GF Ng, EG Yang, C Sosonkina, M AF Vary, J. P. Honkanen, H. Li, Jun Maris, P. Shirokov, A. M. Brodsky, S. J. Harindranath, A. De Teramond, G. F. Ng, E. G. Yang, C. Sosonkina, M. TI Ab-initio Hamiltonian approach to light nuclei and to quantum field theory SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 54th Annual Nuclear Physical Symposium CY DEC 08-12, 2009 CL Mumbai, INDIA SP Board Res Nucl Sci, Bhabha Atom Res Ctr DE Microscopic nuclear structure; no core shell model; light-front field theory AB Nuclear structure physics is on the threshold of confronting several long standing problems such as the origin of shell structure from basic nucleon-nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear - QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory C1 [Vary, J. P.; Honkanen, H.; Li, Jun; Maris, P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Shirokov, A. M.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia. [Brodsky, S. J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Harindranath, A.] Saha Inst Nucl Phys, Theory Grp, Kolkata 700064, India. [De Teramond, G. F.] Univ Costa Rica, San Jose, Costa Rica. [Ng, E. G.; Yang, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sosonkina, M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Vary, JP (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM jvary@iastate.edu RI Shirokov, Andrey/D-7054-2012 NR 22 TC 0 Z9 0 U1 0 U2 0 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 EI 0973-7111 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD JUL PY 2010 VL 75 IS 1 SI SI BP 39 EP 49 PG 11 WC Physics, Multidisciplinary SC Physics GA 630TX UT WOS:000280298400005 ER PT J AU Paul, BK Bose, S Palo, D AF Paul, B. K. Bose, S. Palo, D. TI An internal convective heating technique for diffusion bonding arrayed microchannel architectures SO PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY LA English DT Article DE Arrayed microfluidics; Diffusion bonding; Internal convective heating; Channel warpage; Thermal stress ID MICROLAMINATION; SYSTEMS AB Diffusion bonding cycle times can be a large factor in the production cost of metal microchannel devices. The challenge is to significantly minimize bonding cycle times through rapid heating and cooling within the bonding process. A novel method is described which takes advantage of the internal flow passages within microchannel devices for convective heat transfer during the bonding process. The internal convective heating (ICH) technique makes use of heated inert gas to provide the microchannel assembly with rapid and uniform heat input. Results demonstrate that the ICH technique is feasible, capable of producing microchannels with higher dimensional integrity and shorter bonding cycle times than traditional vacuum hot press methods. Results suggest that this may be due to smaller thermal gradients within microchannel devices during the ICH bonding cycle. (C) 2010 Elsevier Inc. All rights reserved. C1 [Paul, B. K.; Bose, S.] Oregon State Univ, Corvallis, OR 97331 USA. [Palo, D.] Pacific NW Natl Lab, Richland, WA USA. RP Paul, BK (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. EM brian.paul@oregonstate.edu NR 15 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0141-6359 J9 PRECIS ENG JI Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. PD JUL PY 2010 VL 34 IS 3 BP 554 EP 562 DI 10.1016/j.precisioneng.2010.01.005 PG 9 WC Engineering, Multidisciplinary; Engineering, Manufacturing; Nanoscience & Nanotechnology; Instruments & Instrumentation SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation GA 608SM UT WOS:000278606300023 ER PT J AU Tsao, JY Coltrin, ME Crawford, MH Simmons, JA AF Tsao, Jeffrey Y. Coltrin, Michael E. Crawford, Mary H. Simmons, Jerry A. TI Solid-State Lighting: An Integrated Human Factors, Technology, and Economic Perspective SO PROCEEDINGS OF THE IEEE LA English DT Article DE Color; costs; economics; human factors; light-emitting diodes; lighting; luminescence; luminescent devices; technology forecasting ID EMITTING-DIODES; WHITE-LIGHT; HIGH-POWER; RED PHOSPHOR; EFFICIENCY; ILLUMINATION; LAMPS; LEDS; SUBSTRATE; EFFICACY AB Solid-state lighting is a rapidly evolving technology, now virtually certain to someday displace traditional lighting in applications ranging from the lowest-power spot illuminator to the highest-power area illuminator. Moreover, it has considerable headroom for continued evolution even after this initial displacement. In this paper, we present a high-level overview of solid-state lighting, with an emphasis on white lighting suitable for general illumination. We characterize in detail solid-state lighting's past and potential-future evolution using various performance and cost metrics, with special attention paid to inter-relationships between these metrics imposed by human factors, technology, and economic considerations. C1 [Tsao, Jeffrey Y.; Coltrin, Michael E.; Crawford, Mary H.; Simmons, Jerry A.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, Phys Chem & Nano Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov; mecoltr@sandia.gov; mhcrawf@sandia.gov; jsimmon@sandia.gov FU Division of Material Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC04-94AL85000] FX Date of publication April 29, 2010; date of current version June 18, 2010. This work was supported by the Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC04-94AL85000. NR 66 TC 80 Z9 82 U1 3 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD JUL PY 2010 VL 98 IS 7 BP 1162 EP 1179 DI 10.1109/JPROC.2009.2031669 PG 18 WC Engineering, Electrical & Electronic SC Engineering GA 611JQ UT WOS:000278811800007 ER PT J AU Perlin, P Marona, L Leszczynski, M Suski, T Wisniewski, P Czernecki, R Grzegory, I AF Perlin, Piotr Marona, Lucja Leszczynski, Mike Suski, Tadek Wisniewski, Przemek Czernecki, Robert Grzegory, Izabella TI Degradation Mechanisms of InGaN Laser Diodes SO PROCEEDINGS OF THE IEEE LA English DT Article DE Lasers; reliability; semiconductor lasers; semiconductor materials ID LATERALLY OVERGROWN GAN; HIGH ELECTRICAL STRESS; HIGH-POWER AB We discuss various mechanisms of laser diode degradation based on our own experiments and on the available literature data. In most of the cases, degradation of InGaN laser diodes occurs through the increase of the threshold current with almost constant slope efficiency. The threshold current change follows frequently the square root on time dependence. Though this type of behavior has usually been attributed to magnesium acceptor diffusion, no firm proof of such a hypothesis has so far been presented. In contrast, there is an increasing number of reported experiments showing that the most important factor contributing to fast (hours), and medium time (hundreds of hours) degradation is the process of carbon deposition. This process involves photochemical reactions leading to the decomposition of hydrocarbons existing in the laser diode environment. This process resembles very closely the mechanism responsible for 980-nm laser diode degradation and known as Package Induced Failure. C1 [Perlin, Piotr; Marona, Lucja; Leszczynski, Mike; Suski, Tadek; Wisniewski, Przemek; Czernecki, Robert; Grzegory, Izabella] Polish Acad Sci, Inst High Pressure Phys, PL-01142 Warsaw, Poland. [Perlin, Piotr; Leszczynski, Mike; Wisniewski, Przemek; Czernecki, Robert; Grzegory, Izabella] TopGaN Ltd, PL-01142 Warsaw, Poland. RP Perlin, P (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM piotr@unipress.waw.pl; lucja@unipress.waw.pl; mike@unipress.waw.pl; tadek@unipress.waw.pl; przemek@unipress.waw.pl; robert@unipress.waw.pl; izabella@unipress.waw.pl FU European Union [POIG.01.01.02-00-008/08]; Polish Ministry of Science and State Committee for Scientific Research [R00-00025/3] FX Manuscript received June 29, 2009; accepted August 10, 2009. Date of publication February 17, 2009; date of current version June 18, 2010. This work was supported in part by the European Union within the European Regional Development Fund under Grant Innovative Economy POIG.01.01.02-00-008/08 and in part by the Polish Ministry of Science and State Committee for Scientific Research under Project R00-00025/3. NR 22 TC 8 Z9 8 U1 2 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD JUL PY 2010 VL 98 IS 7 BP 1214 EP 1219 DI 10.1109/JPROC.2009.2030826 PG 6 WC Engineering, Electrical & Electronic SC Engineering GA 611JQ UT WOS:000278811800011 ER PT J AU Buchko, GW AF Buchko, Garry W. TI Circular Dichroism Studies on the Deinococcus radiodurans Nudix Hydrolase DR_0079: An Atypical Thermal Melt SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Circular dichroism spectroscopy; NMR spectroscopy; Nudix hydrolase; polyphosphate pyrophosphohydrolase; protein aggregation; protein refolding; thermal stability ID ESCHERICHIA-COLI; PROTEIN AGGREGATION; RADIATION; DOMAIN; DENATURATION; PURIFICATION; ASSOCIATION; STABILITY; BACTERIUM; BINDING AB The crystal structure for the Deinococcus radiodurans Nudix protein DR_0079 was recently determined in the metal-free form at 1.9 angstrom resolution (2O5F). The protein adopts the fundamental fold common to the Nudix family of proteins, a large mixed beta-sheet sandwiched between the alpha-helix of the "Nudix box" and a second alpha-helix. The protein's physical properties were further characterized by circular dichroism (CD) spectroscopy. A CD thermal melt at 220 nm indentifies an inflection point at similar to 52 degrees C. However, unlike typical CD thermal melts, the negative ellipticity at 220 nm becomes more negative upon passing through the inflection point. Both NMR spectroscopy and size exclusion chromatography indicate that heating effects the irreversible formation of a large molecular weight complex. After cooling, the negative ellipiticity at 220 nm increases further, and overall, the CD spectrum at 25 degrees C suggests that heat-treated DR_0079 has more alpha-helical and beta-sheet structure than non-heat treated DR_0079. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,EMSL Mail Stop K8-98, Richland, WA 99352 USA. EM garry.buchko@pnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU DOE Biological and Environmental Research; U.S. Department of Energy, Office of Biological Energy Research [DE-AC03-76SF00098] FX The research was performed in the Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the DOE Biological and Environmental Research) located at Pacific Northwest National Laboratory and operated for DOE by Battelle. Dr. Stephen R. Holbrook at Lawrence Berkeley National Laboratory (Berkeley, CA) is thanked for initiating our interest in Nudix hydrolases. This work was funded by a grant from the U.S. Department of Energy, Office of Biological Energy Research, Contract No. (DE-AC03-76SF00098). NR 30 TC 2 Z9 2 U1 0 U2 2 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PD JUL PY 2010 VL 17 IS 7 BP 831 EP 835 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 599KL UT WOS:000277910800004 PM 20156187 ER PT J AU Sledz, P Zheng, HP Murzyn, K Chruszcz, M Zimmerman, MD Chordia, MD Joachimiak, A Minor, W AF Sledz, Pawel Zheng, Heping Murzyn, Krzysztof Chruszcz, Maksymilian Zimmerman, Matthew D. Chordia, Mahendra D. Joachimiak, Andrzej Minor, Wladek TI New surface contacts formed upon reductive lysine methylation: Improving the probability of protein crystallization SO PROTEIN SCIENCE LA English DT Article DE intermolecular contacts; lysine methylation; protein crystallization; surface entropy reduction; data mining ID CHAIN CONFORMATIONAL ENTROPY; IN-SITU PROTEOLYSIS; LIMITED PROTEOLYSIS; ESCHERICHIA-COLI; STRUCTURAL GENOMICS; ANGSTROM RESOLUTION; BINDING DOMAIN; RESIDUES; STRATEGY; CALMODULIN AB Surface lysine methylation (SLM) is a technique for improving the rate of success of protein crystallization by chemically methylating lysine residues. The exact mechanism by which SLM enhances crystallization is still not clear. To study these mechanisms, and to analyze the conditions where SLM will provide the optimal benefits for rescuing failed crystallization experiments, we compared 40 protein structures containing N,N-dimethyl-lysine (dmLys) to a nonredundant set of 18,972 nonmethylated structures from the PDB. By measuring the relative frequency of intermolecular contacts (where contacts are defined as interactions between the residues in proximity with a distance of 3.5 angstrom or less) of basic residues in the methylated versus nonmethylated sets, dmLys-Glu contacts are seen more frequently than Lys-Glu contacts. Based on observation of the 10 proteins with both native and methylated structures, we propose that the increased rate of contact for dmLys-Glu is due to both a slight increase in the number of amine-carboxyl H-bonds and to the formation of methyl C H center dot center dot center dot O interactions. By comparing the relative contact frequencies of dmLys with other residues, the mechanism by which methylation of lysines improves the formation of crystal contacts appears to be similar to that of Lys to Arg mutation. Moreover, analysis of methylated structures with the surface entropy reduction (SER) prediction server suggests that in many cases SLM of predicted SER sites may contribute to improved crystallization. Thus, tools that analyze protein sequences and mark residues for SER mutation may identify proteins with good candidate sites for SLM. C1 [Sledz, Pawel; Zheng, Heping; Murzyn, Krzysztof; Chruszcz, Maksymilian; Zimmerman, Matthew D.; Chordia, Mahendra D.; Minor, Wladek] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. [Sledz, Pawel] Warsaw Univ, Dept Chem, PL-02093 Warsaw, Poland. [Sledz, Pawel; Zheng, Heping; Murzyn, Krzysztof; Chruszcz, Maksymilian; Zimmerman, Matthew D.; Chordia, Mahendra D.; Joachimiak, Andrzej; Minor, Wladek] Jagiellonian Univ, Midwest Ctr Struct Genom, PL-30387 Krakow, Poland. [Murzyn, Krzysztof] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, Dept Computat Biophys & Bioinformat, PL-30387 Krakow, Poland. [Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Minor, W (reprint author), Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. EM wladek@iwonka.med.virginia.edu RI Chruszcz, Maksymilian/E-6407-2011; Murzyn, Krzysztof/A-4744-2014; Minor, Wladek/F-3096-2014; Zimmerman, Matthew/N-9489-2013; OI Chruszcz, Maksymilian/0000-0001-7521-5485; Zimmerman, Matthew/0000-0002-6274-9493; Minor, Wladek/0000-0001-7075-7090 FU NIH [GM074942, GM53163] FX Grant sponsor: NIH; Grant numbers: GM074942 (PSI), GM53163. NR 48 TC 21 Z9 22 U1 0 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2010 VL 19 IS 7 BP 1395 EP 1404 DI 10.1002/pro.420 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 619VO UT WOS:000279458600012 PM 20506323 ER PT J AU Lang, PT Ng, HL Fraser, JS Corn, JE Echols, N Sales, M Holton, JM Alber, T AF Lang, P. Therese Ng, Ho-Leung Fraser, James S. Corn, Jacob E. Echols, Nathaniel Sales, Mark Holton, James M. Alber, Tom TI Automated electron-density sampling reveals widespread conformational polymorphism in proteins SO PROTEIN SCIENCE LA English DT Article DE X-ray crystallography; structural polymorphism; electron-density sampling; side chain ensembles; rotamers ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; MACROMOLECULAR MODELS; CRYSTAL-STRUCTURES; SIDE-CHAINS; REFINEMENT; DISORDER; CRYSTALLOGRAPHY; RESOLUTION; ENSEMBLES AB Although proteins populate large structural ensembles, X-ray diffraction data are traditionally interpreted using a single model. To search for evidence of alternate conformers, we developed a program, Ringer, which systematically samples electron density around the dihedral angles of protein side chains. In a diverse set of 402 structures, Ringer identified weak, nonrandom electron-density features that suggest of the presence of hidden, lowly populated conformations for >18% of uniquely modeled residues. Although these peaks occur at electron-density levels traditionally regarded as noise, statistically significant (P < 10(-5)) enrichment of peaks at successive rotameric chi angles validates the assignment of these features as unmodeled conformations. Weak electron density corresponding to alternate rotamers also was detected in an accurate electron density map free of model bias. Ringer analysis of the high-resolution structures of free and peptide-bound calmodulin identified shifts in ensembles and connected the alternate conformations to ligand recognition. These results show that the signal in high-resolution electron density maps extends below the traditional 1 sigma cutoff, and crystalline proteins are more polymorphic than current crystallographic models. Ringer provides an objective, systematic method to identify previously undiscovered alternate conformations that can mediate protein folding and function. C1 [Lang, P. Therese; Ng, Ho-Leung; Fraser, James S.; Corn, Jacob E.; Echols, Nathaniel; Alber, Tom] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Sales, Mark] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Holton, James M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Alber, T (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 374B Stanley Hall, Berkeley, CA 94720 USA. EM tom@ucxray.berkeley.edu RI Ng, Ho Leung/E-3419-2010; Ng , Ho Leung/B-5650-2016; OI Ng, Ho Leung/0000-0002-6415-1938; Ng , Ho Leung/0000-0002-6415-1938; Fraser, James/0000-0002-5080-2859; Corn, Jacob/0000-0002-7798-5309 FU NIH [F32 GM069165, R01 GM48598]; NSF; Canadian NSERC FX Grant sponsor: NIH; Grant numbers: F32 GM069165, R01 GM48598; Grant sponsors: NSF; Canadian NSERC. NR 41 TC 67 Z9 67 U1 2 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2010 VL 19 IS 7 BP 1420 EP 1431 DI 10.1002/pro.423 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 619VO UT WOS:000279458600014 PM 20499387 ER PT J AU Gupta, N Hixson, KK Culley, DE Smith, RD Pevzner, PA AF Gupta, Nitin Hixson, Kim K. Culley, David E. Smith, Richard D. Pevzner, Pavel A. TI Analyzing protease specificity and detecting in vivo proteolytic events using tandem mass spectrometry SO PROTEOMICS LA English DT Article DE Bioinformatics; Chymotrypsin; CNBr; Protease specificity; Proteolysis; V8 protease ID QUANTITATIVE PROTEOMICS; LIQUID-CHROMATOGRAPHY; CLEAVAGE SITES; PEPTIDE LIBRARIES; IDENTIFICATION; PROTEINS; ENZYME; CHYMOTRYPSIN; DEGRADATION; PREDICTION AB Although trypsin remains the most commonly used protease in MS, other proteases may be employed for increasing peptide coverage or generating overlapping peptides. Knowledge of the accurate specificity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when label-free MS is used to discover in vivo proteolytic cleavages. Since in vivo cleavages are inferred by subtracting digestion-induced cleavages from all observed cleavages, it is important to ensure that the specificity rule used to identify digestion-induced cleavages are broad enough to capture even minor cleavages produced in digestion, to avoid erroneously identifying them as in vivo cleavages. In this study, we describe MS-Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage using label-free MS. The tool is used in conjunction with digestion by trypsin and three other proteases, whose specificity rules are revised and extended before inferring proteolytic cleavages. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome-wide scale. C1 [Gupta, Nitin; Pevzner, Pavel A.] Univ Calif San Diego, Bioinformat Program, La Jolla, CA 92093 USA. [Hixson, Kim K.; Culley, David E.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. RP Gupta, N (reprint author), Univ Calif San Diego, Bioinformat Program, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ngupta@ucsd.edu RI Gupta, Nitin/G-2420-2010; Smith, Richard/J-3664-2012 OI Gupta, Nitin/0000-0002-8408-3848; Smith, Richard/0000-0002-2381-2349 FU NIH [5R01RR016522-05, 1-P41-RR024851-01]; Howard Hughes Medical Institute; NIH Center of Proteomics Research Resource for Integrative Biology [RR018522]; DOE [DE-AC05-76RLO 1830] FX This work was supported by NIH 5R01RR016522-05 and 1-P41-RR024851-01 grants and Howard Hughes Medical Institute Professor Award to P. A. P. Portions of this research were supported by the NIH Center of Proteomics Research Resource for Integrative Biology RR018522 (to R. D. S.). The proteomic measurements were performed in the Environmental Molecular Sciences Laboratory, the US Department of Energy (DOE) national scientific user facility on the PNNL campus. PNNL is multi-program national laboratory operated by Battelle for the DOE under Contract No. DE-AC05-76RLO 1830. NR 40 TC 12 Z9 12 U1 1 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD JUL PY 2010 VL 10 IS 15 BP 2833 EP 2844 DI 10.1002/pmic.200900821 PG 12 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 640LY UT WOS:000281054300010 PM 20597098 ER PT J AU Matmon, A Briner, JP Carver, G Bierman, P Finkel, RC AF Matmon, A. Briner, J. P. Carver, G. Bierman, P. Finkel, R. C. TI Moraine chronosequence of the Donnelly Dome region, Alaska SO QUATERNARY RESEARCH LA English DT Article DE Cosmogenic exposure ages; Moraines; Alaska; Delta; Donnelly ID LAST GLACIAL MAXIMUM; CORDILLERAN ICE-SHEET; SIERRA-NEVADA; MOUNTAIN-GLACIATION; YUKON-TERRITORY; QUATERNARY GLACIATION; COSMOGENIC BE-10; AHKLUN MOUNTAINS; TROPICAL ANDES; YOUNGER DRYAS AB We present (10)Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. (10)Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized similar to 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing (10)Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka. (C) 2010 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Matmon, A.] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Briner, J. P.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Carver, G.] CARVER GEOL Inc, Kodiak, AK 99615 USA. [Bierman, P.] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Bierman, P.] Univ Vermont, Sch Nat Resources, Burlington, VT 05405 USA. [Finkel, R. C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Finkel, R. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Matmon, A (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. EM arimatmon@cc.huji.ac.il FU Alyaska; PGE; Hebrew University of Jerusalem [034-7982] FX We thank J. Larsen, L Hakansson, and N. Young for assistance in sample preparation. Y. Axford assisted JPB with sample collection. We appreciate the thoughtful review of an early draft by R. Reger as well as constructive reviews by L Owen, D. Froese, and D. Dethier. This study was funded by Alyaska, PG&E, and Hebrew University of Jerusalem internal fund 034-7982. NR 59 TC 11 Z9 11 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD JUL PY 2010 VL 74 IS 1 BP 63 EP 72 DI 10.1016/j.yqres.2010.04.007 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 623RA UT WOS:000279758300009 ER PT J AU Dauer, LT Brooks, AL Hoel, DG Morgan, WF Stram, D Tran, P AF Dauer, Lawrence T. Brooks, Antone L. Hoel, David G. Morgan, William F. Stram, Daniel Tran, Phung TI Review and evaluation of updated research on the health effects associated with low-dose ionising radiation SO RADIATION PROTECTION DOSIMETRY LA English DT Review ID US RADIOLOGIC TECHNOLOGISTS; TRANSFORMATION IN-VITRO; INDUCED GENOMIC INSTABILITY; NORMAL HUMAN FIBROBLASTS; ATOMIC-BOMB SURVIVORS; RAT LUNG IRRADIATION; LOW-LET RADIATION; TECHA RIVER POPULATION; SOLID CANCER INCIDENCE; NUCLEAR-POWER-PLANTS AB While radiation health risks at low doses have traditionally been estimated from high-dose studies, we have reviewed recent literature and concluded that the mechanisms of action for many biological endpoints may be different at low doses from those observed at high doses; that acute doses < 100 mSv may be too small to allow epidemiological detection of excess cancers given the background of naturally occurring cancers; that low-dose radiation research should use holistic approaches such as systems-based methods to develop models that define the shape of the dose-response relationship; and that these results should be combined with the latest epidemiology to produce a comprehensive understanding of radiation effects that addresses both damage, likely with a linear effect, and response, possibly with non-linear consequences. Continued research is needed to understand how radiobiology and epidemiology advances should be used to effectively model radiation worker risks. C1 [Dauer, Lawrence T.] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA. [Brooks, Antone L.] Washington State Univ, Richland, WA 99352 USA. [Hoel, David G.] Med Univ S Carolina, Charleston, SC 29425 USA. [Morgan, William F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Stram, Daniel] Univ So Calif, Keck Sch Med, Los Angeles, CA 90089 USA. [Tran, Phung] Elect Power Res Inst, Palo Alto, CA 94304 USA. RP Dauer, LT (reprint author), Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1275 York Ave, New York, NY 10021 USA. EM dauerl@mskcc.org OI Dauer, Lawrence/0000-0002-5629-8462 FU Electric Power Research Institute FX This work was supported by the Electric Power Research Institute. More information on this review can be found at www.epri.com, report number 1019227. NR 216 TC 64 Z9 78 U1 4 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD JUL PY 2010 VL 140 IS 2 BP 103 EP 136 DI 10.1093/rpd/ncq141 PG 34 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 620DR UT WOS:000279479700001 PM 20413418 ER PT J AU Dakovski, GL Li, Y Durakiewicz, T Rodriguez, G AF Dakovski, G. L. Li, Y. Durakiewicz, T. Rodriguez, G. TI Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DELAY-COMPENSATED MONOCHROMATOR; HIGH-ORDER HARMONICS; PHOTOELECTRON-SPECTROSCOPY; X-RAYS; PULSES; SURFACE; GENERATION; DYNAMICS; IONIZATION AB We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10(9)-10(10) photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu(2)Si(2)), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge). (C) 2010 American Institute of Physics. [doi:10.1063/1.3460267] C1 [Dakovski, G. L.; Rodriguez, G.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Li, Y.; Durakiewicz, T.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. RP Dakovski, GL (reprint author), Los Alamos Natl Lab, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. RI Rodriguez, George/G-7571-2012; OI Rodriguez, George/0000-0002-6044-9462; Durakiewicz, Tomasz/0000-0002-1980-1874 FU Department of Energy for Los Alamos National Security LLC [DE-AC52-06NA25396] FX Funding for this work is provided by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory under the auspices of the Department of Energy for Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. We are thankful to Quinn McCulloch (MPA-CINT), Kevin Graham (MPA-CMMS), and Paul Dowden (MPA-STC) for the technical support on this project. NR 39 TC 31 Z9 31 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2010 VL 81 IS 7 AR 073108 DI 10.1063/1.3460267 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 640FE UT WOS:000281033400008 PM 20687706 ER PT J AU Fournier, KB Celeste, J Rekow, V Bopp, DR May, MJ Fisher, JH Horton, R Newlander, CD Jenkins, P Trautz, K AF Fournier, K. B. Celeste, J. Rekow, V. Bopp, D. R. May, M. J. Fisher, J. H. Horton, R. Newlander, C. D. Jenkins, P. Trautz, K. TI A test cassette for x-ray-exposure experiments at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We present the design and operation of a test cassette for exposure of samples to radiation environments at the National Ignition Facility. The cassette provides options for square and round samples and exposure areas; the cassette provides for multiple levels of filtration on a single sample, which allows dynamic range in experiments. The samples had normal lines of sight to the x-ray source in order to have uniform x-ray illumination. The incident x-radiation onto the samples was determined by the choice of filter thicknesses and materials. The samples were held at precise locations, accurate to within a few hundred microns, in the target chamber in order to have a known fluence incident. In the cassette, the samples were held in place in such a way that a minimal "line contact" allows them to have the maximal mechanical response to the x-ray load. We present postshot images of the debris found on films used for filters, and pre- and postexposure specimens. (C) 2010 American Institute of Physics. [doi:10.1063/1.3470684] C1 [Fournier, K. B.; Celeste, J.; Rekow, V.; Bopp, D. R.; May, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fisher, J. H.; Horton, R.; Newlander, C. D.] Gray Res Inc, Huntsville, AL 35806 USA. [Jenkins, P.; Trautz, K.] USN, Res Lab, Washington, DC 20375 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM fournier2@llnl.gov; jfisher@gray-research.com; cdavidnewlander@yahoo.com; phillip.jenkins@nrl.navy.mil FU U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Defense Threat Reduction Agency [IACRO 09-45501] FX The authors are grateful to the whole NIF team for outstanding support during these experiments. The contributions of working group leaders John Edwards, David Eder, Sandra Brereton, and Dan Kalantar were particularly useful for refining the design of our test cassette; Aaron Fisher and Nathan Masters gave excellent support with simulations and analysis. Also, within the engineering group, Jared Ellefson and Tony Lee provided valuable discussions and assistance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was also supported by the Defense Threat Reduction Agency under the IACRO 09-45501 "Evaluation of lasers for x-ray production on NIF." NR 7 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2010 VL 81 IS 7 AR 075113 DI 10.1063/1.3470684 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 640FE UT WOS:000281033400067 PM 20687765 ER PT J AU Widjonarko, NE Perkins, JD Leisch, JE Parilla, PA Curtis, CJ Ginley, DS Berry, JJ AF Widjonarko, N. Edwin Perkins, John D. Leisch, Jennifer E. Parilla, Philip A. Curtis, Calvin J. Ginley, David S. Berry, Joseph J. TI Stoichiometric analysis of compositionally graded combinatorial amorphous thin film oxides using laser-induced breakdown spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID INDUCED PLASMA SPECTROSCOPY; ND-YAG LASER; ECHELLE SPECTROMETER; STEEL; ABLATION; SAMPLES AB Laser-induced breakdown spectroscopy (LIBS) is a recently developed locally destructive elemental analysis technique that can be used to analyze solid, liquid, and gaseous samples. In the system explored here, a neodymium-doped yttrium aluminum garnet laser ablates a small amount of the sample and spectral emission from the plume is analyzed using a set of synchronized spectrometers. We explore the use of LIBS to map the stoichiometry of compositionally graded amorphous indium zinc oxide thin-film libraries. After optimization of the experimental parameters (distance between lens and samples, spot size on the samples, etc.), the LIBS system was calibrated against inductively coupled plasma atomic emission spectroscopy which resulted in a very consistent LIBS-based elemental analysis. Various parameters that need to be watched closely in order to produce consistent results are discussed. We also compare LIBS and x-ray fluorescence as techniques for the compositional mapping of libraries. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455218] C1 [Widjonarko, N. Edwin] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Widjonarko, N. Edwin; Perkins, John D.; Leisch, Jennifer E.; Parilla, Philip A.; Curtis, Calvin J.; Ginley, David S.; Berry, Joseph J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Widjonarko, NE (reprint author), Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA. FU National Center for Photovoltaics (NCPV) at National Renewable Energy Laboratory through the U.S. Department of Energy [DE-AC99G010337] FX This work was supported by the National Center for Photovoltaics (NCPV) at National Renewable Energy Laboratory through the U.S. Department of Energy under Contract No. DE-AC99G010337. NR 28 TC 9 Z9 10 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2010 VL 81 IS 7 AR 073103 DI 10.1063/1.3455218 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 640FE UT WOS:000281033400003 PM 20687701 ER PT J AU Hung, H Kallenborn, R Breivik, K Su, YS Brorstrom-Lunden, E Olafsdottir, K Thorlacius, JM Leppanen, S Bossi, R Skov, H Mano, S Patton, GW Stern, G Sverko, E Fellin, P AF Hung, Hayley Kallenborn, Roland Breivik, Knut Su, Yushan Brorstrom-Lunden, Eva Olafsdottir, Kristin Thorlacius, Johanna M. Leppanen, Sirkka Bossi, Rossana Skov, Henrik Mano, Stein Patton, Gregory W. Stern, Gary Sverko, Ed Fellin, Phil TI Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006 SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Arctic; Atmospheric monitoring; Persistent organic pollutants (POPs); Temporal trends; Spatial distribution; Long-range transport (LRT); Climate change ID POLYBROMINATED DIPHENYL ETHERS; ORGANOCHLORINE PESTICIDES; POLYCHLORINATED-BIPHENYLS; TRANSPORT; TRENDS; HEXACHLOROBENZENE; ENVIRONMENT; RESOLUTION; EMISSIONS; PATHWAYS AB Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result ill an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future impact on the Arctic environment. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved. C1 [Hung, Hayley] Environm Canada, Air Qual Res Div, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada. [Kallenborn, Roland; Breivik, Knut; Mano, Stein] Norwegian Inst Air Res, NO-2027 Kjeller, Norway. [Breivik, Knut] Univ Oslo, Dept Chem, NO-0315 Oslo, Norway. [Brorstrom-Lunden, Eva] Swedish Environm Res Inst, S-40258 Gothenburg, Sweden. [Olafsdottir, Kristin] Univ Iceland, Dept Pharmacol & Toxicol, IS-107 Reykjavik, Iceland. [Thorlacius, Johanna M.] Iceland Meteorol Off, IS-150 Reykjavik, Iceland. [Leppanen, Sirkka] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Bossi, Rossana; Skov, Henrik] Univ Aarhus, Natl Environm Res Inst, DK-4000 Roskilde, Denmark. [Patton, Gregory W.] Battelle Pacific NW Div, Richland, WA 99352 USA. [Stern, Gary] Inst Freshwater, Dept Fisheries & Oceans, Winnipeg, MB R3T 2N6, Canada. [Sverko, Ed] Environm Canada, Natl Lab Environm Testing, Natl Water Res Inst, Burlington, ON L7R 4A6, Canada. [Fellin, Phil] Airzone One Ltd, Mississauga, ON L4Z 1X1, Canada. RP Hung, H (reprint author), Environm Canada, Air Qual Res Div, Sci & Technol Branch, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada. EM hayley.hung@ec.gc.ca RI Breivik, Knut/D-2311-2011; Kallenborn, Roland/F-8368-2011; Olafsdottir, Kristin /L-9430-2015; OI Breivik, Knut/0000-0003-1112-1900; Kallenborn, Roland/0000-0003-1703-2538; Skov, Henrik/0000-0003-1167-8696 NR 29 TC 152 Z9 157 U1 21 U2 143 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 1 PY 2010 VL 408 IS 15 SI SI BP 2854 EP 2873 DI 10.1016/j.scitotenv.2009.10.044 PG 20 WC Environmental Sciences SC Environmental Sciences & Ecology GA 620ML UT WOS:000279503900002 PM 20004462 ER PT J AU Hazeltine, R Porkolab, M Prager, S Stambaugh, R AF Hazeltine, Richard Porkolab, Miklos Prager, Stewart Stambaugh, Ronald TI Plasma Display SO SCIENTIFIC AMERICAN LA English DT Letter C1 [Hazeltine, Richard] Univ Texas Austin, Austin, TX 78712 USA. [Porkolab, Miklos] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Prager, Stewart] Princeton Plasma Phys Lab, Princeton, NJ USA. [Stambaugh, Ronald] Gen Atom Co, Magnet Fus Energy Program, San Diego, CA 92138 USA. RP Hazeltine, R (reprint author), Univ Texas Austin, Austin, TX 78712 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD JUL PY 2010 VL 303 IS 1 BP 10 EP 12 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 611QD UT WOS:000278834000004 ER PT J AU Wiley, HS AF Wiley, H. Steven TI Scientists vs. Engineers SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD JUL PY 2010 VL 24 IS 7 BP 29 EP 29 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 614QN UT WOS:000279074900016 ER PT J AU Teng, ZK Miller, MK Ghosh, G Liu, CT Huang, S Russell, KF Fine, ME Liaw, PK AF Teng, Z. K. Miller, M. K. Ghosh, G. Liu, C. T. Huang, S. Russell, K. F. Fine, M. E. Liaw, P. K. TI Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography SO SCRIPTA MATERIALIA LA English DT Article DE Atom probe tomography; Analytical electron microscopy; Precipitation; Ferritic steel ID ALLOYS; AL; TEMPERATURES; DEFORMATION; STRENGTH; BEHAVIOR AB The microstructure of NiAl-type (beta') precipitates in an aged ferritic steel (Fe-12.7Al-9Ni-10.2Cr-1.9Mo, at.%) is characterized by transmission and analytical electron microscopy (AEM) and atom probe tomography (APT). The alloy shows a duplex precipitation of beta' particles: primary with an average diameter of 130 nm and secondary with an average diameter of 3 nm. Based on APT, the primary and secondary beta' have compositions of Ni(41.2)Al(43.6)Fe(12.7)Cr(0.8)Mo(1.4) and Ni(26.3)Al(41.6)Fe(26.9)Cr(3.3)Mo(1.7), respectively. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Teng, Z. K.; Liu, C. T.; Huang, S.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Miller, M. K.; Russell, K. F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ghosh, G.; Fine, M. E.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Liu, C. T.] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China. [Liu, C. T.] Auburn Univ, Auburn, AL 36849 USA. RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pliaw@utk.edu RI Ghosh, Gautam/B-7517-2009; Fine, Morris/B-7516-2009; Huang, Shenyan/G-7361-2011 OI Huang, Shenyan/0000-0001-9652-8114 FU Department of Energy (DOE) [DE-FG26-06NT42732] FX This research is supported by the Department of Energy (DOE), Office of Fossil Energy Program, under Grant No. DE-FG26-06NT42732, with Dr. Patricia Rawls as the program manager. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 27 TC 30 Z9 31 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2010 VL 63 IS 1 BP 61 EP 64 DI 10.1016/j.scriptamat.2010.03.013 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 599GK UT WOS:000277898900017 ER PT J AU Bulatov, VV Wolfer, WG Kumar, M AF Bulatov, Vasily V. Wolfer, Wilhelm G. Kumar, Mukul TI Shear impossibility: Comments on "Void growth by dislocation emission" and "Void growth in metals: Atomistic calculations" SO SCRIPTA MATERIALIA LA English DT Article DE Void growth; Dislocation nucleation; Dislocations; Molecular dynamics ID ALUMINUM; MOTION; LOOP AB Recently it was proposed that voids in crystals could grow by emission of shear dislocation loops [V.A. Lubarda, M.S. Scheider, D.H. Kalantar, B.A. Remington, M.A. Meyers, Acta Materialia 52 (2004) 1397-1408]. Even more recently, this proposal was ostensibly supported by molecular simulations of voids in strained single crystals [S. Traiviratana, E.M. Bringa, D.J. Benson, M.A. Meyers, Acta Materialia 56 (2008) 3874-3886]. The purpose of this comment is to dispute this recent assertion as unfounded. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bulatov, Vasily V.; Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wolfer, Wilhelm G.] Ktech Corp Inc, Albuquerque, NM 87185 USA. RP Bulatov, VV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bulatov1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC04-94AL85000] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors acknowledge useful discussions with A. Arsenlis, J. Marian, R.E. Rudd, M.A. Meyers, R. Becker, P. Erhart and A.S. Argon. NR 21 TC 23 Z9 23 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2010 VL 63 IS 1 BP 144 EP 147 DI 10.1016/j.scriptamat.2010.03.001 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 599GK UT WOS:000277898900038 ER PT J AU Evans, JR Followill, F Hutt, CR Kromer, RP Nigbor, RL Ringler, AT Steim, JM Wielandt, E AF Evans, J. R. Followill, F. Hutt, C. R. Kromer, R. P. Nigbor, R. L. Ringler, A. T. Steim, J. M. Wielandt, E. TI Method for Calculating Self-Noise Spectra and Operating Ranges for Seismographic Inertial Sensors and Recorders SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID FOURIER-TRANSFORM C1 [Evans, J. R.] US Geol Survey, Menlo Pk, CA 94025 USA. [Followill, F.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hutt, C. R.; Ringler, A. T.] US Geol Survey, Albuquerque, NM USA. [Kromer, R. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Nigbor, R. L.] Univ Calif Los Angeles, Los Angeles, CA USA. [Steim, J. M.] Quanterra, Harvard, MA USA. [Wielandt, E.] Univ Stuttgart, Stuttgart, Germany. RP Evans, JR (reprint author), US Geol Survey, 345 Middlefield Rd,MS 977, Menlo Pk, CA 94025 USA. EM jrevans@usgs.gov NR 12 TC 18 Z9 19 U1 0 U2 5 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0895-0695 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD JUL-AUG PY 2010 VL 81 IS 4 BP 640 EP 646 DI 10.1785/gssrl.81.4.640 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 618NQ UT WOS:000279363000009 ER PT J AU Haller, EE AF Haller, E. E. TI Physics with Isotopically Controlled Semiconductors SO SEMICONDUCTORS LA English DT Article ID METAL-INSULATOR-TRANSITION; NATURAL GE CRYSTALS; THERMAL-CONDUCTIVITY; ISOTOPE HETEROSTRUCTURES; SELF-DIFFUSION; NEUTRON-TRANSMUTATION; OPTICAL PHONONS; RAMAN-SPECTRA; NUCLEAR-SPIN; GERMANIUM AB This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. C1 [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Haller, EE (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM eehaller@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. NSF [DMR-0109844, DMR-0405472] FX Some of the reviewed work has been supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, and in part by U.S. NSF Grants nos. DMR-0109844 and DMR-0405472. NR 62 TC 1 Z9 1 U1 1 U2 11 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7826 J9 SEMICONDUCTORS+ JI Semiconductors PD JUL PY 2010 VL 44 IS 7 BP 841 EP 853 DI 10.1134/S106378261007002X PG 13 WC Physics, Condensed Matter SC Physics GA 640MK UT WOS:000281055500002 ER PT J AU Taylor, SG Farinholt, KM Park, G Todd, MD Ferrar, CR AF Taylor, Stuart G. Farinholt, Kevin M. Park, Gyuhae Todd, Michael D. Ferrar, Charles R. TI Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring; impedance method; piezoelectric active-sensors; sensor diagnostics; wireless hardware ID ACTIVE-SENSORS; DIAGNOSTICS; VALIDATION AB This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, Wireless Impedance Device) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< similar to 1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented. C1 [Taylor, Stuart G.; Farinholt, Kevin M.; Park, Gyuhae; Ferrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Taylor, Stuart G.; Todd, Michael D.] Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92093 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, POB 1663, Los Alamos, NM 87545 USA. EM gpark@lanl.gov RI Taylor, Stuart/B-1347-2013 NR 24 TC 15 Z9 15 U1 1 U2 11 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL-AUG PY 2010 VL 6 IS 5-6 BP 661 EP 673 PG 13 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 613DB UT WOS:000278956400014 ER PT J AU Park, JH Kim, JT Hong, DS Mascarenas, D Lynch, JP AF Park, Jae-Hyung Kim, Jeong-Tae Hong, Dong-Soo Mascarenas, David Lynch, Jerome Peter TI Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE autonomous; wireless; smart sensor node; prestressed concrete bridge; structural health monitoring ID IDENTIFICATION; VIBRATION; INFORMATION; FREQUENCY; NETWORK; SYSTEMS AB This study presents the design of autonomous smart sensor nodes for damage monitoring of tendons and girders in prestressed concrete (PSC) bridges. To achieve the objective, the following approaches are implemented. Firstly, acceleration-based and impedance-based smart sensor nodes are designed for global and local structural health monitoring (SHM). Secondly, global and local SHM methods which are suitable for damage monitoring of tendons and girders in PSC bridges are selected to alarm damage occurrence, to locate damage and to estimate severity of damage. Thirdly, an autonomous SHM scheme is designed for PSC bridges by implementing the selected SHIM methods. Operation logics of the SHIM methods are programmed based on the concept of the decentralized sensor network. Finally, the performance of the proposed system is experimentally evaluated for a lab-scaled PSC girder model for which a set of damage scenarios are experimentally monitored by the developed smart sensor nodes. C1 [Park, Jae-Hyung; Kim, Jeong-Tae; Hong, Dong-Soo] Pukyong Natl Univ, Dept Ocean Engn, Pusan, South Korea. [Mascarenas, David] Los Alamos Natl Lab, Los Alamos, NM USA. [Lynch, Jerome Peter] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. RP Kim, JT (reprint author), Pukyong Natl Univ, Dept Ocean Engn, Pusan, South Korea. EM idis@pknu.ac.kr FU National Research Foundation of Korea; Korean Ministry of Land, Transport and Maritime Affairs; Korean Ministry of Education, Science, and Technology FX This study was supported by Smart Infra-Structure Technology Center granted by National Research Foundation of Korea, Harbor Remodeling Project funded by Korean Ministry of Land, Transport and Maritime Affairs, and Brain Korea 21 Program funded by Korean Ministry of Education, Science, and Technology. Also, the authors are indebted to Dr. G. Park of Los Alamos National Laboratory, USA and Prof. M.D. Todd of Univ. of California at San Diego, USA, for their technical supports. NR 36 TC 31 Z9 31 U1 0 U2 16 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL-AUG PY 2010 VL 6 IS 5-6 BP 711 EP 730 PG 20 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 613DB UT WOS:000278956400017 ER PT J AU Kramer, C Trumbore, S Froberg, M Dozal, LMC Zhang, DC Xu, XM Santos, GM Hanson, PJ AF Kramer, Christiane Trumbore, Susan Froeberg, Mats Dozal, Luz Maria Cisneros Zhang, Dachun Xu, Xiaomei Santos, Guaciara M. Hanson, Paul J. TI Recent (< 4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE PLEA; Phospholipid fatty acid; Isotope; Radiocarbon; (14)C; EBIS; Microbial carbon; Soil respiration; Heterotrophic respiration; Microbial respiration ID ORGANIC-MATTER; COMMUNITY COMPOSITION; INDIVIDUAL COMPOUNDS; RADIOCARBON TRACER; GRASSLAND SOILS; C-14; DECOMPOSITION; DYNAMICS; FRACTIONS; OPERATION AB Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the (14)C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (< similar to 40 parts per thousand, given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by similar to 750 parts per thousand between high-(14)C and low-(14)C treatments. Assuming any difference in (14)C between the high- and low-(14)C plots would reflect C derived from these manipulated litter additions, we estimate that 4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the (14)C signatures of the PLFA compounds (averaging 200-220 parts per thousand) is much higher that of the 2004-5 leaf litter (115 parts per thousand) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from (14)C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the (14)C of PLEA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA Delta(14)C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of (14)C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kramer, Christiane; Trumbore, Susan; Dozal, Luz Maria Cisneros; Zhang, Dachun; Xu, Xiaomei; Santos, Guaciara M.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Froeberg, Mats; Hanson, Paul J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Trumbore, S (reprint author), Max Planck Inst Biogeochem, D-07745 Jena, Germany. EM trumbore@bgc-jena.mpg.de RI Hanson, Paul J./D-8069-2011; Froberg, Mats/E-8741-2012; Trumbore, Susan/B-1948-2013; OI Hanson, Paul J./0000-0001-7293-3561; Santos, Guaciara/0000-0003-1755-6390 FU U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX Funding for the EBIS project was provided by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, as a part of the Terrestrial Carbon Processes Program. Work at the Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. We thank John Greaves of the UCI Physical Sciences Mass Spectrometry Facility for help with compound identification and the W.M Keck Carbon Cycle Accelerator Mass Spectrometry Facility at UC Irvine. We also thank Margaret Torn, Chris Swanston, Julie Jastrow and Gerd Gleixner for access to data and helpful comments, and two anonymous reviewers for helpful suggestions to improve the manuscript. NR 34 TC 47 Z9 52 U1 6 U2 70 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2010 VL 42 IS 7 BP 1028 EP 1037 DI 10.1016/j.soilbio.2010.02.021 PG 10 WC Soil Science SC Agriculture GA 608JM UT WOS:000278579900003 ER PT J AU Meehan, TD Crossley, MS Lindroth, RL AF Meehan, Timothy D. Crossley, Michael S. Lindroth, Richard L. TI Impacts of elevated CO2 and O-3 on aspen leaf litter chemistry and earthworm and springtail productivity SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Aspen; Carbon dioxide; Collembola; Decomposition; Earthworm; Growth; Leaf litter; Ozone; Soil ID PAPER BIRCH COMMUNITIES; HARDWOOD FOREST; POPULATION-GROWTH; TROPOSPHERIC O-3; ATMOSPHERIC CO2; TREMBLING ASPEN; DECOMPOSITION; COLLEMBOLA; QUALITY; SOIL AB Human alteration of atmospheric composition affects foliar chemistry and has possible implications for the structure and functioning of detrital communities. In this study, we explored the impacts of elevated carbon dioxide and ozone on aspen (Populus tremuloides) leaf litter chemistry, earthworm (Lumbricus terrestris) individual consumption and growth, and springtail (Sinella curviseta) population growth. We found that elevated carbon dioxide reduced nitrogen and increased condensed-tannin concentrations in leaf litter. These changes were associated with decreases in earthworm individual growth, earthworm growth efficiency, and springtail population growth. Elevated ozone increased fiber and lignin concentrations of leaf litter. These changes were not associated with earthworm consumption or growth, but were associated with increased springtail population growth. Our results suggest that changes in litter chemistry caused by increased carbon dioxide concentrations will have negative impacts on the productivity of diverse detritivore taxa, whereas those caused by increased ozone concentrations will have variable, taxon-specific effects. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Meehan, Timothy D.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Entomol, Madison, WI 53706 USA. RP Meehan, TD (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Entomol, Madison, WI 53706 USA. EM tmeehan@wisc.edu RI Lindroth, Richard/A-8538-2009; Crossleu, Michael/D-4422-2017 OI Lindroth, Richard/0000-0003-4587-7255; Crossleu, Michael/0000-0003-3140-6620 FU Office of Science (BER), US Department of Energy [DE-FG02-95ER62125, DE-AC02-98CH10886, DE-FG02-05ER64112, DE-FG02-06ER64232]; US Forest Service Northern Global Change Program; North Central Research Station, Michigan Technological University; Natural Resources Canada - CanadianForest Service FX The Aspen FACE facility is principally supported by the Office of Science (BER), US Department of Energy, Grant No. DE-FG02-95ER62125 to Michigan Technological University, and Contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory, the US Forest Service Northern Global Change Program and North Central Research Station, Michigan Technological University, and Natural Resources Canada - CanadianForest Service. We would like to thank Mike Madritch for providing us with springtails and for helpful discussions during project design. This work was supported by the Office of Science (Biological and Environmental Research), U.S. Department of Energy, under award numbers DE-FG02-05ER64112 and DE-FG02-06ER64232. This manuscript was improved by the comments of five anonymous reviewers. NR 46 TC 11 Z9 14 U1 3 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2010 VL 42 IS 7 BP 1132 EP 1137 DI 10.1016/j.soilbio.2010.03.019 PG 6 WC Soil Science SC Agriculture GA 608JM UT WOS:000278579900016 ER PT J AU Reese, MO Sigdel, AK Berry, JJ Ginley, DS Shaheen, SE AF Reese, M. O. Sigdel, A. K. Berry, J. J. Ginley, D. S. Shaheen, S. E. TI A simple miniature controlled-atmosphere chamber for optoelectronic characterizations SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Encapsulation; Stability; Degradation; Instrumentation; Setup; Organic photovoltaics ID POLYMER SOLAR-CELLS; DEGRADATION; DEVICES AB A simple, controlled-atmosphere chamber that allows optical and electrical device characterization of samples is described. It can be used as a reusable encapsulation method or as a controlled atmospheric chamber for a variety of experiments, for example, lifetime testing of organic optoelectronic devices. In this paper, designs are included for this system as well as a description on how to scale it if desired. Chambers based on these designs and their elements were characterized using helium leaking checking as well as monitored for moisture ingress with an electrical calcium test. Finally, chambers were used to encapsulate organic photovoltaic devices to demonstrate the effective stable environment provided by this platform over the course of weeks. (C) 2010 Elsevier B.V. All rights reserved. C1 [Reese, M. O.; Berry, J. J.; Ginley, D. S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sigdel, A. K.; Shaheen, S. E.] Univ Denver, Denver, CO 80208 USA. RP Reese, MO (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM matthew.reese@nrel.gov RI Shaheen, Sean/M-7893-2013 FU U.S. Department of Energy with National Renewable Energy Laboratory [DE-AC36-08GO28308] FX The authors wish to thank Michael D. Kempe, Matthew S. White, and N. Edwin Widjonarko for useful discussions. This work was supported by the U.S. Department of Energy under Contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 10 TC 7 Z9 7 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2010 VL 94 IS 7 BP 1254 EP 1258 DI 10.1016/j.solmat.2010.03.017 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 605VV UT WOS:000278376500011 ER PT J AU Cortis, A Puente, CE Sivakumar, B AF Cortis, Andrea Puente, Carlos E. Sivakumar, Bellie TI Encoding hydrologic information via a fractal geometric approach and its extensions SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Hydrologic modeling; Rainfall time series; Radar images; Scale; Fractals; Multifractals; Chaos ID GROUNDWATER CONTAMINATION; MULTIFRACTAL APPROACH; CONSERVATIVE TRACERS; CASCADE MODEL; BORDEN SITE; REPRESENTATION; DISAGGREGATION; COMPLEXITY; CHAOS AB We present the application of a deterministic fractal geometric approach-the so-called fractal-multi-fractal procedure, FMFP-to the modeling of hydrologic data at different resolutions. The FMFP can generate a wide range of complex patterns that are virtually indistinguishable from observed hydrologic data sets (e. g., rainfall series, radar images, clouds, contamination plumes, width functions). We illustrate the use of the FMFP for hydrologic data encoding and model simplification by comparing a few representative rainfall time series to FMFP-generated patterns. We also present the time evolution of two-dimensional FMFP-patterns reminiscent of rainfall-radar images. As the deterministic FMFP-generated patterns are completely characterized by a small number of geometric parameters, we discuss the prospect of compact descriptions of hydrologic data sets. We also discuss how this parsimonious deterministic parameterization may eventually lead to the classification of patterns and simplification in the records' parameter space. Finally, we highlight some connections between the FMFP and nonlinear and chaotic dynamics. C1 [Puente, Carlos E.; Sivakumar, Bellie] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Cortis, Andrea] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Puente, CE (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. EM acortis@lbl.gov; cepuente@ucdavis.edu; sbellie@ucdavis.edu FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported, in part, by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JUL PY 2010 VL 24 IS 5 BP 625 EP 632 DI 10.1007/s00477-009-0349-4 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 580HP UT WOS:000276439000008 ER PT J AU Pfaffly, J Michaelides, M Wang, GJ Pessin, JE Volkow, ND Thanos, PK AF Pfaffly, Jennifer Michaelides, Michael Wang, Gene-Jack Pessin, Jeffrey E. Volkow, Nora D. Thanos, Panayotis K. TI Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice SO SYNAPSE LA English DT Article DE obesity; food; insulin; autoradiography; reward; beta-Imager ID BODY-FAT STORES; NUCLEUS-ACCUMBENS; FOOD REWARD; BRAIN DOPAMINE; ZUCKER RATS; A1 ALLELE; GENE; INSULIN; EXPRESSION; RELEASE AB Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob lob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [(3)H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent. Synapse 64:503-510, 2010. (C) 2010 Wiley-Liss, Inc. C1 [Pfaffly, Jennifer; Pessin, Jeffrey E.; Thanos, Panayotis K.] SUNY Stony Brook, Dept Pharmacol Sci, New York, NY 11790 USA. [Michaelides, Michael; Thanos, Panayotis K.] SUNY Stony Brook, Dept Psychol, New York, NY 11790 USA. [Michaelides, Michael; Wang, Gene-Jack; Volkow, Nora D.; Thanos, Panayotis K.] Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol Lab, Upton, NY 11973 USA. [Thanos, Panayotis K.] NIAAA, Lab Neuroimaging, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA. RP Thanos, PK (reprint author), SUNY Stony Brook, Dept Pharmacol Sci, New York, NY 11790 USA. EM thanos@bnl.gov RI Michaelides, Michael/K-4736-2013 OI Michaelides, Michael/0000-0003-0398-4917 FU NIAAA [AA 11034, AA07574, AA07611] FX Contract grant sponsor NIAAA; Contract grant numbers: AA 11034, AA07574, AA07611 NR 44 TC 17 Z9 18 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-4476 J9 SYNAPSE JI Synapse PD JUL PY 2010 VL 64 IS 7 BP 503 EP 510 DI 10.1002/syn.20755 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 600CL UT WOS:000277961200002 PM 20175225 ER PT J AU Curtiss, L Greeley, J Vadja, S AF Curtiss, Larry Greeley, Jeff Vadja, Stefan TI Tiny trimer, big result SO TCE LA English DT Editorial Material C1 [Curtiss, Larry] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Curtiss, L (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM curtiss@anl.gov NR 0 TC 1 Z9 1 U1 1 U2 2 PU INST CHEMICAL ENGINEERS PI RUGBY PA 165-189 RAILWAY TERRACE, DAVIS BLDG, RUGBY CV21 3HQ, ENGLAND SN 0302-0797 J9 TCE-THE CHEM ENG JI TCE PD JUL-AUG PY 2010 IS 829-30 BP 46 EP 48 PG 3 WC Engineering, Chemical SC Engineering GA 635YD UT WOS:000280693000074 ER PT J AU Lubin, D Vogelmann, AM AF Lubin, Dan Vogelmann, Andrew M. TI Observational quantification of a total aerosol indirect effect in the Arctic SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID MICROPHYSICAL PROPERTIES; PART II; OPTICAL-PROPERTIES; CLOUD PROPERTIES; OCEAN; ALASKA; RETRIEVALS; IRRADIANCE; ALGORITHM; POLLUTION AB We use 6 yr of multisensor radiometric data (1998-2003) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program to provide an observational quantification of the short-wave aerosol first indirect effect in the Arctic. Combined with the previously determined long-wave indirect effect, the total (short-wave and long-wave) first indirect effect in the high Arctic is found to yield a transition from surface warming of +3 W m(-2) during March to a cooling of -11 W m(-2) during May, therefore altering the seasonal cycle of energy input to the Arctic Earth atmosphere system. These data also reveal evidence of a first indirect effect that affects optically thinner clouds during summer. which may represent an additional negative climate feedback that responds to a warming Arctic Ocean with retreating sea ice. C1 [Lubin, Dan] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Vogelmann, Andrew M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lubin, D (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM dlubin@ucsd.edu RI Vogelmann, Andrew/M-8779-2014 OI Vogelmann, Andrew/0000-0003-1918-5423 FU NSF Arctic Natural Sciences; DOE FX This work was supported by the NSF Arctic Natural Sciences and DOE ARM programs. We thank J. Ogren for access to the NOAA CMDL aerosol data. NR 33 TC 8 Z9 8 U1 2 U2 8 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 EI 1600-0889 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD JUL PY 2010 VL 62 IS 3 BP 181 EP 189 DI 10.1111/j.1600-0889.2010.00460.x PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 621EK UT WOS:000279557000005 ER PT J AU Garrett, TJ Zhao, CF Novelli, PC AF Garrett, Timothy J. Zhao, Chuanfeng Novelli, Paul C. TI Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID CLOUD; HAZE; POLLUTION; PARTICLES; GASES; SNOW; TROPOSPHERE; EMISSIVITY; POLLUTANTS; ATMOSPHERE AB Regional aerosol concentrations are governed by an evolving balance between aerosol sources and sinks. Here, a simple technique is described for making estimates of the extent to which seasonal aerosol variability is controlled by wet scavenging rather than the efficiency of transport from pollution source regions. Carbon monoxide (CO) is employed as an assumed passive tracer of pollution transport efficiency, to which the magnitude of aerosol light scattering is compared. Because aerosols. unlike CO. are affected by wet scavenging as well as transport efficiency, the ratio of short-term perturbations in these two quantities provides a measure of the relative roles of these two processes. This technique is applied to surface measurements in the Arctic at Barrow, Alaska (71 degrees N) for the decade between 2000 and 2009. What is found is that a well-known seasonal cycle in 'Arctic Haze' is dominated by variability in wet scavenging. Crossing the freezing threshold for warm rain production appears particularly critical for efficiently cleaning the air. C1 [Garrett, Timothy J.; Zhao, Chuanfeng] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84103 USA. [Zhao, Chuanfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Novelli, Paul C.] NOAA, Global Monitoring Div, ESRL, Boulder, CO 80305 USA. RP Garrett, TJ (reprint author), Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84103 USA. EM tim.garrett@utah.edu RI Zhao, Chuanfeng/G-8546-2013 FU Clean Air Task Force; National Science Foundation [ATM0649570]; NOAA/ESRL FX This work was supported with a grant from the Clean Air Task Force and National Science Foundation award ATM0649570. We are grateful to John Ogren for supplying aerosol scattering data, Tom Mefford for providing weather data, and helpful guidance from manuscript reviewers as well as Andreas Stohl and Chuck Brock. CO measurements at Pt. Barrow are supported by the NOAA/ESRL, Radiatively Important Trace Species program. NR 44 TC 28 Z9 28 U1 3 U2 15 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD JUL PY 2010 VL 62 IS 3 BP 190 EP 196 DI 10.1111/j.1600-0889.2010.00453.x PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 621EK UT WOS:000279557000006 ER PT J AU Ghajar, CM Bissell, MJ AF Ghajar, Cyrus M. Bissell, Mina J. TI Tumor Engineering: The Other Face of Tissue Engineering SO TISSUE ENGINEERING PART A LA English DT Article ID BREAST-CANCER; ANGIOGENIC SWITCH; GENE-EXPRESSION; MOUSE MODEL; CELL; GROWTH; CULTURE; 3D; MORPHOGENESIS; FIBROBLASTS AB Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue. We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. C1 [Ghajar, Cyrus M.; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Ghajar, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cmghajar@lbl.gov; mjbissell@lbl.gov FU U.S. Department of Energy, OBER Office of Biological and Environmental Research [DE-AC02-05CH1123]; Office of Health and Environmental Research, Health Effects Division [03-76SF00098]; National Cancer Institute [R01CA064786, R01CA057621, U54CA126552, U54CA112970]; U.S. Department of Defense [W81XWH0810736, W81XWH0510338]; Lawrence Berkeley National Laboratory FX The work from M.J.B.'s laboratory is supported by grants from the U.S. Department of Energy, OBER Office of Biological and Environmental Research (DE-AC02-05CH1123), a Distinguished Fellow Award and Low Dose Radiation Program from the Office of Health and Environmental Research, Health Effects Division (03-76SF00098); by National Cancer Institute awards R01CA064786, R01CA057621 (with Zena Werb), U54CA126552, and U54CA112970; and by the U.S. Department of Defense (W81XWH0810736) and (W81XWH 0510338). C.M.G. is supported by a Glenn T. Seaborg Post-doctoral Fellowship from Lawrence Berkeley National Laboratory. In addition, the authors would like to thank Jamie L. Inman for critically reviewing the article. NR 47 TC 50 Z9 51 U1 1 U2 27 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3341 J9 TISSUE ENG PT A JI Tissue Eng. Part A PD JUL PY 2010 VL 16 IS 7 BP 2153 EP 2156 DI 10.1089/ten.tea.2010.0135 PG 4 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA 619UJ UT WOS:000279455500005 PM 20214448 ER PT J AU Van Winkle, LS Baker, GL Chan, JKW Schelegle, ES Plopper, CG AF Van Winkle, Laura S. Baker, Gregory L. Chan, Jackie K. W. Schelegle, Edward S. Plopper, Charles G. TI Airway Mast Cells in a Rhesus Model of Childhood Allergic Airways Disease SO TOXICOLOGICAL SCIENCES LA English DT Article DE HDMA; lung development; mast cells; ozone; childhood asthma ID NERVE GROWTH-FACTOR; SMOOTH-MUSCLE-CELLS; POSTNATAL EXPOSURE; LUNG-FUNCTION; ASTHMA; MONKEYS; OZONE; CHYMASE; EPITHELIUM; CYTOKINES AB Asthma is a leading cause of morbidity in children. Risk factors include chronic exposure to allergens and air pollution. While chronically activated mast cells contribute to the pathophysiology of asthma in part through their proteases such as chymase and tryptase, previous studies of airway mast cell abundance and distribution in asthmatics have been inconsistent. To determine whether repeated episodic exposures to environmental pollutants during postnatal lung development alter airway mast cell abundance and distribution, we exposed infant rhesus monkeys to a known human allergen, house dust mite antigen (HDMA), and/or a known environmental pollutant, ozone (O(3)), and quantitatively compared the abundance of tryptase- or chymase-positive mast cells in three airway levels. Mast cells are resident in multiple compartments of the airway wall in infant rhesus monkeys raised from birth in filtered air. Tryptase- and chymase-positive cells were most abundant in trachea and least in terminal bronchioles. The majority of tryptase-positive and almost all chymase-positive cells were in extracellular matrix and smooth muscle bundles. Chronic exposure to HDMA elevated the abundance of both tryptase- and chymase-positive cells in the trachea and intrapulmonary bronchi. Neither exposure to O(3) nor HDMA + O(3) increased mast cell accumulations in the airway wall. We conclude that during postnatal airway development (1) mast cells are a resident airway cell population even in the absence of toxic air contaminants; (2) aeroallergen exposure alters large airway mast cell distribution and abundance, increasing chymase-positive mast cells; and (3) this response is attenuated by exposure to oxidant air pollutants. C1 [Van Winkle, Laura S.; Baker, Gregory L.; Schelegle, Edward S.; Plopper, Charles G.] Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA. [Van Winkle, Laura S.; Chan, Jackie K. W.] Univ Calif Davis, Ctr Hlth & Environm, Davis, CA 95616 USA. [Baker, Gregory L.] Battelle Toxicol NW, Richland, WA 99354 USA. [Schelegle, Edward S.; Plopper, Charles G.] Univ Calif Davis, Calif Natl Primate Res Ctr, Davis, CA 95616 USA. RP Van Winkle, LS (reprint author), Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, 1 Shields Ave, Davis, CA 95616 USA. EM lsvanwinkle@ucdavis.edu FU National Institutes of Health [P01 ES 00628, R01 ES 06700, NCRR RR00169]; National Institute of Environmental Health Sciences Center [ES05707] FX National Institutes of Health (P01 ES 00628, R01 ES 06700, NCRR RR00169); National Institute of Environmental Health Sciences Center (ES05707). NR 51 TC 5 Z9 5 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD JUL PY 2010 VL 116 IS 1 BP 313 EP 322 DI 10.1093/toxsci/kfq119 PG 10 WC Toxicology SC Toxicology GA 617XZ UT WOS:000279316500030 PM 20403968 ER PT J AU Sun, Y Buscheck, TA Lee, KH Hao, Y James, SC AF Sun, Y. Buscheck, T. A. Lee, K. H. Hao, Y. James, S. C. TI Modeling Thermal-Hydrologic Processes for a Heated Fractured Rock System: Impact of a Capillary-Pressure Maximum SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Capillary pressure; van Genuchten; Transition saturation; Thermal-hydrology; Repository ID SOIL-WATER RETENTION; HYDRAULIC CONDUCTIVITY; YUCCA MOUNTAIN; 2-PHASE FLOW; POROUS-MEDIA; OVEN DRYNESS; TRANSPORT; SATURATION; EXTENSION; EQUATION AB Various thermal-hydrologic models have been developed to simulate thermal-hydrologic conditions in emplacement drifts and surrounding host rock for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The modeling involves two-phase (liquid and gas) and two-component (water and air) transport in a fractured-rock system, which is conceptualized as a dual-permeability medium. Simulated hydrologic processes depend upon calibrated system parameters, such as the van Genuchten alpha and m, which quantify the capillary properties of the fractures and rock matrix. Typically, these parameters are not calibrated for strongly heat-driven conditions, i.e., conditions for which boiling and rock dryout occur. The objective of this study is to modify the relationship between capillary pressure and saturation, P (c)(S), for strongly heated conditions that drive saturation below the residual saturation (S -> 0). We offer various extensions to the van Genuchten capillary-pressure function and compare results from a thermal-hydrologic model with data collected during the Drift-Scale Test, an in situ thermal test at Yucca Mountain, to investigate the suitability of these various P (c) extension methods. The study suggests that the use of extension methods and the imposition of a capillary-pressure cap (or maximum) improve the agreement between Drift-Scale Test data and model results for strongly heat-driven conditions. However, for thermal-hydrologic models of the Yucca Mountain nuclear waste repository, temperature and relative humidity are insensitive to the choice of extension method for the capillary-pressure function. Therefore, the choice of extension method applied to models of drift-scale thermal-hydrologic behavior at Yucca Mountain can be made on the basis of numerical performance. C1 [Sun, Y.; Buscheck, T. A.; Lee, K. H.; Hao, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [James, S. C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Buscheck, TA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM buscheck1@llnl.gov RI Sun, Yunwei/C-9751-2010; OI James, Scott/0000-0001-7955-0491 FU U.S. Department of Energy [DE-AC52-07NA27344]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This study was performed under the auspices of the U.S. Department of Energy by Lawrence Liwvermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors wish to thank anonymous reviewers for their careful review and helpful comments that have led to an improved manuscript. NR 32 TC 9 Z9 9 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD JUL PY 2010 VL 83 IS 3 BP 501 EP 523 DI 10.1007/s11242-009-9459-1 PG 23 WC Engineering, Chemical SC Engineering GA 612LH UT WOS:000278899400004 ER PT J AU Blau, PJ AF Blau, Peter J. TI Elevated-temperature tribology of metallic materials SO TRIBOLOGY INTERNATIONAL LA English DT Article; Proceedings Paper CT 2nd International Symposium on TriboCorrosion CY MAR 17-18, 2009 CL Wiener Neustadt, AUSTRIA DE Running-in; Friction transitions; Wear transitions; Internal combustion engine ID ALLOYS; WEAR; NICKEL; OXIDATION; BEHAVIOR AB The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribo-layers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known to be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions, the kinetics of those reactions, and the microstructure can all affect the response. The role of deformation, oxidation, and tribo-corrosion in the elevated-temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip. (C) 2010 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Blau, PJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pvb@ornl.gov NR 18 TC 31 Z9 31 U1 3 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD JUL PY 2010 VL 43 IS 7 SI SI BP 1203 EP 1208 DI 10.1016/j.triboint.2010.01.003 PG 6 WC Engineering, Mechanical SC Engineering GA 604SM UT WOS:000278298800002 ER PT J AU Buchko, GW Kim, CY Terwilliger, TC Myler, PJ AF Buchko, Garry W. Kim, Chang-Yub Terwilliger, Thomas C. Myler, Peter J. TI Solution structure of Rv2377c-founding member of the MbtH-like protein family SO TUBERCULOSIS LA English DT Article DE Tuberculosis; Siderophore assembly; Mycobactin; Circular dichroism; Structural genomics; Protein dynamics ID FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE; MYCOBACTERIUM-TUBERCULOSIS; CHEMICAL-SHIFT; STREPTOMYCES-COELICOLOR; RESISTANT TUBERCULOSIS; BACKBONE DYNAMICS; IRON-METABOLISM; NMR; SEQUENCE; DOMAIN AB The Mycobacterium tuberculosis protein Rv2377c (71 residues, MW = 8.4 kDa) has been characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. Rv2377c was the first identified member of the MbtH-like family of proteins. MbtH-like proteins have been implicated in siderophore biosynthesis, however, their precise biochemical function remain unknown. Size exclusion chromatography and NMR spectroscopy show that Rv2377c is a monomer in solution. Circular dichroism spectroscopy indicates that Rv2377c unfolds upon heating and will reversibly fold into its native conformation upon cooling. Using NMR-based methods the solution structure of Rv2377c was determined and some of the dynamic properties of the protein studied. The protein contains a three-strand, anti-parallel beta-sheet (beta 3:beta 1:beta 2) nestled against one C-terminal alpha-helix (S44-N55). Weak or absent amide cross peaks in the (1)H-(15)N HSQC spectrum for many of the beta 1 and beta 2 residues suggest intermediate motion on the ms to ms time scale at the beta 1:beta 2 interface. Amide cross peaks in the (1)H-(15)N HSQC spectrum are absent for all but one residue at the C-terminus (W56eD71), a region that includes a highly conserved sequence WXDXR, suggesting this region is intrinsically disordered. The latter observation differs with the crystal structure of another MbtH-like protein, PA2412 from Pseudomonas aeruginosa, where a second ordered a-helix was observed at the extreme C-terminus. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Kim, Chang-Yub; Terwilliger, Thomas C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,Mail Stop K8-98, Richland, WA 99352 USA. EM garry.buchko@pnl.gov; cykim@lanl.gov; terwilliger@lanl.gov; peter.myler@seattlebiomed.org RI Terwilliger, Thomas/K-4109-2012; Buchko, Garry/G-6173-2015; OI Terwilliger, Thomas/0000-0001-6384-0320; Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513; Kim, Chang-Yub/0000-0001-9353-5909 FU NIAID [HHSN272200700057C]; U.S. Department of Energy's Office of Biological and Environmental Research FX The structure of Rv2377c was a community request made to the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The research was funded by NIAID under Federal Contract No. HHSN272200700057C and performed primarily at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy's Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle. NR 51 TC 18 Z9 18 U1 0 U2 5 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 1472-9792 J9 TUBERCULOSIS JI Tuberculosis PD JUL PY 2010 VL 90 IS 4 BP 245 EP 251 DI 10.1016/j.tube.2010.04.002 PG 7 WC Immunology; Microbiology; Respiratory System SC Immunology; Microbiology; Respiratory System GA 629XI UT WOS:000280233900004 PM 20434955 ER PT J AU Krivanek, OL Dellby, N Murfitt, MF Chisholm, MF Pennycook, TJ Suenaga, K Nicolosi, V AF Krivanek, Ondrej L. Dellby, Niklas Murfitt, Matthew F. Chisholm, Matthew F. Pennycook, Timothy J. Suenaga, Kazutomo Nicolosi, Valeria TI Gentle STEM: ADF imaging and EELS at low primary energies SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT International Workshop on Enhanced Data Generated with Electrons CY MAY 17-22, 2009 CL Banff, CANADA DE STEM; ADF; EELS; Aberration correction; Nanotube; Graphene ID TRANSMISSION ELECTRON-MICROSCOPE; LOSS SPECTROSCOPY; SINGLE ATOMS; RESOLUTION; NANOPEAPOD; GRAPHENE; CARBON; DAMAGE AB Aberration correction of the scanning transmission electron microscope (STEM) has made it possible to reach probe sizes close to 1 A at 60 keV, an operating energy that avoids direct knock-on damage in materials consisting of light atoms such as B, C, N and O. Although greatly reduced, some radiation damage is still present at this energy, and this limits the maximum usable electron dose. Elemental analysis by electron energy loss spectroscopy (EELS) is then usefully supplemented by annular dark field (ADF) imaging, for which the signal is larger. Because of its strong Z dependence, ADF allows the chemical identification of individual atoms, both heavy and light, and it can also record the atomic motion of individual heavy atoms in considerable detail. We illustrate these points by ADF images and EELS of nanotubes containing nanopods filled with single atoms of Er, and by ADF images of graphene with impurity atoms. (C) 2010 Elsevier B.V. All rights reserved. C1 [Krivanek, Ondrej L.; Dellby, Niklas; Murfitt, Matthew F.] Nion Co, Kirkland, WA 98033 USA. [Chisholm, Matthew F.; Pennycook, Timothy J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Suenaga, Kazutomo] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Nicolosi, Valeria] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Krivanek, OL (reprint author), Nion Co, 1102 8th St, Kirkland, WA 98033 USA. EM krivanek@nion.com RI Pennycook, Timothy/B-4946-2014; Suenaga, Kazu/E-2339-2014 OI Pennycook, Timothy/0000-0002-0008-6516; Suenaga, Kazu/0000-0002-6107-1123 NR 32 TC 106 Z9 106 U1 5 U2 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2010 VL 110 IS 8 BP 935 EP 945 DI 10.1016/j.ultramic.2010.02.007 PG 11 WC Microscopy SC Microscopy GA 642LX UT WOS:000281216600003 ER PT J AU Seabourne, CR Scott, AJ Vaughan, G Brydson, R Wang, SG Ward, RCC Wang, C Kohn, A Mendis, B Petford-Long, AK AF Seabourne, Che R. Scott, Andrew J. Vaughan, Gareth Brydson, Rik Wang, Shou-Guo Ward, Roger C. C. Wang, Chao Kohn, Amit Mendis, Budhika Petford-Long, Amanda K. TI Analysis of computational EELS modelling results for MgO-based systems SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT International Workshop on Enhanced Data Generated with Electrons CY MAY 17-22, 2009 CL Banff, CANADA DE Electron energy-loss spectra; Density functional theory; Core hole; Magnetic tunnel junctions ID MAGNETIC TUNNEL-JUNCTIONS; ENERGY-LOSS-SPECTROSCOPY; NEAR-EDGE STRUCTURES; ELECTRON; SPECTRA; CASTEP; FILMS AB The ab-initio density functional theory (DFT) code CASTEP was used to model oxygen K edges in various magnesium oxide systems. Firstly, for the bulk material the process of geometry optimisation was carried out. Predicted oxygen K edges were found for a single cell with experimental lattice parameters, and parameters obtained after geometry optimisation, both with single electron core-holes in place. After geometry optimisation, a different predicted result was obtained, although it was qualitatively similar to the result for experimental lattice parameters in some respects. For example, approximately the same sets of peaks are observed, though in different energy positions, and with different relative peak intensities within those sets. Ultimately for the single cell results the experimental lattice parameters generated the predicted result that was in the closest agreement with experiment. It was further observed that a large supercell result (based on the experimental lattice parameters, utilising a core-hole) led to a slightly improved comparison with experiment as compared to the corresponding single cell result, although the latter result, and indeed a ground state calculation also give reasonable agreement with experiment. To rationalise these observations it was necessary to investigate the density of states (DOS) for the MgO cell and its constituent atoms, and it was observed that the conduction bands were of predominantly magnesium character. Furthermore, the core-hole's introduction had relatively little overall effect on the p DOS prediction for oxygen, though there is a significant localised change close to the Fermi level. This work also considers interface and surface results. The principal aim of the study was to explore the interface of Fe (0 0 1)/MgO (0 0 1), crucial in certain classes of magnetic tunnel junctions (MTJs), which have significant technological applications. An initial step was to consider a MgO (0 0 1) surface. It was verified that a surface could be constructed such that within that surface a theoretical result could be found that matched the bulk result. It was then valid to use this surface as part of an interface with iron. Theoretical results obtained at that interface compare well with experimental results from an epitaxially grown MTJ, and various conclusions are drawn with regard to the nature of the interface. (C) 2009 Elsevier B.V. All rights reserved. C1 [Seabourne, Che R.; Scott, Andrew J.; Vaughan, Gareth; Brydson, Rik] Univ Leeds, Inst Mat Res, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England. [Wang, Shou-Guo] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Ward, Roger C. C.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Wang, Chao; Kohn, Amit] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Mendis, Budhika] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Petford-Long, Amanda K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Seabourne, CR (reprint author), Univ Leeds, Inst Mat Res, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England. EM chmcrs@leeds.ac.uk RI Kohn, Amit/F-1559-2012; Wang, Shouguo/C-3078-2014; Petford-Long, Amanda/P-6026-2014; Wang, Shouguo/D-5710-2016; wang, chao/E-2983-2016; Scott, Andrew/H-6321-2016 OI Wang, Shouguo/0000-0001-6130-7071; Petford-Long, Amanda/0000-0002-3154-8090; Wang, Shouguo/0000-0002-4488-2645; Scott, Andrew/0000-0003-4235-6462 NR 37 TC 3 Z9 3 U1 2 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2010 VL 110 IS 8 BP 1059 EP 1069 DI 10.1016/j.ultramic.2009.11.021 PG 11 WC Microscopy SC Microscopy GA 642LX UT WOS:000281216600020 ER PT J AU Moon, HS McGuinness, L Kukkadapu, RK Peacock, AD Komlos, J Kerkhof, LJ Long, PE Jaffe, PR AF Moon, H. S. McGuinness, L. Kukkadapu, R. K. Peacock, A. D. Komlos, J. Kerkhof, L. J. Long, P. E. Jaffe, P. R. TI Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics SO WATER RESEARCH LA English DT Article DE Biostimulation; Groundwater; Uranium; Iron reduction; Sulfate reduction; Geobacter; Goethite; Bioavailable iron; Nanoparticles ID CONTAMINATED AQUIFER; DISSOLVED SULFIDE; GROUND-WATER; FERRIC IRON; SEDIMENTS; BIOREMEDIATION; BIOREDUCTION; BACTERIA; TRANSPORT; METALS AB There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron-reducing conditions and to decrease upon commencement of sulfate-reducing conditions. There are many unknowns regarding the impact of iron/sulfate biogeochemistry on U(VI) reduction. This includes Fe(III) availability as well as the microbial community changes, including the activity of iron-reducers during the uranium biostimulation period even after sulfate reduction becomes dominant. Column experiments were conducted with Old Rifle site sediments containing Fe-oxides, Fe-clays, and sulfate rich groundwater. Half of the columns had sediment that was augmented with small amounts of Fe(III) in the form of (57)Fe-goethite, allowing for a detailed tracking of minute changes of this added phase to study the effects of increased Fe(III) levels on the overall biostimulation dynamics. Mossbauer spectroscopy showed that the added (57)Fe-goethite was bioreduced only during the first thirty days of bio-stimultuion, after which it remained constant. Augmentation with Fe(III) had a significant effect on the total flux of electrons towards different electron acceptors; it suppressed the degree of sulfate reduction, had no significant impact on Geobacter-type bacterial numbers but decreased the bacterial numbers of sulfate reducers and affected the overall microbial community composition. The addition of Fe(III) had no noticeable effect on the total uranium reduction. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Moon, H. S.; Komlos, J.; Jaffe, P. R.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [McGuinness, L.; Kerkhof, L. J.] Rutgers State Univ, Inst Marine & Coastal Sci, Cook Coll, New Brunswick, NJ 08901 USA. [Kukkadapu, R. K.; Long, P. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Peacock, A. D.] Haley & Aldrich Inc, Oak Ridge, TN 37830 USA. RP Jaffe, PR (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. EM jaffe@princeton.edu RI Long, Philip/F-5728-2013 OI Long, Philip/0000-0003-4152-5682 FU Environmental Remediation Sciences Program (ERSP); Office of Biological and Environmental Research (OBER); U.S. Department of Energy (DOE); Pacific Northwest National Laboratory [51882]; Integrated Field Research Challenge Site (IFRC); Department of Energy's Office of Biological and Environmental Research FX This research was funded by the Environmental Remediation Sciences Program (ERSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), Pacific Northwest National Laboratory Project 51882 "The Rifle, Colorado Integrated Field Research Challenge Site (IFRC)".; The Mossbauer analyses and SEM analysis were performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We would like to thank Bruce Arey (EMSL) for his help with SEM analysis. NR 50 TC 25 Z9 30 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD JUL PY 2010 VL 44 IS 14 BP 4015 EP 4028 DI 10.1016/j.watres.2010.05.003 PG 14 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 630MD UT WOS:000280276500002 PM 20541787 ER PT J AU Poyar, KA Beller-Simms, N AF Poyar, Kyle Andrew Beller-Simms, Nancy TI Early Responses to Climate Change: An Analysis of Seven US State and Local Climate Adaptation Planning Initiatives SO WEATHER CLIMATE AND SOCIETY LA English DT Article AB State and local governments in the United States manage a wide array of natural and human resources that are particularly sensitive to climate variability and change. Recent revelations of the extent of the current and potential climate impact in this realm such as with the quality of water, the structure of the coasts, and the potential and witnessed impact on the built infrastructure give these political authorities impetus to minimize their vulnerability and plan for the future. In fact, a growing number of subnational government bodies in the United States have initiated climate adaptation planning efforts; these initiatives emphasize an array of climate impacts, but at different scales, scopes, and levels of sophistication. Meanwhile, the current body of climate adaptation literature has not taken a comprehensive look at these plans nor have they questioned what prompts local adaptation planning, at what scope and scale action is being taken, or what prioritizes certain policy responses over others. This paper presents a case-based analysis of seven urban climate adaptation planning initiatives, drawing from a review of publicly available planning documents and interviews with stakeholders directly involved in the planning process to provide a preliminary understanding of these issues. The paper also offers insight into the state of implementation of adaptation strategies, highlighting the role of low upfront costs and cobenefits with issues already on the local agenda in prompting anticipatory adaptation. C1 [Poyar, Kyle Andrew; Beller-Simms, Nancy] Natl Ocean & Atmospher Adm, Climate Program Off, Silver Spring, MD USA. [Poyar, Kyle Andrew] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Poyar, KA (reprint author), Brown Univ, 69 Brown St,Box 5254, Providence, RI 02912 USA. EM poyar.kyle@gmail.com RI Brooks, Katya/J-4975-2014 NR 42 TC 7 Z9 8 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1948-8327 J9 WEATHER CLIM SOC JI Weather Clim. Soc. PD JUL PY 2010 VL 2 IS 3 BP 237 EP 248 DI 10.1175/2010WCAS1047.1 PG 12 WC Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA V22HS UT WOS:000208266900007 ER PT J AU Martin, RR Shotyk, WS Naftel, SJ Ablett, JM Northrup, P AF Martin, Ronald R. Shotyk, William S. Naftel, Steven J. Ablett, James M. Northrup, Paul TI Speciation of antimony in polyethylene terephthalate bottles SO X-RAY SPECTROMETRY LA English DT Article AB Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Ablett, James M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Martin, Ronald R.; Naftel, Steven J.] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Shotyk, William S.] Univ Heidelberg, Inst Environm Geochem, D-69102 Heidelberg, Germany. RP Ablett, JM (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM james.ablett@synchrotron-soleil.fr RI Shotyk, William/E-7026-2010; OI Shotyk, William/0000-0002-2584-8388 FU Natural Sciences and Engineering Research Council (NSERC) of Canada; US Department of Energy - Basic Energy Sciences; University of Washington; Simon Fraser University; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for supporting this work.; PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy - Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.; Use of the NSLS, Brookhaven National Laboratory, is supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-98CH10886. NR 5 TC 9 Z9 9 U1 1 U2 15 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0049-8246 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD JUL-AUG PY 2010 VL 39 IS 4 BP 257 EP 259 DI 10.1002/xrs.1241 PG 3 WC Spectroscopy SC Spectroscopy GA 627LW UT WOS:000280042100001 ER PT J AU Noble, DR Newren, EP Lechman, JB AF Noble, David R. Newren, Elijah P. Lechman, Jeremy B. TI A conformal decomposition finite element method for modeling stationary fluid interface problems SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE level set; enriched finite element; conformal decomposition; finite element; potential flow; multiphase flow ID STOKES-FLOW; LEVEL SETS; CONSTRAINTS AB A method is developed for modeling fluid transport in domains that do not conform to the finite element mesh. One or more level set functions are used to describe the fluid domain. A background, non-conformal mesh is decomposed into elements that conform to the level set interfaces. Enrichment takes place by adding nodes that lie on the interfaces. Unlike other enriched finite element methods, the proposed technique requires no changes to the underlying element assembly, element interpolation, or element quadrature. The complexity is entirely contained within the element decomposition routines. It is argued that the accuracy of the method is no less than that for eXtended Finite Element Methods (XFEM) with Heaviside enrichment. The accuracy is demonstrated using multiple numerical tests. In all cases, optimal rates of convergence are obtained for both volume and surface quantities. Jacobi preconditioning is shown to remove the ill-conditioning that may result from the nearly degenerate conformal elements. Copyright (C) 2009 John Wiley & Sons. Ltd. C1 [Noble, David R.; Newren, Elijah P.; Lechman, Jeremy B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Noble, DR (reprint author), Sandia Natl Labs, MS-0382,POB 5800, Albuquerque, NM 87185 USA. EM drnoble@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000] FX Contract/grant sponsor: U.S. Department of Energy; contract/grant number: DE-AC04-94AL85000 NR 22 TC 21 Z9 21 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUN 30 PY 2010 VL 63 IS 6 BP 725 EP 742 DI 10.1002/fld.2095 PG 18 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 600NQ UT WOS:000277994100004 ER PT J AU Enkovaara, J Rostgaard, C Mortensen, JJ Chen, J Dulak, M Ferrighi, L Gavnholt, J Glinsvad, C Haikola, V Hansen, HA Kristoffersen, HH Kuisma, M Larsen, AH Lehtovaara, L Ljungberg, M Lopez-Acevedo, O Moses, PG Ojanen, J Olsen, T Petzold, V Romero, NA Stausholm-Moller, J Strange, M Tritsaris, GA Vanin, M Walter, M Hammer, B Hakkinen, H Madsen, GKH Nieminen, RM Norskov, J Puska, M Rantala, TT Schiotz, J Thygesen, KS Jacobsen, KW AF Enkovaara, J. Rostgaard, C. Mortensen, J. J. Chen, J. Dulak, M. Ferrighi, L. Gavnholt, J. Glinsvad, C. Haikola, V. Hansen, H. A. Kristoffersen, H. H. Kuisma, M. Larsen, A. H. Lehtovaara, L. Ljungberg, M. Lopez-Acevedo, O. Moses, P. G. Ojanen, J. Olsen, T. Petzold, V. Romero, N. A. Stausholm-Moller, J. Strange, M. Tritsaris, G. A. Vanin, M. Walter, M. Hammer, B. Hakkinen, H. Madsen, G. K. H. Nieminen, R. M. Norskov, J. K. Puska, M. Rantala, T. T. Schiotz, J. Thygesen, K. S. Jacobsen, K. W. TI Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; GENERALIZED GRADIENT APPROXIMATION; SHAM ORBITAL ENERGIES; MOLECULAR-DYNAMICS; ULTRASOFT PSEUDOPOTENTIALS; EXCITATION ENERGIES; LARGE MATRICES; GOLD CLUSTERS; BASIS-SET AB Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, Delta SCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals. C1 [Enkovaara, J.] CSC IT Ctr Sci Ltd, FI-02101 Espoo, Finland. [Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dulak, M.; Glinsvad, C.; Hansen, H. A.; Larsen, A. H.; Moses, P. G.; Petzold, V.; Strange, M.; Tritsaris, G. A.; Vanin, M.; Norskov, J. K.; Thygesen, K. S.; Jacobsen, K. W.] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Kongens Lyngby, Denmark. [Ferrighi, L.; Kristoffersen, H. H.; Stausholm-Moller, J.; Hammer, B.] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark. [Ferrighi, L.; Kristoffersen, H. H.; Stausholm-Moller, J.; Hammer, B.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gavnholt, J.; Olsen, T.; Schiotz, J.] Tech Univ Denmark, CINF, Danish Natl Res Fdn, DK-2800 Kongens Lyngby, Denmark. [Haikola, V.; Lehtovaara, L.; Nieminen, R. M.; Puska, M.] Aalto Univ, Sch Sci & Technol, Dept Appl Phys, FIN-00076 Espoo, Finland. [Kuisma, M.; Ojanen, J.; Rantala, T. T.] Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland. [Ljungberg, M.] Stockholm Univ, Albanova Univ Ctr, FYSIKUM, SE-10691 Stockholm, Sweden. [Lopez-Acevedo, O.; Hakkinen, H.] Univ Jyvaskyla, Nanosci Ctr, Dept Phys, FI-40014 Jyvaskyla, Finland. [Lopez-Acevedo, O.; Hakkinen, H.] Univ Jyvaskyla, Nanosci Ctr, Dept Chem, FI-40014 Jyvaskyla, Finland. [Romero, N. A.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. [Walter, M.] Freiburg Mat Res Ctr, D-79104 Freiburg, Germany. [Madsen, G. K. H.] Ruhr Univ Bochum, ICAMS, D-44801 Bochum, Germany. RP Enkovaara, J (reprint author), CSC IT Ctr Sci Ltd, POB 405, FI-02101 Espoo, Finland. RI Lopez-Acevedo, Olga/B-9349-2009; Schiotz, Jakob/A-5692-2011; Walter, Michael/D-7984-2011; Thygesen, Kristian /B-1062-2011; Ferrighi, Lara/A-5902-2009; Jacobsen, Karsten/B-3602-2009; Puska, Martti/E-7362-2012; Nieminen, Risto/I-5573-2012; Hammer, Bjork/C-3701-2013; Hansen, Heine/G-3044-2013; Larsen, Ask Hjorth/I-6888-2013; Olsen, Thomas/L-1416-2014; Ljungberg, Mathias/M-6243-2014; Norskov, Jens/D-2539-2017; OI Lopez-Acevedo, Olga/0000-0003-4489-6841; Schiotz, Jakob/0000-0002-0670-8013; Walter, Michael/0000-0001-6679-2491; Thygesen, Kristian /0000-0001-5197-214X; Jacobsen, Karsten/0000-0002-1121-2979; Puska, Martti/0000-0002-8419-3289; Nieminen, Risto/0000-0002-1032-2711; Hansen, Heine/0000-0001-7551-9470; Larsen, Ask Hjorth/0000-0001-5267-6852; Olsen, Thomas/0000-0001-6256-9284; Ljungberg, Mathias/0000-0002-8774-9529; Rantala, Tapio T./0000-0001-8581-502X; Norskov, Jens/0000-0002-4427-7728; Hammer, Bjork/0000-0002-7849-6347; Kristoffersen, Henrik Hogh/0000-0001-6943-0752; Kuisma, Mikael/0000-0001-8323-3405 FU Academy of Finland [110013]; Tekes MASI-program; Danish Center for Scientific Computing (DCSC); Lundbeck Foundation; Office of Science of the US Department of Energy [DE-AC02-06CH11357] FX This work has been supported by the Academy of Finland (Project 110013 and the Center of Excellence program) and Tekes MASI-program. We acknowledge support from the Danish Center for Scientific Computing (DCSC). The Center for Atomic-scale Materials Design (CAMD) is sponsored by the Lundbeck Foundation. We thank John Levesque from Cray Inc. for parallel calculations on the Cray XT5 Jaguar at Oak Ridge National Laboratory. The Argonne Leadership Computing Facility at Argonne National Laboratory is supported by the Office of Science of the US Department of Energy under contract DE-AC02-06CH11357. NR 120 TC 574 Z9 574 U1 24 U2 200 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 30 PY 2010 VL 22 IS 25 AR 253202 DI 10.1088/0953-8984/22/25/253202 PG 24 WC Physics, Condensed Matter SC Physics GA 608VC UT WOS:000278613100002 PM 21393795 ER PT J AU Zeng, J Zheng, YQ Rycenga, M Tao, J Li, ZY Zhang, QA Zhu, YM Xia, YN AF Zeng, Jie Zheng, Yiqun Rycenga, Matthew Tao, Jing Li, Zhi-Yuan Zhang, Qiang Zhu, Yimei Xia, Younan TI Controlling the Shapes of Silver Nanocrystals with Different Capping Agents SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SURFACE-PLASMON RESONANCE; PLATINUM NANOPARTICLES; SPECTROSCOPY; NANOSPHERES; SCATTERING; GROWTH; EXCITATION; REDUCTION; CANCER; OXYGEN AB This paper provides direct evidence to support the role of a capping agent in controlling the evolution of Ag seeds into nanocrystals with different shapes. Starting with single-crystal seeds (spherical or cubic in shape), we could selectively obtain Ag octahedrons enclosed by {111} facets and nanocubes/nanobars enclosed by {100} facets by adding sodium citrate (Na(3)CA) and poly(vinyl pyrrolidone) (PVP), respectively, as a capping agent while all other parameters were kept the same. This research not only offers new insights into the role played by a capping agent in shape-controlled synthesis but also provides, for the first time, Ag octahedrons as small as 40 nm in edge length for optical and spectroscopic studies. C1 [Zeng, Jie; Zheng, Yiqun; Rycenga, Matthew; Zhang, Qiang; Xia, Younan] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. [Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Li, Zhi-Yuan] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. RP Xia, YN (reprint author), Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. EM xia@biomed.wustl.edu RI ZHANG, QIANG/B-1310-2011; Zeng, Jie/H-1327-2011; Zheng, Yiqun/F-5203-2011; Zheng, Yiqun/E-3793-2013; Xia, Younan/E-8499-2011 OI Zeng, Jie/0000-0002-8812-0298; FU NSF [DMR-0804088, ECS-0335765]; U.S. DOE/BES [DE-AC02-98CH10886] FX This work was supported by the NSF (DMR-0804088). Part of the work was performed at the Nano Research Facility, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the NSF under Award ECS-0335765. Work at BNL was supported by the U.S. DOE/BES under Contract No. DE-AC02-98CH10886. NR 25 TC 221 Z9 226 U1 32 U2 326 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 30 PY 2010 VL 132 IS 25 BP 8552 EP + DI 10.1021/ja103655f PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 616GH UT WOS:000279196500013 PM 20527784 ER PT J AU Cohen, AS Dubikovskaya, EA Rush, JS Bertozzi, CR AF Cohen, Allison S. Dubikovskaya, Elena A. Rush, Jason S. Bertozzi, Carolyn R. TI Real-Time Bioluminescence Imaging of Glycans on Live Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID O-LINKED GLYCOSYLATION; FREE CLICK CHEMISTRY; STAUDINGER LIGATION; LIVING ANIMALS; COPPER-FREE; HYDROLYSIS AB Cell-surface glycans are attractive targets for molecule imaging due to their reflection of cellular processes associated with development and disease progression. In this paper, we describe the design, synthesis, and biological application of a new phosphine probe for real-time imaging of cell-surface glycans using bioluminescence. To accomplish this goal, we took advantage of the bioorthogonal chemical reporter technique. This strategy uses a two-step labeling procedure in which an unnatural sugar analogue containing a functional handle is (1) incorporated into sugar-bearing proteins via the cell's own biosynthetic machinery and then (2) detected with an exogenously added probe. We designed phosphine-luciferin reagent 1 to activate bioluminescence in response to Staudinger ligation with azide-labeled glycans. We chose to use a phosphine probe because, despite their slow reaction kinetics, they remain the best-performing reagents for tagging azidosugars in mice. Given the sensitivity and negligible background provided by bioluminescence imaging (BLI), we reasoned that 1 might be able to overcome some of the limitations encountered with fluorescent phosphine probes. In this work, we synthesized the first phosphine-luciferin probe for use in real-time BLI and demonstrated that azide-labeled cell-surface glycans can be imaged with 1 using concentrations as low as single digit nanomolar and times as little as 5 min, a feat that cannot be matched by any previous fluorescent phosphine probes. Even though we have only demonstrated its use in visualizing glycans, it can be envisioned that this probe could also be used for bioluminescence imaging of any azide-containing biomolecule, such as proteins and lipids, since azides have been previously incorporated into these molecules. The phosphine-luciferin probe is therefore poised for many applications in real-time imaging in cells and whole animals. These studies are currently in progress in our laboratory. C1 [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu FU NIH [GM058867] FX This work was supported by NIH Grant GM058867. We thank Dr. Chris Contag (Stanford University) for kindly providing the cell line used in this study and Dr. Andreas Stahl for use of the IVIS Spectrum. We also thank Ellen Sletten and Dr. John Jewett for their help. NR 34 TC 37 Z9 37 U1 3 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 30 PY 2010 VL 132 IS 25 BP 8563 EP + DI 10.1021/ja101766r PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 616GH UT WOS:000279196500017 PM 20527879 ER PT J AU Shukla, N Bartel, MA Gellman, AJ AF Shukla, Nisha Bartel, Melissa A. Gellman, Andrew J. TI Enantioselective Separation on Chiral Au Nanoparticles SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GOLD NANOPARTICLES; OPTICAL-ACTIVITY; SURFACES; SIZE AB The surfaces of chemically synthesized Au nanoparticles have been modified with D- or L-cysteine to render them chiral and enantioselective for adsorption of chiral molecules. Their enantioselective interaction with chiral compounds has been probed by optical rotation measurements during exposure to enantiomerically pure and racennic propylene oxide. The ability of optical rotation to detect enantiospecific adsorption arises from the fact that the specific rotation of polarized light by (R)- and (S)-propylene oxide is enhanced by interaction with Au nanoparticles. This effect is related to previous observations of enhanced circular dichroism by Au nanoparticles modified by chiral adsorbates. More importantly, chiral Au nanoparticles modified with either D- or L-cysteine selectively adsorb one enantiomer of propylene oxide from a solution of racemic propylene oxide, thus leaving an enantiomeric excess in the solution phase. Au nanoparticles modified with L-cysteine (D-cysteine) selectively adsorb the (R)-propylene oxide ((S)-propylene oxide). A simple model has been developed that allows extraction of the enantiospecific equilibrium constants for (R)- and (S)-propylene oxide adsorption on the chiral Au nanoparticles. C1 [Shukla, Nisha; Bartel, Melissa A.; Gellman, Andrew J.] Carnegie Mellon Univ, Inst Complex Engineered Syst, Pittsburgh, PA 15213 USA. [Shukla, Nisha; Bartel, Melissa A.; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Shukla, Nisha; Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Inst Complex Engineered Syst, Pittsburgh, PA 15213 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU DOE [DE-FG02-03ER15472]; CMU SURG FX A.J.G. acknowledges support from the DOE under grant no. DE-FG02-03ER15472. M.A.B. acknowledges support from a CMU SURG grant. NR 20 TC 68 Z9 71 U1 5 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 30 PY 2010 VL 132 IS 25 BP 8575 EP 8580 DI 10.1021/ja908219h PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 616GH UT WOS:000279196500021 PM 20521789 ER PT J AU He, JQ Sootsman, JR Girard, SN Zheng, JC Wen, JG Zhu, YM Kanatzidis, MG Dravid, VP AF He, Jiaqing Sootsman, Joseph R. Girard, Steven N. Zheng, Jin-Cheng Wen, Jianguo Zhu, Yimei Kanatzidis, Mercouri G. Dravid, Vinayak P. TI On the Origin of Increased Phonon Scattering in Nanostructured PbTe Based Thermoelectric Materials SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LATTICE THERMAL-CONDUCTIVITY; SILICON NANOWIRES; HIGH-TEMPERATURE; BULK MATERIALS; PERFORMANCE; MERIT; DEVICES; SOLIDS; STRAIN; FIGURE AB We have investigated the possible mechanisms of phonon scattering by nanostructures and defects in PbTe-X (X = 2% Sb, Bi, or Pb) thermoelectric materials systems. We find that among these three compositions, PbTe-2% Sb has the lowest lattice thermal conductivity and exhibits a larger strain and notably more misfit dislocations at the precipitate/PbTe interfaces than the other two compositions. In the PbTe-Bi 2% sample, we infer some weaker phonon scattering BiTe precipitates, in addition to the abundant Bi nanostructures. In the PbTe-Pb 2% sample, we also find that pure Pb nanoparticles exhibit stronger phonon scattering than nanostructures with Te vacancies. Within the accepted error range, the theoretical calculations of the lattice thermal conductivity in the three systems are in close agreement with the experimental measurements, highlighting the important role of misfit dislocations, nanoscale particles, and associated interfacial elastic strain play in phonon scattering. We further propose that such particle-induced local elastic perturbations interfere with the phonon propagation pathway, thereby contributing to further reduction in lattice thermal conductivity, and consequently can enhance the overall thermoelectric figure of merit. C1 [He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [He, Jiaqing; Sootsman, Joseph R.; Girard, Steven N.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Zheng, Jin-Cheng] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China. [Zheng, Jin-Cheng] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Peoples R China. [Zheng, Jin-Cheng] Xiamen Univ, Fujian Key Lab Semicond Mat & Applicat, Xiamen 361005, Peoples R China. [Wen, Jianguo] Univ Illinois, Frederick Seitz Mat Res Lab, Ctr Microanal Mat, Urbana, IL 61801 USA. [Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP He, JQ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM jiaqing-he@northwestern.edu; m-kanatzidis@northwestern.edu; v-dravid@northwestern.edu RI Dravid, Vinayak/B-6688-2009; He, Jiaqing/A-2245-2010; Zheng, JC/G-3383-2010 OI Zheng, JC/0000-0002-6292-3236 FU Office of Naval Research; Xiamen University of China; Specialized Research Fund [20090121120028]; Natural Science Foundation of Fujian Province, China [2009J01015]; DOE Office of Science [DEAC02-98CH10886] FX Financial support from the Office of Naval Research is gratefully acknowledged. Transmission electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) facility of the NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. J.C.Z. is supported by the Minjiang Scholar Distinguished Professorship Program through Xiamen University of China, Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090121120028), and the Natural Science Foundation of Fujian Province, China (Grant No. 2009J01015). Portions of TEM work done at BNL were supported by the DOE Office of Science under Contract No. DEAC02-98CH10886. NR 47 TC 98 Z9 98 U1 9 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 30 PY 2010 VL 132 IS 25 BP 8669 EP 8675 DI 10.1021/ja1010948 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 616GH UT WOS:000279196500031 PM 20524606 ER PT J AU Tao, F Grass, ME Zhang, YW Butcher, DR Aksoy, F Aloni, S Altoe, V Alayoglu, S Renzas, JR Tsung, CK Zhu, ZW Liu, Z Salmeron, M Somorjai, GA AF Tao, Feng Grass, Michael E. Zhang, Yawen Butcher, Derek R. Aksoy, Funda Aloni, Shaul Altoe, Virginia Alayoglu, Selim Renzas, James R. Tsung, Chia-Kuang Zhu, Zhongwei Liu, Zhi Salmeron, Miguel Somorjai, Gabor A. TI Evolution of Structure and Chemistry of Bimetallic Nanoparticle Catalysts under Reaction Conditions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SURFACE-CHEMISTRY; ELECTROCATALYSTS; HYDROGEN; MONOLAYER; PALLADIUM; OXIDATION; ALLOY; NANOCRYSTALS; REDUCTION; SCIENCE AB Three series of bimetallic nanoparticle catalysts (Rh(x)Pd(1-x), Rh(x)Pt(1-x), and Pd(x)Pt(1-x), x=0.2, 0.5, 0.8) were synthesized using one-step colloidal chemistry. X-ray photoelectron spectroscopy (XPS) depth profiles using different X-ray energies and scanning transmission electron microscopy showed that the as-synthesized Rh(x)Pd(1-x) and Pd(x)Pt(1-x) nanoparticles have a core-shell structure whereas the Rh(x)Pt(1-x) alloys are more homogeneous in structure. The evolution of their structures and chemistry under oxidizing and reducing conditions was studied with ambient-pressure XPS (AP-XPS) in the Torr pressure range. The Rh(x)Pd(1-x) and Rh(x)Pt(1-x) nanoparticles undergo reversible changes of surface composition and chemical state when the reactant gases change from oxidizing (NO or O(2) at 300 degrees C) to reducing (H(2) or CO at 300 degrees C) or catalytic (mixture of NO and CO at 300 degrees C). In contrast, no significant change in the distribution of the Pd and Pt atoms in the Pd(x)Pt(1-x) nanoparticles was observed. The difference in restructuring behavior under these reaction conditions in the three series of bimetallic nanoparticle catalysts is correlated with the surface free energy of the metals and the heat of formation of the metallic oxides. The observation of structural evolution of bimetallic nanoparticles under different reaction conditions suggests the importance of in situ studies of surface structures of nanoparticle catalysts. C1 [Tao, Feng; Butcher, Derek R.; Aloni, Shaul; Altoe, Virginia; Alayoglu, Selim; Renzas, James R.; Zhu, Zhongwei; Salmeron, Miguel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Grass, Michael E.; Aksoy, Funda; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tao, Feng; Zhang, Yawen; Butcher, Derek R.; Alayoglu, Selim; Renzas, James R.; Tsung, Chia-Kuang; Zhu, Zhongwei; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. [Aksoy, Funda] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov; somorjai@berkeley.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director of the Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract DE-AC02-05CH11231. NR 44 TC 145 Z9 145 U1 20 U2 232 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 30 PY 2010 VL 132 IS 25 BP 8697 EP 8703 DI 10.1021/ja101502t PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 616GH UT WOS:000279196500035 PM 20521788 ER PT J AU Pindzola, MS Ludlow, JA Colgan, J AF Pindzola, M. S. Ludlow, J. A. Colgan, J. TI Photoionization of highly charged atomic ions SO PHYSICAL REVIEW A LA English DT Article ID CLOSE-COUPLING METHOD; R-MATRIX; DOUBLE-IONIZATION; HELIUM; ELECTRONS; ENERGIES; IMPACT AB Photoionization processes in highly charged atomic ions are studied by direct solution of the time-dependent Dirac equation. Expansion of a one-electron wave function in spin-orbit eigenfunctions yields close-coupled equations for bi-spinor radial wave functions. Expansion of a two-electron wave function in coupled spin-orbit eigenfunctions yields close-coupled equations for quad-spinor radial wave functions. Single photoionization cross sections using the close-coupled bi-spinor equations are calculated for Ne(9+) and U(91+). Single-and double-photoionization cross sections using the close-coupled quad-spinor equations are calculated for Ne(8+) and U(90+). All single photoionization cross sections are found to be in good agreement with fully relativistic perturbation theory results. C1 [Pindzola, M. S.; Ludlow, J. A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. OI Colgan, James/0000-0003-1045-3858 FU US Department of Energy; US National Science Foundation FX This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California. NR 25 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 30 PY 2010 VL 81 IS 6 AR 063431 DI 10.1103/PhysRevA.81.063431 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 618UI UT WOS:000279380800005 ER PT J AU Simcic, J Schultz, DR Mawhorter, RJ Cadez, I Greenwood, JB Chutjian, A Lisse, CM Smith, SJ AF Simcic, J. Schultz, D. R. Mawhorter, R. J. Cadez, I. Greenwood, J. B. Chutjian, A. Lisse, C. M. Smith, S. J. TI Measurement and calculation of absolute single- and multiple-charge-exchange cross sections for Feq+ ions impacting CO and CO2 SO PHYSICAL REVIEW A LA English DT Article ID X-RAY-EMISSION; ATOMIC-HYDROGEN; SOLAR-SYSTEM; IONIZATION; DISSOCIATION; COLLISIONS; PLASMA AB Absolute cross sections are reported for single, double, and triple charge exchange of Feq+ (q = 5-13) ions with CO and CO2. The highly charged Fe ions are generated in an electron cyclotron resonance ion source. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental results are compared with new calculations of these cross sections in the n-electron classical trajectory Monte Carlo approximation in which the ensuing radiative and nonradiative cascades are approximated with scaled hydrogenic transition probabilities and scaled Auger rates. The present data are needed in astrophysical applications of solar- and stellar-wind charge exchange with comets, planetary atmospheres, and circumstellar clouds. C1 [Simcic, J.; Chutjian, A.] CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, Pasadena, CA 91109 USA. [Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Mawhorter, R. J.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Cadez, I.] Joef Stefan Inst, Ljubljana 1000, Slovenia. [Greenwood, J. B.] Queens Univ Belfast, Dept Phys, Belfast BT7 1NN, Antrim, North Ireland. [Lisse, C. M.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD 20732 USA. [Smith, S. J.] Indiana Wesleyan Univ, Dept Phys, Marion, IN 46953 USA. RP Simcic, J (reprint author), CALTECH, Jet Prop Lab, Atom & Mol Phys Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Greenwood, Jason/L-4799-2014; Lisse, Carey/B-7772-2016 OI Lisse, Carey/0000-0002-9548-1526 FU National Aeronautics and Space Administration through the California Institute of Technology; US Department of Energy [DE-AC05-OR22464] FX We thank C. Winstead for a helpful discussion. The experimental work was carried out at JPL/Caltech and was supported by the National Aeronautics and Space Administration through agreement with the California Institute of Technology. D.R.S. gratefully acknowledges support from the US Department of Energy under Contract No. DE-AC05-OR22464. NR 31 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 30 PY 2010 VL 81 IS 6 AR 062715 DI 10.1103/PhysRevA.81.062715 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 618UH UT WOS:000279380700001 ER PT J AU Yoshida, S Reinhold, CO Burgdorfer, J Wyker, B Dunning, FB AF Yoshida, S. Reinhold, C. O. Burgdoerfer, J. Wyker, B. Dunning, F. B. TI Encoding and decoding phase information in high-n circular wave packets SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM PHASE; RETRIEVAL AB We demonstrate theoretically and experimentally the extraction of detailed information on the density matrix of very-high-n (>300) near-circular Rydberg wave packets through Fourier analysis of the quantum beat and quantum revival signals. The remarkably long coherence times associated with circular wave packets facilitate the preservation and read-out of phase information encoded in this matrix. We illustrate the power of the method by determining the angular localization of the components of a wave packet. C1 [Yoshida, S.; Burgdoerfer, J.; Dunning, F. B.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Wyker, B.; Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Wyker, B.; Dunning, F. B.] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA. RP Yoshida, S (reprint author), Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. OI Reinhold, Carlos/0000-0003-0100-4962 FU NSF [0650732]; Robert A. Welch foundation [C-0734]; OBES, US DOE [AC05-00OR22725]; FWF (Austria) [SFB016] FX This research was supported by the NSF under Grant No. 0650732, the Robert A. Welch foundation under Grant No. C-0734, the OBES, US DOE to ORNL, which is managed by the UTBatelle LLC under Contract No. AC05-00OR22725, and by the FWF (Austria) under SFB016. NR 12 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 30 PY 2010 VL 81 IS 6 AR 063428 DI 10.1103/PhysRevA.81.063428 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 618UI UT WOS:000279380800002 ER PT J AU Kim, MH Acbas, G Yang, MH Eginligil, M Khalifah, P Ohkubo, I Christen, H Mandrus, D Fang, Z Cerne, J AF Kim, M. -H. Acbas, G. Yang, M. -H. Eginligil, M. Khalifah, P. Ohkubo, I. Christen, H. Mandrus, D. Fang, Z. Cerne, J. TI Infrared anomalous Hall effect in SrRuO3: Exploring evidence for crossover to intrinsic behavior SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILM METALS; SIDE-JUMP; SUPERCONDUCTORS; TEMPERATURE; ANGLE; TC AB The origin of the Hall effect in many itinerant ferromagnets is still not resolved with an anomalous contribution from the sample magnetization that can exhibit extrinsic or intrinsic behavior. We report the midinfrared (MIR) measurements of the complex Hall (theta(H)), Faraday (theta(F)), and Kerr (theta(K)) angles, as well as the Hall conductivity (sigma(xy)) in a SrRuO3 film in the 115-1400 meV energy range. The magnetic field, temperature, and frequency dependence of the Hall effect is explored. The MIR magneto-optical response shows very strong frequency dependence including sign changes. Below 200 meV, the MIR theta(H)(T) changes sign between 120 and 150 K, as is observed in dc Hall measurements. Above 200 meV, the temperature dependence of theta(H) is similar to that of the dc magnetization and the measurements are in good agreement with predictions from a band calculation for the intrinsic anomalous Hall effect (AHE). The temperature and frequency dependence of the measured Hall effect suggests that whereas the behavior above 200 meV is consistent with an intrinsic AHE, the extrinsic AHE may play an important role in the lower-energy response. C1 [Kim, M. -H.; Acbas, G.; Yang, M. -H.; Eginligil, M.; Cerne, J.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Khalifah, P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Ohkubo, I.] Univ Tokyo, Dept Appl Chem, Tokyo, Japan. [Christen, H.; Mandrus, D.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. [Fang, Z.] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. RP Kim, MH (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RI Christen, Hans/H-6551-2013; Mandrus, David/H-3090-2014; OHKUBO, Isao/B-9553-2013; Fang, Zhong/D-4132-2009 OI Christen, Hans/0000-0001-8187-7469; OHKUBO, Isao/0000-0002-4187-0112; FU Research Corporation Cottrell Scholar Grant; NSF [DMR0449899]; University at Buffalo, College of Arts and Sciences; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX We thank K. Takahashi, A. J. Millis, N. P. Ong, and J. Sinova for helpful discussions. We also wish to thank B. D. McCombe for the use of UB's Magneto-Transport Facility. This work was supported by the Research Corporation Cottrell Scholar Grant; NSF-CAREER-DMR0449899, and the University at Buffalo, College of Arts and Sciences. Research at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Batelle, LLC. NR 32 TC 8 Z9 8 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2010 VL 81 IS 23 AR 235218 DI 10.1103/PhysRevB.81.235218 PG 9 WC Physics, Condensed Matter SC Physics GA 618VC UT WOS:000279382800001 ER PT J AU Siegel, DA Hwang, CG Fedorov, AV Lanzara, A AF Siegel, D. A. Hwang, C. G. Fedorov, A. V. Lanzara, A. TI Quasifreestanding multilayer graphene films on the carbon face of SiC SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; EPITAXIAL GRAPHENE; GRAPHITE AB The electronic band structure of as-grown and doped graphene grown on the carbon face of SiC is studied by high-resolution angle-resolved photoemission spectroscopy, where we observe both rotations between adjacent layers and AB stacking. The band structure of quasifreestanding AB bilayers is directly compared with bilayer graphene grown on the Si face of SiC to study the impact of the substrate on the electronic properties of epitaxial graphene. Our results show that the C-face films are nearly free standing from an electronic point of view due to the rotations between graphene layers. C1 [Siegel, D. A.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Siegel, D. A.; Hwang, C. G.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lanzara, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM alanzara@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; MRSEC under NSF [DMR-0820382] FX We would like to thank Walt de Heer, Claire Berger, and Yike Hu for providing us with the high quality graphene samples studied in this paper. Useful discussion with Antonio Castro Neto, Ed Conrad, and Mike Sprinkle are also acknowledged. ARPES work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Sample growth was supported by the MRSEC under NSF Grant No. DMR-0820382. NR 36 TC 24 Z9 24 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2010 VL 81 IS 24 AR 241417 DI 10.1103/PhysRevB.81.241417 PG 4 WC Physics, Condensed Matter SC Physics GA 618VD UT WOS:000279382900002 ER PT J AU Kogut, JB Sinclair, DK AF Kogut, J. B. Sinclair, D. K. TI Thermodynamics of lattice QCD with 2 flavors of color-sextet quarks: A model of walking/conformal technicolor SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY-BREAKING; GAUGE-THEORIES; FERMIONS; HYPERCOLOR; NUMBER; SCALE AB QCD with two flavors of massless color-sextet quarks is considered as a model for conformal/walking technicolor. If this theory possesses an infrared fixed point, as indicated by 2-loop perturbation theory, it is a conformal (unparticle) field theory. If, on the other hand, a chiral condensate forms on the weak-coupling side of this would-be fixed point, the theory remains confining. The only difference between such a theory and regular QCD is that there is a range of momentum scales over which the coupling constant runs very slowly (walks). In this first analysis, we simulate the lattice version of QCD with two flavors of staggered quarks at finite temperatures on lattices of temporal extent N-t = 4 and 6. The deconfinement and chiral-symmetry restoration couplings give us a measure of the scales associated with confinement and chiral-symmetry breaking. We find that, in contrast to what is seen with fundamental quarks, these transition couplings are very different. beta = 6/g(2) for each of these transitions increases significantly from N-t = 4 and N-t = 6 as expected for the finite-temperature transitions of an asymptotically free theory. This suggests a walking rather than a conformal behavior, in contrast to what is observed with Wilson quarks. In contrast to what is found for fundamental quarks, the deconfined phase exhibits states in which the Polyakov loop is oriented in the directions of all three cube roots of unity. At very weak coupling the states with complex Polyakov loops undergo a transition to a state with a real, negative Polyakov loop. C1 [Kogut, J. B.] US DOE, Div High Energy Phys, Washington, DC 20585 USA. [Kogut, J. B.] Univ Maryland, Dept Phys TQHN, College Pk, MD 20742 USA. [Sinclair, D. K.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Kogut, JB (reprint author), US DOE, Div High Energy Phys, Washington, DC 20585 USA. FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; Argonne/University of Chicago Joint Theory Institute; NSF [NSF PHY03-04252] FX D.K.S. is supported in part by the U.S. Department of Energy, Division of High Energy Physics, Contract No. DE-AC02-06CH11357, and in part by the Argonne/University of Chicago Joint Theory Institute. J.B.K. is supported in part by NSF Grant No. NSF PHY03-04252. These simulations were performed on the Cray XT4, Franklin at NERSC under an ERCAP allocation, and on the Cray XT5, Kraken at NICS under an LRAC/TRAC allocation. D.K.S. thanks J. Kuti, D. Nogradi, and F. Sannino for helpful discussions. NR 50 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 30 PY 2010 VL 81 IS 11 AR 114507 DI 10.1103/PhysRevD.81.114507 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 618WC UT WOS:000279385800002 ER PT J AU Ramalho, G Pena, MT Gross, F AF Ramalho, G. Pena, M. T. Gross, Franz TI Electromagnetic form factors of the Delta with D-waves SO PHYSICAL REVIEW D LA English DT Article ID BARYON MAGNETIC-MOMENTS; PION-PROTON BREMSSTRAHLUNG; QCD SUM-RULES; QUARK-SOLITON MODEL; DECUPLET BARYONS; CHARGE RADII; ELECTRIC QUADRUPOLE; PARTICLE PHYSICS; OCTUPOLE MOMENTS; CHIRAL-SYMMETRY AB The electromagnetic form factors of the Delta baryon are evaluated within the framework of a covariant spectator quark model, where S- and D-states are included in the Delta wave function. We predict all the four Delta multipole form factors: the electric charge G(E0), the magnetic dipole G(M1), the electric quadrupole G(E2) and the magnetic octupole G(M3). We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data. C1 [Ramalho, G.; Gross, Franz] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Inst Super Tecn, Dept Phys, P-1049001 Lisbon, Portugal. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union FX G. R. thanks Ross Young, David Richard and Anthony Thomas for helpful discussions. The authors thank also Peter Moron for helpful clarifications relative to Ref. [76] and Constantia Alexandrou for sharing the lattice data from Refs. [73,99]. This work was partially supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under Grant No. SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 project "Study of strongly interacting matter"). NR 124 TC 37 Z9 37 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 30 PY 2010 VL 81 IS 11 AR 113011 DI 10.1103/PhysRevD.81.113011 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 618VZ UT WOS:000279385500001 ER PT J AU Benisti, D Morice, O Gremillet, L Siminos, E Strozzi, DJ AF Benisti, Didier Morice, Olivier Gremillet, Laurent Siminos, Evangelos Strozzi, David J. TI Self-Organization and Threshold of Stimulated Raman Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID FUSION AB We derive, both theoretically and using an envelope code, threshold intensities for stimulated Raman scattering, which compare well with results from Vlasov simulations. To do so, we account for the nonlinear decrease of Landau damping and for the detuning induced by both the nonlinear wave number shift delta k(p) and the frequency shift delta omega(p) of the plasma wave. In particular, we show that the effect of delta k(p) may cancel out that of delta omega(p), but only in that plasma region where the laser intensity decreases along the direction of propagation of the scattered wave. Elsewhere, delta k(p) enhances the detuning effect of delta omega(p). C1 [Benisti, Didier; Morice, Olivier; Gremillet, Laurent; Siminos, Evangelos] CEA, DAM, DIF, F-91297 Arpajon, France. [Strozzi, David J.] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA. RP Benisti, D (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM didier.benisti@cea.fr RI Siminos, Evangelos/G-2506-2010; OI Siminos, Evangelos/0000-0002-1484-0559; Strozzi, David/0000-0001-8814-3791 FU DOE [DE-AC52-07NA27344] FX Work at LLNL was supported by DOE Contract No. DE-AC52-07NA27344 (LDRD Tracking No. 08-ERD-017). NR 17 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2010 VL 105 IS 1 AR 015001 DI 10.1103/PhysRevLett.105.015001 PG 4 WC Physics, Multidisciplinary SC Physics GA 618YO UT WOS:000279392500001 PM 20867453 ER PT J AU Goodchild, SC Howell, MW Littler, DR Mandyam, RA Sale, KL Mazzanti, M Breit, SN Curmi, PMG Brown, LJ AF Goodchild, Sophia C. Howell, Michael W. Littler, Dene R. Mandyam, Ramya A. Sale, Kenneth L. Mazzanti, Michele Breit, Samuel N. Curmi, Paul M. G. Brown, Louise J. TI Metamorphic Response of the CLICl Chloride Intracellular Ion Channel Protein upon Membrane Interaction SO BIOCHEMISTRY LA English DT Article ID CIRCULAR-DICHROISM SPECTRA; SECONDARY STRUCTURE; PROTEOMIC ANALYSIS; INDUCED APOPTOSIS; NMR SYSTEM; IN-VIVO; NCC27; CELLS; FORM; CRYSTALLOGRAPHY AB A striking feature of the CLIC (chloride intracellular channel) protein family is the ability of its members to convert between a soluble state and an integral membrane channel form. Direct evidence of the structural transition required for the CLIC protein to autonomously insert into the membrane is lacking, lamely because of the challenge of probing the conformation of the membrane-bound protein. However, insights into the CLIC transmembrane form can be gained by biophysical methods such as fluorescence resonance energy transfer (FRET) spectroscopy. This approach was used to measure distances from tryptophan 35, located within the CLICI putative N-domain transmembrane region, to three native cysteine residues within the C-terminal domain. These distances were computed both in aqueous solution and upon the addition of membrane vesicles. The FRET distances were used as constraints for modeling of a structure for the CLICI integral membrane form. The data are suggestive of a large conformational unfolding occurring between the N- and C-domains of CLICI upon interaction with the membrane. Consistent with previous findings, the N-terminal domain of CLICI is likely to insert into the lipid bilayer, while the C-domain remains in solution on the extravesicular side of the membrane. C1 [Goodchild, Sophia C.; Howell, Michael W.; Mandyam, Ramya A.; Brown, Louise J.] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia. [Littler, Dene R.; Curmi, Paul M. G.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Sale, Kenneth L.] Sandia Natl Labs, Biosyst R&D Dept, Livermore, CA 94551 USA. [Mazzanti, Michele] Univ Milan, Dipartimento Sci Biomol & Biotecnol, I-20133 Milan, Italy. [Breit, Samuel N.; Curmi, Paul M. G.] St Vincents Hosp, St Vincents Ctr Appl Med Res, Sydney, NSW 2010, Australia. [Breit, Samuel N.; Curmi, Paul M. G.] Univ New S Wales, Sydney, NSW 2010, Australia. RP Brown, LJ (reprint author), Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia. EM Louise.Brown@mq.edu.au RI Mazzanti, Michele/A-8941-2011; Curmi, Paul/G-7185-2011; OI Curmi, Paul/0000-0001-5762-7638; Goodchild, Sophia/0000-0002-5091-7576 NR 44 TC 16 Z9 17 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 29 PY 2010 VL 49 IS 25 BP 5278 EP 5289 DI 10.1021/bi100111c PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 612KR UT WOS:000278897700021 PM 20507120 ER PT J AU Hermundstad, AM Daub, EG Carlson, JM AF Hermundstad, A. M. Daub, E. G. Carlson, J. M. TI Energetics of strain localization in a model of seismic slip SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID FRICTION; FAULT; DEFORMATION; ZONE AB We quantify the energy dissipated to heat and to local disorder in a sheared layer of granular fault gouge. Local disorder is modeled using shear transformation zone theory, a continuum model of nonaffine deformation in amorphous solids that resolves spontaneous localization of strain. Strain localization decreases the total energy dissipated during slip. In addition, a fraction of this energy is dissipated to increasing local disorder as the material is sheared, thereby decreasing the amount of energy dissipated as thermal heat. We quantify the heat dissipated per unit area as a function of total slip in the presence and absence of strain localization and test the parameter dependence of these calculations. We find that less heat is dissipated per unit area compared to results obtained using a traditional heuristic energy partition. C1 [Hermundstad, A. M.; Daub, E. G.; Carlson, J. M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Daub, E. G.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. [Daub, E. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Hermundstad, AM (reprint author), Univ Calif Santa Barbara, Dept Phys, Broida Hall, Santa Barbara, CA 93106 USA. EM ann@physics.ucsb.edu FU Department of Education [84.200]; David and Lucile Packard Foundation; NSF [DMR-0606092, EAR-0529922]; USGS Cooperative Agreement [07HQAG0008] FX The authors thank James Langer and Ralph Archuleta for useful discussions. This work was supported by the Department of Education, CFDA number 84.200, the David and Lucile Packard Foundation, NSF grant number DMR-0606092, and the NSF/USGS Southern California Earthquake Center, funded by NSF Cooperative Agreement EAR-0529922 and USGS Cooperative Agreement 07HQAG0008. The SCEC contribution number for this paper is 1328. NR 30 TC 3 Z9 3 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN 29 PY 2010 VL 115 AR B06320 DI 10.1029/2009JB006960 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 620US UT WOS:000279526600001 ER PT J AU Okamoto, S Maier, TA AF Okamoto, Satoshi Maier, Thomas A. TI Microscopic inhomogeneity and superconducting properties of a two-dimensional Hubbard model for high-T-c cuprates SO PHYSICAL REVIEW B LA English DT Article ID ATOMIC-SCALE; BI2SR2CACU2O8+DELTA; TRANSITION; STATE AB Recent scanning tunneling microscopy measurements on cuprate superconductors have revealed remarkable spatial inhomogeneities in the single-particle energy gap. Using cellular dynamical mean-field theory, we study the zero temperature superconducting properties of a single-band Hubbard model with a spatial modulation of the electron density. We find that the inhomogeneity in the electronic structure results in a substantial spatial variation in the superconducting order parameter and single-particle energy gap, reminiscent of the experimental results. In particular, we find that the order parameter and gap amplitudes in the hole-rich regions are significantly enhanced over the corresponding quantities in a uniform system, if the hole-rich regions are embedded in regions with smaller hole density. C1 [Okamoto, Satoshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Maier, Thomas A.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Maier, Thomas A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Okamoto, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Okamoto, Satoshi/G-5390-2011; Maier, Thomas/F-6759-2012 OI Okamoto, Satoshi/0000-0002-0493-7568; Maier, Thomas/0000-0002-1424-9996 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors would like to thank D. J. Scalapino, J. C. Davis, and A. Yazdani for valuable discussions. This work was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 27 TC 10 Z9 10 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2010 VL 81 IS 21 AR 214525 DI 10.1103/PhysRevB.81.214525 PG 6 WC Physics, Condensed Matter SC Physics GA 618EH UT WOS:000279333700001 ER PT J AU Berryman, JS Clark, RM Gregorich, KE Allmond, JM Bleuel, DL Cromaz, M Dragojevic, I Dvorak, J Ellison, PA Fallon, P Garcia, MA Gros, S Lee, IY Macchiavelli, AO Paschalis, S Petri, M Qian, J Stoyer, MA Wiedeking, M AF Berryman, J. S. Clark, R. M. Gregorich, K. E. Allmond, J. M. Bleuel, D. L. Cromaz, M. Dragojevic, I. Dvorak, J. Ellison, P. A. Fallon, P. Garcia, M. A. Gros, S. Lee, I. Y. Macchiavelli, A. O. Paschalis, S. Petri, M. Qian, J. Stoyer, M. A. Wiedeking, M. TI Electromagnetic decays of excited states in (261)Sg (Z=106) and (257)Rf (Z=104) SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-STRUCTURE INVESTIGATIONS; SUPERHEAVY NUCLEI; ELEMENTS; ISOTOPES; REGION AB An isomeric one-quasineutron state, likely based on the [725]11/2(-) Nilsson level, was identified in (261)Sg by its decay via internal conversion electrons. The state has an excitation energy of approximate to 200 keV and a half-life of 9.0(-1.5)(+2.0) mu s. (261)Sg has the highest Z and A of any nucleus in which the electromagnetic decay of an isomeric state was observed to date. A separate experiment was performed on the a daughter nucleus of (261)Sg, namely (257)Rf. Spectroscopy of delayed gamma rays and converted electrons from (257)Rf resulted in the identification of a K isomer at an excitation energy of approximate to 1125 keV with a half-life of 134.9 +/- 7.7 mu s. The spin of the isomeric state is tentatively assigned I = 21/2, 23/2 and the state likely decays to a rotational band built on the [725]11/2(-) Nilsson level via a Delta K = 5 or 6 transition. The present results provide new information on excited states in the transactinide region, which is important for testing models of the heaviest elements. C1 [Berryman, J. S.; Clark, R. M.; Gregorich, K. E.; Cromaz, M.; Dragojevic, I.; Dvorak, J.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gros, S.; Lee, I. Y.; Macchiavelli, A. O.; Paschalis, S.; Petri, M.; Qian, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Bleuel, D. L.; Stoyer, M. A.; Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Dragojevic, I.; Ellison, P. A.; Garcia, M. A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Berryman, JS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Qian, Jing/F-9639-2010; Petri, Marina/H-4630-2016; Paschalis, Stefanos/H-8758-2016 OI Petri, Marina/0000-0002-3740-6106; Paschalis, Stefanos/0000-0002-9113-3778 FU US DOE [DE-AC0205CH11231, DE-FG52-06NA26206, DE-FG02-05ER41379]; US Department of Energy Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US DOE National Nuclear Security Administration FX The authors thank the 88-Inch Cyclotron operations staff for providing the beams for this experiment. The work was supported in part by the US DOE under Contract No. DE-AC0205CH11231 (LBNL) and under Grant Nos. DE-FG52-06NA26206 and DE-FG02-05ER41379. Part of this work was performed under the auspices of the US Department of Energy Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. P.A.E. was supported by the US DOE National Nuclear Security Administration, Stewardship Science Graduate program. NR 32 TC 14 Z9 14 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 29 PY 2010 VL 81 IS 6 AR 064325 DI 10.1103/PhysRevC.81.064325 PG 6 WC Physics, Nuclear SC Physics GA 618FQ UT WOS:000279337300001 ER PT J AU Gao, JH Liang, ZT Wang, XN AF Gao, Jian-Hua Liang, Zuo-tang Wang, Xin-Nian TI Nuclear dependence of azimuthal asymmetry in semi-inclusive deep inelastic scattering SO PHYSICAL REVIEW C LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; MULTIPLE PARTON SCATTERING; LEPTON PAIR PRODUCTION; DRELL-YAN PROCESS; ENERGY-LOSS; LEPTOPRODUCTION; COLLISIONS; DISTRIBUTIONS; HADRONS; QCD AB Within the framework of a generalized factorization, semi-inclusive deeply inelastic scattering (SIDIS) cross sections can be expressed as a series of products of collinear hard parts and transverse-momentum-dependent (TMD) parton distributions and correlations. The azimuthal asymmetry < cos phi > of unpolarized SIDIS in the small transverse-momentum region will depend on both twist-2 and -3 TMD quark distributions in target nucleons or nuclei. Nuclear broadening of these twist-2 and -3 quark distributions due to final-state multiple scattering in nuclei is investigated and the nuclear dependence of the azimuthal asymmetry < cos phi > is studied. It is shown that the azimuthal asymmetry is suppressed by multiple parton scattering and the transverse-momentum dependence of the suppression depends on the relative shape of the twist-2 and -3 quark distributions in the nucleon. A Gaussian ansatz for TMD twist-2 and -3 quark distributions in nucleon is used to demonstrate the nuclear dependence of the azimuthal asymmetry and to estimate the smearing effect due to fragmentation. C1 [Gao, Jian-Hua; Liang, Zuo-tang] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Gao, Jian-Hua] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Gao, Jian-Hua; Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Gao, JH (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. RI Gao, Jianhua/O-9550-2014; OI Wang, Xin-Nian/0000-0002-9734-9967 FU National Natural Science Foundation of China [10525523, 10975092]; Department of Science and Technology of Shandong Province; US Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the National Natural Science Foundation of China under the Project Nos. 10525523 and 10975092, the Department of Science and Technology of Shandong Province, and the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 29 PY 2010 VL 81 IS 6 AR 065211 DI 10.1103/PhysRevC.81.065211 PG 7 WC Physics, Nuclear SC Physics GA 618FS UT WOS:000279337500001 ER PT J AU Nermoen, A Raufaste, C deVilliers, SD Jettestuen, E Meakin, P Dysthe, DK AF Nermoen, Anders Raufaste, Christophe deVilliers, Simon Daniel Jettestuen, Espen Meakin, Paul Dysthe, Dag Kristian TI Morphological transitions in partially gas-fluidized granular mixtures SO PHYSICAL REVIEW E LA English DT Article ID PARTICLE-SIZE DISTRIBUTION; VOLCANICLASTIC KIMBERLITE; PATTERN-FORMATION; BINARY-MIXTURES; GRAIN-SIZE; SEGREGATION; BED; SOLIDS; FLOWS; OVERPRESSURES AB Experiments were conducted to investigate pattern formation during the defluidization of a partially fluidized bimodal granular mixture. Partial fluidization occurs when the system is driven at gas velocities that are insufficient to fluidize all of the constituent particles. Over time, the granular mixture evolves into a variety of patterns depending on the concentrations of large and small particles and the gas velocity. We show how vertically oriented pipes, containing large particles, grow at the interface between the fluidized and static zones. The heterogeneities in the permeability field focus the flow, causing localized fluidization, which in turn localizes the sedimentation of the large particles segregating the system. We discuss how the interplay between heterogeneities in material properties, fluid flow and fluid induced deformation may be relevant to a variety of geological processes. C1 [Nermoen, Anders; Raufaste, Christophe; deVilliers, Simon Daniel; Jettestuen, Espen; Meakin, Paul; Dysthe, Dag Kristian] Univ Oslo, N-0316 Oslo, Norway. [Raufaste, Christophe] CNRS, Lab Phys Matiere Condensee, UMR 6622, F-06108 Nice 2, France. [Raufaste, Christophe] Univ Nice Sophia Antipolis, F-06108 Nice 2, France. [Jettestuen, Espen] Int Res Inst Stavanger, Stavanger, Norway. [Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2007 Kjeller, Norway. RP Nermoen, A (reprint author), Univ Oslo, Box 1048 Blindern, N-0316 Oslo, Norway. EM anderne@fys.uio.no RI Dysthe, Dag Kristian/F-2247-2011 OI Dysthe, Dag Kristian/0000-0001-8336-5061 FU NRF FX The project have been supported by a NRF grant to Physics of Geological Processes, UIO. Joachim Mathiesen is gratefully thanked for his constructive contributions. Two anonymous reviewers are thanked for their valuable comments. NR 69 TC 5 Z9 5 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN 29 PY 2010 VL 81 IS 6 AR 061305 DI 10.1103/PhysRevE.81.061305 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 618GF UT WOS:000279338800001 PM 20866414 ER PT J AU Saranathan, V Osuji, CO Mochrie, SGJ Noh, H Narayanan, S Sandy, A Dufresne, ER Prum, RO AF Saranathan, Vinodkumar Osuji, Chinedum O. Mochrie, Simon G. J. Noh, Heeso Narayanan, Suresh Sandy, Alec Dufresne, Eric R. Prum, Richard O. TI Structure, function, and self-assembly of single network gyroid (I4(1)32) photonic crystals in butterfly wing scales SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biological meta-materials; organismal color; biomimetics; biological cubic mesophases ID COHERENT-LIGHT SCATTERING; GREEN HAIRSTREAK; CALLOPHRYS-RUBI; CUBIC MEMBRANES; MORPHOLOGIES; COPOLYMERS; PHASES; NANOSTRUCTURES; INTERFERENCE; DIFFRACTION AB Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. C1 [Saranathan, Vinodkumar; Prum, Richard O.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA. [Saranathan, Vinodkumar; Prum, Richard O.] Yale Univ, Peabody Museum Nat Hist, New Haven, CT 06511 USA. [Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Dufresne, Eric R.; Prum, Richard O.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06511 USA. [Osuji, Chinedum O.] Yale Univ, Dept Chem Engn, New Haven, CT 06511 USA. [Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Dufresne, Eric R.] Yale Univ, Sch Engn & Appl Sci, New Haven, CT 06511 USA. [Mochrie, Simon G. J.; Dufresne, Eric R.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Dufresne, Eric R.] Yale Univ, Dept Mech Engn, New Haven, CT 06511 USA. [Narayanan, Suresh; Sandy, Alec] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Prum, RO (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06511 USA. EM Richard.Prum@yale.edu RI Dufresne, Eric/A-7760-2009; Fan, Yin/G-2594-2011; Noh, Heeso/F-4803-2012; OI Noh, Heeso/0000-0002-6086-9109; Saranathan, Vinodkumar/0000-0003-4058-5093; Osuji, Chinedum/0000-0003-0261-3065 FU Yale National Science Foundation (NSF) Materials Research Science and Engineering Center [Division of Materials Research (DMR)] [0520495]; NSF; Yale University; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Hui Cao and Steven Johnson for help with bandgap calculations and Gil Toombes for help with gyroid structure factor calculations, as well as two anonymous reviewers for their helpful comments. This work was supported with seed funding from the Yale National Science Foundation (NSF) Materials Research Science and Engineering Center [Division of Materials Research (DMR) 0520495] and NSF grants to S.G.J.M. (DMR) and R.O.P. (Division of Biological Infrastructure), and Yale University funds to V. S. and R.O.P. Butterfly wing scale specimens were kindly provided by the Yale Peabody Museum of Natural History and the University of Kansas Natural History Museum and Biodiversity Research Center. TEM images of butterfly scales were prepared by Tim Quinn. SAXS data were collected at beamline 8-ID-I at the Advanced Photon Source at Argonne National Labs, and supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 49 TC 152 Z9 154 U1 10 U2 141 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 29 PY 2010 VL 107 IS 26 BP 11676 EP 11681 DI 10.1073/pnas.0909616107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 618DT UT WOS:000279332300007 PM 20547870 ER PT J AU Firestone, RB West, A Bunch, TE AF Firestone, Richard B. West, Allen Bunch, Ted E. TI Confirmation of the Younger Dryas boundary (YDB) data at Murray Springs, AZ SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID EXTRATERRESTRIAL IMPACT C1 [Firestone, Richard B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [West, Allen] Geosci Consulting, Dewey, AZ 86327 USA. [Bunch, Ted E.] No Arizona Univ, Dept Geol, Flagstaff, AZ 86011 USA. RP Firestone, RB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rbf@lbl.gov OI Firestone, Richard/0000-0003-3833-5546 NR 5 TC 6 Z9 6 U1 1 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 29 PY 2010 VL 107 IS 26 BP E105 EP E105 DI 10.1073/pnas.1003963107 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 618DT UT WOS:000279332300073 PM 20534437 ER PT J AU Wuichet, K Zhulin, IB AF Wuichet, Kristin Zhulin, Igor B. TI Origins and Diversification of a Complex Signal Transduction System in Prokaryotes SO SCIENCE SIGNALING LA English DT Article ID BACTERIAL CHEMOTAXIS; PSEUDOMONAS-AERUGINOSA; MYXOCOCCUS-XANTHUS; RHODOSPIRILLUM-CENTENUM; HELICOBACTER-PYLORI; RHODOBACTER-SPHAEROIDES; PHYLOGENETIC ANALYSIS; METHYLESTERASE CHEB; TWITCHING MOTILITY; BACILLUS-SUBTILIS AB The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein "chemotaxis system" is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species. C1 [Wuichet, Kristin; Zhulin, Igor B.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Wuichet, Kristin; Zhulin, Igor B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Wuichet, Kristin; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. RP Zhulin, IB (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM ijouline@utk.edu RI Zhulin, Igor/A-2308-2012 OI Zhulin, Igor/0000-0002-6708-5323 FU NIH [GM72285]; U.S. Department of Energy (DOE) BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; Office of Science of the DOE [DE-AC05-00OR22725] FX We thank E. V. Koonin and J. S. Parkinson for comments on the manuscript and discussions and R. P. Alexander and L. E. Ulrich for technical assistance and discussions. Funding: This work was supported, in part, by NIH grant GM72285 (I.B.Z.) and by funds from the U.S. Department of Energy (DOE) BioEnergy Science Center, which is supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the DOE under contract no. DE-AC05-00OR22725. Author contributions: K. W. collected sequence data and performed computational work; K. W. and I.B.Z. designed experiments, analyzed results, and wrote the paper. Competing interests: The authors declare that they have no competing interests. NR 86 TC 107 Z9 107 U1 3 U2 21 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD JUN 29 PY 2010 VL 3 IS 128 AR ra50 DI 10.1126/scisignal.2000724 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 624VM UT WOS:000279850100004 PM 20587806 ER PT J AU Lau, JW Morrow, P Read, JC Hoink, V Egelhoff, WF Huang, L Zhu, Y AF Lau, J. W. Morrow, P. Read, J. C. Hoink, V. Egelhoff, W. F. Huang, L. Zhu, Y. TI In situ tunneling measurements in a transmission electron microscope on nanomagnetic tunnel junctions SO APPLIED PHYSICS LETTERS LA English DT Article DE crystal microstructure; nanostructured materials; transmission electron microscopy; tunnelling magnetoresistance ID LOCAL TRANSPORT; BARRIERS; TEM AB We showed that a chain of nanomagnetic tunnel junctions (MTJs) devices can be electrically addressed individually, in situ, in a transmission electron microscope, such that transport properties can be in principle, quantitatively correlated with each device's defects and microstructure. A unique energy barrier was obtained for each device measured. Additionally, in situ tunneling magnetoresistance (TMR) measurements were obtained for a subset of devices. We found that TMR values for our nano-MTJs were generally smaller than TMR in the unpatterned film. (C) 2010 American Institute of Physics. [doi:10.1063/1.3446841] C1 [Lau, J. W.; Morrow, P.; Read, J. C.; Hoink, V.; Egelhoff, W. F.] NIST, Gaithersburg, MD 20899 USA. [Huang, L.; Zhu, Y.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Lau, JW (reprint author), NIST, Gaithersburg, MD 20899 USA. EM june.lau@nist.gov RI Lau, June/C-7509-2013 NR 11 TC 3 Z9 3 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 28 PY 2010 VL 96 IS 26 AR 262508 DI 10.1063/1.3446841 PG 3 WC Physics, Applied SC Physics GA 620QM UT WOS:000279514400042 ER PT J AU Le, ST Jannaty, P Zaslavsky, A Dayeh, SA Picraux, ST AF Le, Son T. Jannaty, P. Zaslavsky, A. Dayeh, S. A. Picraux, S. T. TI Growth, electrical rectification, and gate control in axial in situ doped p-n junction germanium nanowires SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; germanium; nanowires; p-n junctions; Poisson equation; rectification; Schrodinger equation; semiconductor doping; semiconductor quantum wires ID FIELD-EFFECT TRANSISTORS; SURFACE-STATES; GE NANOWIRES; SUBSTRATE; TRANSPORT; GE/SI AB We report on vapor-liquid-solid growth and electrical properties of axial in situ doped p-n junction Ge sub-100 nm diameter nanowires. Room temperature four-point measurements show current rectification of two to three orders of magnitude depending on nanowire doping and diameter. We observe strong backgate control of reverse-bias current of up to three orders of magnitude and explain it by band-to-band tunneling modulated by the backgate-controlled electric field, as confirmed qualitatively via a quasi-three-dimensional Schroumldinger-Poisson simulation. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457862] C1 [Le, Son T.; Jannaty, P.; Zaslavsky, A.] Brown Univ, Dept Phys, Div Engn, Providence, RI 02912 USA. [Dayeh, S. A.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Le, ST (reprint author), Brown Univ, Dept Phys, Div Engn, Providence, RI 02912 USA. EM son_le@brown.edu RI Zaslavsky, Alexander/F-6232-2012; Dayeh, Shadi/H-5621-2012 FU NSF [ECCS-0701635] FX The work at Brown was supported by the NSF (Award No. ECCS-0701635) and at Los Alamos National Laboratory by the Laboratory Directed Research and Development Program. Work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. NR 26 TC 10 Z9 10 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 28 PY 2010 VL 96 IS 26 AR 262102 DI 10.1063/1.3457862 PG 3 WC Physics, Applied SC Physics GA 620QM UT WOS:000279514400022 ER PT J AU Wike, LD Martin, FD Paller, MH Nelson, EA AF Wike, Lynn D. Martin, F. Douglas Paller, Michael H. Nelson, Eric A. TI Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health SO JOURNAL OF INSECT SCIENCE LA English DT Article DE ant functional groups; pine plantation; rapid bioassessment; silviculture; southeastern USA ID REHABILITATED BAUXITE MINES; FUNCTIONAL-GROUPS; ENVIRONMENTAL IMPACTS; SOUTH-CAROLINA; COASTAL-PLAIN; RECOLONIZATION; FORMICIDAE; AUSTRALIA; INDEXES; BIODIVERSITY AB Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests. C1 [Wike, Lynn D.; Martin, F. Douglas; Paller, Michael H.; Nelson, Eric A.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Martin, FD (reprint author), Univ Texas Austin, PRC 176-R4000,10100 Burnet Rd, Austin, TX 78758 USA. EM wikel@bellsouth.net; dmartin_flaco@yahoo.com; michael.paller@srnl.doe.gov; eric.nelson@srnl.doe.gov FU US Department of Energy [DE-AC09-96SR18500] FX This work was accomplished under contract number DE-AC09-96SR18500 with the US Department of Energy. NR 71 TC 9 Z9 11 U1 3 U2 34 PU UNIV ARIZONA PI TUCSON PA LIBRARY C327, TUCSON, AZ 85721 USA SN 1536-2442 J9 J INSECT SCI JI J Insect Sci. PD JUN 28 PY 2010 VL 10 AR 77 DI 10.1673/031.010.7701 PG 16 WC Entomology SC Entomology GA 622OB UT WOS:000279672000001 PM 20673195 ER PT J AU Li, SZ Ding, XD Li, J Ren, XB Sun, J Ma, E Lookman, T AF Li, Suzhi Ding, Xiangdong Li, Ju Ren, Xiaobing Sun, Jun Ma, Evan Lookman, Turab TI Inverse martensitic transformation in Zr nanowires SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS; ZIRCONIUM AB Like martensitic transformations (MTs), inverse martensitic transformations (IMTs) are shear-dominant diffusionless transformations, but are driven by reduction in interfacial energies rather than bulk free energies, and exhibit distinctive behavior such as instantaneous initiation (like spinodal decomposition) and self-limiting lengthscale. Bulk Zr metal is known to undergo normal MT from the high-temperature bcc phase to the low-temperature hcp phase. Using molecular dynamics simulations we demonstrate that, unlike in the bulk, an IMT to the bcc structure can occur in <(1) over bar 100 >-oriented hcp Zr nanowires at low temperatures, which is driven by the reduction in the nanowire surface energy. The bcc domains subsequently become distorted and transform into a new <(1) over bar(1) over bar 20 >-oriented hcp domain, leading to reorientation of the nanowire. This behavior has implications for the study of structural transformations at the nanoscale and surface patterning. C1 [Li, Suzhi; Ding, Xiangdong; Li, Ju; Ren, Xiaobing; Sun, Jun; Ma, Evan] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Ding, Xiangdong; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Ren, Xiaobing] Natl Inst Mat Sci, Ferro Phys Grp, Tsukuba, Ibaraki 3050047, Japan. [Ma, Evan] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RP Ding, XD (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. EM dingxd@mail.xjtu.edu.cn; liju@seas.upenn.edu; ema@jhu.edu RI Ma, En/A-3232-2010; Ren, Xiaobing/B-6072-2009; Li, Ju/A-2993-2008; Ding, Xiangdong/K-4971-2013; OI Ren, Xiaobing/0000-0002-4973-2486; Li, Ju/0000-0002-7841-8058; Ding, Xiangdong/0000-0002-1220-3097; Lookman, Turab/0000-0001-8122-5671 FU NSFC [50771079, 50720145101, 50831004]; 973 Program of China [2010CB631003]; 111 project [B06025]; NSF [CMMI-0728069]; MRSEC [DMR-0520020]; ONR [N00014-05-1-0504]; AFOSR [FA9550-08-1-0325]; U.S. DOE at LANL [DE-AC52-06NA25396]; US-DOE, Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-09ER46056] FX This work was supported by NSFC (Grants No. 50771079, No. 50720145101, and No. 50831004) and the 973 Program of China (Grant No. 2010CB631003) as well as 111 project (B06025). J.L. acknowledges support by NSF under Grant No. CMMI-0728069, MRSEC under Grant No. DMR-0520020, ONR under Grant No. N00014-05-1-0504, and AFOSR under Grant No. FA9550-08-1-0325. X. D. and T.L. also acknowledge support from the U.S. DOE at LANL (Grant No. DE-AC52-06NA25396). E.M. was supported in part by US-DOE, Basic Energy Sciences, Division of Materials Science and Engineering (No. DE-FG02-09ER46056) NR 19 TC 14 Z9 14 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2010 VL 81 IS 24 AR 245433 DI 10.1103/PhysRevB.81.245433 PG 5 WC Physics, Condensed Matter SC Physics GA 617FQ UT WOS:000279266700001 ER PT J AU Sebastian, SE Harrison, N Goddard, PA Altarawneh, MM Mielke, CH Liang, RX Bonn, DA Hardy, WN Andersen, OK Lonzarich, GG AF Sebastian, Suchitra E. Harrison, N. Goddard, P. A. Altarawneh, M. M. Mielke, C. H. Liang, Ruixing Bonn, D. A. Hardy, W. N. Andersen, O. K. Lonzarich, G. G. TI Compensated electron and hole pockets in an underdoped high-T-c superconductor SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; PULSED MAGNETIC-FIELDS; FERMI-SURFACE; ORGANIC SUPERCONDUCTORS; VORTEX STATE; MAGNETORESISTANCE; OSCILLATIONS; INSULATOR; CORES AB We report quantum oscillations in the underdoped high-temperature superconductor YBa2Cu3O6+x over a wide range in magnetic field 28 <= mu H-0 <= 85 T corresponding to approximate to 12 oscillations, enabling the Fermi surface topology to be mapped to high resolution. As earlier reported by Sebastian et al. [Nature (London) 454, 200 (2008)], we find a Fermi surface comprising multiple pockets, as revealed by the additional distinct quantum oscillation frequencies and harmonics reported in this work. We find the originally reported broad low-frequency Fourier peak at approximate to 535 T to be clearly resolved into three separate peaks at approximate to 460, approximate to 532, and approximate to 602 T, in reasonable agreement with the reported frequencies of Audouard et al. [Phys. Rev. Lett. 103, 157003 (2009)]. However, our increased resolution and angle-resolved measurements identify these frequencies to originate from two similarly sized pockets with greatly contrasting degrees of interlayer corrugation. The spectrally dominant frequency originates from a pocket (denoted alpha) that is almost ideally two-dimensional in form (exhibiting negligible interlayer corrugation). In contrast, the newly resolved weaker adjacent spectral features originate from a deeply corrugated pocket (denoted gamma). On comparison with band structure, the d-wave symmetry of the interlayer dispersion locates the minimally corrugated alpha pocket at the "nodal" point k(nodal) = (pi/2, pi/2), and the significantly corrugated gamma pocket at the "antinodal" point k(antinodal) = (pi, 0) within the Brillouin zone. The differently corrugated pockets at different locations indicate creation by translational symmetry breaking-a spin-density wave has been suggested from the suppression of Zeeman splitting for the spectrally dominant pocket. In a broken-translational symmetry scenario, symmetry points to the nodal (alpha) pocket corresponding to holes, with the weaker antinodal (gamma) pocket corresponding to electrons-likely responsible for the negative Hall coefficient reported by LeBoeuf et al. [Nature (London) 450, 533 (2007)]. Given the similarity in alpha and gamma pocket volumes, their opposite carrier type and the previous report of a diverging effective mass in Sebastian et al. [Proc. Nat. Am. Soc. 107, 6175 (2010)], we discuss the possibility of a secondary Fermi surface instability at low dopings of the excitonic insulator type, associated with the metal-insulator quantum critical point. Its potential involvement in the enhancement of superconducting transition temperatures is also discussed. C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Harrison, N.; Altarawneh, M. M.; Mielke, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goddard, P. A.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Andersen, O. K.] Max Planck Inst Festkorperforsch, Stuttgart, Germany. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. RI Goddard, Paul/A-8638-2015; OI Goddard, Paul/0000-0002-0666-5236; Harrison, Neil/0000-0001-5456-7756 FU U.S. Department of Energy; National Science Foundation [PHY05-51164]; State of Florida; Royal Society, Trinity College (University of Cambridge); EPSRC (U.K.); BES program FX This work is supported by the U.S. Department of Energy, the National Science Foundation (including Grant No. PHY05-51164), the State of Florida, the Royal Society, Trinity College (University of Cambridge), the EPSRC (U.K.), and the BES program "Science in 100 T." The authors thank P. B. Littlewood for theoretical input, B. Ramshaw for discussions, and M. Gordon, A. Paris, D. Rickel, D. Roybal, and C. Swenson for technical assistance. NR 70 TC 37 Z9 37 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2010 VL 81 IS 21 AR 214524 DI 10.1103/PhysRevB.81.214524 PG 17 WC Physics, Condensed Matter SC Physics GA 617EX UT WOS:000279264800001 ER PT J AU Bardayan, DW Blackmon, JC Chae, KY Howard, ME Matei, C Martin, W Matos, M Moazen, BH Nesaraja, CD Peters, WA Pittman, ST Smith, MS Spassova, I AF Bardayan, D. W. Blackmon, J. C. Chae, K. Y. Howard, M. E. Matei, C. Martin, W. Matos, M. Moazen, B. H. Nesaraja, C. D. Peters, W. A. Pittman, S. T. Smith, M. S. Spassova, I. TI Inelastic F-17(p, p)F-17 scattering at E-c.m.=3 MeV and the O-14(alpha, p)F-17 reaction rate SO PHYSICAL REVIEW C LA English DT Article ID ALPHA)O-14; NE-18 AB The O-14(alpha, p)F-17 reaction is an important trigger reaction leading to the alpha p process in x-ray bursts. The inclusion of reaction channels populating excited F-17 levels may significantly increase the calculated O-14(alpha, p)F-17 reaction rate. A radioactive F-17 beam was used at the Oak Ridge National Laboratory Holifield Radioactive Ion Beam Facility to search for a Ne-18 resonance at E-c.m.(F-17 + p) congruent to 3.1 MeV that had been previously suggested to decay strongly to the first excited level in F-17. No evidence, however, of inelastic F-17 + p scattering was observed at this energy, and an upper limit of similar to 10 mb has been set on the inelastic-scattering cross section. C1 [Bardayan, D. W.; Nesaraja, C. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Blackmon, J. C.; Matos, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Chae, K. Y.; Moazen, B. H.; Pittman, S. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Howard, M. E.; Peters, W. A.; Spassova, I.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Martin, W.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Bardayan, DW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Peters, William/B-3214-2012; Matos, Milan/G-6947-2012; Matei, Catalin/B-2586-2008 OI Peters, William/0000-0002-3022-4924; Matos, Milan/0000-0003-1722-9509; Matei, Catalin/0000-0002-2254-3853 FU Office of Nuclear Physics, US Department of Energy FX This research was sponsored by the Office of Nuclear Physics, US Department of Energy. NR 10 TC 6 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 28 PY 2010 VL 81 IS 6 AR 065802 DI 10.1103/PhysRevC.81.065802 PG 4 WC Physics, Nuclear SC Physics GA 617GB UT WOS:000279267800001 ER PT J AU Arvanitaki, A Dimopoulos, S Dubovsky, S Kaloper, N March-Russell, J AF Arvanitaki, Asimina Dimopoulos, Savas Dubovsky, Sergei Kaloper, Nemanja March-Russell, John TI String axiverse SO PHYSICAL REVIEW D LA English DT Article ID ROTATING BLACK-HOLE; GENERAL-RELATIVITY; INVISIBLE AXION; EXTRA DIMENSION; GALACTIC-CENTER; DARK-MATTER; LMC X-1; COMPACTIFICATION; PHYSICS; BOSON AB String theory suggests the simultaneous presence of many ultralight axions, possibly populating each decade of mass down to the Hubble scale 10(-33) eV. Conversely the presence of such a plenitude of axions (an axiverse) would be evidence for string theory, since it arises due to the topological complexity of the extra-dimensional manifold and is ad hoc in a theory with just the four familiar dimensions. We investigate how several upcoming astrophysical experiments will be observationally exploring the possible existence of such axions over a vast mass range from 10(-33) eV to 10(-10) eV. Axions with masses between 10(-33) eV to 10(-28) eV can cause a rotation of the cosmic microwave background polarization that is constant throughout the sky. The predicted rotation angle is independent of the scale of inflation and the axion decay constant, and is of order alpha similar to 1/137 -within reach of the just launched Planck satellite. Axions in the mass range 10(-28) eV to 10(-18) eV give rise to multiple steps in the matter power spectrum, providing us with a snapshot of the axiverse that will be probed by galaxy surveys-such as BOSS, and 21 cm line tomography. Axions in the mass range 10(-22) eV to 10(-10) eV can affect the dynamics and gravitational wave emission of rapidly rotating astrophysical black holes through the Penrose superradiance process. When the axion Compton wavelength is of order of the black hole size, the axions develop superradiant atomic bound states around the black hole nucleus. Their occupation number grows exponentially by extracting rotational energy and angular momentum from the ergosphere, culminating in a rotating Bose-Einstein axion condensate emitting gravitational waves. For black holes lighter than similar to 10(7) solar masses accretion cannot replenish the spin of the black hole, creating mass gaps in the spectrum of rapidly rotating black holes that diagnose the presence of destabilizing axions. In particular, the highly rotating black hole in the X-ray binary LMC X-1 implies an upper limit on the decay constant of the QCD axion f(a) <= 2 X 10(17) GeV, much below the Planck mass. This reach can be improved down to the grand unification scale f(a) less than or similar to 2 X 10(16) GeV, by observing smaller stellar mass black holes. C1 [Arvanitaki, Asimina] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Arvanitaki, Asimina] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Dimopoulos, Savas; Dubovsky, Sergei] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Dubovsky, Sergei] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kaloper, Nemanja] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [March-Russell, John] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. RP Arvanitaki, A (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. FU DOE [DE-FG03-91ER40674]; EC [MRTN-CT-2004-503369]; EU [MPRN-CT2006-035863]; STFC (UK) FX We thank T. Abel, M. Aganagic, R. Blandford, D. Green, K. Jedamzik, S. Kachru, R. Romani, E. Silverstein, N. Toro, H. Verlinde, B. Wagoner, A. Westphal, and M. Zaldarriaga for extremely helpful and enjoyable discussions. The work of N. K. is supported in part by the DOE Grant DE-FG03-91ER40674. J. M. R. gratefully thanks the UC Berkeley Center for Theoretical Physics for their hospitality during the course of this work. J. M. R. is partially supported by the EC network 6th Framework Programme Research and Training Network Quest for Unification (MRTN-CT-2004-503369), by the EU FP6 Marie Curie Research and Training Network UniverseNet (MPRN-CT2006-035863), and by the STFC (UK). NR 83 TC 239 Z9 239 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 28 PY 2010 VL 81 IS 12 AR 123530 DI 10.1103/PhysRevD.81.123530 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 617GR UT WOS:000279269500001 ER PT J AU Wang, QF Keffer, DJ Nicholson, DM Thomas, JB AF Wang, Qifei Keffer, David J. Nicholson, Donald M. Thomas, J. Brock TI Use of the Ornstein-Zernike Percus-Yevick equation to extract interaction potentials from pair correlation functions SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; POLYSTYRENE; EQUILIBRIUM; SUSPENSIONS; MESOSCALE; LIQUIDS; MODELS; FLUIDS; MELTS AB In this work, we test the ability of the Ornstein-Zernike equation in the Percus-Yevick approximation (OZPY) to generate interaction potentials from pair correlation functions (PCFs) of monatomic and diatomic Lennard-Jones fluids. The PCFs are generated by solving OZPY equation (monatomic fluid) and molecular-dynamics (MD) simulations (diatomic fluid). Since the interaction potentials are inputs in the OZPY method and the MD simulation, the extraction of the potential from the PCFs using OZPY is a test of self-consistency. This test is necessary if the procedure is to be used to generate coarse-grained (CG) potentials from PCFs. We find that the procedure is completely self-consistent for the monatomic fluid in the whole range of densities studied (reduced density up to 0.55, under reduced temperature of 2.0). In the diatomic case, we find that the procedure is generally self-consistent under both low and high densities, although there is a systematic deviation at high densities. The method is able to reproduce the two parameters (epsilon and sigma) of the input Lennard-Jones potential model to within about 1%. This CG potential generating procedure can be straightforwardly extended to more complicated molecules. C1 [Wang, Qifei; Keffer, David J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Nicholson, Donald M.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37830 USA. [Thomas, J. Brock] Eastman Chem Co, Kingsport, TN 37662 USA. RP Keffer, DJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Keffer, David/C-5133-2014 OI Keffer, David/0000-0002-6246-0286 FU Eastman Chemical Co.; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; NSF [OCI 07-11134.5] FX This research was supported by the Eastman Chemical Co. and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. This research project used resources of the National Institute for Computational Sciences (NICS) supported by NSF under Agreement No. OCI 07-11134.5. NR 38 TC 10 Z9 10 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUN 28 PY 2010 VL 81 IS 6 AR 061204 DI 10.1103/PhysRevE.81.061204 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 617HF UT WOS:000279270900001 PM 20866409 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the Ratio sigma(t(t)over-bar)/sigma(Z/gamma*-> ll) and Precise Extraction of the t(t)over-bar Cross Section SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONS; PHYSICS AB We report a measurement of the ratio of the t (t) over bar to Z/gamma* production cross sections in root s = 1.96 TeV p (p) over bar collisions using data corresponding to an integrated luminosity of up to 4.6 fb(-1), collected by the CDF II detector. The t (t) over bar cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/gamma* -> ll cross section predicted by the standard model, the extracted t (t) over bar cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result sigma(t (t) over bar) = 7.70 +/- 0.52 pb, for a top-quark mass of 172.5 GeV/c(2). C1 [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Tecchio, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strologas, J.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; Scodellaro, Luca/K-9091-2014; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Zeng, Yu/C-1438-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014 OI Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Scodellaro, Luca/0000-0002-4974-8330; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 23 TC 54 Z9 54 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 28 PY 2010 VL 105 IS 1 AR 012001 DI 10.1103/PhysRevLett.105.012001 PG 7 WC Physics, Multidisciplinary SC Physics GA 617ID UT WOS:000279273300001 ER PT J AU Shen, Y Williams, F Whitaker, N Kevrekidis, PG Saxena, A Frantzeskakis, DJ AF Shen, Y. Williams, F. Whitaker, N. Kevrekidis, P. G. Saxena, A. Frantzeskakis, D. J. TI On some single-hump solutions of the short-pulse equation and their periodic generalizations SO PHYSICS LETTERS A LA English DT Article ID NONLINEAR MEDIA AB In the present work, we consider both localized (e.g. peakon and breather) and extended waveforms (peakon-lattice and breather-lattice, as well as some periodic ones) that arise in the context of the short-pulse equation, as emanating from their sine-Gordon equation analogs. Through direct numerical simulations, we find that the most robust solution is the breather, although some of the single-hump variants of the periodic solutions may be preserved upon the time dynamics as well. Multi-peakon, as well as multi-breather and multi-hump profiles more generally are found to be subject to symmetry-breaking instabilities and are, thus, less robust. (C) 2010 Elsevier B.V. All rights reserved. C1 [Shen, Y.; Williams, F.; Whitaker, N.; Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Frantzeskakis, D. J.] Univ Athens, Dept Phys, Athens 15784, Greece. RP Kevrekidis, PG (reprint author), Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. EM kevrekid@gmail.com FU NSF [DMS-0349023, DMS-0806762]; Alexander von Humboldt Foundation; US DoE FX P.G.K. gratefully acknowledges the support of NSF-DMS-0349023 (CAREER) and NSF-DMS-0806762, as well as of the Alexander von Humboldt Foundation. Work at LANL is supported by the US DoE. NR 17 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUN 28 PY 2010 VL 374 IS 29 BP 2964 EP 2967 DI 10.1016/j.physleta.2010.05.014 PG 4 WC Physics, Multidisciplinary SC Physics GA 618GG UT WOS:000279338900013 ER PT J AU Elliott, S Reagan, M Moridis, G Smith, PC AF Elliott, Scott Reagan, Matthew Moridis, George Smith, Philip Cameron TI Geochemistry of clathrate-derived methane in Arctic ocean waters SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA; BACTERIOPLANKTON; OXIDATION; SEDIMENTS; SECTION; GROWTH; CYCLE; EAST AB Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH4 removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers. Citation: Elliott, S., M. Reagan, G. Moridis, and P. C. Smith (2010), Geochemistry of clathrate-derived methane in Arctic ocean waters, Geophys. Res. Lett., 37, L12607, doi: 10.1029/2010GL043369. C1 [Elliott, Scott] Los Alamos Natl Lab, COSIM, Los Alamos, NM 87545 USA. [Reagan, Matthew; Moridis, George] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Smith, Philip Cameron] Lawrence Livermore Natl Lab, Atmosphere Earth & Energy Div, Livermore, CA 94550 USA. RP Elliott, S (reprint author), Los Alamos Natl Lab, COSIM, Mail Stop D-413, Los Alamos, NM 87545 USA. EM sme@lanl.gov RI Cameron-Smith, Philip/E-2468-2011; Reagan, Matthew/D-1129-2015 OI Cameron-Smith, Philip/0000-0002-8802-8627; Reagan, Matthew/0000-0001-6225-4928 FU U.S. Department of Energy FX The authors have been supported by U.S. Department of Energy IMPACTS and Gas Hydrate projects. An anonymous referee along with R. Colwell, D. Valentine, M. Heintz and T. Phelps encouraged the consideration of AOM communities. NR 30 TC 4 Z9 4 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 26 PY 2010 VL 37 AR L12607 DI 10.1029/2010GL043369 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 617US UT WOS:000279308000002 ER PT J AU Shreve, AT Yen, TA Neumark, DM AF Shreve, Alexander T. Yen, Terry A. Neumark, Daniel M. TI Photoelectron spectroscopy of hydrated electrons SO CHEMICAL PHYSICS LETTERS LA English DT Article ID WATER-CLUSTER ANIONS; SOLVATED ELECTRONS; AQUEOUS-SOLUTIONS; BINDING-ENERGIES; LIQUID MICROJETS; DYNAMICS; EVAPORATION; SPECTRA; JETS; BULK AB We report a systematic study of the photoelectron spectroscopy of hydrated electrons in liquid water jets using multiple precursors and photodetachment wavelengths. Hydrated electrons were generated in and detached from liquid microjets using two photons from a single nanosecond laser pulse at 266 or 213 nm. Solutions of 50 to 250 mM potassium hexacyanoferrate(II) or potassium iodide were used to provide precursor anions. All of our experimental conditions yield similar results, giving a mean vertical binding energy of 3.6 +/- 0.1 eV at a temperature of similar to 280 K, a slightly higher value than in recent reports. (C) 2010 Elsevier B. V. All rights reserved. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, B64 Latimer Hall, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU US Department of Energy [DE-AC02-05CH11231]; American Chemical Society [47852-AC6] FX Support for this work was provided by the US Department of Energy (Contract # DE-AC02-05CH11231) and the American Chemical Society Petroleum Research Fund ( Grant # 47852-AC6). The authors would like to thank Professor Richard Saykally, and the graduate students in his group, particularly Walter Drisdell, Dale Otten, and Craig Schwartz, for many useful discussions regarding microjets. NR 32 TC 75 Z9 75 U1 8 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 25 PY 2010 VL 493 IS 4-6 BP 216 EP 219 DI 10.1016/j.cplett.2010.05.059 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 609IO UT WOS:000278650000003 ER PT J AU Tan, W Missier, P Foster, I Madduri, R De Roure, D Goble, C AF Tan, Wei Missier, Paolo Foster, Ian Madduri, Ravi De Roure, David Goble, Carole TI A comparison of using Taverna and BPEL in building scientific workflows: the case of caGrid SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE scientific workflow; functional programming; Taverna; BPEL; caGrid AB When the emergence of 'service-oriented science,' the need arises to orchestrate multiple services to facilitate scientific investigation-that is, to create 'science workflows.' We present here our findings in providing a workflow solution for the caGrid service-based grid infrastructure. We choose BPEL and Taverna as candidates, and compare their usability in the lifecycle of a scientific workflow, including workflow composition, execution, and result analysis. Our experience shows that BPEL as an imperative language offers a comprehensive set of modeling primitives for workflows of all flavors; whereas Taverna offers a dataflow model and a more compact set of primitives that facilitates dataflow modeling and pipelined execution. We hope that this comparison study not only helps researchers to select a language or tool that meets their specific needs, but also offers some insight into how a workflow language and tool can fulfill the requirement of the scientific community. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Tan, Wei; Foster, Ian; Madduri, Ravi] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Tan, Wei; Foster, Ian; Madduri, Ravi] Argonne Natl Lab, Chicago, IL USA. [Missier, Paolo; Goble, Carole] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England. [Foster, Ian; Madduri, Ravi] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [De Roure, David] Univ Southampton, Sch Elect & Comp Sci, Southampton SO9 5NH, Hants, England. RP Tan, W (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wtan@mcs.anl.gov RI Tan, Wei/A-8144-2009; De Roure, David/D-6785-2011; OI De Roure, David/0000-0001-9074-3016; Goble, Carole/0000-0003-1219-2137; Missier, Paolo/0000-0002-0978-2446 FU National Cancer Institute, National Institutes of Health [N01-CO-12400] FX Contract/grant sponsor: National Cancer Institute, National Institutes of Health; contract/grant number: N01-CO-12400 NR 27 TC 11 Z9 11 U1 1 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUN 25 PY 2010 VL 22 IS 9 BP 1098 EP 1117 DI 10.1002/cpe.1547 PG 20 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 601GO UT WOS:000278046500002 PM 20625534 ER PT J AU Docan, C Parashar, M Klasky, S AF Docan, Ciprian Parashar, Manish Klasky, Scott TI Enabling high-speed asynchronous data extraction and transfer using DART SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE asynchronous transfers; RDMA; low-overhead ID I/O AB As the complexity and scale of applications grow, managing and transporting the large amounts of data they generate are quickly becoming a significant challenge. Moreover, the interactive and real-time nature of emerging applications, as well as their increasing runtime, make online data extraction and analysis a key requirement in addition to traditional data I/O and archiving. To be effective, online data extraction and transfer should impose minimal additional synchronization requirements, should have minimal impact on the computational performance and communication latencies, maintain overall quality of service, and ensure that no data is lost. In this paper we present Decoupled and Asynchronous Remote Transfers (DART), an efficient data transfer substrate that effectively addresses these requirements. DART is a thin software layer built on RDMA technology to enable fast, low-overhead, and asynchronous access to data from a running simulation, and supports high-throughput, low-latency data transfers. DART has been integrated with applications simulating fusion plasma in a Tokamak, being developed at the Center for Plasma Edge Simulation (CPES), a DoE Office of Fusion Energy Science (OFES) Fusion Simulation Project (FSP). A performance evaluation using the Gyrokinetic Toroidal Code and XGC-1 particle-in-cell-based FSP simulations running on the Cray XT3/XT4 system at Oak Ridge National Laboratory demonstrates how DART can effectively and efficiently offload simulation data to local service and remote analysis nodes, with minimal overheads on the simulation itself. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Docan, Ciprian; Parashar, Manish] Rutgers State Univ, TASSL Lab, Ctr Auton Comp, Piscataway, NJ 08854 USA. [Klasky, Scott] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Docan, C (reprint author), Rutgers State Univ, TASSL Lab, Ctr Auton Comp, Piscataway, NJ 08854 USA. EM docan@cac.rutgers.edu FU National Science Foundation [IIP 0758566, CCF-0833039, DMS-0835436, CNS 0426354, IIS 0430826, CNS 0723594]; Department of Energy [DE-FG02-06ER54857]; Extreme Scale Systems Center; Department of Defense; IBM; NSF Center for Autonomic Computing at Rutgers University FX The research presented in this paper is supported in part by National Science Foundation via grants numbers IIP 0758566, CCF-0833039, DMS-0835436, CNS 0426354, IIS 0430826, and CNS 0723594, by Department of Energy via the grant number DE-FG02-06ER54857, by The Extreme Scale Systems Center at ORNL and the Department of Defense, and by an IBM Faculty Award, and was conducted as part of the NSF Center for Autonomic Computing at Rutgers University. Note that some of the results in this paper were presented at the Cray User Group Meeting in May 2007, but have not been published in meeting proceeding. NR 15 TC 11 Z9 12 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUN 25 PY 2010 VL 22 IS 9 BP 1181 EP 1204 DI 10.1002/cpe.1567 PG 24 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 601GO UT WOS:000278046500006 ER PT J AU Cowee, MM Winske, D Gary, SP AF Cowee, M. M. Winske, D. Gary, S. P. TI Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: Density variations and magnetic shear SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LATITUDE BOUNDARY-LAYER; MAGNETOSPHERIC BOUNDARY; EARTHS MAGNETOSPHERE; SOLAR-WIND; RECONNECTION; VORTICES; VORTEX; DIFFUSION; DYNAMICS; CLUSTER AB Two-dimensional hybrid (kinetic ions and massless fluid electrons) simulations of the Kelvin-Helmholtz instability (KHI) for a magnetopause configuration with a varying density jump and magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by these conditions. Low magnetic shear conditions where the magnetosheath magnetic field is within 30 of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle and increasing density jump, the growth rate is reduced, and the vortices do not grow to as large of a size, which reduces the plasma transport. By tracking the individual particle motions, diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the breakdown of the instabilities. Results indicate that diffusion on the order of 10(9) m(2)/s could possibly be generated by KHI on the flanks of the magnetosphere. C1 [Cowee, M. M.; Winske, D.; Gary, S. P.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Cowee, MM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM mcowee@lanl.gov FU U.S. Department of Energy (DOE); National Aeronautics and Space Administration FX The authors thank Benoit Lavraud for helpful discussions and support on this project. This work was performed under the auspices of the U.S. Department of Energy (DOE). It was supported by the Living with a Star TR&T and the Solar and Heliospheric Physics SR&T Programs of the National Aeronautics and Space Administration. NR 43 TC 21 Z9 22 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 25 PY 2010 VL 115 AR A06214 DI 10.1029/2009JA015011 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 617XF UT WOS:000279314500004 ER PT J AU Humble, TS AF Humble, Travis S. TI Spectral and spread-spectral teleportation SO PHYSICAL REVIEW A LA English DT Article ID FREQUENCY UP-CONVERSION; QUANTUM TELEPORTATION; DOWN-CONVERSION; ENTANGLEMENT; WAVELENGTHS; STATE AB We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems. C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Humble, TS (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM humblets@ornl.gov FU UT-Battelle, LLC under US Department of Energy [DE-AC05-00OR22725] FX This work has been sponsored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 30 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUN 25 PY 2010 VL 81 IS 6 AR 062339 DI 10.1103/PhysRevA.81.062339 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 615NW UT WOS:000279143000004 ER PT J AU Wang, CH Lawrence, JM Christianson, AD Goremychkin, EA Fanelli, VR Gofryk, K Bauer, ED Ronning, F Thompson, JD de Souza, NR Kolesnikov, AI Littrell, KC AF Wang, C. H. Lawrence, J. M. Christianson, A. D. Goremychkin, E. A. Fanelli, V. R. Gofryk, K. Bauer, E. D. Ronning, F. Thompson, J. D. de Souza, N. R. Kolesnikov, A. I. Littrell, K. C. TI Kondo behavior, ferromagnetic correlations, and crystal fields in the heavy-fermion compounds Ce3X (X = In, Sn) SO PHYSICAL REVIEW B LA English DT Article ID COQBLIN-SCHRIEFFER MODEL; NEUTRON-SCATTERING AB We report measurements of inelastic neutron scattering, magnetic susceptibility, magnetization, and the magnetic field dependence of the specific heat for the heavy Fermion compounds Ce3In and Ce3Sn. The neutron scattering results show that the excited crystal field levels have energies E-1 = 13.2 meV, E-2 = 44.8 meV for Ce3In and E-1 = 18.5 meV, E-2 = 36.1 meV for Ce3Sn. The Kondo temperature deduced from the quasielastic linewidth is 17 K for Ce3In and 40 K for Ce3Sn. The low-temperature behavior of the specific heat, magnetization, and susceptibility cannot be well described by J = 1/2 Kondo physics alone, but require calculations that include contributions from the Kondo effect, broadened crystal fields, and ferromagnetic correlations, all of which are known to be important in these compounds. We find that in Ce3In the ferromagnetic fluctuation makes a 10%-15% contribution to the ground state doublet entropy and magnetization. The large specific heat coefficient gamma in this heavy fermion system thus arises more from the ferromagnetic correlations than from the Kondo behavior. C1 [Wang, C. H.; Lawrence, J. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Wang, C. H.; Fanelli, V. R.; Gofryk, K.; Bauer, E. D.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Christianson, A. D.; Kolesnikov, A. I.; Littrell, K. C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Goremychkin, E. A.; de Souza, N. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [de Souza, N. R.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. RP Wang, CH (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. RI Littrell, Kenneth/D-2106-2013; Bauer, Eric/D-7212-2011; Gofryk, Krzysztof/F-8755-2014; Fanelli, Victor/A-4375-2015; Kolesnikov, Alexander/I-9015-2012; christianson, andrew/A-3277-2016 OI Littrell, Kenneth/0000-0003-2308-8618; Gofryk, Krzysztof/0000-0002-8681-6857; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937; Kolesnikov, Alexander/0000-0003-1940-4649; christianson, andrew/0000-0003-3369-5884 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46036]; Scientific User Facilities Division Office of Basic Energy Sciences, U.S. DOE [DE-AC05-00OR22725]; DOE-BES [DE-AC02-06CH11357] FX We thank Vivien Zapf for her assistance in the measurement at NHMFL and Cristian Batista for his insightful comments. Research at UC Irvine was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46036. Work at ORNL was supported by the Scientific User Facilities Division Office of Basic Energy Sciences, U.S. DOE and was managed by UT-Battelle, LLC, for U.S. DOE under Contract No. DE-AC05-00OR22725. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. DOE/Office of Science. Work at NHMFL-PFF, Los Alamos was performed under the auspices of the National Science Foundation, the State of Florida, and U.S. DOE. Work at ANL was supported by DOE-BES under Contract No. DE-AC02-06CH11357. NR 17 TC 4 Z9 4 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 25 PY 2010 VL 81 IS 23 AR 235132 DI 10.1103/PhysRevB.81.235132 PG 8 WC Physics, Condensed Matter SC Physics GA 615ON UT WOS:000279144700003 ER PT J AU Chekanov, SV Proudfoot, J AF Chekanov, S. V. Proudfoot, J. TI Searches for TeV-scale particles at the LHC using jet shapes SO PHYSICAL REVIEW D LA English DT Article ID HADRON-COLLISIONS AB New particles at the TeV scale can decay hadronically with strongly collimated jets, thus the standard reconstruction methods based on invariant masses of well-separated jets can fail. We discuss how to identify such particles in pp collisions at the LHC using simple jet shapes which help to reduce the contribution of QCD-induced events. We focus on a rather generic example X -> t (t) over bar -> hadrons, with X being a heavy particle, but the approach is well suited for the reconstruction of other decay channels characterized by a cascade decay of known states. C1 [Chekanov, S. V.; Proudfoot, J.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Chekanov, SV (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 25 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 25 PY 2010 VL 81 IS 11 AR 114038 DI 10.1103/PhysRevD.81.114038 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 615TY UT WOS:000279161700003 ER PT J AU Hirata, CM Holz, DE Cutler, C AF Hirata, Christopher M. Holz, Daniel E. Cutler, Curt TI Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution SO PHYSICAL REVIEW D LA English DT Article ID HIGH-REDSHIFT SUPERNOVAE; STANDARD SIRENS; LUMINOSITY; CONSTANT; BIAS AB Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2-3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates. C1 [Hirata, Christopher M.] CALTECH, Pasadena, CA 91125 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cutler, Curt] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hirata, CM (reprint author), CALTECH, M-C 350-17, Pasadena, CA 91125 USA. EM chirata@tapir.caltech.edu FU U.S. Department of Energy [DE-FG03-92-ER40701]; National Science Foundation [AST-0807337]; Alfred P. Sloan Foundation; LANL; National Aeronautics and Space Administration; JPL Research and Technology Development; NASA [NNX07AM80G] FX We acknowledge useful conversations with Eanna Flanagan and Samaya Nissanke. C.H. is supported by the U.S. Department of Energy (DE-FG03-92-ER40701), the National Science Foundation (AST-0807337), and the Alfred P. Sloan Foundation. D. H. acknowledges support from the LDRD program at LANL. C. C.'s work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration. He acknowledges support from a JPL Research and Technology Development grant, as well as support from NASA Grant No. NNX07AM80G. NR 40 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 25 PY 2010 VL 81 IS 12 AR 124046 DI 10.1103/PhysRevD.81.124046 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 615VK UT WOS:000279165800001 ER PT J AU English, D Yashchuk, VV Budker, D AF English, D. Yashchuk, V. V. Budker, D. TI Spectroscopic Test of Bose-Einstein Statistics for Photons SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-PHOTON DECAY AB Using Bose-Einstein-statistics-forbidden two-photon excitation in atomic barium, we have limited the rate of statistics-violating transitions, as a fraction v of an equivalent statistics-allowed transition rate, to v < 4: 0 x 10(-11) at the 90% confidence level. This is an improvement of more than 3 orders of magnitude over the best previous result. Additionally, hyperfine-interaction enabling of the forbidden transition has been observed, to our knowledge, for the first time. C1 [English, D.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yashchuk, V. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP English, D (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM denglish@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 FU NSF FX We are grateful to D. DeMille, M. Auzinsh, M. Kozlov, and M. Zolotorev for inspiration and support and to undergraduates L. Zimmerman, Y. Rosen, and K. Choi for assistance. This research was supported by NSF. NR 14 TC 10 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 25 PY 2010 VL 104 IS 25 AR 253604 DI 10.1103/PhysRevLett.104.253604 PG 4 WC Physics, Multidisciplinary SC Physics GA 616AG UT WOS:000279179400002 PM 20867378 ER PT J AU Anders, A AF Anders, Andre TI High power impulse magnetron sputtering and related discharges: Scalable plasma sources for plasma-based ion implantation and deposition SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Workshop on Plasma-Based Ion Implantation and Deposition CY SEP 07-11, 2009 CL Natl Inst Space Res, San Jose dos Campos, BRAZIL HO Natl Inst Space Res DE Plasma-based ion implantation and deposition; High power impulse magnetron sputtering; Review; Plasma sources ID THIN-FILMS; SURFACE MODIFICATION; IMMERSION; ENERGY; OXIDE; MICROSTRUCTURE; DISTRIBUTIONS; ENHANCEMENT; DENSITIES; COATINGS AB High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using 'gasless' or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage and without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated. (C) 2010 Elsevier B.V. All rights reserved. C1 Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Anders, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM aanders@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 53 TC 18 Z9 18 U1 5 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUN 25 PY 2010 VL 204 IS 18-19 BP 2864 EP 2868 DI 10.1016/j.surfcoat.2010.01.047 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 618TM UT WOS:000279378600003 ER PT J AU Rupp, SP Rupp, P AF Rupp, Susan P. Rupp, Paul TI Development of an individual-based model to evaluate elk (Cervus elaphus nelsoni) movement and distribution patterns following the Cerro Grande Fire in north central New Mexico, USA SO ECOLOGICAL MODELLING LA English DT Article DE Distribution; Elk; Fire; Individual-based model; Movement; Succession ID ECOLOGY; VALIDATION; DENSITY; BROWN AB Though studies have modeled the effects of fires on elk, no studies have related the effects of post-fire landscape succession on ungulate movements and distribution using dynamic modeling techniques. The purpose of this study was to develop and test a spatially-explicit, stochastic, individual-based model (IBM) to evaluate potential movement and distribution patterns of elk (Cervus elaphus nelsoni) in relation to spatial and temporal aspects of the Cerro Grande Fire that burned north central New Mexico in May of 2000. Following extensive literature review, the SAVANNA Ecosystem Model was selected to simulate the underlying post-fire successional processes driving elk movement and distribution. Standard logisitic regression was used to analyze habitat-use patterns of ten elk from data collected using global positioning system radio collars while an additional five animals were used as an independent test set during model validation. Static variables in the form of roads, buildings, fences, and habitual use/memory were used to modify a map of impedance values based on the logistic regression of slope, aspect, and elevation. Integration with SAVANNA came through the application of a habitat suitability index (HSI), which combined movement rules written for the IBM and variables modified and produced by the dynamic ecological processes run in SAVANNA. Overall pattern analysis indicated that realistic migrational processes and habitat-use patterns emerged from movement rules incorporated into the IBM in response to advancing and receding snow when compared to the independent test set. Primary and secondary movement pathways emerged from the collective responses of simulated individuals. Using regression analyses, no significant differences between simulated animals and animals used in either model development or an independent test set revealed any differences in response to snow patterns. These considerations suggest the model was adequately corroborated based on existing data and outlined objectives. (C) 2010 Elsevier B.V. All rights reserved. C1 [Rupp, Susan P.] Los Alamos Natl Lab, Ecol Grp ENV ECO, Los Alamos, NM 87545 USA. [Rupp, Susan P.] Texas Tech Univ, Dept Range Wildlife & Fisheries Management, Lubbock, TX 79409 USA. [Rupp, Paul] Acorp Comp, Albuquerque, NM 87114 USA. RP Rupp, SP (reprint author), S Dakota State Univ, Dept Wildlife & Fisheries Sci, No Plains Biostress Lab 139B, Box 2140B, Brookings, SD 57007 USA. EM susan.rupp@sdstate.edu RI Rupp, Susan/B-5830-2013 OI Rupp, Susan/0000-0002-1427-653X FU Canon National Parks Science; Ecology Group at LANL FX Our appreciation goes out to The Canon National Parks Science Scholars Program and the Ecology Group at LANL for funding this project. We would also like to thank the Valles Caldera National Preserve, New Mexico Department of Game and Fish, U.S. Forest Service, Bandelier National Monument, Telonics, Inc., Santa Clara Reservation, and Adventure Aviation for assistance with collar retrieval. Dr. Michael Coughenour, developer of the SAVANNA Ecosystem Model, offered valuable insight and guidance in calibrating that model for the Jemez Mountains. Drs. James Biggs and David Wester provided technical and statistical guidance, respectively. NR 62 TC 5 Z9 6 U1 6 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 EI 1872-7026 J9 ECOL MODEL JI Ecol. Model. PD JUN 24 PY 2010 VL 221 IS 12 BP 1605 EP 1619 DI 10.1016/j.ecolmodel.2010.03.014 PG 15 WC Ecology SC Environmental Sciences & Ecology GA 609GH UT WOS:000278643500007 ER PT J AU Kade, A Kummer, K Vyalikh, DV Danzenbacher, S Bluher, A Mertig, M Lanzara, A Scholl, A Doran, A Molodtsov, SL AF Kade, A. Kummer, K. Vyalikh, D. V. Danzenbaecher, S. Blueher, A. Mertig, M. Lanzara, A. Scholl, A. Doran, A. Molodtsov, Serguei L. TI X-ray Damage in Protein-Metal Hybrid Structures: A Photoemission Electron Microscopy Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ABSORPTION FINE-STRUCTURE; INNER-SHELL EXCITATION; BACTERIAL S-LAYERS; NANOPARTICLE ARRAYS; GLYCYL-GLYCINE; SPECTROSCOPY; FABRICATION; TEMPLATE; DNA; METALLIZATION AB Bacterial surface layer protein sheets (S layer) coated with an ultrathin cobalt or silver film were studied by means of laterally resolved near-edge X-ray absorption fine structure spectroscopy performed by photoemission electron microscopy. Comparison with results obtained on pristine S layers allowed us to characterize both chemical interaction and X-ray damage in these protein-metal hybrid systems. In particular, we found that besides direct damage upon exposure to X-ray radiation the biomolecules experience additional contribution of the deposited metals, by low-energy electron generation in the metal particles. C1 [Kade, A.; Kummer, K.; Vyalikh, D. V.; Danzenbaecher, S.; Molodtsov, Serguei L.] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany. [Kade, A.] Inst Air Handling & Refrigerat Dresden, D-01309 Dresden, Germany. [Blueher, A.; Mertig, M.] Tech Univ Dresden, Max Bergmann Ctr Biomat, BioNanotechnol & Struct Format Grp, D-01062 Dresden, Germany. [Blueher, A.; Mertig, M.] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany. [Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Scholl, A.; Doran, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kade, A (reprint author), Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany. EM andreas.kade@ilkdresden.de RI Bluher, Anja/H-9944-2012; Vyalikh, Denis/H-8044-2013; Scholl, Andreas/K-4876-2012 OI Bluher, Anja/0000-0001-7095-4537; Vyalikh, Denis/0000-0001-9053-7511; FU DFG [MO 1049/5-1, LA 655/10-4, ME 1256/13-1] FX We would like to thank Beate Katzschner for the preparation of the S layer sheets. This work was financially supported by the DFG (Grant Nos. MO 1049/5-1, LA 655/10-4, and ME 1256/13-1). NR 47 TC 4 Z9 4 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 24 PY 2010 VL 114 IS 24 BP 8284 EP 8289 DI 10.1021/jp1040585 PG 6 WC Chemistry, Physical SC Chemistry GA 611TM UT WOS:000278846100030 PM 20518510 ER PT J AU Biswas, RR Balatsky, AV AF Biswas, Rudro R. Balatsky, A. V. TI Impurity-induced states on the surface of three-dimensional topological insulators SO PHYSICAL REVIEW B LA English DT Article ID SINGLE DIRAC CONE; SUPERCONDUCTORS; MODELS AB We calculate the modification of the local electronic structure caused by a single local impurity on the surface of a three-dimensional topological insulator. We find that the local density of states around the Dirac point of the electronic spectrum at the surface is significantly disrupted near the impurity by the creation of low-energy resonance state(s)-however, this is not sufficient to (locally) destroy the Dirac point. We also calculate the nontrivial spin textures created near the magnetic impurities and discover anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling between them. C1 [Biswas, Rudro R.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Biswas, Rudro R.; Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Biswas, RR (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM rrbiswas@physics.harvard.edu; avb@lanl.gov FU U.S. DOE through BES; University of California [T027-09]; LDRD FX We are grateful to D. Abanin, D. Basov, Z. Hasan, H. Manoharan, N. Nagaosa, T. Wehling, and Y. Xia for useful discussions-especially to D. Abanin for drawing our attention to the method used in Ref. 21 to calculate the RKKY interactions. This work was supported by the U.S. DOE through BES and LDRD funding and by University of California UCOP Program No. T027-09. NR 21 TC 121 Z9 122 U1 3 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 24 PY 2010 VL 81 IS 23 AR 233405 DI 10.1103/PhysRevB.81.233405 PG 4 WC Physics, Condensed Matter SC Physics GA 615OK UT WOS:000279144400001 ER PT J AU Yao, YX Napolitano, R Wang, CZ Ho, KM AF Yao, Yongxin Napolitano, R. Wang, C. Z. Ho, K. M. TI Thermodynamic limits of crystallization and the prediction of glass formation tendency SO PHYSICAL REVIEW B LA English DT Article ID FREE-VOLUME MODEL; FORMING ABILITY; METALLIC-GLASS; AMORPHOUS PHASE; TERNARY-SYSTEMS; SILICON ALLOYS; NI-FE; TRANSITION; BINARY; TEMPERATURE AB We have calculated the T(0) curves for several Al-rare-earth binary alloys to assess the importance of the transport-based resistance to crystallization in the overall glass formation process and the general effectiveness of thermodynamic prediction of glass-forming ability. Our results show that the experimentally observed glass-forming compositions for Al-(Ce, Gd, Ho, Nd, Y, Dy) alloys strongly correlate with the composition range bounded by the T(0) curves associated with the relevant crystalline phases. This indicates that sluggish material transport, together with the tendency for clustering and other types of ordering at medium-range scale, is a key factor governing glass formation in these systems. C1 [Yao, Yongxin; Napolitano, R.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. [Yao, Yongxin; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Napolitano, R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Yao, YX (reprint author), Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. RI Yao, Yongxin/B-7320-2008 FU U.S. Department of Energy, Office of Basic Energy Science, National Energy Research Super-computing Center (NERSC) at the Lawrence Berkeley National Laboratory [DE-AC02-07CH11358] FX We are grateful to M. J. Kramer and J. Schmalian for many useful discussions and valuable suggestions. Work at the Ames laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, including a grant of computer time at the National Energy Research Super-computing Center (NERSC) at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-07CH11358. NR 46 TC 4 Z9 4 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 24 PY 2010 VL 81 IS 21 AR 212202 DI 10.1103/PhysRevB.81.212202 PG 4 WC Physics, Condensed Matter SC Physics GA 615PC UT WOS:000279146200001 ER PT J AU Cheng, S Zhao, YH Wang, YM Li, Y Wang, XL Liaw, PK Lavernia, EJ AF Cheng, Sheng Zhao, Yonghao Wang, Yinmin Li, Ying Wang, Xun-Li Liaw, Peter K. Lavernia, Enrique J. TI Structure Modulation Driven by Cyclic Deformation in Nanocrystalline NiFe SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROWTH; METALS AB Theoretical modeling suggests that the grain size remains unchanged during fatigue crack growth in nanocrystalline metals. Here we demonstrate that a modulated structure is generated in a nanocrystalline Ni-Fe alloy under cyclic deformation. Substantial grain coarsening and loss of growth twins are observed in the path of fatigue cracks, while the grains away from the cracks remain largely unaffected. Statistical analyses suggest that the grain coarsening is realized through the grain lattice rotation and coalescence and the loss of growth twins may be related to the detwinning process near crack tip. C1 [Cheng, Sheng; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Cheng, Sheng; Wang, Xun-Li] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zhao, Yonghao; Li, Ying; Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Wang, Yinmin] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Cheng, S (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM scheng1@utk.edu; yhzhao@ucdavis.edu RI Li, Ying/G-3908-2010; Zhao, Yonghao/A-8521-2009; Wang, Xun-Li/C-9636-2010; Cheng, Sheng/D-9153-2013; Lavernia, Enrique/I-6472-2013; Wang, Yinmin (Morris)/F-2249-2010 OI Li, Ying/0000-0003-3738-9307; Wang, Xun-Li/0000-0003-4060-8777; Cheng, Sheng/0000-0003-1137-1926; Lavernia, Enrique/0000-0003-2124-8964; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU NSF [DMR-0421219]; Office of Naval Research [ONR N00014-08-1-0405]; Division of Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-06CH11357] FX Financial support was by the NSF Grant No. DMR-0421219. Y.Z. and E.J.L. acknowledge support by the Office of Naval Research (Grant No. ONR N00014-08-1-0405). X.L.W. acknowledges support by Division of Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DE-AC05-00OR22725 and DE-AC02-06CH11357) with UT-Battelle, LLC. NR 19 TC 41 Z9 41 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 24 PY 2010 VL 104 IS 25 AR 255501 DI 10.1103/PhysRevLett.104.255501 PG 4 WC Physics, Multidisciplinary SC Physics GA 615ZP UT WOS:000279177600001 PM 20867394 ER PT J AU Lunghi, E Soni, A AF Lunghi, E. Soni, Amarjit TI Unitarity Triangle without Semileptonic Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB The use of semileptonic decays has become standard in constraining the unitarity triangle. Since precise calculations of these are very challenging, we propose an entirely new approach. The epsilon(K) constraint, which depends extremely sensitively on vertical bar V(cb)vertical bar, is replaced by the interplay between epsilon(K), BR(B --> tau nu), and Delta M(Bs). Improvements on the B --> tau nu branching ratio and on the lattice determinations of f (Bs)B(s)(1/2) and f(B) can increase the effectiveness of this method significantly. C1 [Lunghi, E.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lunghi, E (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. FU U.S. DOE [DE-AC02-98CH10886(BNL)] FX This research was supported in part by the U.S. DOE Contract No. DE-AC02-98CH10886(BNL). NR 32 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 24 PY 2010 VL 104 IS 25 AR 251802 DI 10.1103/PhysRevLett.104.251802 PG 4 WC Physics, Multidisciplinary SC Physics GA 615ZD UT WOS:000279176400001 PM 20867365 ER PT J AU Mrozek, RA Cole, PJ Mondy, LA Rao, RR Bieg, LF Lenhart, JL AF Mrozek, Randy A. Cole, Phillip J. Mondy, Lisa A. Rao, Rekha R. Bieg, Lothar F. Lenhart, Joseph L. TI Highly conductive, melt processable polymer composites based on nickel and low melting eutectic metal SO POLYMER LA English DT Article DE Conductive; Melt-processable; Eutectic AB Highly conductive polymers are difficult to process utilizing standard polymer approaches. This report describes a polymer composite loaded with a eutectic metal that is molten during melt processing along with a more traditional Nickel particulate filler. Conductivities over 300 S/cm were achieved, and 60 vol% metals loading was processable with a single screw extruder. The addition of the Nickel particulate was critical for maintaining eutectic dispersion. We anticipate that this approach will facilitate the implementation of conductive polymers into a broader variety of practical applications, due to the enhanced compatibility with standard polymer processing techniques such as extrusion, melt mixing, and resin transfer-molding operations. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Mrozek, Randy A.; Lenhart, Joseph L.] USA, Res Lab, Aberdeen, MD 21005 USA. [Mrozek, Randy A.; Cole, Phillip J.; Mondy, Lisa A.; Rao, Rekha R.; Bieg, Lothar F.; Lenhart, Joseph L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cole, Phillip J.] Northrop Grumman A&AS, Arlington, VA 22209 USA. RP Mrozek, RA (reprint author), USA, Res Lab, Aberdeen, MD 21005 USA. EM randy.mrozek@us.army.mil; joseph.lenhart1@us.army.mil FU ARL through Oak Ridge Institute of Science and Engineering (ORISE); United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was initiated at Sandia National Laboratories by J.L. Lenhart, P.J. Cole, and R.A. Mrozek and is being continued at the US Army Research Laboratory by J.L. Lenhart and R.A. Mrozek. R.A. Mrozek was funded at ARL through a contract with the Oak Ridge Institute of Science and Engineering (ORISE). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Commercial equipment and materials are identified in this paper in order to specify adequately the experimental procedures and does not imply recommendations by the Army Research Laboratory. NR 8 TC 17 Z9 17 U1 2 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUN 24 PY 2010 VL 51 IS 14 BP 2954 EP 2958 DI 10.1016/j.polymer.2010.04.067 PG 5 WC Polymer Science SC Polymer Science GA 616AZ UT WOS:000279181400003 ER PT J AU Zarnetta, R Takahashi, R Young, ML Savan, A Furuya, Y Thienhaus, S Maass, B Rahim, M Frenzel, J Brunken, H Chu, YS Srivastava, V James, RD Takeuchi, I Eggeler, G Ludwig, A AF Zarnetta, Robert Takahashi, Ryota Young, Marcus L. Savan, Alan Furuya, Yasubumi Thienhaus, Sigurd Maass, Burkhard Rahim, Mustafa Frenzel, Jan Brunken, Hayo Chu, Yong S. Srivastava, Vijay James, Richard D. Takeuchi, Ichiro Eggeler, Gunther Ludwig, Alfred TI Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented Functional Stability SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; FILM COMPOSITION SPREAD; THIN-FILMS; PD; COMBINATORIAL; NITI; CU; TRANSFORMATIONS; MICROSTRUCTURE; DEFORMATION AB Improving the functional stability of shape memory alloys (SMAs), which undergo a reversible martensitic transformation, is critical for their applications and remains a central research theme driving advances in shape memory technology. By using a thin-film composition-spread technique and high-throughput characterization methods, the lattice parameters of quaternary Ti-Ni-Cu-Pd SMAs and the thermal hysteresis are tailored. Novel alloys with near-zero thermal hysteresis, as predicted by the geometric nonlinear theory of martensite, are identified. The thin-film results are successfully transferred to bulk materials and near-zero thermal hysteresis is observed for the phase transformation in bulk alloys using the temperature-dependent alternating current potential drop method. A universal behavior of hysteresis versus the middle eigenvalue of the transformation stretch matrix is observed for different alloy systems. Furthermore, significantly improved functional stability, investigated by thermal cycling using differential scanning calorimetry, is found for the quaternary bulk alloy Ti50.2Ni34.4Cu12.3Pd3.1. C1 [Zarnetta, Robert; Young, Marcus L.; Savan, Alan; Thienhaus, Sigurd; Maass, Burkhard; Rahim, Mustafa; Frenzel, Jan; Brunken, Hayo; Eggeler, Gunther; Ludwig, Alfred] Ruhr Univ Bochum, Inst Mat, D-44780 Bochum, Germany. [Zarnetta, Robert; Eggeler, Gunther; Ludwig, Alfred] Ruhr Univ Bochum, Res Dept Integr Small Scale Syst High Temp Mat, D-44780 Bochum, Germany. [Takahashi, Ryota; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Furuya, Yasubumi] Hirosaki Univ, Dept Intelligent Machines & Syst Engn, Hirosaki, Aomori 0368561, Japan. [Chu, Yong S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Srivastava, Vijay; James, Richard D.] Univ Minnesota, Dept Aerosp Engn & Mech, Minneapolis, MN 55455 USA. RP Zarnetta, R (reprint author), Ruhr Univ Bochum, Inst Mat, D-44780 Bochum, Germany. EM robert.zarnetta@rub.de RI Zarnetta, Robert/D-5969-2011; Ludwig, Alfred/G-1111-2011; Takahashi, Ryota/A-8748-2010; Brunken, Hayo/B-2558-2012; Eggeler, Gunther/R-9833-2016; OI Ludwig, Alfred/0000-0003-2802-6774; Takahashi, Ryota/0000-0003-2430-2444; Frenzel, Jan/0000-0002-2778-5392; Savan, Alan/0000-0003-0559-3290 FU German Research Foundation (DFG) within the collaborative research center [SFB 459]; Heisenberg program; state of North Rhine-Westphalia through the Research Department; Alexander von Humboldt Foundation; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; ARO-MURI [W911NF-07-0410]; NIH [EB 005997]; NSF MRSEC [DMR 0520471]; NSF/NNIN FX We thank V. Chevrier and J. R. Dahn for providing the Quaternary Viewer software and would like to acknowledge J. Cui, Ch. Zamponi, M. Yokoyama, E. Quandt, and M. Wuttig for fruitful discussions. This work was supported by the German Research Foundation (DFG) within the collaborative research center "SFB 459" (RZ, BM, MR, JF, GE, AL), the Heisenberg program (AL), the state of North Rhine-Westphalia through the Research Department "Integrity of Small-Scale Systems/High-Temperature Materials" (RZ, GE, AL). M. L. Young is supported by the Alexander von Humboldt Foundation. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No DE-AC02-06CH11357. Additionally this work was funded by ARO-MURI-W911NF-07-0410, NIH EB 005997 and partially supported by NSF MRSEC DMR 0520471 (RT, IT) and NSF/NNIN (RJ, VS). Supporting Information is available online from Wiley InterScience or from the author. NR 32 TC 107 Z9 108 U1 19 U2 108 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 23 PY 2010 VL 20 IS 12 BP 1917 EP 1923 DI 10.1002/adfm.200902336 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 622ZW UT WOS:000279707200006 ER PT J AU Zhang, XW Zunger, A AF Zhang, Xiuwen Zunger, Alex TI Diagrammatic Separation of Different Crystal Structures of A(2)BX(4) Compounds Without Energy Minimization: A Pseudopotential Orbital Radii Approach SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID EFFECTIVE IONIC-RADII; DENSITY-FUNCTIONAL FORMALISM; FIELD STABILIZATION ENERGY; CATION DISTRIBUTION; ELECTRONIC-PROPERTIES; LATTICE ENERGY; SOLID ALLOYS; SPINELS; OXIDES; SEMICONDUCTORS AB The A(2)BX(4) family of compounds manifest a wide range of physical properties, including transparent conductivity, ferromagnetism, and superconductivity. A 98% successful diagrammatic separation of the 44 different crystal structures of 688 oxide A(2)BX(4) compounds (96% for 266 oxide-only) is described by plotting the total radius of the A atom R-A versus the radius of the B atom R-B for many A(2)BX(4) compounds of known structure types and seeking heuristically simple, straight boundaries in the R-A versus R-B plane that best separate the domains of different structure types. The radii are sums R-A = R-s(A) R-p(A) of the quantum-mechanically calculated "orbital radii" R-s(R-p), rather than empirical radii or phenomenological electronegativity scales. These success rates using first-principles orbital radii uniformly exceed the success rates using classic radii. Such maps afford a quick guess of the crystal structure of a yet unmade A(2)BX(4) compound by placing its atomic orbital radii on such maps and reading off its structure type. C1 [Zhang, Xiuwen; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, XW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Alex_Zunger@nrel.gov RI Zunger, Alex/A-6733-2013; ZHANG, XIUWEN/K-7383-2012 FU U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers [DE-AC36-08GO28308] FX AZ wishes to thank Iris Inbar who contributed greatly in the early stages of this work. We thank Mayeul d'Avezac, Thomas O. Mason, and Kenneth R. Poeppelmeier for useful discussions. Research supported by the U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers, under Award No. DE-AC36-08GO28308 to NREL. Supporting Information is available online from Wiley InterScience or from the author. NR 77 TC 15 Z9 15 U1 2 U2 25 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 23 PY 2010 VL 20 IS 12 BP 1944 EP 1952 DI 10.1002/adfm.200901811 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 622ZW UT WOS:000279707200010 ER PT J AU Schmieder, R Lim, YW Rohwer, F Edwards, R AF Schmieder, Robert Lim, Yan Wei Rohwer, Forest Edwards, Robert TI TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets SO BMC BIOINFORMATICS LA English DT Article ID ALGORITHM; READ AB Background: Sequencing metagenomes that were pre-amplified with primer-based methods requires the removal of the additional tag sequences from the datasets. The sequenced reads can contain deletions or insertions due to sequencing limitations, and the primer sequence may contain ambiguous bases. Furthermore, the tag sequence may be unavailable or incorrectly reported. Because of the potential for downstream inaccuracies introduced by unwanted sequence contaminations, it is important to use reliable tools for pre-processing sequence data. Results: TagCleaner is a web application developed to automatically identify and remove known or unknown tag sequences allowing insertions and deletions in the dataset. TagCleaner is designed to filter the trimmed reads for duplicates, short reads, and reads with high rates of ambiguous sequences. An additional screening for and splitting of fragment-to-fragment concatenations that gave rise to artificial concatenated sequences can increase the quality of the dataset. Users may modify the different filter parameters according to their own preferences. Conclusions: TagCleaner is a publicly available web application that is able to automatically detect and efficiently remove tag sequences from metagenomic datasets. It is easily configurable and provides a user-friendly interface. The interactive web interface facilitates export functionality for subsequent data processing, and is available at http://edwards.sdsu.edu/tagcleaner. C1 [Schmieder, Robert; Edwards, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Schmieder, Robert] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Lim, Yan Wei; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Edwards, Robert] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Schmieder, R (reprint author), San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. EM rschmied@sciences.sdsu.edu; redwards@cs.sdsu.edu FU National Science Foundation [DBI 0850356] FX Coxsackie virus infected mouse brain tissues were kindly provided by Dr. Ralph Feuer (San Diego State University). Mosquitoes were supplied by Simon J. Anthony (San Diego Zoo's Institute for Conservation Research). We thank Matthew Haynes for helpful discussions. This work was supported by grant DBI 0850356 Advances in Bioinformatics from the National Science Foundation. NR 26 TC 64 Z9 64 U1 1 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JUN 23 PY 2010 VL 11 AR 341 DI 10.1186/1471-2105-11-341 PG 14 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 631FU UT WOS:000280332800002 PM 20573248 ER PT J AU Hager, WW Aslan, BC Sonnenfeld, RG Crum, TD Battles, JD Holborn, MT Ron, R AF Hager, William W. Aslan, Beyza Caliskan Sonnenfeld, Richard G. Crum, Timothy D. Battles, John D. Holborn, Michael T. Ron, Ruth TI Three-dimensional charge structure of a mountain thunderstorm SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MESOSCALE CONVECTIVE SYSTEMS; ELECTRICAL STRUCTURES; REGIONS; STEPS; THUNDERCLOUDS; WSR-88D; STORM; FIELD; PRECIPITATION; SOUNDINGS AB Lightning charge transport is analyzed for a thunderstorm which occurred on 18 August 2004 near Langmuir Laboratory in New Mexico. The analysis employs wide band measurements of the electric field by a balloon -borne electric field sonde or Esonde, simultaneous Lightning Mapping Array measurements of VHF pulses emitted during lightning breakdown, and Next Generation Weather Radar data. The thunderstorm was composed of two principal updrafts. In the stronger updraft the positively charged particles reached altitudes up to 14 km, and in the weaker updraft the positive particles reached 11 km altitude. The negatively charged particles generated in the updraft appeared to reach altitudes up to 10 km in the strong updraft and 8 km in the weaker updraft. Just outside the updrafts the positive and negative particles drop sharply; thereafter, they drop down at a nearly linear rate, between 1 and 2 km in altitude per 10 km in horizontal distance. Initially, as the updraft developed, most charge was transported by updraft flashes; later, after about 15 to 20 min, extensive flashes were predominant. Most cloud-to-ground (CG) flashes transported negative charge from outside the updraft at 6 km altitude down to ground; however, some strokes of a CG reached into a higher negative charge region closer to the updraft. Nearly 6 times as much charge was transported by intracloud (IC) flashes when compared to CG flashes. The ratio of the average charge transport for an IC flash to the average charge transport for a CG flash was 1.6, while the average generator current associated with the combined updrafts was 2.3 amperes for 40 min. C1 [Hager, William W.] Univ Florida, Dept Math, Gainesville, FL 32611 USA. [Aslan, Beyza Caliskan] Univ N Florida, Dept Math & Stat, Jacksonville, FL 32224 USA. [Sonnenfeld, Richard G.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Sonnenfeld, Richard G.] New Mexico Inst Min & Technol, Langmuir Lab, Socorro, NM 87801 USA. [Crum, Timothy D.] NOAA, Radar Operat Ctr WSR 88D, Norman, OK 73069 USA. [Battles, John D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Holborn, Michael T.; Ron, Ruth] Univ Florida, Sch Architecture, Gainesville, FL 32611 USA. RP Hager, WW (reprint author), Univ Florida, Dept Math, POB 118105, Gainesville, FL 32611 USA. EM hager@ufl.edu FU National Science Foundation [0619080, 0724750, 0724771, 0331164]; New Mexico Institute of Mining and Technology; Irving and Marion Langmuir bequest to Langmuir Laboratory; National Aeronautics and Space Administration through the New Mexico Space Grant Consortium FX This work was funded primarily by grants 0619080, 0724750, 0724771, and 0331164 from the National Science Foundation. Additional funding was provided by the Office of the President of New Mexico Institute of Mining and Technology, by the Irving and Marion Langmuir bequest to Langmuir Laboratory, and by the National Aeronautics and Space Administration through the New Mexico Space Grant Consortium. The field operations at Langmuir Laboratory were conducted on the Cibola National Forest under a special use permit from the U.S. Forest Service. Harald Edens preprocessed the LMA data. The NEXRAD PPI scans for National Weather Service station KABX, Albuquerque, were obtained from the National Oceanic and Atmospheric Administration (NOAA) and their National Climatic Data Center (NCDC). The NEXRAD data were particularly useful for pinpointing the location of the thunderstorm updrafts and for determining the structure of the thunderstorm. The NEXRAD Level II data [Crum et al., 1993], when combined with the NCDC Weather and Climate Toolkit, were especially helpful for visualizing the updraft in three dimensions. The radar imagery in Figure 8 was provided by Steve Ansari and Steve DelGreco at NCDC. Input received from William P. Winn during the drafting of this paper is gratefully acknowledged. Data from the National Lightning Detection Network (NLDN) were provided by Vaisala Inc. NR 41 TC 5 Z9 6 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 23 PY 2010 VL 115 AR D12119 DI 10.1029/2009JD013241 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 617VA UT WOS:000279308800002 ER PT J AU Lord, OT Walter, MJ Dobson, DP Armstrong, L Clark, SM Kleppe, A AF Lord, O. T. Walter, M. J. Dobson, D. P. Armstrong, L. Clark, S. M. Kleppe, A. TI The FeSi phase diagram to 150 GPa SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID DIAMOND-ANVIL CELL; IRON-SILICON ALLOYS; EQUATION-OF-STATE; EARTHS CORE; HIGH-PRESSURE; CRYSTAL-STRUCTURE; LIGHT-ELEMENTS; MELTING CURVE; EPSILON-FESI; LOWER MANTLE AB The melting curve of FeSi has been determined to 150 GPa in the laser-heated diamond anvil cell (LH-DAC) on the basis of discontinuities in the power versus temperature function. A multianvil experimental cross-check at 12 GPa using textural criteria as a proxy for melting is in good agreement with our LH-DAC results. The melting point of FeSi reaches similar to 4000 K at the core mantle boundary and an extrapolated value of 4900 K at the inner-core boundary (ICB). We also present the melting curve as determined by the Lindemann melting law; this agrees well with our experimental curve to 70 GPa and then diverges to higher temperatures, reaching 6200 K at the ICB. These temperatures are substantially higher than previous LH-DAC determinations. The boundary of the epsilon-FeSi -> CsCl-FeSi subsolidus transition has also been determined by synchrotron-based X-ray diffraction at high pressures, and the results confirm a negative Clapeyron slope for the transition. We conclude that if present, FeSi is likely to be solid within the D '' layer and is unlikely to be present within the inner core for any plausible bulk core silicon content. C1 [Lord, O. T.; Walter, M. J.; Armstrong, L.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Dobson, D. P.] UCL, Dept Earth Sci, London WC1E 6BT, England. [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kleppe, A.] Diamond Light Source Ltd, Didcot OX110 DE, Oxon, England. RP Lord, OT (reprint author), Univ Bristol, Dept Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England. EM Oliver.Lord@bristol.ac.uk RI Lord, Oliver/D-4663-2014; Clark, Simon/B-2041-2013 OI Lord, Oliver/0000-0003-0563-1293; Clark, Simon/0000-0002-7488-3438 FU Natural Environment Research Council [NE/F019084/1]; European Commission through the Marie Curie Research Training Network "c2c" [MRTN-CT-2006-035957] FX We thank Andrew Jephcoat (DLS) for technical assistance in collecting the diffraction data. O.T.L. is grateful for financial support from a Natural Environment Research Council PhD studentship. This work was supported by Natural Environment Research Council grant NE/F019084/1 to M.J.W. Experiments at Bayreuth were funded by the European Commission through the Marie Curie Research Training Network "c2c" contract MRTN-CT-2006-035957. NR 51 TC 16 Z9 17 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN 23 PY 2010 VL 115 AR B06208 DI 10.1029/2009JB006528 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 617WT UT WOS:000279313300003 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Yamamoto, RK Zito, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Ebert, M Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Santoro, V Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Yamamoto, R. K. Zito, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Ebert, M. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Santoro, V. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays SO PHYSICAL REVIEW D LA English DT Article ID TRIPLE-PRODUCT CORRELATIONS AB We search for CP violation in a sample of 4.7 x 10(4) Cabibbo suppressed D-0 -> K+K-pi(+)pi(-) decays. We use 470 fb(-1) of data recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) storage rings running at center-of-mass energies near 10.6 GeV. CP violation is searched for in the difference between the T-odd asymmetries, obtained using triple product correlations, measured for D-0 and (D) over bar (0) decays. The measured CP violation parameter is A(T) = (1.0 +/- 5.1(stat) +/- 4.4(syst)) x 10(-3). C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Adametz, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Adametz, A.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Adametz, A.; Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Yamamoto, R. K.; Zito, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Zito, M.; Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Etud Saclay, SPP, CEA, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Santoro, V.; Young, C. C.; Ziegler, V.; Schilling, C. J.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Blount, N. L.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Raven, Gerhard/0000-0002-2897-5323; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712 FU SLAC; DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); European Union; A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 20 TC 16 Z9 16 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 23 PY 2010 VL 81 IS 11 AR 111103 DI 10.1103/PhysRevD.81.111103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 615TD UT WOS:000279159500001 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Pair Production of Supersymmetric Top Quarks in Dilepton Events from p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON COLLIDERS; PHYSICS AB We present the results of a search for pair production of the supersymmetric partner of the top quark (the top squark (t) over tilde (1)) decaying to a b quark and a chargino (chi) over tilde (+/-)(1) with a subsequent (chi) over tilde (+/-)(1) decay into a neutralino (chi) over tilde (0)(1), lepton l, and neutrino nu Using a data sample corresponding to 2.7 fb(-1) of integrated luminosity of p (p) over bar collisions at root s = 1: 96 TeV collected by the CDF II detector, we reconstruct the mass of top squark candidate events and fit the observed mass spectrum to a combination of standard model processes and (t) over tilde (1)(t) over tilde (1). We find no evidence for (t) over tilde (1)(t) over tilde (1) production and set 95% C. L. limits on the masses of the top squark and the neutralino for several values of the chargino mass and the branching ratio B((X) over tilde (+/-)(1) -> (chi) over tilde (0)(1)l(+/-)nu). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; Dell'Orso, M.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miao, T.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Mesropian, C.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Miller, R.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Mills, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miladinovic, N.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Clark, A.; Crescioli, F.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Clark, A.; Crescioli, F.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Clark, A.; Crescioli, F.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Univ Siena, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Clark, A.; Crescioli, F.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Merkel, P.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Punzi, Giovanni/J-4947-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015 OI Punzi, Giovanni/0000-0002-8346-9052; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 24 TC 18 Z9 18 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2010 VL 104 IS 25 AR 251801 DI 10.1103/PhysRevLett.104.251801 PG 8 WC Physics, Multidisciplinary SC Physics GA 615YL UT WOS:000279174500001 ER PT J AU Hoener, M Fang, L Kornilov, O Gessner, O Pratt, ST Guhr, M Kanter, EP Blaga, C Bostedt, C Bozek, JD Bucksbaum, PH Buth, C Chen, M Coffee, R Cryan, J DiMauro, LF Glownia, M Hosler, E Kukk, E Leone, SR McFarland, B Messerschmidt, M Murphy, B Petrovic, V Rolles, D Berrah, N AF Hoener, M. Fang, L. Kornilov, O. Gessner, O. Pratt, S. T. Guehr, M. Kanter, E. P. Blaga, C. Bostedt, C. Bozek, J. D. Bucksbaum, P. H. Buth, C. Chen, M. Coffee, R. Cryan, J. DiMauro, L. F. Glownia, M. Hosler, E. Kukk, E. Leone, S. R. McFarland, B. Messerschmidt, M. Murphy, B. Petrovic, V. Rolles, D. Berrah, N. TI Ultraintense X-Ray Induced Ionization, Dissociation, and Frustrated Absorption in Molecular Nitrogen SO PHYSICAL REVIEW LETTERS LA English DT Article ID FREE-ELECTRON LASER AB Sequential multiple photoionization of the prototypical molecule N(2) is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications. C1 [Hoener, M.; Fang, L.; Murphy, B.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Hoener, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kornilov, O.; Gessner, O.; Leone, S. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Pratt, S. T.; Kanter, E. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Guehr, M.; Bucksbaum, P. H.; Buth, C.; Cryan, J.; Glownia, M.; McFarland, B.; Petrovic, V.] SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, Menlo Pk, CA 94025 USA. [Blaga, C.; DiMauro, L. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bostedt, C.; Bozek, J. D.; Coffee, R.; Messerschmidt, M.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Buth, C.] Louisiana State Univ, Dept Phys, Baton Rouge, LA 70803 USA. [Chen, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hosler, E.; Leone, S. R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94710 USA. [Hosler, E.; Leone, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94710 USA. [Kukk, E.] Univ Turku, Dept Phys & Astron, Turku 20014, Finland. [Rolles, D.] CFEL, Max Planck Adv Study Grp, D-22761 Hamburg, Germany. RP Berrah, N (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM nora.berrah@wmich.edu RI Messerschmidt, Marc/F-3796-2010; Bozek, John/E-9260-2010; Bozek, John/E-4689-2010; Guehr, Markus/B-7446-2015; Buth, Christian/A-2834-2017 OI Messerschmidt, Marc/0000-0002-8641-3302; Bozek, John/0000-0001-7486-7238; Guehr, Markus/0000-0002-9111-8981; Buth, Christian/0000-0002-5866-3443 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We thank R. Santra, R. Dorner, P. Emma, J. Frisch, and H. Zhiron for their assistance. Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 19 TC 111 Z9 111 U1 2 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2010 VL 104 IS 25 AR 253002 DI 10.1103/PhysRevLett.104.253002 PG 5 WC Physics, Multidisciplinary SC Physics GA 615YN UT WOS:000279174700002 PM 20867372 ER PT J AU Cox, MJ Allgaier, M Taylor, B Baek, MS Huang, YJ Daly, RA Karaoz, U Andersen, GL Brown, R Fujimura, KE Wu, B Tran, D Koff, J Kleinhenz, ME Nielson, D Brodie, EL Lynch, SV AF Cox, Michael J. Allgaier, Martin Taylor, Byron Baek, Marshall S. Huang, Yvonne J. Daly, Rebecca A. Karaoz, Ulas Andersen, Gary L. Brown, Ronald Fujimura, Kei E. Wu, Brian Tran, Diem Koff, Jonathan Kleinhenz, Mary Ellen Nielson, Dennis Brodie, Eoin L. Lynch, Susan V. TI Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients SO PLOS ONE LA English DT Article ID INTESTINAL MICROBIOTA; PSEUDOMONAS-AERUGINOSA; POPULATION-DYNAMICS; BACTERIAL DIVERSITY; COMMUNITY ECOLOGY; LUNG-INFECTIONS; GUT MICROBIOME; SUCCESSION; GRADIENT; DISEASE AB Bacterial communities in the airways of cystic fibrosis (CF) patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months) to adults (72 years). From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective "early'' and "late'' colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR) mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations. C1 [Cox, Michael J.; Huang, Yvonne J.; Fujimura, Kei E.; Wu, Brian; Koff, Jonathan; Kleinhenz, Mary Ellen; Nielson, Dennis; Lynch, Susan V.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [Allgaier, Martin; Taylor, Byron; Baek, Marshall S.; Brown, Ronald] Univ Calif San Francisco, Dept Anesthesia & Perioperat Care, San Francisco, CA 94143 USA. [Daly, Rebecca A.; Karaoz, Ulas; Andersen, Gary L.; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Berkeley, CA 94720 USA. [Daly, Rebecca A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Huang, Yvonne J.; Koff, Jonathan; Kleinhenz, Mary Ellen] Univ Calif San Francisco, Adult Cyst Fibrosis Program, San Francisco, CA 94143 USA. [Wu, Brian; Tran, Diem; Nielson, Dennis] Univ Calif San Francisco, Pediat Cyst Fibrosis Program, San Francisco, CA 94143 USA. RP Cox, MJ (reprint author), Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. EM susan.lynch@ucsf.edu RI Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Cox, Michael/A-6959-2010; Lynch, Susan/B-6272-2009; Karaoz, Ulas/J-7093-2014; Huang, Yvonne /A-7360-2015 OI Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Nielson, Dennis/0000-0003-0275-8942; Cox, Michael/0000-0002-4002-1506; FU NIH/NIAID [AI075410]; CFRI; NIH/NHLBI [HL-073856]; STAR [FP-916933]; U.S. Environmental Protection Agency; US Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX SVL, ELB, UK and GLA are supported by NIH/NIAID award AI075410 http://www.nih.gov/. MJC is supported by an Elizabeth Nash, CFRI research fellowship http://www.elizabethnashfoundation.org. DN is partly funded by NIH/NHLBI award HL-073856. RAD was supported under a STAR Research Assistance Agreement No. FP-916933 awarded by the U.S. Environmental Protection Agency. This publication has not been formally reviewed by the EPA http://www.epa.gov/. The views expressed in this publication are solely those of the group of authors and the EPA does not endorse any products or commercial services mentioned in this publication. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory, under Contract DE-AC02-05CH11231 http://www.lbl.gov/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 164 Z9 168 U1 3 U2 42 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 23 PY 2010 VL 5 IS 6 AR e11044 DI 10.1371/journal.pone.0011044 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 615KY UT WOS:000279135400003 PM 20585638 ER PT J AU Wu, CH Sercu, B Van de Werfhorst, LC Wong, J DeSantis, TZ Brodie, EL Hazen, TC Holden, PA Andersen, GL AF Wu, Cindy H. Sercu, Bram Van de Werfhorst, Laurie C. Wong, Jakk DeSantis, Todd Z. Brodie, Eoin L. Hazen, Terry C. Holden, Patricia A. Andersen, Gary L. TI Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators SO PLOS ONE LA English DT Article ID ANAEROBIC SLUDGE DIGESTER; MICROBIAL COMMUNITY; PHYLOGENETIC DIVERSITY; WASTE-WATER; MICROARRAY ANALYSIS; ESCHERICHIA-COLI; FECAL POLLUTION; GENETIC-MARKERS; TREATMENT-PLANT; CLONE LIBRARY AB Background: Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings: Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and alpha-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC: A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip-analyzed studies. Conclusions/Significance: This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. C1 [Wu, Cindy H.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Sercu, Bram; Van de Werfhorst, Laurie C.; Holden, Patricia A.] Univ Calif Santa Barbara, Donald Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Wu, CH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. EM GLAndersen@lbl.gov RI Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Hazen, Terry/C-1076-2012 OI Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Hazen, Terry/0000-0002-2536-9993 FU Department of Energy [DE-AC02-05CH11231]; Rathmann Family Foundation; California State Water Resources Control Board; Department of Public Health, Marin County California; City of Santa Barbara; Switzer Foundation; NSF [OCE 9982105, OCE 0620276] FX Part of this work was performed at Lawrence Berkeley National Laboratory under Department of Energy contract number DE-AC02-05CH11231 and funded by the Rathmann Family Foundation and the California State Water Resources Control Board Prop. 50 Clean Beaches Initiative grant with additional assistance by the Department of Public Health, Marin County California (CHW, JW, TZD, ELB, TCH, GLA). Additional funding was provided by the City of Santa Barbara through Measure B funding, the California State Water Resources Control Board Prop. 50 Clean Beaches Initiative grant and by the Switzer Foundation through a Leadership Grant. Flow data were provided through the NSF-funded Santa Barbara Long Term Ecological Research project, NSF OCE 9982105 and OCE 0620276 (BS, LCVDW, PAH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 94 TC 27 Z9 29 U1 3 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 23 PY 2010 VL 5 IS 6 AR e11285 DI 10.1371/journal.pone.0011285 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 615KY UT WOS:000279135400027 PM 20585654 ER PT J AU Tang, YZ Michel, FM Zhang, LH Harrington, R Parise, JB Reeder, RJ AF Tang, Yuanzhi Michel, F. Marc Zhang, Lihua Harrington, Richard Parise, John B. Reeder, Richard J. TI Structural Properties of the Cr(III)-Fe(III) (Oxy)hydroxide Compositional Series: Insights for a Nanomaterial "Solid Solution" SO CHEMISTRY OF MATERIALS LA English DT Article ID OXIDE WATER INTERFACE; CHROMIUM(III) HYDROXIDE; NANOCRYSTALLINE MATERIAL; THERMODYNAMIC MODEL; TOTAL SCATTERING; FERRIHYDRITE; SOLUBILITY; CHROMIA; IRON; CR(III) AB Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of similar to 27 angstrom. The Cr end member, with a coherent domain size of similar to 10 angstrom, has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural changes along the compositional series. C1 [Tang, Yuanzhi; Michel, F. Marc; Harrington, Richard; Parise, John B.; Reeder, Richard J.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Tang, Yuanzhi; Michel, F. Marc; Parise, John B.; Reeder, Richard J.] SUNY Stony Brook, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Harrington, Richard; Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Tang, YZ (reprint author), Harvard Univ, Sch Engn & Appl Sci, ESL, 58 Oxford St, Cambridge, MA 02138 USA. EM ytang@seas.harvard.edu RI Tang, Yuanzhi/G-5419-2013; Zhang, Lihua/F-4502-2014 FU Collaborative Research in Chemistry; Center for Environmental Molecular Science through National Science Foundation [CHE-0714183, CHE-0221924]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357]; U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886] FX We thank beamline personnel at XII (NSLS) and at Sectors 1-1D and 12-BM (APS) for assistance with data collection. We appreciate the comments and suggestions from Prof. Brian L. Phillips and Prof. Clare P. Grey (Stony Brook University). We thank Feng Zoo and Shanshan Liang (Stony Brook University) for help with TG data collection. This work was supported by Collaborative Research in Chemistry and the Center for Environmental Molecular Science through National Science Foundation Grants CHE-0714183 and CHE-0221924, respectively. F.M.M. acknowledges current support provided by G. E. Brown through the Environmental Molecular Science Institute at Stanford University. Use of the National Synchrotron Light Source and the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contracts DE-AC02-98CH10886 and DE-AC02-06CH11357, respectively. Research at the Center for Functional Nanomaterials is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract DE-AC02-98CH10886. We acknowledge the comments from the anonymous reviewers and the editor's efforts for handling this manuscript. NR 61 TC 23 Z9 23 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 22 PY 2010 VL 22 IS 12 BP 3589 EP 3598 DI 10.1021/cm1000472 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 609UW UT WOS:000278684000005 ER PT J AU Brauer, B Virkar, A Mannsfeld, SCB Bernstein, DP Kukreja, R Chou, KW Tyliszczak, T Bao, ZA Acremann, Y AF Braeuer, Bjoern Virkar, Ajay Mannsfeld, Stefan C. B. Bernstein, David P. Kukreja, Roopali Chou, Kang Wei Tyliszczak, Tolek Bao, Zhenan Acremann, Yves TI X-ray Microscopy Imaging of the Grain Orientation in a Pentacene Field-Effect Transistor SO CHEMISTRY OF MATERIALS LA English DT Article ID LINEAR DICHROISM MICROSCOPY; DEPOSITED THIN-FILMS; ORGANIC TRANSISTORS; MAGNETIC-PROPERTIES; SUBSTRATE; MOBILITY; TEMPERATURE; MORPHOLOGY; MONOLAYER; TRANSPORT AB We demonstrate the application of scanning transmission X-ray microscopy (STXM) to image the angular distribution of grains in organic semiconductor thin film devices on the example of pentacene field-effect transistors. The in-plane orientation of the molecules in the channel region and underneath the top conducting electrodes was derived from polarization dependent STXM investigations. The method allows the determination of the actual grain size and the correlation of the electronic transport and structural properties on the nanometer length scale. C1 [Braeuer, Bjoern; Bernstein, David P.] Stanford Univ, SLAC Natl Accelerator Lab, SIMES Ctr, Stanford, CA 94309 USA. [Virkar, Ajay; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94309 USA. [Kukreja, Roopali; Acremann, Yves] Stanford Univ, PULSE Ctr, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Mannsfeld, Stefan C. B.] Stanford Univ, SSRL, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chou, Kang Wei; Tyliszczak, Tolek] Adv Light Source, Berkeley, CA 94720 USA. RP Brauer, B (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, SIMES Ctr, Stanford, CA 94309 USA. EM bbj@stanford.edu; zbao@stanford.edu FU German Research Foundation (DFG); NSF [DMR 0213618, DMR 0705687]; DOE-BES FX B.B. would like to thank the German Research Foundation (DFG) for a postdoctoral fellowship. A.V. and Z.B. thank the NSF sponsored MRSEC (DMR 0213618) and NSF Solid State Chemistry (DMR 0705687) for financial support. The ALS and the research of the SLAC authors is funded by DOE-BES. NR 46 TC 25 Z9 25 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JUN 22 PY 2010 VL 22 IS 12 BP 3693 EP 3697 DI 10.1021/cm100487j PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 609UW UT WOS:000278684000016 ER PT J AU Zaveri, RA Berkowitz, CM Brechtel, FJ Gilles, MK Hubbe, JM Jayne, JT Kleinman, LI Laskin, A Madronich, S Onasch, TB Pekour, MS Springston, SR Thornton, JA Tivanski, AV Worsnop, DR AF Zaveri, Rahul A. Berkowitz, Carl M. Brechtel, Fred J. Gilles, Mary K. Hubbe, John M. Jayne, John T. Kleinman, Lawrence I. Laskin, Alexander Madronich, Sasha Onasch, Timothy B. Pekour, Mikhail S. Springston, Stephen R. Thornton, Joel A. Tivanski, Alexei V. Worsnop, Douglas R. TI Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AIR-MASS TRACKING; X-RAY MICROSCOPY; UNITED-STATES; AQUEOUS AEROSOLS; SULFATE AEROSOLS; REACTIVE UPTAKE; FORMATION MECHANISMS; REACTION PROBABILITY; PARTICLE FORMATION; AMMONIUM-SULFATE AB Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H2SO4, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp(2) hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate. C1 [Zaveri, Rahul A.; Berkowitz, Carl M.; Hubbe, John M.; Pekour, Mikhail S.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Brechtel, Fred J.] Brechtel Mfg Inc, Hayward, CA 94544 USA. [Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Jayne, John T.; Onasch, Timothy B.; Worsnop, Douglas R.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Kleinman, Lawrence I.; Springston, Stephen R.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Madronich, Sasha] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Thornton, Joel A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Tivanski, Alexei V.] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. RP Zaveri, RA (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM rahul.zaveri@pnl.gov RI Worsnop, Douglas/D-2817-2009; Laskin, Alexander/I-2574-2012; Madronich, Sasha/D-3284-2015; Thornton, Joel/C-1142-2009; OI Worsnop, Douglas/0000-0002-8928-8017; Laskin, Alexander/0000-0002-7836-8417; Madronich, Sasha/0000-0003-0983-1313; Thornton, Joel/0000-0002-5098-4867; Zaveri, Rahul/0000-0001-9874-8807 FU Office of Biological and Environmental Research of the DOE; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC06-76RLO 1830]; [DE-AC02-98CH10886] FX We thank the chief pilot Bob Hannigan and the PNNL flight crew for once again translating our scientific needs into safe flight operations with the G-1. We gratefully thank the following for their contributions and cooperation in this research effort: Rich Barchet (PNNL) and Katie Shaver (PNNL, summer intern); Alex Pszenny (University of New Hampshire); Chester Suchecki; Rich Coulter (Argonne National Laboratory); Paul Tracy and Lt. Col. John Roadcap (Air Force Research Laboratory, Hanscom AFB); Tim Lachenmeier and Bob Moody (GSSL, Inc.); Walter Komhyr and Jim Wendell (EN-SCI Corp.); Ted Maney (Marine Science Center, Northeastern University); Boston Air Traffic Control and Logan Watch Supervisor; and the town of Nahant, Massachusetts. We also thank Steven Brown (NOAA), Frank Flocke (NCAR), and Timothy Bertram (UW, Seattle) for their insights into the N2O5/NO3 chemistry and many helpful discussions. Support for this research was provided by the Atmospheric Science Program within the Office of Biological and Environmental Research of the DOE. Work by Brookhaven National Laboratory scientists was performed under contracts DE-AC02-98CH10886 and DE-AC06-76RLO 1830. STXM/NEXAFS analysis of particle samples at the Advanced Light Source (ALS) were partially supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231. The SEM particle analysis was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 104 TC 36 Z9 36 U1 7 U2 68 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 22 PY 2010 VL 115 AR D12304 DI 10.1029/2009JD013250 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 617UZ UT WOS:000279308700007 ER PT J AU Zhang, Y Klein, SA Boyle, J Mace, GG AF Zhang, Y. Klein, S. A. Boyle, J. Mace, G. G. TI Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODELS; CLIMATE-CHANGE; FEEDBACK PROCESSES; WESTERN PACIFIC; HADLEY-CENTER; CONVECTION; REGIMES; RADAR; PARAMETERIZATION; FORMULATION AB The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low-level and midlevel clouds in subsidence regions but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection, which is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated. C1 [Zhang, Y.; Klein, S. A.; Boyle, J.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Mace, G. G.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA. RP Zhang, Y (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, POB 808, Livermore, CA 94550 USA. EM zhang24@llnl.gov RI Zhang, Yuying/H-5011-2012; Klein, Stephen/H-4337-2016 OI Klein, Stephen/0000-0002-5476-858X FU NASA [NNX07AT45G]; U.S. Department of Energy [DE-AC52-07NA27344]; Office of Science at the U.S. Department of Energy FX Yuying Zhang was funded through a grant from the NASA Modeling and Analysis and Prediction Program (Don Anderson, program manager). Support for the work of Jim Boyle and Stephen Klein at LLNL was provided by the Atmospheric Radiation Measurement and Climate Change Prediction Programs, which are directed from the Office of Science at the U.S. Department of Energy. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Support for this work (G.M.) at the University of Utah was provided by NASA through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA and NASA grant NNX07AT45G. We greatly appreciate the DIME Web site from which we obtained the cluster program. We also thank Richard Neale for assistance in constructing the simulation of CAM3.5 with undilute plumes. The comments of the three anonymous reviewers are appreciated. NR 76 TC 25 Z9 25 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 22 PY 2010 VL 115 AR D12205 DI 10.1029/2009JD012006 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 617UZ UT WOS:000279308700001 ER PT J AU Wang, X Yakovlev, S Beers, KM Park, MJ Mullin, SA Downing, KH Balsara, NN AF Wang, Xin Yakovlev, Sergey Beers, Keith M. Park, Moon J. Mullin, Scott A. Downing, Kenneth H. Balsara, Nitash N. TI On the Origin of Slow Changes in Ionic Conductivity of Model Block Copolymer Electrolyte Membranes in Contact with Humid Air SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; TEMPERATURE FUEL-CELLS; PROTON CONDUCTIVITY; NAFION(R) MEMBRANES; EXCHANGE MEMBRANES; IONOMER MEMBRANES; PHASE-BEHAVIOR; ACID GROUPS; POLYMER; ANGLE AB Proton conductivity (sigma) and degree of hydration (lambda) of poly(styrenesullonate-methylbutylene) (PSS-PMB) block copolymers in contact with humid air were studied as a function of temperature under high-humidity conditions (relative humidity between 90 and 98%). The volume fraction of the hydrophilic PSS block in the dry state was 0.27 +/- 0.01 in all of the samples, and the size of the hydrophilic channels was varied by varying the overall molecular weight of the samples. All of the samples have a lamellar structure in the dry state. The water uptake data were unremarkable, and a degree of hydration of 14 +/- 2 H(2)O molecules per sulfonic acid group was obtained, regardless of temperature, thermal history, and hydrophilic channel size. In contrast, measured values of sigma were highly dependent on thermal history and sample molecular weight. Equilibrated values of sigma, obtained only after heating the samples to 90 degrees C for 48 h, were significantly lower than those obtained after initially hydrating the polymer films during the heating runs. In addition, the low molecular weight samples were more sensitive to thermal history than the high molecular weight samples. Small-angle neutron scattering and transmission electron microscopy studies on the humidified samples revealed that the low molecular weight samples undergo a transition to hexagonally perforated lamellae upon hydration while the highest molecular weight sample did not. We speculate that the slow changes in sigma are due to the formation of less connected ion transporting channels or ionic clusters that impede ion motion. Equilibrated ionic conductivities increase as the hydrophilic channel size decreases, C1 [Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Wang, Xin; Mullin, Scott A.; Balsara, Nitash N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Yakovlev, Sergey; Beers, Keith M.; Park, Moon J.; Balsara, Nitash N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Xin; Beers, Keith M.; Park, Moon J.; Mullin, Scott A.; Balsara, Nitash N.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Park, Moon J.] Pohang Univ Sci & Technol, Dept Chem, Pohang, South Korea. RP Downing, KH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Park, Moon Jeong/F-5752-2013 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Energy Efficiency and Renewable Energy Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy, Office of Basic Energy Sciences; National Science Foundation [DMR-0454672.39] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and the Fuel Cell Technologies Program, Energy Efficiency and Renewable Energy Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The SAXS was performed at the Advanced Light Source, Lawrence Berkeley National Laboratory, which is a national user facility supported by the Department of Energy, Office of Basic Energy Sciences. We thank Dr. John Kerr for valuable input and guidance on the project. The SANS facilities at NIST are supported in part by the National Science Foundation under Agreement DMR-0454672.39. NR 53 TC 26 Z9 26 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 22 PY 2010 VL 43 IS 12 BP 5306 EP 5314 DI 10.1021/ma100719m PG 9 WC Polymer Science SC Polymer Science GA 609CE UT WOS:000278631900019 ER PT J AU Virgili, JM Hoarfrost, ML Segalman, RA AF Virgili, Justin M. Hoarfrost, Megan L. Segalman, Rachel A. TI Effect of an Ionic Liquid Solvent on the Phase Behavior of Block Copolymers SO MACROMOLECULES LA English DT Article ID BRONSTED ACID-BASE; THIN-FILM TRANSISTORS; DIBLOCK COPOLYMERS; SELECTIVE SOLVENTS; FUEL-CELLS; POLYMER; ELECTROLYTES; MICELLES; MEMBRANES; BLENDS AB The phase behavior of concentrated mixtures of block copolymers with an ionic liquid has been studied using a large series of block copolymers with varying molecular weight and volume traction to gain a thorough understanding of the thermodynamics of self-assembly. The lyotropic phase behavior of mixtures of poly(styrene-block-2-vinylpyridine) (S2VP) copolymers with the ionic liquid imidazolium bis(trifluoromethane)sulfonimide ([Im][TFSI]) is reminiscent of block copolymer/selective molecular solvent mixtures, and ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed. Scaling analysis reveals that, in contrast to observations of block copolymer/molecular solvent mixtures, the interfacial area occupied by each S2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the S2VP copolymer with ionic liquid addition. C1 [Virgili, Justin M.; Hoarfrost, Megan L.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Virgili, Justin M.; Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hoarfrost, Megan L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy & Environm Technol Div, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 FU Office of Hydrogen, Fuel Cell, and Infrastructure Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy, Office of Basic Energy Sciences FX We gratefully acknowledge support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cell, and Infrastructure Technologies of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The authors thank Dr. John Kerr for useful discussions. SAXS experiments were performed at the Advanced Lien Source and the Stanford Synchrotron Radiation Light-source, and SANS experiments were conducted at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor. All three are national user facilities supported by the Department of Energy, Office of Basic Energy Sciences. We gratefully acknowledge Dr. Alexander Hexemer, Dr. Cheng Wang, and Dr. Eric Schaible for experimental assistance at the ALS, Dr. John Pople for experimental assistance at the SSRL, and Alisyn Nedoma, Dr. Yuri Melnichenko, and Dr. Gang Cheng for experimental assistance at ORNL. NR 46 TC 33 Z9 33 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 22 PY 2010 VL 43 IS 12 BP 5417 EP 5423 DI 10.1021/ma902804e PG 7 WC Polymer Science SC Polymer Science GA 609CE UT WOS:000278631900033 ER PT J AU Kurter, C Ozyuzer, L Proslier, T Zasadzinski, JF Hinks, DG Gray, KE AF Kurter, C. Ozyuzer, L. Proslier, T. Zasadzinski, J. F. Hinks, D. G. Gray, K. E. TI Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+delta mesas SO PHYSICAL REVIEW B LA English DT Article ID INTERLAYER TUNNELING SPECTROSCOPY; T-C SUPERCONDUCTORS; OVERDOPED BI2SR2CACU2O8+DELTA; SINGLE-CRYSTALS; JOSEPHSON-JUNCTIONS; QUASI-PARTICLE; GAP; PSEUDOGAP; DEPENDENCE; CONDUCTIVITY AB Anomalously high and sharp peaks in the conductance of intrinsic Josephson junctions in Bi2Sr2CaCu2O8+delta (Bi2212) mesas have been commonly interpreted as superconducting energy gaps but here we show they are a result of strong self-heating. This conclusion follows directly from a comparison to the equilibrium gap measured by tunneling in single break junctions on equivalent crystals. As the number of junctions in the mesa, N, and thus heating increase, the peak voltages decrease and the peak width abruptly sharpens for N >= 12. Clearly these widely variable features vs N cannot all represent the equilibrium properties. Our data imply that the sharp peaks represent a transition to the normal state. That it occurs at the same dissipated power for N =12-30 strongly implicates heating as the cause. Although peak sharpening due to heating is counterintuitive, as tunneling spectra usually broaden at higher temperatures, a lateral temperature gradient, leading to coexistence of normal hot spots and superconductive regions, qualitatively explains the behavior. However, a more uniform temperature profile cannot be ruled out. As the peak's width and voltage in our shortest mesa (N=6) are more consistent with the break junction data, we propose a figure of merit for Bi2212 mesas, the relative conductance peak width, such that small values signal a crossover into the strong self-heating regime. C1 [Kurter, C.; Ozyuzer, L.; Proslier, T.; Hinks, D. G.; Gray, K. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kurter, C.; Proslier, T.; Zasadzinski, J. F.] IIT, Div Phys, BCPS Dept, Chicago, IL 60616 USA. [Ozyuzer, L.] Izmir Inst Technol, Dept Phys, TR-35430 Izmir, Turkey. RP Kurter, C (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ckurter@umd.edu RI Ozyuzer, Lutfi/H-3142-2011 FU U.S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357]; TUBITAK (Scientific and Technical Research Council of Turkey) [106T053]; Turkish Academy of Sciences [LO/TUBA-GEBIP/2002-1-17] FX Work supported by UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory, operated under Contract No. DE-AC02-06CH11357 and TUBITAK (Scientific and Technical Research Council of Turkey) Project No. 106T053. L.O. acknowledges support from Turkish Academy of Sciences, in the framework of the Young Scientist Award Program (LO/TUBA-GEBIP/2002-1-17). NR 52 TC 29 Z9 29 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 22 PY 2010 VL 81 IS 22 AR 224518 DI 10.1103/PhysRevB.81.224518 PG 10 WC Physics, Condensed Matter SC Physics GA 636DA UT WOS:000280707200001 ER PT J AU Piper, LFJ Preston, ARH Fedorov, A Cho, SW DeMasi, A Smith, KE AF Piper, L. F. J. Preston, A. R. H. Fedorov, A. Cho, S. W. DeMasi, A. Smith, K. E. TI Direct evidence of metallicity at ZnO (000(1)over-bar)-(1x1) surfaces from angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID POLAR OXIDE SURFACES; ACCUMULATION; STABILITY; LAYERS AB We have investigated the stability of O-polar ZnO (000 (1) over bar)-(1x1) surfaces with photoemission spectroscopy and low-energy electron diffraction. We present direct evidence of quasi-two-dimensional electron gas (2DEG) formation (N-2D <= 2 x 10(13) cm(-2)) at the O-face from our angle-resolved photoemission spectroscopy studies. These findings are discussed in terms of hydrogenation of the O-face by chemisorptions process and the energetic location of the charge-neutrality level of ZnO. Our results reveal insight into the role of hydrogen in forming the quasi-2DEG and stabilizing the O-polar nonreconstructed surface. C1 [Piper, L. F. J.; Preston, A. R. H.; Cho, S. W.; DeMasi, A.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Fedorov, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Piper, LFJ (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM lfjpiper@bu.edu RI CHO, SANGWAN/A-6176-2011; Piper, Louis/C-2960-2011 OI Piper, Louis/0000-0002-3421-3210 FU Department of Energy [DE-FG02-98ER45680]; Donors of the American Chemical Society; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE AC0205CH11231] FX The authors wish to thank M. W. Allen and S. D. Durbin for correspondence regarding the nature of the ZnO films, such as AFM and Hall studies. L.F.J.P. also acknowledges fruitful discussions with S. Senanayake, and F. Bechstedt. The Boston University program is supported in part by the Department of Energy under Contract No. DE-FG02-98ER45680 and by the Donors of the American Chemical Society Petroleum Research Fund. This work was also supported in part by the Department of Energy under Contract No. DE-FG02-98ER45680. The NSLS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE AC0205CH11231. NR 23 TC 26 Z9 26 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 22 PY 2010 VL 81 IS 23 AR 233305 DI 10.1103/PhysRevB.81.233305 PG 4 WC Physics, Condensed Matter SC Physics GA 615OC UT WOS:000279143600001 ER PT J AU Zhao, R Koschny, T Economou, EN Soukoulis, CM AF Zhao, R. Koschny, Th. Economou, E. N. Soukoulis, C. M. TI Comparison of chiral metamaterial designs for repulsive Casimir force SO PHYSICAL REVIEW B LA English DT Article ID STATE AB In our previous work [R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 103, 103602 (2009)], we found that repulsive Casimir forces could be realized by using chiral metamaterials if the chirality is strong enough. In this work, we check four different chiral metamaterial designs (i.e., Twisted-Rosettes, Twisted-Crosswires, Four-U-SRRs, and Conjugate-Swastikas) and find that the designs of Four-U-SRRs and Conjugate-Swastikas are the most promising candidates to realize repulsive Casimir force because of their large chirality and the small ratio of structure length scale to resonance wavelength. C1 [Zhao, R.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhao, R.; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhao, R.] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China. [Koschny, Th.; Economou, E. N.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Zhao, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Economou, Eleftherios /E-6374-2010; Zhao, Rongkuo/B-5731-2008; Soukoulis, Costas/A-5295-2008 FU Department of Energy [DE-AC02-07CH11358]; European Community [213390]; U.S. Department of Commerce NIST [70NANB7H6138]; U.S. Air Force; China Scholarship Council (CSC) FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the European Community FET project PHOME (Contract No. 213390), U.S. Department of Commerce NIST under Grant No. 70NANB7H6138, and the U.S. Air Force grants. The author R.Z. specially acknowledges the China Scholarship Council (CSC) for financial support. NR 32 TC 40 Z9 40 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 22 PY 2010 VL 81 IS 23 AR 235126 DI 10.1103/PhysRevB.81.235126 PG 5 WC Physics, Condensed Matter SC Physics GA 615OD UT WOS:000279143700001 ER PT J AU Chen, XF Greiner, C Wang, EK Wang, XN Xu, Z AF Chen, Xiao-Fang Greiner, Carsten Wang, Enke Wang, Xin-Nian Xu, Zhe TI Bulk matter evolution and extraction of jet transport parameters in heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) SO PHYSICAL REVIEW C LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; COLOR GLASS CONDENSATE; HADRON SPECTRA; PARTON; SCATTERING; COLLABORATION; DISTRIBUTIONS; PERSPECTIVE; FLOW AB Within the picture of jet quenching induced by multiple parton scattering and gluon bremsstrahlung, medium modification of parton fragmentation functions and therefore the suppression of large transverse-momentum hadron spectra are controlled by both the value and the space-time profile of the jet transport parameter along the jet propagation path. Experimental data on single-hadron suppression in high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider energy are analyzed within the higher-twist (HT) approach to the medium-modified fragmentation functions and the next-to-leading order perturbative QCD parton model. Assuming that the jet transport parameter (q) over cap is proportional to the particle number density in both quark gluon plasma (QGP) and hadronic phase, experimental data on jet quenching in deeply inelastic scattering off nuclear targets can provide guidance on (q) over cap (h) in the hot hadronic matter. One can then study the dependence of the extracted initial value of jet-quenching parameter (q) over cap (0) at initial time tau(0) on the bulk medium evolution. Effects of transverse expansion, radial flow, phase transition, and nonequilibrium evolution are examined. The extracted values are found to vary from (q) over cap (0)tau(0) = 0.54 GeV2 in the (1 + 3)d ideal hydrodynamic model to 0.96 GeV2 in a cascade model, with the main differences coming from the initial nonequilibrium evolution and the later hadronic evolution. The overall contribution to jet quenching from the hadronic phase, about 22%-44%, is found to be significant. Therefore, a realistic description of the early nonequilibrium parton evolution and later hadronic interaction will be critical for accurate extraction of the jet transport parameter in the strongly interacting QGP phase in high-energy heavy-ion collisions. C1 [Chen, Xiao-Fang; Wang, Enke] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Chen, Xiao-Fang; Wang, Enke] Huazhong Normal Univ, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China. [Chen, Xiao-Fang; Greiner, Carsten; Wang, Xin-Nian; Xu, Zhe] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Xu, Zhe] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. RP Chen, XF (reprint author), Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC of China [10825523, 10635020]; MOE of China [IRT0624]; MOST of China [2008CB317106]; SAFEA of China [PITDU-B08033]; Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; Helmholtz International Center for FAIR within the framework Wolfgang Goethe-Universitat; ExtreMe Matter Institute EMMI in the framework of the Helmholtz Alliance Program of the Helmholtz Association (HA216/EMMI) FX We thank T. Hirano for providing numerical results of (1 + 3)d ideal hydrodynamic evolution of the bulk matter in heavy-ion collisions at RHIC and discussions. This work is supported by the NSFC of China under Project Nos. 10825523 and 10635020, by MOE of China under Project No. IRT0624, by MOST of China under Project No. 2008CB317106, and by MOE and SAFEA of China under Project No. PITDU-B08033, and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The numerical calculations were performed at the Center for Scientific Computing of Goethe University. This work was financially supported by the Helmholtz International Center for FAIR within the framework Wolfgang Goethe-Universitat, and support by the ExtreMe Matter Institute EMMI in the framework of the Helmholtz Alliance Program of the Helmholtz Association (HA216/EMMI) during the completion of this work. NR 58 TC 37 Z9 37 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 22 PY 2010 VL 81 IS 6 AR 064908 DI 10.1103/PhysRevC.81.064908 PG 11 WC Physics, Nuclear SC Physics GA 615RU UT WOS:000279154900002 ER PT J AU Kamano, H Nakamura, SX Lee, TSH Sato, T AF Kamano, H. Nakamura, S. X. Lee, T. -S. H. Sato, T. TI Extraction of P-11 resonances from pi N data SO PHYSICAL REVIEW C LA English DT Article ID MESON-EXCHANGE MODEL; CLOUDY BAG MODEL; PARTIAL-WAVE; ROPER RESONANCE; SCATTERING; AMPLITUDE; 3-CHANNEL; UNITARY; REGION AB We show that two P-11 nucleon resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis based on meson-exchange mechanisms. By also performing an analysis based on a modelwith a bare nucleon state, we find that this two-pole structure is insensitive to the analytic structure of the amplitude in the region below the pi N threshold. Our results are M-pole = (1363(-6)(+9) -i79(-5)(+3)) and (1373(-10)(+12) -i114(-9)(+14)) MeV. We also demonstrate that the number of poles in the 1.5-GeV <= W <= 2-GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. For three-pole solutions, our best estimated result of a pole near N(1710) listed by Particle Data Group is (1829(-65)(+131) -i192(-110)(+88)) MeV, which is close to the results of several previous analyses. Our results indicate the need for more accurate pi N reaction data in the W > 1.6-GeV region for high-precision resonance extractions. C1 [Kamano, H.; Nakamura, S. X.; Lee, T. -S. H.; Sato, T.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Sato, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. RP Kamano, H (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. RI Nakamura, Satoshi/M-9097-2016 OI Nakamura, Satoshi/0000-0002-7542-8859 FU US Department of Energy, Office of Nuclear Physics Division [DE-AC02- 06CH11357, DE-AC05-06OR23177, DE-AC02-05CH11231]; Japan Society for the Promotion of Science [20540270] FX This work is supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02- 06CH11357, and Contract No. DE-AC05-06OR23177 under which Jefferson Science Associates operates Jefferson Lab, and by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research(C) 20540270. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 32 Z9 32 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 22 PY 2010 VL 81 IS 6 AR 065207 DI 10.1103/PhysRevC.81.065207 PG 8 WC Physics, Nuclear SC Physics GA 615RW UT WOS:000279155200002 ER PT J AU Boughezal, R Petriello, F AF Boughezal, Radja Petriello, Frank TI Color-octet scalar effects on Higgs boson production in gluon fusion SO PHYSICAL REVIEW D LA English DT Article ID LOW-ENERGY THEOREMS; HADRON COLLIDERS; LHC; QCD; DECAYS; MASSES AB We compute the next-to-next-to-leading-order QCD corrections to the gluon-fusion production of a Higgs boson in models with massive color-octet scalars in the (8, 1)(0) representation using an effective-theory approach. We derive a compact analytic expression for the relevant Wilson coefficient, and explain an interesting technical aspect of the calculation that requires inclusion of the quartic-scalar interactions at next-to-next-to-leading order. We perform a renormalization-group analysis of the scalar couplings to derive the allowed regions of parameter space, and present phenomenological results for both the Tevatron and the LHC. The modifications of the Higgs production cross section are large at both colliders, and can increase the standard model rate by more than a factor of 2 in allowed regions of parameter space. We estimate that stringent constraints on the color-octet scalar parameters can be obtained using the Tevatron exclusion limit on Higgs production. C1 [Boughezal, Radja] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Petriello, Frank] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Petriello, Frank] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Boughezal, R (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurstr 190, CH-8057 Zurich, Switzerland. EM radja@physik.uzh.ch; frankjp@physics.wisc.edu FU Swiss National Science Foundation [200020-116756/2]; U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-95ER40896] FX R.B. is supported by the Swiss National Science Foundation under Contract No. 200020-116756/2. F.P. is supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-95ER40896. NR 44 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 22 PY 2010 VL 81 IS 11 AR 114033 DI 10.1103/PhysRevD.81.114033 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 614PW UT WOS:000279073200002 ER PT J AU Qin, H Davidson, RC Logan, BG AF Qin, Hong Davidson, Ronald C. Logan, B. Grant TI Centroid and Envelope Dynamics of High-Intensity Charged-Particle Beams in an External Focusing Lattice and Oscillating Wobbler SO PHYSICAL REVIEW LETTERS LA English DT Article ID INSTABILITY; FUSION AB The centroid and envelope dynamics of a high-intensity charged-particle beam are investigated as a beam smoothing technique to achieve uniform illumination over a suitably chosen region of the target for applications to ion-beam-driven high energy density physics and heavy ion fusion. The motion of the beam centroid projected onto the target follows a smooth pattern to achieve the desired illumination, for improved stability properties during the beam-target interaction. The centroid dynamics is controlled by an oscillating "wobbler," a set of electrically biased plates driven by rf voltage. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Logan, B. Grant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. NR 20 TC 13 Z9 13 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 22 PY 2010 VL 104 IS 25 AR 254801 DI 10.1103/PhysRevLett.104.254801 PG 4 WC Physics, Multidisciplinary SC Physics GA 614TK UT WOS:000279082500001 PM 20867386 ER PT J AU Lipton-Duffin, JA Miwa, JA Kondratenko, M Cicoira, F Sumpter, BG Meunier, V Perepichka, DF Rosei, F AF Lipton-Duffin, J. A. Miwa, J. A. Kondratenko, M. Cicoira, F. Sumpter, B. G. Meunier, V. Perepichka, D. F. Rosei, F. TI Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE metal-catalyzed coupling reaction; molecular wires; cis-polythiophene; scanning probe microscopy; polymerization mechanism ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MOLECULAR WIRES; COUPLING REACTION; ULTRAHIGH-VACUUM; BASIS-SET; POLYMERIZATION; PEDOT; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); DERIVATIVES AB One of the great challenges in surface chemistry is to assemble aromatic building blocks into ordered structures that are mechanically robust and electronically interlinked-i.e., are held together by covalent bonds. We demonstrate the surface-confined growth of ordered arrays of poly(3,4-ethylenedioxythiophene) (PEDOT) chains, by using the substrate (the 110 facet of copper) simultaneously as template and catalyst for polymerization. Copper acts as promoter for the Ullmann coupling reaction, whereas the inherent anisotropy of the fcc 110 facet confines growth to a single dimension. High resolution scanning tunneling microscopy performed under ultrahigh vacuum conditions allows us to simultaneously image PEDOT oligomers and the copper lattice with atomic resolution. Density functional theory calculations confirm an unexpected adsorption geometry of the PEDOToligomers, which stand on the sulfur atom of the thiophene ring rather than lying flat. This polymerization approach can be extended to many other halogen-terminated molecules to produce epitaxially aligned conjugated polymers. Such systems might be of central importance to develop future electronic and optoelectronic devices with high quality active materials, besides representing model systems for basic science investigations. C1 [Sumpter, B. G.; Meunier, V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lipton-Duffin, J. A.; Miwa, J. A.; Cicoira, F.; Rosei, F.] Univ Quebec, Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada. [Lipton-Duffin, J. A.; Miwa, J. A.; Kondratenko, M.; Cicoira, F.; Perepichka, D. F.; Rosei, F.] McGill Univ, Ctr Self Assembled Chem Struct, Montreal, PQ H3A 2K6, Canada. [Kondratenko, M.; Perepichka, D. F.] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada. RP Meunier, V (reprint author), Oak Ridge Natl Lab, POB 2008,MS6367, Oak Ridge, TN 37831 USA. EM meunierv@ornl.gov; dmitrii.perepichka@mcgill.ca; rosei@emt.inrs.ca RI Lipton-Duffin, Josh/P-1595-2016; Miwa, Jill/G-3267-2010; Cicoira, Fabio/F-3187-2011; Meunier, Vincent/F-9391-2010; Lipton-Duffin, Josh/A-6410-2009; Sumpter, Bobby/C-9459-2013; Perepichka, Dmitrii/K-2850-2012 OI Lipton-Duffin, Josh/0000-0002-7280-4919; Meunier, Vincent/0000-0002-7013-179X; Lipton-Duffin, Josh/0000-0002-7280-4919; Sumpter, Bobby/0000-0001-6341-0355; Perepichka, Dmitrii/0000-0003-2233-416X FU Natural Sciences and Engineering Research Council of Canada; Air Force Office of Scientific Research; Asian Office of Aerospace Research and Development of the USA; American Chemical Society; Ministere du Developpement economique, de l'Innovation et de l'Exportation of Quebec; Fonds quebecois de la recherche sur la nature et les technologies Centre for Self-Assembled Chemical Structures; DuPont; Canada Research Chairs program; Center for Nanophase Materials Sciences; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001087] FX The authors are grateful to G. Contini and J.M. MacLeod for critical readings of the manuscript. This research was funded by Natural Sciences and Engineering Research Council of Canada, Air Force Office of Scientific Research and Asian Office of Aerospace Research and Development of the USA, the Petroleum Research Fund of the American Chemical Society, and Ministere du Developpement economique, de l'Innovation et de l'Exportation of Quebec. We also acknowledge support from the Fonds quebecois de la recherche sur la nature et les technologies Centre for Self-Assembled Chemical Structures, a DuPont Young Professor Award (D.F.P.), and the Canada Research Chairs program (F.R.). V.M. and B.G.S. were supported by the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, US Department of Energy and in part through the Polymer-Based Materials for Harvesting Solar Energy, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001087. NR 45 TC 72 Z9 72 U1 2 U2 62 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 22 PY 2010 VL 107 IS 25 BP 11200 EP 11204 DI 10.1073/pnas.1000726107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 614KS UT WOS:000279058000011 PM 20534511 ER PT J AU DeMott, PJ Prenni, AJ Liu, X Kreidenweis, SM Petters, MD Twohy, CH Richardson, MS Eidhammer, T Rogers, DC AF DeMott, P. J. Prenni, A. J. Liu, X. Kreidenweis, S. M. Petters, M. D. Twohy, C. H. Richardson, M. S. Eidhammer, T. Rogers, D. C. TI Predicting global atmospheric ice nuclei distributions and their impacts on climate SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aerosol indirect effects; climate forcing; ice nucleation ID MICROWAVE IMAGER SSM/I; MIXED-PHASE CLOUDS; AIRBORNE MEASUREMENTS; NUCLEATING AEROSOLS; LIQUID WATER; MODEL; DUST; PARTICLES; PARAMETERIZATION; MICROPHYSICS AB Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 degrees C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 mu m in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from similar to 10(3) to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of similar to 1 W m(-2) for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation. C1 [DeMott, P. J.; Prenni, A. J.; Kreidenweis, S. M.; Petters, M. D.; Richardson, M. S.; Eidhammer, T.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Liu, X.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. [Petters, M. D.] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA. [Twohy, C. H.] Oregon State Univ, Dept Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Richardson, M. S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. [Richardson, M. S.] Natl Ocean & Atmospher Adm, Div Chem Sci, Boulder, CO 80305 USA. [Eidhammer, T.] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA. [Rogers, D. C.] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA. RP DeMott, PJ (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM pdemott@lamar.colostate.edu RI Prenni, Anthony/A-6820-2011; DeMott, Paul/C-4389-2011; Petters, Markus/D-2144-2009; Richardson, Mathews/H-4882-2013; Liu, Xiaohong/E-9304-2011; Richardson, Matt/B-4271-2015; Kreidenweis, Sonia/E-5993-2011 OI DeMott, Paul/0000-0002-3719-1889; Petters, Markus/0000-0002-4082-1693; Liu, Xiaohong/0000-0002-3994-5955; Richardson, Matt/0000-0001-6841-9770; Kreidenweis, Sonia/0000-0002-2561-2914 FU Office of Science (BER); U.S. Department of Energy (DOE), Battelle Memorial Institute [DE-FG02-09ER64772, DE-AC06-76RLO 1830]; National Aeronautics and Space Administration (NASA) [NNG06GB60G]; National Science Foundation (NSF) [ATM-0611936]; Canadian Space Agency [C3VP] FX We acknowledge David Hudak for providing aerosol data from the Canadian Cloud-Sat CALIPSO Validation Program (C3VP). We acknowledge Ulrich Poschl for aerosol data from the Amazonian Aerosol Characterization Experiment from January-March 2008 (AMAZE-08). We thank Jeffrey Stith, V. Ramanathan, Andrew Heymsfield, John Hallett, Daniel Cziczo, Randolph Borys, and Michael Poellot for their roles in facilitating the ground-and aircraft-based studies cited in this work, as well as the aircraft crews of the National Science Foundation/National Center for Atmospheric Research G-V and C-130, University of North Dakota Citation, and the National Research Council of Canada Convair 580. P.J.D., A.J.P. and S.M.K. acknowledge financial support for this work from the Office of Science (BER), U.S. Department of Energy (DOE), Atmospheric System Research Grant DE-FG02-09ER64772, the National Aeronautics and Space Administration (NASA) Modeling and Analysis Program (Grant NNG06GB60G), and the National Science Foundation (NSF) under Grant ATM-0611936. X. L. acknowledges the support for modeling simulations from DOE-BER and the DOE Climate Change Prediction Program (CCPP). The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Data used were collected under grants from the NSF, the Cooperative Institute for Research in the Atmosphere at Colorado State University, DOE, and NASA. The Canadian Space Agency provided funding of the C3VP. NR 41 TC 305 Z9 309 U1 12 U2 132 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 22 PY 2010 VL 107 IS 25 BP 11217 EP 11222 DI 10.1073/pnas.0910818107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 614KS UT WOS:000279058000014 PM 20534566 ER PT J AU Tsetseris, L Fleetwood, DM Schrimpf, RD Pantelides, ST AF Tsetseris, L. Fleetwood, D. M. Schrimpf, R. D. Pantelides, S. T. TI Hydrogen-dopant interactions in SiGe and strained Si SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; electron traps; elemental semiconductors; Ge-Si alloys; hole traps; hydrogen; impurities; internal stresses; semiconductor doping; silicon ID AUGMENTED-WAVE METHOD; CRYSTALLINE SILICON; MICROSCOPIC STRUCTURE; MOS DEVICES; SEMICONDUCTORS; RELIABILITY; DIFFUSION; COMPLEX; BIAS AB The appearance of carrier traps and the deactivation of dopants are typical hydrogen-related phenomena that are of prime importance to the reliability of traditional Si-based devices. Here we probe with first-principles calculations, the dynamics of hydrogen as individual impurities or in complexes with dopants in strained Si (s-Si) and SiGe systems. We find that the charged state determines the tendency of hydrogen to be released from dopant sites and to shuttle between a SiGe substrate and a s-Si overlayer. In this way, the effect of hydrogen differs between accumulation and inversion cycles of s-Si and SiGe devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456395] C1 [Tsetseris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. [Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Fleetwood, D. M.; Schrimpf, R. D.] Vanderbilt Univ, Dept Elect & Comp Sci, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. EM leont@mail.ntua.gr RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 FU AFOSR [FA9550-05-1-0306]; McMinn Endowment at Vanderbilt University FX The work was supported by the AFOSR (MURI Grant No. FA9550-05-1-0306), and the McMinn Endowment at Vanderbilt University. The calculations were performed at ORNL's Center for Computational Sciences. NR 25 TC 3 Z9 3 U1 0 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 21 PY 2010 VL 96 IS 25 AR 251905 DI 10.1063/1.3456395 PG 3 WC Physics, Applied SC Physics GA 615WF UT WOS:000279168100017 ER PT J AU Yeo, BS Klaus, SL Ross, PN Mathies, RA Bell, AT AF Yeo, Boon Siang Klaus, Shannon L. Ross, Philip N. Mathies, Richard A. Bell, Alexis T. TI Identification of Hydroperoxy Species as Reaction Intermediates in the Electrochemical Evolution of Oxygen on Gold SO CHEMPHYSCHEM LA English DT Article DE Bronsted acids/bases; electrocatalysis; electrochemistry; Raman spectroscopy; water ID ENHANCED RAMAN-SPECTROSCOPY; RESONANCE RAMAN; AQUEOUS-MEDIA; SURFACES; ELECTRODES; REDUCTION; OXIDATION; ELECTROLYSIS; PEROXO; MODES C1 [Yeo, Boon Siang; Klaus, Shannon L.; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Yeo, Boon Siang; Klaus, Shannon L.; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ross, Philip N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mathies, Richard A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu RI Yeo, Boon Siang/C-6487-2014; OI Yeo, Boon Siang/0000-0003-1609-0867; Bell, Alexis/0000-0002-5738-4645 FU Helios Solar Energy Research Center; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Eric Granlund of the Machine shop in the College of Chemistry (UC Berkeley) for constructing the electrochemical cell. NR 32 TC 44 Z9 44 U1 2 U2 44 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUN 21 PY 2010 VL 11 IS 9 BP 1854 EP 1857 DI 10.1002/cphc.201000294 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 623LX UT WOS:000279742800005 PM 20473978 ER PT J AU Desjacques, V Seljak, U AF Desjacques, V. Seljak, U. TI Primordial non-Gaussianity from the large-scale structure SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID COLD DARK-MATTER; N-BODY SIMULATIONS; 3-POINT CORRELATION-FUNCTION; GALAXY REDSHIFT SURVEY; PROBABILITY-DISTRIBUTION FUNCTION; COSMOLOGICAL PERTURBATION-THEORY; DIGITAL SKY SURVEY; HALO MASS FUNCTION; IN-CLOUD PROBLEM; INITIAL CONDITIONS AB Primordial non-Gaussianity is a potentially powerful discriminant of the physical mechanisms that generate the cosmological fluctuations observed today. Any detection of non-Gaussianity would have profound implications for our understanding of cosmic structure formation. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe. C1 [Desjacques, V.; Seljak, U.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, U.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Seljak, U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Desjacques, V (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM dvince@physik.uzh.ch; seljak@physik.uzh.ch RI Desjacques, Vincent/A-1892-2014 FU Swiss National Foundation [200021-116696/1] FX We give our special thanks to Nico Hamaus and Shirley Ho for sharing with us material prior to publication. We would also like to thank Martin Crocce, Nico Hamaus, Christopher Hirata, Shirley Ho, Ilian Iliev, Tsz Yan Lam, Patrick McDonald, Nikhil Padmanabhan, Emiliano Sefusatti, Ravi Sheth and Anze Slosar for their collaboration on these issues, and Tobias Baldauf for comments on an early version of this manuscript. This work was supported by the Swiss National Foundation (contract no 200021-116696/1) and made extensive use of the NASA Astrophysics Data System and the arXiv.org preprint server. NR 209 TC 81 Z9 81 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 21 PY 2010 VL 27 IS 12 AR 124011 DI 10.1088/0264-9381/27/12/124011 PG 28 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 603IH UT WOS:000278201600013 ER PT J AU Beekman, M Nenghabi, EN Biswas, K Myles, CW Baitinger, M Grin, Y Nolas, GS AF Beekman, Matt Nenghabi, Emmanuel N. Biswas, Koushik Myles, Charles W. Baitinger, Michael Grin, Yuri Nolas, George S. TI Framework Contraction in Na-Stuffed Si(cF136) SO INORGANIC CHEMISTRY LA English DT Article ID CLATHRATE COMPOUNDS; BAND-GAP; SILICON; SI AB Systematic crystal structure refinements from powder X-ray diffraction data as well as density functional theory calculations demonstrate that the silicon clathrate II Si(cF136) exhibits a lattice contraction as Na is introduced solely into the Si(28) cages. When the Sin cages, in addition, begin to be filled with Na, a contrasting lattice expansion results. The nonmonotonic structural response to filling is an indication of markedly dissimilar guest framework interactions for Na@Si(20) and Na@Si(28). C1 [Beekman, Matt; Nolas, George S.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Nenghabi, Emmanuel N.; Myles, Charles W.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Biswas, Koushik] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Baitinger, Michael; Grin, Yuri] Max Planck Inst Chem Phys Fester Stoffe, D-01187 Dresden, Germany. RP Nolas, GS (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. EM gnolas@cas.usf.edu RI Baitinger, Michael/F-4940-2013; Beekman, Matt/I-4470-2014; Baitinger, Michael/D-4360-2009 OI Beekman, Matt/0000-0001-9694-2286; Baitinger, Michael/0000-0003-1242-2959 FU U.S. Department of Energy [DE-FG02-04ER46145]; University of South Florida FX M.B. and G.S.N. acknowledge support from the U.S. Department of Energy under Grant DE-FG02-04ER46145 for synthesis, XRD, structure refinement, and data analysis. M.B. acknowledges support from the University of South Florida Presidential Doctoral Fellowship and thanks Prof. Jan Gryko for useful discussions concerning the synthesis of silicon clathrates. NR 23 TC 30 Z9 30 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 21 PY 2010 VL 49 IS 12 BP 5338 EP 5340 DI 10.1021/ic1005049 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 608WC UT WOS:000278615700002 PM 20503981 ER PT J AU Pasquarelli, RM Curtis, CJ Miedaner, A van Hest, MFAM O'Hayre, RP Ginley, DS AF Pasquarelli, Robert M. Curtis, Calvin J. Miedaner, Alexander van Hest, Maikel F. A. M. O'Hayre, Ryan P. Ginley, David S. TI Solution Synthesis and Characterization of Indium-Zinc Formate Precursors for Transparent Conducting Oxides SO INORGANIC CHEMISTRY LA English DT Article ID MATRIX INFRARED-SPECTROSCOPY; CRYSTAL-STRUCTURE; SPRAY-PYROLYSIS; THIN-FILM; SOLVOTHERMAL SYNTHESIS; VIBRATIONAL-SPECTRA; COPPER(II) FORMATES; PHYSICAL-PROPERTIES; DIHYDRATE; ZN AB A series of In Zn formate mixtures were investigated as potential precursors to amorphous In Zn-oxide (IZO) for transparent conducting oxide (TCO) applications. These mixtures were prepared by neutralization from formic acid and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC) measurements. Thermal analysis revealed that a mixture of In and Zn formates reduced the overall decomposition temperature compared to the individual constituents and that OH-substitution enhanced the effect. In terms of precursor feasibility, it was demonstrated that the decomposition products of In Zn formate could be directed toward oxidation or reduction by controlling the decomposition atmosphere or with solution acid additives. For TCO applications, amorphous IZO films were prepared by ultrasonic spray deposition from In Zn formate solutions with annealing at 300-400 degrees C. C1 [Pasquarelli, Robert M.; O'Hayre, Ryan P.] Colorado Sch Mines, Golden, CO 80401 USA. [Curtis, Calvin J.; Miedaner, Alexander; van Hest, Maikel F. A. M.; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Pasquarelli, RM (reprint author), Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. EM robert.pasquarelli@nrel.gov RI O'Hayre, Ryan/A-8183-2009 NR 40 TC 9 Z9 9 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUN 21 PY 2010 VL 49 IS 12 BP 5424 EP 5431 DI 10.1021/ic902430w PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 608WC UT WOS:000278615700019 PM 20496873 ER PT J AU Hanson, SK Baker, RT Gordon, JC Scott, BL Thorn, DL AF Hanson, Susan K. Baker, R. Tom Gordon, John C. Scott, Brian L. Thorn, David L. TI Aerobic Oxidation of Lignin Models Using a Base Metal Vanadium Catalyst SO INORGANIC CHEMISTRY LA English DT Article ID BOND-CLEAVAGE; ORGANIC-COMPOUNDS; VICINAL DIOLS; VIC-DIOLS; QUINQUEVALENT VANADIUM; CARBON-CARBON; IONIC LIQUID; MECHANISM; COMPLEXES; CONVERSION AB Dipicolinate vanadium(V) complexes oxidize lignin model complexes pinacol monomethyl ether (A), 2-phenoxyethanol (B), 1-phenyl-2-phenoxyethanol (C), and 1,2-diphenyl-2-methoxyethanol (D). With substrates having C-H bonds adjacent to the alcohol moiety (B D), the C-H bond is broken in pyridine-d(5) solvent, yielding 2-phenoxyacetaldehyde from B, 2-phenoxyacetophenone from C, and benzoin methyl ether from D. In DMSO-d(6) solvent the reaction is slower, and both C-H and C-C bond cleavage products are observed for D. The vanadium(IV) products of these reactions have been identified and characterized. Catalytic oxidation of C and D has been demonstrated using air and (dipic)V(O)O(i)Pr. For both substrates, the C-C bond between the alcohol and ether groups is broken in the catalytic oxidation. 1-Phenyl-2-phenoxyethanol is oxidized to a mixture of phenol, formic acid, benzoic acid, and 2-methoxy-acetophenone. The products of oxidation of 1,2-diphenyl-2-methoxyethanol depend on the solvent; in DMSO benzaldehyde and methanol are the major products, while benzoic acid and methyl benzoate are the major products obtained in pyridine solvent. Phenyl substituents on the model complex facilitate the oxidation, with relative rates of oxidation D > C > B. C1 [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys Applicat Div, Los Alamos, NM 87545 USA. [Hanson, Susan K.; Baker, R. Tom; Gordon, John C.; Thorn, David L.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Baker, RT (reprint author), Univ Ottawa, Dept Chem, Ottawa, ON K1N 6N5, Canada. EM rbaker@uottawa.ca; jgordon@lanl.gov; dthorn@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU Los Alamos National Laboratory LDRD; NSF FX This work was supported by Los Alamos National Laboratory LDRD (Director's PD Fellowship to S.K.H.) and NSF via the Center for Enabling New Technologies through Catalysis (CENTC). We thank L.A. (Pete) Silks (LANL), R. Wu (LANL), and Professors W.T. Borden (UNT), S.L. Scott (UCSB), and P.C. Ford (UCSB) for helpful discussions. NR 44 TC 84 Z9 85 U1 8 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 21 PY 2010 VL 49 IS 12 BP 5611 EP 5618 DI 10.1021/ic100528n PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 608WC UT WOS:000278615700040 PM 20491453 ER PT J AU Martin, S Thompson, A Coutsias, EA Watson, JP AF Martin, Shawn Thompson, Aidan Coutsias, Evangelos A. Watson, Jean-Paul TI Topology of cyclo-octane energy landscape SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE molecular configurations; organic compounds; potential energy functions ID NONLINEAR DIMENSIONALITY REDUCTION; 8-MEMBERED RINGS; FLEXIBILITY; CYCLOOCTANE; SIMULATION; MOLECULES; DYNAMICS; GEOMETRY; MOTIONS AB Understanding energy landscapes is a major challenge in chemistry and biology. Although a wide variety of methods have been invented and applied to this problem, very little is understood about the actual mathematical structures underlying such landscapes. Perhaps the most general assumption is the idea that energy landscapes are low-dimensional manifolds embedded in high-dimensional Euclidean space. While this is a very mild assumption, we have discovered an example of an energy landscape which is nonmanifold, demonstrating previously unknown mathematical complexity. The example occurs in the energy landscape of cyclo-octane, which was found to have the structure of a reducible algebraic variety, composed of the union of a sphere and a Klein bottle, intersecting in two rings. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3445267] C1 [Martin, Shawn; Thompson, Aidan; Watson, Jean-Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Coutsias, Evangelos A.] Univ New Mexico, Dept Math, Albuquerque, NM 87131 USA. RP Martin, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM smartin@sandia.gov OI Coutsias, Evangelos/0000-0003-2910-9125 FU Computer Science Research Fund (CSRF); NIH-NIGMS [R01-GM081710, R01-GM090205]; United States Department of Energy [DE-AC04-94AL85000] FX This work has been supported by the Computer Science Research Fund (CSRF) under the Advanced Computing and Simulation (ASC) program at the Sandia National Laboratories. E. A. Coutsias acknowledges partial support from NIH-NIGMS under Grant Nos. R01-GM081710 and R01-GM090205. We thank Eric Cyr and Scott Mitchell for discussions of this work. Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 30 TC 16 Z9 16 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2010 VL 132 IS 23 AR 234115 DI 10.1063/1.3445267 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 614CF UT WOS:000279032000018 PM 20572697 ER PT J AU von Lilienfeld, OA Tkatchenko, A AF von Lilienfeld, O. Anatole Tkatchenko, Alexandre TI Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE binding energy; crystal structure; DNA; graphene; helium neutral molecules; intermolecular forces; intramolecular forces; neon; potential energy functions; proteins; van der Waals forces ID DENSITY-FUNCTIONAL-THEORY; OSCILLATOR-STRENGTH DISTRIBUTIONS; RARE-GAS ATOMS; GENERALIZED GRADIENT APPROXIMATION; ADAPTED PERTURBATION-THEORY; ISOTROPIC DIPOLE PROPERTIES; CLOSED-SHELL ATOMS; DER-WAALS FORCES; CRYSTAL-STRUCTURE; ELECTRON-GAS AB We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C-6 and C-9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C-60 dimer, a peptide (Ala(10)), an intercalated drug-DNA model [ellipticine-d(CG)(2)], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3432765] C1 [von Lilienfeld, O. Anatole] Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. [Tkatchenko, Alexandre] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. RP von Lilienfeld, OA (reprint author), Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, POB 5800, Albuquerque, NM 87185 USA. EM oavonli@sandia.gov; tkatchen@fhi-berlin.mpg.de RI von Lilienfeld, O. Anatole/D-8529-2011; Tkatchenko, Alexandre/E-7148-2011 OI Tkatchenko, Alexandre/0000-0002-1012-4854 FU SNL [120209]; United States Department of Energy [DE-AC04-94AL85000]; Alexander von Humboldt (AvH) foundation FX The authors would like to thank X. Chu for providing frequency-dependent polarizability data, Frank Leusen for providing molecular crystal structures corresponding to Ref. 96, and Joel Ireta for providing Ala10 geometries. Peter J. Feibelman is acknowledged for providing the ice-Ih structure used in Ref. 81. O.A.vL. acknowledges support from the SNL Truman Program LDRD under Project No. 120209. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. A. T. thanks Alexander von Humboldt (AvH) foundation for funding. NR 113 TC 105 Z9 105 U1 3 U2 61 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2010 VL 132 IS 23 AR 234109 DI 10.1063/1.3432765 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 614CF UT WOS:000279032000012 PM 20572691 ER PT J AU Bergman, EJ Allen, MS Kammer, DC Mayes, RL AF Bergman, Elizabeth J. Allen, Matthew S. Kammer, Daniel C. Mayes, Randall L. TI Probabilistic investigation of sensitivities of advanced test-analysis model correlation methods SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID LARGE SPACE STRUCTURES AB The industry standard method used to validate finite element models involves correlation of test and analysis mode shapes using reduced Test-Analysis Models (TAMs). Some organizations even require this model validation approach. Considerable effort is required to choose sensor locations and to create a suitable TAM so that the test and analysis mode shapes will be orthogonal to within the required tolerance. This work uses a probabilistic framework to understand and quantify the effect of small errors in the test mode shapes on test-analysis orthogonality. Using the proposed framework, test-orthogonality is a probabilistic metric and the problem becomes one of choosing sensor placement and TAM generation techniques that assure that the orthogonality has a high probability of being within an acceptable range if the model is correct, even though the test measurements are contaminated with random errors. A simple analytical metric is derived that is shown to give a good estimate of the sensitivity of a TAM to errors in the test mode shapes for a certain noise model. These ideas are then applied to a generic satellite system, using TAMs generated by the Static, Modal and Improved Reduced System (IRS) reduction methods. Experimental errors are simulated for a set of mode shapes and Monte Carlo simulation is used to estimate the probability that the orthogonality metric exceeds a threshold due to experimental error alone. For the satellite system considered here, the orthogonality calculation is highly sensitive to experimental errors, so a set of noisy mode shapes has a small probability of passing the orthogonality criteria for some of the TAMs. A number of sensor placement techniques are used in this study, and the comparison reveals that, for this system, the Modal TAM is twice as sensitive to errors on the test mode shapes when it is created on a sensor set optimized for the Static TAM rather than one that was optimized specifically for the Modal TAM. These findings are evaluated in light of previously published studies of TAM sensitivity, and special attention is given to Gordis's theory, which suggest that TAM sensitivity is related to the natural frequencies of the structure when all measurement points are fixed. Some aspects of TAM sensitivity are problem dependent, so this one work cannot achieve a conclusive ranking of all of the available methodologies. Instead, this work focuses on presenting a set of tools and a probabilistic framework that can be used to correctly quantify TAM sensitivity and demonstrating the approach for one dynamic system and for a particular probabilistic model for the errors contaminating the test mode shapes. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bergman, Elizabeth J.; Allen, Matthew S.; Kammer, Daniel C.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Mayes, Randall L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Allen, MS (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM msallen@engr.wisc.edu RI Allen, Matthew/H-4068-2011 FU US Department of Energy [DE-AC04-94AL85000] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under Contract DE-AC04-94AL85000. NR 24 TC 8 Z9 8 U1 0 U2 1 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD JUN 21 PY 2010 VL 329 IS 13 BP 2516 EP 2531 DI 10.1016/j.jsv.2010.01.009 PG 16 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 576DG UT WOS:000276123800007 ER PT J AU Masters, KL Mosleh, M Romer, AK Nichol, RC Bamford, SP Schawinski, K Lintott, CJ Andreescu, D Campbell, HC Crowcroft, B Doyle, I Edmondson, EM Murray, P Raddick, MJ Slosar, A Szalay, AS Vandenberg, J AF Masters, Karen L. Mosleh, Moein Romer, A. Kathy Nichol, Robert C. Bamford, Steven P. Schawinski, Kevin Lintott, Chris J. Andreescu, Dan Campbell, Heather C. Crowcroft, Ben Doyle, Isabelle Edmondson, Edward M. Murray, Phil Raddick, M. Jordan Slosar, Anze Szalay, Alexander S. Vandenberg, Jan TI Galaxy Zoo: passive red spirals star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE surveys; galaxies: active; galaxies: evolution; galaxies: photometry; galaxies: spiral ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; HOST GALAXIES; CLASSIFICATION-SYSTEM; POPULATION SYNTHESIS; FORMATION HISTORIES; STELLAR MASSES; FIELD GALAXIES; MINOR MERGERS AB We study the spectroscopic properties and environments of red (or passive) spiral galaxies found by the Galaxy Zoo project. By carefully selecting face-on disc-dominated spirals, we construct a sample of truly passive discs (i.e. they are not dust reddened spirals, nor are they dominated by old stellar populations in a bulge). As such, our red spirals represent an interesting set of possible transition objects between normal blue spiral galaxies and red early types, making up similar to 6 per cent of late-type spirals. We use optical images and spectra from Sloan Digital Sky Survey to investigate the physical processes which could have turned these objects red without disturbing their morphology. We find red spirals preferentially in intermediate density regimes. However, there are no obvious correlations between red spiral properties and environment suggesting that environment alone is not sufficient to determine whether a galaxy will become a red spiral. Red spirals are a very small fraction of all spirals at low masses (M(star) < 1010 M(circle dot)), but are a significant fraction of the spiral population at large stellar masses showing that massive galaxies are red independent of morphology. We confirm that as expected, red spirals have older stellar populations and less recent star formation than the main spiral population. While the presence of spiral arms suggests that a major star formation could not have ceased a long ago (not more than a few Gyr), we show that these are also not recent post-starburst objects (having had no significant star formation in the last Gyr), so star formation must have ceased gradually. Intriguingly, red spirals are roughly four times as likely than the normal spiral population to host optically identified Seyfert/low-ionization nuclear emission region (LINER; at a given stellar mass and even accounting for low-luminosity lines hidden by star formation), with most of the difference coming from the objects with LINER-like emission. We also find a curiously large optical bar fraction in the red spirals (70 +/- 5 verses 27 +/- 5 per cent in blue spirals) suggesting that the cessation of star formation and bar instabilities in spirals are strongly correlated. We conclude by discussing the possible origins of these red spirals. We suggest that they may represent the very oldest spiral galaxies which have already used up their reserves of gas - probably aided by strangulation or starvation, and perhaps also by the effect of bar instabilities moving material around in the disc. We provide an online table listing our full sample of red spirals along with the normal/blue spirals used for comparison. C1 [Masters, Karen L.; Nichol, Robert C.; Campbell, Heather C.; Doyle, Isabelle; Edmondson, Edward M.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Mosleh, Moein] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Schawinski, Kevin] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Andreescu, Dan] LinkLab, Bronx, NY 10471 USA. [Crowcroft, Ben] Portsmouth Grammar Sch, Portsmouth PO1 2LN, Hants, England. [Raddick, M. Jordan; Szalay, Alexander S.; Vandenberg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lintott, Chris J.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Co Down, North Ireland. RP Masters, KL (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. EM karen.masters@port.ac.uk RI Bamford, Steven/E-8702-2010; OI Bamford, Steven/0000-0001-7821-7195; Schawinski, Kevin/0000-0001-5464-0888; Masters, Karen/0000-0003-0846-9578 FU Peter and Patricia Gruber Foundation; University of Portsmouth and SEPnet; European Commission [PITN-GA-2008-214227]; STFC; NASA [PF9-00069, NAS8-03060]; The Leverhulme Trust; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX This publication has been made possible by the participation of more than 160 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at http://www.galaxyzoo.org/Volunteers.aspx. KLM acknowledges funding from the Peter and Patricia Gruber Foundation as the 2008 Peter and Patricia Gruber Foundation International Astronomical Union Fellow, and from the University of Portsmouth and SEPnet (http://www.sepnet.ac.uk). Support for the work of MM in Leiden was provided by an Initial Training Network ELIXIR (EarLy unIverse eXploration with nIRspec), grant agreement PITN-GA-2008-214227 (from the European Commission). AKR, MM, HCC and RCN acknowledge financial support from STFC. Support for the work of KS was provided by NASA through Einstein Post-doctoral Fellowship grant number PF9-00069 issued by the Chandra X-ray Observatory Centre, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. CJL acknowledges support from The Leverhulme Trust and the STFC Science In Society Programme. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. NR 103 TC 103 Z9 103 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2010 VL 405 IS 2 BP 783 EP 799 DI 10.1111/j.1365-2966.2010.16503.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 609SQ UT WOS:000278677800006 ER PT J AU Kuiper, E Hatch, NA Rottgering, HJA Miley, GK Overzier, RA Venemans, BP De Breuck, C Croft, S Kajisawa, M Kodama, T Kurk, JD Pentericci, L Stanford, SA Tanaka, I Zirm, AW AF Kuiper, E. Hatch, N. A. Rottgering, H. J. A. Miley, G. K. Overzier, R. A. Venemans, B. P. De Breuck, C. Croft, S. Kajisawa, M. Kodama, T. Kurk, J. D. Pentericci, L. Stanford, S. A. Tanaka, I. Zirm, A. W. TI A galaxy populations study of a radio-selected protocluster at z similar to 3.1 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; galaxies: evolution; galaxies: high-redshift; cosmology: observations; early Universe ID LYMAN-BREAK GALAXIES; DEEP FIELD-SOUTH; ALPHA-EMITTING GALAXIES; STAR-FORMING GALAXIES; ULTRAVIOLET LUMINOSITY DENSITY; LARGE-SCALE STRUCTURE; YALE-CHILE MUSYC; HIGH-REDSHIFT; ENVIRONMENTAL DEPENDENCE; MULTIWAVELENGTH SURVEY AB We present a population study of several types of galaxies within the protocluster surrounding the radio galaxy MRC 0316-257 at z similar to 3.1. In addition to the known population of Ly alpha emitters and [O iii] emitters, we use colour-selection techniques to identify protocluster candidates that are Lyman break galaxies (LBG) and Balmer break galaxies (BBGs). The radio galaxy field contains an excess of LBG candidates, with a surface density 1.6 +/- 0.3 times larger than found for comparable blank fields. This surface overdensity corresponds to an LBG volume overdensity of similar to 8 +/- 4. The BBG photometric redshift distribution peaks at the protocluster's redshift, but we detect no significant surface overdensity of BBG. This is not surprising because a volume overdensity similar to the LBGs would have resulted in a surface density of similar to 1.2 that found in the blank field. This could not have been detected in our sample. Masses and star formation rates of the candidate protocluster galaxies are determined using spectral energy distribution fitting. These properties are not significantly different from those of field galaxies. The galaxies with the highest masses and star formation rates are located near the radio galaxy, indicating that the protocluster environment influences galaxy evolution at z similar to 3. We conclude that the protocluster around MRC 0316-257 is still in the early stages of formation. C1 [Kuiper, E.; Hatch, N. A.; Rottgering, H. J. A.; Miley, G. K.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Hatch, N. A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Overzier, R. A.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Venemans, B. P.; De Breuck, C.] European So Observ, D-85748 Garching, Germany. [Croft, S.] Univ Calif, Merced, CA 95344 USA. [Croft, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kajisawa, M.; Kodama, T.] Natl Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kurk, J. D.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Pentericci, L.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planet Phys, Livermore, CA 94551 USA. [Stanford, S. A.] Univ Calif Davis, Davis, CA 95616 USA. [Tanaka, I.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Zirm, A. W.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. RP Kuiper, E (reprint author), Leiden Univ, Leiden Observ, PB 9513, NL-2300 RA Leiden, Netherlands. EM kuiper@strw.leidenuniv.nl OI Hatch, Nina/0000-0001-5600-0534; De Breuck, Carlos/0000-0002-6637-3315 FU NASA [NAS 5-26555, 10127, 1264353, 1265551, 1279182]; Netherlands Organization for Scientific Research (NWO); Royal Netherlands Academy of Arts and Sciences (KNAW); US Department of Energy [W-7405-ENG-48, DE-AC52-07NA27344] FX We wish to thank the anonymous referee for all the useful suggestions that have improved this paper significantly. This research has been based on observations made with the VLT at ESO Paranal, programmes 072.A-0284(A), 077.A-0310(A,B), 078.A-0002(A,B) and 167.A-0409(A,B). Also based on observations made with the NASA/ESA HST, obtained at the Space Telescope Science Institute (STScI). STScI is operated by Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This paper is also based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. The W. M. Keck Observatory is a scientific partnership between the University of California and the California Institute of Technology, made possible by a generous gift of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the significant cultural role and reverence that the summit of Mauna Kea has always within the indigenous Hawaiian community; we are fortunate to have the opportunity to conduct observations from this mountain. EK acknowledges funding from Netherlands Organization for Scientific Research (NWO). NAH and GKM acknowledge funding from the Royal Netherlands Academy of Arts and Sciences (KNAW). The work by SAS at LLNL was performed under the auspices of the US Department of Energy under Contract No. W-7405-ENG-48 and in part under Contract DE-AC52-07NA27344. This work is based (in part) on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. SC acknowledges support for RG studies at UC Merced, including the work reported here, with the Hubble Space Telescope and Spitzer Space Telescope via NASA grants HST #10127, SST #1264353, SST #1265551 and SST #1279182. NR 96 TC 21 Z9 21 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2010 VL 405 IS 2 BP 969 EP 986 DI 10.1111/j.1365-2966.2010.16537.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 609SQ UT WOS:000278677800018 ER PT J AU Singh, R Plum, E Zhang, WL Zheludev, NI AF Singh, Ranjan Plum, Eric Zhang, Weili Zheludev, Nikolay I. TI Highly tunable optical activity in planar achiral terahertz metamaterials SO OPTICS EXPRESS LA English DT Article ID TECHNOLOGY; RESONATORS; DEVICES AB Using terahertz time domain spectroscopy we demonstrate tunable polarization rotation and circular dichroism in intrinsically non-chiral planar terahertz metamaterials without twofold rotational symmetry. The observed effect is due to extrinsic chirality arising from the mutual orientation of the metamaterial plane and the propagation direction of the incident terahertz wave. (C) 2010 Optical Society of America C1 [Singh, Ranjan; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Plum, Eric; Zheludev, Nikolay I.] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England. [Singh, Ranjan] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Singh, R (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM ranjan@lanl.gov RI Singh, Ranjan/B-4091-2010; Zheludev, Nikolay/C-2284-2014; Metamaterials, Southampton/E-1171-2014; Zhang, Weili/C-5416-2011; OI Singh, Ranjan/0000-0001-8068-7428; Zheludev, Nikolay/0000-0002-1013-6636; Zhang, Weili/0000-0002-8591-0200; Plum, Eric/0000-0002-1552-1840 FU U.S. National Science Foundation; Engineering and Physical Sciences Research Council, UK FX The authors thank Xinchao Lu for mask design, and Zhen Tian and Jiangfeng Zhou for fruitful discussions. Financial support of the U.S. National Science Foundation and the Engineering and Physical Sciences Research Council, UK are acknowledged. NR 36 TC 80 Z9 81 U1 1 U2 51 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 21 PY 2010 VL 18 IS 13 BP 13425 EP 13430 DI 10.1364/OE.18.013425 PG 6 WC Optics SC Optics GA 613VG UT WOS:000279009900014 PM 20588473 ER PT J AU Pfau, B Gunther, CM Konnecke, R Guehrs, E Hellwig, O Schlotter, WF Eisebitt, S AF Pfau, Bastian Guenther, Christian M. Koennecke, Rene Guehrs, Erik Hellwig, Olav Schlotter, William F. Eisebitt, Stefan TI Magnetic imaging at linearly polarized x-ray sources SO OPTICS EXPRESS LA English DT Article ID OPTICS; NICKEL; FE AB We present a method for high-resolution magnetic imaging at linearly polarized partially coherent x-ray sources. The magnetic imaging was realized via Fourier transform holography. In order to achieve elliptical x-ray polarization, three different filters were designed based on the x-ray magnetic circular dichroism effect. We present proof-of-principle images of magnetic nanostructures and discuss the application of the method for future experiments at free-electron laser sources. (C) 2010 Optical Society of America C1 [Pfau, Bastian; Guenther, Christian M.; Guehrs, Erik; Eisebitt, Stefan] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. [Pfau, Bastian; Guenther, Christian M.; Koennecke, Rene; Eisebitt, Stefan] Helmholtz Zentrum Berlin Materialien & Energie Gm, D-14109 Berlin, Germany. [Hellwig, Olav] Hitachi GST, San Jose Res Ctr, San Jose, CA 95135 USA. [Schlotter, William F.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Pfau, B (reprint author), Tech Univ Berlin, Inst Opt & Atomare Phys, Hardenbergstr 36, D-10623 Berlin, Germany. EM bastian.pfau@helmholtz-berlin.de RI Pfau, Bastian/B-4953-2014; OI Pfau, Bastian/0000-0001-9057-0346; Gunther, Christian Michael/0000-0002-3750-7556 FU U.S. Department of Energy, Office of Basic Energy Sciences FX We thank Professor Dr. Zabel and his group for making the ALICE scattering chamber available. Focused ion beam lithography was carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 20 TC 14 Z9 14 U1 0 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 21 PY 2010 VL 18 IS 13 BP 13608 EP 13615 DI 10.1364/OE.18.013608 PG 8 WC Optics SC Optics GA 613VG UT WOS:000279009900035 PM 20588494 ER PT J AU Demos, SG DeMange, P Negres, RA Feit, MD AF Demos, Stavros G. DeMange, Paul Negres, Raluca A. Feit, Michael D. TI Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals SO OPTICS EXPRESS LA English DT Article ID POTASSIUM DIHYDROGEN PHOSPHATE; PULSE LENGTH DEPENDENCE; NANOSECOND PULSES; OPTICAL-MATERIALS; KH2PO4 CRYSTALS; POINT-DEFECTS; IRRADIATION; ABSORPTION; PERFORMANCE; WAVELENGTH AB Laser-induced damage at near operational laser excitation conditions can limit the performance of potassium dihydrogen phosphate (KH2PO4, or KDP) and its deuterated analog (DKDP) which are currently the only nonlinear optical materials suitable for use in large-aperture laser systems. This process has been attributed to pre-existing damage precursors that were incorporated or formed during growth that have not yet been identified. In this work, we present a novel experimental approach to probe the electronic structure of the damage precursors. The results are modeled assuming a multi-level electronic structure that includes a bottleneck for 532 nm excitation. This model reproduces our experimental observations as well as other well-documented behaviors of laser damage in KDP crystals. Comparison of the electronic structure of known defects in KDP with this model allows for identification of a specific class that we postulate may be the constituent defects in the damage precursors. The experimental results also provide evidence regarding the physical parameters affecting the ability of individual damage precursors to initiate damage, such as their size and defect density; these parameters were found to vary significantly between KDP materials that exhibit different damage performance characteristics. (C) 2010 Optical Society of America C1 [Demos, Stavros G.; DeMange, Paul; Negres, Raluca A.; Feit, Michael D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Demos, SG (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM demos1@llnl.gov RI Feit, Michael/A-4480-2009 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank J. J. Adams for stimulating discussions and help in understanding the data presented in Ref. 31 and P. J. Wegner for helpful review of the manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 51 TC 36 Z9 38 U1 2 U2 32 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 21 PY 2010 VL 18 IS 13 BP 13788 EP 13804 DI 10.1364/OE.18.013788 PG 17 WC Optics SC Optics GA 613VG UT WOS:000279009900053 PM 20588512 ER PT J AU Yip, FL McCurdy, CW Rescigno, TN AF Yip, F. L. McCurdy, C. W. Rescigno, T. N. TI Double photoionization of excited lithium and beryllium SO PHYSICAL REVIEW A LA English DT Article AB We present total, energy-sharing, and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital with numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter-and intrashell electron correlation. C1 [Yip, F. L.; McCurdy, C. W.; Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Yip, FL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. FU US Department of Energy (DOE) by the University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation [PHY-0604628] FX This work was performed under the auspices of the US Department of Energy (DOE) by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. C. W. M. acknowledges support from the National Science Foundation (Grant No. PHY-0604628). NR 14 TC 14 Z9 14 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 21 PY 2010 VL 81 IS 6 AR 063419 DI 10.1103/PhysRevA.81.063419 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 613QT UT WOS:000278994900002 ER PT J AU Jia, Y Wang, SY Chen, WG Sun, Q Weitering, HH Zhang, ZY AF Jia, Yu Wang, S. Y. Chen, W. G. Sun, Q. Weitering, H. H. Zhang, Zhenyu TI First-principles study of quantum size effects in ultrathin Pb-Bi metal alloy films SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; BY-LAYER GROWTH; WAVE BASIS-SET; SURFACE ENERGIES; ELECTRON-DENSITY; WELL STATES; THIN-FILMS; SUPERCONDUCTIVITY; STABILITY; HEIGHT AB Using first-principles calculations within density-functional theory (DFT), we investigate the effect of Bi doping in ultrathin Pb(111) films on tuning the quantum size effects (QSEs) of random metal alloy films. Our results show that the QSE of Pb films, as manifested by the oscillatory surface energy, work function, interlayer spacing, and stability with film thickness, are robust against the introduction of random scattering centers doped in the films. Specifically, the stability and the work function of the ultrathin random-alloy films exhibit obvious quantum oscillations up to similar to 20% Bi doping. The periodicity of the beating pattern of QSE oscillations can be tuned via the concentration of the doped Bi atoms through changing the Fermi wave vector. For Pb0.89Bi0.11 alloy films, the role of the substrates of Si(111) and Ge(111) is also studied and the results are consistent with our recent experimental studies. C1 [Jia, Yu; Chen, W. G.; Sun, Q.] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Henan, Peoples R China. [Jia, Yu; Weitering, H. H.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wang, S. Y.] Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China. [Wang, S. Y.] Fudan Univ, Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China. [Weitering, H. H.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Jia, Y (reprint author), Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Henan, Peoples R China. RI Chen, Weiguang/D-7467-2012; Wang, Songyou/H-4529-2011 OI Chen, Weiguang/0000-0003-0859-8118; Wang, Songyou/0000-0002-4249-3427 FU NSF of China [10974182, 10974029]; U.S. NSF [DMR-0906025]; Division of Materials Science and Engineering, Basic Energy Sciences, U.S. DOE FX We thank Yuping Huo for helpful discussions, and Brandon Bell and Hua Chen for critical readings of the manuscript. Y.J. and S.Y.W. is supported by NSF of China (Grants No. 10974182 and No. 10974029). H.H.W. and Z.Z. are supported by the U.S. NSF (Grant No. DMR-0906025) and in part by the Division of Materials Science and Engineering, Basic Energy Sciences, U.S. DOE. The calculations were performed at DOE's NERSC and Center for Computational Sciences of Zhengzhou University, China. NR 56 TC 5 Z9 5 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2010 VL 81 IS 24 AR 245425 DI 10.1103/PhysRevB.81.245425 PG 9 WC Physics, Condensed Matter SC Physics GA 613ZO UT WOS:000279024300001 ER PT J AU Ngai, JH Segal, Y Su, D Zhu, Y Walker, FJ Ismail-Beigi, S Le Hur, K Ahn, CH AF Ngai, J. H. Segal, Y. Su, D. Zhu, Y. Walker, F. J. Ismail-Beigi, S. Le Hur, K. Ahn, C. H. TI Electric field tuned crossover from classical to weakly localized quantum transport in electron doped SrTiO3 SO PHYSICAL REVIEW B LA English DT Article ID STRONTIUM-TITANATE; MAGNETORESISTANCE; INTERFACE; CRYSTALS; MOBILITY; SYSTEMS AB Electron gases created by modulating the charge density near interfaces and surfaces of insulating SrTiO3 offer a wide range of tunable behavior. Here, we utilize the nonlinear dielectric response of SrTiO3 to electrostatically manipulate the spatial confinement of an electron gas relative to an interface, where scattering is enhanced. Magnetotransport measurements reveal that the electron gas can be tuned from weakly localized to classical transport regimes. This crossover in transport demonstrates that elastic scattering can be electrostatically controlled, providing another degree of tunability for electron gases in SrTiO3. C1 [Ngai, J. H.; Segal, Y.; Walker, F. J.; Ismail-Beigi, S.; Le Hur, K.; Ahn, C. H.] Yale Univ, Dept Appl Phys, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. [Su, D.; Zhu, Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Ismail-Beigi, S.; Le Hur, K.; Ahn, C. H.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. RP Ngai, JH (reprint author), Yale Univ, Dept Appl Phys, Ctr Res Interface Struct & Phenomena, 15 Prospect St, New Haven, CT 06520 USA. RI Su, Dong/A-8233-2013; Ismail-Beigi, Sohrab/F-2382-2014; OI Su, Dong/0000-0002-1921-6683; Ismail-Beigi, Sohrab/0000-0002-7331-9624; Walker, Frederick/0000-0002-8094-249X FU NSERC; NSF [MRSEC DMR-0520495]; DOE [DE-AC02-98CH10886]; FENA center FX We thank J.-M. Triscone and S. Gariglio for discussions and K. Kisslinger for TEM sample preparation. J.H.N acknowledges funding from NSERC. This work was supported by the NSF under Contract No. MRSEC DMR-0520495, the DOE under Contract No. DE-AC02-98CH10886, and the FENA center. NR 29 TC 19 Z9 19 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2010 VL 81 IS 24 AR 241307 DI 10.1103/PhysRevB.81.241307 PG 4 WC Physics, Condensed Matter SC Physics GA 613XC UT WOS:000279016600001 ER PT J AU Noffsinger, J Cohen, ML AF Noffsinger, Jesse Cohen, Marvin L. TI First-principles calculation of the electron-phonon coupling in ultrathin Pb superconductors: Suppression of the transition temperature by surface phonons SO PHYSICAL REVIEW B LA English DT Article ID WANNIER FUNCTIONS; FILMS; DENSITY; SPECTRUM; LIMIT AB We present a first-principles calculation of the electron-phonon coupling for thin layered lead systems. Using our Wannier-Fourier approach we show that the superconductivity in these systems is accounted for by traditional isotropic Migdal-Eliasberg theory through phonon-induced electron pairing. It is found that the transition temperature of Pb is suppressed by the presence of surface phonons which have been stiffened by an increased electronic spring constant. Superconductivity persists in ultrathin layered Pb despite the suppression from a decreased electronic density of states and weakened coupling to surface phonons. C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU National Science Foundation [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Science Foundation Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at Lawrence Berkeley National Laboratory's NERSC facility. Calculations in this manuscript have been performed using the QUANTUM-ESPRESSO package,35 WANNIER90,36 and EPW.21 NR 36 TC 18 Z9 18 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2010 VL 81 IS 21 AR 214519 DI 10.1103/PhysRevB.81.214519 PG 4 WC Physics, Condensed Matter SC Physics GA 613RO UT WOS:000278998000001 ER PT J AU Salafranca, J Yu, R Dagotto, E AF Salafranca, Juan Yu, Rong Dagotto, Elbio TI Conducting Jahn-Teller domain walls in undoped manganites SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-DIFFRACTION; RESISTIVITY; MAGNETORESISTANCE; MULTIFERROICS; RESISTANCE; FILMS AB We investigate the electronic properties of multidomain configurations in models for undoped manganites by means of variational and Monte Carlo techniques. These materials display simultaneous Jahn-Teller distortions and magnetic ordering. We find that a band of electronic states appears associated with Jahn-Teller domain walls, and this band is localized in the direction perpendicular to the walls. The energy and width of this band depend on the conformational properties of the domain walls. At finite temperatures, the conductance along the domain walls, induced by the localized domain-wall bands, is orders magnitude larger than in the bulk. C1 [Salafranca, Juan; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Salafranca, Juan; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yu, Rong] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Salafranca, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI YU, RONG/C-1506-2012; Yu, Rong/K-5854-2012; Salafranca, Juan/H-7494-2013; Yu, Rong/H-3355-2016 FU NSF [DMR-0706020, DMR-0706625]; Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Robert A. Welch Foundation [C-1411]; W.M. Keck Foundation FX The authors acknowledge useful conversations with Jan Seidel. This work was supported by the NSF Grant No. DMR-0706020 and the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. R.Y. acknowledges support from the NSF Grant No. DMR-0706625, the Robert A. Welch Foundation Grant No. C-1411, and the W.M. Keck Foundation. NR 46 TC 14 Z9 14 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 21 PY 2010 VL 81 IS 24 AR 245122 DI 10.1103/PhysRevB.81.245122 PG 6 WC Physics, Condensed Matter SC Physics GA 613XP UT WOS:000279018200001 ER PT J AU Aguilar, A Hartley, DJ Riley, MA Teal, C Carpenter, MP Chowdhury, P Danchev, M Djongolov, MK Hagemann, GB Hecht, AA Janssens, RVF Kondev, FG Lauritsen, T Ma, WC Mohr, WH Moore, EF Odegard, SW Riedinger, LL Sletten, G Tandel, SK Vanhoy, JR Wang, X Zhu, S AF Aguilar, A. Hartley, D. J. Riley, M. A. Teal, C. Carpenter, M. P. Chowdhury, P. Danchev, M. Djongolov, M. K. Hagemann, G. B. Hecht, A. A. Janssens, R. V. F. Kondev, F. G. Lauritsen, T. Ma, W. C. Mohr, W. H. Moore, E. F. Odegard, S. W. Riedinger, L. L. Sletten, G. Tandel, S. K. Vanhoy, J. R. Wang, X. Zhu, S. TI Alignments, additivity, and signature inversion in odd-odd Ta-170: A comprehensive high-spin study SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL BANDS; COINCIDENCE DATA; NUCLEI; TRIAXIALITY; ISOTOPES; STATES AB High-spin states (I less than or similar to 50h) of the odd-odd nucleus Ta-170 have been investigated with the Sn-124(V-51, 5n) reaction. The resolving power of Gammasphere has allowed for the observation of eleven rotational bands ( eight of which are new) and over 430 transitions (similar to 350 of which are new) in this nucleus. Many interband transitions have been observed such that the relative spins and excitation energies of the 11 bands have been established. This is an unusual circumstance in an odd-odd study. Configurations have been assigned to most of these bands based upon features such as alignment properties, band crossings, B(M1)/B(E2) ratios, and the additivity of Routhians. A systematic study of the frequency at which normal signature ordering occurs in the pi h(9/2)nu i(13/2) band has been performed and it is found that its trend is opposite to that observed in the pi h(11/2)nu i(13/2) bands. A possible interpretation of these trends is discussed based on a proton-neutron interaction. C1 [Aguilar, A.; Riley, M. A.; Teal, C.; Wang, X.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hartley, D. J.; Mohr, W. H.; Vanhoy, J. R.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Carpenter, M. P.; Hecht, A. A.; Janssens, R. V. F.; Lauritsen, T.; Moore, E. F.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.; Tandel, S. K.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Danchev, M.; Djongolov, M. K.; Riedinger, L. L.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hagemann, G. B.; Sletten, G.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Odegard, S. W.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hecht, A. A.] Univ Maryland, Dept Chem, College Pk, MD 20742 USA. RP Aguilar, A (reprint author), Univ Penn, Dept Radiat Oncol, Philadelphia, PA 19104 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU National Science Foundation [PHY-0456463, PHY-0554762]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11257, DE-FG02-94ER40848, DE-FG02-96ER40983] FX The authors thank the ANL operations staff at Gammasphere and gratefully acknowledge the efforts of J. P. Greene for target preparation. We also thank D. C. Radford for his software support. This work is funded by the National Science Foundation under Grant Nos. PHY-0456463 (FSU) and PHY-0554762 (USNA), as well as by the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11257 (ANL), DE-FG02-94ER40848 (UML), and DE-FG02-96ER40983 (UT). NR 33 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 21 PY 2010 VL 81 IS 6 AR 064317 DI 10.1103/PhysRevC.81.064317 PG 19 WC Physics, Nuclear SC Physics GA 614AF UT WOS:000279026400002 ER PT J AU Allmond, JM Beausang, CW Rasmussen, JO Ross, TJ Basunia, MS Bernstein, LA Bleuel, DL Brooks, W Brown, N Burke, JT Darakchieva, BK Dudziak, KR Evans, KE Fallon, P Jeppesen, HB LeBlanc, JD Lesher, SR McMahan, MA Meyer, DA Phair, L Scielzo, ND Stroberg, SR Wiedeking, M AF Allmond, J. M. Beausang, C. W. Rasmussen, J. O. Ross, T. J. Basunia, M. S. Bernstein, L. A. Bleuel, D. L. Brooks, W. Brown, N. Burke, J. T. Darakchieva, B. K. Dudziak, K. R. Evans, K. E. Fallon, P. Jeppesen, H. B. LeBlanc, J. D. Lesher, S. R. McMahan, M. A. Meyer, D. A. Phair, L. Scielzo, N. D. Stroberg, S. R. Wiedeking, M. TI Particle-gamma spectroscopy of the (p, d-gamma) Gd-155 reaction: Neutron single-quasiparticle states at N=91 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; CHANNELS BORN-APPROXIMATION; POSITIVE-PARITY STATES; EARTH D,T TRANSITIONS; LEVEL STRUCTURE; ENERGY LEVELS; 155GD; SM-153; CLOVER; 155EU AB A segmented Si telescope and HPGe array is used to study the Gd-156(p, d-gamma) Gd-155 direct reaction by d-gamma and d-gamma-gamma coincidence measurements using 25-MeV protons. The present investigation is the first time that this N = 91 nucleus and the N = 90 region-which is known for a rapid change from vibrational to rotational character, several low-lying 0(+) states in the even-even nuclei, and large Coriolis (Delta Omega = 1) plus Delta N = 2 mixing in the even-odd nuclei-have been studied by particle-gamma coincidence following a direct reaction with light ions. Gamma-ray energies and branches, excitation energies, angular distributions, and cross sections are measured for states directly populated in the (p, d) reaction. A new low- energy doublet state at 592.46 keV (previously associated with the K = 0 circle times (3)/(-)(2)[521] bandhead) and several new gamma-ray transitions (particularly for states with excitation energies > 1 MeV) are presented. Most notably, the previous nu (7)/(+)(2)[404] systematics at and around the N = 90 transition region are brought into question and reassigned as nu (5)/(2) (+)[402]. This reassignment makes the nu (1)/(2) (+)[400], nu (3)/(2) (+)[402], and nu (5)/(2) (+)[402] orbitals, which originate from the 3s(1/2), 2d(3/2), and 2d(5/2) spherical states, respectively, responsible for the three largest cross sections to positive- parity states in the (p, d) Gd-155 direct reaction. These three steeply upsloping orbitals undergo Delta N = 2 mixing with their N = 6 orbital partners, which are oppositely sloped with respect to deformation. The presence of these steeply sloped and crossing orbitals near the Fermi surface could weaken the monopole pairing strength and increase the quadrupole pairing strength of neighboring even-even nuclei, which would bring nu 2p-2h 0(+) states below 2 Delta. Indeed, this could account for a large number of the low- lying 0+ states populated in the (p, t) Gd-154 direct reaction. C1 [Allmond, J. M.; Beausang, C. W.; Ross, T. J.; Brooks, W.; Darakchieva, B. K.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Rasmussen, J. O.; Basunia, M. S.; Fallon, P.; Jeppesen, H. B.; McMahan, M. A.; Phair, L.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Lesher, S. R.; Scielzo, N. D.; Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brown, N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Dudziak, K. R.; LeBlanc, J. D.; Meyer, D. A.] Rhodes Coll, Dept Phys, Memphis, TN 38112 USA. [Evans, K. E.; Stroberg, S. R.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Allmond, JM (reprint author), Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RI Burke, Jason/I-4580-2012; OI Allmond, James Mitchell/0000-0001-6533-8721 FU National Science Foundation; University of Richmond, US Department of Energy [DE-FG52-06NA26206, DE-FG02-05ER41379]; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors thank the 88-Inch Cyclotron operations and facilities staff for their help in performing this experiment and P. E. Garrett, I. Y. Lee, A. O. Macchiavelli, and J. L. Wood for useful discussions related to technique and/or physics. This work was performed under the auspices of the National Science Foundation and the US Department of Energy by the University of Richmond under Grant Nos. DE-FG52-06NA26206 and DE-FG02-05ER41379, Lawrence Livermore National Laboratory under Contract Nos. W-7405-Eng-48 and DE-AC52-07NA27344, and Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 59 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 21 PY 2010 VL 81 IS 6 AR 064316 DI 10.1103/PhysRevC.81.064316 PG 17 WC Physics, Nuclear SC Physics GA 614AF UT WOS:000279026400001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Aramaki, Y Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Belmont, R Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Bok, JS Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chen, CH Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Christiansen, P Chujo, T Chung, P Churyn, A Chvala, O Cianciolo, V Citron, Z Cole, BA Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Danchev, I Das, K Datta, A David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durham, JM Durum, A Dutta, D Dzhordzhadze, V Edwards, S Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hahn, KI Hamagaki, H Hamblen, J Hanks, J Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hegyi, S Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ide, J Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Jumper, DS Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Kawall, D Kawashima, M Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, EJ Kim, E Kim, SH Kim, YJ Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, J Lee, KB Lee, K Lee, KS Lee, T Leitch, MJ Leite, MAL Leitner, E Lenzi, B Liebing, P Levy, LAL Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Luechtenborg, R Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mignerey, AC Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, IH Park, J Park, SK Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Riabov, V Riabov, Y Richardson, E Roach, D Roche, G Rolnick, SD Rosati, M Rosen, CA Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sano, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Sparks, NA Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Wei, F Wei, R Wessels, J White, SN Winter, D Wood, JP Woody, CL Wright, RM Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I You, Z Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Aramaki, Y. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Belmont, R. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Bok, J. S. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chen, C. -H. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Christiansen, P. Chujo, T. Chung, P. Churyn, A. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. Connors, M. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Danchev, I. Das, K. Datta, A. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durham, J. M. Durum, A. Dutta, D. Dzhordzhadze, V. Edwards, S. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Henni, A. Hadj Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamblen, J. Hanks, J. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hegyi, S. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ide, J. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Kawall, D. Kawashima, M. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. J. Kim, E. Kim, S. H. Kim, Y. J. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, J. Lee, K. B. Lee, K. Lee, K. S. Lee, T. Leitch, M. J. Leite, M. A. L. Leitner, E. Lenzi, B. Liebing, P. Levy, L. A. Linden Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Luechtenborg, R. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mignerey, A. C. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, I. H. Park, J. Park, S. K. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Riabov, V. Riabov, Y. Richardson, E. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosen, C. A. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sano, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Sparks, N. A. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Wei, F. Wei, R. Wessels, J. White, S. N. Winter, D. Wood, J. P. Woody, C. L. Wright, R. M. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. You, Z. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Transition in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article AB Hard-scattered parton probes produced in collisions of large nuclei indicate large partonic energy loss, possibly with collective produced-medium response to the lost energy. We present measurements of pi(0) trigger particles at transverse momenta p(T)(t) = 4-12 GeV/c and associated charged hadrons (p(T)(a) = 0.5-7 GeV/c) vs relative azimuthal angle Delta phi in Au + Au and p + p collisions at root s(NN) = 200 GeV. The Au + Au distribution at low p(T)(a), whose shape has been interpreted as a medium effect, is modified for p(T)(t) < 7 GeV/c. At higher p(T)(t), the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p(T)(a), which quantitatively challenges some medium response models. The associated yield of hadrons opposing the trigger particle in Au + Au relative to p + p (I-AA) is suppressed at high p(T) (I-AA approximate to 0.35-0.5), but less than for inclusive suppression (R-AA approximate to 0.2). C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kim, E.; Kiriluk, K.; Levy, L. A. Linden; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Basye, A. T.; Isenhower, D.; Jumper, D. S.; Sparks, N. A.; Towell, R. S.; Wright, R. M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Chvala, O.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Kim, E. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sano, S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Edwards, S.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; Homma, K.; Horaguchi, T.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shein, I.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, Y.; Yamaura, K.; Yanovich, A.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Semenov, V.; Soldatov, A.; Yang, R.] State Res Ctr Russian Federat, Inst High Energy Phys, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Kim, Y. J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.] Univ Illinois, Urbana, IL 61801 USA. [Masek, L.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kim, D. J.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Nagamiya, S.; Nakamura, T.; Saito, N.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Hegyi, S.; Ster, A.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Lee, K. S.; Park, S. K.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Saito, N.; Shoji, K.; Tanida, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, H.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Aidala, C.; Datta, A.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Luechtenborg, R.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.; Ide, J.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Kotchetkov, D.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.; You, Z.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Imai, K.; Ishihara, M.; Kametani, S.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Onuki, Y.; Rykov, V. L.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Sakashita, K.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kawashima, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.; Koster, J.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, K.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Jia, J.; Lacey, R.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Proissl, M.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, CNRS, Ecole Mines Nantes, SUBATECH,IN2P3, F-44307 Nantes, France. [Garishvili, I.; Hamblen, J.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Danchev, I.; Greene, S. V.; Huang, S.; Issah, M.; Leitner, E.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Sano, S.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Bok, J. S.; Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.; Kwon, Y.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Mignerey, Alice/D-6623-2011; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017 OI Taketani, Atsushi/0000-0002-4776-2315; Campbell, Sarah/0000-0001-6717-9744; Durham, J. Matthew/0000-0002-5831-3398; Csorgo, Tamas/0000-0002-9110-9663; Newby, Robert/0000-0003-3571-1067; Hartouni, Edward/0000-0001-9869-4351; Chvala, Ondrej/0000-0003-4614-6649; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; FU Office of Nuclear Physics in DOE Office of Science; NSF; Renaissance Technologies (USA); MEXT; JSPS (Japan); CNPq; FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS; CEA (France); BMBF; DAAD; AvH (Germany); OTKA (Hungary); DAE; DST (India); ISF (Israel); NRF (Korea); MES; RAS; FAAE (Russia); VR; KAW (Sweden); U.S. CRDF for the FSU; US-Hungary Fulbright; US-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science, NSF, and a sponsored research grant from Renaissance Technologies (USA), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE and DST (India), ISF (Israel), NRF (Korea), MES, RAS, and FAAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungary Fulbright, and US-Israel BSF. NR 28 TC 49 Z9 49 U1 6 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 21 PY 2010 VL 104 IS 25 AR 252301 DI 10.1103/PhysRevLett.104.252301 PG 7 WC Physics, Multidisciplinary SC Physics GA 614EC UT WOS:000279037100001 ER PT J AU Burakovsky, L Chen, SP Preston, DL Belonoshko, AB Rosengren, A Mikhaylushkin, AS Simak, SI Moriarty, JA AF Burakovsky, L. Chen, S. P. Preston, D. L. Belonoshko, A. B. Rosengren, A. Mikhaylushkin, A. S. Simak, S. I. Moriarty, J. A. TI High-Pressure-High-Temperature Polymorphism in Ta: Resolving an Ongoing Experimental Controversy SO PHYSICAL REVIEW LETTERS LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; TANTALUM-TUNGSTEN ALLOYS; SHOCK COMPRESSION; TRANSITION-METALS; PHASE AB Phase diagrams of refractory metals remain essentially unknown. Moreover, there is an ongoing controversy over the high-pressure melting temperatures of these metals: results of diamond anvil cell (DAC) and shock wave experiments differ by at least a factor of 2. From an extensive ab initio study on tantalum we discovered that the body-centered cubic phase, its physical phase at ambient conditions, transforms to another solid phase, possibly hexagonal omega phase, at high temperature. Hence the sample motion observed in DAC experiments is very likely not due to melting but internal stresses accompanying a solid-solid transformation, and thermal stresses associated with laser heating. C1 [Burakovsky, L.; Chen, S. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Preston, D. L.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Belonoshko, A. B.; Rosengren, A.] Royal Inst Technol, AlbaNova Univ Ctr, Inst Theoret Phys, SE-10691 Stockholm, Sweden. [Mikhaylushkin, A. S.; Simak, S. I.] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden. [Moriarty, J. A.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. RP Burakovsky, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Simak, Sergei/C-3030-2014; OI Simak, Sergei/0000-0002-1320-389X; Belonoshko, Anatoly/0000-0001-7531-3210 FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344]; Swedish Research Council; Swedish Foundation for Strategic Research (SSF); LINNEA center (Linkoping) FX Computations were performed using the facilities at the Swedish National Infrastructure for Computing (SNIC) and the LANL Coyote cluster. L. B., S. P. C., and D. L. P. wish to thank the U.S. Department of Energy (DOE) for financial support. A. B. B., A. R., A. S. M., and S. I. S. wish to thank the Swedish Research Council (VR) and the Swedish Foundation for Strategic Research (SSF) for financial support. A. S. M. acknowledges financial support from LINNEA center (Linkoping). The work of J. A. M. was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We also wish to thank R. Hixson for giving us the unpublished sound speed data point by Brown and Shaner, and for very valuable comments and suggestions. NR 37 TC 46 Z9 46 U1 4 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 21 PY 2010 VL 104 IS 25 AR 255702 DI 10.1103/PhysRevLett.104.255702 PG 4 WC Physics, Multidisciplinary SC Physics GA 614DU UT WOS:000279036300002 PM 20867396 ER PT J AU Dullmann, CE Schadel, M Yakushev, A Turler, A Eberhardt, K Kratz, JV Ackermann, D Andersson, LL Block, M Bruchle, W Dvorak, J Essel, HG Ellison, PA Even, J Gates, JM Gorshkov, A Graeger, R Gregorich, KE Hartmann, W Herzberg, RD Hessberger, FP Hild, D Hubner, A Jager, E Khuyagbaatar, J Kindler, B Krier, J Kurz, N Lahiri, S Liebe, D Lommel, B Maiti, M Nitsche, H Omtvedt, JP Parr, E Rudolph, D Runke, J Schausten, B Schimpf, E Semchenkov, A Steiner, J Thorle-Pospiech, P Uusitalo, J Wegrzecki, M Wiehl, N AF Duellmann, Ch. E. Schaedel, M. Yakushev, A. Tuerler, A. Eberhardt, K. Kratz, J. V. Ackermann, D. Andersson, L. -L. Block, M. Bruechle, W. Dvorak, J. Essel, H. G. Ellison, P. A. Even, J. Gates, J. M. Gorshkov, A. Graeger, R. Gregorich, K. E. Hartmann, W. Herzberg, R. -D. Hessberger, F. P. Hild, D. Huebner, A. Jaeger, E. Khuyagbaatar, J. Kindler, B. Krier, J. Kurz, N. Lahiri, S. Liebe, D. Lommel, B. Maiti, M. Nitsche, H. Omtvedt, J. P. Parr, E. Rudolph, D. Runke, J. Schausten, B. Schimpf, E. Semchenkov, A. Steiner, J. Thoerle-Pospiech, P. Uusitalo, J. Wegrzecki, M. Wiehl, N. TI Production and Decay of Element 114: High Cross Sections and the New Nucleus (277)Hs SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERHEAVY NUCLEI; HEAVIEST NUCLEI; HALF-LIVES; GSI; CHEMISTRY AB The fusion-evaporation reaction Pu-244(Ca-48, 3-4n)(288,289)114 was studied at the new gas-filled recoil separator TASCA. Thirteen correlated decay chains were observed and assigned to the production and decay of (288, 289)114. At a compound nucleus excitation energy of E* = 39.8-43.9 MeV, the 4n evaporation channel cross section was 9.8(-3.1)(+3.9) pb. At E* = 36.1-39.5 MeV, that of the 3n evaporation channel was 8.0-(+7.4)(4.5) pb. In one of the 3n evaporation channel decay chains, a previously unobserved alpha branch in (281)Ds was observed ( probability to be of random origin from background: 0.1%). This alpha decay populated the new nucleus (277)Hs, which decayed by spontaneous fission after a lifetime of 4.5 ms. C1 [Duellmann, Ch. E.; Schaedel, M.; Ackermann, D.; Block, M.; Bruechle, W.; Essel, H. G.; Gates, J. M.; Hartmann, W.; Hessberger, F. P.; Huebner, A.; Jaeger, E.; Khuyagbaatar, J.; Kindler, B.; Krier, J.; Kurz, N.; Lommel, B.; Schausten, B.; Schimpf, E.; Steiner, J.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Yakushev, A.; Tuerler, A.; Gates, J. M.; Gorshkov, A.; Graeger, R.] Tech Univ Munich, D-85748 Garching, Germany. [Eberhardt, K.; Kratz, J. V.; Even, J.; Hild, D.; Liebe, D.; Runke, J.; Thoerle-Pospiech, P.; Wiehl, N.] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany. [Andersson, L. -L.; Herzberg, R. -D.; Parr, E.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Dvorak, J.; Ellison, P. A.; Gregorich, K. E.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lahiri, S.; Maiti, M.] Saha Inst Nucl Phys, Kolkata 700064, W Bengal, India. [Omtvedt, J. P.; Semchenkov, A.] Univ Oslo, N-0315 Oslo, Norway. [Rudolph, D.] Lund Univ, S-22100 Lund, Sweden. [Uusitalo, J.] Univ Jyvaskyla, Jyvaskyla 40014, Finland. [Wegrzecki, M.] Inst Electr Mat Technol, PL-02668 Warsaw, Poland. RP Dullmann, CE (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. EM c.e.duellmann@gsi.de RI Omtvedt, Jon Petter/C-8194-2011; Block, Michael/I-2782-2015; Even, Julia/K-1186-2016; Turler, Andreas/D-3913-2014; Rudolph, Dirk/D-4259-2009; Herzberg, Rolf-Dietmar/E-1558-2011 OI Omtvedt, Jon Petter/0000-0002-1822-7348; Block, Michael/0000-0001-9282-8347; Even, Julia/0000-0002-6314-9094; Turler, Andreas/0000-0002-4274-1056; Rudolph, Dirk/0000-0003-1199-3055; FU German BMBF [06MT247I, 06MT248, 06MZ223I]; GSI-FE; Swedish Science Council; U.S. D.O.E. [DE-AC0205CH11231]; NNSA [DE-FC5208NA28752]; Norwegian Research Council [177538]; government of India-XIth five year plan project TADDS FX We thank the ECR ion source and UNILAC staff for providing excellent and stable 48Ca beams. H. Brand and the GSI Experimental Electronics department, H. Grosslhuber, G. Matheis, and R. Buhnemann from the machine shop at the institute of radiochemistry, TU Munich, as well as V. Gorshkov provided technical support. L. Stavsetra provided preliminary BGS results for the 48Ca + 242Pu reaction prior to publication, which we gratefully acknowledge. This work was financially supported by the German BMBF (06MT247I, 06MT248, 06MZ223I); the GSI-F&E (MT/TUR, MZJVKR); the Swedish Science Council; the U.S. D.O.E. under Contract No. DE-AC0205CH11231 and the NNSA under Contract No. DE-FC5208NA28752; the Norwegian Research Council (Project No. 177538); the government of India-XIth five year plan project TADDS. NR 30 TC 128 Z9 129 U1 0 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 21 PY 2010 VL 104 IS 25 AR 252701 DI 10.1103/PhysRevLett.104.252701 PG 5 WC Physics, Multidisciplinary SC Physics GA 614EF UT WOS:000279037400001 PM 20867370 ER PT J AU Phatak, C Petford-Long, AK De Graef, M AF Phatak, Charudatta Petford-Long, Amanda K. De Graef, Marc TI Three-Dimensional Study of the Vector Potential of Magnetic Structures SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON TOMOGRAPHY; INTENSITY EQUATION; PHASE RETRIEVAL; INTERFERENCE; HOLOGRAPHY; TRANSPORT; CATALYSTS AB The vector potential is central to a number of areas of condensed matter physics, such as superconductivity and magnetism. We have used a combination of electron wave phase reconstruction and electron tomographic reconstruction to experimentally measure and visualize the three-dimensional vector potential in and around a magnetic Permalloy structure. The method can probe the vector potential of the patterned structures with a resolution of about 13 nm. A transmission electron microscope operated in the Lorentz mode is used to record four tomographic tilt series. Measurements for a square Permalloy structure with an internal closure domain configuration are presented. C1 [Phatak, Charudatta; Petford-Long, Amanda K.] Argonne Natl Lab, Argonne, IL 60439 USA. [De Graef, Marc] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Phatak, C (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM degraef@cmu.edu RI Phatak, Charudatta/A-1874-2010; DeGraef, Marc/G-5827-2010; Petford-Long, Amanda/P-6026-2014 OI DeGraef, Marc/0000-0002-4721-6226; Petford-Long, Amanda/0000-0002-3154-8090 FU U.S. Department of Energy, Basic Energy Sciences [DE-FG02-01ER45893]; University of Chicago Argonne, LLC [DE-AC02-06CH11357]; Center for Nanoscale Materials at Argonne National Laboratory [DE-AC02-06CH11357] FX We would like to thank M. Tanase for help with sample preparation and A. Imre for help with FIB patterning. The CMU portion of this work was supported by the U.S. Department of Energy, Basic Energy Sciences under contract DE-FG02-01ER45893. Some of this work was carried out at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under contract DE-AC02-06CH11357 by University of Chicago Argonne, LLC. We also acknowledge use of the Center for Nanoscale Materials at Argonne National Laboratory (contract DE-AC02-06CH11357). NR 24 TC 28 Z9 28 U1 1 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 21 PY 2010 VL 104 IS 25 AR 253901 DI 10.1103/PhysRevLett.104.253901 PG 4 WC Physics, Multidisciplinary SC Physics GA 614EK UT WOS:000279037900001 PM 20867379 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Evdokimov, O Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, B Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Kopytine, M Koralt, I Koroleva, L Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, ZM Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, LS Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Luo, X Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wingfield, E Wissink, SW Witt, R Wu, YF Xie, W Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, J Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Derradi de Souza, R. Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Evdokimov, O. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, B. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Kopytine, M. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. S. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Luo, X. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. Szanto de Toledo, A. Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wingfield, E. Wissink, S. W. Witt, R. Wu, Y. F. Xie, W. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, J. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Longitudinal scaling property of the charge balance function in Au plus Au collisions at root s(NN)=200 GeV SO PHYSICS LETTERS B LA English DT Article DE Longitudinal scaling; Charge balance function; Boost-invariance; Nucleus-nucleus collisions ID HEAVY-ION COLLISIONS; TRANSVERSE-MOMENTUM; E&E ANNIHILATION; PARTICLE; JETS; EVENTS; PAIRS AB We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at root S-NN = 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage vertical bar-1.3, 1.3 vertical bar. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes. (c) 2010 Elsevier B.V. All rights reserved. C1 [Chen, J. Y.; Li, N.; Li, Z. M.; Liu, F.; Liu, L. S.; Shi, S. S.; Wu, Y. F.; Zhang, J.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Abelev, B. I.; Betts, R. R.; Evdokimov, O.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Huang, B.; Li, C.; Lu, Y.; Luo, X.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.; Wingfield, E.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Mischke, A.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Wu, YF (reprint author), CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. EM wuyf@iopp.ccnu.edu.cn RI Barnby, Lee/G-2135-2010; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Xu, Wenqin/H-7553-2014; Dogra, Sunil /B-5330-2013; Zhang, Jixie/A-1461-2016; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Barnby, Lee/0000-0001-7357-9904; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Xu, Wenqin/0000-0002-5976-4991; Huang, Bingchu/0000-0002-3253-3210; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP and HEP, U.S. DOE Office of Science; U.S. NSF; Sloan Foundation; DFG cluster of excellence 'Origin and Structure of the Universe' of Germany [CNRS/IN2P3]; STFC and EPSRC of the United Kingdom; FAPESP; CNPq of Brazil; Ministry of Ed. and Sci. of the Russian Federation; NNSFC; CAS; MOST; MoE of China; GA and MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE; DST; CSIR of India; Polish Ministry of Sci. and Higher Ed.; Korea Research Foundation; Ministry of Sci., Ed. and Sports of the Rep. of Croatia; Russian Ministry of Sci. and Tech., and RosAtom of Russia FX We thank Dr. Xin-Nian Wang for discussions on the scaling behavior of the charge balance function. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence 'Origin and Structure of the Universe' of Germany, CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MOST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. of Croatia, Russian Ministry of Sci. and Tech., and RosAtom of Russia. NR 28 TC 10 Z9 10 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 21 PY 2010 VL 690 IS 3 BP 239 EP 244 DI 10.1016/j.physletb.2010.05.028 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 618XG UT WOS:000279388800007 ER PT J AU Bauer, CW Ligeti, Z Schmaltz, M Thaler, J Walker, DGE AF Bauer, Christian W. Ligeti, Zoltan Schmaltz, Martin Thaler, Jesse Walker, Devin G. E. TI Supermodels for early LHC SO PHYSICS LETTERS B LA English DT Article DE Supermodels; Early LHC ID PARTON DISTRIBUTIONS; COLLIDERS; PHYSICS AB We investigate which new physics signatures could be discovered in the first year of the LHC, beyond the expected sensitivity of the Tevatron data by the end of 2010. We construct "supermodels", for which the LHC sensitivity even with only 10 pb(-1) useful luminosity is greater than that of the Tevatron with 10 fb(-1). The simplest supermodels involve s-channel resonances in the quark-antiquark and especially in the quark-quark channels. We concentrate on easily visible final states with small standard model backgrounds, and find that there are simple searches, besides those for Z' states, which could discover new physics in early LHC data. Many of these are well-suited to test searches for "more conventional" models, often discussed for multi-fb(-1) data sets. (c) 2010 Elsevier B.V. All rights reserved. C1 [Bauer, Christian W.; Ligeti, Zoltan; Schmaltz, Martin; Thaler, Jesse; Walker, Devin G. E.] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Bauer, Christian W.; Ligeti, Zoltan; Schmaltz, Martin; Thaler, Jesse; Walker, Devin G. E.] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Schmaltz, Martin] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Walker, Devin G. E.] Harvard Univ, Ctr Fundamental Laws Nat, Jefferson Phys Lab, Cambridge, MA 02138 USA. RP Ligeti, Z (reprint author), Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. EM zligeti@lbl.gov OI Thaler, Jesse/0000-0002-2406-8160 FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science; University of California; Aspen Center for Physics; [DE-FG02-01ER-40676] FX We thank Mina Arvanitaki, Beate Heinemann, and Matthew Schwartz for helpful conversations. This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231. M.S. is supported by DE-FG02-01ER-40676. J.T. acknowledges support from the Miller Institute for Basic Research in Science. D.W. was supported by a University of California Presidential Fellowship. M.S. and J.T. thank the Aspen Center for Physics for their hospitality while this work was in preparation. NR 27 TC 23 Z9 23 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 21 PY 2010 VL 690 IS 3 BP 280 EP 288 DI 10.1016/j.physletb.2010.05.032 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 618XG UT WOS:000279388800014 ER PT J AU Holder, GP Nollett, KM van Engelen, A AF Holder, Gilbert P. Nollett, Kenneth M. van Engelen, Alexander TI ON POSSIBLE VARIATION IN THE COSMOLOGICAL BARYON FRACTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: miscellaneous; galaxies: abundances; galaxies: clusters: general; large-scale structure of universe ID PRIMORDIAL HELIUM ABUNDANCE; BIG-BANG NUCLEOSYNTHESIS; HEMISPHERICAL POWER ASYMMETRY; RELAXED GALAXY CLUSTERS; RED GIANT STARS; H-II REGIONS; DEUTERIUM ABUNDANCE; HALO-STARS; WMAP DATA; LITHIUM ABUNDANCES AB The fraction of matter that is in the form of baryons or dark matter could have spatial fluctuations in the form of baryon-dark matter isocurvature fluctuations. We use big bang nucleosynthesis calculations compared with observed light-element abundances as well as galaxy cluster gas fractions to constrain cosmological variations in the baryon fraction. Light-element abundances constrain spatial variations to be less than 26%-27%, while a sample of "relaxed" galaxy clusters shows spatial variations in gas fractions less than 8%. Larger spatial variations could cause differential screening of the primary cosmic microwave background (CMB) anisotropies, leading to asymmetries in the fluctuations, and ease some tension with the halo-star Li-7 abundance. We also show that fluctuations within our allowed bounds can lead to "B-mode" CMB polarization anisotropies at a non-negligible level. C1 [Holder, Gilbert P.; van Engelen, Alexander] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Nollett, Kenneth M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Holder, GP (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. OI Nollett, Kenneth/0000-0002-0671-320X FU NSERC; Canadian Institute for Advanced Research Cosmology & Gravity program; Canada Research Chairs program; FQRNT; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank the Kavli Institute for Cosmological Physics in Chicago, where a significant fraction of this work was done, and Lloyd Knox, Kendrick Smith, Wayne Hu, and Olivier Dore for useful discussions. We acknowledge support from the NSERC Discovery Grant program, the Canadian Institute for Advanced Research Cosmology & Gravity program, the Canada Research Chairs program, and FQRNT. K.M.N. is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357. NR 76 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2010 VL 716 IS 2 BP 907 EP 913 DI 10.1088/0004-637X/716/2/907 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606WH UT WOS:000278459000002 ER PT J AU Plagge, T Benson, BA Ade, PAR Aird, KA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Dobbs, MA George, EM Hall, NR Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Pryke, C Reichardt, CL Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Vanderlinde, K Vieira, JD Williamson, R Zahn, O AF Plagge, T. Benson, B. A. Ade, P. A. R. Aird, K. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crawford, T. M. Crites, A. T. de Haan, T. Dobbs, M. A. George, E. M. Hall, N. R. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Pryke, C. Reichardt, C. L. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. TI SUNYAEV-ZEL'DOVICH CLUSTER PROFILES MEASURED WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium ID RELAXED GALAXY CLUSTERS; X-RAY; SCALING RELATIONS; XMM-NEWTON; TEMPERATURE PROFILES; INTRACLUSTER MEDIUM; DARK-MATTER; MASS; SAMPLE; GAS AB We present Sunyaev-Zel'dovich (SZ) measurements of 15 massive X-ray-selected galaxy clusters obtained with the South Pole Telescope (SPT). The SZ cluster signals are measured at 150 GHz, and concurrent 220 GHz data are used to reduce astrophysical contamination. Radial profiles are computed using a technique that takes into account the effects of the beams and filtering. In several clusters, significant SZ decrements are detected out to a substantial fraction of the virial radius. The profiles are fit to the beta-model and to a generalized Navarro-Frenk-White (NFW) pressure profile, and are scaled and stacked to probe their average behavior. We find model parameters that are consistent with previous studies: beta = 0.86 and r(core)/r(500) = 0.20 for the beta-model, and (alpha(n), beta(n), gamma(n), c(500)) = (1.0, 5.5, 0.5, 1.0) for the generalized NFW model. Both models fit the SPT data comparably well, and both are consistent with the average SZ profile out to beyond r(500). The integrated Compton-y parameter Y(SZ) is computed for each cluster using both model-dependent and model-independent techniques, and the results are compared to X-ray estimates of cluster parameters. We find that Y(SZ) scales with Y(X) and gas mass with low scatter. Since these observables have been found to scale with total mass, our results point to a tight mass-observable relation for the SPT cluster survey. C1 [Plagge, T.; Cho, H. -M.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; Marrone, D.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Pryke, C.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.; Keisler, R.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, VP62, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Marrone, D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Plagge, T (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM tplagge@bolo.berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation [ANT-0638937, ANT-0130612]; NSF Physics Frontier Center [PHY-0114422] FX The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and EngineeringResearch Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: B. A. B. and K. K. S. from a KICP Fellowship; J.J.M. from a Fermi Fellowship; Z.S. from a GAAN Fellowship; A. T. L. from the Miller Institute for Basic Research in Science, University of California, Berkeley; and N.W.H. from an Alfred P. Sloan Research Fellowship. NR 60 TC 83 Z9 83 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2010 VL 716 IS 2 BP 1118 EP 1135 DI 10.1088/0004-637X/716/2/1118 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606WH UT WOS:000278459000018 ER PT J AU Ackermann, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Dermer, CD de Palma, F Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Focke, WB Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Glanzman, T Godfrey, G Granot, J Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Harding, AK Hays, E Horan, D Hughes, RE Johannesson, G Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kippen, RM Knodlseder, J Kocevski, D Kouveliotou, C Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE McGlynn, S Meegan, C Meszaros, P Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakajima, H Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Preece, R Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Ritz, S Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stamatikos, M Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Toma, K Torres, DF Tosti, G Tramacere, A Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wu, XF Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Dermer, C. D. de Palma, F. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Granot, J. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kouveliotou, C. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. McGlynn, S. Meegan, C. Meszaros, P. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakajima, H. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Preece, R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Ritz, S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Toma, K. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wu, X. F. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB 090510); radiation mechanisms: non-thermal ID RELATIVISTIC COLLISIONLESS SHOCKS; SPECTRAL COMPONENT; PROMPT EMISSION; STAR-FORMATION; COSMIC-RAYS; AFTERGLOW; 080916C; DURATION; MODEL; ACCELERATION AB We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gammaray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E-peak = 3.9 +/- 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 +/- 0.03 that dominates the emission below approximate to 20 keV and above approximate to 100 MeV. The onset of the high-energy spectral component appears to be delayed by similar to 0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5(-2.6)(+5.8) GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Gamma greater than or similar to 1200, using simple.. opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the approximate to 100 keV-few MeV flux. Stricter high confidence estimates imply Gamma greater than or similar to 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered. C1 [Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Reimer, A.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Reimer, A.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.] Lund Observ, SE-22100 Lund, Sweden. [Axelsson, M.; Garde, M. Llena; McGlynn, S.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS, CEA, CEA Saclay,Lab AIM,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Bissaldi, E.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.; Nakajima, H.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Meszaros, P.; Toma, K.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Reimer, A.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wu, X. F.] J CPNPC, Nanjing 210093, Peoples R China. [Wu, X. F.] Acad Sinica, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM jchiang@slac.stanford.edu; j.granot@herts.ac.uk; sylvain.guiriec@lpta.in2p3.fr; ohno@astro.isas.jaxa.jp RI Johnson, Neil/G-3309-2014; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Rando, Riccardo/M-7179-2013; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Hays, Elizabeth/D-3257-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Moretti, Elena/0000-0001-5477-9097; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Dingus, Brenda/0000-0001-8451-7450; SPINELLI, Paolo/0000-0001-6688-8864; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; FU NASA FX The Fermi GBM Collaboration acknowledges support for GBM development, operations, and data analysis from NASA in the US and BMWi/DLR in Germany. NR 70 TC 175 Z9 176 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2010 VL 716 IS 2 BP 1178 EP 1190 DI 10.1088/0004-637X/716/2/1178 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606WH UT WOS:000278459000022 ER PT J AU Gary, SP Saito, S Narita, Y AF Gary, S. Peter Saito, Shinji Narita, Yasuhito TI WHISTLER TURBULENCE WAVEVECTOR ANISOTROPIES: PARTICLE-IN-CELL SIMULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE interplanetary medium; plasmas; turbulence ID SOLAR-WIND TURBULENCE; MAGNETIC-FIELD; HELIOS-OBSERVATIONS; DISSIPATION RANGE; ENERGY CASCADE; DEPENDENCE; SPECTRUM; AU AB Two-dimensional electromagnetic particle-in-cell simulations of whistler turbulence in a magnetized, homogeneous, collisionless plasma of electrons and protons are carried out. Enhanced magnetic fluctuation spectra are initially imposed at relatively long wavelengths, and, as in previous such simulations, the temporal evolution shows a forward cascade of magnetic fluctuation energy to shorter wavelengths, with more fluctuation energy at a given wavenumber perpendicular to B(o) than at the same wavenumber parallel to the background field. The new result here is that the wavevector anisotropy is very different for each of the three components of the fluctuating magnetic field. Here, parallel to denotes the direction parallel to the background magnetic field B(o), perpendicular to indicates the direction perpendicular to B(o) and in the simulation plane, and the symbol perpendicular to perpendicular to denotes the direction perpendicular to both B(o) and the simulation plane. The parallel magnetic fluctuations show more energy at k(parallel to) than at k(perpendicular to), whereas the perpendicular in-plane magnetic fluctuations show more energy at k(perpendicular to) than at k(parallel to). Finally, the out-of-plane magnetic fluctuations, vertical bar delta B(perpendicular to perpendicular to)vertical bar(2), strongly prefer to propagate in the k(perpendicular to) direction. C1 [Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Saito, Shinji] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Narita, Yasuhito] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. RP Gary, SP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM pgary@lanl.gov; saito@stelab.nagoya-u.ac.jp; y.narita@tu-bs.de FU U.S. Department of Energy (DOE); National Aeronautics and Space Administration FX The authors acknowledge useful exchanges with Joe Borovsky, John Podesta, and Chuck Smith. The Los Alamos portion of this work was performed under the auspices of the U.S. Department of Energy (DOE). It was supported by the Solar and Heliospheric Physics SR&T and Heliophysics Guest Investigators Programs of the National Aeronautics and Space Administration. NR 25 TC 19 Z9 19 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2010 VL 716 IS 2 BP 1332 EP 1335 DI 10.1088/0004-637X/716/2/1332 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606WH UT WOS:000278459000034 ER PT J AU Levine, R Gnedin, NY Hamilton, AJS AF Levine, Robyn Gnedin, Nickolay Y. Hamilton, Andrew J. S. TI MEASURING GAS ACCRETION AND ANGULAR MOMENTUM NEAR SIMULATED SUPERMASSIVE BLACK HOLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: nuclei; galaxies: structure ID ACTIVE GALACTIC NUCLEI; COSMOLOGICAL SIMULATIONS; GALAXY MERGERS; STAR-FORMATION; MOLECULAR GAS; INTERSTELLAR MATTER; ELLIPTIC GALAXIES; SPIRAL GALAXIES; UNIFIED MODEL; QUASARS AB Using cosmological simulations with a dynamic range in excess of 10(7), we study the transport of gas mass and angular momentum through the circumnuclear region of a disk galaxy containing a supermassive black hole (SMBH). The simulations follow fueling over relatively quiescent phases of the galaxy's evolution (no mergers) and without feedback from active galactic nuclei (AGNs), as part of the first stage of using state-of-the-art, high-resolution cosmological simulations to model galaxy and black hole co-evolution. We present results from simulations at different redshifts (z = 6, 4, and 3) and three different black hole masses (3 x 10(7), 9 x 10(7), and 3 x 10(8) M(circle dot); at z = 4), as well as a simulation including a prescription that approximates optically thick cooling in the densest regions. The interior gas mass throughout the circumnuclear disk shows transient and chaotic behavior as a function of time. The Fourier transform of the interior gas mass follows a power law with slope -1 throughout the region, indicating that, in the absence of the effects of galaxy mergers and AGN feedback, mass fluctuations are stochastic with no preferred timescale for accretion over the duration of each simulation (similar to 1-2 Myr). The angular momentum of the gas disk changes direction relative to the disk on kiloparsec scales over timescales less than 1 Myr, reflecting the chaotic and transient gas dynamics of the circumnuclear region. Infalling clumps of gas, which are driven inward as a result of the dynamical state of the circumnuclear disk, may play an important role in determining the spin evolution of an SMBH, as has been suggested in stochastic accretion scenarios. C1 [Levine, Robyn] CITA, Toronto, ON M5S 3H8, Canada. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hamilton, Andrew J. S.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Hamilton, Andrew J. S.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. RP Levine, R (reprint author), CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. EM levine@cita.utoronto.ca FU DOE; NASA [NAG 5-10842]; NSF [AST-0134373, AST-0507596, AST-0708607]; National Center for Supercomputing Applications [AST-020018N]; San Diego Supercomputing Center FX The authors thank the anonymous referee for constructive comments and suggestions. This work was supported in part by the DOE and the NASA grant NAG 5-10842 at Fermilab and by the NSF grants AST-0134373, AST-0507596, and AST-0708607. Supercomputer simulations were run on the IBM P690 array at the National Center for Supercomputing Applications and San Diego Supercomputing Center (under grant AST-020018N) as well as on the Joint Fermilab-KICP Supercomputing Cluster (supported by grants from Fermilab, the Kavli Institute for Cosmological Physics, and the University of Chicago). NR 83 TC 17 Z9 17 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2010 VL 716 IS 2 BP 1386 EP 1396 DI 10.1088/0004-637X/716/2/1386 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606WH UT WOS:000278459000040 ER PT J AU Freese, K Ilie, C Spolyar, D Valluri, M Bodenheimer, P AF Freese, Katherine Ilie, Cosmin Spolyar, Douglas Valluri, Monica Bodenheimer, Peter TI SUPERMASSIVE DARK STARS: DETECTABLE IN JWST SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; dark matter; stars: evolution; stars: formation; stars: pre-main sequence ID DIGITAL SKY SURVEY; TRIAXIAL STELLAR-SYSTEMS; WEBB-SPACE-TELESCOPE; 1ST STARS; MATTER ANNIHILATION; Z-GREATER-THAN-5.7 QUASARS; ADDITIONAL QUASARS; ELLIPTIC GALAXIES; POPULATION III; GALACTIC HALOS AB The first phase of stellar evolution in the history of the universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles (WIMPs), which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars for millions to billions of years. In this paper, we show that these objects can grow to be supermassive dark stars (SMDSs) with masses greater than or similar to(10(5)-10(7)) M(circle dot). The growth continues as long as DM heating persists, since DSs are large and cool (surface temperature less than or similar to 5 x 10(4) K) and do not emit enough ionizing photons to prevent further accretion of baryons onto the star. The DM may be provided by two mechanisms: (1) gravitational attraction of DM particles on a variety of orbits not previously considered and (2) capture of WIMPs due to elastic scattering. Once the DM fuel is exhausted, the SMDS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes (BHs) that may provide seeds for supermassive BHs in the universe. SMDSs are very bright, with luminosities exceeding (10(9)-10(11)) L(circle dot). We demonstrate that for several reasonable parameters, these objects will be detectable with the James Webb Space Telescope. Such an observational discovery would confirm the existence of a new phase of stellar evolution powered by DM. C1 [Freese, Katherine; Ilie, Cosmin] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Spolyar, Douglas] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Valluri, Monica] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bodenheimer, Peter] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. RP Freese, K (reprint author), Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. RI Valluri, Monica/A-3974-2013 FU DOE; MCTP via the University of Michigan; NSF [AST-0908346] FX We acknowledge support from the DOE and MCTP via the University of Michigan (K.F. and C.I.), DOE at Fermilab (D.S.), and the NSF grant AST-0908346 (M.V). K. F. is grateful to M. Begelman, W. Freedman, J. Friedman, O. Gnedin, B. O'Shea, B. Schmidt, P. Shapiro, T. Tyson, and S. White for helpful discussions. We thank Jon Gardner for very helpful comments regarding JWST. NR 82 TC 28 Z9 28 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2010 VL 716 IS 2 BP 1397 EP 1407 DI 10.1088/0004-637X/716/2/1397 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606WH UT WOS:000278459000041 ER PT J AU Ali, R Neill, PA Beiersdorfer, P Harris, CL Schultz, DR Stancil, PC AF Ali, R. Neill, P. A. Beiersdorfer, P. Harris, C. L. Schultz, D. R. Stancil, P. C. TI CRITICAL TEST OF SIMULATIONS OF CHARGE-EXCHANGE-INDUCED X-RAY EMISSION IN THE SOLAR SYSTEM SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE atomic data; atomic processes; comets: general; solar wind; X-rays: general ID ELECTRON-CAPTURE; CROSS-SECTIONS; MOMENTUM SPECTROSCOPY; COMET HYAKUTAKE; WIND; IONS; COLLISIONS; IMPACT; SPECTRA; ATOMS AB Experimental and theoretical state-selective X-ray spectra resulting from single-electron capture in charge exchange (CX) collisions of Ne(10+) with He, Ne, and Ar are presented for a collision velocity of 933 km s(-1) (4.54 keV nucleon(-1)), comparable to the highest velocity components of the fast solar wind. The experimental spectra were obtained by detecting scattered projectiles, target recoil ions, and X-rays in coincidence; with simultaneous determination of the recoil ion momenta. Use and interpretation of these spectra are free from the complications of non-coincident total X-ray measurements that do not differentiate between the primary reaction channels. The spectra offer the opportunity to critically test the ability of CX theories to describe such interactions at the quantum orbital angular momentum level of the final projectile ion. To this end, new classical trajectory Monte Carlo calculations are compared here with the measurements. The current work demonstrates that modeling of cometary, heliospheric, planetary, and laboratory X-ray emission based on approximate state-selective CX models may result in erroneous conclusions and deductions of relevant parameters. C1 [Ali, R.] Univ Jordan, Dept Phys, Amman 11942, Jordan. [Neill, P. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Harris, C. L.] Gulf Coast Community Coll, Div Nat Sci, Panama City, FL 32401 USA. [Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Stancil, P. C.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. RP Ali, R (reprint author), Univ Jordan, Dept Phys, Amman 11942, Jordan. EM ramimali@ju.edu.jo; paul@physics.unr.edu; beiersdorfer@llnl.gov; charris@gulfcoast.edu; schultzd@ornl.gov; stancil@physast.uga.edu RI Ali, Rami/B-8198-2015 OI Ali, Rami/0000-0002-5273-882X FU US DOE [DE-AC52-07NA-27344]; NASA [NNG06GB11G, NNH07AF12I, NNG05GD98G, NNX09AC46G]; NASA EPSCoR; Nevada Astrophysics Program; NSF FX Support is acknowledged from US DOE contract DE-AC52-07NA-27344 and NASA grant NNG06GB11G (P. B.), NASA grant NNH07AF12I (D. R. S.), and NASA grants NNG05GD98G and NNX09AC46G (P. C. S.). R. A. acknowledges partial support from NASA EPSCoR, Nevada Astrophysics Program. R. A., P. B., D. R. S., and P. C. S. thank the NSF-funded Institute for Theoretical Atomic, Molecular, and Optical Physics at the Harvard-Smithsonian Center for Astrophysics for travel support. NR 47 TC 18 Z9 18 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2010 VL 716 IS 2 BP L95 EP L98 DI 10.1088/2041-8205/716/2/L95 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 608NW UT WOS:000278592000001 ER PT J AU Cohen, BI Kemp, AJ Divol, L AF Cohen, B. I. Kemp, A. J. Divol, L. TI Simulation of laser-plasma interactions and fast-electron transport in inhomogeneous plasma SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Laser-plasma interactions; Particle-hybrid simulation; Fast ignition ID PARTICLE SIMULATIONS; GAUSS LAW; FIELD; CODES AB A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogeneous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies. (C) 2010 Elsevier Inc. All rights reserved. C1 [Cohen, B. I.; Kemp, A. J.; Divol, L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM bcohen@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX We acknowledge valuable input and encouragement from D. Larson, M. Tabak, R. Town, M. Key, P. Patel, D. Strozzi, A. Friedman, and R. Cohen. We also appreciate useful discussions with W. Mori and J. Tonge. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 36 TC 27 Z9 27 U1 0 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 20 PY 2010 VL 229 IS 12 BP 4591 EP 4612 DI 10.1016/j.jcp.2010.03.001 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 599WJ UT WOS:000277944400010 ER PT J AU Jakeman, J Eldred, M Xiu, DB AF Jakeman, John Eldred, Michael Xiu, Dongbin TI Numerical approach for quantification of epistemic uncertainty SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Uncertainty quantification; Epistemic uncertainty; Generalized polynomial chaos; Stochastic collocation; Encapsulation problem ID STOCHASTIC DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS; PROPAGATION AB In the field of uncertainty quantification, uncertainty in the governing equations may assume two forms: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty can be characterised by known probability distributions whilst epistemic uncertainty arises from a lack of knowledge of probabilistic information. While extensive research efforts have been devoted to the numerical treatment of aleatory uncertainty, little attention has been given to the quantification of epistemic uncertainty. In this paper, we propose a numerical framework for quantification of epistemic uncertainty. The proposed methodology does not require any probabilistic information on uncertain input parameters. The method only necessitates an estimate of the range of the uncertain variables that encapsulates the true range of the input variables with overwhelming probability. To quantify the epistemic uncertainty, we solve an encapsulation problem, which is a solution to the original governing equations defined on the estimated range of the input variables. We discuss solution strategies for solving the encapsulation problem and the sufficient conditions under which the numerical solution can serve as a good estimator for capturing the effects of the epistemic uncertainty. In the case where probability distributions of the epistemic variables become known a posteriori, we can use the information to post-process the solution and evaluate solution statistics. Convergence results are also established for such cases, along with strategies for dealing with mixed aleatory and epistemic uncertainty. Several numerical examples are presented to demonstrate the procedure and properties of the proposed methodology. (C) 2010 Elsevier Inc. All rights reserved. C1 [Xiu, Dongbin] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Jakeman, John] Australian Natl Univ, Dept Math, Canberra, ACT 0200, Australia. [Eldred, Michael] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Xiu, DB (reprint author), Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. EM john.jakeman@anu.edu.au; mseldre@sandia.gov; dxiu@purdue.edu NR 29 TC 24 Z9 25 U1 1 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 20 PY 2010 VL 229 IS 12 BP 4648 EP 4663 DI 10.1016/j.jcp.2010.03.003 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 599WJ UT WOS:000277944400012 ER PT J AU Loubere, R Maire, PH Shashkov, M Breil, J Galera, S AF Loubere, Raphael Maire, Pierre-Henri Shashkov, Mikhail Breil, Jerome Galera, Stephane TI ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian hydrodynamics; Cell-centered scheme; Compressible flow; Staggered scheme; Voronoi mesh; Arbitrary-Lagrangian-Eulerian; Mesh reconnection; Multi-dimensional unstructured polygonal mesh ID CENTROIDAL VORONOI TESSELLATIONS; FINITE-ELEMENT-METHOD; COMPRESSIBLE FLOW PROBLEMS; ARTIFICIAL VISCOSITY; GAS-DYNAMICS; COMPATIBLE FORMULATION; SHOCK HYDRODYNAMICS; ALE HYDRODYNAMICS; REMAPPING METHOD; COMPUTING-METHOD AB We present a new reconnection-based arbitrary-Lagrangian-Eulerian (ALE) method. The main elements in a standard ALE simulation are an explicit Lagrangian phase in which the solution and grid are updated, a rezoning phase in which a new grid is defined, and a remapping phase in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid. In standard ALE methods the new mesh from the rezone phase is obtained by moving grid nodes without changing connectivity of the mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh. In our new method we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal mesh and allows to follow Lagrangian features of the mesh much better than for standard ALE methods. Rezone strategy with reconnection is based on using Voronoi tessellation. We demonstrate performance of our new method on series of numerical examples and show it superiority in comparison with standard ALE methods without reconnection. (C) 2010 Elsevier Inc. All rights reserved. C1 [Shashkov, Mikhail] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Loubere, Raphael] Univ Toulouse 3, CNRS, Inst Math Toulouse, F-31062 Toulouse 9, France. [Maire, Pierre-Henri; Breil, Jerome; Galera, Stephane] Univ Bordeaux 1, UMR CELIA, F-33405 Talence, France. RP Shashkov, M (reprint author), Los Alamos Natl Lab, T-5, Los Alamos, NM 87545 USA. EM raphael.loubere@math.univ-toulouse.fr; maire@celia.u-bordeaux1.fr; shashkov@lanl.gov; breil@celia.u-bordeaux1.fr; galera@celia.u-bordeaux1.fr RI Maire, Pierre-Henri/H-6219-2013 OI Maire, Pierre-Henri/0000-0002-4180-8220 FU US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and supported by the DOE Advanced Simulation and Computing (ASC) program. The authors acknowledge the partial support of the DOE Office of Science ASCR Program. The authors thank A. Solovjov for allowing to use his code for Voronoi mesh generation. The authors thank M. Kucharik, J. Dukowicz, F. Adessio, H. Trease, G. Ball, A. Barlow, P. Vachal, V. Ganzha, B. Wendroff, J. Campbell, D. Burton V. Tishkin, A. Favorskii, V. Rasskazova, N. Ardelyan, S. Sokolov for stimulating discussions over many years. NR 128 TC 68 Z9 73 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 20 PY 2010 VL 229 IS 12 BP 4724 EP 4761 DI 10.1016/j.jcp.2010.03.011 PG 38 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 599WJ UT WOS:000277944400016 ER PT J AU Epling, W Nova, I Szanyi, J Yezerets, A AF Epling, William Nova, Isabella Szanyi, Janos Yezerets, Aleksey TI Diesel emissions control catalysis SO CATALYSIS TODAY LA English DT Editorial Material C1 [Epling, William] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. [Nova, Isabella] Politecn Milan, Lab Catalysis & Catalyt Proc, Dipartirnento Energia, I-20133 Milan, Italy. [Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yezerets, Aleksey] Cummins Inc, Corp Res & Technol, Columbus, IN 47201 USA. RP Epling, W (reprint author), Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. EM wepling@cape.uwaterloo.ca RI nova, isabella/I-2395-2015 OI nova, isabella/0000-0001-7239-2785 NR 0 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 201 EP 201 DI 10.1016/j.cattod.2010.03.007 PG 1 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300001 ER PT J AU Toops, TJ Nguyen, K Foster, AL Bunting, BG Ottinger, NA Pihl, JA Hagaman, EW Jiao, JA AF Toops, Todd J. Nguyen, Ke Foster, Adam L. Bunting, Bruce G. Ottinger, Nathan A. Pihl, Josh A. Hagaman, Edward W. Jiao, Jian TI Deactivation of accelerated engine-aged and field-aged Fe-zeolite SCR catalysts SO CATALYSIS TODAY LA English DT Article DE Fe-zeolite SCR catalyst; Accelerated aging protocols; Field-aged catalysts; XRD; BET; NMR ID FE/ZSM-5 CATALYSTS; NOX; REDUCTION; FE-ZSM-5; DURABILITY; STREAMS; NH3; NMR AB A single-cylinder diesel engine with an emissions control system - diesel oxidation catalyst (DOC), Fe-zeolite selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF) - was used to perform accelerated thermal aging of the SCR catalyst. Cyclic aging is performed at SCR inlet temperatures of 650, 750 and 850 degrees C for up to 50 aging cycles. To assess the validity of the implemented accelerated thermal aging protocol, a field-aged SCR catalyst of similar formulation was also evaluated. The monoliths were cut into sections and evaluated for NO performance in a bench-flow reactor. While the rear section of both the field-aged and the accelerated engine-aged SCR catalysts maintained high NO conversion, 75-80% at 400 degrees C, the front section exhibited a drastic decrease to only 20-35% at 400 degrees C. This two-tiered deactivation was also observed for field-aged samples that were analyzed in this study. To understand the observed performance changes, thorough materials characterization was performed which revealed two primary degradation mechanisms. The first mechanism is a general Fe-zeolite deterioration which led to surface area losses, dealumination of the zeolite, and Fe(2)O(3) crystal growth. This degradation accelerated above 750 degrees C, and the effects were generally more severe in the front of the catalyst. The second deactivation mechanism is linked to trace levels of Pt that are suspected to be volatizing from the DOC and depositing on the front section of the SCR catalyst. Chemical evidence of this can be seen in the high levels of NH(3) oxidation (80% conversion at 400 degrees C), which coincides with the decrease in performance. (C) 2010 Elsevier B.V. All rights reserved. C1 [Toops, Todd J.; Bunting, Bruce G.; Ottinger, Nathan A.; Pihl, Josh A.; Hagaman, Edward W.; Jiao, Jian] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nguyen, Ke; Foster, Adam L.] Univ Tennessee, Mech Aerosp & Biomed Engn Dept, Knoxville, TN 37996 USA. RP Toops, TJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM toopstj@ornl.gov FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This majority of this work was funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The fresh and field-aged Fe-zeolite SCR catalysts were provided by Svetlana Iretskaya of Catalytic Solutions, Inc. The XRD measurements and analysis were sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the High Temperature Materials Laboratory (HTML) User Program. The NMR efforts were sponsored in part by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences. Oak Ridge National Laboratory operates under DOE contract number DE-AC05-00OR22725 and is managed by UT-Battelle. NR 22 TC 13 Z9 14 U1 3 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 257 EP 265 DI 10.1016/j.cattod.2010.01.019 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300009 ER PT J AU Cheng, YS Lambert, C Kim, DH Kwak, JH Cho, SJ Peden, CHF AF Cheng, Yisun Lambert, Christine Kim, Do Heui Kwak, Ja Hun Cho, Sung June Peden, Charles H. F. TI The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts SO CATALYSIS TODAY LA English DT Article DE Urea SCR catalysts; Cu/zeolite; SO2 and SO3 poisoning; NOx emission control; Durability; Deactivation ID ZEOLITE; REDUCTION; NO AB The different impacts of SO2 and SO3 on Cu/zeolite SCR catalysts were investigated by SCR performance tests and multiple characterization techniques including temperature programmed desorption (TPD), Xray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS). The results indicate that a larger amount of highly dispersed CuSO4 formed in the zeolite catalysts (Z-CuSO4) upon SO3 poisoning, explaining the much more significant deactivation of the Cu/zeolite catalysts that were exposed to SO3 compared to poisoning by SO2. This paper provides the first demonstration that active sites of Cu/zeolite SCR catalysts involved in the storage and removal of sulfur can react with SO2 and SO3 in very different ways. In particular, the significant differences in the extent of sulfur uptake account for the considerably different impacts of SO2 and SO3 poisoning on the performance of Cu/zeolite SCR catalysts. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cheng, Yisun; Lambert, Christine] Ford Motor Co, Ford Innovat Ctr, Dearborn, MI 48124 USA. [Kim, Do Heui; Kwak, Ja Hun; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Cho, Sung June] Chonnam Natl Univ, Dept Appl Chem Engn, Kwangju 500757, South Korea. [Cho, Sung June] Chonnam Natl Univ, Ctr Funct Nano Fine Chem, Program BK21, Kwangju 500757, South Korea. RP Cheng, YS (reprint author), Ford Motor Co, Ford Innovat Ctr, 2101 Village Rd, Dearborn, MI 48124 USA. EM ycheng1@ford.com RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE) [DE-AC06-76RLO 1830, DE-AC02-98CH10886] FX Financial support for studies performed at Pacific Northwest National Laboratory (PNNL) was provided by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Portions of the work were performed in the Environmental Molecular Sciences Laboratory (EMSL) at PNNL. The EMSL is a national scientific user facility supported by the U.S. DOE's Office of Science, Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Use of the National Synchrotron Light Source at Brookhaven National Laboratory, was supported by the U.S. DOE's Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 13 TC 30 Z9 34 U1 5 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 266 EP 270 DI 10.1016/j.cattod.2010.01.013 PG 5 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300010 ER PT J AU Parks, JE Prikhodko, V Storey, JME Barone, TL Lewis, SA Kass, MD Huff, SP AF Parks, James E., II Prikhodko, Vitaly Storey, John M. E. Barone, Teresa L. Lewis, Samuel A., Sr. Kass, Michael D. Huff, Shean P. TI Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices SO CATALYSIS TODAY LA English DT Article DE Lean NO(x) trap; NO(x) storage/reduction; Diesel oxidation catalyst; Diesel particulate filter; Particulate matter; Advanced combustion; Premixed charge compression ignition (PCCI) AB A light-duty diesel engine has been operated in advanced combustion modes known generally as pre-mixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO(x) trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO(x) emissions associated with PCCI. NO capacity requirements are reduced as well as overall tailpipe NO(x) levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or "desoot" due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a similar to 3% fuel penalty for a mixture of PCCI and conventional loads vs. similar to 4% for conventional only combustion. (C) 2010 Elsevier B.V. All rights reserved. C1 [Parks, James E., II; Prikhodko, Vitaly; Storey, John M. E.; Barone, Teresa L.; Lewis, Samuel A., Sr.; Kass, Michael D.; Huff, Shean P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. RP Parks, JE (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS 6472, Oak Ridge, TN 37831 USA. EM parksjeii@ornl.gov FU U.S. Department of Energy; [DE-AC05-00OR22725] FX This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, with Ken Howden and Gurpreet Singh as the Program Managers. The services of Vitaly Prikhodko were provided as part of a post-graduate researcher program through the Oak Ridge Institute for Science Education which is operated by Oak Ridge Associated Universities. The submitted manuscript has been authored by a contractor of the U.S. government under contract number DE-AC05-00OR22725. Accordingly, the U.S. government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for the U.S. government. NR 12 TC 12 Z9 12 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 278 EP 284 DI 10.1016/j.cattod.2010.02.053 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300012 ER PT J AU Mei, DH Kwak, JH Szanyi, J Ge, QF Peden, CHF AF Mei, Donghai Kwak, Ja Hun Szanyi, Janos Ge, Qingfeng Peden, Charles H. F. TI Catalyst size and morphological effects on the interaction of NO2 with BaO/gamma-Al2O3 materials SO CATALYSIS TODAY LA English DT Article DE Nitrogen oxides; Barium oxide; Alumina; Adsorption; Density functional theory ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; STORAGE/REDUCTION CATALYSTS; STORAGE MATERIALS; BASIS-SET; ADSORPTION; BAO; GAMMA-AL2O3; SITES; SURFACE AB The capability of NOx storage on the supported BaO catalyst largely depends on the Ba loading. With different Ba loadings, the supported BaO component exposes various phases ranging from well-dispersed nanoclusters to large crystalline particles on the oxide support materials. In order to better understand size and morphological effects on NO storage over gamma-Al2O3-supported BaO materials, the adsorption structures and energetics of single NO2 molecule, as well as NOx + NOy (NO2 + NO2, NO + NO3 and NO2 + NO3) pairs on the BaO/gamma-Al2O3(1 0 0), (BaO)(2)/gamma-Al2O3(1 00), and (BaO)(S)/gamma-Al2O3(1 0 0) surfaces were investigated using first-principles density functional theory calculations. A single NO2 molecule prefers to adsorb at basic O-Ba site forming anionic nitrate species. Upon adsorption, a charge redistribution in the supported (BaO)(n) clusters occurs. Synergistic effects due to the interaction of NO2 with both the (BaO)(n) clusters and the gamma-Al2O3(1 0 0) support enhance the stability of adsorbed NO2. The interaction between NO2 and the (BaO)(n)/gamma-Al2O3(1 0 0) catalysts was found to be markedly affected by the sizes and morphologies of the supported (BaO),, clusters. The adsorption energy of NO2 increases from -0.98 eV on the BaO/gamma-Al2O3(1 0 0) surface to -3.01 eV on (BaO)(5)/-Al2O3(1 00). NO2 adsorption on (BaO)(2) clusters in a parallel configuration on the gamma-Al2O3(1 0 0) surface is more stable than on dimers oriented in a perpendicular fashion. Similar to the bulk BaO(1 0 0) surface, a supported (BaO)(n) cluster-mediated electron transfer induces cooperative effects that dramatically increase the total adsorption energy of NOx + NOy pairs on the (BaO)(n)/gamma-Al2O3(1 0 0) surfaces. Following the widely accepted NO2 storage mechanism of BaO + 3NO(2)(g) -> Ba(NO3)(2) + NO(g), our thermodynamic analysis indicates that the largest energy gain for this overall process of NO uptake is obtained on the amorphous monolayer-like (BaO)(5)/gamma-Al2O3(1 0 0) surface. This suggests that gamma-Al2O3-supported BaO materials with similar to 6-12 wt% loadings may provide optimum structures for NOx storage. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mei, Donghai; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Mei, Donghai/D-3251-2011; Ge, Qingfeng/A-8498-2009; Mei, Donghai/A-2115-2012; Kwak, Ja Hun/J-4894-2014; OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy's (DOE) Office of Science; Laboratory Directed Research and Development (LDRD) project at Pacific Northwest National Laboratory (PNNL) FX This work was supported by the U.S. Department of Energy's (DOE) Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, by the DOE's Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, and by a Laboratory Directed Research and Development (LDRD) project at Pacific Northwest National Laboratory (PNNL). Computing time was granted by the National Energy Research Scientific Computing Center (NERSC) under project no. m752. A portion of the computing time was also granted by the scientific user project (st30469) using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a DOE national scientific user facility located at PNNL, and supported by the DOE's Office of Science, Biological and Environmental Research. NR 35 TC 7 Z9 7 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 304 EP 313 DI 10.1016/j.cattod.2010.01.005 PG 10 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300015 ER PT J AU Choi, JS Partridge, WP Lance, MJ Walker, LR Pihl, JA Toops, TJ Finney, CEA Daw, CS AF Choi, Jae-Soon Partridge, William P. Lance, Michael J. Walker, Larry R. Pihl, Josh A. Toops, Todd J. Finney, Charles E. A. Daw, C. Stuart TI Nature and spatial distribution of sulfur species in a sulfated barium-based commercial lean NOx trap catalyst SO CATALYSIS TODAY LA English DT Article DE Lean NOx trap; NOx storage/reduction; Oxygen storage capacity; Sulfation; Barium; Spatial distribution ID STORAGE-REDUCTION CATALYST; MAGNESIUM-ALUMINATE SPINEL; STORAGE/REDUCTION CATALYSTS; AUTOMOTIVE EXHAUST; SO2 ADSORPTION; REGENERATION; CERIA; TEMPERATURE; BREAKTHROUGH; PLATINUM AB We report observations of the nature and spatial distribution of sulfur species on a sulfated Ba-based commercial lean NO, trap (LNT) catalyst. The monolithic catalyst was sulfated in a bench flow reactor during 60/5-s NOx-storage/reduction cycling to achieve a total sulfur loading of 3.4 g L-1 of catalyst. Washcoat composition, structure and sulfur distribution were analyzed with electron probe microanalysis. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction. The most significant washcoat elements of catalytic relevance were Pt, Pd, Rh, Ba, Ce, Zr, Mg, Al, and these were present mainly in four distinct domains: (i) Mg/Al mixed oxide with Pt, Ce; (ii) Al oxide with Rh, Pd; (iii) Ce/Zr mixed oxide with Pt, Pd, Ba (high Ba content); (iv) Ce/Zr mixed oxide with Pt, Pd, Ba (low Ba content). Sulfur was present in the form of sulfates that decreased in concentration along the LNT axis from front to back. Barium showed the highest sulfur affinity leading to a plug-like axial progression of its sulfation. The sulfation of Al, Mg/Al, and Ce/Zr oxides was less vigorous with a more axially dispersed and less penetrating front. (C) 2010 Elsevier B.V. All rights reserved. C1 [Choi, Jae-Soon; Partridge, William P.; Pihl, Josh A.; Toops, Todd J.; Finney, Charles E. A.; Daw, C. Stuart] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. [Lance, Michael J.; Walker, Larry R.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Choi, JS (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS 6472, Oak Ridge, TN 37831 USA. EM choijs@ornl.gov RI Lance, Michael/I-8417-2016; OI Lance, Michael/0000-0001-5167-5452; Choi, Jae-Soon/0000-0002-8162-4207 FU U.S. Department of Energy FX This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, with Ken Howden and Gurpreet Singh as the Program Managers. We thank Dr. Owen Bailey at Umicore for assistance in obtaining the commercial LNT catalyst used in this study. The authors are also grateful to colleagues at ORNL for useful discussions and experimental help, in particular Dr. Harry Meyer for the XPS and Mr. Nathan Ottinger for the powder-sample TPR measurements. NR 37 TC 11 Z9 11 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 354 EP 361 DI 10.1016/j.cattod.2010.01.016 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300020 ER PT J AU Ji, YY Fisk, C Easterling, V Graham, U Poole, A Crocker, M Choi, JS Partridge, W Wilson, K AF Ji, Yaying Fisk, Courtney Easterling, Vencon Graham, Uschi Poole, Adam Crocker, Mark Choi, Jae-Soon Partridge, William Wilson, Karen TI NOx storage-reduction characteristics of Ba-based lean NOx trap catalysts subjected to simulated road aging SO CATALYSIS TODAY LA English DT Article DE Lean NOx trap; NOx storage; Catalyst aging; Precious metal sintering; Ceria ID THERMAL DEACTIVATION; PT/BA/AL2O3 CATALYST; MIXED OXIDES; SULFUR; REGENERATION; SUPPORT; CERIA; SO2; PT/BAO/AL2O3; PERFORMANCE AB In order to study the effect of washcoat composition on lean NOx trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of La-stabilized CeO2 (5 wt% La2O3) or CeO2-ZrO2 (Ce:Zr = 70:30) were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that aging resulted in deterioration of the NOx storage, NOx release and NOx reduction functions, whereas the observation of lean phase NO2 slip for all of the aged catalysts indicated that LNT performance was not limited by the kinetics of NO oxidation. After aging, all of the catalysts showed increased selectivity to NH3 in the temperature range 250-450 degrees C. TEM, H-2 chemisorption, XPS and elemental analysis data revealed two main changes which can explain the degradation in LNT performance. First, residual sulfur in the catalysts, present as BaSO4, decreased catalyst NOx storage capacity. Second, sintering of the precious metals in the washcoat was observed, which can be expected to decrease the rate of NOx reduction. Additionally, sintering is hypothesized to result in segregation of the precious metal and Ba phases, resulting in less efficient NOx spillover from Pt to Ba during NOx adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NOx spillover during catalyst regeneration. Spectacular improvement in LNT durability was observed for catalysts containing CeO2 or CeO2-ZrO2 relative to their non-ceria containing analog. This was attributed to (i) the ability of ceria to participate in NOx storage/reduction as a supplement to the main Ba NOx storage component; (ii) the fact that Pt and CeO2(-ZrO2) are not subject to phase segregation; and (iii) the ability of ceria to trap sulfur, resulting in decreased sulfur accumulation on the Ba component. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ji, Yaying; Fisk, Courtney; Easterling, Vencon; Graham, Uschi; Poole, Adam; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Choi, Jae-Soon; Partridge, William] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Wilson, Karen] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. RP Crocker, M (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM crocker@caer.uky.edu RI Karen, Wilson/A-1061-2009; Crocker, Mark/A-2704-2008; OI Karen, Wilson/0000-0003-4873-708X; Choi, Jae-Soon/0000-0002-8162-4207 FU U.S. Department of Energy (DOE) [DE-FC26-05NT42631] FX The authors thank Shelley Hopps for sulfur measurements, and Rob Spicer and Tonya Morgan for assistance with the rapid aging experiments. This project was funded by the U.S. Department of Energy (DOE) under award No. DE-FC26-05NT42631. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE. NR 62 TC 25 Z9 26 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUN 19 PY 2010 VL 151 IS 3-4 BP 362 EP 375 DI 10.1016/j.cattod.2009.12.009 PG 14 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 618SF UT WOS:000279375300021 ER PT J AU Zentgraf, T Valentine, J Tapia, N Li, JS Zhang, XA AF Zentgraf, Thomas Valentine, Jason Tapia, Nicholas Li, Jensen Zhang, Xiang TI An Optical "Janus" Device for Integrated Photonics SO ADVANCED MATERIALS LA English DT Article ID TRANSFORMATION OPTICS; MAXWELLS EQUATIONS; SILICON PHOTONICS; CLOAK; METAMATERIALS; FREQUENCIES; FUTURE; LIGHT AB Transformation optics provides a new design methodology allowing unprecedented manipulation of light propagation. Traditionally, optical elements only involve stretching or compressing the optical space in one direction whereas the remaining dimensions are unaltered. However, space can be modified in all dimensions simultaneously so that the additional degrees of freedom provided by transformation optics can be used to imprint different elements into a single optical device. C1 [Zentgraf, Thomas; Valentine, Jason; Tapia, Nicholas; Li, Jensen; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Li, Jensen] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Zhang, XA (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Valentine, Jason/A-6121-2012; Zentgraf, Thomas/G-8848-2013; OI Zentgraf, Thomas/0000-0002-8662-1101; Li, Jensen/0000-0002-2099-8942 FU US Army Research Office (ARO) [W911NF-09-1-0539]; NSF Nano-scale Science and Engineering Center [CMMI-0751621] FX T.Z. and J.V. contributed equally to this work. We acknowledge funding support from the US Army Research Office (ARO) MURI program W911NF-09-1-0539 and partially by the NSF Nano-scale Science and Engineering Center CMMI-0751621. T.Z. acknowledges a fellowship from the Alexander von Humboldt Foundation. J.L. thanks Sir John Pendry for fruitful discussion. Supporting Information is available online from Wiley InterScience or from the author. NR 30 TC 35 Z9 35 U1 2 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 18 PY 2010 VL 22 IS 23 BP 2561 EP 2564 DI 10.1002/adma.200904139 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 623BF UT WOS:000279711100013 PM 20446302 ER PT J AU An, CH Peng, SN Sun, YG AF An, Changhua Peng, Sheng Sun, Yugang TI Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst SO ADVANCED MATERIALS LA English DT Article ID VISIBLE-LIGHT IRRADIATION; AG-AT-AGCL; HIGHLY EFFICIENT; PHOTOCATALYTIC REDUCTION; TITANIUM-DIOXIDE; CARBON-DIOXIDE; WATER; SEMICONDUCTOR; TIO2; GOLD AB Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue. C1 [Peng, Sheng; Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [An, Changhua] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [An, Changhua] China Univ Petr, State Key Lab Heavy Oil Proc, Coll Chem & Chem Engn, Qingdao 266555, Shandong, Peoples R China. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Peng, Sheng/E-7988-2010; Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357] FX C.A. and S.P. contributed equally to this research. Use of the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. CA acknowledges the support from the Chinese Scholarship Council. Supporting Information is available online from Wiley Inter Science or from the author. NR 38 TC 354 Z9 362 U1 23 U2 245 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 18 PY 2010 VL 22 IS 23 BP 2570 EP 2574 DI 10.1002/adma.200904116 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 623BF UT WOS:000279711100015 PM 20455207 ER PT J AU Staten, ML Shepherd, JF Ledoux, F Shimada, K AF Staten, Matthew L. Shepherd, Jason F. Ledoux, Franck Shimada, Kenji TI Hexahedral Mesh Matching: Converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE hexahedra; mesh generation; non-conforming interfaces; finite element analysis; multi-point constraint; pillowing ID FINITE-ELEMENT MESHES; OCTREE TECHNIQUE; GENERATION; QUALITY; OPTIMIZATION; DECOMPOSITION; METHODOLOGY; IMPROVEMENT; 3D AB This paper presents a new method, called Mesh Matching, for handling non-conforming hexahedral-to-hexahedral interfaces for finite element analysis. Mesh Matching modifies the hexahedral element topology on one or both sides of the interface until there is a one-to-one pairing of finite element nodes, edges and quadrilaterals on the interface surfaces, allowing mesh entities to be merged into a single conforming mesh. Element topology is modified using hexahedral dual operations, including pillowing, sheet extraction, dicing and column collapsing. The primary motivation for this research is to simplify the generation of unstructured all-hexahedral finite element meshes. Mesh Matching relaxes global constraint propagation which currently hinders hexahedral meshing of large assemblies, and limits its extension to parallel processing. As a secondary benefit, by providing conforming mesh interfaces, Mesh Matching provides an alternative to artificial constraints such as tied contacts and multi-point constraints. The quality of the resultant conforming hexahedral mesh is high and the increase in number of elements is moderate. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Staten, Matthew L.; Shepherd, Jason F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Staten, Matthew L.; Shimada, Kenji] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Ledoux, Franck] CEA, DAM, DIF, F-91297 Arpajon, France. RP Staten, ML (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mlstate@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 59 TC 14 Z9 14 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JUN 18 PY 2010 VL 82 IS 12 BP 1475 EP 1509 DI 10.1002/nme.2800 PG 35 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 606IN UT WOS:000278417600001 ER PT J AU Lou, Y Shanklin, J AF Lou, Ying Shanklin, John TI Evidence That the Yeast Desaturase Ole1p Exists as a Dimer in Vivo SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CARRIER-PROTEIN-DESATURASE; FATTY-ACID DESATURASE; STEAROYL-COA DESATURASE; ACYL-LIPID DESATURASE; HISTIDINE-RESIDUES; MEMBRANE TOPOLOGY; CRYSTAL-STRUCTURE; ENZYME; SITE; PURIFICATION AB Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the Delta(9)-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an similar to 75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional. C1 [Lou, Ying; Shanklin, John] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Shanklin, J (reprint author), Brookhaven Natl Lab, Dept Biol, Bldg 463,50 Bell Ave, Upton, NY 11973 USA. EM shanklin@bnl.gov FU Office of Basic Energy Sciences of the United States Department of Energy; Bayer Corp FX This work was supported by the Office of Basic Energy Sciences of the United States Department of Energy and by the Bayer Corp. NR 32 TC 8 Z9 8 U1 2 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUN 18 PY 2010 VL 285 IS 25 BP 19384 EP 19390 DI 10.1074/jbc.M110.125377 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 610JG UT WOS:000278727800049 PM 20406812 ER PT J AU Pasilis, SP Van Berkel, GJ AF Pasilis, Sofie P. Van Berkel, Gary J. TI Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry SO JOURNAL OF CHROMATOGRAPHY A LA English DT Review DE Ambient; Surface sampling; Ionization; Thermal desorption; Laser desorption; Sampling probe; Secondary ionization; Planar separations; Thin layer chromatography; Electrospray; Atmospheric pressure chemical ionization; Mass spectrometry ID THIN-LAYER-CHROMATOGRAPHY; DESORPTION ELECTROSPRAY-IONIZATION; TRYPTIC PROTEIN DIGESTS; LASER-ABLATION; GEL-ELECTROPHORESIS; SAMPLING PROBE; AMBIENT CONDITIONS; ICP-MS; FLUORESCENCE DETECTION; RAPID IDENTIFICATION AB Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. (C) 2009 Elsevier B.V. All rights reserved. C1 [Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. [Pasilis, Sofie P.] Univ Idaho, Dept Chem, Moscow, ID 83844 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM spasilis@uidaho.edu; vanberkelgj@ornl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; United States Department of Energy [DE-AC05-00OR22725]; University of Idaho College of Science FX GJVB acknowledges support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. ORNL is managed and operated by UT-Battelle, LLC, for the United States Department of Energy under Contract DE-AC05-00OR22725. SPP thanks the University of Idaho College of Science for partial support of this work. NR 98 TC 20 Z9 20 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 18 PY 2010 VL 1217 IS 25 SI SI BP 3955 EP 3965 DI 10.1016/j.chroma.2009.10.064 PG 11 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 610ZC UT WOS:000278779000007 PM 19913798 ER PT J AU Watanabe, Y Chertkov, M AF Watanabe, Yusuke Chertkov, Michael TI Belief propagation and loop calculus for the permanent of a non-negative matrix SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article AB We consider computation of the permanent of a positive (N x N) non-negative matrix, P = (P(i)(j) | i, j = 1, ... , N), or equivalently the problem of weighted counting of the perfect matchings over the complete bipartite graph K(N,N). The problem is known to be of likely exponential complexity. Stated as the partition function Z of a graphical model, the problem allows for exact loop calculus representation (Chertkov M and Chernyak V 2006 Phys. Rev. E 72 065102) in terms of an interior minimum of the Bethe free energy functional over non-integer doubly stochastic matrix of marginal beliefs, beta = (beta(j)(i) | i, j = 1, ... , N), also correspondent to a fixed point of the iterative message-passing algorithm of the belief propagation (BP) type. Our main result is an explicit expression of the exact partition function (permanent) in terms of the matrix of BP marginals, beta, as Z = Perm(P) = Z(BP) Perm (beta(j)(i) (1 - beta(j)(i))) / Pi(i,j) (1-beta(j)(i)), where Z(BP) is the BP expression for the permanent stated explicitly in terms of beta. We give two derivations of the formula, a direct one based on the Bethe free energy and an alternative one combining the Ihara graph-zeta. function and the loop calculus approaches. Assuming that the matrix beta of the BP marginals is calculated, we provide two lower bounds and one upper bound to estimate the multiplicative term. Two complementary lower bounds are based on the Gurvits-van der Waerden theorem and on a relation between the modified permanent and determinant, respectively. C1 [Watanabe, Yusuke] Inst Stat Math, Tokyo 1908562, Japan. [Chertkov, Michael] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chertkov, Michael] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Chertkov, Michael] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Watanabe, Y (reprint author), Inst Stat Math, 10-3 Midori Cho, Tokyo 1908562, Japan. EM watay@ism.ac.jp; chertkov@lanl.gov RI Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE C52-06NA25396]; Graduate University for Advanced Studies; NMC via NSF [CCF-0829945] FX We are thankful to Leonid Gurvits for educating us, through his course of lectures given at CNLS/LANL, about existing approaches in the `mathematics of the permanent'. YW acknowledges support of the Students Visit Abroad Program of the Graduate University for Advanced Studies which allowed him to spend two months at LANL and he is also grateful to CNLS at LANL for its hospitality. Research at LANL was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract no DE C52-06NA25396. MC also acknowledges partial support of NMC via the NSF collaborative grant, CCF-0829945, on 'Harnessing Statistical Physics for Computing and Communications'. NR 18 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 18 PY 2010 VL 43 IS 24 AR 242002 DI 10.1088/1751-8113/43/24/242002 PG 11 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 600YV UT WOS:000278026000002 ER PT J AU Svane, A Christensen, NE Cardona, M Chantis, AN van Schilfgaarde, M Kotani, T AF Svane, A. Christensen, N. E. Cardona, M. Chantis, A. N. van Schilfgaarde, M. Kotani, T. TI Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients SO PHYSICAL REVIEW B LA English DT Article ID 2ND VALENCE-BAND; LEAD CHALCOGENIDES; THERMOELECTRIC-MATERIALS; PHASE-TRANSITIONS; OF-STATES; SEMICONDUCTORS; DIFFRACTION; DENSITIES; TRANSPORT; TELLURIDE AB The electronic band structures of PbS, PbSe, and PbTe in the rocksalt structure are calculated with the quasiparticle self-consistent GW (QSGW) approach with spin-orbit coupling included. The semiconducting gaps and their deformation potentials as well as the effective masses are obtained. The GW approximation provides a correct description of the electronic structure around the gap, in contrast to the local-density approximation, which leads to inverted gaps in the lead chalcogenides. The QSGW calculations are in good quantitative agreement with experimental values of the gaps and masses. At moderate hole doping a complex filamental Fermi-surface structure develops with ensuing large density of states. The pressure-induced gap closure leads to linear (Dirac-type) band dispersions around the L point. C1 [Svane, A.; Christensen, N. E.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Chantis, A. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [van Schilfgaarde, M.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Kotani, T.] Tottori Univ, Dept Appl Phys & Math, Tottori 6808552, Japan. RP Svane, A (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RI kotani, takao/G-4355-2011; OI kotani, takao/0000-0003-1693-7052; Chantis, Athanasios/0000-0001-7933-0579 FU Danish Center for Scientific Computing Center (DCSC); Danish Agency for Science, Technology and Innovation; NSF [QMHP-0802216] FX A. S. and N.E.C. acknowledge support from the Danish Center for Scientific Computing Center (DCSC) and the Danish Agency for Science, Technology and Innovation. M. v. S. was supported by NSF under Grant No. QMHP-0802216. NR 60 TC 67 Z9 69 U1 4 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 18 PY 2010 VL 81 IS 24 AR 245120 DI 10.1103/PhysRevB.81.245120 PG 10 WC Physics, Condensed Matter SC Physics GA 613DH UT WOS:000278957300001 ER PT J AU Zhou, JS Alonso, JA Pomjakushin, V Goodenough, JB Ren, Y Yan, JQ Cheng, JG AF Zhou, J. -S. Alonso, J. A. Pomjakushin, V. Goodenough, J. B. Ren, Y. Yan, J. -Q. Cheng, J. -G. TI Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3 SO PHYSICAL REVIEW B LA English DT Article ID ORTHOFERRITES AB High-resolution neutron powder diffraction has been applied to determine the structural evolution in the orthorhombic perovskite RCrO3 family. The structural distortions observed have been found to be closely related to the dramatic variation in the magnetic ordering temperature T-N. In addition to the reduction in the orbital overlap integral that can account for the change in T-N in the RFeO3 family, the effect of t-e hybridization due to the structural distortions are responsible for the dramatic change in T-N across the RCrO3 family. C1 [Zhou, J. -S.; Goodenough, J. B.; Cheng, J. -G.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Alonso, J. A.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Pomjakushin, V.] Swiss Fed Inst Technol, Neutron Scattering Lab, Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Yan, J. -Q.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Zhou, JS (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. EM jszhou@mail.utexas.edu RI Cheng, Jinguang/A-8342-2012; Alonso, Jose Antonio/A-5245-2011; Pomjakushin, Vladimir/J-6259-2014; OI Alonso, Jose Antonio/0000-0001-5329-1225; Pomjakushin, Vladimir/0000-0003-2180-8730; Goodenough, John Bannister/0000-0001-9350-3034 FU NSF [DMR 0904282]; Robert A Welch Foundation [F-1066]; Spanish Ministry of Science and Innovation [MAT2007-60536]; European Commission [CP-CSA_INFRA-2008-1.1.1, 226507-NMI3] FX This work was supported by NSF (Grant No. DMR 0904282) and the Robert A Welch Foundation (Grant No. F-1066), as well as the Spanish Ministry of Science and Innovation (Grant No. MAT2007-60536). The neutron diffraction performed at PSI, Switzerland was partially supported by the European Commission under the Seventh Framework Program through the "Research Infrastructures" action of the "Capacities" Program, Contract No. CP-CSA_INFRA-2008-1.1.1 Number 226507-NMI3'. J.S.Z. thanks W. Harrison for the insightful discussion. NR 25 TC 33 Z9 33 U1 4 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 18 PY 2010 VL 81 IS 21 AR 214115 DI 10.1103/PhysRevB.81.214115 PG 5 WC Physics, Condensed Matter SC Physics GA 612WM UT WOS:000278936400001 ER PT J AU Kang, ZB Qiu, JW Zhang, H AF Kang, Zhong-Bo Qiu, Jian-Wei Zhang, Hong TI Quark-gluon correlation functions relevant to single transverse spin asymmetries SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; DRELL-YAN PROCESSES; HARD-SCATTERING; PARTON DISTRIBUTIONS; GAUGE; LEPTOPRODUCTION; FACTORIZATION; POLARIZATION; COLLISIONS AB We investigate the relative size of various twist-3 quark-gluon correlation functions relevant to single transverse spin asymmetries (SSAs) in a quark-diquark model of the nucleon. We calculate the quark-gluon correlation function T-q,T-F(x, x) that is responsible for the gluonic pole contribution to the SSAs, as well as T-q,T-F(0, x) and T-Delta q,T-F(0, x) responsible for the fermionic pole contributions. We find in both cases of a scalar diquark and an axial-vector diquark that at the first nontrivial order only the T-q,T-F(x, x) is finite while all other quark-gluon correlation functions vanish. Using the same model, we evaluate quark Sivers function and discuss its relation to the T-q,T-F(x, x). We also discuss the implication of our finding to the phenomenological studies of the SSAs. C1 [Kang, Zhong-Bo] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Qiu, Jian-Wei; Zhang, Hong] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kang, ZB (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM zkang@bnl.gov; jqiu@bnl.gov; hongzh87@iastate.edu RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-FG02-87ER40371, DE-AC02-98CH10886]; RIKEN/BNL Research Center; Brookhaven National Laboratory FX We thank M. Burkardt and G. Sterman for helpful discussions. This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG02-87ER40371. Z.K. and J.Q. are grateful to RIKEN/BNL Research Center, Brookhaven National Laboratory, and the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the support and facilities essential for the completion of this work. NR 73 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 18 PY 2010 VL 81 IS 11 AR 114030 DI 10.1103/PhysRevD.81.114030 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 613LP UT WOS:000278981100002 ER PT J AU Puckett, AJR Brash, EJ Jones, MK Luo, W Meziane, M Pentchev, L Perdrisat, CF Punjabi, V Wesselmann, FR Ahmidouch, A Albayrak, I Aniol, KA Arrington, J Asaturyan, A Baghdasaryan, H Benmokhtar, F Bertozzi, W Bimbot, L Bosted, P Boeglin, W Butuceanu, C Carter, P Chernenko, S Christy, E Commisso, M Cornejo, JC Covrig, S Danagoulian, S Daniel, A Davidenko, A Day, D Dhamija, S Dutta, D Ent, R Frullani, S Fenker, H Frlez, E Garibaldi, F Gaskell, D Gilad, S Gilman, R Goncharenko, Y Hafidi, K Hamilton, D Higinbotham, DW Hinton, W Horn, T Hu, B Huang, J Huber, GM Jensen, E Keppel, C Khandaker, M King, P Kirillov, D Kohl, M Kravtsov, V Kumbartzki, G Li, Y Mamyan, V Margaziotis, DJ Marsh, A Matulenko, Y Maxwell, J Mbianda, G Meekins, D Melnik, Y Miller, J Mkrtchyan, A Mkrtchyan, H Moffit, B Moreno, O Mulholland, J Narayan, A Nedev, S Nuruzzaman Piasetzky, E Pierce, W Piskunov, NM Prok, Y Ransome, RD Razin, DS Reimer, P Reinhold, J Rondon, O Shabestari, M Shahinyan, A Shestermanov, K Sirca, S Sitnik, I Smykov, L Smith, G Solovyev, L Solvignon, P Subedi, R Tomasi-Gustafsson, E Vasiliev, A Veilleux, M Wojtsekhowski, BB Wood, S Ye, Z Zanevsky, Y Zhang, X Zhang, Y Zheng, X Zhu, L AF Puckett, A. J. R. Brash, E. J. Jones, M. K. Luo, W. Meziane, M. Pentchev, L. Perdrisat, C. F. Punjabi, V. Wesselmann, F. R. Ahmidouch, A. Albayrak, I. Aniol, K. A. Arrington, J. Asaturyan, A. Baghdasaryan, H. Benmokhtar, F. Bertozzi, W. Bimbot, L. Bosted, P. Boeglin, W. Butuceanu, C. Carter, P. Chernenko, S. Christy, E. Commisso, M. Cornejo, J. C. Covrig, S. Danagoulian, S. Daniel, A. Davidenko, A. Day, D. Dhamija, S. Dutta, D. Ent, R. Frullani, S. Fenker, H. Frlez, E. Garibaldi, F. Gaskell, D. Gilad, S. Gilman, R. Goncharenko, Y. Hafidi, K. Hamilton, D. Higinbotham, D. W. Hinton, W. Horn, T. Hu, B. Huang, J. Huber, G. M. Jensen, E. Keppel, C. Khandaker, M. King, P. Kirillov, D. Kohl, M. Kravtsov, V. Kumbartzki, G. Li, Y. Mamyan, V. Margaziotis, D. J. Marsh, A. Matulenko, Y. Maxwell, J. Mbianda, G. Meekins, D. Melnik, Y. Miller, J. Mkrtchyan, A. Mkrtchyan, H. Moffit, B. Moreno, O. Mulholland, J. Narayan, A. Nedev, S. Nuruzzaman Piasetzky, E. Pierce, W. Piskunov, N. M. Prok, Y. Ransome, R. D. Razin, D. S. Reimer, P. Reinhold, J. Rondon, O. Shabestari, M. Shahinyan, A. Shestermanov, K. Sirca, S. Sitnik, I. Smykov, L. Smith, G. Solovyev, L. Solvignon, P. Subedi, R. Tomasi-Gustafsson, E. Vasiliev, A. Veilleux, M. Wojtsekhowski, B. B. Wood, S. Ye, Z. Zanevsky, Y. Zhang, X. Zhang, Y. Zheng, X. Zhu, L. TI Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q(2)=8.5 GeV2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCATTERING AB Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q(2) = 5.2, 6.7, and 8.5 GeV2. By extending the range of Q(2) for which G(E)(P) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime. C1 [Puckett, A. J. R.; Bertozzi, W.; Gilad, S.; Huang, J.; Moffit, B.; Zhu, L.] MIT, Cambridge, MA 02139 USA. [Brash, E. J.; Carter, P.; Jensen, E.; Marsh, A.; Pierce, W.; Prok, Y.; Veilleux, M.] Christopher Newport Univ, Newport News, VA 23606 USA. [Brash, E. J.; Jones, M. K.; Bosted, P.; Covrig, S.; Ent, R.; Fenker, H.; Gaskell, D.; Gilman, R.; Higinbotham, D. W.; Horn, T.; Meekins, D.; Smith, G.; Wojtsekhowski, B. B.; Wood, S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Luo, W.; Hu, B.; Zhang, X.; Zhang, Y.] Lanzhou Univ, Lanzhou 730000, Gansu, Peoples R China. [Meziane, M.; Pentchev, L.; Perdrisat, C. F.] Coll William & Mary, Williamsburg, VA 23187 USA. [Punjabi, V.; Wesselmann, F. R.; Hinton, W.; Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA. [Ahmidouch, A.; Danagoulian, S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Albayrak, I.; Christy, E.; Keppel, C.; Kohl, M.; Li, Y.; Ye, Z.] Hampton Univ, Hampton, VA 23668 USA. [Aniol, K. A.; Cornejo, J. C.; Margaziotis, D. J.; Moreno, O.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Arrington, J.; Hafidi, K.; Reimer, P.; Solvignon, P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Asaturyan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Baghdasaryan, H.; Commisso, M.; Day, D.; Frlez, E.; Mamyan, V.; Maxwell, J.; Mulholland, J.; Rondon, O.; Shabestari, M.; Subedi, R.; Zheng, X.] Univ Virginia, Charlottesville, VA 22904 USA. [Benmokhtar, F.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Bimbot, L.; Tomasi-Gustafsson, E.] CNRS IN2P3, Inst Phys Nucl, Orsay, France. [Bimbot, L.; Tomasi-Gustafsson, E.] Univ Paris 11, Orsay, France. [Boeglin, W.; Dhamija, S.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Butuceanu, C.; Huber, G. M.] Univ Regina, Regina, SK S4S OA2, Canada. [Chernenko, S.; Kirillov, D.; Piskunov, N. M.; Razin, D. S.; Sitnik, I.; Smykov, L.; Zanevsky, Y.] JINR LHE, Dubna 141980, Moscow Region, Russia. [Daniel, A.; King, P.] Ohio Univ, Athens, OH 45701 USA. [Davidenko, A.; Goncharenko, Y.; Kravtsov, V.; Matulenko, Y.; Melnik, Y.; Shestermanov, K.; Solovyev, L.; Vasiliev, A.] IHEP, Protvino 142284, Moscow Region, Russia. [Dutta, D.; Narayan, A.; Nuruzzaman] Mississippi State Univ, Starkville, MS 39762 USA. [Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [Gilman, R.; Kumbartzki, G.; Ransome, R. D.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Hamilton, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Mbianda, G.] Univ Witwatersrand, Johannesburg, South Africa. [Miller, J.] Univ Maryland, College Pk, MD 20742 USA. [Nedev, S.] Univ Chem Technol & Met, BU-1756 Sofia, Bulgaria. [Piasetzky, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Sirca, S.] Univ Ljubljana, SI-1000 Ljubljana, Slovenia. [Tomasi-Gustafsson, E.] SPhN, DSM, IRFU, F-91191 Gif Sur Yvette, France. RP Puckett, AJR (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM puckett@jlab.org RI Arrington, John/D-1116-2012; Narayan, Amrendra/Q-3243-2016; Rondon Aramayo, Oscar/B-5880-2013; Ye, Zhihong/E-6651-2017; Frlez, Emil/B-6487-2013; Reimer, Paul/E-2223-2013; Mamyan, Vahe/K-4778-2012; Higinbotham, Douglas/J-9394-2014; Day, Donal/C-5020-2015 OI Cornejo, Juan Carlos/0000-0002-0124-3237; Arrington, John/0000-0002-0702-1328; Narayan, Amrendra/0000-0003-3814-9559; Ye, Zhihong/0000-0002-1873-2344; King, Paul/0000-0002-3448-2306; Higinbotham, Douglas/0000-0003-2758-6526; Day, Donal/0000-0001-7126-8934 FU U.S. Department of Energy [DE-AC05-06OR23177]; U.S. National Science Foundation; Italian Institute for Nuclear Research; French Commissariat a l'Energie Atomique and Centre National de la Recherche Scientifique (CNRS); Natural Sciences and Engineering Research Council of Canada FX The collaboration thanks the Hall C technical staff and the Jefferson Lab Accelerator Division for their outstanding support during the experiment. This work was supported in part by the U.S. Department of Energy, the U.S. National Science Foundation, the Italian Institute for Nuclear Research, the French Commissariat a l'Energie Atomique and Centre National de la Recherche Scientifique (CNRS), and the Natural Sciences and Engineering Research Council of Canada. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 30 TC 150 Z9 150 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 18 PY 2010 VL 104 IS 24 AR 242301 DI 10.1103/PhysRevLett.104.242301 PG 6 WC Physics, Multidisciplinary SC Physics GA 729DL UT WOS:000287928600003 PM 20873943 ER PT J AU Yokoyama, T Balatsky, AV Nagaosa, N AF Yokoyama, Takehito Balatsky, Alexander V. Nagaosa, Naoto TI Gate-Controlled One-Dimensional Channel on the Surface of a 3D Topological Insulator SO PHYSICAL REVIEW LETTERS LA English DT Article ID HGTE QUANTUM-WELLS; LUTTINGER-LIQUID; CONDUCTANCE; BARRIER; PHASE; FIELD; MODEL; GAS AB We investigate the formation of one-dimensional channels on the topological surface under the gate electrode. The energy dispersion of these channels is almost linear in momentum, and its velocity and sign are sensitively dependent on the strength of the gate voltage. Consequently, the local density of states near the gated region has an asymmetric structure with respect to zero energy. In the presence of the electron-electron interaction, the correlation effect can be tuned by the gate voltage. We also suggest a tunneling experiment to verify the presence of these bound states. C1 [Yokoyama, Takehito] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nagaosa, Naoto] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Nagaosa, Naoto] RIKEN, Cross Correlated Mat Res Grp CMRG, ASI, Wako, Saitama 3510198, Japan. RP Yokoyama, T (reprint author), Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. RI Yokoyama, Takehito/B-8695-2012; Nagaosa, Naoto/G-7057-2012 FU Ministry of Education, Culture, Sports, Science, and Technology of Japan [17071007, 17071005, 19048008, 19048015, 21244053]; JSPS; U.S. DOE through LDRD; U.S. DOE through BES FX This work is supported by Grant-in-Aid for Scientific Research (Grants No. 17071007, No. 17071005, No. 19048008, No. 19048015, and No. 21244053) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. T. Y. acknowledges support by JSPS. Work at Los Alamos was supported by the U.S. DOE through LDRD and BES (A. V. B). NR 46 TC 16 Z9 17 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 18 PY 2010 VL 104 IS 24 AR 246806 DI 10.1103/PhysRevLett.104.246806 PG 4 WC Physics, Multidisciplinary SC Physics GA 729DL UT WOS:000287928600009 PM 20867326 ER PT J AU Grabber, JH Schatz, PF Kim, H Lu, FC Ralph, J AF Grabber, John H. Schatz, Paul F. Kim, Hoon Lu, Fachuang Ralph, John TI Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability SO BMC PLANT BIOLOGY LA English DT Article ID FERULATE CROSS-LINKING; HORSERADISH-PEROXIDASE; CONIFERYL ALCOHOL; (-)-EPIGALLOCATECHIN GALLATE; HYDROXYCINNAMIC ACIDS; CAD-DEFICIENT; MAIZE WALLS; DEGRADABILITY; OXIDATION; SINAPYL AB Background: Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results: In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation. Conclusion: Overall, monolignol substitutes improved the inherent degradability of non-pretreated cell walls by restricting lignification or possibly by reducing lignin hydrophobicity or cross-linking to structural polysaccharides. Furthermore some monolignol substitutes, chiefly readily cleaved bi-phenolic conjugates like epigallocatechin gallate or diferuloyl polyol esters, are expected to greatly boost the enzymatic degradability of cell walls following chemical pretreatment. In ongoing work, we are characterizing the enzymatic saccharification of intact and chemically pretreated cell walls lignified by these and other monolignol substitutes to identify promising genetic engineering targets for improving plant fiber utilization. C1 [Grabber, John H.; Schatz, Paul F.] ARS, US Dairy Forage Res Ctr, USDA, Madison, WI 53706 USA. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53705 USA. RP Grabber, JH (reprint author), ARS, US Dairy Forage Res Ctr, USDA, Madison, WI 53706 USA. EM john.grabber@ars.usda.gov FU USDA-ARS; Stanford University FX The authors thank Christy Davidson and Len Strozinski for skill and persistence in running cell wall fermentation studies and Ronald Hatfield for helpful discussions regarding candidate monolignol substitutes for use in this study. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable. This work was funded primarily by USDA-ARS in house funds and by a grant to JR from Stanford University's Global Climate and Energy Project (GCEP). NR 56 TC 40 Z9 41 U1 5 U2 32 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD JUN 17 PY 2010 VL 10 AR 114 DI 10.1186/1471-2229-10-114 PG 13 WC Plant Sciences SC Plant Sciences GA 626IV UT WOS:000279960500001 PM 20565789 ER PT J AU Schwartz, CP Uejio, JS Duffin, AM Drisdell, WS Smith, JD Saykally, RJ AF Schwartz, Craig P. Uejio, Janel S. Duffin, Andrew M. Drisdell, Walter S. Smith, Jared D. Saykally, Richard J. TI Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HYDROGEN-BOND NETWORK; 1ST COORDINATION SHELL; METAL-IONS; ELECTROLYTE-SOLUTIONS; RAMAN-SPECTROSCOPY; WATER; CHLORIDE; DIFFRACTION; HYDRATION; BROMIDE AB X-ray absorption spectra of 1 M aqueous solutions of indium(III) chloride, yttrium(III) bromide, lanthanum( III) chloride, tin(IV) chloride and chromium(III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl(4) and CrCl(3) exhibit a new onset feature, which in the case of SnCl4 can probably be attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions. (C) 2010 Published by Elsevier B.V. C1 [Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, D31 Hildebrand, Berkeley, CA 94720 USA. EM saykally@berkeley.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX This research was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. We thank the Advanced Light Source support staff, especially Jonathan Denlinger, Wanli Yang and Jonathan Spear for their support. We would like to thank Prof. C.D. Cappa for useful discussions. NR 31 TC 3 Z9 3 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 17 PY 2010 VL 493 IS 1-3 BP 94 EP 96 DI 10.1016/j.cplett.2010.05.037 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 608OA UT WOS:000278592400018 ER PT J AU Beste, A AF Beste, Ariana TI One-dimensional anharmonic oscillator: Quantum versus classical vibrational partition functions SO CHEMICAL PHYSICS LETTERS LA English DT Article ID WIGNER-KIRKWOOD EXPANSION; HYDROGEN ABSTRACTION REACTION; PHENETHYL PHENYL ETHERS; AB-INITIO; ALPHA/BETA-SELECTIVITIES; COMPUTATIONAL PREDICTION; BOLTZMANN DENSITIES; PERTURBATION-THEORY; INTERNAL-ROTATION; ENERGY-LEVELS AB We analyze vibrational partition functions of low vibrational modes within the independent mode approximation to gain insight pertinent to the development of anharmonic corrections for transition state rate constants. As an example, we use a transition state for hydrogen abstraction on a lignin model compound. We found that for low frequencies, anharmonic effects are far more important than quantum effects. Our results suggest a hybrid model, where low-frequency modes are treated fully coupled using the classical or the Wigner-Kirkwood approximation, while high frequencies are described by the harmonic approximation. Mid-range frequencies could be expressed as independent anharmonic quantum modes. (C) 2010 Elsevier B. V. All rights reserved. C1 Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Beste, A (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, POB 2008, Oak Ridge, TN 37831 USA. EM bestea@ornl.gov OI Beste, Ariana/0000-0001-9132-792X FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy; Center for Computational Sciences at Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. This research was performed in part using the resources of the Center for Computational Sciences at Oak Ridge National Laboratory under Contract DE-AC05-00OR22725. NR 38 TC 4 Z9 4 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 17 PY 2010 VL 493 IS 1-3 BP 200 EP 205 DI 10.1016/j.cplett.2010.05.036 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 608OA UT WOS:000278592400039 ER PT J AU Oglesby, RJ Sever, TL Saturno, W Erickson, DJ Srikishen, J AF Oglesby, Robert J. Sever, Thomas L. Saturno, William Erickson, David J., III Srikishen, Jayanthi TI Collapse of the Maya: Could deforestation have contributed? SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MONTANE CLOUD FORESTS; LOWLAND DEFORESTATION; CLIMATIC IMPACT; CENTRAL-AMERICA; LAND-USE; DROUGHT; MODEL; SIMULATION; CIVILIZATION; RAINFALL AB The collapse of the Maya civilization during the ninth century A. D. is a major conundrum in the history of mankind. This civilization reached a spectacular peak but then almost completely collapsed in the space of a few decades. While numerous explanations have been put forth to explain this collapse, in recent years, drought has gained favor. This is because water resources were a key for the Maya, especially to ensure their survival during the lengthy dry season that occurs where they lived. Natural drought is a known, recurring feature of this region, as evidenced by observational data, reconstructions of past times, and global climate model output. Results from simulations with a regional climate model demonstrate that deforestation by the Maya also likely induced warmer, drier, drought-like conditions. It is therefore hypothesized that the drought conditions devastating the Maya resulted from a combination of natural variability and human activities. Neither the natural drought or the human-induced effects alone were sufficient to cause the collapse, but the combination created a situation the Maya could not recover from. These results may have sobering implications for the present and future state of climate and water resources in Mesoamerica as ongoing massive deforestation is again occurring. C1 [Oglesby, Robert J.] Univ Nebraska, Dept Geosci, Lincoln, NE 68588 USA. [Sever, Thomas L.] Univ Alabama Huntsville, Dept Atmospher Sci, Huntsville, AL 35805 USA. [Saturno, William] Boston Univ, Dept Archaeol, Boston, MA 02215 USA. [Erickson, David J., III] Oak Ridge Natl Lab, Computat Earth Sci Grp, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Srikishen, Jayanthi] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35805 USA. RP Oglesby, RJ (reprint author), Univ Nebraska, Dept Geosci, 214 Bessey Hall, Lincoln, NE 68588 USA. EM roglesby2@unl.edu FU NASA [62-622-03-74] FX This work was funded by NASA grant 62-622-03-74/Investigation into the Ecological and Climatic Effects of Past and Present Human Activity in the Central American Region, with Sever and Oglesby as PIs. NR 35 TC 20 Z9 20 U1 2 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 17 PY 2010 VL 115 AR D12106 DI 10.1029/2009JD011942 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 613NW UT WOS:000278987000001 ER PT J AU Kanani, SJ Arridge, CS Jones, GH Fazakerley, AN McAndrews, HJ Sergis, N Krimigis, SM Dougherty, MK Coates, AJ Young, DT Hansen, KC Krupp, N AF Kanani, S. J. Arridge, C. S. Jones, G. H. Fazakerley, A. N. McAndrews, H. J. Sergis, N. Krimigis, S. M. Dougherty, M. K. Coates, A. J. Young, D. T. Hansen, K. C. Krupp, N. TI A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND CONTROL; BOW SHOCK; JOVIAN MAGNETOPAUSE; SHAPE; LOCATION AB The shape and location of a planetary magnetopause can be determined by balancing the solar wind dynamic pressure with the magnetic and thermal pressures found inside the boundary. Previous studies have found the kronian magnetosphere to show rigidity (like that of Earth) as well as compressibility (like that of Jupiter) in terms of its dynamics. In this paper we expand on previous work and present a new model of Saturn's magnetopause. Using a Newtonian form of the pressure balance equation, we estimate the solar wind dynamic pressure at each magnetopause crossing by the Cassini spacecraft between Saturn Orbit Insertion in June 2004 and January 2006. We build on previous findings by including an improved estimate for the solar wind thermal pressure and include low-energy particle pressures from the Cassini plasma spectrometer's electron spectrometer and high-energy particle pressures from the Cassini magnetospheric imaging instrument. Our improved model has a size-pressure dependence described by a power law D(P)(-1/5.0 +/- 0.8). This exponent is consistent with that derived from numerical magnetohydrodynamic simulations. C1 [Kanani, S. J.; Arridge, C. S.; Jones, G. H.; Fazakerley, A. N.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Krimigis, S. M.] Johns Hopkins Univ, Appl Phys Lab, Baltimore, MD 21218 USA. [Hansen, K. C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Krupp, N.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [McAndrews, H. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, London SW7 2BZ, England. [Sergis, N.] Acad Athens, Athens 10679, Greece. [Young, D. T.] SW Res Inst, San Antonio, TX 78238 USA. [Kanani, S. J.; Arridge, C. S.; Jones, G. H.; Coates, A. J.] Univ London Birkbeck Coll, Ctr Planetary Sci, London WC1E 7HX, England. RP Kanani, SJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM sk2@mssl.ucl.ac.uk RI Arridge, Christopher/A-2894-2009; Hansen, Kenneth/F-3693-2011; Coates, Andrew/C-2396-2008; Jones, Geraint/C-1682-2008; Sergis, Nick/A-9881-2015; OI Arridge, Christopher/0000-0002-0431-6526; Hansen, Kenneth/0000-0002-8502-1980; Coates, Andrew/0000-0002-6185-3125; Jones, Geraint/0000-0002-5859-1136 FU STFC; U. S. DOE; NASA FX S.J.K. would like to thank the coauthors for useful comments and discussions. S.J.K. would like to thank G. R. Lewis and L. K. Gilbert for their continued work and assistance with ELS data and software. We would like to thank S. Kellock, P. Slootweg, and L. Alconcel at Imperial College London for MAG data processing. Cassini CAPS/ELS and MAG data processing activities are supported in the United Kingdom by STFC. S.J.K. was supported in this work by a STFC Ph.D. Studentship. C.S.A., A.N.F., and A.J.C. were supported by the STFC rolling grant to MSSL/UCL. G.H.J. was supported by an STFC Advanced Fellowship. The work at Los Alamos was performed under the auspices of the U. S. DOE and was supported by the NASA Cassini program. NR 27 TC 84 Z9 84 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 17 PY 2010 VL 115 AR A06207 DI 10.1029/2009JA014262 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 613PT UT WOS:000278992100001 ER PT J AU Gibbs, GV Wallace, AF Zallen, R Downs, RT Ross, NL Cox, DF Rosso, KM AF Gibbs, G. V. Wallace, A. F. Zallen, R. Downs, R. T. Ross, N. L. Cox, D. F. Rosso, K. M. TI Bond Paths and van der Waals Interactions in Orpiment, As2S3 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CRYSTAL-STRUCTURES; MOLECULAR RECOGNITION; OPTICAL-PROPERTIES; CHARGE-DENSITY; CHEMICAL-BOND; REFINEMENT; PRESSURE; ATOMS AB The calculated electron density distribution for orpiment, As2S3, reveals that As-S, S-S, and As-As bond paths are associated with the experimental interlayer directed bonded interactions detected in a combined infrared and Raman study. The successful modeling of the infrared- and Raman-determined interlayer bonded interactions together with bond paths and the structuralization of a variety of inorganic molecules in terms of "key-lock" bond path mainstays support the argument that van der Waals forces in inorganic molecular crystals are directional. C1 [Gibbs, G. V.; Ross, N. L.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Gibbs, G. V.] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Gibbs, G. V.] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA. [Zallen, R.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Cox, D. F.] Virginia Tech, Dept Chem Engn, Blacksburg, VA 24061 USA. [Wallace, A. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Downs, R. T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Rosso, K. M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Rosso, K. M.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Gibbs, GV (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RI Wallace, Adam/A-9976-2012 FU National Science Foundation; U.S. Department of Energy [EaR-0609885, EAR-0609906, DE-FG02-97ER14751, DEaC06-76RLO 1830]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Geoscience Division; Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL); U.S. DOE Office of Biological and Environmental Research FX The National Science Foundation and the U.S. Department of Energy are thanked for supporting this study with Grants EaR-0609885 (N.L.R. and G.V.G.), EAR-0609906 (R.T.D.), and DE-FG02-97ER14751 (D.F.C.). K.M.R. acknowledges a grant from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Geoscience Division, and computational facilities and support from the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The computations were performed in part at the EMSL at PNNL. The EMSL is a national scientific user facility sponsored by the U.S. DOE Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under contract DEaC06-76RLO 1830. We are grateful to one of the reviewers for suggesting that a section be added to the manuscript for the benefit of the "nonspecialist reader" that emphasizes that bond paths are indicative of bonded interactions, not chemical bonds. This suggestion resulted in a substantial improvement in the manuscript. G.V.G. also wishes to thank Professors Richard F.W. Bader at McMaster University, NR 39 TC 6 Z9 6 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 17 PY 2010 VL 114 IS 23 BP 6550 EP 6557 DI 10.1021/jp102391a PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 607DY UT WOS:000278480200013 PM 20499911 ER PT J AU Huang, YP Yu, HL Guo, LA Huang, QR AF Huang, Yuping Yu, Hailong Guo, Liang Huang, Qingrong TI Structure and Self-Assembly Properties of a New Chitosan-Based Amphiphile SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID WATER-SOLUBLE CHITOSAN; ACID-MODIFIED CHITOSAN; GENE DELIVERY-SYSTEM; CHEMICAL-MODIFICATION; GRAFTED CHITOSAN; MICHAEL REACTION; AQUEOUS-SOLUTION; PEG; DERIVATIVES; FLUORESCENCE AB A new chitosan-based amphiphile, octanoyl-chitosan-polyethylene glycol monomethyl ether (acylChitoMPEG), has been prepared using both hydrophobic octanoyl and hydrophilic polyethylene glycol monomethyl ether (MPEG) substitutions. The success of synthesis was confirmed by Fourier transform infrared (FT-IR) and (1)H NMR spectroscopy. The synthesized acylChitoMPEG exhibited good solubility in either aqueous solution or common organic solvents such as ethanol, acetone, and CHCl(3). The self-aggregation behavior of acylChitoMPEG in solutions was studied by a combination of pyrene fluorescence technique, dynamic light scattering, atomic force microscopy, and small-angle X-ray scattering (SAXS). The critical aggregation concentration (CAC) and hydrodynamic diameter were found to be 0.066 mg/mL and 24.4 nm, respectively. SAXS results suggested a coiled structure of the triple helical acylChitoMPEG backbone with the hydrophobic moieties hiding in the center of the backbone, and the hydrophilic MPEG chains surrounding the acylChitoMPEG backbone in a random Gaussian chain conformation. Cytotoxicity results showed that acylChitoMPEG exhibited negligible cytotoxicity even at concentrations as high as 1.0 mg/mL. All results implied that acylChitoMPEG has the potential to be used for biological or medical applications. C1 [Huang, Yuping; Yu, Hailong; Huang, Qingrong] Rutgers State Univ, Dept Food Sci, New Brunswick, NJ 08901 USA. [Guo, Liang] IIT, BioCAT APS Argonne Natl Lab, Argonne, IL 60439 USA. RP Huang, QR (reprint author), Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901 USA. EM qhuang@aesop.rutgers.edu RI yu, hailong/F-7716-2011; ID, BioCAT/D-2459-2012 FU United States Department of Agriculture National Research Initiative [2009-35603-05071]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38] FX We thank Professor Jozef Kokini for the use of DSC. This work was supported by United States Department of Agriculture National Research Initiative (#2009-35603-05071). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract No. W-31-109-ENG-38. BioCAT is a National Institutes of Health-supported Research Center RR-08630. NR 43 TC 16 Z9 18 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 17 PY 2010 VL 114 IS 23 BP 7719 EP 7726 DI 10.1021/jp9122216 PG 8 WC Chemistry, Physical SC Chemistry GA 607DV UT WOS:000278479900003 PM 20481638 ER PT J AU An, JS Noh, JH Cho, IS Roh, HS Kim, JY Han, HS Hong, KS AF An, Jae-Sul Noh, Jun Hong Cho, In-Sun Roh, Hee-Suk Kim, Jin Young Han, Hyun Soo Hong, Kug Sun TI Tailoring the Morphology and Structure of Nanosized Zn2SiO4: Mn2+ Phosphors Using the Hydrothermal Method and Their Luminescence Properties SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZINC SILICATE PHOSPHORS; SOL-GEL METHOD; OPTICAL-PROPERTIES; LOW-TEMPERATURE; GREEN PHOSPHOR; DOPED ZN2SIO4; NANOCRYSTALS; NANOPARTICLES; PRESSURES; PARTICLES AB Mn2+-doped Zn2SiO4 phosphors with nanoellipsoid or nanowire morphologies were synthesized at low temperature <200 degrees C by a hydrothermal method without any surfactants. The morphologies of the phosphors were easily tailored by varying the amount of hydroxide ions in the precursor solution before the hydrothermal reaction. Absolute ethanol was used as a solvent instead of distilled water to explore the effects of hydroxide ions on the morphology and crystal structure. We adjusted the amount of hydroxide ions by changing the pH of the precursor solution. Sheaves of powders with an ellipsoid shape were synthesized at low pH values of 7 and 9, at which only a few hydroxide ions were present, whereas powders with a nanowire shape were produced at a high pH of 11, at which many hydroxide ions were present. In addition to its morphology, the hydroxide ions also affect the crystal structure of the synthesized powder. Whereas a Zn2SiO4 phase with a willemite structure was formed at pH 7 and 9, a Zn4Si2O7(OH)(2)center dot H2O phase with a hemimorphite structure was formed at pH 11. The as-prepared powders with a willemite structure showed an intense green emission (lambda = 525 nm) under 254 nm excitation, whereas the as-prepared powders with a hemimorphite structure did not show any emission. However, all of the powders showed a willemite structure while retaining their original shape after annealing at 900 degrees C under a reducing atmosphere. The annealed sheaves of willemite with an ellipsoid shape showed a more intense green emission with a longer decay time than the phase-transformed willemite nanowires. These results were discussed in terms of the surface defects and dopant concentration. C1 [An, Jae-Sul; Noh, Jun Hong; Cho, In-Sun; Roh, Hee-Suk; Han, Hyun Soo; Hong, Kug Sun] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Kim, Jin Young] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Hong, KS (reprint author), Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea. EM kshongss@plaza.snu.ac.kr RI Kim, Jin Young/B-7077-2012; Cho, In Sun/H-6557-2011; OI Kim, Jin Young/0000-0001-7728-3182; Cho, In Sun/0000-0001-5622-7712 FU Korea government (MOST) [R01-2007-000-11075-0]; Ministry of Knowledge Economy FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (R01-2007-000-11075-0) and Strategic Technology Development Project of the Ministry of Knowledge Economy. NR 35 TC 29 Z9 30 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 17 PY 2010 VL 114 IS 23 BP 10330 EP 10335 DI 10.1021/jp911731s PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 607DT UT WOS:000278479700002 ER PT J AU Lee, S Lee, B Mehmood, F Seifert, S Libera, JA Elam, JW Greeley, J Zapol, P Curtiss, LA Pellin, MJ Stair, PC Winans, RE Vajda, S AF Lee, Sungsik Lee, Byeongdu Mehmood, Faisal Seifert, Soenke Libera, Joseph A. Elam, Jeffrey W. Greeley, Jeffrey Zapol, Peter Curtiss, Larry A. Pellin, Michael J. Stair, Peter C. Winans, Randall E. Vajda, Stefan TI Oxidative Decomposition of Methanol on Subnanometer Palladium Clusters: The Effect of Catalyst Size and Support Composition SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IN-SITU GISAXS; TOTAL-ENERGY CALCULATIONS; FILM MODEL CATALYSTS; DIMETHYL ETHER DME; O-SIL CATALYSTS; WAVE BASIS-SET; MOLECULAR-BEAM; SURFACE REACTIVITY; PLATINUM CLUSTERS; NANOPARTICLES AB Size and support effects in the oxidative decomposition of methanol on amorphous alumina supported subnanometer palladium clusters were studied under realistic reaction conditions of pressure and temperature. The smaller Pd(8-12) clusters were found to promote the decomposition channel to CO and hydrogen, however with mediocre activity due to poisoning. The larger Pd(15-18) clusters preferentially produce dimethyl ether and formaldehyde, without signs of posioning. A thin titania overcoat applied on the Pd(15-18) improves the sintering-resistance of the catalyst. Accompanying density functional calculations confirm the posioning of small Pd clusters by CO. C1 [Mehmood, Faisal; Zapol, Peter; Curtiss, Larry A.; Pellin, Michael J.; Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lee, Sungsik; Stair, Peter C.; Vajda, Stefan] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, Byeongdu; Seifert, Soenke; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Libera, Joseph A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Greeley, Jeffrey; Curtiss, Larry A.; Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Vajda, Stefan] Yale Univ, Sch Engn & Appl Sci, Dept Chem Engn, New Haven, CT 06520 USA. RP Vajda, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vajda@anl.gov RI Pellin, Michael/B-5897-2008; Zapol, Peter/G-1810-2012; OI Pellin, Michael/0000-0002-8149-9768; Zapol, Peter/0000-0003-0570-9169; Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy, BES-Chemical Sciences, Materials Sciences, and BES-Scientific User Facilities [DE-AC-02-06CH11357] FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, BES-Chemical Sciences, Materials Sciences, and BES-Scientific User Facilities under Contract DE-AC-02-06CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. We gratefully acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory. NR 57 TC 46 Z9 46 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 17 PY 2010 VL 114 IS 23 BP 10342 EP 10348 DI 10.1021/jp912220w PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 607DT UT WOS:000278479700004 ER PT J AU Pu, Q Leng, YS Zhao, XC Cummings, PT AF Pu, Qing Leng, Yongsheng Zhao, Xiongce Cummings, Peter T. TI Molecular Simulation Studies on the Elongation of Gold Nanowires in Benzenedithiol SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSPORT-PROPERTIES; ELECTRON-TRANSPORT; AU(111) SURFACE; CONDUCTANCE; DYNAMICS; JUNCTIONS; ADSORPTION; THIOL; MECHANISM; CLUSTERS AB The bonding geometry at the metal molecule interface plays an important role in determining the conductance behavior of metal molecule metal junctions. This bonding geometry has to be determined a priori in quantum mechanical current voltage (I-V) calculations. To identify the detailed metal molecule bonding configurations, we perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) to explore the dynamic elongations of gold nanowires in the presence of benzenedithiol (BDT) molecules. A specific multitime-scale double reversible reference system propagator algorithm (double-RESPA) has been designed for the metal organic complex in MD simulations to improve the simulation efficiency. We investigate the variations of bonding sites and bonding angles of BDT molecules on a stretched Au nanowire at a constant chemical potential. The density of BDT and the number of bonded and nonbonded BDT molecules in the simulation box is monitored during the entire elongation process. Simulation results show that BDT molecules can form a denser monolayer on Au nanowires than at the Au (111) surface, owing to the many atomic steps on curved surfaces. Moreover, the chemical bonding of BDT on the Au nanowire significantly effect the elongation behavior of Au nanowires compared with those in vacuum. Our present results will be valuable to the understanding of the broken junction mechanism in molecular electronics conductance measurements. C1 [Leng, Yongsheng] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA. [Pu, Qing; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Zhao, Xiongce; Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanomat Theory Inst, Oak Ridge, TN 37831 USA. RP Leng, YS (reprint author), George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA. EM leng@gwu.edu RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 FU U.S. Department of Energy (DOE) Office of Science; National Energy Research Scientific Computing Center (NERSC) FX This work was supported by the U.S. Department of Energy (DOE) Office of Science the Computational Nanoscience project, and also by the National Energy Research Scientific Computing Center (NERSC). NR 38 TC 13 Z9 13 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 17 PY 2010 VL 114 IS 23 BP 10365 EP 10372 DI 10.1021/jp101689u PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 607DT UT WOS:000278479700007 ER PT J AU Murugesan, S Huda, MN Yan, YF Al-Jassim, MM Subramanian, V AF Murugesan, Sankaran Huda, Muhammad N. Yan, Yanfa Al-Jassim, Mowafak M. Subramanian, Vaidyanathan (Ravi) TI Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EFFECTIVE IONIC-RADII; ANATASE TIO2; OXIDE PHOTOCATALYSTS; HYDROGEN-PRODUCTION; THIN-FILMS; DOPED-TIO2 PHOTOCATALYSTS; PEROVSKITE STRUCTURES; ELECTRONIC-STRUCTURE; SOLAR-CELLS; RARE-EARTH AB A density functional theory (DFT) study on stoichiometric bismuth titanate pyrochlore (Bi(2)Ti(2)O(7)-BTO) is presented. Pseudopotential plane wave calculations were carried out to determine band gaps, density of states (DOS), and partial density of states (PDOS) of BTO. The theoretically determined optical property of BTO with a direct band gap of 2.6 eV corresponds to a red shift of 70 nm in absorption activity compared to titanium dioxide (TiO(2)). A rationale has been developed to determine various possibilities of adding impurity elements within the BTO structure to enhance the visible light absorption. Mainly the effects of 3d element (Fe, Ni, Cr, Mn, and V) substitution in the crystal structure of BTO at the titanium position have been the focus of this study. The substitution of these elements shows the formation of different midgap states which indicates the flexibility of the BTO structure to tunability. Among the elements studied, Fe substitution showed a shift in the valence band toward the conduction band. This band gap reduction may facilitate a better electron transfer process. These theoretical results suggest that BTO can be a promising candidate for photocatalytic applications, such as solar-assisted water splitting reactions. C1 [Murugesan, Sankaran; Subramanian, Vaidyanathan (Ravi)] Univ Nevada, Dept Chem & Met Engn, Reno, NV 89557 USA. [Huda, Muhammad N.; Yan, Yanfa; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Subramanian, V (reprint author), Univ Nevada, Dept Chem & Met Engn, Room 310,LMR 474,Mail Stop 388, Reno, NV 89557 USA. EM ravisv@unr.edu RI Huda, Muhammad/C-1193-2008; murugesan, sankaran/A-1157-2010; Dom, Rekha/B-7113-2012 OI Huda, Muhammad/0000-0002-2655-498X; FU University of Nevada, Reno Office, of the Vice President for Research; U.S. Department of Energy [DE-AC36-08GO28308] FX This work was performed with the funding provided by the University of Nevada, Reno Office, of the Vice President for Research as a part of a junior faculty startup package and an internal competitive junior faculty research grant. V.S. thanks the Office of Vice-President for Research for the funding. The work of Y.Y., and M.M.A. was supported by the U.S. Department of Energy under Contract # DE-AC36-08GO28308. The authors thank the reviewers for valuable insights on this work. NR 72 TC 44 Z9 44 U1 19 U2 207 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 17 PY 2010 VL 114 IS 23 BP 10598 EP 10605 DI 10.1021/jp906252r PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 607DT UT WOS:000278479700038 ER PT J AU Petrik, NG Kimmel, GA AF Petrik, Nikolay G. Kimmel, Greg A. TI Photoinduced Dissociation of O-2 on Rutile TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SURFACE-CHEMISTRY; MOLECULAR-OXYGEN; REDUCED TIO2(110); TIO2; PHOTOCATALYSIS; CHEMISORPTION; MECHANISMS; ADSORPTION; ADATOMS; SCIENCE AB Oxygen plays an important but often poorly understood, role in many photocatalytic processes. Here, we investigate the adsortption and photon-stimulated reactions of O-2 on reduced rutile TiO2 (110). After adsortption at 28K and anneling to 100 K, at least 85% of the O-2 has not dissociated. Typically less than 50% of this molecularly adsorbed O-2 desorbs via hole-mediated reactions during irradiation with ultraviolet (UV) photons. However, UV irradiation dissociates similar to 20-40% of the chemisorbed O-2, which we propose to occur through electron attachment reactions. In addition wealy bound (physisorbed) O-2 readily reacts with chemisorbed O-2 during UV irradiation. These results show that the photochemistry of oxygen on TiO2 (110) is both diverse and more complicated than previously appreciated. C1 [Petrik, Nikolay G.; Kimmel, Greg A.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, MSIN K8-88,POB 999, Richland, WA 99352 USA. EM gregory.kimmel@pnl.gov RI Petrik, Nikolay/G-3267-2015; OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical and Materials Sciences Division; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical and Materials Sciences Division. The work was performed at the W R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 24 TC 45 Z9 45 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUN 17 PY 2010 VL 1 IS 12 BP 1758 EP 1762 DI 10.1021/jz100513e PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 613FF UT WOS:000278963500002 ER PT J AU Bowman, JM Braams, BJ Carter, S Chen, C Czako, G Fu, B Huang, X Kamarchik, E Sharma, AR Shepler, BC Wang, Y Xie, Z AF Bowman, J. M. Braams, B. J. Carter, S. Chen, C. Czako, G. Fu, B. Huang, X. Kamarchik, E. Sharma, A. R. Shepler, B. C. Wang, Y. Xie, Z. TI Ab-Initio-Based Potential Energy Surfaces for Complex Molecules and Molecular Complexes SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DEUTERATED ANALOGS; INFRARED-SPECTRUM; POLYNOMIAL BASIS; DYNAMICS; CH5+; PHOTODISSOCIATION; MECHANISM; ACETALDEHYDE; COLLISIONS; QUANTUM AB The Born-Oppenheimer potential energy surface(s) underlies theoretical and computational chemistry (whether one considers a single or multiply coupled surfaces). The recent progress in representing these surfaces, rigorously obtained from electronic structure calculations, is the focus of this Perspective. Examples of potentials of complex molecules, namely, CH3CHO, CH5+, and H-5(+), and molecular complexes, namely, water clusters, are given. C1 [Bowman, J. M.; Braams, B. J.; Carter, S.; Chen, C.; Czako, G.; Fu, B.; Kamarchik, E.; Sharma, A. R.; Shepler, B. C.; Wang, Y.] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. [Bowman, J. M.; Braams, B. J.; Carter, S.; Chen, C.; Czako, G.; Fu, B.; Kamarchik, E.; Sharma, A. R.; Shepler, B. C.; Wang, Y.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Carter, S.] Univ Reading, Dept Chem, Reading RG6 2AD, Berks, England. [Huang, X.] SETI Inst, Mountain View, CA 94043 USA. [Kamarchik, E.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Xie, Z.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Bowman, JM (reprint author), Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. EM jmbowma@emory.edu RI Braams, Bastiaan/E-7687-2011; HUANG, XINCHUAN/A-3266-2013; Sharma, Amit/D-2604-2013; Xie, Zhen/A-5087-2009; chen, chao/D-2665-2014 OI Braams, Bastiaan/0000-0003-4086-9969; FU Office of Naval Research; Department of Energy; National Science Foundation FX Financial support from the Office of Naval Research, the Department of Energy, and the National Science Foundation is gratefully acknowledged. NR 48 TC 58 Z9 58 U1 6 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUN 17 PY 2010 VL 1 IS 12 BP 1866 EP 1874 DI 10.1021/jz100626h PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 613FF UT WOS:000278963500022 ER PT J AU Deng, JK Ding, XD Lookman, T Suzuki, T Otsuka, K Sun, J Saxena, A Ren, XB AF Deng, Junkai Ding, Xiangdong Lookman, Turab Suzuki, Tetsuro Otsuka, Kazuhiro Sun, Jun Saxena, Avadh Ren, Xiaobing TI Microscopic mechanism of martensitic stabilization in shape-memory alloys: Atomic-level processes SO PHYSICAL REVIEW B LA English DT Article ID RUBBER-LIKE BEHAVIOR; AU-CD ALLOYS; ZN ALLOY; TRANSFORMATION; DIFFRACTION; CRYSTALS; MODEL AB Aging in martensite, which is accompanied by a gradual change in physical properties, has been observed in most shape-memory alloys for more than half a century. However, its microscopic mechanism has remained controversial due to a lack of experiments that can probe the atomic-level processes. By using a method which combines molecular-dynamics and Monte Carlo simulations, we clarify the atomic mechanism for one of the well-observed martensitic aging effects, martensitic stabilization. We successfully reproduce the observed effects using our method. Quantitative analysis of the atomic configurations during aging reveals that martensite stabilization is not associated with a change in the average martensite structure. It involves instead a gradual change in the short-range order of point defects so that the defect short-range order tends to adopt the same "symmetry" as the crystal symmetry of the host martensite lattice. Our simulation results are consistent with the symmetry-conforming short-range order model [X. Ren and K. Otsuka, Nature (London) 389, 579 (1997)]. C1 [Deng, Junkai; Ding, Xiangdong; Sun, Jun] Xi An Jiao Tong Univ, Multidisciplinary Mat Res Ctr, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. [Deng, Junkai; Ding, Xiangdong; Sun, Jun] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Deng, Junkai; Suzuki, Tetsuro; Otsuka, Kazuhiro; Ren, Xiaobing] Natl Inst Mat Sci, Ferro Phys Grp, Tsukuba, Ibaraki 3050047, Japan. [Ding, Xiangdong; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ding, XD (reprint author), Xi An Jiao Tong Univ, Multidisciplinary Mat Res Ctr, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. EM dingxd@mail.xjtu.edu.cn; ren.xiaobing@nims.go.jp RI Ren, Xiaobing/B-6072-2009; Deng, Junkai/E-2315-2012; Ding, Xiangdong/K-4971-2013; OI Ren, Xiaobing/0000-0002-4973-2486; Ding, Xiangdong/0000-0002-1220-3097; Lookman, Turab/0000-0001-8122-5671 FU NSFC [50771079, 50720145101]; 973 Program of China [2010CB631003]; 111 Project; U.S. DOE at LANL [DE-AC52-06NA25396] FX We thank Y. Wang, Z. Zhang, and S. Li for stimulating discussions and useful suggestions. This work was supported by NSFC (Grants No. 50771079 and No. 50720145101), the 973 Program of China (Grant No. 2010CB631003), and 111 Project as well as the support from the U.S. DOE at LANL (Grant No. DE-AC52-06NA25396). NR 25 TC 12 Z9 12 U1 4 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 17 PY 2010 VL 81 IS 22 AR 220101 DI 10.1103/PhysRevB.81.220101 PG 4 WC Physics, Condensed Matter SC Physics GA 612CZ UT WOS:000278875700001 ER PT J AU Mong, RSK Essin, AM Moore, JE AF Mong, Roger S. K. Essin, Andrew M. Moore, Joel E. TI Antiferromagnetic topological insulators SO PHYSICAL REVIEW B LA English DT Article ID PHASE; POLARIZATION; REALIZATION AB We consider antiferromagnets breaking both time-reversal (Theta) and a primitive-lattice translational symmetry (T-1/2) of a crystal but preserving the combination S=Theta T-1/2. The S symmetry leads to a Z(2) topological classification of insulators, separating the ordinary insulator phase from the "antiferromagnetic topological insulator" phase. This state is similar to the "strong" topological insulator with time-reversal symmetry and shares with it such properties as a quantized magnetoelectric effect. However, for certain surfaces the surface states are intrinsically gapped with a half-quantum Hall effect [sigma(xy)=e(2)/(2h)], which may aid experimental confirmation of theta=pi quantized magnetoelectric coupling. Step edges on such a surface support gapless, chiral quantum wires. In closing we discuss GdBiPt as a possible example of this topological class. C1 [Mong, Roger S. K.; Essin, Andrew M.; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Mong, RSK (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0804413]; WIN FX The authors gratefully acknowledge discussions with S. Ryu, O. Yazyev, and D. Vanderbilt. The work was supported by NSF under Grant No. DMR-0804413 (R.M. and J.E.M.) and WIN (A.E.). NR 37 TC 94 Z9 94 U1 5 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 17 PY 2010 VL 81 IS 24 AR 245209 DI 10.1103/PhysRevB.81.245209 PG 10 WC Physics, Condensed Matter SC Physics GA 612EM UT WOS:000278879600002 ER PT J AU Reichhardt, CJO Reichhardt, C AF Reichhardt, C. J. Olson Reichhardt, C. TI Commensurability, jamming, and dynamics for vortices in funnel geometries SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTING FILMS; REGULAR ARRAY; LATTICES; FLOW; TRANSITION; REVERSALS; NANOPORES; DEFECTS; CALCIUM; PHASES AB With advances in fabrication technologies it is now possible to create precisely controlled geometries and pinning landscapes for vortex matter in type-II superconductors. Here we use numerical simulations to examine vortex states and dynamics in periodic funnel geometries where a drive is applied in the easy-flow direction. We show that this system exhibits a number of different commensurability effects when the vortex configurations match to both the periodicity of the array and the geometry of the funnels. The vortex configurations in this system are generally different from those observed for single isolated triangular superconducting samples due to the coupling of vortices in adjacent funnels. At certain matching fields, peaks in the critical current are absent due to the particular vortex configurations that occur at these fields. We find that the overall depinning force increases with increasing vortex density as a result of the enhanced vortex-vortex interactions caused by a crowding effect at the funnel tips. When a system becomes less mobile as a result of increased particle interactions, it is said to exhibit a jamming behavior. Under an applied drive we observe a series of elastic and plastic vortex flow phases which produce pronounced features such as jumps or dips in the transport curves. In all of the flow phases, only one vortex can pass through the funnel tip at a time due to the vortex-vortex repulsion forces. As a consequence of this constraint, we observe the remarkable result that the sum of the vortex velocities at a fixed drive remains nearly constant with increasing magnetic field B rather than increasing linearly. This result is similar to the behavior of sand in an hourglass. We also show how noise fluctuations can be used to distinguish the different flow phases. Our results should be readily generalizable to other systems of particles flowing in periodic funnel geometries, such as colloids or Wigner crystals. C1 [Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX We thank B. Plourde for helpful discussions. This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 58 TC 16 Z9 16 U1 3 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 17 PY 2010 VL 81 IS 22 AR 224516 DI 10.1103/PhysRevB.81.224516 PG 14 WC Physics, Condensed Matter SC Physics GA 612DG UT WOS:000278876400002 ER PT J AU Soderlind, P Landa, A Klepeis, JE Suzuki, Y Migliori, A AF Soederlind, Per Landa, Alex Klepeis, J. E. Suzuki, Y. Migliori, A. TI Elastic properties of Pu metal and Pu-Ga alloys SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; MEAN-FIELD THEORY; DELTA-PLUTONIUM; PRESSURE; MODULI; TEMPERATURE; MAGNETISM; GALLIUM; SYSTEMS; SOLIDS AB We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga (delta) alloys together with ab initio equilibrium equation of state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from alpha -> beta -> gamma plutonium, thus suggesting increasing f-electron correlation and a corresponding softening of the elastic moduli. For the delta-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants imply a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments. C1 [Soederlind, Per; Landa, Alex; Klepeis, J. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Suzuki, Y.; Migliori, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory in the National High Magnetic Field Laboratory; U.S. National Nuclear Security Administration [20070013]; National Science Foundation [DMR-0654118]; State of Florida FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Los Alamos National Laboratory in the National High Magnetic Field Laboratory. This work was also supported by the U.S. National Nuclear Security Administration under Grant No. 20070013, the National Science Foundation under Grant No. DMR-0654118, and the State of Florida. NR 49 TC 22 Z9 22 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 17 PY 2010 VL 81 IS 22 AR 224110 DI 10.1103/PhysRevB.81.224110 PG 9 WC Physics, Condensed Matter SC Physics GA 612DB UT WOS:000278875900002 ER PT J AU Zhang, LJ Singh, DJ AF Zhang, Lijun Singh, David J. TI Electronic structure and thermoelectric properties: PbBi2Te4 and related intergrowth compounds SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; TRANSPORT-PROPERTIES; LAYERED COMPOUNDS; SYSTEMS; BISMUTH; ALLOYS; NONSTOICHIOMETRY; TELLURIDE; EXCHANGE AB The layered PbTe:Bi2Te3 intergrowth compound, PbBi2Te4, and related materials are investigated using first-principles calculations and Boltzmann transport theory. The electronic structures of these compounds are closely related to those of the end points, especially Bi2Te3 but the band gaps are larger than those of Bi2Te3. The calculated thermopowers are comparable to those of Bi2Te3 at similar doping levels but extend to higher temperatures due to the larger band gaps with the implication that the thermoelectric performance of these compounds will be best at temperatures above the range of Bi2Te3. C1 [Zhang, Lijun; Singh, David J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 FU U.S. Department of Energy; Office of Vehicle Technologies; S3TEC Energy Frontier Research Center FX This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program (D.J.S.) and the S3TEC Energy Frontier Research Center (L.Z. and D.J.S.). NR 47 TC 20 Z9 21 U1 2 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 17 PY 2010 VL 81 IS 24 AR 245119 DI 10.1103/PhysRevB.81.245119 PG 8 WC Physics, Condensed Matter SC Physics GA 612EJ UT WOS:000278879300004 ER PT J AU Barone, V Melis, S Prokudin, A AF Barone, Vincenzo Melis, Stefano Prokudin, Alexei TI Boer-Mulders effect in unpolarized SIDIS: An analysis of the COMPASS and HERMES data on the cos2 phi asymmetry SO PHYSICAL REVIEW D LA English DT Article ID SPIN PRODUCTION ASYMMETRIES; DEEP-INELASTIC-SCATTERING; DRELL-YAN PROCESSES; AZIMUTHAL ASYMMETRY; TRANSVERSE-MOMENTUM; HARD-SCATTERING; PROTON-SCATTERING; ODD DISTRIBUTION; LEPTOPRODUCTION; DISTRIBUTIONS AB We present a phenomenological analysis of the cos2 phi asymmetry recently measured by the COMPASS and HERMES collaborations in unpolarized semi-inclusive deep inelastic scattering. In the kinematical regimes explored by these experiments the asymmetry arises from transverse-spin and intrinsic transverse-momentum effects. We consider the leading-twist contribution, related to the so-called Boer-Mulders transverse-polarization distribution h(1)(perpendicular to)(x, k(2)(T)), and the twist-4 Cahn contribution, involving unpolarized transverse-momentum distribution functions. We show that a reasonably good fit of the preliminary data sets from COMPASS and HERMES is achieved with a Boer-Mulders function consistent with the main theoretical expectations. Our conclusion is that the COMPASS and HERMES measurements represent the first experimental evidence of the Boer-Mulders effect in SIDIS. C1 [Barone, Vincenzo; Melis, Stefano] Univ Piemonte Orientale, DiSTA, I-15121 Alessandria, Italy. [Barone, Vincenzo; Melis, Stefano] Ist Nazl Fis Nucl, Grp Collegato Alessandria, I-15121 Alessandria, Italy. [Prokudin, Alexei] Jefferson Lab, Newport News, VA 23606 USA. RP Barone, V (reprint author), Univ Piemonte Orientale, DiSTA, I-15121 Alessandria, Italy. OI Melis, Stefano/0000-0001-7316-4346 FU European Community [RII3-CT-2004-506078]; Helmholtz Association [VH-VI-231]; DOE [DE-AC05-06OR23177] FX We acknowledge support by the European Community-Research Infrastructure Activity under the FP6 Program "Structuring the European Research Area'' (HadronPhysics, Contract No. RII3-CT-2004-506078). This work is also partially supported by the Helmholtz Association through funds provided to the virtual institute "Spin and Strong QCD''(VH-VI-231). This work was supported by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Laboratory. NR 61 TC 51 Z9 51 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 17 PY 2010 VL 81 IS 11 AR 114026 DI 10.1103/PhysRevD.81.114026 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 612FE UT WOS:000278881400001 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, J Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D d'Ascenzo, N Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, C Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. d'Ascenzo, N. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, C. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for WW and WZ Resonances Decaying to Electron, Missing E-T, and Two Jets in p(p)over-bar Collisions at root s=1.96 TeV. SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETIC CALORIMETER; CDF; ENERGY; DETECTOR; QCD AB Using data from 2: 9 fb(-1) of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z', and W' bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z' and W' are further evaluated as a function of their gauge coupling strength. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Wang, C.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013 OI Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 28 TC 19 Z9 19 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 17 PY 2010 VL 104 IS 24 AR 241801 DI 10.1103/PhysRevLett.104.241801 PG 8 WC Physics, Multidisciplinary SC Physics GA 612GL UT WOS:000278884700001 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C Mayes, JB Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, MS Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhou, N Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. Mayes, J. Backus Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. S. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhou, N. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Randall-Sundrum Gravitons in the Dielectron and Diphoton Final States with 5.4 fb(-1) of Data from p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIERARCHY; DETECTOR AB Using 5: 4 fb(-1) of integrated luminosity from p (p) over bar collisions at root s = 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider, we search for decays of the lightest Kaluza-Klein mode of the graviton in the Randall-Sundrum model to ee and gamma gamma. We set 95% C. L. lower limits on the mass of the lightest graviton between 560 and 1050 GeV for values of the coupling k/(M) over bar (P1) between 0.01 and 0.1. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, CNRS, IN2P3, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Cooke, M. S.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zhou, N.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Chakraborty, D.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Mayes, J. Backus; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Gerbaudo, Davide/J-4536-2012; Zhou, Ning/D-1123-2017; Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015 OI Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433 FU DOE; NSF (U.S.); CEA; CNRS/IN2P3 (France); FASI, Rosatom; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 24 TC 31 Z9 31 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 17 PY 2010 VL 104 IS 24 AR 241802 DI 10.1103/PhysRevLett.104.241802 PG 7 WC Physics, Multidisciplinary SC Physics GA 612GL UT WOS:000278884700002 PM 20867294 ER PT J AU Ewing, RP Hu, QH Liu, CX AF Ewing, Robert P. Hu, Qinhong Liu, Chongxuan TI Scale dependence of intragranular porosity, tortuosity, and diffusivity SO WATER RESOURCES RESEARCH LA English DT Article ID NITROGEN SORPTION MEASUREMENTS; SOIL ORGANIC-MATTER; AQUIFER MATERIAL; GRAIN-SCALE; INTRAPARTICLE DIFFUSION; SOLUTE TRANSPORT; MASS-TRANSFER; MULTIPROCESS NONEQUILIBRIUM; TOPOLOGICAL DISORDER; PERCOLATION THEORY AB Diffusive exchange of solutes between intragranular pores and flowing water is a recognized but poorly understood contributor to dispersion. Intragranular porosity may also contribute to the "slow sorption" phenomenon. Intragranular pores may be sparsely interconnected, raising the possibility that accessible porosity and diffusive exchange are limited by pore connectivity. We used a pore-scale network model to examine pore connectivity effects on accessible porosity, tortuosity, and diffusivity in spherical particles. The diffusive process simulated was release of a nonsorbing solute initially at equilibrium with the surrounding solution. High-connectivity results were essentially identical to Crank's analytical solution. Low-connectivity results were consistent with observations reported in the literature, with solute released at early times more quickly than indicated by the analytical solution, and more slowly at late times. Values of accessible porosity, tortuosity, and diffusivity scaled with connection probability, distance to the sphere's exterior, and/or the sphere's radius, as predicted by percolation theory. When integrated into a conventional finite difference model, the scaling relationships provide a consistent and physically sound way to incorporate such nonuniformities into models of intragranular diffusion. C1 [Ewing, Robert P.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. [Hu, Qinhong] Univ Texas Arlington, Dept Earth & Environm Sci, Arlington, TX 76019 USA. [Liu, Chongxuan] Pacific NW Natl Lab, Chem & Mat Sci Div, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Ewing, RP (reprint author), Iowa State Univ, Dept Agron, Ames, IA 50011 USA. EM ewing@iastate.edu RI Liu, Chongxuan/C-5580-2009; Hu, Qinhong/C-3096-2009; Ewing, Robert/J-8968-2013; OI Hu, Qinhong/0000-0002-4782-319X; Liu, Chongxuan/0000-0002-2180-6770 FU Environmental Remediation Science Program (ERSP); Office of Biological and Environmental Research (BER); U.S. Department of Energy (DOE); DOE-BER; Battelle [DE-AC06-76RLO 1830] FX This research was partially supported by the Environmental Remediation Science Program (ERSP), Office of Biological and Environmental Research (BER), U.S. Department of Energy (DOE). A portion of the research was performed using EMSL, a national scientific user facility sponsored by DOE-BER and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830. Toby Ewing thanks Allen Hunt for many fruitful discussions. NR 80 TC 12 Z9 12 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 17 PY 2010 VL 46 AR W06513 DI 10.1029/2009WR008183 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 613QI UT WOS:000278993700001 ER PT J AU Johs, A Shi, L Droubay, T Ankner, JF Liang, L AF Johs, A. Shi, L. Droubay, T. Ankner, J. F. Liang, L. TI Characterization of the Decaheme c-Type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-Ray Scattering and Neutron Reflectometry SO BIOPHYSICAL JOURNAL LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; EXTRACELLULAR ELECTRON-TRANSFER; OUTER-MEMBRANE CYTOCHROMES; DOMAIN-STRUCTURE; IRON REDUCTION; RESOLUTION; PROTEINS; OXIDE; BINDING; MTRC AB The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate shuttling of electrons to extracellular acceptors that include solid metal oxides such as hematite (alpha-Fe(2)O(3)). No information is yet available concerning OmcA structure in physiologically relevant conditions such as aqueous environments. We purified OmcA and characterized its solution structure by small angle x-ray scattering (SAXS), and its interaction at the hematite-water interface by neutron reflectometry. SAXS showed that OmcA is a monomer that adopts a flat ellipsoidal shape with an overall dimension of 34 x 90 x 65 angstrom(3). To our knowledge, we obtained the first direct evidence that OmcA undergoes a redox state-dependent conformational change in solution whereby reduction decreases the overall length of OmcA by similar to 7 angstrom (the maximum dimension was 96 angstrom for oxidized OmcA, and 89 angstrom for NADH and dithionite-reduced OmcA). OmcA was also found to physically interact with electron shuttle molecules such as flavin mononucleotide, resulting in the formation of high-molecular-weight assemblies. Neutron reflectometry showed that OmcA forms a well-defined monomolecular layer on hematite surfaces, where it assumes an orientation that maximizes its contact area with the mineral surface. These novel insights into the molecular structure of OmcA in solution, and its interaction with insoluble hematite and small organic ligands, demonstrate the fundamental structural bases underlying OmcA's role in mediating redox processes. C1 [Johs, A.; Liang, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Ankner, J. F.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN USA. [Shi, L.; Droubay, T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liang, L (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM liangl@ornl.gov RI Johs, Alexander/F-1229-2011; Liang, Liyuan/O-7213-2014; Droubay, Tim/D-5395-2016; OI Johs, Alexander/0000-0003-0098-2254; Liang, Liyuan/0000-0003-1338-0324; Droubay, Tim/0000-0002-8821-0322; Ankner, John/0000-0002-6737-5718 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy Office of Science, Biological, and Environmental Research; DOE [DE-AC05-00OR22725, DE-AC05-76RLO1380] FX This research was supported in part by the Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory (ORNL). Additional funding was provided by the U.S. Department of Energy Office of Science, Biological, and Environmental Research. This work was performed at the following national scientific user facilities: the liquids reflectometer BL-4B at the Spallation Neutron Source (SNS) located at ORNL, the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory and the SIBYLS beamline at Lawrence Berkeley National Laboratory for SAXS experiments under contract No. DE-AC02-05CH11231. ORNL is managed by UT-Battelle. LLC, for the DOE under contract No. DE-AC05-00OR22725. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract No. DE-AC05-76RLO1380. NR 47 TC 28 Z9 28 U1 3 U2 27 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 16 PY 2010 VL 98 IS 12 BP 3035 EP 3043 DI 10.1016/j.bpj.2010.03.049 PG 9 WC Biophysics SC Biophysics GA 612PR UT WOS:000278913500032 PM 20550916 ER PT J AU Adelman, JL Chodera, JD Kuo, IFW Miller, TF Barsky, D AF Adelman, Joshua L. Chodera, John D. Kuo, I-Feng W. Miller, Thomas F., III Barsky, Daniel TI The Mechanical Properties of PCNA: Implications for the Loading and Function of a DNA Sliding Clamp SO BIOPHYSICAL JOURNAL LA English DT Article ID CELL NUCLEAR ANTIGEN; MOLECULAR-DYNAMICS SIMULATIONS; POLYMERASE PROCESSIVITY FACTOR; PRINCIPAL COMPONENT ANALYSIS; REPLICATION FACTOR-C; CRYSTAL-STRUCTURE; COLLECTIVE MOTIONS; LOADER COMPLEX; PROTEINS; SUBUNIT AB Sliding clamps are toroidal proteins that encircle DNA and act as mobile platforms for DNA replication and repair machinery. To be loaded onto DNA, the eukaryotic sliding clamp Proliferating Cell Nuclear Antigen (PCNA) must be splayed open at one of the subunit-subunit interfaces by the ATP-dependent clamp loader, Replication Factor C, whose clamp-interacting sites form a right-handed spiral. Earlier molecular dynamics (MD) studies suggested that when PCNA opens, it preferentially adopts a right-handed spiral to match the spiral of the clamp loader. Here, analysis of considerably longer MD simulations shows that although the opened form of PCNA can achieve conformations matching the helical pitch of Replication Factor C, it is not biased toward a right-handed spiral structure. A coarse-grained elastic model was also built; its strong correspondence to the allatom MD simulations of PCNA suggests that the behavior of the open clamp is primarily due to elastic deformation governed by the topology of the clamp domains. The elastic model was further used to construct the energy landscape of the opened PCNA clamp, including conformations that would allow binding to the clamp loader and loading onto double-stranded DNA. A picture of PCNA emerges of a rather flexible protein that, once opened, is mechanically compliant in the clamp opening process. C1 [Kuo, I-Feng W.; Barsky, Daniel] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Adelman, Joshua L.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Chodera, John D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Miller, Thomas F., III] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Barsky, Daniel] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. RP Barsky, D (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM barsky@llnl.gov FU U.S. Department of Energy Computational Science [DE-FG02-97ER25308]; California Institute for Quantitative Biosciences at the University of California, Berkeley; Biotechnology and Biological Sciences Research Council through the University of Cambridge; Lawrence Livermore National Laboratory; Dreyfus New Faculty Award; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by a U.S. Department of Energy Computational Science Graduate Fellowship (No. DE-FG02-97ER25308 to J.L.A), a distinguished postdoctoral fellowship from the California Institute for Quantitative Biosciences at the University of California, Berkeley (to J.D.C), funding from the Biotechnology and Biological Sciences Research Council through the University of Cambridge as well as sabbatical funding from Lawrence Livermore National Laboratory (to D.B.), and a Dreyfus New Faculty Award (to T.F.M). Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. NR 34 TC 10 Z9 11 U1 0 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 16 PY 2010 VL 98 IS 12 BP 3062 EP 3069 DI 10.1016/j.bpj.2010.03.056 PG 8 WC Biophysics SC Biophysics GA 612PR UT WOS:000278913500035 PM 20550919 ER PT J AU Ulmschneider, MB Smith, JC Ulmschneider, JP AF Ulmschneider, Martin B. Smith, Jeremy C. Ulmschneider, Jakob P. TI Peptide Partitioning Properties from Direct Insertion Studies SO BIOPHYSICAL JOURNAL LA English DT Article ID ATOM FORCE-FIELD; SEC61 TRANSLOCON AB Partitioning properties of polypeptides are at the heart of biological membrane phenomena and their precise quantification is vital for ab-initio structure prediction and the accurate simulation of membrane protein folding and function. Recently the cellular translocon machinery has been employed to determine membrane insertion propensities and transfer energetics for a series of polyleucine segments embedded in a carrier sequence. We show here that the insertion propensity, pathway, and transfer energetics into synthetic POPC bilayers can be fully described by direct atomistic peptide partitioning simulations. The insertion probability as a function of peptide length follows two-state Boltzmann statistics, in agreement with the experiments. The simulations expose a systematic offset between translocon-mediated and direct insertion free energies. Compared to the experiment the insertion threshold is shifted toward shorter peptides by similar to 2 leucine residues. The simulations reveal many hitherto unknown atomic-resolution details about the partitioning process and promise to provide a powerful tool for urgently needed calibration of lipid parameters to match experimentally observed peptide transfer energies. C1 [Ulmschneider, Martin B.] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA. [Smith, Jeremy C.; Ulmschneider, Jakob P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Ulmschneider, Jakob P.] Univ Heidelberg, Inst Comp Sci, Heidelberg, Germany. RP Ulmschneider, MB (reprint author), Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA. EM martin@ulmschneider.com RI smith, jeremy/B-7287-2012; Ulmschneider, Martin/J-4374-2012; Ulmschneider, Jakob/D-6217-2017 OI smith, jeremy/0000-0002-2978-3227; FU U. S. Department of Energy at Oak Ridge National Laboratory FX J.C.S acknowledges funding from the U. S. Department of Energy under the "Systems Biology" Laboratory Directed Research and Development program at Oak Ridge National Laboratory. NR 8 TC 14 Z9 14 U1 0 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUN 16 PY 2010 VL 98 IS 12 BP L60 EP L62 DI 10.1016/j.bpj.2010.03.043 PG 3 WC Biophysics SC Biophysics GA 612PR UT WOS:000278913500002 PM 20550886 ER PT J AU Li, DY Li, H Wang, T Pan, H Lin, G Li, HL AF Li, Dongyang Li, Hua Wang, Tao Pan, Hong Lin, Gang Li, Huilin TI Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome SO EMBO JOURNAL LA English DT Article DE cryo-electron microscopy; Mycobacterium tuberculosis; 20S proteasome assembly; 20S proteasome gating; X-ray crystallography ID PARTICLE; RHODOCOCCUS; INHIBITORS; VISUALIZATION; ACIDOPHILUM; DEGRADATION; MATURATION; RESOLUTION; INSIGHTS; PATHWAY AB Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the beta-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven alpha-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome. The EMBO Journal (2010) 29, 2037-2047. doi: 10.1038/emboj.2010.95; Published online 11 May 2010 C1 [Li, Dongyang; Li, Hua; Wang, Tao; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Pan, Hong; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Lin, Gang] Cornell Univ, Dept Microbiol & Immunol, Weill Med Coll, New York, NY 10021 USA. RP Li, HL (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. EM hli@bnl.gov RI li, lianbo/H-1152-2011 FU NIH [AI070285]; Brookhaven National Laboratory [10-016] FX The crystallographic data were deposited in PDB with accession numbers 3MKA, 3MFE, and 3MI0 for Mtb T1A mutant 20S, OG 20S with displaced H0, and the 2.2 angstrom resolution WT 20S proteasome, respectively. We thank staff of Beam lines X25 and X29 at the National Synchrotron Light Source, Brookhaven National Laboratory for technical assistance in data collection. We thank Carl Nathan for support and encouragement. This work is supported by NIH grant AI070285 and Brookhaven National Laboratory LDRD grant 10-016 to HL. NR 40 TC 18 Z9 25 U1 4 U2 12 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD JUN 16 PY 2010 VL 29 IS 12 BP 2037 EP 2047 DI 10.1038/emboj.2010.95 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 611PN UT WOS:000278832100010 PM 20461058 ER PT J AU Jiang, X Ward, TL van Swol, F Brinker, CJ AF Jiang, Xingmao Ward, Timothy L. van Swol, Frank Brinker, C. Jeffrey TI Numerical Simulation of Ethanol-Water-NaCl Droplet Evaporation SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DIMENSIONAL STEFAN PROBLEM; LIQUID-SOLID EQUILIBRIA; EXTENDED UNIQUAC MODEL; AQUEOUS SALT SYSTEMS; POTASSIUM-CHLORIDE; SODIUM-CHLORIDE; NANOPARTICLES; PREDICTION; DELIVERY; NONELECTROLYTES AB A quantitative description of droplet evaporation is important to aerosol research for nanofabrication, spray drying, fuel combustion, pollution control, and respiratory medical treatments. Evaporation is a moving-boundary problem with coupled mass and heat transport. An explicit finite-difference methodology and computer code has been developed for simulation of an evolving droplet, property data for size, and profiles for various compositions and temperature. The code accurately predicts the evaporation of pure water and pure ethanol droplets. To understand aerosol-assisted evaporation-induced self-assembly and the formation mechanism for single-crystal NaCl core/hexagonally ordered mesoporous silica shell particles, evaporation of ethanol-water-NaCl droplets in N(2) has been investigated by numerical simulation. The extended universal quasichemical (UNIQUAC) model with a Debye-Huckel term is used to describe the vapor liquid phase equilibrium. For 1-2-mu m-radius droplets with a number density of 10(7)similar to 10(8)/cm(3), it takes only tens of milliseconds to reach phase equilibrium after adiabatic or isothermal evaporation at 25 degrees C in the drying zone. The droplets entering a heating zone can be simply treated like a single-stage flash evaporation at 25 C. For a 1-mu um-radius droplet, after 0.18 ms of evaporation at 100 degrees C in N(2), the NaCl saturation ratio reaches levels as high as 1.3, first at the droplet center, where the initial NaCl nucleation and crystallization happens as a result of relatively quick evaporation and a steep gradient in the concentration of ethanol, an antisolvent for NaCl. NaCl crystallization "consumes" NaCl molecules near the droplet center and quenches the formation of new stable NaCl nuclei, favoring the formation of only one single-crystal NaCl core per droplet. The code provides guidance for the custom engineering of aerosol nanoparticle architectures. C1 [Jiang, Xingmao; Ward, Timothy L.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Jiang, Xingmao; Ward, Timothy L.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87106 USA. [van Swol, Frank; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brinker, CJ (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. EM cjbrink@sandia.gov RI jiang, xingmao /H-3554-2013 FU NSF NIRT [EE C-0210835]; DOE Office of Basic Energy Sciences [DE-FG02-02-ER15368, DE-AC04-94AL85000, DE-FG03-02ER15368]; SNL's Lab Directed Research and Development Program; Sandia Corporation FX T.L.W. was supported by NSF NIRT Grant EE C-0210835. X.J. performed all of the experimental work and was supported by the DOE NSET program DE-FG03-02ER15368. C.J.B. developed the aerosol-assisted EISA process and was supported by the DOE Office of Basic Energy Sciences Grant DE-FG02-02-ER15368 and SNL's Lab Directed Research and Development Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 44 TC 12 Z9 12 U1 4 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 16 PY 2010 VL 49 IS 12 BP 5631 EP 5643 DI 10.1021/ie902042z PG 13 WC Engineering, Chemical SC Engineering GA 606IJ UT WOS:000278416800020 ER PT J AU Stepinski, DC Vandegrift, GF Shkrob, IA Wishart, JF Kerr, K Dietz, ML Qadah, DTD Garvey, SL AF Stepinski, Dominique C. Vandegrift, George F. Shkrob, Ilya A. Wishart, James F. Kerr, Kijana Dietz, Mark L. Qadah, Diab T. D. Garvey, Sarah L. TI Extraction of Tetra-Oxo Anions into a Hydrophobic, Ionic Liquid-Based Solvent without Concomitant Ion Exchange SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID METAL-IONS; FACILITATED TRANSFER; PERTECHNETATE ION; CROWN-ETHERS; ELECTRODEPOSITION; GREENNESS; MECHANISM; NITRATE; WATER AB Hydrophobic ionic liquids (IL) have the potential to simplify certain separations by serving as both an extraction solvent and an electrolyte for subsequent electrochemical reductions. While IL-based solvents are known to be efficient media for metal ion extraction, separations employing these solvents are frequently complicated by the loss of constituent IL ions to the aqueous phase, resulting in deteriorating performance. In this study, we have examined the extraction of pertechnetate and related tetra-oxo anions from aqueous solutions into IL-based solvents incorporating tetraalkylphosphonium bis[(trifluoromethyl)sulfonyl]imide and a crown ether. In contrast to various previously studied IL-based cation extraction systems, facile anion extraction without significant transfer of the IL ions to the aqueous phase has been observed. In addition, the solvents exhibit high distribution ratios (100-500 for pertechnetate), significant electrical conductivity (>100 mu S/cm), and a wide (similar to 4 V) electrochemical window. The results suggest that these solvents may provide the basis for improved approaches to the extraction and recovery of a variety of anions. C1 [Stepinski, Dominique C.; Vandegrift, George F.; Shkrob, Ilya A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wishart, James F.; Kerr, Kijana] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Dietz, Mark L.; Qadah, Diab T. D.; Garvey, Sarah L.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. RP Stepinski, DC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstepinski@anl.gov; shkrob@anl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU U.S. Department of Energy, Office of Nuclear Energy [DEAC02-06CH11357]; AFCI NE-DOE [AN0915020606] FX The work at Argonne was supported by the U.S. Department of Energy, Office of Nuclear Energy, under contract DEAC02-06CH11357 and AFCI NE-DOE grant No. AN0915020606. The work performed at Brookhaven National Laboratories was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy. Programmatic guidance provided by T. Todd and J. Vienna is gratefully acknowledged. We thank H. Luo and S. Dai of ORNL for electrochemical measurements. I.A.S. thanks M. Jensen, R. Chiarizia, L. Soderholm, M. Goldberg, T. Mann, J. Muntean, W. Ebert, J. Fortner, J. Cunnane, and A. Guelis for technical expertise and review. NR 33 TC 22 Z9 24 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 16 PY 2010 VL 49 IS 12 BP 5863 EP 5868 DI 10.1021/ie1000345 PG 6 WC Engineering, Chemical SC Engineering GA 606IJ UT WOS:000278416800042 ER PT J AU Fan, JW Comstock, JM Ovchinnikov, M McFarlane, SA McFarquhar, G Allen, G AF Fan, Jiwen Comstock, Jennifer M. Ovchinnikov, Mikhail McFarlane, Sally A. McFarquhar, Greg Allen, Grant TI Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLOUD-RESOLVING-MODEL; SUPERCOOLED LIQUID WATER; ICE-NUCLEATION; MESOSCALE MODEL; PART I; EXPLICIT MICROPHYSICS; RADIATIVE PROPERTIES; CONVECTIVE CLOUDS; ORGANIC-COMPOUNDS; C-POL AB Two isolated deep convective clouds (DCCs) that developed in clean-humid and polluted-dry air masses, observed during the Tropical Pacific Warm Pool International Cloud Experiment (TWP-ICE) and U. K. Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaigns, respectively, are simulated using a three-dimensional cloud-resolving model with size-resolved aerosol and cloud microphysics. We examine the impacts of different homogeneous and immersion freezing parameterizations on the anvil characteristics and the water vapor content (WVC) in the tropical tropopause layer (TTL) for the two DCCs that developed in contrasting environments. The modeled cloud properties such as liquid/ice water path and precipitation generally agree with the available radar and satellite retrievals and in situ aircraft measurements. We find that anvil microphysical properties such as ice number concentration and ice effective radius (rei) are sensitive to the homogeneous freezing parameterizations (HomFPs) under both the clean-humid and polluted-dry conditions, while upper level convection and WVC in the TTL air are only sensitive to HomFPs under the polluted-dry condition. Specifically, the cloud anvil with the Koop et al. (2000) relative humidity dependent scheme has up to 50% and 70% lower ice number than those with other schemes (temperature dependent) for the clean-humid and polluted-dry cases, respectively. Consequently, the rei is increased by 20-30 mu m in both cases. As a result, extinction coefficient of cloud anvils is reduced by over 30%. Anvil size and evolution are also much affected by HomFPs. Higher immersion-freezing rate (Bigg, 1953) leads to a stronger convective cloud due to larger latent heat release resulted from much higher freezing rates, with larger ice water path but less precipitation in both humid and dry conditions. Consequently, the domain-averaged homogeneous freezing rates are enhanced by over 15%. Also, the higher immersion-freezing rate results in over 1.5 times higher ice number concentrations, much reduced rei in the cloud anvil, and larger anvil size. The moistening effect of deep convection on the TTL clear air is very significant, with increases of a few times relative to the WVC before convection under both humid and dry conditions. Different HomFPs does not make much difference in WVC and upper level convection in the clean-humid case, but in the polluted-dry case, the HomFPs with lower nucleation rates predict about 25% lower WVC relative to the HomFPs with higher nucleation rates. Under both humid and dry conditions, the Bigg (1953) immersion freezing predicts about 25% higher WVC relative to the Vali (1975) parameterization, due to stronger transport and the larger anvil area in the domain. C1 [Fan, Jiwen; Comstock, Jennifer M.; Ovchinnikov, Mikhail; McFarlane, Sally A.] Pacific NW Natl Lab, Dept Climate Phys, Richland, WA 99352 USA. [Allen, Grant] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [McFarquhar, Greg] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Dept Climate Phys, Richland, WA 99352 USA. EM jiwen.fan@pnl.gov RI Fan, Jiwen/E-9138-2011; McFarlane, Sally/C-3944-2008; Allen, Grant /A-7737-2013; OI Allen, Grant /0000-0002-7070-3620; McFarquhar, Greg/0000-0003-0950-0135 FU PNNL Directed Research and Development; U.S. Department of Energy [DE-FG02-02ER63337, DE-FG02-07ER64378, DE-FG02-09ER64770]; Department of Energy's Office of BER located at PNNL; Office of Science of DOE FX This study was supported by the PNNL Directed Research and Development (LDRD) program as part of the Aerosol Climate Initiative (ACI) by the Office of Biological and Environmental Research of the U. S. Department of Energy (DE-FG02-02ER63337, DE-FG02-07ER64378, and DE-FG02-09ER64770) as part of the Atmospheric Radiation Measurement (ARM) program, the ARM Uninhabited Aerospace Vehicle program (UAV), the ARM Aerial Vehicle Program (AVP), and the ARM Aerial Facility (AAF). The authors are grateful to P. Connolly and A. Bansemer for the ACTIVE aircraft data and help on processing the data, and to J. Um and M. Freer for the help on processing the TWP-ICE data. We also thank S. Xie for the forcing data; M. Khaiyer and Pat Minnis for gridded VISST satellite data; P. May, M. Whimpey, and C. Schumacher for C-POL radar data. Thanks to the ACTIVE and TWP-ICE teams for the data set. This research used compute resources from EMSL, a national scientific user facility sponsored by the Department of Energy's Office of BER located at PNNL. Computer resources from NERSC, which is supported by the Office of Science of DOE, were also used. We greatly appreciate Andy Hemysfield for the code of the KOOP parameterization and the helpful discussion on it. NR 76 TC 17 Z9 18 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 16 PY 2010 VL 115 AR D12201 DI 10.1029/2009JD012696 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 613NV UT WOS:000278986900002 ER PT J AU Williams, KH N'Guessan, AL Druhan, J Long, PE Hubbard, SS Lovley, DR Banfield, JF AF Williams, Kenneth H. N'Guessan, A. Lucie Druhan, Jennifer Long, Philip E. Hubbard, Susan S. Lovley, Derek R. Banfield, Jillian F. TI Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID DISSIMILATORY METAL REDUCTION; IN-SITU BIOSTIMULATION; FUEL-CELLS; GROUNDWATER; SULFIDE; REMOVAL; U(VI); SEDIMENTS AB [1] The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m(2) during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 mu M, a level still below the background value of 1.5 mu M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium. C1 [Williams, Kenneth H.; Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Druhan, Jennifer; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [N'Guessan, A. Lucie; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Williams, KH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM khwilliams@lbl.gov; lucie.nguessan@pnl.gov; jennydruhan@berkeley.edu; philip.long@pnl.gov; sshubbard@lbl.gov; dlovley@microbio.umass.edu; jbanfield@berkeley.edu RI Druhan, Jennifer/G-2584-2011; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014; Hubbard, Susan/E-9508-2010 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155; FU Environmental Remediation Science Program; Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC02-05CH1123, FC02ER63446] FX Funding was provided by the Environmental Remediation Science Program, Office of Biological and Environmental Research, U.S. Department of Energy (DE-AC02-05CH1123 to LBNL; cooperative agreement DE-FC02ER63446 to PNNL). We thank Qusheng Jin (University of Oregon) for his assistance with constructing the Eh-pH diagram for the Cu-S-O system. NR 33 TC 4 Z9 4 U1 3 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUN 16 PY 2010 VL 115 AR G00G05 DI 10.1029/2009JG001142 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 613OD UT WOS:000278987700002 ER PT J AU Mazumder, V Chi, MF More, KL Sun, SH AF Mazumder, Vismadeb Chi, Miaofang More, Karren L. Sun, Shouheng TI Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTROCATALYSTS; MONOLAYER; SURFACES; ALLOY AB We report a unique synthesis of core/shell Pd/FePt nanoparticles (NPs) and their catalysis of the oxygen reduction reaction (ORR). The uniform FePt shell is formed by controlled nucleation of Fe(CO)(5) in the presence of a Pt salt and Pd NPs at designated reaction temperatures. The Pd/FePt NPs show FePt shell-dependent catalytic properties, and those having a 1 nm FePt shell exhibit a drastic increase in durability and activity (15 times more active with a 140 mV gain in onset potential in comparison with those having a 3 nm coating). These Pd/FePt NPs are promising new catalysts for practical fuel cell applications. C1 [Mazumder, Vismadeb; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Chi, Miaofang; More, Karren L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM ssun@brown.edu RI Chi, Miaofang/Q-2489-2015; More, Karren/A-8097-2016 OI Chi, Miaofang/0000-0003-0764-1567; More, Karren/0000-0001-5223-9097 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. NR 15 TC 240 Z9 242 U1 30 U2 281 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 16 PY 2010 VL 132 IS 23 BP 7848 EP + DI 10.1021/ja1024436 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 610FS UT WOS:000278717700013 PM 20496893 ER PT J AU Murray, LJ Dinca, M Yano, J Chavan, S Bordiga, S Brown, CM Long, JR AF Murray, Leslie J. Dinca, Mircea Yano, Junko Chavan, Sachin Bordiga, Silvia Brown, Craig M. Long, Jeffrey R. TI Highly-Selective and Reversible O-2 Binding in Cr-3(1,3,5-benzenetricarboxylate)(2) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CR-CR BOND; GAS-ADSORPTION; COMPLEX; STORAGE; FUNCTIONALITY; REACTIVITY; OXYGEN AB Reaction of Cr(CO)(6) with trimesic acid in DMF affords the metal-organic framework Cr-3(BTC)(2)center dot nDMF (BTC3- = 1,3,5-benzenetricarboxylate), which is isostructural to Cu-3(BTC)(2)center dot 3H(2)O. Exchanging DMF for methanol and heating at 160 degrees C under dynamic vacuum for 48 h results in the desolvated framework Cr-3(BTC)(2). Nitrogen gas adsorption measurements performed at 77 K revealed a type I isotherm, indicating BET and Langmuir surface areas of 1810 and 2040 m(2)/g, respectively. At 298 K, the O-2 adsorption isotherm for Cr-3(BTC)(2) rises steeply to a capacity of 11 wt % at 2 mbar, while the corresponding N-2 adsorption isotherm displays very little uptake, gradually rising to a capacity of 0.58 wt % at 1 bar. Accordingly, the material displays an unprecedented O-2/N-2 selectivity factor of 22. Deoxygenation of the sample could be accomplished by heating at 50 degrees C under vacuum for 48 h, leading to a gradually diminishing uptake capacity over the course of 15 consecutive adsorption/desorption cycles. Infrared and X-ray absorption spectra suggest formation of an O-2 adduct with partial charge transfer from the Cr-II centers exposed on the surface of the framework. Neutron powder diffraction data confirm this mechanism of O-2 binding and indicate a lengthening of the Cr-Cr distance within the paddle-wheel units of the framework from 2.06(2) to 2.8(1) angstrom. C1 [Murray, Leslie J.; Dinca, Mircea; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chavan, Sachin; Bordiga, Silvia] Univ Turin, IFM & NIS Ctr Excellence, Dept Chem, I-10135 Turin, Italy. [Brown, Craig M.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu RI Dinca, Mircea/C-1345-2008; EFRC, CGS/I-6680-2012; Bordiga, Silvia/M-3875-2014; Stangl, Kristin/D-1502-2015; Brown, Craig/B-5430-2009; Chavan, Sachin/B-8025-2014; OI Bordiga, Silvia/0000-0003-2371-4156; Brown, Craig/0000-0002-9637-9355; Dinca, Mircea/0000-0002-1262-1264; Murray, Leslie/0000-0002-1568-958X FU Department of Energy [FG36-05GO15002, DE-SC0001015] FX This research was supported by the Department of Energy under Awards FG36-05GO15002 (early stages) and DE-SC0001015 (later stages). We thank J.-H. Her and Dr. W. We are for experimental assistance. NR 28 TC 144 Z9 146 U1 5 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 16 PY 2010 VL 132 IS 23 BP 7856 EP + DI 10.1021/ja1027925 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 610FS UT WOS:000278717700017 PM 20481535 ER PT J AU Sutter, P Sadowski, JT Sutter, EA AF Sutter, Peter Sadowski, Jerzy T. Sutter, Eli A. TI Chemistry under Cover: Tuning Metal-Graphene Interaction by Reactive Intercalation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID EPITAXIAL GRAPHENE; LARGE-AREA; RU(0001); SURFACE; OXYGEN; FILMS; ADSORPTION; OXIDATION; RUTHENIUM; GRAPHITE AB Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet. C1 [Sutter, Peter; Sadowski, Jerzy T.; Sutter, Eli A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov OI Sadowski, Jerzy/0000-0002-4365-7796 FU U.S. Department of Energy [DE-ACO2-98CH1-886] FX We thank P. Albrecht and D. P. Acharya for performing STM on intercalated graphene, E. Vescovo for technical support, and M. S. Hybertsen for helpful discussions. This work was performed under the auspices of the U.S. Department of Energy under Contract DE-ACO2-98CH1-886. NR 36 TC 161 Z9 162 U1 13 U2 107 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 16 PY 2010 VL 132 IS 23 BP 8175 EP 8179 DI 10.1021/ja102398n PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 610FS UT WOS:000278717700066 PM 20527937 ER PT J AU Martin, KE Wang, ZC Busani, T Garcia, RM Chen, Z Jiang, YB Song, YJ Jacobsen, JL Vu, TT Schore, NE Swartzentruber, BS Medforth, CJ Shelnutt, JA AF Martin, Kathleen E. Wang, Zhongchun Busani, Tito Garcia, Robert M. Chen, Zhu Jiang, Yingbing Song, Yujiang Jacobsen, John L. Vu, Tony T. Schore, Neil E. Swartzentruber, Brian S. Medforth, Craig J. Shelnutt, John A. TI Donor-Acceptor Biomorphs from the Ionic Self-Assembly of Porphyrins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POLYDIACETYLENE NANOWIRES; PHOTOPHYSICAL PROPERTIES; CHIRAL MEMORY; NANOTUBES; METALLIZATION; CHLOROSOMES; NANOSTRUCTURES; POLYMERIZATION; SEMICONDUCTORS; DERIVATIVES AB Microscale four-leaf clover-shaped structures are formed by self-assembly of anionic and cationic porphyrins. Depending on the metal complexed in the porphyrin macrocycle (Zn or Sn), the porphyrin cores are either electron donors or electron acceptors. All four combinations of these two metals in cationic tetra(N-ethanol-4-pyridinium)porphyrin and anionic tetra(sulfonatophenyl)porphyrin result in related cloverlike structures with similar crystalline packing indicated by X-ray diffraction patterns. The clover morphology transforms as the ionic strength and temperature of the self-assembly reaction are increased, but the structures maintain 4-fold symmetry. The ability to alter the electronic and photophysical properties of these solids (e.g., by altering the metals in the porphyrins) and to vary cooperative interactions between the porphyrin subunits raises the possibility of producing binary solids with tunable functionality. For example, we show that the clovers derived from anionic Zn porphyrins (electron donors) and cationic Sn porphyrins (electron acceptors) are photoconductors, but when the metals are reversed in the two porphyrins, the resulting clovers are insulators. C1 [Martin, Kathleen E.; Wang, Zhongchun; Garcia, Robert M.; Chen, Zhu; Jiang, Yingbing; Song, Yujiang; Swartzentruber, Brian S.; Medforth, Craig J.; Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Martin, Kathleen E.; Wang, Zhongchun; Garcia, Robert M.; Chen, Zhu; Jiang, Yingbing; Song, Yujiang; Swartzentruber, Brian S.; Medforth, Craig J.; Shelnutt, John A.] Sandia Natl Labs, Ctr Integrated Nano Technol, Albuquerque, NM 87185 USA. [Busani, Tito] Univ Nova Lisboa, CENIMAT I3N, Dept Ciencia Mat, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. [Jiang, Yingbing; Medforth, Craig J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Jacobsen, John L.; Vu, Tony T.; Schore, Neil E.; Medforth, Craig J.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. Univ Nova Lisboa, CEMOP UNINOVA, P-2829516 Caparica, Portugal. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA. EM jasheln@unm.edu RI Shelnutt, John/A-9987-2009; Song, Yujiang/A-8700-2009; Medforth, Craig/D-8210-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013; Chen, Zhu/M-3834-2015 OI Shelnutt, John/0000-0001-7368-582X; Medforth, Craig/0000-0003-3046-4909; FU United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DEAC04-94AL85000. NR 42 TC 60 Z9 62 U1 5 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 16 PY 2010 VL 132 IS 23 BP 8194 EP 8201 DI 10.1021/ja102194x PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 610FS UT WOS:000278717700069 PM 20469866 ER PT J AU Nelson-Cheeseman, BB Wong, FJ Chopdekar, RV Arenholz, E Suzuki, Y AF Nelson-Cheeseman, B. B. Wong, F. J. Chopdekar, R. V. Arenholz, E. Suzuki, Y. TI Room temperature magnetic barrier layers in magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID CIRCULAR-DICHROISM; INTERFACE; EXCITATION; SCATTERING AB We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized La0.7Sr0.3MnO3 (LSMO) and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin-dependent transport can be understood in terms of magnon-assisted spin-dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of x-ray absorption spectroscopy and x-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures. C1 [Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Nelson-Cheeseman, BB (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM bbnelsonchee@anl.gov RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Division of Materials; NSF-IGERT; Intel Foundation FX This work was supported through the Materials Science Division and Advanced Light Source by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.V.C. was supported by NSF Division of Materials Research Fund 06. Portions of this work were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. Device processing was performed at the University of California-Berkeley Microlab. B.B.N.C. would like to acknowledge the support of NSF-IGERT and the Intel Foundation. NR 26 TC 12 Z9 12 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 16 PY 2010 VL 81 IS 21 AR 214421 DI 10.1103/PhysRevB.81.214421 PG 7 WC Physics, Condensed Matter SC Physics GA 611TO UT WOS:000278846400001 ER PT J AU van der Laan, G Edmonds, KW Arenholz, E Farley, NRS Gallagher, BL AF van der Laan, G. Edmonds, K. W. Arenholz, E. Farley, N. R. S. Gallagher, B. L. TI Valence-state model of strain-dependent Mn L-2,L-3 x-ray magnetic circular dichroism from ferromagnetic semiconductors SO PHYSICAL REVIEW B LA English DT Article ID ABSORPTION; ANISOTROPY AB We present a valence-state model to explain the characteristics of a recently observed pre-edge feature in Mn L-3 x-ray magnetic circular dichroism (XMCD) of ferromagnetic (Ga,Mn) As and (Al,Ga,Mn) As thin films. The prepeak XMCD shows a uniaxial anisotropy, contrary to the cubic symmetry of the main structures induced by the crystalline electric field. Reversing the strain in the host lattice reverses the sign of the uniaxial anisotropy. With increasing carrier localization, the prepeak height increases, indicating an increasing 3d character of the hybridized holes. Hence, the feature is ascribed to transitions from the Mn 2p core level to unoccupied p-d hybridized valence states. The characteristics of the prepeak are readily reproduced by the model calculation taking into account the symmetry of the strain-, spin- orbit-, and exchange-split valence states around the zone center. C1 [van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Edmonds, K. W.; Farley, N. R. S.; Gallagher, B. L.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP van der Laan, G (reprint author), Diamond Light Source, Didcot OX11 0DE, Oxon, England. RI van der Laan, Gerrit/Q-1662-2015; Gallagher, Bryan/B-8116-2013 OI van der Laan, Gerrit/0000-0001-6852-2495; Edmonds, Kevin/0000-0002-9793-4170; Gallagher, Bryan/0000-0001-8310-0899 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; UK EPSRC [EP/C526546/1]; Royal Society FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding from the UK EPSRC (Grant No. EP/C526546/1) and the Royal Society is acknowledged. NR 37 TC 8 Z9 8 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 16 PY 2010 VL 81 IS 21 AR 214422 DI 10.1103/PhysRevB.81.214422 PG 8 WC Physics, Condensed Matter SC Physics GA 611TO UT WOS:000278846400002 ER PT J AU Yao, YX Wang, CZ Ho, KM AF Yao, Y. X. Wang, C. Z. Ho, K. M. TI Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic minimal-basis-set orbitals SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC WAVE-FUNCTIONS; LOCAL CONSTITUENTS; BANDGAP FORMATION; PSEUDOPOTENTIALS; FORMALISM; SURFACES; TERMS AB A chemical bonding scheme is presented for the analysis of solid-state systems. The scheme is based on the intrinsic oriented quasiatomic minimal-basis-set orbitals (IO-QUAMBOs) previously developed by Ivanic and Ruedenberg for molecular systems. In the solid-state scheme, IO-QUAMBOs are generated by a unitary transformation of the quasiatomic orbitals located at each site of the system with the criteria of maximizing the sum of the fourth power of interatomic orbital bond order. Possible bonding and antibonding characters are indicated by the single particle matrix elements, and can be further examined by the projected density of states. We demonstrate the method by applications to graphene and (6,0) zigzag carbon nanotube. The oriented-orbital scheme automatically describes the system in terms of sp(2) hybridization. The effect of curvature on the electronic structure of the zigzag carbon nanotube is also manifested in the deformation of the intrinsic oriented orbitals as well as a breaking of symmetry leading to nonzero single particle density matrix elements. In an additional study, the analysis is performed on the Al3V compound. The main covalent bonding characters are identified in a straightforward way without resorting to the symmetry analysis. Our method provides a general way for chemical bonding analysis of ab initio electronic structure calculations with any type of basis sets. C1 [Yao, Y. X.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Yao, YX (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Yao, Yongxin/B-7320-2008 FU U.S. Department of Energy, Office of Basic Energy Science at National Energy Research Supercomputing Center (NERSC) [DE-AC02-07CH11358] FX Work at the Ames laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-07CH11358. NR 22 TC 12 Z9 12 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 16 PY 2010 VL 81 IS 23 AR 235119 DI 10.1103/PhysRevB.81.235119 PG 6 WC Physics, Condensed Matter SC Physics GA 611TU UT WOS:000278847000001 ER PT J AU Kurimoto, Y Alcaraz-Aunion, JL Brice, SJ Bugel, L Catala-Perez, J Cheng, G Conrad, JM Djurcic, Z Dore, U Finley, DA Franke, AJ Giganti, C Gomez-Cadenas, JJ Guzowski, P Hanson, A Hayato, Y Hiraide, K Jover-Manas, G Karagiorgi, G Katori, T Kobayashi, YK Kobilarcik, T Kubo, H Louis, WC Loverre, PF Ludovici, L Mahn, KBM Mariani, C Masuike, S Matsuoka, K McGary, VT Metcalf, W Mills, GB Mitsuka, G Miyachi, Y Mizugashira, S Moore, CD Nakajima, Y Nakaya, T Napora, R Nienaber, P Orme, D Otani, M Russell, AD Sanchez, F Shaevitz, MH Shibata, TA Sorel, M Stefanski, RJ Takei, H Tanaka, HK Tanaka, M Tayloe, R Taylor, IJ Tesarek, RJ Uchida, Y Van de Water, R Walding, JJ Wascko, MO White, HB Wilking, MJ Yokoyama, M Zeller, GP Zimmerman, ED AF Kurimoto, Y. Alcaraz-Aunion, J. L. Brice, S. J. Bugel, L. Catala-Perez, J. Cheng, G. Conrad, J. M. Djurcic, Z. Dore, U. Finley, D. A. Franke, A. J. Giganti, C. Gomez-Cadenas, J. J. Guzowski, P. Hanson, A. Hayato, Y. Hiraide, K. Jover-Manas, G. Karagiorgi, G. Katori, T. Kobayashi, Y. K. Kobilarcik, T. Kubo, H. Louis, W. C. Loverre, P. F. Ludovici, L. Mahn, K. B. M. Mariani, C. Masuike, S. Matsuoka, K. McGary, V. T. Metcalf, W. Mills, G. B. Mitsuka, G. Miyachi, Y. Mizugashira, S. Moore, C. D. Nakajima, Y. Nakaya, T. Napora, R. Nienaber, P. Orme, D. Otani, M. Russell, A. D. Sanchez, F. Shaevitz, M. H. Shibata, T. -A. Sorel, M. Stefanski, R. J. Takei, H. Tanaka, H. -K. Tanaka, M. Tayloe, R. Taylor, I. J. Tesarek, R. J. Uchida, Y. Van de Water, R. Walding, J. J. Wascko, M. O. White, H. B. Wilking, M. J. Yokoyama, M. Zeller, G. P. Zimmerman, E. D. CA SciBooNE Collaboration TI Improved measurement of neutral current coherent pi(0) production on carbon in a few-GeV neutrino beam SO PHYSICAL REVIEW D LA English DT Article ID MONTE-CARLO GENERATOR; PION-PRODUCTION; NUCLEUS INTERACTIONS AB The SciBooNE Collaboration reports a measurement of neutral current coherent pi(0) production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive pi(0) production has been improved by detecting recoil protons from resonant pi(0) production. We measure the ratio of the neutral current coherent pi(0) production to total charged current cross sections to be 1.16 +/- 0.24) x 10(-2). The ratio of charged current coherent pi(+) to neutral current coherent pi(0) production is calculated to be 0.14(-0.28)(+0.30), using our published charged current coherent pion measurement. C1 [Kurimoto, Y.; Tanaka, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Alcaraz-Aunion, J. L.; Jover-Manas, G.; Sanchez, F.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Cheng, G.; Djurcic, Z.; Franke, A. J.; Mahn, K. B. M.; Mariani, C.; Shaevitz, M. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Brice, S. J.; Finley, D. A.; Kobilarcik, T.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.; Tesarek, R. J.; White, H. B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Guzowski, P.; Taylor, I. J.; Uchida, Y.; Walding, J. J.; Wascko, M. O.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Hanson, A.; Katori, T.; Tayloe, R.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Hayato, Y.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Mitsuka, G.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Hiraide, K.; Kubo, H.; Matsuoka, K.; Nakajima, Y.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Louis, W. C.; Mills, G. B.; Van de Water, R.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Metcalf, W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Bugel, L.; Conrad, J. M.; Karagiorgi, G.; McGary, V. T.; Tanaka, H. -K.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Napora, R.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Dore, U.; Giganti, C.; Loverre, P. F.; Ludovici, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Dore, U.; Giganti, C.; Loverre, P. F.; Ludovici, L.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Nienaber, P.] St Marys Univ Minnesota, Dept Phys, Winona, MN 55987 USA. [Kobayashi, Y. K.; Masuike, S.; Miyachi, Y.; Mizugashira, S.; Shibata, T. -A.; Takei, H.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Catala-Perez, J.; Gomez-Cadenas, J. J.; Sorel, M.] Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain. [Catala-Perez, J.; Gomez-Cadenas, J. J.; Sorel, M.] CSIC, E-46071 Valencia, Spain. RP Kurimoto, Y (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. RI Ludovici, Lucio/F-5917-2011; Yokoyama, Masashi/A-4458-2011; Gomez Cadenas, Juan Jose/L-2003-2014; Mariani, Camillo/J-6070-2015; Hiraide, Katsuki/A-4479-2011; Sanchez, Federico/F-5809-2012; OI Ludovici, Lucio/0000-0003-1970-9960; Yokoyama, Masashi/0000-0003-2742-0251; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Mariani, Camillo/0000-0003-3284-4681; Sanchez, Federico/0000-0003-0320-3623; Wascko, Morgan/0000-0002-8348-4447; Louis, William/0000-0002-7579-3709; Sorel, Michel/0000-0003-2141-9508; Van de Water, Richard/0000-0002-1573-327X FU Physics Department at Chonnam National University; Dongshin University; Seoul National University; Physics Departments at the University of Rochester; Kansas State University; Fermilab; MEXT; JSPS (Japan) [19204026, 20674004, 18740145]; INFN (Italy); Ministry of Science and Innovation and CSIC (Spain); STFC (UK); DOE; NSF (USA); Japan/U.S. Cooperation; NSF FX We acknowledge the Physics Department at Chonnam National University, Dongshin University, and Seoul National University for the loan of parts used in SciBar and the help in the assembly of SciBar. We wish to thank the Physics Departments at the University of Rochester and Kansas State University for the loan of Hamamatsu photomultiplier tubes used in the Muon Range Detector. We gratefully acknowledge support from Fermilab as well as various grants, and contracts from the MEXT and JSPS (Japan), the INFN (Italy), the Ministry of Science and Innovation and CSIC (Spain), the STFC (UK), and the DOE and NSF (USA). This work was supported by MEXT and JSPS with the Grant-in-Aid for Scientific Research A under Grant Nos. 19204026, Young Scientists S 20674004, Young Scientists B 18740145, Scientific Research on Priority Areas "New Developments of Flavor Physics,'' and the global COE program "The Next Generation of Physics, Spun from Universality and Emergence.'' The project was supported by the Japan/U.S. Cooperation Program in the field of High Energy Physics and by JSPS and NSF under the Japan-U.S. Cooperative Science Program. NR 25 TC 33 Z9 33 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 16 PY 2010 VL 81 IS 11 AR 111102 DI 10.1103/PhysRevD.81.111102 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 611UP UT WOS:000278849300001 ER PT J AU Maier, TA Alvarez, G Summers, M Schulthess, TC AF Maier, T. A. Alvarez, G. Summers, M. Schulthess, T. C. TI Dynamic Cluster Quantum Monte Carlo Simulations of a Two-Dimensional Hubbard Model with Stripelike Charge-Density-Wave Modulations: Interplay between Inhomogeneities and the Superconducting State SO PHYSICAL REVIEW LETTERS LA English DT Article ID BI2SR2CACU2O8+DELTA; HOLES AB Using dynamic cluster quantum Monte Carlo simulations, we study the superconducting behavior of a 1/8 doped two-dimensional Hubbard model with imposed unidirectional stripelike charge-density-wave modulation. We find a significant increase of the pairing correlations and critical temperature relative to the homogeneous system when the modulation length scale is sufficiently large. With a separable form of the irreducible particle-particle vertex, we show that optimized superconductivity is obtained for a moderate modulation strength due to a delicate balance between the modulation enhanced pairing interaction, and a concomitant suppression of the bare particle-particle excitations by a modulation reduction of the quasiparticle weight. C1 [Maier, T. A.; Alvarez, G.; Summers, M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Maier, T. A.; Alvarez, G.; Summers, M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Schulthess, T. C.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. RP Maier, TA (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM maierta@ornl.gov; schulthess@phys.ethz.ch RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy FX We would like to acknowledge useful discussions with D.J. Scalapino, S. Okamoto, and S. A. Kivelson. This research was enabled by computational resources of the Center for Computational Sciences at Oak Ridge National Laboratory and conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 25 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2010 VL 104 IS 24 AR 247001 DI 10.1103/PhysRevLett.104.247001 PG 4 WC Physics, Multidisciplinary SC Physics GA 611WB UT WOS:000278853700001 PM 20867327 ER PT J AU Sharkhuu, T Doerfler, DL Krantz, QT Luebke, RW Linak, WP Gilmour, MI AF Sharkhuu, Tuya Doerfler, Donald L. Krantz, Q. Todd Luebke, Robert W. Linak, William P. Gilmour, M. Ian TI Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses SO TOXICOLOGY LETTERS LA English DT Article DE Diesel; In utero exposure; Toxicity; Immunity; Allergy ID ASTHMA SUSCEPTIBILITY; CHILDHOOD ASTHMA; EPITHELIAL-CELLS; PREGNANT MICE; EXPOSURE; PARTICLES; RATS; IMMUNOTOXICOLOGY; SUPPRESSION; ENVIRONMENT AB There is increasing evidence that exposure to air pollutants during pregnancy can result in a number of deleterious effects including low birth weight and the incidence of allergic asthma. To investigate the in utero effects of DE exposure, timed pregnant BALB/c mice were exposed to 0, 0.8 or 3.1 mg/m(3) of DE during gestation days (GD) 9 to GD 18. The number of successful pregnancies was 15/20 in the air controls and 10/20 in each of the diesel exposures. Immune function in the 6-week-old offspring as determined by development of delayed type hypersensitivity (DTH) reactions to bovine serum albumin (BSA), antibody titers to injected sheep red blood cells (SRBC), splenic T cells expressing CD45(+)CD3(+)CD8(+) and CD3(+)CD25(+), and mRNA expression of TNF-alpha, TLR2, SP-A, TGF-beta and Foxp3 in the lung were not affected by prenatal DE exposure. On the other hand, lung TLR4 mRNA expression, the number of neutrophils in the bronchoalveolar lavage fluid (BALF) and splenic T cells expressing CD45(+)CD3(+)CD4(+) and CD4(+)CD25(+) were differentially affected depending on the DE concentration and gender. When additional groups of mice were sensitized and challenged via the respiratory tract with ovalbumin to induce allergic airway inflammation, female mice had higher protein levels in the BALF compared to males and this was reduced by prenatal exposure to either concentration of DE. No other changes in allergen-induced immunity, lung function or severity of inflammation were noted. Collectively, the results show that in utero exposure to DE altered some baseline inflammatory indices in the lung in a gender-specific manner, but had no effect on development of specific immune responses to experimental antigens, or the severity of allergic lung inflammation. Published by Elsevier Ireland Ltd. C1 [Sharkhuu, Tuya; Doerfler, Donald L.; Krantz, Q. Todd; Luebke, Robert W.; Gilmour, M. Ian] US EPA, Cardiopulm & Immunotoxicol Branch, Environm Publ Hlth Div, NHEERL, Res Triangle Pk, NC 27711 USA. [Linak, William P.] US EPA, Air Pollut Technol Branch, Air Pollut Prevent & Control Div, NRMRL, Res Triangle Pk, NC 27711 USA. [Sharkhuu, Tuya] ORISE, Oak Ridge, TN 37831 USA. RP Gilmour, MI (reprint author), US EPA, Cardiopulm & Immunotoxicol Branch, Environm Publ Hlth Div, NHEERL, Res Triangle Pk, NC 27711 USA. EM gilmour.ian@epa.gov FU US EPA FX The project was funded by US EPA through ORISE, TN. We thank S.-H. Cho, W. Williams, W. Zhu, C. Copeland, E. Boykin, M. Daniels, K. Gowdy, G. McGee, J. Richards, J. Lehmann, D. Andrews, C. King and D. Janek for technical assistance and appreciate Drs. Janice Dye and David Kurtz for review of the manuscript. This paper has been reviewed by the US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. NR 41 TC 16 Z9 16 U1 0 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD JUN 16 PY 2010 VL 196 IS 1 BP 12 EP 20 DI 10.1016/j.toxlet.2010.03.017 PG 9 WC Toxicology SC Toxicology GA 610RZ UT WOS:000278754100002 PM 20362647 ER PT J AU Powe, AM Das, S Lowry, M El-Zahab, B Fakayode, SO Geng, ML Baker, GA Wang, L McCarroll, ME Patonay, G Li, M Aljarrah, M Neal, S Warner, IM AF Powe, Aleeta M. Das, Susmita Lowry, Mark El-Zahab, Bilal Fakayode, Sayo O. Geng, Maxwell L. Baker, Gary A. Wang, Lin McCarroll, Matthew E. Patonay, Gabor Li, Min Aljarrah, Mohannad Neal, Sharon Warner, Isiah M. TI Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Review ID CDTE QUANTUM DOTS; PERFORMANCE LIQUID-CHROMATOGRAPHY; EXCITATION-EMISSION FLUORESCENCE; RESONANCE ENERGY-TRANSFER; PARALLEL FACTOR-ANALYSIS; FRONT-FACE FLUORESCENCE; CAPILLARY-ELECTROPHORESIS ANALYSIS; MULTIVARIATE STATISTICAL-ANALYSIS; PHOTOINDUCED ELECTRON-TRANSFER; PRINCIPAL COMPONENT ANALYSIS C1 [Das, Susmita; Lowry, Mark; El-Zahab, Bilal; Li, Min; Aljarrah, Mohannad; Warner, Isiah M.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Powe, Aleeta M.] Univ Louisville, Dept Chem, Louisville, KY 40208 USA. [Fakayode, Sayo O.] Winston Salem State Univ, Dept Chem, Winston Salem, NC 27110 USA. [Geng, Maxwell L.] Univ Iowa, Dept Chem, Nanosci & Nanotechnol Inst, Iowa City, IA 52242 USA. [Geng, Maxwell L.] Univ Iowa, Opt Sci & Technol Ctr, Iowa City, IA 52242 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wang, Lin; McCarroll, Matthew E.] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. [Patonay, Gabor] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA. [Neal, Sharon] Univ Delaware, Dept Chem, Newark, DE 19716 USA. RP Warner, IM (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. RI El-Zahab, Bilal/A-2588-2010; Lowry, Mark/E-6102-2010; LI, MIN/C-2427-2008; kistner, kharol/E-6849-2010; Baker, Gary/H-9444-2016; OI Baker, Gary/0000-0002-3052-7730; El-Zahab, Bilal/0000-0003-4348-807X NR 418 TC 37 Z9 37 U1 7 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2010 VL 82 IS 12 BP 4865 EP 4894 DI 10.1021/ac101131p PG 30 WC Chemistry, Analytical SC Chemistry GA 608WG UT WOS:000278616100012 PM 20540564 ER PT J AU Zou, ZX Du, D Wang, J Smith, JN Timchalk, C Li, YQ Lin, YH AF Zou, Zhexiang Du, Dan Wang, Jun Smith, Jordan N. Timchalk, Charles Li, Yaoqun Lin, Yuehe TI Quantum Dot-Based Immunochromatographic Fluorescent Biosensor for Biomonitoring Trichloropyridinol, a Biomarker of Exposure to Chlorpyrifos SO ANALYTICAL CHEMISTRY LA English DT Article ID PROSTATE-SPECIFIC ANTIGEN; LINKED-IMMUNOSORBENT-ASSAY; LATERAL-FLOW IMMUNOASSAY; METABOLITE 3,5,6-TRICHLORO-2-PYRIDINOL; ELECTROCHEMICAL IMMUNOASSAY; LIPOSOME IMMUNOASSAY; GOLD NANOPARTICLES; OPTICAL BIOSENSORS; RAPID DETECTION; WATER SAMPLES AB A novel and portable fluorescent sensor that integrates an immunochromatographic test strip assay (ITSA) with a quantum dot (QD) label and a test strip reader was described in this study for simple, rapid, and sensitive biomonitoring of an organophosphorus pesticide metabolite. The principle of this sensor is based on a competitive immunoreaction that was performed on an immunochromatographic test strip, where analytes compete with competitors (QD-conjugated analogs) to bind to antibodies on a test zone. Captured QDs serve as signal vehicles for fluorescent readout. In this work, 3,5,6-trichloropyridinol (TCP) is used as a model analyte to demonstrate the performance of the immunosensor. QD-TCP conjugates were synthesized and characterized with X-ray photoelectron spectroscopy (XPS) and fluorescence spectroscopy. Some parameters (e.g., the amount of QD-modified TCP and immunoreaction time) that govern sensitivity and reproducibility of ITSA were optimized. Under optimal conditions, the sensor has a wide dynamic range and is capable of detecting a minimum 1.0 ng/mL TCP standard analyte in 15 min. The sensor has been successfully applied for detection of TCP spiked in rat plasma with average recovery of 102.0%. Results demonstrate that this sensor provides a rapid, clinically accurate, and quantitative tool for TCP detection and shows great promise for in-field and point-of-care (POC) quantitative testing and screening for metabolite biomarkers, e.g., TCP, for humans exposed to pesticides. C1 [Zou, Zhexiang; Du, Dan; Wang, Jun; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zou, Zhexiang; Li, Yaoqun] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China. [Zou, Zhexiang; Li, Yaoqun] Xiamen Univ, Coll Chem & Chem Engn, Key Lab Analyt Sci, Xiamen 361005, Peoples R China. [Du, Dan] Cent China Normal Univ, Coll Chem, Wuhan 430039, Peoples R China. RP Wang, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.wang@pnl.gov; yglig@xmu.edu.cn; yuehe.lin@pnl.gov RI Li, YQ/G-3389-2010; Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU Centers for Disease Control/National Institute for Occupational Safety and Health [R01 OH008173-01]; NIH through the National Institute of Neurological Disorders and Stroke [U01 NS058161-01]; China Scholarship Council; PNNL FX This work was conducted at Pacific Northwest National Laboratory (PNNL) and supported partially by Grant R01 OH008173-01 from the Centers for Disease Control/National Institute for Occupational Safety and Health, NIH, and Grant Number U01 NS058161-01 from the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke, NIH. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. The characterization work was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle under Contract DE-AC05-76L01830. Z.Z. would like to acknowledge the fellowship from the China Scholarship Council and the fellowship from PNNL. NR 68 TC 90 Z9 94 U1 15 U2 162 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2010 VL 82 IS 12 BP 5125 EP 5133 DI 10.1021/ac100260m PG 9 WC Chemistry, Analytical SC Chemistry GA 608WG UT WOS:000278616100037 PM 20507134 ER PT J AU Feldberg, SW AF Feldberg, Stephen W. TI Implications of Marcus-Hush Theory for Steady-State Heterogeneous Electron Transfer at an Inlaid Disk Electrode SO ANALYTICAL CHEMISTRY LA English DT Article ID TEMPERATURE-DEPENDENCE; TRANSFER KINETICS; DISTANCE; ENERGY; MICROELECTRODES; VOLTAMMETRY; SYSTEM AB For an outer-sphere heterogeneous electron transfer, Ox + e = Red, between an electrode and a redox couple, the Butler-Volmer formalism predicts that the operative heterogeneous rate constant, k(red) (cm s(-1)) for reduction (or k(ox) for oxidation) increases without limit as an exponential function of -alpha (E - E(0)) for reduction (or (1 - alpha)(E - E(0)) for oxidation), where E is the applied electrode potential, alpha (similar to 1/2) is the transfer coefficient and E(0) is the formal potential. The Marcus-Hush formalism, as exposited by Chidsey (Chidsey, C. E. D. Science 1991, 215, 919), predicts that the value of k(red) or k(ox) limits at sufficiently large values of -(E - E(0)) or (E - E(0)). The steady-state currents at an inlaid disk electrode obtained for a redox species in solution were computed using both formalisms with the Oldham-Zoski approximation (Oldham, K B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11). Significant differences are noted for the two formalisms. When k(0)r(0)/D is sufficiently small (k(0) is the standard rate constant, r(0) is the radius of the disk electrode, and D is the diffusion coefficient of the redox species), the Marcus-Hush formalism effects a limiting current that can be significantly smaller than the mass transport limited current. This is easily explained in terms of the limiting values of k(red) and k(ox), predicted by the Marcus-Hush formalism. The experimental conditions that must be met to effect significant differences in behavior are discussed; experimental conditions that effect virtually identical behavior are also discussed. As a caveat for experimentalists, applications of the Butler-Volmer formalism to systems that are more properly described using the Marcus-Hush formalism are shown to yield incorrect values of k(0) and meaningless values of alpha, which serves only as a fitting parameter. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Feldberg, SW (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 34 TC 53 Z9 53 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2010 VL 82 IS 12 BP 5176 EP 5183 DI 10.1021/ac1004162 PG 8 WC Chemistry, Analytical SC Chemistry GA 608WG UT WOS:000278616100044 PM 20496865 ER PT J AU Alpert, AJ Petritis, K Kangas, L Smith, RD Mechtler, K Mitulovic, G Mohammed, S Heck, AJR AF Alpert, Andrew J. Petritis, Konstantinos Kangas, Lars Smith, Richard D. Mechtler, Karl Mitulovic, Goran Mohammed, Shabaz Heck, Albert J. R. TI Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography SO ANALYTICAL CHEMISTRY LA English DT Article ID HYDROPHILIC-INTERACTION CHROMATOGRAPHY; LIQUID-CHROMATOGRAPHY; SHOTGUN PROTEOMICS; PREDICTION; SEPARATION; SENSITIVITY; TIMES AB Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide's net charge rather than its sequence. These general observations could be of value in confirming a peptide's identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence. C1 [Alpert, Andrew J.] PolyLC Inc, Columbia, MD 21045 USA. [Petritis, Konstantinos; Kangas, Lars; Smith, Richard D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Mechtler, Karl; Mitulovic, Goran] Res Inst Mol Pathol IMP, A-1030 Vienna, Austria. [Mohammed, Shabaz; Heck, Albert J. R.] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Biomol Mass Spectrometry & Prote Grp, NL-3584 CH Utrecht, Netherlands. [Mohammed, Shabaz; Heck, Albert J. R.] Univ Utrecht, Bijvoet Ctr Biomol Res, NL-3584 CH Utrecht, Netherlands. [Mohammed, Shabaz; Heck, Albert J. R.] Univ Utrecht, Netherlands Prote Ctr, NL-3584 CH Utrecht, Netherlands. RP Alpert, AJ (reprint author), PolyLC Inc, 9151 Rumsey Rd,Ste 180, Columbia, MD 21045 USA. EM aalpert@polylc.com RI Petritis, Konstantinos/F-2156-2010; Heck, Albert/D-7098-2011; Mohammed, Shabaz/D-1042-2010; Smith, Richard/J-3664-2012; OI Heck, Albert/0000-0002-2405-4404; Mohammed, Shabaz/0000-0003-2640-9560; Smith, Richard/0000-0002-2381-2349; Mechtler, Karl/0000-0002-3392-9946; Mitulovic, Goran/0000-0003-1964-3965 NR 27 TC 28 Z9 28 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2010 VL 82 IS 12 BP 5253 EP 5259 DI 10.1021/ac100651k PG 7 WC Chemistry, Analytical SC Chemistry GA 608WG UT WOS:000278616100054 PM 20481592 ER PT J AU Read, DH Martin, JE AF Read, Douglas H. Martin, James E. TI Master Transduction Curve for Field-Structured Chemiresistor Calibration SO ANALYTICAL CHEMISTRY LA English DT Article ID VAPOR SORPTION; NANOPARTICLE FILMS; CHEMICAL SENSORS; THICKNESS; CONDUCTIVITY; RESONATORS AB Chemiresistors are gas sensors for volatile organic compounds that are composed of conducting particle networks in a polymer matrix. In the presence of an analyte that is compatible with the polymer phase, the sensor conductance decreases as the analyte is absorbed, eventually reaching a steady-state value that is a measure of the analyte's concentration. The response curve, which is the relationship between steady-state conductance and analyte activity (normalized concentration), is strongly dependent on both the chemical affinity of the analyte for the polymer and the stress field within the chemiresistor composite. Calibration of an individual sensor would seem to necessitate mapping out the response curve for each analyte of interest, a tedious and expensive proposition. In a recent paper, we have shown that the transduction curve of any particular sensor is a function of polymer swelling alone, regardless of the chemical nature of the analyte. This master transduction curve implies that sensor calibration requires only a knowledge of the polymer mass-sorption isotherm for any set of analytes of interest, data that can be collected once and for all. Any single analyte can then be used to calibrate the response of a particular sensor as a function of analyte activity, and the response to other analytes can be predicted. As a corollary, a calibrated sensor can be used to determine the mass-sorption data for any other analyte of interest. In this paper, we provide a detailed description of the construction of the master transduction curve, show how this curve can be used to measure polymer sorption with a calibrated chemiresistor, and demonstrate the use of a single analyte to calibrate sensors of disparate sensitivities and predict their response to two other analytes. C1 [Read, Douglas H.; Martin, James E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Read, DH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dhread@sandia.gov FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Special thanks to Alex Robinson (Sandia National Laboratories) for providing the sensor substrates used in this research. NR 22 TC 3 Z9 3 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2010 VL 82 IS 12 BP 5373 EP 5379 DI 10.1021/ac101220p PG 7 WC Chemistry, Analytical SC Chemistry GA 608WG UT WOS:000278616100070 PM 20507174 ER PT J AU Orvis, J Crabtree, J Galens, K Gussman, A Inman, JM Lee, E Nampally, S Riley, D Sundaram, JP Felix, V Whitty, B Mahurkar, A Wortman, J White, O Angiuoli, SV AF Orvis, Joshua Crabtree, Jonathan Galens, Kevin Gussman, Aaron Inman, Jason M. Lee, Eduardo Nampally, Sreenath Riley, David Sundaram, Jaideep P. Felix, Victor Whitty, Brett Mahurkar, Anup Wortman, Jennifer White, Owen Angiuoli, Samuel V. TI Ergatis: a web interface and scalable software system for bioinformatics workflows SO BIOINFORMATICS LA English DT Article; Proceedings Paper CT 18th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) CY JUL 11-13, 2010 CL Boston, MA ID COMPARATIVE GENOMICS; SEQUENCE; TOOL; UNIFICATION; FRAMEWORK; RESOURCE; ONTOLOGY AB Motivation: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users. Results: We have developed a workflow management system named Ergatis that enables users to build, execute and monitor pipelines for computational analysis of genomics data. Ergatis contains preconfigured components and template pipelines for a number of common bioinformatics tasks such as prokaryotic genome annotation and genome comparisons. Outputs from many of these components can be loaded into a Chado relational database. Ergatis was designed to be accessible to a broad class of users and provides a user friendly, web-based interface. Ergatis supports high-throughput batch processing on distributed compute clusters and has been used for data management in a number of genome annotation and comparative genomics projects. C1 [Orvis, Joshua; Crabtree, Jonathan; Galens, Kevin; Gussman, Aaron; Riley, David; Felix, Victor; Mahurkar, Anup; Wortman, Jennifer; White, Owen; Angiuoli, Samuel V.] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Inman, Jason M.; Nampally, Sreenath; Sundaram, Jaideep P.] J Craig Venter Inst, Rockville, MD USA. [Lee, Eduardo] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sundaram, Jaideep P.] Georgetown Univ, Dept Biol, Computat Genom Lab, Washington, DC 20057 USA. [Whitty, Brett] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Angiuoli, Samuel V.] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. RP Orvis, J (reprint author), Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. EM jorvis@users.sourceforge.net RI Angiuoli, Samuel/H-7340-2014; OI Wortman, Jennifer/0000-0002-8713-1227; Angiuoli, Samuel/0000-0001-9525-4350; Whitty, Brett/0000-0001-5776-5424 FU National Institute of Allergy and Infectious Diseases [NIH-N01-AI-30071]; National Institutes of Health [NIH-N01-AI-30071] FX Funding: National Institute of Allergy and Infectious Diseases Microbial Sequencing Contract (NIH-N01-AI-30071); National Institutes of Health BRC contract (NIH-N01-AI-30071) in part. NR 31 TC 44 Z9 45 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD JUN 15 PY 2010 VL 26 IS 12 BP 1488 EP 1492 DI 10.1093/bioinformatics/btq167 PG 5 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 609WN UT WOS:000278689000053 PM 20413634 ER PT J AU Zhang, K Gray, JW Parvin, B AF Zhang, Kai Gray, Joe W. Parvin, Bahram TI Sparse multitask regression for identifying common mechanism of response to therapeutic targets SO BIOINFORMATICS LA English DT Article; Proceedings Paper CT 18th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) CY JUL 11-13, 2010 CL Boston, MA ID BREAST-CANCER; GENE; SELECTION; NETWORKS; CLCA2 AB Motivation: Molecular association of phenotypic responses is an important step in hypothesis generation and for initiating design of new experiments. Current practices for associating gene expression data with multidimensional phenotypic data are typically (i) performed one-to-one, i. e. each gene is examined independently with a phenotypic index and (ii) tested with one stress condition at a time, i. e. different perturbations are analyzed separately. As a result, the complex coordination among the genes responsible for a phenotypic profile is potentially lost. More importantly, univariate analysis can potentially hide new insights into common mechanism of response. Results: In this article, we propose a sparse, multitask regression model together with co-clustering analysis to explore the intrinsic grouping in associating the gene expression with phenotypic signatures. The global structure of association is captured by learning an intrinsic template that is shared among experimental conditions, with local perturbations introduced to integrate effects of therapeutic agents. We demonstrate the performance of our approach on both synthetic and experimental data. Synthetic data reveal that the multi-task regression has a superior reduction in the regression error when compared with traditional L-1-and L-2-regularized regression. On the other hand, experiments with cell cycle inhibitors over a panel of 14 breast cancer cell lines demonstrate the relevance of the computed molecular predictors with the cell cycle machinery, as well as the identification of hidden variables that are not captured by the baseline regression analysis. Accordingly, the system has identified CLCA2 as a hidden transcript and as a common mechanism of response for two therapeutic agents of CI-1040 and Iressa, which are currently in clinical use. C1 [Zhang, Kai; Gray, Joe W.; Parvin, Bahram] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Parvin, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Institutes of Health [U54 CA112970, CA58207] FX Funding: U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (contract DE-AC02-05CH11231); the National Institutes of Health (grants U54 CA112970 and CA58207). NR 34 TC 7 Z9 7 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD JUN 15 PY 2010 VL 26 IS 12 BP i97 EP i105 DI 10.1093/bioinformatics/btq181 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 609WN UT WOS:000278689000013 PM 20529943 ER PT J AU LaBarge, MA AF LaBarge, Mark A. TI The Difficulty of Targeting Cancer Stem Cell Niches SO CLINICAL CANCER RESEARCH LA English DT Article ID ACUTE MYELOID-LEUKEMIA; BREAST-CANCER; MAMMARY-GLAND; SELF-RENEWAL; DIFFERENTIAL ADHESION; INITIATING CELLS; DROSOPHILA OVARY; TUMOR-FORMATION; ASCITES TUMORS; BONE-MARROW AB Normal stem cell niches typically are identified by their distinctive anatomical features and by association with tissue-specific stem cells. Identifying cancer stem cell ( CSC) niches presents a special problem because there are few if any common anatomical features among tumors, and the physical phenotypes that reportedly describe the CSCs as entities may be subject to the host's microenvironment, sex, and tumor stage. Irrespective of a niche's location, the occupant's phenotype, or the precise molecular composition, all niches must do basically the same thing: maintain the activities in a stem cell that define it as such. Therefore, a potentially successful strategy, both for elaborating a molecular and cellular portrait of a CSC niche, and for therapeutically targeting them, is to identify components in the tumor microenvironment that are required for maintaining the functions of self-renewal, differentiation, and quiescence in the face of cytotoxic therapeutic regimens. Clin Cancer Res; 16( 12); 3121-9. (C) 2010 AACR. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP LaBarge, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Dr, Berkeley, CA 94720 USA. EM MALabarge@lbl.gov RI LaBarge, Mark/E-2621-2013 FU National Institutes of Health [K99AG033176] FX M.A. LaBarge is supported by the National Institutes of Health ( K99AG033176). NR 82 TC 79 Z9 81 U1 2 U2 8 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD JUN 15 PY 2010 VL 16 IS 12 BP 3121 EP 3129 DI 10.1158/1078-0432.CCR-09-2933 PG 9 WC Oncology SC Oncology GA 610QN UT WOS:000278749400007 PM 20530700 ER PT J AU Collette, NM Genetos, DC Murugesh, D Harland, RM Loots, GG AF Collette, Nicole M. Genetos, Damian C. Murugesh, Deepa Harland, Richard M. Loots, Gabriela G. TI Genetic evidence that SOST inhibits WNT signaling in the limb SO DEVELOPMENTAL BIOLOGY LA English DT Article DE WNT signaling; SOST; Sclerostin; Shh; Limb formation ID BONE-FORMATION; BMP ANTAGONIST; BETA-CATENIN; MOUSE LIMB; NEGATIVE REGULATOR; SONIC-HEDGEHOG; FEEDBACK LOOP; SCLEROSTIN; MICE; SHH AB SOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior-posterior and proximal-distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost(-/-) significantly rescues the Lrp6(-/-) skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRE5/6. (C) 2010 Elsevier Inc. All rights reserved. C1 [Collette, Nicole M.; Murugesh, Deepa; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. [Collette, Nicole M.; Murugesh, Deepa; Harland, Richard M.; Loots, Gabriela G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Genet Genom & Dev, Berkeley, CA 94720 USA. [Collette, Nicole M.; Murugesh, Deepa; Harland, Richard M.; Loots, Gabriela G.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Genetos, Damian C.] Univ Calif Davis, Sch Vet Med, Dept Surg & Radiol Sci, Davis, CA 95616 USA. RP Loots, GG (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, 7000 East Ave,L-452, Livermore, CA 94550 USA. EM loots1@llnl.gov RI Genetos, Damian/A-6480-2012; OI Genetos, Damian/0000-0002-8599-2867 FU NIH [HD47853]; U.S. Department of Energy [DE-AC52-07NA27344] FX We would like to thank the National Institutes of Health (NIH) Knock-Out Mouse Program (KOMP), Drs. David Valenzuela and Aris Economides of Regeneron and Dr. Chris Paszty of Amgen for providing the Sost knockout mice and Dr. Bart Williams for providing the Lrp5 and Lrp6 knockout mice. G.G.L., N.M.C., and D.M. were supported by NIH grant HD47853. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 53 TC 27 Z9 29 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0012-1606 J9 DEV BIOL JI Dev. Biol. PD JUN 15 PY 2010 VL 342 IS 2 BP 169 EP 179 DI 10.1016/j.ydbio.2010.03.021 PG 11 WC Developmental Biology SC Developmental Biology GA 603FQ UT WOS:000278194500005 PM 20359476 ER PT J AU Placzek, CJ Matmon, A Granger, DE Quade, J Niedermann, S AF Placzek, C. J. Matmon, A. Granger, D. E. Quade, J. Niedermann, S. TI Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Atacama; cosmogenic nuclides; exposure ages; erosion rates; hyperarid; Pacific; landscape evolution; (10)Be; (21)Ne ID CENOZOIC CLIMATE-CHANGE; WESTERN SOUTH-AMERICA; NORTHERN CHILE; LAT 22-DEGREES-24-DEGREES-S; EXPOSURE AGES; CENTRAL ANDES; MIOCENE AGE; ARID ANDES; DESERT; BE-10 AB The Atacama Desert is one of the driest places on Earth. Multiple lines of evidence show that the Atacama has been hyperarid since at least the late Miocene, among these are cosmic-ray exposure ages indicating that individual clasts on some surfaces have been preserved for >9 Ma and possibly since the Oligocene. Although these remarkably old ages indicate slow landscape evolution, it is not clear whether this pace is characteristic of the entire Atacama, or only of specific regions, landforms, or landscape elements. To address this question, we measured cosmogenic (10)Be (26)Al, and (21)Ne from a wide variety of landscape elements in a transect across the Central Atacama, where modern precipitation is at an extreme minimum, but where the concentration of cosmogenic nuclides in stable landscape elements has not previously been recorded. We find that the hyperarid core of the Central Atacama has substantially slower erosion rates than its eastern and western margins: however, even the driest part of this transect has erosion rates comparable to those of other deserts, ranging from 0.2-0.4 m/Ma. The most stable landscape elements are boulder fields, with exposure ages of 1.5-2.6 Ma. The vast majority of samples in the Central Atacama Desert, however, have cosmogenic nuclide concentrations corresponding to ages <1.2 Ma, indicative of Pleistocene modification of almost the entire landscape. Furthermore, extreme boulder ages >5 Ma documented elsewhere in the Atacama were not found in our area and appear to be limited to exceptionally stable boulders or cobbles in either the northern or southern extremes of the Atacama Desert. We suggest that the Central Atacama has been subject to episodic Pliocene and Pleistocene rainfall and geomorphic activity, perhaps due to intrusion of Pacific moisture. Published by Elsevier B.V. C1 [Placzek, C. J.; Granger, D. E.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Placzek, C. J.; Granger, D. E.] Purdue Univ, Purdue Rare Isotope Measurement Lab, W Lafayette, IN 47907 USA. [Matmon, A.] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Quade, J.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Niedermann, S.] Geoforschungszentrum Potsdam, Helmholtz Zentrum Potsdam Deutsch, D-14473 Potsdam, Germany. RP Placzek, CJ (reprint author), Los Alamos Natl Lab, MS-J514, Los Alamos, NM 87545 USA. EM cplaczek@lanl.gov; arimatmon@cc.huji.ac.il; dgranger@purdue.edu; jquade@email.arizona.edu; nied@gfz-potsdam.de RI Placzek, Christa/B-6240-2012 FU NSF [01-01249] FX C.P. is supported by NSF 01-01249 with additional field support from Chevron to the University of Arizona. We thank E. Schnabel for the noble gas analyses and A. Cyr, G. Michalski, P. Muzikar, and J. Rech for helpful discussions. Constructive reviews from K. Frankel and an anonymous reviewer are gratefully acknowledged. NR 46 TC 26 Z9 28 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 15 PY 2010 VL 295 IS 1-2 BP 12 EP 20 DI 10.1016/j.epsl.2010.03.006 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 613JD UT WOS:000278974300002 ER PT J AU Antonangeli, D Siebert, J Badro, J Farber, DL Fiquet, G Morard, G Ryerson, FJ AF Antonangeli, Daniele Siebert, Julien Badro, James Farber, Daniel L. Fiquet, Guillaume Morard, Guillaume Ryerson, Frederick J. TI Composition of the Earth's inner core from high-pressure sound velocity measurements in Fe-Ni-Si alloys SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Fe-Ni-Si alloy; aggregate compressional and shear sound; velocities; high pressure; inner core; light elements ID AB-INITIO CALCULATIONS; X-RAY-SCATTERING; OUTER CORE; LIGHT-ELEMENTS; IRON; TEMPERATURE; CONSTRAINTS; SULFUR; STATE; GPA AB We performed room-temperature sound velocity and density measurements on a polycrystalline alloy, Fe0.89Ni0.04Si0.07, in the hexagonal close-packed (hcp) phase up to 108 GPa. Over the investigated pressure range the aggregate compressional sound velocity is similar to 9% higher than in pure iron at the same density. The measured aggregate compressional (V-P) and shear (V-S) sound velocities, extrapolated to core densities and corrected for anharmonic temperature effects, are compared with seismic profiles. Our results provide constraints on the silicon abundance in the core, suggesting a model that simultaneously matches the primary seismic observables, density, P-wave and S-wave velocities, for an inner core containing 4 to 5 wt.% of Ni and 1 to 2 wt.% of Si. (C) 2010 Elsevier B.V. All rights reserved. C1 [Antonangeli, Daniele; Siebert, Julien; Badro, James; Fiquet, Guillaume; Morard, Guillaume] Univ Paris Diderot, Univ Paris 06, Inst Phys Globe Paris, Inst Mineral & Phys Milieux Condenses,CNRS,UMR 75, F-75005 Paris, France. [Antonangeli, Daniele; Siebert, Julien; Badro, James; Farber, Daniel L.; Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Farber, Daniel L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Antonangeli, D (reprint author), Univ Paris Diderot, Univ Paris 06, Inst Phys Globe Paris, Inst Mineral & Phys Milieux Condenses,CNRS,UMR 75, F-75005 Paris, France. EM daniele.antonangeli@impmc.upmc.fr RI siebert, julien/E-6998-2010; Farber, Daniel/F-9237-2011; Fiquet, Guillaume/H-1219-2011; Siebert, Julien/A-8336-2014; Fiquet, Guillaume/M-6934-2014; Badro, James/A-6003-2011 OI Siebert, Julien/0000-0001-9972-6239; FU French National Research Agency (ANR) [ANR-07-BLAN-0124-01]; U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Basic Energy Sciences; IGPP/LLNL; European Community [207467] FX We acknowledge the European Synchrotron Radiation facility for provision of beamtime and we thank M. Hoesch and M. Krisch for assistance on ID 28. C. Aracne and D. Ruddle are acknowledged for technical support, P. Munsch and G. Le Marchande for gas loading. We wish to thank L. Vocadlo for sharing unpublished results. This work was supported by the French National Research Agency (ANR) grant no. ANR-07-BLAN-0124-01, and also performed under the auspices of the U.S. Department of Energy, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, supported by the Office of Basic Energy Sciences (FJR), and the Laboratory Directed Research and Development Program at IGPP/LLNL (JS). J. Badro acknowledges financial support from the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 207467. NR 47 TC 56 Z9 59 U1 2 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 15 PY 2010 VL 295 IS 1-2 BP 292 EP 296 DI 10.1016/j.epsl.2010.04.018 PG 5 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 613JD UT WOS:000278974300029 ER PT J AU O'Loughlin, EJ Gorski, CA Scherer, MM Boyanov, MI Kemner, KM AF O'Loughlin, Edward J. Gorski, Christopher A. Scherer, Michelle M. Boyanov, Maxim I. Kemner, Kenneth M. TI Effects of Oxyanions, Natural Organic Matter, and Bacterial Cell Numbers on the Bioreduction of Lepidocrocite (gamma-FeOOH) and the Formation of Secondary Mineralization Products SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HYDROUS FERRIC-OXIDE; DISSIMILATORY IRON REDUCTION; SHEWANELLA-ONEIDENSIS MR-1; GREEN RUST FORMATION; ELECTRON-TRANSFER; MAGNETITE; CARBONATE; TRANSFORMATION; FERRIHYDRITE; PHOSPHATE AB Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearing secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. "Fast" Fe(II) production kinetics [19-24 mM Fe(II) d(-1)] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having "low" cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with "high" cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d(-1)] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction. C1 [O'Loughlin, Edward J.; Boyanov, Maxim I.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Gorski, Christopher A.; Scherer, Michelle M.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. RP O'Loughlin, EJ (reprint author), Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. EM oloughlin@anl.gov RI O'Loughlin, Edward/C-9565-2013; BM, MRCAT/G-7576-2011 OI O'Loughlin, Edward/0000-0003-1607-9529; FU U.S. Department of Energy's Office of Science (DOE-SC), Office of Biological and Environmental Research [DE-AC02-06CH11357]; DOE-SC Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Russell Cook for his assistance with SEM imaging; Michael McCormick for determining the surface area of the lepidocrocite used in this study; and Karen Haugen and three anonymous reviewers for their thoughtful reviews of the manuscript. Funding was provided by the U.S. Department of Energy's Office of Science (DOE-SC), Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program, under contract DE-AC02-06CH11357. Use of the APS and the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the DOE-SC Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. government retains for itself and others acting on its behalf, a paid-up, non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public and perform publicly and display publicly, by or on behalf of the Government. NR 44 TC 55 Z9 59 U1 6 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4570 EP 4576 DI 10.1021/es100294w PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000033 PM 20476735 ER PT J AU Yuan, B Liu, Y Shao, M Lu, SH Streets, DG AF Yuan, Bin Liu, Ying Shao, Min Lu, Sihua Streets, David G. TI Biomass Burning Contributions to Ambient VOCs Species at a Receptor Site in the Pearl River Delta (PRD), China SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; FIRE EMISSIONS; FOREST; IMPACT AB Ambient VOCs were measured by a proton transfer reaction mass spectrometer (PTR-MS) at a receptor site in the Pearl River Delta (PRD) during October 19 November 18, 2008. Biomass burning plumes are identified by using acetonitrile as tracer, and enhancement ratios (ERs) of nine VOCs species relative to acetonitrile are obtained from linear regression analysis and the source-tracer-ratio method. Enhancement ratios determined by the two different methods show good agreement for most VOCs species. Biomass burning contributions are investigated by using the source-tracer-ratio method. Biomass burning contributed 9.5%-17.7% to mixing ratios of the nine VOCs. The estimated biomass burning contributions are compared with local emission inventories. Large discrepancies are observed between our results and the estimates in two emission inventories. Though biomass burning emissions in TRACE-P inventory agree well with our results, the VOCs speciation for aromatic compounds may be not appropriate for Guangdong. C1 [Yuan, Bin; Liu, Ying; Shao, Min; Lu, Sihua] Peking Univ, Coll Environm Sci & Engn, State Joint Key Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China. [Liu, Ying] Chinese Res Inst Environm Sci, Beijing 100012, Peoples R China. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Shao, M (reprint author), Peking Univ, Coll Environm Sci & Engn, State Joint Key Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China. EM mshao@pku.edu.cn RI SHAO, Min/C-7351-2014; Yuan, Bin/A-1223-2012; OI Yuan, Bin/0000-0003-3041-0329; Streets, David/0000-0002-0223-1350 FU Ministry of Science and Technology of China [2006AA06A309] FX This research was conducted as part of the 3C-Star 2008 study, which was supported by the Ministry of Science and Technology of China (2006AA06A309). We thank all the 3C-Star 2008 members for their help. NR 25 TC 31 Z9 35 U1 5 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4577 EP 4582 DI 10.1021/es1003389 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000034 PM 20507061 ER PT J AU Conrad, ME Brodie, EL Radtke, CW Bill, M Delwiche, ME Lee, MH Swift, DL Colwell, FS AF Conrad, Mark E. Brodie, Eoin L. Radtke, Corey W. Bill, Markus Delwiche, Mark E. Lee, M. Hope Swift, Dana L. Colwell, Frederick S. TI Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CHLORINATED ALIPHATIC-HYDROCARBONS; METHYLOSINUS-TRICHOSPORIUM OB3B; CARBON-ISOTOPE FRACTIONATION; IN-SITU BIOREMEDIATION; MOLECULAR CHARACTERIZATION; NATURAL ATTENUATION; BASALT AQUIFER; MIXED CULTURE; BIOTRANSFORMATION; METHANE AB For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (ICE) in groundwater. This has resulted in significant ICE removal from the source area of the contaminant plume and elevated dissolved CH(4) in the groundwater extending 250 m from the injection well. The delta(13)C of the CH(4) increases from -56 parts per thousand in the source area to -13 parts per thousand with distance from the injection well, whereas the delta(13)C of dissolved inorganic carbon decreases from 8 parts per thousand to 13 parts per thousand, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH(4)-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with (13)C-labeled ICE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE. C1 [Conrad, Mark E.; Brodie, Eoin L.; Bill, Markus] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Radtke, Corey W.; Delwiche, Mark E.; Colwell, Frederick S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Lee, M. Hope; Swift, Dana L.] N Wind Inc, Idaho Falls, ID 83402 USA. [Colwell, Frederick S.] Oregon State Univ, Corvallis, OR 97331 USA. RP Conrad, ME (reprint author), EO Lawrence Berkeley Natl Lab, Mailstop 70A-4418, Berkeley, CA 94720 USA. EM msconrad@lbl.gov RI Conrad, Mark/G-2767-2010; Brodie, Eoin/A-7853-2008; Bill, Markus/D-8478-2013 OI Brodie, Eoin/0000-0002-8453-8435; Bill, Markus/0000-0001-7002-2174 FU Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC07-051D14517, DE-FG02-06ER64199] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory, Contract No. DE-AC07-051D14517 Idaho National Laboratory, and Contract No. DE-FG02-06ER64199 to North Wind, Inc. NR 34 TC 20 Z9 24 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4697 EP 4704 DI 10.1021/es903535j PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000052 PM 20476753 ER PT J AU Fletcher, KE Boyanov, MI Thomas, SH Wu, QZ Kemner, KM Loffler, FE AF Fletcher, Kelly E. Boyanov, Maxim I. Thomas, Sara H. Wu, Qingzhong Kemner, Kenneth M. Loeffler, Frank E. TI U(VI) Reduction to Mononuclear U(IV) by Desulfitobacterium Species SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ABSORPTION FINE-STRUCTURE; DEHALOGENANS STRAIN 2CP-C; ANAEROMYXOBACTER-DEHALOGENANS; ANAEROBIC BACTERIUM; URANINITE NANOPARTICLES; MICROBIAL COMMUNITIES; URANIUM REDUCTION; SP-NOV; BIOREDUCTION; GROWTH AB The bioreduction of U(VI) to U(IV) affects uranium mobility and fate in contaminated subsurface environments and is best understood in Gram-negative model organisms such as Geobacter and Shewanella spp. This study demonstrates that U(VI) reduction is a common trait of Gram-positive Desulfitobacterium spp. Five different Desulfitobacterium isolates reduced 100 mu M A U(VI) to U(IV) in <10 days, whereas U(VI) remained soluble in abiotic and heat-killed controls. U(VI) reduction in live cultures was confirmed using X-ray absorption near-edge structure (XANES) analysis. Interestingly, although bioreduction of U(VI) is almost always reported to yield the uraninite mineral (UO(2)), extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in the Desulfitobacterium cultures was not UO(2). The EXAFS data indicated that the U(IV) product was a phase or mineral composed of mononuclear U(IV) atoms closely surrounded by light element shells. This atomic arrangement likely results from inner-sphere bonds between U(IV) and C/N/0- or P/S-containing ligands, such as carbonate or phosphate. The formation of a distinct U(IV) phase warrants further study because the characteristics of the reduced material affect uranium stability and fate in the contaminated subsurface. C1 [Fletcher, Kelly E.; Thomas, Sara H.; Wu, Qingzhong; Loeffler, Frank E.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Loeffler, Frank E.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Boyanov, Maxim I.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI ID, MRCAT/G-7586-2011; Loeffler, Frank/M-8216-2013 FU U.S. DOE Office of Science (OS), Biological and Environmental Research Division (BER); Environmental Remediation Sciences Program [ER64782]; U.S. Department of Energy Basic Energy Sciences (BES) Division [DE-AC0-206CH11357]; NSF IGERT; NSF FX We thank M. J. Beazley for helpful discussions and Tomohiro Shibata at the MRCAT/EnviroCAT beamline and Snow Hui from the University of Notre Dame for assistance in collection of the XAFS data. This research was supported by the U.S. DOE Office of Science (OS), Biological and Environmental Research Division (BER), Environmental Remediation Sciences Program (ERSP, Grant ER64782, and the ANL Subsurface Science Focus Area Program). MRCAT/EnviroCAT operations are supported by the U.S. Department of Energy and the MRCAT/EnviroCAT member institutions. Use of the Advanced Photon Source is supported by the U.S. DOE Basic Energy Sciences (BES) Division under Contract DE-AC0-206CH11357. K.E.F. acknowledges financial support through NSF IGERT and NSF graduate research fellowships. NR 44 TC 89 Z9 91 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4705 EP 4709 DI 10.1021/es903636c PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000053 PM 20469854 ER PT J AU Kachenko, AG Grafe, M Singh, B Heald, SM AF Kachenko, Anthony G. Graefe, Markus Singh, Balwant Heald, Steve M. TI Arsenic Speciation in Tissues of the Hyperaccumulator P. calomelanos var. austroamericana using X-ray Absorption Spectroscopy SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CHINESE BRAKE FERN; PTERIS-VITTATA L.; SUBCELLULAR-LOCALIZATION; PITYROGRAMMA-CALOMELANOS; CONTAMINATED SOILS; PLANT; PHOSPHATE; TRANSPORT; FRONDS; ACCUMULATION AB The fate and chemical speciation of arsenic (As) during uptake, translocation, and storage by the As hyperaccumulating fern Pityrogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based mu-X-ray absorption near edge structure (mu-XRF) and mu-X-ray fluorescence (mu-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg(-1) dry weight (DW)) than in old fronds (903 mg kg(-1) DW). In pinnae, As concentration decreased from the base (6822 mg kg(-1) DW) to the apex (4301 mg kg(-1) DW) of the fronds. The results from mu-XANES and mu-XRF of living tissues suggested that more than 60% of arsenate (As(V)) absorbed was reduced to arsenite (As(III)) in roots, prior to transport through vascular tissues as AS' and As'. In pinnules, As(III) waste predominant redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As(III)-sulphide (S(2-)) coordination throughout the fern tissues (4-25%) suggests that S(2-) functional groups may contribute in the biochemical reduction of As(V) to As(III) during uptake and transport at a whole-plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana. C1 [Kachenko, Anthony G.; Graefe, Markus; Singh, Balwant] Univ Sydney, Fac Agr Food & Nat Resources, Sydney, NSW 2006, Australia. [Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Kachenko, AG (reprint author), Nursery & Garden Ind Australia, Epping, NSW 2121, Australia. EM anthony.kachenko@ngia.com.au RI Singh, Balwant/F-6481-2012 OI Singh, Balwant/0000-0002-9751-2971 FU Commonwealth of Australia; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06C1111357]; University of Sydney; Australian Commonwealth Government through an Australian Postgraduate Award FX This work was supported by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. Use of PNC/XOR (Sector 20), Advanced Photon Source (APS), Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06C1111357. A.G.K. acknowledges financial assistance from the University of Sydney and the Australian Commonwealth Government through an Australian Postgraduate Award scholarship. Thanks are extended to Dr. Euan Smith (University of South Australia, Adelaide, Australia) for providing the spectrum of aqueous monomethlyarsonic acid. NR 39 TC 22 Z9 23 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4735 EP 4740 DI 10.1021/es1005237 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000058 PM 20459123 ER PT J AU Pol, VG AF Pol, Vilas Ganpat TI Upcycling: Converting Waste Plastics into Paramagnetic, Conducting, Solid, Pure Carbon Microspheres SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ONE-STEP SYNTHESIS; PRESSURE; NANOSPHERES; DEPOSITION; PARTICLES; MEMBRANES; ROUTE; PTFE AB The recent tremendous increase in the volume of waste plastics (WP) will have a harmful environmental impact on the health of living beings. Hundreds of years are required to degrade WP in atmospheric conditions. Hence, in coming years, in addition to traditional recycling services, innovative "upcycling" processes are necessary. This article presents an environmentally benign, solvent-free autogenic process that converts various WP [low density polyethylene (LDPE), high density polyethylene (HOPE), polyethylene terephthalate (PET), polystyrene (PS), or their mixtures] into carbon microspheres (CMSs), an industrially significant, value-added product. The thermal dissociation of these individual or mixed WP in a closed reactor under autogenic pressure (similar to 1000 psi) produced dry, pure powder of CMSs. In this paper, the optimization of process parameters such as the effect of mixing of WP with other materials, and the role of reaction temperature and time are reported. Employing advanced analytical techniques, the atomic structure, composition, and morphology of as-obtained CMSs were analyzed. The room-temperature paramagnetism in CMSs prepared from waste LOPE, HOPE, and PS was further studied by electron paramagnetic resonance (EPR). The conducting and paramagnetic nature of CMSs holds promise for their potential applications in toners, printers, paints, batteries, lubricants, and tires. C1 [Pol, Vilas Ganpat] Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Pol, Vilas Ganpat] Argonne Natl Lab, Intense Pulse Neutron Source, Argonne, IL 60439 USA. RP Pol, VG (reprint author), Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pol@anl.gov FU Office of the Director at Argonne National Laboratory FX This work benefited from the use of facilities at the Chemical Sciences and Engineering Division, Intense Pulsed Neutron Source, Center for Nanoscale Materials, and Electron Microscopy Center at Argonne National Laboratory. V.P. was funded by the Office of the Director at Argonne National Laboratory through the Director's Postdoctoral Fellowship Program. V.P. is deeply thankful to Dr. P. Thiyagarajan and Dr. M. M. Thackeray for their guidance, scientific discussions and valuable suggestions. V.P. is thankful to Dr. Matthias Bode, CNM for providing support in electrical conductivity measurements of individual carbon sphere. V.P. acknowledges Dr. Nada Dimitrijevic of the Chemistry Division at Argonne National Laboratory for the EPR measurement of the CMSs. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract DE-AC02-06C1-111357. NR 24 TC 36 Z9 36 U1 7 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4753 EP 4759 DI 10.1021/es100243u PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000061 PM 20481621 ER PT J AU Shrivastava, M Nguyen, A Zheng, ZQ Wu, HW Jung, HS AF Shrivastava, Manish Nguyen, Anh Zheng, Zhongqing Wu, Hao-Wei Jung, Heejung S. TI Kinetics of Soot Oxidation by NO2 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HETEROGENEOUS REACTION; ELEVATED-TEMPERATURE; AEROSOL; MECHANISMS; PARTICLES; CHEMISTRY; CARBON AB Modern technologies use NO2 to promote low-temperature soot oxidation for diesel particulate filter regeneration. In this study, the online aerosol technique of high-temperature oxidation tandem differential mobility analysis is used to study kinetics of soot oxidation by NO2. Soot particles are exposed to varying temperature and NO2 mixing ratio inside the furnace resulting from thermal decomposition of NO2 to NO. This causes soot oxidation rates to vary throughout the furnace. Variations in temperatures and NO2 mixing ratio are thoroughly accounted for the first time. Soot oxidation rates are calculated as a function of frequency factor A(soot) activation energy E-soot and concentration of NO2 within the furnace at temperatures ranging from 500 to 950 degrees C. Results suggest A(soot) and E-soot values for soot oxidation of 2.4 x 10(-14) (nm s(-1) cm(3) molecule(-1)) and 47.1 kJ mol(-1), respectively, when reaction order to NO2 is assumed as unity. The activation energy for soot oxidation with NO2 is significantly lower than oxidation with air. However, parts per million levels of NO2 cause soot oxidation at low temperatures suggesting NO2 is a stronger oxidant than O-2. C1 [Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Heejung S.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92521 USA. [Shrivastava, Manish] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Heejung S.] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. RP Jung, HS (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92521 USA. EM heejung@engr.ucr.edu OI Jung, Heejung/0000-0003-0366-7284 FU U.S. DOE [DE-AC06-76RCO 1830] FX A part of this research was supported by the U.S. DOE's Atmospheric Systems Research Program under contract DE-AC06-76RCO 1830 at PNNL. Authors are grateful to Dr. Wayne Miller and Bill Welch to lend their instrument for this study to measure NO2 concentration. Authors are also grateful to Drs. Kelly Higgins and Amanda Nienow for their advice in the experimental set up. NR 23 TC 20 Z9 20 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2010 VL 44 IS 12 BP 4796 EP 4801 DI 10.1021/es903672y PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 608WP UT WOS:000278617000067 PM 20491473 ER PT J AU Fenter, P Lee, SS Park, C Catalano, JG Zhang, Z Sturchio, NC AF Fenter, P. Lee, S. S. Park, C. Catalano, J. G. Zhang, Z. Sturchio, N. C. TI Probing interfacial reactions with X-ray reflectivity and X-ray reflection interface microscopy: Influence of NaCl on the dissolution of orthoclase at pOH 2 and 85 degrees C SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ATOMIC-FORCE MICROSCOPY; CRYSTAL TRUNCATION RODS; ALBITE-WATER SYSTEM; HIGH-RESOLUTION; LABRADORITE FELDSPAR; SURFACE-CHEMISTRY; (001)-SOLUTION INTERFACE; CALCITE GROWTH; FREE-ENERGY; KINETICS AB The role of electrolyte ions in the dissolution of orthoclase (0 0 1) in 0.01 m NaOH (pOH similar to 2) at 84 +/- 1 degrees C is studied using a combination of in-situ X-ray reflectivity (XR) and ex-situ X-ray reflection interface microscopy (XRIM). The real-time XR measurements show characteristic intensity oscillations as a function of time indicative of the successive removal of individual layers. The dissolution rate in 0.01 m NaOH increases approximately linearly with increasing NaCl concentration up to 2 m NaCl. XRIM measurements of the lateral interfacial topography/structure were made for unreacted surfaces and those reacted in 0.01 m NaOH/1.0 m NaCl solution for 15, 30 and 58 min. The XRIM images reveal that the dissolution reaction leads to the formation of micron-scale regions that are characterized by intrinsically lower reflectivity than the unreacted regions, and appears to be nucleated at steps and defect sites. The reflectivity signal from these reacted regions in the presence of NaCl in solution is significantly lower than that calculated from an idealized layer-by-layer dissolution process, as observed previously in 0.1 m NaOH in the absence of added electrolyte. This difference suggests that dissolved NaCl results in a higher terrace reactivity leading to a more three-dimensional process, consistent with the real-time XR measurements. These observations demonstrate the feasibility of XRIM to gain new insights into processes that control interfacial reactivity, specifically the role of electrolytes in feldspar dissolution at alkaline conditions. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fenter, P.; Lee, S. S.; Park, C.; Catalano, J. G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Catalano, J. G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sturchio, N. C.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fenter@anl.gov RI Lee, Sang Soo/B-9046-2012; Catalano, Jeffrey/A-8322-2013; Park, Changyong/A-8544-2008; Zhang, Zhan/A-9830-2008 OI Catalano, Jeffrey/0000-0001-9311-977X; Park, Changyong/0000-0002-3363-5788; Zhang, Zhan/0000-0002-7618-6134 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 57 TC 5 Z9 5 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2010 VL 74 IS 12 BP 3396 EP 3411 DI 10.1016/j.gca.2010.03.027 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 599WU UT WOS:000277945500004 ER PT J AU Cobb, B Wang, LA Dunn, L Dodabalapur, A AF Cobb, Brian Wang, Liang Dunn, Lawrence Dodabalapur, Ananth TI Velocity-field characteristics of polycrystalline pentacene field-effect transistors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILM TRANSISTORS; HIGH-MOBILITY; TRANSPORT; SEMICONDUCTORS AB In this article, we report on the carrier velocity of polycrystalline pentacene transistors as a function of lateral electric field in both quasistatic and nonquasistatic regimes. We performed a series of measurements on devices with a range of channel lengths. At moderate lateral electric fields (<5 X 10(5) V/cm), the characteristics are similar to those of disordered or amorphous organic semiconductors. The highest velocities we have measured are near 5 X 10(4) cm/s at room temperature. Additional dynamic measurements, using both step response and frequency response methods, correlate strongly to the quasistatic findings. These results fill an important void between experimental results that have been obtained with disordered/amorphous organic semiconductors and single crystals. (C) 2010 American Institute of Physics. [doi:10.1063/1.3374707] C1 [Cobb, Brian; Wang, Liang; Dunn, Lawrence; Dodabalapur, Ananth] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA. [Wang, Liang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cobb, B (reprint author), Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA. EM bcobb@mail.utexas.edu RI Dodabalapur, Ananth/H-3043-2012 FU DARPA-MTO [FA9550-09-1-0530] FX The authors wish to thank DARPA-MTO FA9550-09-1-0530, for financial support of this work. They wish to thank Dharmendar Reddy for several helpful discussions. NR 22 TC 6 Z9 6 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 124503 DI 10.1063/1.3374707 PG 5 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900145 ER PT J AU Fleming, RM Lang, DV Seager, CH Bielejec, E Patrizi, GA Campbell, JM AF Fleming, R. M. Lang, D. V. Seager, C. H. Bielejec, E. Patrizi, G. A. Campbell, J. M. TI Continuous distribution of defect states and band gap narrowing in neutron irradiated GaAs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; GROWN N-GAAS; GALLIUM-ARSENIDE; ELECTRON-IRRADIATION; BORON IMPLANTATION; DLTS SPECTRA; U-BAND; EL2; TRAPS; DISLOCATIONS AB We find that fast neutron irradiated n- and p-GaAs diodes both show a broad feature in deep level transient spectroscopy (DLTS). previously studied primarily in n-GaAs and termed the "U-band." The high temperature edge of the broad DLTS feature cuts off at the same temperature in both n- and p-GaAs suggesting that the cut off is due to the DLTS behavior expected for a continuous density of defect states that spans midgap. The band gap implied by the DLTS midgap cut off is 1.36 eV, as compared to the bulk GaAs band gap 1.52 eV. Band gap narrowing is consistent with previous measurements of lattice expansion in neutron irradiated GaAs. This leads to a model of defect cascades that are regions of narrowed band gap with defect levels that are inhomogeneously broadened. We observe, in addition, that the damage cascades are surrounded by large Coulomb barriers that prevent the complete filling of traps in the damaged regions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3448118] C1 [Fleming, R. M.; Lang, D. V.; Seager, C. H.; Bielejec, E.; Patrizi, G. A.; Campbell, J. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fleming, RM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmflemi@sandia.gov RI Fleming, Robert/B-1248-2008 FU Department of Energy [DE-AC04094AL85000] FX We thank Stephen Foiles, Don King, Kyle McDonald, Sam Myers, Peter Schultz, Darwin Serkland, George Vizkelethy, Bill Wampler, and Alan Wright for stimulating discussions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the Department of Energy under Contract No. DE-AC04094AL85000. NR 29 TC 1 Z9 1 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123710 DI 10.1063/1.3448118 PG 5 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900072 ER PT J AU Gfroerer, TH Hampton, DG Simov, PR Wanlass, MW AF Gfroerer, T. H. Hampton, D. G. Simov, P. R. Wanlass, M. W. TI AX-type defects in zinc-doped GaAs(1-x)P(x) on GaAs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LARGE-LATTICE-RELAXATION; DX CENTERS; SEMICONDUCTORS; COMPENSATION; GAAS1-XPX; BEHAVIOR; ALLOYS AB GaAsP alloys are potential candidates for similar to 1.5 to 1.8 eV photovoltaic converters in multijunction solar cells. We use thermally stimulated capacitance, deep level transient spectroscopy, and photocapacitance to characterize defects in p-type GaAs0.83P0.17 and GaAs0.72P0.28 grown lattice-mismatched on GaAs substrates. We observe several features typically associated with DX centers, including persistent photocapacitance, nonexponential thermally-activated capture and escape transients, and large Stokes shifts for optical thresholds. We use secondary ion mass spectroscopy and capacitance versus voltage measurements to ascertain the sulfur and zinc doping profiles in the n + / p diodes. The dramatic decrease in the effective doping concentration with temperature in the unilluminated GaAs0.72P0.28 diode and the magnitude of the capacitance change with illumination indicate that the defect concentration is comparable to the zinc doping, suggesting that zinc may facilitate the formation of AX complexes in this alloy. (C) 2010 American Institute of Physics. [doi:10.1063/1.3436590] C1 [Gfroerer, T. H.; Hampton, D. G.; Simov, P. R.] Davidson Coll, Davidson, NC 28035 USA. [Wanlass, M. W.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gfroerer, TH (reprint author), Davidson Coll, Davidson, NC 28035 USA. EM tigfroerer@davidson.edu NR 11 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123719 DI 10.1063/1.3436590 PG 4 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900081 ER PT J AU Han, Y Reaney, IM Johnson-Wilke, RL Telli, MB Tinberg, DS Levin, I Fong, DD Fister, TT Streiffer, SK Trolier-McKinstry, S AF Han, Y. Reaney, I. M. Johnson-Wilke, R. L. Telli, M. B. Tinberg, D. S. Levin, I. Fong, D. D. Fister, T. T. Streiffer, S. K. Trolier-McKinstry, S. TI Structural phase transitions in AgTa0.5Nb0.5O3 thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DIELECTRIC-PROPERTIES; ELECTRON-DIFFRACTION; SILVER TANTALATE; SOLID-SOLUTIONS; CERAMICS; PEROVSKITES; NIOBATE; VOIGT AB Octahedral tilt transitions in epitaxial AgTa0.5Nb0.5O3 (ATN) films grown on (001)(p) (where p =pseudocubic) oriented SrRuO3/LaAlO3 and LaAlO3 substrates were characterized by electron diffraction and high resolution x-ray diffraction. It was found that the ATN films exhibited octahedral rotations characteristic of the Pbcm space group, similar to those seen in bulk materials; however, the temperature of the M-3 <-> M-2 phase transition has been suppressed by similar to 250 K due to the fact that the correlation length for rotations about c(p) was significantly reduced. The average off-center B-cation displacements, which signify the degree of long-range order for these local cation positions, were negligibly small compared to bulk materials, as inferred from the near-zero intensity of the 1/4(00l)(p)-type reflections. On cooling, pronounced ordering of B-cation displacements occurred at approximate to 60 K which is significantly lower compared to bulk (approximate to 310 K). The onset of this ordering coincides with a broad maximum in relative permittivity as a function of temperature. It is believed that point and planar defects in thin ATN films disrupt the complex sequence of in-phase and antiphase rotations around c(p) thereby reducing the effective strength of interactions between the tilting and cation displacements. (C) 2010 American Institute of Physics. [doi:10.1063/1.3447753] C1 [Han, Y.; Reaney, I. M.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. [Johnson-Wilke, R. L.; Tinberg, D. S.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Johnson-Wilke, R. L.; Tinberg, D. S.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Telli, M. B.] Kocaeli Univ, Dept Met & Mat Engn, TR-41380 Izmit, Turkey. [Levin, I.] Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA. [Fong, D. D.; Fister, T. T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Han, Y (reprint author), Univ Birmingham, Sch Phys & Astron, Nanoscale Phys Res Lab, Birmingham B15 2TT, W Midlands, England. EM y.han.1@bham.ac.uk RI Levin, Igor/F-8588-2010; OI Trolier-McKinstry, Susan/0000-0002-7267-9281 FU Engineering and Physical Science Research Council U.K. [EP/D067049/1G]; National Science Foundation [DMR-0602770]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support for this work is provided by the Engineering and Physical Science Research Council U.K. (Grant No. EP/D067049/1G) and by the National Science Foundation (Materials World Network, Grant No. DMR-0602770). Y. Han would like to thank Professors Paula Vilarinho and Augusto Lopes at the University of Aveiro, Portugal, for providing the TEM facilities for performing the low temperature experiment. Work at Argonne and the use of the Advanced Photon Source and the Center for Nanoscale Materials were supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Jenia Karapetrova's help at beamline 33-BM of the Advanced Photon Source, along with Pete Baldo's technical assistance is gratefully acknowledged. NR 19 TC 6 Z9 6 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123517 DI 10.1063/1.3447753 PG 6 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900044 ER PT J AU Huda, MN Walsh, A Yan, YF Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Walsh, Aron Yan, Yanfa Wei, Su-Huai Al-Jassim, Mowafak M. TI Electronic, structural, and magnetic effects of 3d transition metals in hematite SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; THIN-FILMS; BASIS-SET; WATER; OXIDE; EFFICIENCY AB We present a density-functional theory study on the electronic structure of pure and 3d transition metal (TM) (Sc, Ti, Cr, Mn, and Ni) incorporated alpha-Fe(2)O(3). We find that the incorporation of 3d TMs in alpha-Fe(2)O(3) has two main effect such as: (1) the valence and conduction band edges are modified. In particular, the incorporation of Ti provides electron carriers and reduces the electron effective mass, which will improve the electrical conductivity of alpha-Fe(2)O(3). (2) The unit cell volume changes systematically such as: the incorporation of Sc increases the volume, whereas the incorporation of Ti, Cr, Mn, and Ni reduces the volume monotonically, which can affect the hopping probability of localized charge carriers (polarons). We discuss the importance of these results in terms of the utilization of hematite as a visible-light photocatalyst. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432736] C1 [Huda, Muhammad N.; Walsh, Aron; Yan, Yanfa; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, YF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yanfa.yan@nrel.gov RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008 OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X FU U.S. Department of Energy [DE-AC36-08GO28308] FX We thank E. McFarland (UCSB) and J. Turner (NREL) for stimulating discussions. The work at NREL is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 32 TC 56 Z9 56 U1 5 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123712 DI 10.1063/1.3432736 PG 6 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900074 ER PT J AU Huda, MN Turner, JA AF Huda, Muhammad N. Turner, John A. TI Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H-2 production: A case study SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HYDROGEN-PRODUCTION; CARBON NITRIDE; WATER; SOLIDS; ENERGY AB Efficient photoelectrochemical H-2 production by solar irradiation depends not only on the photocatalyst's band gap and its band-edge positions but also on the detailed electronic nature of the bands, such as the localization or delocalization of the band edges and their orbital characteristics. These determine the carrier transport properties, reactivity, light absorption strength, etc. and significantly impact the material's efficiency as a photoconverter. The localization or delocalization of the band edges may arise either due to the orbital nature of the bands or the structural morphology of the material. A recent experimental report on a photocatalyst based on s/p orbitals showed very poor performance for H-2 production despite the delocalized nature of the s/p bands as compared to the d-bands of transition metal oxides. It is then important to examine whether this poor performance is inherent to these materials or rather arises from some experimental limitations. A theoretical analysis by first-principle methods is well suited to shed light on this question. (C) 2010 American Institute of Physics. [doi:10.1063/1.3428957] C1 [Huda, Muhammad N.; Turner, John A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM jturner@nrel.gov RI Huda, Muhammad/C-1193-2008 OI Huda, Muhammad/0000-0002-2655-498X FU NREL; Office of Science of the U.S. Department of Energy [DE-AC36-08GO28308] FX The authors gratefully acknowledge the support of NREL's Laboratory Directed Research and Development (LDRD) fund. This research used resources of the National Energy Research Scientific Computing (NERSC) Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 19 TC 12 Z9 12 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123703 DI 10.1063/1.3428957 PG 5 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900065 ER PT J AU Lin, H Rumaiz, AK Schulz, M Huang, CP Shah, SI AF Lin, H. Rumaiz, A. K. Schulz, M. Huang, C. P. Shah, S. Ismat TI Hydrogen generation under visible light using nitrogen doped titania anodes SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID OPTICAL-PROPERTIES; THIN-FILMS; TIO2; DIOXIDE; PHOTOCATALYSIS; ANATASE; SURFACE; POWDERS; RUTILE AB Hydrogen is among several energy sources that will be needed to replace the quickly diminishing fossil fuels. Free hydrogen is not available naturally on earth and the current processes require a fossil fuel, methane, to generate hydrogen. Electrochemical splitting of water on titania proposed by Fujishima suffers from low efficiency. The efficiency could be enhanced if full sun spectrum can be utilized. Using pulsed laser deposition technique we synthesized nitrogen doped titanium dioxide (TiO(2-x)N(x)) thin films with improved visible light sensitivity. The photoactivity was found to be N concentration dependent. Hydrogen evolution was observed under visible light irradiation (wavelength > 390 nm) without the presence of any organic electron donor. (c) 2010 American Institute of Physics. [doi:10.1063/1.3428514] C1 [Lin, H.; Schulz, M.; Shah, S. Ismat] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. [Rumaiz, A. K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Huang, C. P.] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA. [Shah, S. Ismat] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RP Lin, H (reprint author), Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. EM ismat@udel.edu RI Dom, Rekha/B-7113-2012; Rumaiz, Abdul/J-5084-2012 NR 30 TC 9 Z9 9 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 124305 DI 10.1063/1.3428514 PG 6 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900125 ER PT J AU Luo, SN Germann, TC Desai, TG Tonks, DL An, Q AF Luo, Sheng-Nian Germann, Timothy C. Desai, Tapan G. Tonks, Davis L. An, Qi TI Anisotropic shock response of columnar nanocrystalline Cu SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; FCC METALS; FRACTURE; DISLOCATIONS; SIMULATIONS; NUCLEATION; BEHAVIOR; FAILURE; SOLIDS AB We perform molecular dynamics simulations to investigate the shock response of idealized hexagonal columnar nanocrystalline Cu, including plasticity, local shear, and spall damage during dynamic compression, release, and tension. Shock loading (one-dimensional strain) is applied along three principal directions of the columnar Cu sample, one longitudinal (along the column axis) and two transverse directions, exhibiting a strong anisotropy in the response to shock loading and release. Grain boundaries (GBs) serve as the nucleation sites for crystal plasticity and voids, due to the GB weakening effect as well as stress and shear concentrations. Stress gradients induce GB sliding which is pronounced for the transverse loading. The flow stress and GB sliding are the lowest but the spall strength is the highest, for longitudinal loading. For the grain size and loading conditions explored, void nucleation occurs at the peak shear deformation sites (GBs, and particularly triple junctions); spall damage is entirely intergranular for the transverse loading, while it may extend into grain interiors for the longitudinal loading. Crystal plasticity assists the void growth at the early stage but the growth is mainly achieved via GB separation at later stages for the transverse loading. Our simulations reveal such deformation mechanisms as GB sliding, stress, and shear concentration, GB-initiated crystal plasticity, and GB separation in nanocrystalline solids under shock wave loading. (C) 2010 American Institute of Physics. [doi:10.1063/1.3437654] C1 [Luo, Sheng-Nian; Germann, Timothy C.; Tonks, Davis L.; An, Qi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Desai, Tapan G.] Adv Cooling Technol Inc, Lancaster, PA 17601 USA. [An, Qi] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012; OI Luo, Sheng-Nian /0000-0002-7538-0541; Germann, Timothy/0000-0002-6813-238X FU Los Alamos National Laboratory [LDRD-20090035DR]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work is supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (Project No. LDRD-20090035DR). LANL is operated by Los Alamos National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We have benefited from valuable discussions with A. Koskelo, P. Peralta, B. Holian, B. Uberuaga, C. Barnes, and other colleagues. NR 38 TC 28 Z9 28 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123507 DI 10.1063/1.3437654 PG 10 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900034 ER PT J AU Riviere, J Renaud, G Haupert, S Talmant, M Laugier, P Johnson, PA AF Riviere, Jacques Renaud, Guillaume Haupert, Sylvain Talmant, Maryline Laugier, Pascal Johnson, Paul A. TI Nonlinear acoustic resonances to probe a threaded interface SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELASTIC-WAVE SPECTROSCOPY; DISCERN MATERIAL DAMAGE; LOCK-IN THERMOGRAPHY; ULTRASOUND SPECTROSCOPY; HARMONIC-GENERATION; RIVETED STRUCTURES; NEWS TECHNIQUES; FATIGUE DAMAGE; SLOW DYNAMICS; ROCK AB We evaluate the sensitivity of multimodal nonlinear resonance spectroscopy to torque changes in a threaded interface. Our system is comprised of a bolt progressively tightened in an aluminum plate. Different modes of the system are studied in the range 1-25 kHz, which correspond primarily to bending modes of the plate. Nonlinear parameters expressing the importance of resonance frequency and damping variations are extracted and compared to linear ones. The influence of each mode shape on the sensitivity of nonlinear parameters is discussed. Results suggest that a multimodal measurement is an appropriate and sensitive method for monitoring bolt tightening. Further, we show that the nonlinear components provide new information regarding the interface, which can be linked to different friction theories. This work has import to study of friction and to nondestructive evaluation of interfaces for widespread application and basic research. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3443578] C1 [Riviere, Jacques; Renaud, Guillaume; Haupert, Sylvain; Talmant, Maryline; Laugier, Pascal] Univ Paris 06, CNRS, Lab Imagerie Parametr, UMR 7623, F-75006 Paris, France. [Johnson, Paul A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Riviere, J (reprint author), Univ Paris 06, CNRS, Lab Imagerie Parametr, UMR 7623, F-75006 Paris, France. EM jacques.riviere@upmc.fr; paj@lanl.gov RI CHEN, Jiangang/A-1549-2011; OI haupert, sylvain/0000-0003-4705-4527; Johnson, Paul/0000-0002-0927-4003 NR 56 TC 7 Z9 7 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 124901 DI 10.1063/1.3443578 PG 9 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900164 ER PT J AU Zhou, XW Doty, FP Yang, P AF Zhou, X. W. Doty, F. P. Yang, P. TI Atomistic simulations of mechanical properties of LaBr3 single crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DISLOCATIONS; DYNAMICS; METALS AB Based upon a many-body La-Br interatomic potential, molecular dynamics simulations have been performed to study mechanical properties of the UCl3 phase, LaBr3 crystal. Both plastic deformation and fracture mechanisms were explored. For plastic deformation, dislocation line energy, core structure, slip mechanism, and mobility were all examined. For fracture mechanism, tensile tests were conducted under different loading directions. We found that the < 0001 > prism dislocations have the lowest line energies (-5 eV/angstrom, compared to >8 eV/angstrom for the < 11 (2) over bar0 > basal dislocations). The < 0001 > edge dislocation is mobile and its mobility increases with temperature. The < 0001 > screw dislocation is mobile at 0 K temperature and it becomes immobile as temperature is increased. The < 11 (2) over bar0 > edge and screw dislocations are always immobile at any temperatures. The mobile dislocations do not dissociate into partials and they always move in a perfect unit. The immobile dislocations, however, always exhibit nonplanar dissociated core structures. Interestingly, the slip plane of the < 0001 > edge dislocation differs from the cleavage plane by an one-atomic plane distance, whereas the slip of the < 0001 > screw dislocation is associated with alternative out-of-plane exchange of Br atoms. The critical shear stress for the onset of < 0001 > slip was found to be around 1 GPa for the edge dislocation at 300 K, and around 1.5 GPa for both edge and screw dislocations at 0 K. Tensile loading simulations indicated that the theoretical strength of the material is critically determined by the {1 (1) over bar 00} cleavage. The lowest theoretical strength and fracture strain occur when the loading direction is normal to the cleavage plane and the highest theoretical strength and fracture strain occur when the loading direction is parallel to the cleavage plane. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431357] C1 [Zhou, X. W.] Sandia Natl Labs, Dept Mech Mat, Livermore, CA 94550 USA. [Yang, P.] Sandia Natl Labs, Dept Ceram & Glass, Albuquerque, NM 87185 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Dept Mech Mat, Livermore, CA 94550 USA. EM xzhou@sandia.gov FU NNSA/DOE Office of Nonproliferation Research and Development; United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin,Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DEAC04-94AL85000. This work is supported by the NNSA/DOE Office of Nonproliferation Research and Development, Proliferation Detection Program, Advanced Materials Portfolio. NR 19 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2010 VL 107 IS 12 AR 123509 DI 10.1063/1.3431357 PG 11 WC Physics, Applied SC Physics GA 626UX UT WOS:000279993900036 ER PT J AU Liu, YG AF Liu, Yangang TI Comments on "Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast" SO JOURNAL OF CLIMATE LA English DT Editorial Material ID LIQUID-WATER-CONTENT; STRATOCUMULUS CLOUDS; EFFECTIVE RADIUS; OPEN CELLS; WARM RAIN; MICROPHYSICS; MACROPHYSICS; ORGANIZATION; VARIABILITY; DISPERSION C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Liu, YG (reprint author), Brookhaven Natl Lab, 75 Rutherford Dr,Bldg 815E, Upton, NY 11973 USA. EM lyg@bnl.gov RI Liu, Yangang/H-6154-2011 NR 28 TC 2 Z9 2 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 15 PY 2010 VL 23 IS 12 BP 3416 EP 3420 DI 10.1175/2010JCLI3407.1 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 623ZM UT WOS:000279785900015 ER PT J AU Lin, WY Zhang, MH Loeb, NG AF Lin, Wuyin Zhang, Minghua Loeb, Norman G. TI Reply to Comments on "Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast" SO JOURNAL OF CLIMATE LA English DT Editorial Material ID GLOBAL DISTRIBUTIONS; WARM RAIN; STRATOCUMULUS; MACROPHYSICS; MICROPHYSICS; CYCLE C1 [Lin, Wuyin; Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY USA. [Loeb, Norman G.] Hampton Univ, NASA, Langley Res Ctr, Hampton, VA 23668 USA. RP Lin, WY (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, 75 Rutherford Dr,Bldg 815E, Upton, NY 11973 USA. EM wlin@bnl.gov NR 15 TC 0 Z9 0 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 15 PY 2010 VL 23 IS 12 BP 3421 EP 3423 DI 10.1175/2010JCLI3483.1 PG 3 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 623ZM UT WOS:000279785900016 ER PT J AU Zhang, F Parker, JC Brooks, SC Watson, DB Jardine, PM Gu, BH AF Zhang, Fan Parker, Jack C. Brooks, Scott C. Watson, David B. Jardine, Philip M. Gu, Baohua TI Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Radionuclide; Sulfate; Aluminum; pH; Anion exchange; Model ID ANION-EXCHANGE; ADSORPTION; MODEL; TRANSPORT AB This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO(3)(-), SO(4)(2-), U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variably charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U,Tc and co-existing ions during pre- and post-groundwater treatment practices. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Fan] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China. [Parker, Jack C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Brooks, Scott C.; Watson, David B.; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Jardine, Philip M.] Univ Tennessee, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. RP Zhang, F (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, 18 Shuangqing Rd,POB 2871, Beijing 100085, Peoples R China. EM zhangfan@itpcas.ac.cn RI Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012; Watson, David/C-3256-2016 OI Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research Programs; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 31 TC 7 Z9 7 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD JUN 15 PY 2010 VL 178 IS 1-3 BP 42 EP 48 DI 10.1016/j.jhazmat.2010.01.040 PG 7 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 601JW UT WOS:000278056300005 PM 20116923 ER PT J AU Cervini-Silva, J Hernandez-Pineda, J Rivas-Valdes, MT Cornejo-Garrido, H Guzman, J Fernandez-Lomelin, P Del Razo, LM AF Cervini-Silva, Javiera Hernandez-Pineda, Jessica Teresa Rivas-Valdes, Maria Cornejo-Garrido, Hilda Guzman, Jose Fernandez-Lomelin, Pilar Maria Del Razo, Luz TI Arsenic(III) methylation in betaine-nontronite clay-water suspensions under environmental conditions SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Methyl transfer; Abiotic; Remediation; Toxicity; Soils; Sediments ID ATOMIC-ABSORPTION-SPECTROMETRY; MONOMETHYLARSONOUS ACID MMA(III); SPECIATION ANALYSIS; ARSENICALS; ARSENOBETAINE; METABOLISM; GENERATION; TRIVALENT; IRON; MULTIATOMIZER AB This paper reports arsenic methylation in betaine-nontronite clay-water suspensions under environmental conditions. Two nontronites (<0.05 mm), NAu-1 (green color, Al-enriched) and NAu-2 (brown color, Al-poor, contains tetrahedral Fe) from Uley Mine - South Australia were selected for this study. Betaine (pK(a) = 1.83) was selected as methyl donor. The reaction between 5 g L(-1) clay, 20 ppm As(III), and 0.4 M betaine at 7 <= pH(0) <= 9 under anoxic conditions was studied. The presence of nontronite clays were found to favor As(III) conversion to monomethylarsenic (MMA). Arsenic conversion was found to be as high as 50.2 ng MMA/ng As(111)(0). Conversion of As was found to be more quantitative in the presence of NAu-2 ((Na(0.72)) Al(0.16)Fe(0.29)][Al(0.34) Fe(3.54) Mg(0.05)] O(20)(OH)(4)) than NAu-1 ((Na(1.05)) [Si(6.38) Al(0.95)Fe(0.07)][Al(0.36) Fe(3.61) Mg(0.04)] O(20)(OH)(4)). The inherent negative charge at the nontronite tetrahedral layer stabilizes positively charged organic intermediate-reaction species, thereby leading to decreases in the overall methylation activation energy. The outcome of this work shows that nontronite clays catalyze As methylation to MMA via non-enzymatic pathway(s) under environmental conditions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Div Ciencias Nat Ingn, Mexico City 01120, DF, Mexico. [Cervini-Silva, Javiera; Cornejo-Garrido, Hilda] Univ Nacl Autonoma Mexico, Posgrado Ciencias Tierra, Mexico City 04510, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, Washington, DC 20546 USA. [Hernandez-Pineda, Jessica; Teresa Rivas-Valdes, Maria] Univ Nacl Autonoma Mexico, Fac Quim, Mexico City 04510, DF, Mexico. [Fernandez-Lomelin, Pilar] Univ Nacl Autonoma Mexico, Inst Geog, Mexico City 04510, DF, Mexico. [Maria Del Razo, Luz] CINVESTAV, Dept Toxicol, Mexico City, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Div Ciencias Nat Ingn, Mexico City 01120, DF, Mexico. EM jcervini@correo.cua.uam.mx FU UNAM [IN116007-2]; CONACYT [61670]; CONACYT-CNRS; ECACORE 2020 FX The authors express gratitude to Dr. Rebecca Sutton (Environmental Working Group) and Daria Kibanova (School of Chemistry, UNAM) for helpful comments, and M en C Luz C Sanchez Penia (Depto Toxicologia, CINVESTAV) for technical assistance. JHP and HCG thank the support of a DGAPA-UNAM undergraduate scholarship. This project was supported in part by UNAM (PUNTA-PAPIIT, Grant No: IN116007-2), CONACYT (SEP-CONACYT Ciencia Basica 2006, Grant No: 61670), CONACYT-CNRS grant program, and by ECACORE 2020 (SEMARNAT-CONACYT). NR 42 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD JUN 15 PY 2010 VL 178 IS 1-3 BP 450 EP 454 DI 10.1016/j.jhazmat.2010.01.102 PG 5 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 601JW UT WOS:000278056300060 PM 20189716 ER PT J AU Koirala, SR Gentry, RW Mulholland, PJ Perfect, E Schwartz, JS AF Koirala, Shesh R. Gentry, Randall W. Mulholland, Patrick J. Perfect, Edmund Schwartz, John S. TI Time and frequency domain analyses of high-frequency hydrologic and chloride data in an east Tennessee watershed SO JOURNAL OF HYDROLOGY LA English DT Article DE Spectral analysis; Wavelet analysis; Chloride; Persistence; Time series ID WAVELET ANALYSIS; STREAM CHEMISTRY; TRANSPORT; SERIES; BROOK AB In the realm of sustainability science, it is becoming increasingly important to understand the basal condition of a natural system as well as its long-term behavior. Research is needed to better explain the temporal scaling of water chemistry in streams and watersheds and its relationship with the hydrologic factors that influence its behavior. Persistence of dissolved chemicals in streams has been demonstrated to be linked to certain hydrologic processes, such as interaction between hydrologic units and storage in surface or sub-surface systems. In this study, spectral and wavelet analyses provided a novel theoretical basis for insights into long-term chloride behavior in an east Tennessee watershed. Temporal scaling analyses were conducted on weekly time series data of chloride collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee. The objectives of the study were to: evaluate chloride concentration (a conservative solute) to determine the presence of statistical persistence and the relationship of the persistence to hydrologic variables (discharge and rainfall) using time and frequency domain analyses of high-frequency hydrologic and chloride concentration data. Results demonstrated that chloride showed some level of statistical persistence that was influenced by rainfall and/or discharge. Short-term statistical persistence (less than a year) was related to the persistence of rainfall and discharge, whereas long-term statistical persistence (more than a year) was related to the persistence of discharge. (C) 2010 Elsevier B.V. All rights reserved. C1 [Koirala, Shesh R.; Gentry, Randall W.] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA. [Perfect, Edmund] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Div Earth Sci, Oak Ridge, TN USA. RP Koirala, SR (reprint author), Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA. EM skoirala@utk.edu RI Mulholland, Patrick/C-3142-2012; Gentry, Randall/J-8177-2012 OI Gentry, Randall/0000-0003-2477-8127 FU Center for Environmental Biotechnology; Inst. for a Secure and Sustainable Environment at the Univ. of Tennessee; US Department of Energy in the Office of Science, Office of Biological and Environmental Research; US Department of Energy [DE-AC05-00OR22725] FX Funding for this research was provided by the Center for Environmental Biotechnology and the Inst. for a Secure and Sustainable Environment at the Univ. of Tennessee. Data were collected as part of the long-term Walker Branch Watershed project at Oak Ridge National Laboratory and supported by the US Department of Energy's Program for Ecosystem Research, in the Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725. NR 24 TC 13 Z9 13 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUN 15 PY 2010 VL 387 IS 3-4 BP 256 EP 264 DI 10.1016/j.jhydrol.2010.04.014 PG 9 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 617JO UT WOS:000279277100010 ER PT J AU Kalay, YE Yeager, C Chumbley, LS Kramer, MJ Anderson, IE AF Kalay, Y. E. Yeager, C. Chumbley, L. S. Kramer, M. J. Anderson, I. E. TI Initial crystallization in a nanostructured Al-Sm rare earth alloy SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Amorphous metal; Crystal nucleation; Nanocrystals; Transmission electron microscopy ID METALLIC GLASSES; NANOCRYSTAL DEVELOPMENT; AMORPHOUS-ALLOYS; SYSTEMS; ALUMINUM; NUCLEATION; BEHAVIOR; FE AB The transformation kinetics and microstructural evolution during initial crystallization in highly driven Al(90)Sm(10) were investigated using transmission electron microscopy (TEM). conventional Cu K(alpha) and high-energy synchrotron X-ray diffraction (HEXRD) and differential scanning calorimetry (DSC). The highest cooling rate obtained in this study yielded a high number density of fcc-Al nanocrystals, with sizes on the order of 2-5 nm, embedded in a disordered matrix rich in an Al-Sm medium range order (MRO) structure. Isothermal in-situ HEXRD results indicated a single crystallization of a large primitive cubic phase from the disordered state. Further analysis using DSC showed two crystallization events; a small peak overlapping the peak from the main crystallization event. TEM analysis performed at different stages of crystallization resolved pre-existing fcc-Al crystals, further crystallization of fcc-Al, (corresponding to the first small peak) and evolution of the cubic phase, corresponding to the main crystallization event. Fcc-Al nanocrystals showed a restricted growth and stayed at an average size of 16 nm after full crystallization was established. Transformation kinetics was described using Johnson-Mehl-Avrami approach after deconvolution of the overlapping crystallization peaks using a Gaussian approximation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kalay, Y. E.; Chumbley, L. S.; Kramer, M. J.; Anderson, I. E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kalay, Y. E.; Chumbley, L. S.; Kramer, M. J.; Anderson, I. E.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. [Yeager, C.] Penn State Univ, University Pk, PA 16802 USA. RP Kalay, YE (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM yekalay@iastate.edu FU United States Department of Energy (USDOE), Office of Science (OS), Office of Basic Energy Science (BES), under Ames Laboratory [DE-AC02-07CH11358]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX The work at Ames Laboratory was supported by the United States Department of Energy (USDOE), Office of Science (OS), Office of Basic Energy Science (BES), under Ames Laboratory Contract No. DE-AC02-07CH11358. The high-energy X-ray work at the MUCAT sector of the APS was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The assistance of Materials Preparation Center of the Ames Laboratory is acknowledged for supplying our samples [17]. NR 29 TC 13 Z9 13 U1 2 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2010 VL 356 IS 28-30 BP 1416 EP 1424 DI 10.1016/j.jnoncrysol.2010.05.005 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 634YN UT WOS:000280622300008 ER PT J AU Pan, AQ Liu, DW Zhou, XY Garcia, BB Liang, SQ Liu, J Cao, GZ AF Pan, Anqiang Liu, Dawei Zhou, Xiaoyuan Garcia, Betzaita Betalla Liang, Shuquan Liu, Jun Cao, Guozhong TI Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide-carbon cryogel nanocomposites SO JOURNAL OF POWER SOURCES LA English DT Article DE Hydrous vanadium pentoxide; Carbon cryogels; Potentiodynamic deposition; Coherent nanocomposite; Discharge capacity ID AMMONIA BORANE NANOCOMPOSITES; REPORTING PHYSISORPTION DATA; GAS SOLID SYSTEMS; ELECTROCHEMICAL PROPERTIES; XEROGEL FILMS; SURFACE-AREA; BATTERIES; OXIDE; ARRAYS; ELECTRODES AB Coherent hydrous vanadium pentoxide (V(2)O(5)center dot nH(2)O)-carbon cryogel (CC) nanocomposites were synthesized by electrodeposition of vanadium pentoxide onto the porous carbon scaffold which was derived from resorcinol (R) and formaldehyde (F) organic hydrogels. As-fabricated nanocomposites were characterized by scanning electron microscopy (SEM), along with EDAX and nitrogen sorption isotherms which suggested vanadium pentoxide incorporated in the pores of carbon cryogels. The nanocomposites showed much improved discharge capacity and better cyclic stability as compared to hydrous vanadium pentoxide films deposited on platinum foil. The discharge capacity of the nanocomposites reached 280 mAh g(-1) based on the mass of the vandium pentoxide at a current density of 100 mA g(-1) and it possessed good cycle stability at different discharge rates. The results demonstrated that electrochemical performances, such as specific discharge capacitance and reversibility of the composite electrode, could be greatly enhanced by the introduction of carbon cryogels (CCs) scaffold with three-dimensionally interconnected porous structure in which V(2)O(5)center dot nH(2)O homogeneously dispersed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pan, Anqiang; Liu, Dawei; Zhou, Xiaoyuan; Garcia, Betzaita Betalla; Cao, Guozhong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Pan, Anqiang; Liang, Shuquan] Cent S Univ, Dept Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China. [Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cao, GZ (reprint author), Univ Washington, Dept Mat Sci & Engn, 302 Roberts Hall,Box 352120, Seattle, WA 98195 USA. EM gzcao@u.washington.edu RI Zhou, xiaoyuan/B-4308-2012; Cao, Guozhong/E-4799-2011; Zhou, Xiaoyuan/B-3288-2017 OI Zhou, Xiaoyuan/0000-0003-1088-0809 FU National Science Foundation [DMI-0455994, DMR-0605159]; Air Force Office of Scientific Research [AFOSR-MURI, FA9550-06-1-0326]; Pacific Northwest National Laboratories (PNNL); National Center for Nanomaterials Technology, Korea; Chinese Scholarship Council; University of Washington Center for Nanotechnology FX This work was supported financially in part by National Science Foundation (DMI-0455994 and DMR-0605159), Air Force Office of Scientific Research (AFOSR-MURI, FA9550-06-1-0326), Pacific Northwest National Laboratories (PNNL), and National Center for Nanomaterials Technology, Korea. A.Q.P. acknowledges the fellowship from the Chinese Scholarship Council and D.W.L. would like to acknowledge the graduate fellowship from the University of Washington Center for Nanotechnology (CNT). NR 39 TC 23 Z9 23 U1 5 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 15 PY 2010 VL 195 IS 12 SI SI BP 3893 EP 3899 DI 10.1016/j.jpowsour.2009.12.120 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 568EH UT WOS:000275504500018 ER PT J AU Pigga, JM Teprovich, JA Flowers, RA Antonio, MR Liu, TB AF Pigga, Joseph M. Teprovich, Joseph A., Jr. Flowers, Robert A., II Antonio, Mark R. Liu, Tianbo TI Selective Monovalent Cation Association and Exchange around Keplerate Polyoxometalate Macroanions in Dilute Aqueous Solutions SO LANGMUIR LA English DT Article ID X-RAY-SCATTERING; COUNTERION DISTRIBUTION; ELECTRON-TRANSFER; MOLYBDENUM-OXIDE; ION-PAIRS; SIZE; ATTRACTION; TRANSITION; VESICLES; CLUSTERS AB The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible. C1 [Pigga, Joseph M.; Teprovich, Joseph A., Jr.; Flowers, Robert A., II; Liu, Tianbo] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA. [Antonio, Mark R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Liu, TB (reprint author), Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA. EM liu@lehigh.edu RI Liu, Tianbo/D-8915-2017 OI Liu, Tianbo/0000-0002-8181-1790 FU National Science Foundation [NSF-CHE0723312]; Alfred P. Sloan Foundation; Lehigh University; U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357] FX T.L. gratefully acknowledges support from the National Science Foundation (NSF-CHE0723312), Alfred P. Sloan Foundation, and Lehigh University. This work is also supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under Contract DE-AC02-06CH11357 (for the parts performed at Argonne National Laboratory). We thank Dr. S. Seifert for generous assistance at the APS 12-ID facility. NR 43 TC 25 Z9 25 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 15 PY 2010 VL 26 IS 12 BP 9449 EP 9456 DI 10.1021/la100467p PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 606LX UT WOS:000278427600043 PM 20408519 ER PT J AU Chung, WJ Merzlyak, A Yoo, SY Lee, SW AF Chung, Woo-Jae Merzlyak, Anna Yoo, So Young Lee, Seung-Wuk TI Genetically Engineered Liquid-Crystalline Viral Films for Directing Neural Cell Growth SO LANGMUIR LA English DT Article ID PHAGE DISPLAY; BACTERIOPHAGE; SCAFFOLDS; PEPTIDE AB Designing biomimetic matrices with precisely controlled structural organization that provides biochemical and physical cues to regulate cell behavior is critical for the development of tissue-regenerating materials. We have developed novel liquid-crystalline film matrices made from genetically engineered M13 bacteriophages (viruses) that exhibit the ability to control and guide cell behavior for tissue-regenerating applications. To facilitate adhesion between the viruses and cells, 2700 copies of the M 13 major coat protein were genetically engineered to display integrin-binding peptides (RGD). The resulting nanofiber-like viruses displaying RGD motifs were biocompatible with neuronal cells and could be self-assembled to form long-range-ordered liquid-crystalline matrices by a simple shearing method. The resulting aligned structures were able to dictate the direction of cell growth. Future use of these virus-based materials for regenerating target tissues in viva would provide great opportunities for various tissue therapies. C1 [Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Nanosci & Nanoengn Inst, Phys Biosci Div, Berkeley, CA 94720 USA. RP Lee, SW (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM leesw@berkeley.edu FU Hellman Family Faculty Fund; Nanoscience and Nanotechnology Institute at the University of California, Berkeley; Lawrence Berkeley National Laboratory; Korean Government (MOEHRD) [KRF-2006352-D00048]; National Science Foundation FX This work was supported by the Hellman Family Faculty Fund (S.-W.L.), start-up funds from the Nanoscience and Nanotechnology Institute at the University of California, Berkeley (S.-W.L.), the Laboratory Directed Research and Development Fund from the Lawrence Berkeley National Laboratory, a Korean Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2006352-D00048), and a graduate student fellowship from the National Science Foundation (A.M.). Supporting Information Available: NR 25 TC 27 Z9 27 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 15 PY 2010 VL 26 IS 12 BP 9885 EP 9890 DI 10.1021/la100226u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 606LX UT WOS:000278427600096 PM 20443557 ER PT J AU Li, Z Buerkle, LE Orseno, MR Streletzky, KA Seifert, S Jamieson, AM Rowan, SJ AF Li, Zheng Buerkle, Lauren E. Orseno, Maxwell R. Streletzky, Kiri A. Seifert, Soenke Jamieson, Alexander M. Rowan, Stuart J. TI Structure and Gelation Mechanism of Tunable Guanosine-Based Supramolecular Hydrogels SO LANGMUIR LA English DT Article ID DYNAMIC LIGHT-SCATTERING; GREEN-FUNCTION FORMULATION; TIME MOMENT ANALYSIS; ROD-LIKE POLYMERS; DEOXYGUANOSINE 5'-MONOPHOSPHATE; ROTATIONAL DIFFUSION; NMR-SPECTROSCOPY; VISCOUS FORCE; DERIVATIVES; CONSTANT AB The mechanism of gelation of 50/50 w/w mixtures of guanosine (G) and 2',3',5'-tri-O-acetylguanosine (TAcG) in aqueous 0.354 M KCl was investigated using a combination of static light scattering (SLS), polarized and depolarized dynamic light scattering (VV and VH DLS), small-angle neutron and X-ray scattering (SANS and SAXS), and viscometric experiments. SLS and viscometry show a dramatic increase in apparent molecular weight and hydrodynamic volume at 0.2 wt % and 0.3 wt %, respectively, indicating the critical concentration for self-association of G/TAcG quartets into columnar assemblies lies below 0.2 wt %. Above this concentration, SANS and SAXS generate complementary information on the structure of the individual columnar stacks. VV and VH DLS results indicate bimodal correlation functions, whose properties suggest, respectively, translational and rotational diffusion of a bimodal distribution of particles. The fast mode appears to originate front fibrillar agglomerates of G/TAcG columnar quartet assemblies, while the slow mode comes front microgel domains. Guinier plot analysis of the SLS data probes the internal structure of the microgel domains. Collectively, the results suggest that sot and microgel phases coexist below the macroscopic gel point, and that the sal phase contains individual columnar stacks of G/TAcG quartets and fibrillar aggregates formed via lateral aggregation of these columnar assemblies. With increasing concentration, the DLS data indicate a progressive increase in the volume fraction of microgel domains, which ultimately leads to macroscopic gelation. Prior observation of a transient network contribution to the gel rheology at low temperature is attributed to the presence of individual columnar stacks within the gel network. C1 [Li, Zheng; Buerkle, Lauren E.; Jamieson, Alexander M.; Rowan, Stuart J.] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA. [Orseno, Maxwell R.; Streletzky, Kiri A.] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA. [Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jamieson, AM (reprint author), Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA. RI liu, ze/A-2322-2010 FU National Science Foundation [DGE-0234629, DMR-0513010, CHE-0704026] FX This work was supported by the National Science Foundation Graduate Student Fellowship Program (DGE-0234629) as well as NSF Grants DMR-0513010 and CHE-0704026. We are grateful to Dr. Jyotsana Lid at Argonne National Laboratory for beans time and for her assistance in acquiring the SANS data. We also thank Krista Freeman for her help with dn/dc and SLS measurements. NR 43 TC 25 Z9 25 U1 2 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 15 PY 2010 VL 26 IS 12 BP 10093 EP 10101 DI 10.1021/la100211y PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 606LX UT WOS:000278427600125 PM 20384308 ER PT J AU Fredenburg, DA Thadhani, NN Vogler, TJ AF Fredenburg, D. Anthony Thadhani, Naresh N. Vogler, Tracy J. TI Shock consolidation of nanocrystalline 6061-T6 aluminum powders SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Nanocrystalline 6061 aluminum; Shock compaction; Powder compaction ID AL-MG ALLOY; NANOSTRUCTURED MATERIALS; MICROSTRUCTURAL MODIFICATION; DEFORMATION MECHANISMS; COMPRESSION RESPONSE; DENSIFICATION; COMPACTION; DEPOSITION; BEHAVIOR; METALS AB Fully and partially nanocrystalline aluminum alloy powders made by cryomilling and plane-strain machining are dynamically consolidated into bulk compacts using a three-capsule gas-gun compaction geometry. Compacts with 98-99% theoretical mass density are produced, while retaining unique features of their initial microstructures. The microstructure of the fully nanocrystalline cryomilled powder compacts consists of 50-150 nm-thick elongated laths and 10-50 nm equiaxed grains. Partially nanocrystalline plane-strain machined powder compacts retain their bimodal microstructure composed of nanoscale grains near the particle surfaces and larger microscale grains with high dislocation densities in the particle interior. In this paper, the powder processing and compaction approach, and their effects on the physical, microstructural, and mechanical properties of the final compacts are described. (C) 2010 Elsevier B.V. All rights reserved. C1 [Fredenburg, D. Anthony; Thadhani, Naresh N.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Vogler, Tracy J.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Fredenburg, DA (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM gth795c@mail.gatech.edu FU Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000]; DTRA [HDTRA1-07-1-0018] FX The authors would like to thank Michael Rye and Paul Kotula at Sandia National Laboratories and Dr. Siwei Du formerly at the Georgia Institute of Technology for TEM sample preparation and analysis, and Christopher Saldana at Perdue for many useful conversations concerning the M4Sci EQ powder. Funding for this research was provided by the Laboratory Directed Research and Development Program of Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000, and in part by DTRA Grant No.: HDTRA1-07-1-0018. NR 39 TC 11 Z9 11 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2010 VL 527 IS 15 BP 3349 EP 3357 DI 10.1016/j.msea.2010.02.036 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 597LF UT WOS:000277758000008 ER PT J AU Liu, DM Nie, ZH Wang, G Wang, YD Brown, DE Pearson, J Liaw, PK Ren, Y AF Liu, D. M. Nie, Z. H. Wang, G. Wang, Y. D. Brown, D. E. Pearson, J. Liaw, P. K. Ren, Y. TI In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Shape memory alloys (SMAs); X-ray diffraction (XRD); Phase transformation; Magnetic-field-induced strain ID SHAPE-MEMORY ALLOYS; MARTENSITIC PHASE; INDUCED STRAIN; GA; TRANSITION; PARTICLES; EVOLUTION; GROWTH AB A polymer-bonded Ni(45)Co(5)Mn(36.6)In(13.4) ferromagnetic shape-memory composite was fabricated, having magnetic-field-driven shape recovery properties. The thermo-magnetization curves of the composite suggested that the magnetic-field-induced reverse martensitic transformation occurs in the composite. The effects of temperature, stress, and magnetic-field on the phase transformation properties were systematically investigated using an in-situ high-energy X-ray diffraction technique. A temperature-induced reversible martensitic phase transformation was confirmed within the composite, showing a broad phase transformation interval. Stress-induced highly textured martensite was observed in the composite during uniaxial compressive loading, with a residual strain after unloading. The origin of the textured martensite can be explained by the grain-orientation-dependent Bain distortion energy. A recovery strain of similar to 1.76% along the compression direction was evidenced in the pre-strained composite with an applied magnetic-field of 5T. This recovery was caused by the magnetic-field-induced reverse martensitic phase transformation. The phase transformation properties of the ferromagnetic shape-memory composite, different from its bulk alloys, can be well explained by the Clausius-Clapeyron relation. The large magnetic-field-induced strain, together with good ductility and low cost, make the polymer-bonded Ni-Co-Mn-In composites potential candidates for magnetic-field-driven actuators. (c) 2010 Elsevier B.V. All rights reserved. C1 [Nie, Z. H.; Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Liu, D. M.; Nie, Z. H.; Wang, G.] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110004, Peoples R China. [Brown, D. E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Pearson, J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM ydwang@mail.neu.edu.cn RI Nie, Zhihua/G-9459-2013; wang, yandong/G-9404-2013 OI Nie, Zhihua/0000-0002-2533-933X; FU National Natural Science Foundation of China [50725102, 50531020]; U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-ACO2-06CH11357] FX This work is supported by the National Natural Science Foundation of China (grant nos. 50725102 and 50531020). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-ACO2-06CH11357. NR 27 TC 10 Z9 10 U1 2 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2010 VL 527 IS 15 BP 3561 EP 3571 DI 10.1016/j.msea.2010.02.034 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 597LF UT WOS:000277758000039 ER PT J AU Krawitz, AD Drake, EF Clausen, B AF Krawitz, A. D. Drake, E. F. Clausen, B. TI The role of residual stress in the tension and compression response of WC-Ni SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Neutron scattering; Strain measurement; Residual stresses ID COMPOSITES; CO; SIZE AB The interaction of uniaxial applied stress with the thermal residual stress state in a WC-10 wt.% Ni cemented carbide composite was studied. A previously proposed model, based on results for uniaxial compressive loading, explains the observed asymmetric relaxation of the pre-existing thermal residual stress. This model predicts that the sense of the asymmetry would reverse in the case of tensile loading. The main purpose of the present work was to test this prediction. The reversal of signs was observed. The addition of tensile data has enabled the role of thermal residual stress on stress-strain response to be further elucidated. More complex behavior is observed with respect to the response of the variance in residual stresses, as measured by changes in diffraction peak breadths. (c) 2010 Elsevier B.V. All rights reserved. C1 [Krawitz, A. D.] Univ Missouri, Columbia, MO 65211 USA. [Drake, E. F.] NOV Reed Hycalog, Conroe, TX 77303 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Krawitz, AD (reprint author), Univ Missouri, Columbia, MO 65211 USA. EM krawitza@missouri.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU NOV Reed Hycalog FX Cemented carbide blank material was custom-fabricated courtesy of Gary Runyon of Alldyne Powder Technologies. We acknowledge the assistance of Mr. Thomas Sisneros at the Lujan Center at Los Alamos National Laboratory. This work was made possible by a grant from NOV Reed Hycalog to the University of Missouri-Columbia. NR 14 TC 6 Z9 6 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2010 VL 527 IS 15 BP 3595 EP 3601 DI 10.1016/j.msea.2010.02.046 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 597LF UT WOS:000277758000043 ER PT J AU Martinez, A Franco, J Saiz, E Guitian, F AF Martinez, A. Franco, J. Saiz, E. Guitian, F. TI Maxillary sinus floor augmentation on humans: Packing simulations and 8 months histomorphometric comparative study of anorganic bone matrix and beta-tricalcium phosphate particles as grafting materials SO MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS LA English DT Article DE Grafting particulates; Calcium phosphates; Histomorphometry; Packing simulations; Sinus floor augmentation ID BOVINE BONE; AUTOGENOUS BONE; BIO-OSS; CLINICAL-APPLICATIONS; POSTERIOR MAXILLA; ILIAC CREST; HYDROXYAPATITE; SUBSTITUTE; ELEVATION; BIOMATERIALS AB The present study compares the behaviour of an anorganic bone matrix material and a synthetic beta-Tricalcium phosphate employed as grafting materials in a sinus floor augmentation two step protocol in humans. In order to estimate the initial occupation level for the two materials, an 'in vitro' simulation has been performed to analyse macroporosity created due to particle packing in terms of porosity and interparticle distances. Grafting in the sinus floor augmentation was performed by filling the defects only with pure grafting materials without autogenous bone addition. The new-bone generated is 100% based on the osteoconductive properties of the grafted materials in contact with physiological fluids. The implants were placed 8 months after the grafting procedure. All the implanted positions were biopsied and embedded in methacrylate resin. Histomorphometric analyses were done over thin film undecalcified sections. Packing simulations allow establishing a comparison of the resorbed volumes related to the initial occupancy of the grafting materials inside the defect. The nature of this interconnected pore network is very alike for either material so new-bone generated was similar (similar to 35 vol.%). (c) 2010 Elsevier B.V. All rights reserved. C1 [Franco, J.; Saiz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Martinez, A.] Univ Santiago Compostela, Fac Med & Odontol, Santiago De Compostela 15782, Spain. [Guitian, F.] Inst Ceram Galicia, Santiago De Compostela 15782, Spain. RP Martinez, A (reprint author), Univ Santiago Compostela, Fac Med & Odontol, Rua San Francisco S-N, Santiago De Compostela 15782, Spain. EM arturo.martinez@usc.es FU National Institutes of Health (NIH) [5R01 DE015633]; Ministry of Industry and Energy of Spain [PROFIT300100-2006/73] FX This work was partially supported by the National Institutes of Health (NIH) under Grant no. 5R01 DE015633 and the Ministry of Industry and Energy of Spain project number PROFIT300100-2006/73. NR 45 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0928-4931 J9 MAT SCI ENG C-MATER JI Mater. Sci. Eng. C-Mater. Biol. Appl. PD JUN 15 PY 2010 VL 30 IS 5 BP 763 EP 769 DI 10.1016/j.msec.2010.03.012 PG 7 WC Materials Science, Biomaterials SC Materials Science GA 609FK UT WOS:000278641000017 PM 21625341 ER PT J AU Vermote, S Wagemans, C Serot, O Heyse, J Van Gils, J Soldner, T Geltenbort, P AlMahamid, I Tian, G Rao, L AF Vermote, S. Wagemans, C. Serot, O. Heyse, J. Van Gils, J. Soldner, T. Geltenbort, P. AlMahamid, I. Tian, G. Rao, L. TI Ternary particle emission in spontaneous fission of Cf-250 and Cf-252 and in neutron induced fission of Cf-249 and Cf-251 SO NUCLEAR PHYSICS A LA English DT Article DE NUCLEAR REACTIONS Cf-249,Cf-251(n, f); E=54 MeV; measured ternary alpha; triton and He-6 emission probabilities and energy distributions RADIOACTIVITY Cf-250 252(SF); measured ternary alpha; triton and He-6 emission probabilities and energy distributions ID ALPHA-PARTICLES; TRITON; 252CF AB The emission probabilities and the energy distributions of tritons, alpha and He-6 particles emitted in the spontaneous ternary fission (zero excitation energy) of Cf-250 and in the cold neutron induced fission (excitation energy approximate to 6 5 MeV) of Cf-249 and Cf-251 are determined The particle identification was done with suited Delta E-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the ILL (Grenoble, France) for the neutron induced fission measurements. Hence particle emission characteristics of the fissioning systems Cf-250 and Cf-252 are obtained at zero and at bout 6 5 MeV excitation energies. While the triton emission probability is hardly influenced by the excitation energy, the He-4 and He-6 emission probability in spontaneous fission is higher than for induced fission This can be explained by the strong influence of the cluster preformation probability on the ternary particle emission probability C1 [Vermote, S.; Wagemans, C.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Serot, O.] CEA Cadarache, DEN DER SPRC LEPh, F-13108 St Paul Les Durance, France. [Heyse, J.] SCK CEN, B-2400 Mol, Belgium. [Heyse, J.; Van Gils, J.] EC JRC Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Soldner, T.; Geltenbort, P.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [AlMahamid, I.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA. [Tian, G.; Rao, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Vermote, S (reprint author), Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. FU U.S. Department of Energy [DE-AC02-05CH11231] FX Part of this research was performed at the Lawrence Berkeley National Laboratory (LBNL) and the 249Cf isotope was provided by the Office of Sciences, Office of Basic Energy Sciences and the Division of Chemical Sciences. Geosciences and Biosciences of the U S. Department of Energy under Contract No. DE-AC02-05CH11231 The authors acknowledge the assistance of D.K. Shuh of LBNL. NR 34 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 15 PY 2010 VL 837 IS 3-4 BP 176 EP 194 DI 10.1016/j.nuclphysa.2010.03.001 PG 19 WC Physics, Nuclear SC Physics GA 600CW UT WOS:000277962700003 ER PT J AU Lin, S Liao, JF AF Lin, Shu Liao, Jinfeng TI On analytic solutions of (1+3)D relativistic ideal hydrodynamic equations SO NUCLEAR PHYSICS A LA English DT Article DE Hydrodynamics; Relativistic heavy ion collisions ID QUARK-GLUON PLASMA; TRANSVERSE FLOW; SOFTEST POINT; COLLISIONS; SIGNATURE; FLUID; SPS AB In this paper. we find various analytic (1 + 3)D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can he derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found Going beyond the power law ansatz. we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions (C) 2010 Elsevier B V All rights reserved C1 [Lin, Shu] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Liao, Jinfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Lin, S (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. FU US-DOE [DE-FG02-88ER40388, DE-FG03-97ER4014]; U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful to Volker Koch and Edward Shuryak for discussions The work of S.L is supported by the US-DOE grants DE-FG02-88ER40388 and DE-FG03-97ER4014. The work of J.L. is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 NR 44 TC 5 Z9 5 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 15 PY 2010 VL 837 IS 3-4 BP 195 EP 209 DI 10.1016/j.nuclphysa.2010.02.011 PG 15 WC Physics, Nuclear SC Physics GA 600CW UT WOS:000277962700004 ER PT J AU Seeger, T Kiefer, J Gao, Y Patterson, BD Kliewer, CJ Settersten, TB AF Seeger, Thomas Kiefer, Johannes Gao, Yi Patterson, Brian D. Kliewer, Christopher J. Settersten, Thomas B. TI Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses SO OPTICS LETTERS LA English DT Article ID TEMPERATURE-MEASUREMENTS; MIXTURES; CARS; N-2; SCATTERING AB We measure time-dependent pure-rotational coherent anti-Stokes Raman spectroscopy (CARS) spectra for room-temperature N(2), O(2), CO(2), C(2)H(4), and C(3)H(8), as well as in a C(3)H(8) diffusion flame, using picosecond lasers. Because Raman coherences for N(2) and O(2) persist significantly longer than those for the other species, delayed probing can significantly reduce unwanted resonant contributions to rotational coherent anti-Stokes Raman spectroscopy spectra, enabling temperature and relative O(2)/N(2) concentration determination in fuel-rich gas mixtures. Delayed probing also eliminates interference from smeared vibrational CARS. Probe delay affects both the temperature and relative O(2)/N(2) concentrations inferred from rotational spectra when using a standard frequency-domain analysis. (C) 2010 Optical Society of America C1 [Patterson, Brian D.; Kliewer, Christopher J.; Settersten, Thomas B.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Seeger, Thomas; Kiefer, Johannes; Gao, Yi] Univ Erlangen Nurnberg, Lehrstuhl Tech Thermodynam, D-91058 Erlangen, Germany. [Seeger, Thomas; Kiefer, Johannes; Gao, Yi] Univ Erlangen Nurnberg, Erlangen Grad Sch Adv Opt Technol SAOT, D-91058 Erlangen, Germany. RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM tbsette@sandia.gov RI Kiefer, Johannes/C-6522-2008; Settersten, Thomas/B-3480-2009; Kliewer, Christopher/E-4070-2010; Seeger, Thomas/C-3951-2017 OI Kiefer, Johannes/0000-0002-0837-3456; Settersten, Thomas/0000-0002-8017-0258; Kliewer, Christopher/0000-0002-2661-1753; Seeger, Thomas/0000-0002-9145-5910 FU United States Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; Bavaria California Technology Center FX Funding is provided by the United States Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, and the Bavaria California Technology Center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 13 TC 20 Z9 20 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 15 PY 2010 VL 35 IS 12 BP 2040 EP 2042 PG 3 WC Optics SC Optics GA 619NB UT WOS:000279435800038 PM 20548379 ER PT J AU Bouchet, F Morita, H AF Bouchet, Freddy Morita, Hidetoshi TI Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE 2D Euler equations; Large scales of turbulent flows; 2D turbulence; Geophysical turbulence; Asymptotic behavior; Asymptotic stability ID INVISCID SHEAR-FLOW; 2-DIMENSIONAL TURBULENCE; ALGEBRAIC INSTABILITY; ROSSBY WAVES; VORTEX; VORTICES; DISTURBANCES; SPECTRUM; ENERGY; FLUID AB We study the asymptotic behavior and the asymptotic stability of the 2D Euler equations and of the 2D linearized Euler equations close to parallel flows. We focus on flows with spectrally stable profiles U (y) and with stationary streamlines y = y(0) (such that U'(y(0)) = 0), a case that has not been studied previously. We describe a new dynamical phenomenon: the depletion of the vorticity at the stationary streamlines. An unexpected consequence is that the velocity decays for large times with power laws, similarly to what happens in the case of the Orr mechanism for base flows without stationary streamlines. The asymptotic behaviors of velocity and the asymptotic profiles of vorticity are theoretically predicted and compared with direct numerical simulations. We argue on the asymptotic stability of this ensemble of flow profiles even in the absence of any dissipative mechanisms. (c) 2010 Elsevier B.V. All rights reserved. C1 [Bouchet, Freddy; Morita, Hidetoshi] UNSA, CNRS, INLN, F-06560 Valbonne, France. [Bouchet, Freddy] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Bouchet, F (reprint author), UNSA, CNRS, INLN, 1361 Route Lucioles, F-06560 Valbonne, France. EM Freddy.Bouchet@inln.cnrs.fr NR 70 TC 14 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD JUN 15 PY 2010 VL 239 IS 12 BP 948 EP 966 DI 10.1016/j.physd.2010.01.020 PG 19 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 600LR UT WOS:000277988100005 ER PT J AU Kazimirov, A Kohn, VG Cai, ZH AF Kazimirov, A. Kohn, V. G. Cai, Z. -H. TI Diffraction imaging of crystals with focused x-ray beams SO PHYSICAL REVIEW B LA English DT Article ID FINITE POLYHEDRAL CRYSTALS; PENDELLOSUNG FRINGES; DEFECTS AB We describe an imaging technique based on diffraction of a focused x-ray beam in crystals. A focused beam is formed by a zone plate and Bragg diffracted from a crystalline sample positioned between the zone plate and the focus. The intensity pattern is recorded by a high-resolution charge-coupled-device detector placed in the focus. Diffraction images recorded from perfect Si and GaAs crystals for various reflections demonstrate the broadening of the focused beam due to a finite scattering length. The images from semiconductor epitaxial films and heterostructures show additional peaks originating from the interfaces with their spatial position corresponding to the depth from the surface. Diffraction images from isolated defects in Si crystal demonstrate capabilities to study bulk defects. Theoretical simulations for perfect crystals show excellent agreement with experiments. We demonstrate that the new imaging technique is depth sensitive and combines structural sensitivity of traditional x-ray topography methods with spatial in-plane resolution provided by focusing. C1 [Kazimirov, A.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Kohn, V. G.] Russian Res Ctr, Kurchatov Inst, Moscow 123182, Russia. [Cai, Z. -H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kazimirov, A (reprint author), Cornell Univ, CHESS, Ithaca, NY 14853 USA. EM ayk7@cornell.edu FU National Science Foundation; National Institutes of Health/National Institute of General Medical Sciences [DMR-0225180]; RFBR [09-02-12297-ofi_m, RS-4110.2008.2]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Nikolai Faleev for growing epitaxial film and multilayer structures and helpful discussion. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Award No. DMR-0225180. The work of V. G. K. was supported by RFBR under Grants No. 09-02-12297-ofi_m and No. RS-4110.2008.2. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 26 TC 1 Z9 1 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 15 PY 2010 VL 81 IS 21 AR 214112 DI 10.1103/PhysRevB.81.214112 PG 8 WC Physics, Condensed Matter SC Physics GA 610VD UT WOS:000278765700002 ER PT J AU Lovejoy, TC Yitamben, EN Ohta, T Fain, SC Ohuchi, FS Olmstead, MA AF Lovejoy, T. C. Yitamben, E. N. Ohta, T. Fain, S. C., Jr. Ohuchi, F. S. Olmstead, M. A. TI One-dimensional electronic states in Ga2Se3 on Si(001):As SO PHYSICAL REVIEW B LA English DT Article AB Gallium selenide (Ga2Se3) is a III-VI chalcogenide material whose intrinsic cation vacancy ordering into one dimensional chains has been predicted to result in a one dimensional band at the valence-band maximum (VBM). The electronic structure of Ga2Se3 thin films on Si(001) : As is studied with angle-resolved photoemission spectroscopy. The integrated density of states and the dispersion exhibit good agreement with that predicted by published density-functional theory results. Consistent with a one dimensional state, the electronic states at the VBM show no dispersion perpendicular to the vacancy chains. The Se-Ga bond length from extended x-ray absorption fine structure is 2.34 angstrom. Low-energy electron-diffraction results indicate that the surface is characterized by nanometer-scale (111) facets, consistent with previous scanning tunneling microscopy results. C1 [Lovejoy, T. C.; Yitamben, E. N.; Fain, S. C., Jr.; Olmstead, M. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ohta, T.] Adv Light Source, Berkeley, CA 94720 USA. [Ohuchi, F. S.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Lovejoy, T. C.; Yitamben, E. N.; Fain, S. C., Jr.; Ohuchi, F. S.; Olmstead, M. A.] Univ Washington, Ctr Nanotechnol, Seattle, WA 98195 USA. RP Lovejoy, TC (reprint author), Univ Washington, Dept Phys, POB 351560, Seattle, WA 98195 USA. EM tlovejoy@uw.edu OI Olmstead, Marjorie/0000-0003-4374-0976 FU NSF [DMR-0605601, DMR-0710641]; DOE [DE-AC02-05CH11231, DE-AC02-06CH11357]; NSF/NCI [DGE 0504573]; IBM Corporation FX Work was supported in Seattle by the NSF (Grant Nos. DMR-0605601 and DMR-0710641), and at the ALS by the DOE under Contract No. DE-AC02-05CH11231. T. C. L. acknowledges support from the IGERT program, NSF/NCI under Grant No. DGE 0504573 through the Center for Nanotechnology at the UW, and E.N.Y. acknowledges support from the IBM Corporation. Use of the Advanced Photon Source is supported by the DOE under Contract No. DE-AC02-06CH11357, and the authors acknowledge S. M. Heald for assistance with the EXAFS measurements. NR 16 TC 4 Z9 4 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 15 PY 2010 VL 81 IS 24 AR 245313 DI 10.1103/PhysRevB.81.245313 PG 5 WC Physics, Condensed Matter SC Physics GA 610VT UT WOS:000278767700001 ER PT J AU Nath, R Garlea, VO Goldman, AI Johnston, DC AF Nath, R. Garlea, V. O. Goldman, A. I. Johnston, D. C. TI Synthesis, structure, and properties of tetragonal Sr2M3As2O2 (M-3=Mn-3, Mn2Cu, and MnZn2) compounds containing alternating CuO2-type and FeAs-type layers SO PHYSICAL REVIEW B LA English DT Article ID CU-O SYSTEM; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; QUATERNARY COMPOUND; PNICTIDE OXIDES; SUPERCONDUCTIVITY; BA; SB; BA2MNZN2AS2O2; OXYSULFIDES AB Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization, and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M=Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature T-c cuprate superconductors, and intermetallic MAs (M=Cu and/or Mn) layers similar to the FeAs layers in high-T-c pnictides. These two types of layers alternate along the crystallographic c axis and are separated by Sr atoms. The site occupancies of Mn, Cu, and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature T-C=95(1) K. Remarkably, we find that the magnetic ground-state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned but are antiferromagnetically aligned between layers. C1 [Nath, R.; Goldman, A. I.; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Nath, R.; Goldman, A. I.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Garlea, V. O.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Nath, R (reprint author), Indian Inst Sci Educ & Res, Thiruvananthapuram 695016, Kerala, India. RI Nath, Ramesh/C-9345-2011; Garlea, Vasile/A-4994-2016 OI Garlea, Vasile/0000-0002-5322-7271 FU Department of Energy-Basic Energy Science [DE-AC02-07CH11358]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (U.S. DOE); U.S. DOE [DE-AC05-00OR22725] FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Science under Contract No. DE-AC02-07CH11358. The work at the High Flux Isotope Reactor, Oak Ridge National Laboratory (ORNL), was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (U.S. DOE). ORNL is operated by UT-Battelle, LLC for the U.S. DOE under Contract No. DE-AC05-00OR22725. NR 51 TC 14 Z9 14 U1 5 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 15 PY 2010 VL 81 IS 22 AR 224513 DI 10.1103/PhysRevB.81.224513 PG 16 WC Physics, Condensed Matter SC Physics GA 610VI UT WOS:000278766300002 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Kopytine, M Koralt, I Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, Z Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Rehberg, JM Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wingfield, E Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Han, L. -X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Kopytine, M. Koralt, I. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Rehberg, J. M. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wingfield, E. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Inclusive pi(0), eta, and direct photon production at high transverse momentum in p plus p and d plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID BARREL ELECTROMAGNETIC CALORIMETER; TIME PROJECTION CHAMBER; HEAVY-ION COLLISIONS; LEADING ORDER; HADRON-PRODUCTION; D+AU COLLISIONS; STAR; PHYSICS; FRAGMENTATION; DISTRIBUTIONS AB We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Burton, T. P.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; Debbe, R. R.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, CZ-11519 Prague, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Rehberg, J. M.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.] NIKHEF, Amsterdam, Netherlands. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L. -X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.; Wingfield, E.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z.; Liu, F.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Xu, Wenqin/H-7553-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Peitzmann, Thomas/K-2206-2012; Barnby, Lee/G-2135-2010; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014 OI Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Xu, Wenqin/0000-0002-5976-4991; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Peitzmann, Thomas/0000-0002-7116-899X; Barnby, Lee/0000-0001-7357-9904; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Takahashi, Jun/0000-0002-4091-1779; Yang, Yanyun/0000-0002-5982-1706; FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP; HEP within the US DOE Office of Science; US NSF; Sloan Foundation; DFG [CNRS/IN2P3]; STFC; EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe"; CNRS/IN2P3, STFC and EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE, DST, and CSIR of India; the Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; Russian Ministry of Science and Tech and RosAtom of Russia. NR 72 TC 19 Z9 19 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUN 15 PY 2010 VL 81 IS 6 AR 064904 DI 10.1103/PhysRevC.81.064904 PG 26 WC Physics, Nuclear SC Physics GA 610WJ UT WOS:000278769300001 ER PT J AU Bazavov, A Toussaint, D Bernard, C Laiho, J Billeter, B DeTar, C Levkova, L Oktay, MB Gottlieb, S Heller, UM Hetrick, JE Osborn, J Sugar, RL Van de Water, RS AF Bazavov, A. Toussaint, D. Bernard, C. Laiho, J. Billeter, B. DeTar, C. Levkova, L. Oktay, M. B. Gottlieb, Steven Heller, U. M. Hetrick, J. E. Osborn, J. Sugar, R. L. Van de Water, R. S. CA MILC Collaboration TI Topological susceptibility with the asqtad action SO PHYSICAL REVIEW D LA English DT Article ID EXACT CHIRAL-SYMMETRY; GAUGE-THEORIES; STAGGERED QUARKS; LATTICE; QCD; VACUUM; FERMIONS; FLAVORS; CHARGE; U(1) AB Chiral perturbation theory predicts that in quantum chromodynamics (QCD), light dynamical quarks suppress the gauge-field topological susceptibility of the vacuum. The degree of suppression depends on quark multiplicity and masses. It provides a strong consistency test for fermion formulations in lattice QCD. Such tests are especially important for staggered fermion formulations that lack a full chiral symmetry and use the "fourth-root'' procedure to achieve the desired number of sea quarks. Over the past few years we have measured the topological susceptibility on a large database of 18 gauge-field ensembles, generated in the presence of 2 + 1 flavors of dynamical asqtad quarks with up and down quark masses ranging from 0.05 to 1 in units of the strange quark mass and lattice spacings ranging from 0.045 fm to 0.12 fm. Our study also includes three quenched ensembles with lattice spacings ranging from 0.06 to 0.12 fm. We construct the topological susceptibility from the integrated point-to-point correlator of the discretized topological charge density F (F) over tilde. To reduce its variance, we model the asymptotic tail of the correlator. The continuum extrapolation of our results for the topological susceptibility agrees nicely at small quark mass with the predictions of lowest-order SU(3) chiral perturbation theory, thus lending support to the validity of the fourth-root procedure. C1 [Bazavov, A.; Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bernard, C.; Laiho, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Billeter, B.; DeTar, C.; Levkova, L.; Oktay, M. B.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. Univ Illinois, NCSA, Urbana, IL 61801 USA. [Heller, U. M.] Amer Phys Soc, Ridge, NY 11961 USA. [Hetrick, J. E.] Univ Pacific, Dept Phys, Stockton, CA 95211 USA. [Osborn, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Sugar, R. L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Van de Water, R. S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Bazavov, A (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. OI Heller, Urs M./0000-0002-2780-5584; Hetrick, James/0000-0002-0740-2251 FU U.S. Department of Energy [DE-FC02-06ER-41439, DE-FC02-06ER-41443, DE-FC02-06ER-41446, DE-FC06-01ER-41437, DE-FG02-04ER-41298, DE-FG02-91ER-40628, DE-FG02-91ER-40661]; U.S. National Science Foundation [OCI08-32315, PHY05-55234, PHY05-55235, PHY05-55243, PHY05-55397, PHY07-03296, PHY07-04171, PHY07-57035, PHY07-57333, PHY09-03536, PHY09-03571]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under Grant Nos. DE-FC02-06ER-41439, DE-FC02-06ER-41443, DE-FC02-06ER-41446, DE-FC06-01ER-41437, DE-FG02-04ER-41298, DE-FG02-91ER-40628, and DE-FG02-91ER-40661 and by the U.S. National Science Foundation under Grant Nos. OCI08-32315, PHY05-55234, PHY05-55235, PHY05-55243, PHY05-55397, PHY07-03296, PHY07-04171, PHY07-57035, PHY07-57333, PHY09-03536, and PHY09-03571. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. Computation for this research was supported in part by the U.S. National Science Foundation through TeraGrid resources provided by the Texas Advanced Computing Center (TACC), the National Institute for Computational Sciences (NICS), the National Center for Supercomputing Applications (NCSA), and the Pittsburgh Supercomputing Center (PSC) under Grant No. TG-MCA93S002. Computation for this work was also carried out on the Fermilab LQCD cluster, supported by the Offices of Science, High Energy Physics, and Nuclear Physics of the U.S. Department of Energy. This research also used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 37 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 15 PY 2010 VL 81 IS 11 AR 114501 DI 10.1103/PhysRevD.81.114501 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 610WP UT WOS:000278770100001 ER PT J AU Linder, EV AF Linder, Eric V. TI Einstein's other gravity and the acceleration of the Universe SO PHYSICAL REVIEW D LA English DT Article ID GENERAL-RELATIVITY AB Spacetime curvature plays the primary role in general relativity but Einstein later considered a theory where torsion was the central quantity. Just as the Einstein-Hilbert action in the Ricci curvature scalar R can be generalized to f(R) gravity, we consider extensions of teleparallel, or torsion scalar T, gravity to f(T) theories. The field equations are naturally second order, avoiding pathologies, and can give rise to cosmic acceleration with unique features. C1 [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea. RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0] FX I thank the Aspen Center for Physics for hospitality and a valuable program on gravity, and Tristan Smith for useful discussions. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the World Class University Grant No. R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea. NR 22 TC 335 Z9 336 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 15 PY 2010 VL 81 IS 12 AR 127301 DI 10.1103/PhysRevD.81.127301 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 610WV UT WOS:000278770900001 ER PT J AU Dobrich, KM Bostwick, A McChesney, JL Rossnagel, K Rotenberg, E Kaindl, G AF Doebrich, K. M. Bostwick, A. McChesney, J. L. Rossnagel, K. Rotenberg, E. Kaindl, G. TI Fermi-Surface Topology and Helical Antiferromagnetism in Heavy Lanthanide Metals SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON-DIFFRACTION; ELECTRONIC-STRUCTURE; RARE-EARTHS; GD; MAGNETISM; ALLOYS; TB AB Detailed angle-resolved photoemission studies of Tb and Dy metal in the paramagnetic phase provide direct experimental proof of the presence of nesting features in the Fermi surfaces (FS) of these heavy lanthanide (Ln) metals. The observations clearly support the hypothesis that nesting of the FS in the paramagnetic phase is responsible for the development of helical antiferromagnetic ordering in heavy Ln metals. They also show that magnetic exchange splitting of the electronic states is responsible for the disappearance of FS nesting in the ferromagnetic phases. C1 [Doebrich, K. M.; Kaindl, G.] Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany. [Doebrich, K. M.] Max Born Inst, D-12489 Berlin, Germany. [Bostwick, A.; McChesney, J. L.; Rossnagel, K.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Dobrich, KM (reprint author), Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195 Berlin, Germany. RI Rotenberg, Eli/B-3700-2009; Rossnagel, Kai/F-8822-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Rossnagel, Kai/0000-0001-5107-0090; McChesney, Jessica/0000-0003-0470-2088 FU Deutsche Forschungsgemeinschaft [STA 413/3-1]; German Bundesminister fur Bildung und Forschung [05 KS1KEC/2]; U.S. Department of Energy [DEAC03-76SF00098] FX The authors acknowledge the support of S. Kevan, discussions with E. Weschke, G. Bihlmayer, and S. Blugel, as well as the contributions by K. Starke (deceased). Financial support by the Deutsche Forschungsgemeinschaft, Project STA 413/3-1, the German Bundesminister fur Bildung und Forschung, Project 05 KS1KEC/2, and the U.S. Department of Energy under Contract No. DEAC03-76SF00098 is gratefully acknowledged. NR 19 TC 17 Z9 17 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 15 PY 2010 VL 104 IS 24 AR 246401 DI 10.1103/PhysRevLett.104.246401 PG 4 WC Physics, Multidisciplinary SC Physics GA 610XO UT WOS:000278773600001 PM 20867317 ER PT J AU Zhang, XW Zunger, A AF Zhang, Xiuwen Zunger, Alex TI Altered Reactivity and the Emergence of Ionic Metal Ordered Structures in Li-Cs at High Pressures SO PHYSICAL REVIEW LETTERS LA English DT Article ID LITHIUM AB We show how pressure fundamentally alters the repulsive nature of the nonreactive Li-Cs mixture, converting it from strongly phase separating at ambient pressure to strongly long-range ordering at high pressures. The ordered phases found via a global space group optimization within the density-functional theory are Li7Cs in the Cmmm structure, LiCs in the B2 structure, and Li7Cs in the C-2/m structure. These structures are remarkably stabilized by a pressure-induced increase in charge transfer from Cs to Li unit, an unusual effect concerning two elements from the same group (isovalent). These high-pressure phases exhibit interesting behaviors: (i) LiCs (B2) has its Cs(5p) core states nearly merged with the valence Cs(6s) states, indicating that core states can become valence states at high pressures; (ii) Li7Cs (Cmmm) structure exhibits an interesting 1D electronic structure within a 3D crystal structure. C1 [Zhang, Xiuwen; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, XW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013; ZHANG, XIUWEN/K-7383-2012 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers [DE-AC36-08GO28308] FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers, under Award No. DE-AC36-08GO28308 to NREL. NR 24 TC 5 Z9 5 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 15 PY 2010 VL 104 IS 24 AR 245501 DI 10.1103/PhysRevLett.104.245501 PG 4 WC Physics, Multidisciplinary SC Physics GA 610XL UT WOS:000278773200001 PM 20867309 ER PT J AU Startsev, EA Davidson, RC Dorf, M AF Startsev, Edward A. Davidson, Ronald C. Dorf, Mikhail TI Approximate kinetic quasiequilibrium distributions for intense beam propagation through a periodic focusing quadrupole lattice SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CHARGED-PARTICLE BEAMS; LARGE TEMPERATURE ANISOTROPY; DELTA-F SIMULATION; INSTABILITY AB The transverse dynamics of an intense charged particle beam propagating through a periodic quadrupole focusing lattice is described by the nonlinear Vlasov-Maxwell system of equations, where the propagation distances play the role of time. To determine matched-beam quasiequilibrium distribution functions, one needs to determine a dynamical invariant for the beam particles moving in the combined applied and self-generated fields. In this paper, a perturbative Hamiltonian transformation method is developed which is an expansion in the particle's vacuum phase advance (epsilon) over bar similar to sigma(eta)/2 pi, treated as a small parameter, which is used to transform away the fast particle orbit oscillations and obtain the average Hamiltonian accurate to order (epsilon) over bar (3). The average Hamiltonian is an approximate invariant of the original system, and can be used to determine self-consistent beam quasiequilibrium solutions that are matched to the focusing channel. The equation determining the average self-field potential is derived for general boundary conditions by taking into account the average contribution of the charges induced on the boundary. It is shown for a cylindrical conducting boundary that the average self-field potential acquires an octupole component, which results in the average motion of some beam particles being nonintegrable and their trajectories chaotic. This chaotic behavior of the beam particles may significantly change the nature of the Landau damping (or growth) of collective excitations supported by an intense charged particle beam. C1 [Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Startsev, EA (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. NR 33 TC 2 Z9 2 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 15 PY 2010 VL 13 IS 6 AR 064402 DI 10.1103/PhysRevSTAB.13.064402 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 610XT UT WOS:000278774100001 ER PT J AU Rycroft, CH Wong, YL Bazant, MZ AF Rycroft, Chris H. Wong, Yee Lok Bazant, Martin Z. TI Fast spot-based multiscale simulations of granular drainage SO POWDER TECHNOLOGY LA English DT Article DE Granular materials; Numerical methods ID 2D SILO; FLOW; MODEL; VELOCITY; AUTOMATON; GRAVITY AB We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing "spots" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrate extensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results. Published by Elsevier B.V. C1 [Rycroft, Chris H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. [Wong, Yee Lok; Bazant, Martin Z.] MIT, Dept Math, Cambridge, MA 02139 USA. [Bazant, Martin Z.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. RP Rycroft, CH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. EM chr@math.berkeley.edu; ylwong@mit.edu; bazant@mit.edu OI Rycroft, Chris/0000-0003-4677-6990 FU National Science Foundation [DMS-0410110, DMS-070590]; U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-02ER25530]; Norbert Weiner Research Fund; NEC Fund at MIT; Scientific Cluster Support (SCS) program at the Lawrence Berkeley National Laboratory FX This work was partially supported by the National Science Foundation under grants DMS-0410110 and DMS-070590; by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy under contract numbers DE-AC02-05CH11231 and DE-FG02-02ER25530; and the Norbert Weiner Research Fund and the NEC Fund at MIT. We are grateful to the Scientific Cluster Support (SCS) program at the Lawrence Berkeley National Laboratory. NR 33 TC 7 Z9 7 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUN 15 PY 2010 VL 200 IS 1-2 BP 1 EP 11 DI 10.1016/j.powtec.2010.01.009 PG 11 WC Engineering, Chemical SC Engineering GA 590KN UT WOS:000277224700001 ER PT J AU Himanen, JP Yermekbayeva, L Janes, PW Walker, JR Xu, K Atapattu, L Rajashankar, KR Mensinga, A Lackmann, M Nikolov, DB Dhe-Paganon, S AF Himanen, Juha P. Yermekbayeva, Laila Janes, Peter W. Walker, John R. Xu, Kai Atapattu, Lakmali Rajashankar, Kanagalaghatta R. Mensinga, Anneloes Lackmann, Martin Nikolov, Dimitar B. Dhe-Paganon, Sirano TI Architecture of Eph receptor clusters SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cell-cell attraction and repulsion; Eph receptor clustering ID LIGAND-BINDING; SOFTWARE; CONTACT; COMPLEX AB Eph receptor tyrosine kinases and their ephrin ligands regulate cell navigation during normal and oncogenic development. Signaling of Ephs is initiated in a multistep process leading to the assembly of higher-order signaling clusters that set off bidirectional signaling in interacting cells. However, the structural and mechanistic details of this assembly remained undefined. Here we present high-resolution structures of the complete EphA2 ectodomain and complexes with ephrin-A1 and A5 as the base unit of an Eph cluster. The structures reveal an elongated architecture with novel Eph/Eph interactions, both within and outside of the Eph ligand-binding domain, that suggest the molecular mechanism underlying Eph/ephrin clustering. Structure-function analysis, by using site-directed mutagenesis and cell-based signaling assays, confirms the importance of the identified oligomerization interfaces for Eph clustering. C1 [Janes, Peter W.; Atapattu, Lakmali; Mensinga, Anneloes; Lackmann, Martin] Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia. [Himanen, Juha P.; Xu, Kai; Nikolov, Dimitar B.] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10065 USA. [Yermekbayeva, Laila; Walker, John R.; Dhe-Paganon, Sirano] Univ Toronto, Struct Genom Consortium, Toronto, ON M5G 1L7, Canada. [Rajashankar, Kanagalaghatta R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Dhe-Paganon, Sirano] Univ Toronto, Dept Physiol, Toronto, ON M5G 1L7, Canada. RP Lackmann, M (reprint author), Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia. EM Martin.Lackmann@med.monash.edu.au; sirano.dhepaganon@utoronto.ca FU National Institutes of Health [NS38486, GM75886]; National Health and Medical Research Council [487922]; National Center for Research Resources at the National Institutes of Health [RR-15301]; United States Department of Energy [DE-AC02-06CH11357]; Canadian Institutes for Health Research; Canadian Foundation for Innovation; Genome Canada through the Ontario Genomics Institute; GlaxoSmithKline; Karolinska Institutet; Knut and Alice Wallenberg Foundation; Ontario Innovation Trust; Ontario Ministry for Research and Innovation; Novartis Research Foundation; Swedish Agency for Innovation Systems; Swedish Foundation for Strategic Research; Wellcome Trust; Merck Co., Inc. FX We thank Christine Butler for cloning plasmids, Alma Seitova for generating recombinant baculovirus, Linda Hii and Dorothea Robev for generating EphA2 mutants, and Yehuda Goldgur for help with data collection and analysis. This work was supported by National Institutes of Health Grants NS38486 (to D.B.N.) and GM75886 (to J.P.H.) and National Health and Medical Research Council Grant 487922 (to M.L.). The NE-CAT beamlines are supported by Award RR-15301 from the National Center for Research Resources at the National Institutes of Health. Argonne Advanced Photon Source use is supported by the United States Department of Energy under Contract DE-AC02-06CH11357. The Structural Genomics Consortium is a registered charity (#1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research, and the Wellcome Trust. NR 23 TC 102 Z9 108 U1 1 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 15 PY 2010 VL 107 IS 24 BP 10860 EP 10865 DI 10.1073/pnas.1004148107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 611IC UT WOS:000278807400018 PM 20505120 ER PT J AU Li, H Zhang, JR Vierstra, RD Li, HL AF Li, Hua Zhang, Junrui Vierstra, Richard D. Li, Huilin TI Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE dimerization; histidine kinase; light signaling; signaling helix ID CHROMOPHORE-BINDING DOMAIN; X-RAY-SCATTERING; HISTIDINE KINASES; SIGNAL-TRANSDUCTION; ELECTRON-MICROSCOPY; CRYSTAL-STRUCTURE; GROUND-STATE; BACTERIOPHYTOCHROME; LIGHT; PHOTOCONVERSION AB Phytochromes are a collection of dimeric photoreceptors that direct a diverse array of responses in plants and microorganisms through photoconversion between a red light-absorbing ground state Pr, and a far-red light-absorbing photoactivated state Pfr. Photoconversion from Pr to Pfr is initiated by a light-driven rotation within the covalently attached bilin, which then triggers a series of protein conformational changes in the binding pocket. These movements ultimately affect an appended output module, which often has reversible protein kinase activity. Propagation of the light signal from the bilin to the output module likely depends on the dimerization interface but its architecture and response to photo-transformation remain unclear. Here, we used single particle cryoelectron microscopy to determine the quaternary arrangement of the phytochrome dimer as Pr, using the bacteriophytochrome (BphP) from Deinococcus radiodurans. Contrary to the longstanding view that the two monomers are held together solely via their C-terminal region, we provide unambiguous evidence that the N-terminal bilin-binding region of BphP also provides a dimerization interface with the C-terminal kinase domain appearing as a more flexible appendage. The BphP monomers dimerize in parallel with the polypeptides intimately twisting around each other in a right-handed fashion. Based on this electron microscopic picture, we propose that the light-driven conformational changes transmitted from the chromophore to the output module along the spine of this extensive dimer interface is the central feature underpinning phytochrome signaling. C1 [Zhang, Junrui; Vierstra, Richard D.] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. [Li, Hua; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Vierstra, RD (reprint author), Univ Wisconsin, Dept Genet, 425-G Henry Mall, Madison, WI 53706 USA. EM vierstra@wisc.edu RI Zhang, Junrui/J-2684-2012 FU Brookhaven National Laboratory Laboratory-Directed Research and Development; National Institutes of Health [GM74985]; National Science Foundation [MCB-07191530]; University of Wisconsin-Madison College of Agricultural and Life Science FX We thank Dr. Tao Wang for help with size-exclusion chromatography. This work was supported by grants from the Brookhaven National Laboratory Laboratory-Directed Research and Development Project 10-16 and National Institutes of Health Grant GM74985 (Huilin Li), and by National Science Foundation Grant MCB-07191530 and a grant from the University of Wisconsin-Madison College of Agricultural and Life Science (Hatch) (R.D.V.). NR 34 TC 37 Z9 38 U1 1 U2 19 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 15 PY 2010 VL 107 IS 24 BP 10872 EP 10877 DI 10.1073/pnas.1001908107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 611IC UT WOS:000278807400020 PM 20534495 ER PT J AU Xu, LJ Xu, Y AF Xu, Lijun Xu, Ye TI Activation of methyl acetate on Pd(111) SO SURFACE SCIENCE LA English DT Article DE Catalysis; Density functional calculations; Esters; Palladium ID COPPER-BASED CATALYSTS; FINDING SADDLE-POINTS; HETEROGENEOUS CATALYSIS; DIMETHYL SUCCINATE; ETHYL-ACETATE; ACETIC-ACID; DECOMPOSITION PATHWAYS; REACTION-KINETICS; VINYL-ACETATE; HYDROGENOLYSIS AB The adsorption and activation of methyl acetate (CH(3)COOCH(3)), one of the simplest carboxylic esters, on Pd(111) have been studied using self-consistent periodic density functional theory calculations. Methyl acetate adsorbs weakly through the carbonyl oxygen. Its activation occurs via dehydrogenation, instead of direct C-O bond dissociation, on clean Pd(111): It is much more difficult to dissociate the C-O bonds (E(a) approximate to 2.0 eV for the carbonyl and acetate-methyl bonds; E(a) = 1.0 eV for the acetyl-methoxy bond) than to dissociate the C-H bonds to produce enolate (CH(2)COOCH(3); E(a) = 0.74 eV) or methylene acetate (CH(3)COOCH(2); E(a) = 0.82 eV). The barriers for C-H and C-O bond dissociation are directly calculated for enolate and methylene acetate, and estimated for further dehydrogenated derivatives (CH(3)COOCH, CH(2)COOCH(2), and CHCOOCH(3)) based on the Bronsted-Evans-Polanyi linear energy relations formed by the calculated steps. The enolate pathway leads to successive dehydrogenation to CCOOCH(3), whereas methylene acetate readily dissociates to yield acetyl. The selectivity for dissociating the acyl-alkoxy C-O bond, which is desired for alcohol formation, is therefore fundamentally limited by the facility of dehydrogenation under vacuum/low-pressure conditions on Pd(111). (C) 2010 Elsevier B.V. All rights reserved. C1 [Xu, Lijun; Xu, Ye] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xu, Y (reprint author), 1 Bethel Valley Rd,POB 2008,MS-6493, Oak Ridge, TN 37831 USA. EM xuy2@ornl.gov RI Xu, Ye/B-5447-2009 OI Xu, Ye/0000-0002-6406-7832 FU Eastman Chemical Company; Division of Scientific User Facilities, U.S. Department of Energy FX This work was financially supported by the Eastman Chemical Company and performed at the Center for Nanophase Materials Science, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Division of Scientific User Facilities, U.S. Department of Energy. Computing resources provided by the Texas Advanced Computing Center (TACC), the National Center for Computing Sciences (NCCS), and ORNL were used. The authors thank helpful discussion with the Eastman research team and invaluable assistance from Drs. Steve Overbury and Linda Horton of ORNL. NR 66 TC 16 Z9 16 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 15 PY 2010 VL 604 IS 11-12 BP 887 EP 892 DI 10.1016/j.susc.2010.02.015 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 607UT UT WOS:000278533100004 ER PT J AU Tang, ZW Wu, H Du, D Wang, J Wang, H Qian, WJ Bigelow, DJ Pounds, JG Smith, RD Lin, YH AF Tang, Zhiwen Wu, Hong Du, Dan Wang, Jun Wang, Hua Qian, Wei-jun Bigelow, Diana J. Pounds, Joel G. Smith, Richard D. Lin, Yuehe TI Sensitive immunoassays of nitrated fibrinogen in human biofiuids SO TALANTA LA English DT Article DE Sandwich immunoassay; Nitrated biomarker; Nitrated fibrinogen; Human biofluids ID PROTEIN-TYROSINE NITRATION; PROSTATE-SPECIFIC ANTIGEN; FUNCTIONAL CONSEQUENCES; DEGRADATION-PRODUCTS; NITRIC-OXIDE; PEROXYNITRITE; 3-NITROTYROSINE; DISEASE; ELISA; IDENTIFICATION AB Three new sandwich immunoassays for detection of nitrated biomarker have been established with potential applications in biomedical studies and clinical practice. In this study, nitrated human fibrinogen, a potential oxidative stress biomarker for several pathologies, was chosen as the target To improve the sensitivity and overcome the interference caused by the complexity of human biofluids, we developed three sandwich strategies using various combinations of primary antibody and secondary antibody All three strategies demonstrated high sensitivity and selectivity towards nitrated forms of fibrinogen in buffer, but their performances were dramatically reduced when tested with human plasma and serum samples. Systematically optimizations were carried out to investigate the effects of numerous factors. including sampling, coating, blocking, and immunoreactions. Our final optimization results indicate that two of these strategies retain sufficient sensitivity and selectivity for use as assays in human physiological samples Specifically, detection limits reached the pM level and the linear response ranges were up to nM level with a correlation coefficient > 0 99 To our best knowledge, this is the first example of using an electrochemical immunoassay for a nitrated biomarker in a physiological fluid This novel approach provides a rapid, sensitive, selective, cost efficient and robust bioassay for detection of oxidative stress in pathology and for clinical applications. Moreover, the sandwich strategies developed in this paper can be readily used to establish effective methods targeting other nitration biomarkers. (C) 2010 Elsevier B.V All rights reserved C1 [Tang, Zhiwen; Wu, Hong; Du, Dan; Wang, Jun; Wang, Hua; Qian, Wei-jun; Bigelow, Diana J.; Pounds, Joel G.; Smith, Richard D.; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012; Smith, Richard/J-3664-2012 OI Lin, Yuehe/0000-0003-3791-7587; Smith, Richard/0000-0002-2381-2349 FU National Institute of Environmental Health Sciences (NIEHS) [U54 ES16015]; NIH; DOE's Office of Biological and Environmental Research at Pacific Northwest National Laboratory [DE-AC05-76RL01830] FX This work was done at Pacific Northwest National Laboratory (PNNL) supported by a grant, U54 ES16015 from the National Institute of Environmental Health Sciences (NIEHS), and NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 39 TC 7 Z9 7 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 EI 1873-3573 J9 TALANTA JI Talanta PD JUN 15 PY 2010 VL 81 IS 4-5 BP 1662 EP 1669 DI 10.1016/j.talanta.2010.03.022 PG 8 WC Chemistry, Analytical SC Chemistry GA 610MN UT WOS:000278737100079 PM 20441955 ER PT J AU Barnes, TM Bergeson, JD Tenent, RC Larsen, BA Teeter, G Jones, KM Blackburn, JL van de Lagemaat, J AF Barnes, Teresa M. Bergeson, Jeremy D. Tenent, Robert C. Larsen, Brian A. Teeter, Glenn Jones, Kim M. Blackburn, Jeffrey L. van de Lagemaat, Jao TI Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer SO APPLIED PHYSICS LETTERS LA English DT Article DE carbon nanotubes; electrodes; photovoltaic cells; short-circuit currents; solar cells ID PHOTOVOLTAICS; DEVICES; FILMS AB We report on the effects of replacing both In2O3:Sn (ITO) and the hole transport layer (HTL) in organic photovoltaic (OPV) cells with single-walled carbon nanotube (SWNT) network transparent electrodes. We have produced an OPV device without an HTL exhibiting an NREL-certified efficiency of 2.65% and a short-circuit current density of 11.2 mA/cm(2). Our results demonstrate that SWNT networks can be used to replace both ITO and the HTL in efficient OPV devices and that the HTL serves distinctly different roles in ITO- and SWNT-based devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453445] C1 [Barnes, Teresa M.; Bergeson, Jeremy D.; Tenent, Robert C.; Larsen, Brian A.; Teeter, Glenn; Jones, Kim M.; Blackburn, Jeffrey L.; van de Lagemaat, Jao] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Barnes, TM (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM teresa.barnes@nrel.gov RI Larsen, Brian/B-4807-2008; Blackburn, Jeffrey/D-7344-2012; van de Lagemaat, Jao/J-9431-2012 FU U.S. Department of Energy with the National Renewable Energy Laboratory [DE-AC36-08-GO28308] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 19 TC 58 Z9 58 U1 0 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 14 PY 2010 VL 96 IS 24 AR 243309 DI 10.1063/1.3453445 PG 3 WC Physics, Applied SC Physics GA 612PC UT WOS:000278911500064 ER PT J AU Disz, T Akhter, S Cuevas, D Olson, R Overbeek, R Vonstein, V Stevens, R Edwards, RA AF Disz, Terry Akhter, Sajia Cuevas, Daniel Olson, Robert Overbeek, Ross Vonstein, Veronika Stevens, Rick Edwards, Robert A. TI Accessing the SEED Genome Databases via Web Services API: Tools for Programmers SO BMC BIOINFORMATICS LA English DT Article ID RAST SERVER; ANNOTATION; RESOURCE AB Background: The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. Results: The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. Conclusions: We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online. C1 [Disz, Terry; Olson, Robert; Stevens, Rick; Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Disz, Terry] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Akhter, Sajia; Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Overbeek, Ross; Vonstein, Veronika] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. [Cuevas, Daniel; Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. RP Edwards, RA (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM redwards@mcs.anl.gov FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN266200400042C] FX Part of this project has been funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN266200400042C. NR 20 TC 59 Z9 59 U1 0 U2 9 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JUN 14 PY 2010 VL 11 AR 319 DI 10.1186/1471-2105-11-319 PG 11 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 623KL UT WOS:000279738300002 PM 20546611 ER PT J AU Larson, TE Zou, RQ AF Larson, Toti E. Zou, Ruqiang TI CHEMICAL SAFETY: DIMETHYL SULFOXIDE OVERPRESSURIZATION HAZARD SO CHEMICAL & ENGINEERING NEWS LA English DT Letter C1 [Larson, Toti E.; Zou, Ruqiang] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Larson, TE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI zou, ruqiang/N-8803-2013 NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2347 J9 CHEM ENG NEWS JI Chem. Eng. News PD JUN 14 PY 2010 VL 88 IS 24 BP 4 EP 6 PG 3 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA 616BC UT WOS:000279181700003 ER PT J AU Lindahl, AO Hanstorp, D Forstner, O Gibson, ND Gottwald, T Wendt, K Havener, CC Liu, Y AF Lindahl, A. O. Hanstorp, D. Forstner, O. Gibson, N. D. Gottwald, T. Wendt, K. Havener, C. C. Liu, Y. TI Depletion of the excited state population in negative ions using laser photodetachment in a gas-filled RF quadrupole ion guide SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article AB The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio-frequency quadrupole ion guide filled with helium. The high-lying, loosely bound (2)D excited state in C(-) was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si-the combined signal from the population in the (2)P and (2)D excited states was only partly depleted through collisions in the cooler. The loosely bound (2)P state was likely to be completely depopulated, and the more tightly bound (2)D state was partly depopulated through collisions. 98(2)% of the remaining (2)D population was removed by photodetachment in the cooler using less than 2 W laser power. The total reduction of the excited population in Si(-), including collisional detachment and photodetachment, was estimated to be 99(1)%. Employing this novel technique to produce a pure ground state negative ion beam offers possibilities of enhancing selectivity, as well as accuracy, in high-precision experiments on atomic as well as molecular negative ions. C1 [Lindahl, A. O.; Hanstorp, D.] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. [Forstner, O.] Univ Vienna, Fac Phys, VERA Lab, Vienna, Austria. [Gibson, N. D.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Gottwald, T.; Wendt, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Havener, C. C.; Liu, Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Lindahl, AO (reprint author), Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. EM Dag.Hanstorp@physics.gu.se RI Lindahl, Anton/A-5366-2011; Wendt, Klaus/D-7306-2011 OI Lindahl, Anton/0000-0001-6569-2800; Wendt, Klaus/0000-0002-9033-9336 FU Swedish Research Council; Office of Nuclear Physics, US Department of Energy [DE-AC05-00OR22725]; National Science Foundation [0757976] FX This work was supported by the Swedish Research Council and by the Office of Nuclear Physics, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Dr Yun Liu at the Spallation Neutron Source, ORNL, is acknowledged for lending us the pulsed Nd:YAG laser for the experiment. This material is based in part upon the work supported by the National Science Foundation under grant no 0757976. NR 16 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUN 14 PY 2010 VL 43 IS 11 AR 115008 DI 10.1088/0953-4075/43/11/115008 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 598GP UT WOS:000277823500009 ER PT J AU Jensen, BJ Cherne, FJ Cooley, JC Zhernokletov, MV Kovalev, AE AF Jensen, B. J. Cherne, F. J. Cooley, J. C. Zhernokletov, M. V. Kovalev, A. E. TI Shock melting of cerium SO PHYSICAL REVIEW B LA English DT Article ID ALPHA PHASE-TRANSITION; COMPRESSION; IRON; WAVE; VELOCITIES; EQUATION; STATE; KBAR AB Shock-wave experiments were performed to examine the melt transition for cerium. Despite past work which points to a higher-pressure transition, the large volume collapse associated with the low-pressure gamma-alpha phase transition is expected to result in a low-pressure melt transition. Multiple experimental configurations including front-surface impact and transmission experiments using velocimetry were used to obtain Hugoniot data and sound-speed data for impact stresses up to approximately 18 GPa. Sound-speed data exhibit a structured release consisting of a longitudinal wave followed by a slower plastic wave. The difference between these two wave speeds is observed to decrease with increasing impact stress until a single shock wave is observed indicating the onset of the melt transition which was estimated to be 10.24 +/- 0.34 GPa. Additional data show that the sound speed is in agreement with liquid data at approximately 18 GPa likely indicating the completion of the melt transition. Further results and implications are discussed. C1 [Jensen, B. J.; Cherne, F. J.; Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhernokletov, M. V.; Kovalev, A. E.] RFNC VNIIEF, Sarov 607190, Nizhni Novgorod, Russia. RP Jensen, BJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bjjensen@lanl.gov RI Cooley, Jason/E-4163-2013; OI Cherne, Frank/0000-0002-8589-6058 FU U.S. Department of Energy's NNSA [DE-AC52-06NA25396]; RFNC-VNIIEF and Los Alamos National Laboratory (LANL) [37713-000-02-35] FX This work was performed at Los Alamos National Laboratory operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA under Contract No. DE-AC52-06NA25396. The high-pressure liquid data shown here is the result of an international collaboration between RFNC-VNIIEF and Los Alamos National Laboratory (LANL) under Contract No. 37713-000-02-35. Jim Esparza, Tim Piece, and Chuck Owens are gratefully acknowledged for their help in target and projectile fabrication, gun setup, and shot execution. Adam Iverson and Jason Young (NSTech) are thanked for their assistance with PDV probe setup for the multislug experiments. NR 37 TC 12 Z9 12 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 14 PY 2010 VL 81 IS 21 AR 214109 DI 10.1103/PhysRevB.81.214109 PG 8 WC Physics, Condensed Matter SC Physics GA 610HI UT WOS:000278721900001 ER PT J AU Lee, SH Xu, GY Ku, W Wen, JS Lee, CC Katayama, N Xu, ZJ Ji, S Lin, ZW Gu, GD Yang, HB Johnson, PD Pan, ZH Valla, T Fujita, M Sato, TJ Chang, S Yamada, K Tranquada, JM AF Lee, S. -H. Xu, Guangyong Ku, W. Wen, J. S. Lee, C. C. Katayama, N. Xu, Z. J. Ji, S. Lin, Z. W. Gu, G. D. Yang, H. -B. Johnson, P. D. Pan, Z. -H. Valla, T. Fujita, M. Sato, T. J. Chang, S. Yamada, K. Tranquada, J. M. TI Coupling of spin and orbital excitations in the iron-based superconductor FeSe0.5Te0.5 SO PHYSICAL REVIEW B LA English DT Article ID STATE AB We present a combined analysis of neutron scattering and photoemission measurements on superconducting FeSe0.5Te0.5. The low-energy magnetic excitations disperse only in the direction transverse to the characteristic wave vector (1/2, 0,0) whereas the electronic Fermi surface near (1/2, 0,0) appears to consist of four incommensurate pockets. While the spin resonance occurs at an incommensurate wave vector compatible with nesting, neither spin-wave nor Fermi-surface-nesting models can describe the magnetic dispersion. We propose that a coupling of spin and orbital correlations is key to explaining this behavior. If correct, it follows that these nematic fluctuations are involved in the resonance and could be relevant to the pairing mechanism. C1 [Lee, S. -H.; Katayama, N.; Ji, S.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Xu, Guangyong; Ku, W.; Wen, J. S.; Lee, C. C.; Xu, Z. J.; Lin, Z. W.; Gu, G. D.; Yang, H. -B.; Johnson, P. D.; Pan, Z. -H.; Valla, T.; Tranquada, J. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wen, J. S.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Xu, Z. J.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Fujita, M.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Sato, T. J.] Univ Tokyo, Inst Solid State Phys, Neutron Sci Lab, Ibaraki 3191106, Japan. [Chang, S.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Yamada, K.] Tohoku Univ, Adv Inst Mat Res, WPI Res Ctr, Sendai, Miyagi 9808577, Japan. RP Lee, SH (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RI xu, zhijun/A-3264-2013; Xu, Guangyong/A-8707-2010; Wen, Jinsheng/F-4209-2010; Fujita, Masaki/D-8430-2013; Sato, Taku/I-7664-2015; Ji, Sungdae/G-3808-2010; Gu, Genda/D-5410-2013; Tranquada, John/A-9832-2009; Yamada, Kazuyoshi/C-2728-2009 OI xu, zhijun/0000-0001-7486-2015; Xu, Guangyong/0000-0003-1441-8275; Wen, Jinsheng/0000-0001-5864-1466; Sato, Taku/0000-0003-2511-4998; Ji, Sungdae/0000-0001-6736-3103; Gu, Genda/0000-0002-9886-3255; Tranquada, John/0000-0003-4984-8857; FU Office of Science, U.S. Department of Energy (DOE) [DE-FG02-07ER46384]; U.S. DOE [DE-AC02-98CH10886]; U.S. DOE, Office of Basic Energy Sciences; National Science Foundation [DMR-0454672] FX We are grateful to S. A. Kivelson for helpful comments and to A. V. Fedorov for experimental assistance. Work at the University of Virginia was supported by the Office of Science, U.S. Department of Energy (DOE) under Grant No. DE-FG02-07ER46384. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-AC02-98CH10886. P.D.J. and J.M.T. are supported in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Basic Energy Sciences. SPINS at NCNR is supported by the National Science Foundation under Agreement No. DMR-0454672. A.L.S. is operated by the U.S. DOE under Contract No. DE-AC03-76SF00098. NR 28 TC 58 Z9 58 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 14 PY 2010 VL 81 IS 22 AR 220502 DI 10.1103/PhysRevB.81.220502 PG 4 WC Physics, Condensed Matter SC Physics GA 610HY UT WOS:000278723700001 ER PT J AU Wong, CY AF Wong, Cheuk-Yin TI Anomalous soft photons in hadron production SO PHYSICAL REVIEW C LA English DT Article AB Anomalous soft photons in excess of what is expected from electromagnetic bremsstrahlung have been observed in association with the production of hadrons, mostly mesons, in high-energy K(+)p, pi(+)p, pi(-)p, pp, and e(+)e(-) collisions. We propose a model for the simultaneous production of anomalous soft photons and mesons in quantum field theory, in which the meson production arises from the oscillation of color charge densities of the quarks of the underlying vacuum in the flux tube. Because a quark carries both a color charge and an electric charge, the oscillation of the color charge densities will be accompanied by the oscillation of electric charge densities, which will in turn lead to the simultaneous production of soft photons during the meson production process. How the production of these soft photons may explain the anomalous soft photon data is discussed. Further experimental measurements to test the model are proposed. C1 [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Wong, Cheuk-Yin] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU Office of Nuclear Physics, US Department of Energy FX The author thanks Dr. V. Perepelitsa for stimulating discussions and valuable information on DELPHI anomalous soft photon experimental data. The author also thanks Drs. H. Crater and T. Barnes for helpful discussions. The research was sponsored by the Office of Nuclear Physics, US Department of Energy. NR 76 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 14 PY 2010 VL 81 IS 6 AR 064903 DI 10.1103/PhysRevC.81.064903 PG 15 WC Physics, Nuclear SC Physics GA V25KC UT WOS:000208475900001 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moulik, T Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moulik, T. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA DO Collaboration TI Measurement of direct photon pair production cross sections in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE Diphoton; Cross section; DPP; Differential; DO; Tevatron ID TRANSVERSE-MOMENTUM; 280 GEV/C; SUPERSYMMETRY; COLLIDER AB We present a measurement of direct photon pair production cross sections using 4.2 fb(-1) of data collected with the DO detector at the Fermilab Tevatron p (p) over bar Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons. In addition, we measure double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Bu, XB (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China. EM xuebingbu@gmail.com RI Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311 FU DOE and NSF (USA); CEA, France [CNRS/IN2P3]; FASI, Rosatom and RFBR (Russia); CNPq; FAPERJ; FAPESP; FUN-DUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBA-CyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank C. Balazs, C.-P. Yuan and J.P. Guillet for their assistance with the theoretical predictions. We also thank F. Siegert and S. Schumann for useful discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUN-DUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBA-CyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 28 TC 30 Z9 31 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 14 PY 2010 VL 690 IS 2 BP 108 EP 117 DI 10.1016/j.physletb.2010.05.017 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 620QG UT WOS:000279513800002 ER PT J AU Mocsy, A Sorensen, P AF Mocsy, Agnes Sorensen, Paul TI Detecting a first-order transition in the QCD phase diagram with baryon-baryon correlations SO PHYSICS LETTERS B LA English DT Article DE Heavy-ion collisions; QCD phase diagram; Quarkyonic phase; Nucleation ID HEAVY-ION COLLISIONS; 2-PROTON CORRELATIONS; NUCLEAR COLLISIONS; FLOW AB We suggest baryon-baryon correlations as an experimentally accessible signature for a first-order phase transition between a baryon-rich phase, like quarkyonic, and a baryon-suppressed hadronic phase in the QCD phase diagram. We examine the consequences of baryon-rich bubble formation in an expanding medium and show how the two-particle correlations vary in the transverse and longitudinal direction depending on the strength of the radial flow, the bubble temperature, and the time when the baryons are emitted. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mocsy, Agnes] Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. [Sorensen, Paul] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Mocsy, A (reprint author), Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. EM amocsy@pratt.edu; prsorensen@bnl.gov OI Sorensen, Paul/0000-0001-5056-9391 NR 27 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 14 PY 2010 VL 690 IS 2 BP 135 EP 140 DI 10.1016/j.physletb.2010.05.025 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 620QG UT WOS:000279513800006 ER PT J AU Gross, F Ramalho, G Tsushima, K AF Gross, Franz Ramalho, G. Tsushima, K. TI Using baryon octet magnetic moments and masses to fix the pion cloud contribution SO PHYSICS LETTERS B LA English DT Article DE Baryon octet; Magnetic moments; Pion cloud ID BAG MODEL; PARTICLE PHYSICS; UNITARY SYMMETRY; NUCLEON OCTET; FORM-FACTORS AB Using SU(3) symmetry to constrain the pi BB' couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to constrain the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at Q(2) = 0. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gross, Franz; Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, EBAC Theory Ctr, Newport News, VA 23606 USA. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. [Ramalho, G.] IST, Ctr Fis Teor Particulas, Lisbon, Portugal. RP Gross, F (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC Theory Ctr, Newport News, VA 23606 USA. EM gross@jlab.org OI Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union FX This work was partially support by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. G.R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under the grant No. SFRH/BPD/26886/2006. This work has also been supported in part by the European Union (Hadron-Physics2 project "Study of strongly interacting matter"). NR 31 TC 19 Z9 19 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 14 PY 2010 VL 690 IS 2 BP 183 EP 188 DI 10.1016/j.physletb.2010.05.016 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 620QG UT WOS:000279513800015 ER PT J AU Arredondo, M Ramasse, QM Weyland, M Mahjoub, R Vrejoiu, I Hesse, D Browning, ND Alexe, M Munroe, P Nagarajan, V AF Arredondo, Miryam Ramasse, Quentin M. Weyland, Matthew Mahjoub, Reza Vrejoiu, Ionela Hesse, Dietrich Browning, Nigel D. Alexe, Mann Munroe, Paul Nagarajan, Valanoor TI Direct Evidence for Cation Non-Stoichiometry and Cottrell Atmospheres Around Dislocation Cores in Functional Oxide Interfaces SO ADVANCED MATERIALS LA English DT Article ID ELECTRON-MICROSCOPE; MISFIT DISLOCATIONS; GRAIN-BOUNDARIES; SRTIO3; PEROVSKITES; ATOMS; FILMS; FIELD AB Long-range strain fields associated with dislocation cores at an oxide interface are shown to be sufficient enough to create significant variations in the chemical composition around the core (Cottrell atmospheres). Such stress-assisted diffusion of cations towards the cores is proposed to significantly impact the properties of nanoscale functional devices. The figure shows a Z-contrast image of a single dislocation core at an oxide interface. C1 [Arredondo, Miryam; Mahjoub, Reza; Munroe, Paul; Nagarajan, Valanoor] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Ramasse, Quentin M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94708 USA. [Weyland, Matthew] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia. [Vrejoiu, Ionela; Hesse, Dietrich; Alexe, Mann] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Nagarajan, V (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. EM nagarajan@unsw.edu.au RI valanoor, nagarajan/B-4159-2012; Munroe, Paul/I-9313-2016; Alexe, Marin/K-3882-2016; OI Munroe, Paul/0000-0002-5091-2513; Alexe, Marin/0000-0002-0386-3026; Weyland, Matthew/0000-0003-1797-0268; Browning, Nigel/0000-0003-0491-251X FU CONACYT Mexico; ARC [DP 0666231]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-03-ER46057, DE-ACO2-05CH11231]; German Science Foundation (DFG) [SFB 762]; DEST FX The authors would like to thank CONACYT Mexico, ARC DP 0666231, Office of Science, Office of Basic Energy Sciences of the US Department of Energy through grant number DE-FG02-03-ER46057 and DE-ACO2-05CH11231, the German Science Foundation (DFG) via SFB 762 and DEST International Linkage Grant for their support on this project. Supporting Information is available online from Wiley InterScience or from the author. NR 44 TC 20 Z9 21 U1 0 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 11 PY 2010 VL 22 IS 22 BP 2430 EP + DI 10.1002/adma.200903631 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 619SN UT WOS:000279450700005 PM 20432474 ER PT J AU Wilson, A Kinney, JN Zwart, PH Punginelli, C D'Haene, S Perreau, F Klein, MG Kirilovsky, D Kerfeld, CA AF Wilson, Adjele Kinney, James N. Zwart, Petrus H. Punginelli, Claire D'Haene, Sandrine Perreau, Francois Klein, Michael G. Kirilovsky, Diana Kerfeld, Cheryl A. TI Structural Determinants Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CHLOROPHYLL-BINDING PROTEIN; SYNECHOCYSTIS SP PCC-6803; SHORT HYDROGEN-BONDS; BLUE-LIGHT; ENERGY-DISSIPATION; PHYCOBILISOME FLUORESCENCE; RHODOBACTER-SPHAEROIDES; SIGNAL-TRANSDUCTION; MAXIMUM-LIKELIHOOD; CRYSTAL-STRUCTURES AB The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the orange carotenoid protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light-photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wild type and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides high resolution detail of the carotenoid-protein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled. C1 [Kinney, James N.; Zwart, Petrus H.; Klein, Michael G.; Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Wilson, Adjele; Punginelli, Claire; D'Haene, Sandrine; Kirilovsky, Diana] CEA, Inst Biol & Technol Saclay, Gif Sur Yvette, France. [Wilson, Adjele; Punginelli, Claire; D'Haene, Sandrine; Kirilovsky, Diana] CENS, Lab Leon Brillouin, CNRS, URA 2906, F-91191 Gif Sur Yvette, France. [Perreau, Francois] INRA Versailles Grignon, INRA AgroParisTech, UMR 1318, Inst Jean Pierre Bourgin, F-78026 Versailles, France. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Kerfeld, CA (reprint author), 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM ckerfeld@berkeley.edu RI Zwart, Peter/F-7123-2013; Punginelli, Claire/M-1759-2014 FU CNRS; Commissariat a l'Energie Atomique (Saclay, France); United States Department of Energy's Office of Science, Biological and Environmental Research; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [MCB-085170] FX The work of these authors was supported by grants from l'Agence Nationale de la Recherche (Program CAROPROTECT) from CNRS and the Commissariat a l'Energie Atomique (Saclay, France).; The work of these authors was performed under the auspices of the United States Department of Energy's Office of Science, Biological and Environmental Research Program, and the University of California, Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and National Science Foundation Grant MCB-085170. NR 81 TC 65 Z9 66 U1 4 U2 23 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUN 11 PY 2010 VL 285 IS 24 BP 18364 EP 18375 DI 10.1074/jbc.M110.115709 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 606UN UT WOS:000278453900030 PM 20368334 ER PT J AU Morgan, TJ George, A Alvarez-Rodriguez, P Millan, M Herod, AA Kandiyoti, R AF Morgan, T. J. George, A. Alvarez-Rodriguez, P. Millan, M. Herod, A. A. Kandiyoti, R. TI Estimating molecular masses of petroleum-derived fractions: High mass (> 2000 u) materials in maltenes and asphaltenes from Maya crude oil SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Asphaltenes; Molecular mass; Laser desorption-mass spectrometry; Size exclusion chromatography; UV-fluorescence ID SIZE-EXCLUSION CHROMATOGRAPHY; GRAVITY DRAINAGE OPERATION; COAL-TAR PITCH; ELECTROSPRAY-IONIZATION; SOLUBILITY FRACTIONS; FLUORESCENCE SPECTROSCOPY; NMR-SPECTROSCOPY; SPECTROMETRY; WEIGHT; CALIBRATION AB Molecular mass ranges and average masses of fractions from a heavy Mexican crude oil (Maya) have been studied, using mainly size exclusion chromatography (SEC) and laser desorption-mass spectrometry (LD-MS). Method development focused on the use of planar chromatography and size exclusion chromatography (SEC), to isolate narrow bands of material from solubility-separated fractions of the crude oil. The procedure provides a planar chromatography based method for studying mass ranges in complex hydrocarbon mixtures. It allows the calculation of 'best estimate' values for number and mass-averages. These can then be used in average structural parameter (ASP) calculations, for studying structural features of the samples. The method is applicable to both coal and petroleum-derived samples. The molecular mass estimates arrived at in this work for petroleum-derived samples are considerably higher than those reported by other workers for similar samples. The results presented here provide strong evidence for the presence of ions approaching m/z 10,000 in the Maya asphaltene. The maltene fraction was found to contain a small amount of ions with mass (m/z) in excess of 2000. (C) 2010 Elsevier B.V. All rights reserved. C1 [Morgan, T. J.; Millan, M.; Herod, A. A.; Kandiyoti, R.] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn & Chem Technol, London SW7 2AZ, England. [George, A.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Alvarez-Rodriguez, P.] Inst Nacl Carbon, Oviedo 33011, Asturias, Spain. RP Morgan, TJ (reprint author), EC Joint Res Ctr, Inst Energy, Westerduinweg 3,Postbus 2, NL-1755 ZG Petten, Netherlands. EM Trevor.Morgan@ec.europa.eu RI Alvarez, Patricia/G-1038-2016 NR 53 TC 22 Z9 22 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 11 PY 2010 VL 1217 IS 24 BP 3804 EP 3818 DI 10.1016/j.chroma.2010.04.024 PG 15 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 608DX UT WOS:000278563900012 PM 20444460 ER PT J AU Gritti, F Leonardis, I Abia, J Guiochon, G AF Gritti, Fabrice Leonardis, Irene Abia, Jude Guiochon, Georges TI Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Column performance; Halo particles; Kinetex particles; Shell particles; Shell structure; Silica nanoparticles; Silica particles; Specific surface area; Low temperature nitrogen adsorption; Scanning electron microscopy; Inverse size-exclusion chromatography; Coulter particle size distribution; Pycnometry; Height equivalent to a theoretical plate; Peak parking method; Total pore blocking; Local electrochemical detection ID PRESSURE LIQUID-CHROMATOGRAPHY; NITROGEN ADSORPTION-ISOTHERMS; EXTERNAL MASS-TRANSFER; SILICA PARTICLES; RADIAL HETEROGENEITY; SURFACE-DIFFUSION; STATIONARY PHASES; TRANSFER KINETICS; FLOW VELOCITY; HPLC AB The recent development of new brands of packing materials made of fine porous-shell particles, e.g.. Halo and Kinetex, has brought great improvements in potential column efficiency, demanding considerable progress in the design of chromatographic instruments. Columns packed with Halo and Kinetex particles provide minimum values of their reduced plate heights of nearly 1.5 and 1.2, respectively. These packing materials have physical properties that set them apart from conventional porous particles. The kinetic performance of 4.6 mm I.D. columns packed with these two new materials is analyzed based on the results of a series of nine independent and complementary experiments: low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), inverse size-exclusion chromatography (ISEC), Coulter counter particle size distributions, pycnometry, height equivalent to a theoretical plate (HETP), peak parking method (PP), total pore blocking method (TPB), and local electrochemical detection across the column exit section (LED). The results of this work establish links between the physical properties of these superficially porous particles and the excellent kinetic performance of columns packed with them. It clarifies the fundamental origin of the difference in the chromatographic performances of the Halo and the Kinetex columns. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gritti, Fabrice; Leonardis, Irene; Abia, Jude; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Leonardis, Irene; Abia, Jude; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem & Analyt Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu FU National Science Foundation [CHE-06-08659]; University of Tennessee; Oak Ridge National Laboratory FX This work was supported in part by grant CHE-06-08659 of the National Science Foundation and by the cooperative agreement between the University of Tennessee and the Oak Ridge National Laboratory. We thank Tivadar Farkas (Phenomenex, Torrance, USA) for the generous gift of the Kinetex columns used in this work and for fruitful discussions. NR 53 TC 128 Z9 128 U1 2 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 11 PY 2010 VL 1217 IS 24 BP 3819 EP 3843 DI 10.1016/j.chroma.2010.04.026 PG 25 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 608DX UT WOS:000278563900013 PM 20447642 ER PT J AU Hammond, JA Rambo, RP Kieft, JS AF Hammond, John A. Rambo, Robert P. Kieft, Jeffrey S. TI Multi-domain Packing in the Aminoacylatable 3 ' End of a Plant Viral RNA SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE aminoacylation; RNA Structure; viral RNA; tRNA-like Structure; small-angle X-ray scattering ID MOSAIC-VIRUS RNA; MINUS-STRAND SYNTHESIS; TYMV-RNA; COAT PROTEIN; HAMMERHEAD RIBOZYME; STRUCTURAL-ANALYSES; TERTIARY STRUCTURE; TROJAN HORSE; CLONED CDNA; IN-VITRO AB Turnip yellow mosaic virus (TYMV) contains a tRNA-like structure (as) in its 3' untranslated region (3' UTR). This highly structured element induces valylation of the viral RNA by host cell enzymes and is important for virus proliferation. Directly upstream of the TYMV TLS is an upstream pseudoknot domain (UPD) that has been considered to be structurally distinct from the Us. However, using a combination of functional, biochemical, and biophysical assays, we show that the entire 3' UTR of the viral genome is a single structured element in the absence of cellular protein. This packing architecture stabilizes the RNA structure and creates a better substrate for aminoacylation, and thus the UPD and Us are functionally and structurally coupled. It has been proposed that the TYMV Us acts as a molecular switch between translation and replication. Our results suggest that this putative switch could be based on structural changes within the global architecture of the UTR induced by interactions with the ribosome. The TYMV TLS.UPD might demonstrate how RNA structural plasticity can play a role in regulation of biological processes. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kieft, Jeffrey S.] Univ Colorado, Howard Hughes Med Inst, Sch Med, Aurora, CO 80045 USA. [Hammond, John A.; Kieft, Jeffrey S.] Univ Colorado, Dept Biochem & Mol Genet, Sch Med, Aurora, CO 80045 USA. [Rambo, Robert P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Kieft, JS (reprint author), Univ Colorado, Howard Hughes Med Inst, Sch Med, Aurora, CO 80045 USA. EM Jeffrey.Kieft@ucdenver.edu FU NIH [R01 GM081346, R01 GM072560] FX We acknowledge members of the Kieft laboratory (especially David Costantino, Marisa Ruehle, Grant Ruehle and Megan Filbin) for critical reading of this manuscript and useful discussions. We thank David Barton, Linda VanDyk and Rui Zhao for critical reading of this manuscript. This work was supported by NIH grants R01 GM081346 and R01 GM072560 to J.S.K., who is a Howard Hughes Medical Institute Early Career Scientist. NR 54 TC 10 Z9 10 U1 0 U2 1 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUN 11 PY 2010 VL 399 IS 3 BP 450 EP 463 DI 10.1016/j.jmb.2010.04.016 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 619PL UT WOS:000279442000010 PM 20398674 ER PT J AU Chuang, WY AF Chuang, Wu-yen TI A note on mirror symmetry for manifolds with spin(7) holonomy SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID COMPACT RIEMANNIAN 7-MANIFOLDS; TRANSITIONS AB Starting from the extended worldsheet superconformal algebras associated with G(2) manifolds, we extend the algebra to Joyce's orbifolds with spin(7) holonomy. We show how the mirror symmetry in manifolds with spin(7) holonomy arises as the automorphism in the extended sperconformal algebra. In one class of Joyce's orbifolds, the automorphism of the superconformal algebra can be realized as 14 kinds of T-dualities along the supersymmetric T(4) toroidal fibrations in the manifolds with spin(7) holonomy. In this class of examples, Joyce's orbifolds are pairwise identified under the mirror symmetry. We then discuss some interesting features of the mirror symmetry on the manifolds with exceptional holonomy and how it is different from the Calabi-Yau mirror symmetry. C1 [Chuang, Wu-yen] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Chuang, Wu-yen] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Chuang, WY (reprint author), Rutgers State Univ, NHETC, Piscataway, NJ 08854 USA. EM wychuang@gmail.com OI Chuang, Wu-Yen/0000-0003-3230-3252 FU US Department of Energy [DE-AC03-76SF00515] FX I would like to thank Peter Kaste and Edward Witten for email exchanges and extremely useful comments on the draft. The research of WYC is supported by the US Department of Energy under the contract number DE-AC03-76SF00515. NR 21 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUN 11 PY 2010 VL 43 IS 23 AR 235403 DI 10.1088/1751-8113/43/23/235403 PG 11 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 599MQ UT WOS:000277917600016 ER PT J AU Penciu, RS Kafesaki, M Koschny, T Economou, EN Soukoulis, CM AF Penciu, R. S. Kafesaki, M. Koschny, Th Economou, E. N. Soukoulis, C. M. TI Magnetic response of nanoscale left-handed metamaterials SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE-INDEX METAMATERIAL; SPLIT-RING RESONATORS; LOW-FREQUENCY PLASMONS; REFRACTIVE-INDEX; OPTICAL METAMATERIALS; WAVELENGTHS; MU AB Using detailed simulations we investigate the magnetic response of metamaterials consisting of pairs of parallel slabs or combinations of slabs with wires (including the fishnet design) as the length scale of the structures is reduced from millimeter to nanometer. We observe the expected saturation of the magnetic-resonance frequency when the structure length scale goes to the submicron regime, as well as weakening of the effective permeability resonance and reduction in the spectral width of the negative permeability region. All these results are explained by using an equivalent resistor-inductor-capacitor circuit model, taking into account the current-connected kinetic energy of the electrons inside the metallic parts through an equivalent inductance, added to the magnetic field inductance in the unit cell. Using this model we derive simple optimization rules for achieving optical negative permeability metamaterials with improved performance. Finally, we analyze the magnetic response of the fishnet design and we explain its superior performance regarding the high attainable magnetic-resonance frequency, as well as its poor performance regarding the width of the negative permeability region. C1 [Penciu, R. S.; Kafesaki, M.; Koschny, Th; Economou, E. N.; Soukoulis, C. M.] Fdn Res & Technol Hellas FORTH, IESL, Iraklion 71110, Crete, Greece. [Kafesaki, M.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Greece. [Koschny, Th; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koschny, Th; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Economou, E. N.] Univ Crete, Dept Phys, Iraklion 71003, Greece. RP Penciu, RS (reprint author), Fdn Res & Technol Hellas FORTH, IESL, POB 1385, Iraklion 71110, Crete, Greece. EM kafesaki@iesl.forth.gr RI Economou, Eleftherios /E-6374-2010; Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008 OI Kafesaki, Maria/0000-0002-9524-2576; FU European Union; European Office of Aerospace Research and Development; U.S. Department of Energy [DE-AC02-07-CH11358] FX Authors would like to acknowledge financial support by the European Union FP7 projects PHOME, ENSEMBLE, ECONAM, NIMNIL, and the COST Actions MP0702 and MP0803, by the European Office of Aerospace Research and Development (under project FENIM), and by the U.S. Department of Energy (Contract No. DE-AC02-07-CH11358). NR 55 TC 32 Z9 33 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 11 PY 2010 VL 81 IS 23 AR 235111 DI 10.1103/PhysRevB.81.235111 PG 11 WC Physics, Condensed Matter SC Physics GA 610DI UT WOS:000278710500002 ER PT J AU Tao, JM Perdew, JP Ruzsinszky, A AF Tao, Jianmin Perdew, John P. Ruzsinszky, Adrienn TI Long-range van der Waals attraction and alkali-metal lattice constants SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; RARE-GAS; ATOMS; COEFFICIENTS; POLARIZABILITIES; FORCES; SYSTEMS; DIPOLE; WELL; HE AB While the short-range part of the van der Waals (vdW) interaction can be described by semilocal density functionals, the long range cannot. By respecting two uniform electron gas and other exact limits, we construct a nonlocal density functional for the long-range coefficient C-6. C-8 and C-10 may be determined empirically from C-6. Then we estimate the effect of the core-core vdW attraction upon the lattice constants of the alkali metals, including dynamic valence-electron screening. This attraction is important for the softest metals, shrinking the lattice constant of Cs by 0.1 angstrom. C1 [Tao, Jianmin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tao, Jianmin] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Perdew, John P.; Ruzsinszky, Adrienn] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Perdew, John P.; Ruzsinszky, Adrienn] Tulane Univ, Quantum Theory Grp, New Orleans, LA 70118 USA. RP Tao, JM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU DOE [DE-AC52-06NA25396]; NSF [DMR-0501588, DMR-0854769] FX This work was supported by DOE under Grant No. DE-AC52-06NA25396 and NSF under Grants No. DMR-0501588 and No. DMR-0854769. NR 36 TC 39 Z9 39 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 11 PY 2010 VL 81 IS 23 AR 233102 DI 10.1103/PhysRevB.81.233102 PG 4 WC Physics, Condensed Matter SC Physics GA 610DH UT WOS:000278710300001 ER PT J AU Cheng, HY Chiang, CW AF Cheng, Hai-Yang Chiang, Cheng-Wei TI Long-distance contributions to D-0-(D)over-bar(0) mixing parameters SO PHYSICAL REVIEW D LA English DT Article ID NONLEPTONIC DECAYS; D-MESONS; PHYSICS AB Long-distance contributions to the D-0-(D) over bar (0) mixing parameters x and y are evaluated using latest data on hadronic D-0 decays. In particular, we take on two-body D -> PP and VP decays to evaluate the contributions of two-body intermediate states because they account for similar to 50% of hadronic D-0 decays. Use of the diagrammatic approach has been made to estimate yet-observed decay modes. We find that y is of order a few x 10(-3) and x of order 10(-3) from hadronic PP and VP modes. These are in good agreement with the latest direct measurement of D-0-(D) over bar (0) mixing parameters using the D0 -> K-S pi(+) pi(-) and K-S K+ K- decays by BABAR. We estimate the contribution to y from the VV modes using the factorization model and comment on the single-particle resonance effects and contributions from other two-body modes involving even-parity states. C1 [Cheng, Hai-Yang; Chiang, Cheng-Wei] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Cheng, Hai-Yang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chiang, Cheng-Wei] Natl Cent Univ, Dept Phys, Chungli 320, Taiwan. [Chiang, Cheng-Wei] Natl Cent Univ, Ctr Math & Theoret Phys, Chungli 320, Taiwan. RP Cheng, HY (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. FU National Science Council of Taiwan [NSC 97-2112-M-008-002-MY3, NSC 97-2112-M-001-004-MY3]; NCTS FX One of us (H.-Y.C.) wishes to thank the hospitality of the Physics Department, Brookhaven National Laboratory. This research was supported in part by the National Science Council of Taiwan, R. O. C. under Grant Nos. NSC 97-2112-M-008-002-MY3, NSC 97-2112-M-001-004-MY3 and in part by the NCTS. NR 40 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 11 PY 2010 VL 81 IS 11 AR 114020 DI 10.1103/PhysRevD.81.114020 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 609KO UT WOS:000278655400004 ER PT J AU Fitzpatrick, AL Hooper, D Zurek, KM AF Fitzpatrick, A. Liam Hooper, Dan Zurek, Kathryn M. TI Implications of CoGeNT and DAMA for light WIMP dark matter SO PHYSICAL REVIEW D LA English DT Article ID MILKY-WAY; COSMIC-RAYS; ANNIHILATIONS; BARYOGENESIS; EFFICIENCY; POSITRONS; PARTICLES; CRYSTAL; DENSITY; MASS AB In this paper, we study the recent excess of low energy events observed by the CoGeNT Collaboration, and discuss the possibility that these events originate from the elastic scattering of a light (m(DM) similar to 5-10 GeV) weakly interacting massive particle (WIMP). We find that such a dark matter candidate may also be capable of generating the annual modulation reported by DAMA, without conflicting with the null results from other experiments, such as XENON10. The regions implied by CoGeNT and DAMA are also near those required to produce the two observed CDMS events. A dark matter interpretation of the CoGeNT and DAMA observations favors a region of parameter space that is especially attractive within the context of asymmetric dark matter models. In such models, the cosmological dark matter density arises from the baryon asymmetry of the Universe, naturally leading to the expectation that m(DM) similar to 1-10 GeV. We also discuss neutralino dark matter from extended supersymmetric frameworks, such as the next-to-minimal supersymmetric standard model. Lastly, we explore the implications of such a dark matter candidate for indirect searches, and find very encouraging prospects for experiments attempting to detect neutrino or gamma ray annihilation products. C1 [Fitzpatrick, A. Liam] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60563 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zurek, Kathryn M.] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Zurek, Kathryn M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Fitzpatrick, AL (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. FU U.S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842]; DOE [DE-FG02-01ER-40676]; NSF CAREER [PHY-0645456] FX We would like to thank Juan Collar for his assistance in understanding the details of the recent CoGeNT result. We also thank B. Feldstein, A. Pierce, and P. Sorensen for helpful discussions. D.H. is supported by the U.S. Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842. A.L.F. and K.M.Z. thank the KITP for their hospitality at the workshop "Direct, Indirect and Collider Signals of Dark Matter,'' where parts of this work were initiated. A.L.F. is supported by DOE Grant No. DE-FG02-01ER-40676 and NSF CAREER Grant No. PHY-0645456. NR 111 TC 119 Z9 119 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 11 PY 2010 VL 81 IS 11 AR 115005 DI 10.1103/PhysRevD.81.115005 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 609KP UT WOS:000278655500001 ER PT J AU Souchlas, N Stratakis, D AF Souchlas, N. Stratakis, D. TI Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons SO PHYSICAL REVIEW D LA English DT Article ID DYSON-SCHWINGER EQUATIONS; POLE MASS; HADRON PHYSICS; PERTURBATION-THEORY; FORM-FACTORS; DECAYS; PION; QCD; RENORMALONS; AMBIGUITIES AB The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Lambda(chi) similar to 1 GeV) or with the scale Lambda(QCD) similar to 0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants. C1 [Souchlas, N.; Stratakis, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Souchlas, N.] Kent State Univ, Dept Phys, Kent, OH 44242 USA. RP Souchlas, N (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM nsouchlas@bnl.gov; diktys@bnl.gov FU U.S. National Science Foundation [NSF-PHY-0610129, NSF-PHY-0903991] FX N. Souchlas is very grateful to N. Simos for his support. He is also grateful to P. Tandy for his support and guidance during this work, and Pieter Maris for some useful ideas. This work was supported in part by the U.S. National Science Foundation under Grants No. NSF-PHY-0610129 and No. NSF-PHY-0903991. NR 52 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 11 PY 2010 VL 81 IS 11 AR 114019 DI 10.1103/PhysRevD.81.114019 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 609KO UT WOS:000278655400003 ER PT J AU Popescu, V Zunger, A AF Popescu, Voicu Zunger, Alex TI Effective Band Structure of Random Alloys SO PHYSICAL REVIEW LETTERS LA English DT Article ID APPROXIMATION; LOCALIZATION; GAAS AB Random substitutional A(x)B(1-x) alloys lack formal translational symmetry and thus cannot be described by the language of band-structure dispersion E((k) over right arrow). Yet, many alloy experiments are interpreted phenomenologically precisely by constructs derived from wave vector (k) over right arrow, e. g., effective masses or van Hove singularities. Here we use large supercells with randomly distributed A and B atoms, whereby many different local environments are allowed to coexist, and transform the eigenstates into an effective band structure (EBS) in the primitive cell using a spectral decomposition. The resulting EBS reveals the extent to which band characteristics are preserved or lost at different compositions, band indices, and (k) over right arrow points, showing in (In, Ga)N the rapid disintegration of the valence band Bloch character and in Ga( N, P) the appearance of a pinned impurity band. C1 [Popescu, Voicu; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Popescu, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Popescu, Voicu/A-9130-2010; Zunger, Alex/A-6733-2013 NR 26 TC 69 Z9 69 U1 1 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 11 PY 2010 VL 104 IS 23 AR 236403 DI 10.1103/PhysRevLett.104.236403 PG 4 WC Physics, Multidisciplinary SC Physics GA 609LQ UT WOS:000278658500001 PM 20867256 ER PT J AU Sun, DL Yin, LF Sun, CJ Guo, HW Gai, Z Zhang, XG Ward, TZ Cheng, ZH Shen, JA AF Sun, Dali Yin, Lifeng Sun, Chengjun Guo, Hangwen Gai, Zheng Zhang, X. -G. Ward, T. Z. Cheng, Zhaohua Shen, Jian TI Giant Magnetoresistance in Organic Spin Valves SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGE-LIMITED CURRENT; TUNNEL-JUNCTIONS; DEVICES; FILM AB Interfacial diffusion between magnetic electrodes and organic spacer layers is a serious problem in the organic spintronics which complicates attempts to understand the spin-dependent transport mechanism and hurts the achievement of a desirably high magnetoresistance (MR). We deposit nanodots instead of atoms onto the organic layer using buffer layer assist growth. Spin valves using this method exhibit a sharper interface and a giant MR of up to similar to 300%. Analysis of the current-voltage characteristics indicates that the spin-dependent carrier injection correlates with the observed MR. C1 [Sun, Dali; Yin, Lifeng; Sun, Chengjun; Guo, Hangwen; Gai, Zheng; Ward, T. Z.; Shen, Jian] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sun, Dali; Cheng, Zhaohua] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Sun, Dali; Cheng, Zhaohua] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yin, Lifeng; Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Gai, Zheng; Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Shen, JA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM shenj@ornl.gov RI Gai, Zheng/B-5327-2012; Ward, Thomas/I-6636-2016 OI Gai, Zheng/0000-0002-6099-4559; Ward, Thomas/0000-0002-1027-9186 FU U.S. DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering, through Oak Ridge National Laboratory; Chinese Academy of Sciences; Oak Ridge National Laboratory's Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This effort was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering, through Oak Ridge National Laboratory, D.S. acknowledges partial support from Chinese Academy of Sciences. Z.G. and X.-G.Z. acknowledge partial support from Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 30 TC 102 Z9 105 U1 9 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 11 PY 2010 VL 104 IS 23 AR 236602 DI 10.1103/PhysRevLett.104.236602 PG 4 WC Physics, Multidisciplinary SC Physics GA 609LS UT WOS:000278658700001 PM 20867259 ER PT J AU McCormick, N Velasquez, V Finney, L Vogt, S Kelleher, SL AF McCormick, Nicholas Velasquez, Vanessa Finney, Lydia Vogt, Stefan Kelleher, Shannon L. TI X-Ray Fluorescence Microscopy Reveals Accumulation and Secretion of Discrete Intracellular Zinc Pools in the Lactating Mouse Mammary Gland SO PLOS ONE LA English DT Article ID EPITHELIAL-CELLS; MITOCHONDRIAL-FUNCTION; GOLGI-APPARATUS; IRON-ABSORPTION; MILK SECRETION; PROLACTIN PRL; IN-VIVO; TRANSPORTERS; PROSTATE; EXPRESSION AB Background: The mammary gland is responsible for the transfer of a tremendous amount of zinc (similar to 1-3 mg zinc/day) from maternal circulation into milk during lactation to support the growth and development of the offspring. When this process is compromised, severe zinc deficiency compromises neuronal development and immune function and increases infant morbidity and/or mortality. It remains unclear as to how the lactating mammary gland dynamically integrates zinc import from maternal circulation with the enormous amount of zinc that is secreted into milk. Methodology/Principal Findings: Herein we utilized X-ray fluorescence microscopy (XFM) which allowed for the visualization and quantification of the process of zinc transfer through the mammary gland of the lactating mouse. Our data illustrate that a large amount of zinc first accumulates in the mammary gland during lactation. Interestingly, this zinc is not cytosolic, but accumulated in large, discrete sub-cellular compartments. These zinc pools were then redistributed to small intracellular vesicles destined for secretion in a prolactin-responsive manner. Confocal microscopy identified mitochondria and the Golgi apparatus as the sub-cellular compartments which accumulate zinc; however, zinc pools in the Golgi apparatus, but not mitochondria are redistributed to vesicles destined for secretion during lactation. Conclusions/Significance: Our data directly implicate the Golgi apparatus in providing a large, mobilizable zinc storage pool to assist in providing for the tremendous amount of zinc that is secreted into milk. Interestingly, our study also provides compelling evidence that mitochondrial zinc pools expand in the mammary gland during lactation which we speculate may play a role in regulating mammary gland function. C1 [McCormick, Nicholas; Velasquez, Vanessa; Kelleher, Shannon L.] Penn State Univ, Dept Nutr Sci, University Pk, PA 16802 USA. [Finney, Lydia; Vogt, Stefan] Argonne Natl Lab, Argonne, IL 60439 USA. RP McCormick, N (reprint author), Penn State Univ, Dept Nutr Sci, University Pk, PA 16802 USA. EM slk39@psu.edu RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, HD058614] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 and HD058614 to SLK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 53 TC 30 Z9 30 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 11 PY 2010 VL 5 IS 6 AR e11078 DI 10.1371/journal.pone.0011078 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 609NG UT WOS:000278662900018 PM 20552032 ER PT J AU Schutzer, SE Liu, T Natelson, BH Angel, TE Schepmoes, AA Purvine, SO Hixson, KK Lipton, MS Camp, DG Coyle, PK Smith, RD Bergquist, J AF Schutzer, Steven E. Liu, Tao Natelson, Benjamin H. Angel, Thomas E. Schepmoes, Athena A. Purvine, Samuel O. Hixson, Kim K. Lipton, Mary S. Camp, David G., II Coyle, Patricia K. Smith, Richard D. Bergquist, Jonas TI Establishing the Proteome of Normal Human Cerebrospinal Fluid SO PLOS ONE LA English DT Article ID TANDEM MASS-SPECTROMETRY; TIME TAG APPROACH; ACCURATE MASS; MULTIDIMENSIONAL CHROMATOGRAPHY; PROTEINS; PEPTIDE; IDENTIFICATIONS; STRATEGY; MS/MS; TOOL AB Background: Knowledge of the entire protein content, the proteome, of normal human cerebrospinal fluid (CSF) would enable insights into neurologic and psychiatric disorders. Until now technologic hurdles and access to true normal samples hindered attaining this goal. Methods and Principal Findings: We applied immunoaffinity separation and high sensitivity and resolution liquid chromatography-mass spectrometry to examine CSF from healthy normal individuals. 2630 proteins in CSF from normal subjects were identified, of which 56% were CSF-specific, not found in the much larger set of 3654 proteins we have identified in plasma. We also examined CSF from groups of subjects previously examined by others as surrogates for normals where neurologic symptoms warranted a lumbar puncture but where clinical laboratory were reported as normal. We found statistically significant differences between their CSF proteins and our non-neurological normals. We also examined CSF from 10 volunteer subjects who had lumbar punctures at least 4 weeks apart and found that there was little variability in CSF proteins in an individual as compared to subject to subject. Conclusions: Our results represent the most comprehensive characterization of true normal CSF to date. This normal CSF proteome establishes a comparative standard and basis for investigations into a variety of diseases with neurological and psychiatric features. C1 [Schutzer, Steven E.; Natelson, Benjamin H.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. [Schutzer, Steven E.; Natelson, Benjamin H.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Neurol, Newark, NJ 07103 USA. [Liu, Tao; Angel, Thomas E.; Schepmoes, Athena A.; Purvine, Samuel O.; Hixson, Kim K.; Lipton, Mary S.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Coyle, Patricia K.] SUNY Stony Brook, Dept Neurol, Stony Brook, NY 11794 USA. [Bergquist, Jonas] Uppsala Univ, Dept Phys & Analyt Chem, Uppsala, Sweden. RP Schutzer, SE (reprint author), Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. EM schutzer@umdnj.edu RI Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013; Bergquist, Jonas/C-5894-2015 OI Bergquist, Jonas/0000-0002-4597-041X; Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550; FU National Institutes of Health, through National Institute on Drug Abuse (NIDA) [DA021071]; National Center for Research Resources [RR018522]; Swedish Research Council [621-2005-5379, 621-2008-3562]; Uppsala Berzelii Technology Center for Neurodiagnostics; Department of Energy (DOE) [DE-AC05-76RL0 1830] FX The authors thank the National Institutes of Health, through National Institute on Drug Abuse (NIDA) (grant DA021071), the National Center for Research Resources (RR018522), the Swedish Research Council (621-2005-5379, 621-2008-3562) and Uppsala Berzelii Technology Center for Neurodiagnostics for support of portions of the research. Pacific Northwest National Laboratory units are located in the Environmental Molecular Sciences Laboratory, a national scientific user facility, sponsored by the Department of Energy (DOE), operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL0 1830. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 32 TC 75 Z9 76 U1 1 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 11 PY 2010 VL 5 IS 6 AR e10980 DI 10.1371/journal.pone.0010980 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 609NG UT WOS:000278662900004 PM 20552007 ER PT J AU French, RH Parsegian, VA Podgornik, R Rajter, RF Jagota, A Luo, J Asthagiri, D Chaudhury, MK Chiang, YM Granick, S Kalinin, S Kardar, M Kjellander, R Langreth, DC Lewis, J Lustig, S Wesolowski, D Wettlaufer, JS Ching, WY Finnis, M Houlihan, F von Lilienfeld, OA van Oss, CJ Zemb, T AF French, Roger H. Parsegian, V. Adrian Podgornik, Rudolf Rajter, Rick F. Jagota, Anand Luo, Jian Asthagiri, Dilip Chaudhury, Manoj K. Chiang, Yet-ming Granick, Steve Kalinin, Sergei Kardar, Mehran Kjellander, Roland Langreth, David C. Lewis, Jennifer Lustig, Steve Wesolowski, David Wettlaufer, John S. Ching, Wai-Yim Finnis, Mike Houlihan, Frank von Lilienfeld, O. Anatole van Oss, Carel Jan Zemb, Thomas TI Long range interactions in nanoscale science SO REVIEWS OF MODERN PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL-THEORY; DER-WAALS INTERACTIONS; ATOMIC-FORCE MICROSCOPY; WALLED CARBON NANOTUBES; ELECTRICAL DOUBLE-LAYER; X-RAY REFLECTIVITY; RUTILE 110 SURFACE; DNA DOUBLE HELICES; MOLECULAR-DYNAMICS SIMULATIONS; PRESSURE NEUTRON-DIFFRACTION AB Our understanding of the "long range" electrodynamic, electrostatic, and polar interactions that dominate the organization of small objects at separations beyond an interatomic bond length is reviewed. From this basic-forces perspective, a large number of systems are described from which one can learn about these organizing forces and how to modulate them. The many practical systems that harness these nanoscale forces are then surveyed. The survey reveals not only the promise of new devices and materials, but also the possibility of designing them more effectively. C1 [French, Roger H.; Lustig, Steve] DuPont Co Inc, Cent Res, Wilmington, DE 19880 USA. [French, Roger H.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Parsegian, V. Adrian; Podgornik, Rudolf] NICHD, Lab Phys & Struct Biol, NIH, Bethesda, MD 20892 USA. [Podgornik, Rudolf] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia. [Podgornik, Rudolf] J Stefan Inst, Dept Theoret Phys, Ljubljana 1000, Slovenia. [Rajter, Rick F.; Chiang, Yet-ming] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Jagota, Anand; Chaudhury, Manoj K.] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA. [Jagota, Anand] Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA. [Luo, Jian] Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29634 USA. [Asthagiri, Dilip] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA. [Granick, Steve] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Kalinin, Sergei] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kalinin, Sergei] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kardar, Mehran] MIT, Dept Phys, Cambridge, MA 02139 USA. [Kjellander, Roland] Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden. [Langreth, David C.] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Lewis, Jennifer] Univ Illinois, Frederick Seitz Mat Res Lab, Mat Sci & Engn Dept, Urbana, IL 61801 USA. [Wesolowski, David] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wettlaufer, John S.] Yale Univ, Dept Geol & Geophys, Dept Phys, Program Appl Math, New Haven, CT 06520 USA. [Ching, Wai-Yim] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Finnis, Mike] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Finnis, Mike] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Houlihan, Frank] AZ Elect Mat Corp USA, Somerville, NJ 08876 USA. [von Lilienfeld, O. Anatole] Sandia Natl Labs, Multiscale Dynam Mat Modeling Dept, Albuquerque, NM 87185 USA. [van Oss, Carel Jan] SUNY Buffalo, Dept Microbiol & Immunol, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. [van Oss, Carel Jan] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Zemb, Thomas] Inst Chim Separat Marcoule, UMR 5257, F-30207 Bagnols Sur Ceze, France. RP French, RH (reprint author), DuPont Co Inc, Cent Res, E400-5207 Expt Stn, Wilmington, DE 19880 USA. EM rogerhfrench@longrangeinteractions.com RI Asthagiri, Dilipkumar/A-3383-2010; Ching, Wai-Yim/B-4686-2009; Luo, Jian/A-4777-2008; von Lilienfeld, O. Anatole/D-8529-2011; French, Roger/E-1986-2011; Podgornik, Rudolf/C-6209-2008; Kjellander, Roland/A-7267-2010; Asthagiri, Dilipkumar/P-9450-2016; OI Ching, Wai-Yim/0000-0001-7738-8822; French, Roger/0000-0002-6162-0532; Podgornik, Rudolf/0000-0002-3855-4637; Asthagiri, Dilipkumar/0000-0001-5869-0807; Kardar, Mehran/0000-0002-1112-5912 FU NSF CAREER [DMR 0448879]; AFOSR Young Investigator award [FA9550-07-1-0125]; DOE-BES [DE-FG02- 08ER46511]; SNL Truman Program LDRD [120209]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; European Commission [NMP3-CT-2005-013862] FX We thank Harriet Kung, Director of Science, Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy (DOE), and Frances Hellman, chairperson of the Council on Materials Science and Engineering of the Division of Materials Science and Engineering, in the OBES of the U.S. DOE and Arvind Kini of the U.S. DOE, OBES, Division of Materials Science and Engineering for sponsoring the workshop; Christie Ashton and Sophia Kitts for organizational assistance; and Barbara Brown French and Valerie Parsegian for assistance editing the manuscript. J.L. acknowledges support from an NSF CAREER award (Grant No. DMR 0448879, for studying SAFs), an AFOSR Young Investigator award (Grant No. FA9550-07-1-0125, for studying sintering and IGFs in W), and a DOE-BES grant (Grant No. DE-FG02- 08ER46511, for studying GB transitions in Si). O.A.v.L. acknowledges support from SNL Truman Program LDRD under Project No. 120209. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. R.P. acknowledges support from the European Commission under Contract No. NMP3-CT-2005-013862 (INCEMS). NR 493 TC 187 Z9 187 U1 22 U2 233 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUN 11 PY 2010 VL 82 IS 2 BP 1887 EP 1944 DI 10.1103/RevModPhys.82.1887 PG 58 WC Physics, Multidisciplinary SC Physics GA 609MD UT WOS:000278659800001 ER PT J AU Agladze, NI Klopf, JM Williams, GP Sievers, AJ AF Agladze, Nikolay I. Klopf, J. Michael Williams, Gwyn P. Sievers, Albert J. TI Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation SO APPLIED OPTICS LA English DT Article ID TRANSITION RADIATION; ELECTRON-BEAM; DIAGNOSTICS; BUNCH AB By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector. (C) 2010 Optical Society of America C1 [Agladze, Nikolay I.; Sievers, Albert J.] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. [Klopf, J. Michael; Williams, Gwyn P.] Jefferson Lab, Free Electron Laser Facil, Newport News, VA 23606 USA. RP Sievers, AJ (reprint author), Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. EM sievers@ccmr.cornell.edu RI Agladze, Nikolay/L-1629-2013 OI Agladze, Nikolay/0000-0001-5871-6552 FU United States Department of Energy (DOE) [DOE-DE-FG02-04ER46154, DE-AC05-060R23177]; National Science Foundation (NSF) [NSF-DMR-0906491]; Office of Naval Research, the Army Night Vision Laboratory, Advanced Energy Systems FX This research was supported by the United States Department of Energy (DOE), DOE-DE-FG02-04ER46154 and by the National Science Foundation (NSF), NSF-DMR-0906491. Use of facilities at the Cornell Center for Material Research, NSF-DMR-0520404, is also acknowledged. Activities at Jefferson Laboratory were supported by the Office of Naval Research, the Army Night Vision Laboratory, Advanced Energy Systems, and the U.S. DOE under contract DE-AC05-060R23177. NR 13 TC 1 Z9 1 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 10 PY 2010 VL 49 IS 17 BP 3239 EP 3244 DI 10.1364/AO.49.003239 PG 6 WC Optics SC Optics GA 609DP UT WOS:000278635600001 PM 20539339 ER PT J AU Bond, NA Ivezic, Z Sesar, B Juric, M Munn, JA Kowalski, A Loebman, S Roskar, R Beers, TC Dalcanton, J Rockosi, CM Yanny, B Newberg, HJ Prieto, CA Wilhelm, R Lee, YS Sivarani, T Majewski, SR Norris, JE Bailer-Jones, CAL Fiorentin, PR Schlegel, D Uomoto, A Lupton, RH Knapp, GR Gunn, JE Covey, KR Smith, JA Miknaitis, G Doi, M Tanaka, M Fukugita, M Kent, S Finkbeiner, D Quinn, TR Hawley, S Anderson, S Kiuchi, F Chen, A Bushong, J Sohi, H Haggard, D Kimball, A McGurk, R Barentine, J Brewington, H Harvanek, M Kleinman, S Krzesinski, J Long, D Nitta, A Snedden, S Lee, B Pier, JR Harris, H Brinkmann, J Schneider, DP AF Bond, Nicholas A. Ivezic, Zeljko Sesar, Branimir Juric, Mario Munn, Jeffrey A. Kowalski, Adam Loebman, Sarah Roskar, Rok Beers, Timothy C. Dalcanton, Julianne Rockosi, Constance M. Yanny, Brian Newberg, Heidi J. Prieto, Carlos Allende Wilhelm, Ron Lee, Young Sun Sivarani, Thirupathi Majewski, Steven R. Norris, John E. Bailer-Jones, Coryn A. L. Fiorentin, Paola Re Schlegel, David Uomoto, Alan Lupton, Robert H. Knapp, Gillian R. Gunn, James E. Covey, Kevin R. Smith, J. Allyn Miknaitis, Gajus Doi, Mamoru Tanaka, Masayuki Fukugita, Masataka Kent, Steve Finkbeiner, Douglas Quinn, Tom R. Hawley, Suzanne Anderson, Scott Kiuchi, Furea Chen, Alex Bushong, James Sohi, Harkirat Haggard, Daryl Kimball, Amy McGurk, Rosalie Barentine, John Brewington, Howard Harvanek, Mike Kleinman, Scott Krzesinski, Jurek Long, Dan Nitta, Atsuko Snedden, Stephanie Lee, Brian Pier, Jeffrey R. Harris, Hugh Brinkmann, Jonathan Schneider, Donald P. TI THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: disk; Galaxy: halo; Galaxy: kinematics and dynamics; Galaxy: stellar content; Galaxy: structure; methods: data analysis; stars: statistics ID DIGITAL SKY SURVEY; GENEVA-COPENHAGEN SURVEY; HORIZONTAL-BRANCH STARS; SURVEY DATA RELEASE; SOLAR NEIGHBORHOOD; SPECTROSCOPIC SURVEY; GALACTIC STRUCTURE; CIRCULAR VELOCITY; PROPER MOTIONS; HIPPARCOS DATA AB We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r < 20 and proper-motion measurements derived from Sloan Digital Sky Survey (SDSS) and POSS astrometry, including similar to 170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric-parallax relation, covering a distance range from similar to 100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b| > 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope. C1 [Bond, Nicholas A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ivezic, Zeljko; Sesar, Branimir; Kowalski, Adam; Loebman, Sarah; Roskar, Rok; Dalcanton, Julianne; Quinn, Tom R.; Hawley, Suzanne; Anderson, Scott; Kiuchi, Furea; Chen, Alex; Bushong, James; Sohi, Harkirat; Haggard, Daryl; Kimball, Amy; McGurk, Rosalie] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Juric, Mario] Inst Adv Study, Princeton, NJ 08540 USA. [Munn, Jeffrey A.; Pier, Jeffrey R.] USN Observ, Flagstaff Stn, Flagstaff, AZ 86002 USA. [Beers, Timothy C.; Lee, Young Sun; Sivarani, Thirupathi] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, Santa Cruz, CA 95060 USA. [Yanny, Brian; Miknaitis, Gajus; Kent, Steve] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Newberg, Heidi J.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Prieto, Carlos Allende] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Wilhelm, Ron] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Majewski, Steven R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Norris, John E.; Harris, Hugh] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Bailer-Jones, Coryn A. L.; Fiorentin, Paola Re] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Fiorentin, Paola Re] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Schlegel, David; Lee, Brian] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Uomoto, Alan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Lupton, Robert H.; Knapp, Gillian R.; Gunn, James E.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Covey, Kevin R.; Finkbeiner, Douglas] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Smith, J. Allyn] Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37044 USA. [Doi, Mamoru] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. [Tanaka, Masayuki] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Fukugita, Masataka] Univ Tokyo, Inst Cosm Ray Res, Chiba, Japan. [Barentine, John; Brewington, Howard; Harvanek, Mike; Kleinman, Scott; Krzesinski, Jurek; Long, Dan; Nitta, Atsuko; Snedden, Stephanie; Brinkmann, Jonathan] Apache Point Observ, Sunspot, NM 88349 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Bond, NA (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. OI McGurk, Rosalie/0000-0003-2064-4105; Re Fiorentin, Paola/0000-0002-4995-0475; Covey, Kevin/0000-0001-6914-7797 FU NSF [AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164]; NASA [NAG5-13057, NAG5-13147, NNXO-8AH83G]; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) [PHY 08-22648]; U.S. National Science Foundation; Marie Curie Research Training Network ELSA (European Leadership in Space Astrometry) [MRTN-CT-2006-033481]; Fermi Research Alliance, LLC, United States Department of Energy [DE-AC02-07CH11359]; Alfred P. Sloan Foundation; Participating Institutions; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank Vladimir Korchagin for making his code for calculating equilibrium velocity dispersion profile available to us.. Z. Ivezic and B. Sesar acknowledge support by NSF grants AST-615991 and AST-0707901, and by NSF grant AST-0551161 to LSST for design and development activity. J. Dalcanton acknowledges NSF CAREER grant AST-02-38683. D. Schneider acknowledges support by NSF grant AST-06-07634. Allende Prieto acknowledges support by NASA grants NAG5-13057 and NAG5-13147. T. C. Beers, Y.S. Lee, and T. Sivarani acknowledge partial support from PHY 08-22648: Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. P. Re Fiorentin acknowledges support through the Marie Curie Research Training Network ELSA (European Leadership in Space Astrometry) under contract MRTN-CT-2006-033481. M. J. acknowledges support by NASA grant NNXO-8AH83G and NSF grant AST-0807444. We acknowledge the hospitality of the KITP at the University of California, Santa Barbara, where part of this work was completed (supported by NSF grant PHY05-51164). Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 85 TC 94 Z9 95 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2010 VL 716 IS 1 BP 1 EP 29 DI 10.1088/0004-637X/716/1/1 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600CD UT WOS:000277960000001 ER PT J AU O'Shaughnessy, R Kalogera, V Belczynski, K AF O'Shaughnessy, R. Kalogera, V. Belczynski, Krzysztof TI BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gravitational waves; pulsars: general ID GAMMA-RAY BURSTS; MASS BLACK-HOLES; GRAVITATIONAL-WAVE DETECTION; POPULATION SYNTHESIS; STAR-FORMATION; NEUTRON-STARS; CONSTRAINING POPULATION; MERGING BINARIES; SYNTHESIS MODELS; HOST GALAXIES AB In this paper, we estimate binary compact object merger detection rates for LIGO, including the potentially significant contribution from binaries that are produced in elliptical galaxies near the epoch of peak star formation. Specifically, we convolve hundreds of model realizations of elliptical-and spiral-galaxy population syntheses with a model for elliptical-and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4 x 10(-3) Mpc(-3) Myr(-1) for binary black holes (BHs), 3 x 10(-2) Mpc(-3) Myr(-1) for binary neutron stars (NSs), and 10(-2) Mpc-3 Myr(-1) for BH-NS binaries. We find that mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are likely dominated by the contribution from spiral galaxies. Limiting attention to elliptical-galaxy plus only those spiral-galaxy models that reproduce current observations of Galactic NS-NS, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (in practice as part of a network, to reduce its noise), corresponding to radii D-bns of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M-circle dot NSs of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9 x 10(-2)-0.46 and 25-400 yr(-1) (at 90% confidence level), respectively. We also find that the probability P-detect of detecting one or more mergers with this single detector can be approximated by (1) P-detect similar or equal to 0.4 + 0.5 log(T/0.01 yr), assuming D-bns = 197 Mpc and it operates for T yr, for T between 2 days and 0.1 yr, or by (2) Pdetect similar or equal to 0.5 + 1.5 log(D-bns/32 Mpc), for 1 yr of operation and for D-bns between 20 and 70 Mpc. C1 [O'Shaughnessy, R.] Penn State Univ, Ctr Gravitat Wave Phys, University Pk, PA 16802 USA. [Kalogera, V.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Belczynski, Krzysztof] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM 87545 USA. [Belczynski, Krzysztof] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. RP O'Shaughnessy, R (reprint author), Penn State Univ, Ctr Gravitat Wave Phys, University Pk, PA 16802 USA. EM oshaughn@gravity.psu.edu; vicky@northwestern.edu; kbelczyn@nmsu.edu OI O'Shaughnessy, Richard/0000-0001-5832-8517 FU National Science Foundation [PHY 06-53462, PHY 01-14375, PHY-0653321]; Center for Gravitational Wave Physics; George A. and Margaret M. Downsbrough Endowment; Polish Ministry of Science and Higher Education (MSHE) [N203 302835] FX The authors appreciate helpful comments received from Ilya Mandel, Alberto Vecchio, Patrick Brady, Chad Hanna, Steve Fairhurst, Tania Regimbau, Alan Weinstein, and all the members of LIGO inspiral search group. R.O. was supported by the National Science Foundation awards PHY 06-53462 and the Center for Gravitational Wave Physics. The Center for Gravitational Wave Physics is supported by the George A. and Margaret M. Downsbrough Endowment and by the National Science Foundation under cooperative agreement PHY 01-14375. V. K. was supported by NSF grant PHY-0653321. K. B. acknowledges the support from the Polish Ministry of Science and Higher Education (MSHE) grant N N203 302835 (2008-2011). NR 83 TC 43 Z9 43 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2010 VL 716 IS 1 BP 615 EP 633 DI 10.1088/0004-637X/716/1/615 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600CD UT WOS:000277960000047 ER PT J AU Amanullah, R Lidman, C Rubin, D Aldering, G Astier, P Barbary, K Burns, MS Conley, A Dawson, KS Deustua, SE Doi, M Fabbro, S Faccioli, L Fakhouri, HK Folatelli, G Fruchter, AS Furusawa, H Garavini, G Goldhaber, G Goobar, A Groom, DE Hook, I Howell, DA Kashikawa, N Kim, AG Knop, RA Kowalski, M Linder, E Meyers, J Morokuma, T Nobili, S Nordin, J Nugent, PE Ostman, L Pain, R Panagia, N Perlmutter, S Raux, J Ruiz-Lapuente, P Spadafora, AL Strovink, M Suzuki, N Wang, L Wood-Vasey, WM Yasuda, N AF Amanullah, R. Lidman, C. Rubin, D. Aldering, G. Astier, P. Barbary, K. Burns, M. S. Conley, A. Dawson, K. S. Deustua, S. E. Doi, M. Fabbro, S. Faccioli, L. Fakhouri, H. K. Folatelli, G. Fruchter, A. S. Furusawa, H. Garavini, G. Goldhaber, G. Goobar, A. Groom, D. E. Hook, I. Howell, D. A. Kashikawa, N. Kim, A. G. Knop, R. A. Kowalski, M. Linder, E. Meyers, J. Morokuma, T. Nobili, S. Nordin, J. Nugent, P. E. Ostman, L. Pain, R. Panagia, N. Perlmutter, S. Raux, J. Ruiz-Lapuente, P. Spadafora, A. L. Strovink, M. Suzuki, N. Wang, L. Wood-Vasey, W. M. Yasuda, N. CA Supernova Cosmology Project TI SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: observations; supernovae: general ID HIGH-REDSHIFT SUPERNOVAE; DIGITAL SKY SURVEY; PHOTOMETRIC STANDARD STARS; DARK ENERGY; COSMOLOGICAL PARAMETERS; IMAGE SUBTRACTION; PRECISE DISTANCE; LEGACY SURVEY; DATA RELEASE; PRIME FOCUS AB We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise Hubble Space Telescope data, and spectra of six SNe Ia that were discovered during 2001, are presented. Additionally, for the two SNe with z > 1, we present ground-based J-band photometry from Gemini and the Very Large Telescope. These are among the most distant SNe Ia for which ground-based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation. We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 SNe, the Union2 compilation. The flat concordance Lambda CDM model remains an excellent fit to the Union2 data with the best-fit constant equation-of-state parameter w = -0.997(-0.054)(+0.050)(stat)(-0.082)(+0.077)(stat + sys together) for a flat universe, or w = -1.038(-0.059)(+0.056)(stat)(-0.097)+(0.093)(stat + sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depends strongly on redshift. In particular, at z greater than or similar to 1, the existence and nature of dark energy are only weakly constrained by the data. C1 [Amanullah, R.; Garavini, G.; Goobar, A.; Nobili, S.; Nordin, J.; Ostman, L.] Stockholm Univ, Dept Phys, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. [Amanullah, R.; Lidman, C.; Goobar, A.; Nobili, S.; Nordin, J.; Ostman, L.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Rubin, D.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Groom, D. E.; Kim, A. G.; Meyers, J.; Nugent, P. E.; Perlmutter, S.; Spadafora, A. L.; Strovink, M.; Suzuki, N.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rubin, D.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Meyers, J.; Perlmutter, S.; Strovink, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Astier, P.; Pain, R.; Raux, J.] Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, F-75005 Paris, France. [Burns, M. S.] Colorado Coll, Colorado Springs, CO 80903 USA. [Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Deustua, S. E.; Fruchter, A. S.; Panagia, N.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Doi, M.] Univ Tokyo, Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Fabbro, S.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Faccioli, L.; Linder, E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Folatelli, G.] Observ Carnegie Inst Washington, Pasadena, CA USA. [Furusawa, H.; Kashikawa, N.; Morokuma, T.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hook, I.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Hook, I.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Howell, D. A.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Knop, R. A.] Univ Bonn, Meta Inst Computat Astron, D-53115 Bonn, Germany. [Kowalski, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Panagia, N.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Ruiz-Lapuente, P.] Univ Barcelona, Dept Astron, Barcelona, Spain. [Wang, L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Yasuda, N.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Morokuma, T.] Japan Soc Promot Sci, Tokyo, Japan. RP Amanullah, R (reprint author), Stockholm Univ, Dept Phys, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. RI Folatelli, Gaston/A-4484-2011; Yasuda, Naoki/A-4355-2011; Kowalski, Marek/G-5546-2012; Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Meyers, Joshua/0000-0002-2308-4230 FU NASA [NAS 5-26555]; NASA through STScI [HST-GO-08585.14-A, HST-GO-09075.01-A]; Japan Society for the Promotion of Science (JSPS) [20040002]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oskar Klein Centre at Stockholm University FX Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs HST-GO-08585 and HST-GO-09075.; Support for programs HST-GO-08585.14-A and HST-GO-09075.01-A was provided by NASA through a grant from the STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.; This work is supported in part by a Japan Society for the Promotion of Science (JSPS) core-to-core program "International Research Network for Dark Energy" and by JSPS research grants (20040002).; This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; T. M. is financially supported by the JSPS through the JSPS Research Fellowship. C. L. acknowledges the support provided by the Oskar Klein Centre at Stockholm University. The authors thank the anonymous referee for helpful comments and suggestions. NR 122 TC 791 Z9 798 U1 5 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2010 VL 716 IS 1 BP 712 EP 738 DI 10.1088/0004-637X/716/1/712 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600CD UT WOS:000277960000053 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Chow, YC Ciupik, L Cogan, P Cui, W Dickherber, R Duke, C Finley, JP Finnegan, G Fortin, P Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McArthur, S McCann, A McCutcheon, M Millis, J Moriarty, P Ong, RA Otte, AN Pandel, D Perkins, JS Pichel, A Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Rovero, AC Schroedter, M Sembroski, GH Senturk, GD Smith, AW Steele, D Swordy, SP Theiling, M Thibadeau, S Varlotta, A Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B Harris, DE Massaro, F AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Cui, W. Dickherber, R. Duke, C. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McArthur, S. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Rovero, A. C. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Thibadeau, S. Varlotta, A. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. Harris, D. E. Massaro, F. TI VERITAS 2008-2009 MONITORING OF THE VARIABLE GAMMA-RAY SOURCE M 87 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M87, VER J1230+123); gamma rays: galaxies ID RADIO GALAXY M87; TEV EMISSION; BLACK-HOLE; JET; TELESCOPE; HST-1; M-87; VARIABILITY; ASTRONOMY; SITE AB M 87 is a nearby radio galaxy that is detected at energies ranging from radio to very high energy (VHE) gamma rays. Its proximity and its jet, misaligned from our line of sight, enable detailed morphological studies and extensive modeling at radio, optical, and X-ray energies. Flaring activity was observed at all energies, and multi-wavelength correlations would help clarify the origin of the VHE emission. In this paper, we describe a detailed temporal and spectral analysis of the VERITAS VHE gamma-ray observations of M 87 in 2008 and 2009. In the 2008 observing season, VERITAS detected an excess with a statistical significance of 7.2 standard deviations (sigma) from M 87 during a joint multi-wavelength monitoring campaign conducted by three major VHE experiments along with the Chandra X-ray Observatory. In 2008 February, VERITAS observed a VHE flare from M 87 occurring over a 4 day timespan. The peak nightly flux above 250 GeV was (1.14 +/- 0.26) x 10(-11) cm(-2) s(-1), which corresponded to 7.7% of the Crab Nebula flux. M 87 was marginally detected before this 4 day flare period, and was not detected afterward. Spectral analysis of the VERITAS observations showed no significant change in the photon index between the flare and pre-flare states. Shortly after the VHE flare seen by VERITAS, the Chandra X-ray Observatory detected the flux from the core of M 87 at a historical maximum, while the flux from the nearby knot HST-1 remained quiescent. Acciari et al. presented the 2008 contemporaneous VHE gamma-ray, Chandra X-ray, and Very Long Baseline Array radio observations which suggest the core as the most likely source of VHE emission, in contrast to the 2005 VHE flare that was simultaneous with an X-ray flare in the HST-1 knot. In 2009, VERITAS continued its monitoring of M 87 and marginally detected a 4.2 sigma excess corresponding to a flux of similar to 1% of the Crab Nebula. No VHE flaring activity was observed in 2009. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Fortin, P.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Arlen, T.; Chow, Y. C.; Ong, R. A.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Pichel, A.; Rovero, A. C.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Harris, D. E.; Massaro, F.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM cmhui@physics.utah.edu RI Massaro, Francesco/L-9102-2016; OI Massaro, Francesco/0000-0002-1704-9850; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU US Department of Energy; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the UK; NASA [GO8-9116X, GO90108X]; Foundation BLANCEFLOR Boncompagni-Ludovisi, nee Bildt FX VERITAS is supported by grants from the US Department of Energy, the US National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK.; The Chandra M 87 monitoring work at SAO was supported by NASA grants GO8-9116X and GO90108X.; F. Massaro acknowledges the Foundation BLANCEFLOR Boncompagni-Ludovisi, nee Bildt for the grant awarded him in 2009 to support his research. NR 37 TC 20 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2010 VL 716 IS 1 BP 819 EP 824 DI 10.1088/0004-637X/716/1/819 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 600CD UT WOS:000277960000062 ER PT J AU Cai, JM Zhang, YY Hu, H Bao, LH Pan, LD Tang, W Li, G Du, SX Shen, JA Gao, HJ AF Cai Jin-Ming Zhang Yu-Yang Hu Hao Bao Li-Hong Pan Li-Da Tang Wei Li Guo Du Shi-Xuan Shen Jian Gao Hong-Jun TI Electric dipolar interaction assisted growth of single crystalline organic thin films SO CHINESE PHYSICS B LA English DT Article DE electric dipolar interaction; organic thin films; diffusion limited aggregation model ID FLUORESCENT-PROBES AB We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the growth process and are able to reproduce the experimental patterns. The energy of electric dipole interaction is calculated and determined to be the driving force for the pattern formation and evolution. Based on these results, single crystalline films are obtained by enhancing the electric dipole interaction while limiting effects of other growth parameters. C1 [Cai Jin-Ming; Zhang Yu-Yang; Hu Hao; Bao Li-Hong; Pan Li-Da; Tang Wei; Li Guo; Du Shi-Xuan; Gao Hong-Jun] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Cai Jin-Ming; Shen Jian] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Gao, HJ (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM hjgao@aphy.iphy.ac.cn RI Li, Guo/H-1096-2015; Bao, Lihong/C-3011-2009; Zhang, Yu-Yang/F-2078-2011; IoP, Nano Lab/B-9663-2013; Du, Shixuan/K-7145-2012; Hu, Hao/D-1419-2013 OI Li, Guo/0000-0003-4884-3843; Zhang, Yu-Yang/0000-0002-9548-0021; Du, Shixuan/0000-0001-9323-1307; FU National Natural Science Foundation of China [10774176]; National Basic Research Program of China [2006CB806202] FX Project supported by the National Natural Science Foundation of China (Grant No. 10774176), and the National Basic Research Program of China (Grant No. 2006CB806202). NR 23 TC 2 Z9 2 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 J9 CHINESE PHYS B JI Chin. Phys. B PD JUN 10 PY 2010 VL 19 IS 6 AR 067101 DI 10.1088/1674-1056/19/6/067101 PG 5 WC Physics, Multidisciplinary SC Physics GA 608VG UT WOS:000278613500072 ER PT J AU Lu, TF Yoo, CS Chen, JH Law, CK AF Lu, T. F. Yoo, C. S. Chen, J. H. Law, C. K. TI Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis SO JOURNAL OF FLUID MECHANICS LA English DT Article ID COMPUTATIONAL SINGULAR PERTURBATION; LOW-DIMENSIONAL MANIFOLDS; GLOBAL REDUCED MECHANISMS; DIFFUSION FLAMES; CSP METHOD; STABILIZATION MECHANISM; REACTIVE SYSTEMS; SLOW MANIFOLDS; TRIPLE FLAMES; CO-FLOW AB A chemical explosive mode analysis (CEMA) was developed as a new diagnostic to identify flame and ignition structure in complex flows. CEMA was then used to analyse the near-field structure of the stabilization region of a turbulent lifted hydrogen air slot jet flame in a heated air coflow computed with three-dimensional direct numerical simulation. The simulation was performed with a detailed hydrogen air mechanism and mixture-averaged transport properties at a jet Reynolds number of 11 000 with over 900 million grid points. Explosive chemical modes and their characteristic time scales, as well as the species involved, were identified from the Jacobian matrix of the chemical source terms for species and temperature. An explosion index was defined for explosive modes, indicating the contribution of species and temperature in the explosion process. Radical and thermal runaway can consequently be distinguished. CEMA of the lifted flame shows the existence of two premixed flame fronts, which are difficult to detect with conventional methods. The upstream fork preceding the two flame fronts thereby identifies the stabilization point. A Damkohler number was defined based on the time scale of the chemical explosive mode and the local instantaneous scalar dissipation rate to highlight the role of auto-ignition in affecting the stabilization points in the lifted jet flame. C1 [Lu, T. F.; Law, C. K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Yoo, C. S.; Chen, J. H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Law, CK (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM cklaw@princeton.edu RI Yoo, Chun Sang/E-5900-2010; Law, Chung /E-1206-2013; Lu, Tianfeng/D-7455-2014 OI Yoo, Chun Sang/0000-0003-1094-4016; Lu, Tianfeng/0000-0001-7536-1976 FU Air Force Office of Scientific Research; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy; US Department of Energy [DE-AC04-94AL85000]; Office of Science of the US DOE [DE-AC05-00OR22725] FX The work at Princeton University was supported by the Air Force Office of Scientific Research under the technical monitoring of Dr Julian M. Tishkoff. The work at Sandia National Laboratories (SNL) was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy and the US Department of Energy SciDAC Program. SNL is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. The simulation used resources of the National Center for Computational Sciences (NCCS) at ORNL, which is supported by the Office of Science of the US DOE under contract DE-AC05-00OR22725. NR 51 TC 70 Z9 71 U1 3 U2 25 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUN 10 PY 2010 VL 652 BP 45 EP 64 DI 10.1017/S002211201000039X PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 613WY UT WOS:000279016200003 ER PT J AU Verguet, S Duan, CH Liau, A Berk, V Cate, JHD Majumdar, A Szeri, AJ AF Verguet, Stephane Duan, Chuanhua Liau, Albert Berk, Veysel Cate, Jamie H. D. Majumdar, Arun Szeri, Andrew J. TI Mechanics of liquid-liquid interfaces and mixing enhancement in microscale flows SO JOURNAL OF FLUID MECHANICS LA English DT Article ID MICROFLUIDIC SYSTEMS; CHAOTIC ADVECTION; MOTION; SURFACTANTS; ADSORPTION; KINETICS; BOVINE; DROP; TUBE; TEMPERATURE AB Experimental work on mixing in microfluidic devices has been of growing importance in recent years. Interest in probing reaction kinetics faster than the minute or hour time scale has intensified research in designing microchannel devices that would allow the reactants to be mixed on a time scale faster than that of the reaction. Particular attention has been paid to the design of microchannels in order to enhance the advection phenomena in these devices. Ultimately, in vitro studies of biological reactions can now be performed in conditions that reflect their native intracellular environments. Liau et al. (Anal. Chem., vol. 77, 2005, p. 7618) have demonstrated a droplet-based microfluidic mixer that induces improved chaotic mixing of crowded solutions in milliseconds due to protrusions (bumps') on the microchannel walls. Liau et al. (2005) have shown it to be possible to mix rapidly plugs of highly concentrated protein solutions such as bovine hemoglobin and bovine serum albumin. The present work concerns an analysis of the underlying mechanisms of shear stress transfer at liquid liquid interfaces and associated enhanced mixing arising from the protrusions along the channel walls. The role of non-Newtonian rheology and surfactants is also considered within the mixing framework developed by Aref, Ottino and Wiggins in several publications. Specifically, we show that proportional thinning of the carrier fluid lubrication layer at the bumps leads to greater advection velocities within the plugs, which enhances mixing. When the fluid within the plugs is Newtonian, mixing will be enhanced by the bumps if they are sufficiently close to one another. Changing either the rheology of the fluid within the plugs (from Newtonian to non-Newtonian) or modifying the mechanics of the carrier fluid-plug interface (by populating it with insoluble surfactants) alters the mixing enhancement. C1 [Verguet, Stephane; Duan, Chuanhua; Majumdar, Arun; Szeri, Andrew J.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Liau, Albert] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA. [Berk, Veysel] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Szeri, AJ (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM andrew.szeri@berkeley.edu OI Duan, Chuanhua/0000-0002-5453-5321; Szeri, Andrew/0000-0003-0407-2645 FU US National Science Foundation; National Institutes of Health, General Medical Sciences FX We are indebted to Dr Rohit Karnik (Massachusetts Institute of Technology) for preliminary helpful discussions. The devices were fabricated at the Microfabrication Laboratory at the University of California, Berkeley. This work of S. V. and A. J. S. was supported, in part, by a grant from the US National Science Foundation Programs in Applied Mathematics, Topology and Analytical and Surface Chemistry. The work of A. L., V. B. and J. H. D. C. was supported by a grant from the National Institutes of Health, General Medical Sciences. NR 42 TC 2 Z9 2 U1 2 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUN 10 PY 2010 VL 652 BP 207 EP 240 DI 10.1017/S0022112009994113 PG 34 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 613WY UT WOS:000279016200010 ER PT J AU Camassa, R Rusas, PO Saxena, A Tiron, R AF Camassa, R. Rusas, P. -O. Saxena, A. Tiron, R. TI Fully nonlinear periodic internal waves in a two-fluid system of finite depth SO JOURNAL OF FLUID MECHANICS LA English DT Article ID INTERFACIAL GRAVITY-WAVES; LARGE-AMPLITUDE; SOLITARY WAVES; INTEGRAL PROPERTIES; WATER-WAVES; DERIVATION; MOMENTUM; FLUID; FLOWS AB Periodic travelling wave solutions for a strongly nonlinear model of long internal wave propagation in a two-fluid system are derived and extensively analysed, with the aim of providing structure to the rich parametric space of existence of such waves for the parent Euler system. The waves propagate at the interface between two homogeneous-density incompressible fluids filling the two-dimensional domain between rigid planar boundaries. The class of waves with a prescribed mean elevation, chosen to coincide with the origin of the vertical (parallel to gravity) axis, and prescribed zero period-average momentum and volume-flux is studied in detail. The constraints are selected because of their physical interpretation in terms of possible processes of wave generation in wave-tanks, and give rise to a quadrature formula which is analysed in parameter space with a combination of numerical and analytical tools. The resulting model solutions are validated against those computed numerically from the parent Euler two-layer system with a boundary element method. The parametric domain of existence of model periodic waves is determined in closed form by curves in the amplitude speed (A, c) parameter plane corresponding to infinite period limiting cases of fronts (conjugate states) and solitary waves. It is found that the existence domain of Euler solutions is a subset of that of the model. A third closed form relation between c and A indicates where the Euler solutions cease to exist within the model's domain, and this is related to appearance of 'overhanging' (multiple valued) wave profiles. The model existence domain is further partitioned in regions where the model is expected to provide accurate approximations to Euler solutions based on analytical estimates from the quadrature. The resulting predictions are found to be in good agreement with the numerical Euler solutions, as exhibited by several wave properties, including kinetic and potential energy, over a broad range of parameter values, extending to the limiting cases of critical depth ratio and extreme density ratios. In particular, when the period is sufficiently long, model solutions show that for a given supercritical speed waves of substantially larger amplitude than the limiting amplitude of solitary waves can exist, and are good approximations of the corresponding Euler solutions. This finding can be relevant for modelling field observations of oceanic internal waves, which often occur in wavetrains with multiple peaks. C1 [Camassa, R.; Tiron, R.] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA. [Rusas, P. -O.] Ostfold Univ Coll, Fac Comp Sci, N-1757 Halden, Norway. [Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Camassa, R (reprint author), Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA. EM camassa@amath.unc.edu FU NSF [DMS-0509423, CMG-0620687]; US Department of Energy FX R. C. and R. T. gratefully acknowledge support from NSF through DMS-0509423 and CMG-0620687. R. T. would also like to acknowledge a summer internship at the Center for Nonlinear Studies of Los Alamos National Laboratory, supported by the US Department of Energy, where this work was initiated. The authors would like to thank Cory Hauck and Jie Yu for helpful discussions, and gratefully acknowledge Wooyoung Choi's comments and feedback to an earlier version of the manuscript. Last but not least, we thank one of the referees for bringing several relevant references to our attention. NR 44 TC 5 Z9 6 U1 5 U2 12 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD JUN 10 PY 2010 VL 652 BP 259 EP 298 DI 10.1017/S0022112010000054 PG 40 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 613WY UT WOS:000279016200012 ER PT J AU Griesel, A Gille, ST Sprintall, J McClean, JL LaCasce, JH Maltrud, ME AF Griesel, A. Gille, S. T. Sprintall, J. McClean, J. L. LaCasce, J. H. Maltrud, M. E. TI Isopycnal diffusivities in the Antarctic Circumpolar Current inferred from Lagrangian floats in an eddying model SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID OCEAN CIRCULATION MODELS; SOUTHERN-OCEAN; NORTH-ATLANTIC; GENERAL-CIRCULATION; SURFACE CIRCULATION; MATERIAL TRANSPORT; STATISTICAL-ANALYSIS; CALIFORNIA CURRENT; STOCHASTIC-MODELS; PACIFIC-OCEAN AB Lagrangian subsurface isopycnal eddy diffusivities are calculated from numerical floats released in several regions of the Antarctic Circumpolar Current (ACC) of the 0.1 degrees Parallel Ocean Program. Lagrangian diffusivities are horizontally highly variable with no consistent latitudinal dependence. Elevated values are found in some areas in the core of the ACC, near topographic features, and close to the Brazil-Malvinas Confluence Zone and Agulhas Retroflection. Cross-stream eddy diffusivities are depth invariant in the model ACC. An increase of Lagrangian eddy length scales with depth is masked by the strong decrease with depth of eddy velocities. The cross-stream diffusivities average 750 +/- 250 m(2) s(-1) around the Polar Frontal Zone. The results imply that parameterizations that (only) use eddy kinetic energy to parameterize the diffusivities are incomplete. We suggest that dominant correlations of Lagrangian eddy diffusivities with eddy kinetic energy found in previous studies may have been due to the use of too short time lags in the integration of the velocity autocovariance used to infer the diffusivities. We find evidence that strong mean flow inhibits cross-stream mixing within the ACC, but there are also areas where cross-stream diffusivities are large in spite of strong mean flows, for example, in regions close to topographic obstacles such as the Kerguelen Plateau. C1 [Griesel, A.; Gille, S. T.; Sprintall, J.; McClean, J. L.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [LaCasce, J. H.] Univ Oslo, Meteorol & Oceanog Sect, Dept Geosci, N-0315 Oslo, Norway. [Maltrud, M. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Griesel, A (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 8622 Discovery Way, La Jolla, CA 92093 USA. EM agriesel@ucsd.edu RI Gille, Sarah/B-3171-2012; OI LaCasce, Joseph Henry/0000-0001-7655-5596; Gille, Sarah/0000-0001-9144-4368 FU National Science Foundation [OCE-0549225, OCE-9985203/OCE-0049066, OPP-0337998]; National Aeronautics and Space Administration [EOS/03-0602-0117]; Office of Science (BER), U.S. Department of Energy [DE-FG02-05ER64119] FX This research was supported by the National Science Foundation grants OCE-0549225, OCE-9985203/OCE-0049066, and OPP-0337998 by the National Aeronautics and Space Administration contract EOS/03-0602-0117 and the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-05ER64119. The global simulation was carried out as part of a Department of Defense High Performance Computing Modernization Program (HPCMP) grand challenge grant at the Maui High Performance Computing Center (MHPCC). A. G. thanks Stefan Riha for useful discussions and comments. NR 63 TC 19 Z9 19 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUN 10 PY 2010 VL 115 AR C06006 DI 10.1029/2009JC005821 PG 18 WC Oceanography SC Oceanography GA 610LY UT WOS:000278735500002 ER PT J AU Zwolak, M Quan, HT Zurek, WH AF Zwolak, Michael Quan, H. T. Zurek, Wojciech H. TI Redundant imprinting of information in nonideal environments: Objective reality via a noisy channel SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM DARWINISM; DECOHERENCE; EINSELECTION AB Quantum Darwinism provides an information-theoretic framework for the emergence of the objective, classical world from the quantum substrate. The key to this emergence is the proliferation of redundant information throughout the environment where observers can then intercept it. We study this process for a purely decohering interaction when the environment, E, is in a nonideal (e.g., mixed) initial state. In the case of good decoherence, that is, after the pointer states have been unambiguously selected, the mutual information between the system, S, and an environment fragment, F, is given solely by F's entropy increase. This demonstrates that the environment's capacity for recording the state of S is directly related to its ability to increase its entropy. Environments that remain nearly invariant under the interaction with S, either because they have a large initial entropy or a misaligned initial state, therefore have a diminished ability to acquire information. To elucidate the concept of good decoherence, we show that, when decoherence is not complete, the deviation of the mutual information from F's entropy change is quantified by the quantum discord, i.e., the excess mutual information between S and F is information regarding the initial coherence between pointer states of S. In addition to illustrating these results with a single-qubit system interacting with a multiqubit environment, we find scaling relations for the redundancy of information acquired by the environment that display a universal behavior independent of the initial state of S. Our results demonstrate that Quantum Darwinism is robust with respect to nonideal initial states of the environment: the environment almost always acquires redundant information about the system but its rate of acquisition can be reduced. C1 [Zwolak, Michael; Quan, H. T.; Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Quan, Haitao/G-8521-2012; Zwolak, Michael/G-2932-2013 OI Quan, Haitao/0000-0002-4130-2924; Zwolak, Michael/0000-0001-6443-7816 FU US Department of Energy FX We thank Graeme Smith, Jon Yard, and Michael Zubelewicz. This research is supported by the US Department of Energy through the LANL/LDRD Program. NR 32 TC 23 Z9 23 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 10 PY 2010 VL 81 IS 6 AR 062110 DI 10.1103/PhysRevA.81.062110 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 608SF UT WOS:000278605600004 ER PT J AU Bevan, KH Guo, H Williams, ED Zhang, ZY AF Bevan, Kirk H. Guo, Hong Williams, Ellen D. Zhang, Zhenyu TI First-principles quantum transport theory of the enhanced wind force driving electromigration on Ag(111) SO PHYSICAL REVIEW B LA English DT Article ID RESIDUAL RESISTIVITY DIPOLES; SURFACE RESISTIVITY; SCATTERING; NOBLE AB Herein we examine the low-bias electromigration wind force acting on quasi-one-dimensional nanoscale features within the Landauer-Buttiker conduction picture. Ordinarily the electromigration force is calculated under the approximation that the nonequilibrium carrier distribution in the vicinity of a defect is the same as that in the bulk. However, this approximation is rooted in the assumption that atomic scale defects scatter all incident electrons weakly (just as electrons weakly and diffusely scatter in the bulk). We examine this assumption by calculating the mode-resolved transmission against Ag(111) step edges and atomic wires using density-functional theory within the single-particle Green's function Landauer scattering picture. Furthermore we show that those modes that scatter strongly give rise to a nonequilibrium electrochemical potential drop across a defect and an increased wind force. The results quantitatively explain previously not understood experimental observations of an enhanced electron wind force against Ag(111) step edges [O. Bondarchuk et al., Phys. Rev. Lett. 99, 206801 (2007)]. In general, the results underscore the challenging nanoscale reliability problem posed by surface electromigration in nanostructures and the need for a nonequilibrium quantum transport description of the electron wind force. C1 [Bevan, Kirk H.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bevan, Kirk H.; Guo, Hong] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. [Bevan, Kirk H.; Guo, Hong] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Williams, Ellen D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei, Anhui, Peoples R China. RP Bevan, KH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM bevankh@ornl.gov RI Guo, Hong/A-8084-2010 FU National Science Foundation Network for Computational Nanotechnology (Purdue); NSERC of Canada; DOE [DE-FG02-05ER46209]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE; NSF [DMR-0906025, DMR 05-20471]; FRQNT of Quebec; CIFAR FX We thank S. Datta for helpful discussions on electron transport and D. Xiao for discussions on joule heating. We gratefully acknowledge computational support and resources provided by the National Science Foundation Network for Computational Nanotechnology (Purdue). K. H. Bevan gratefully acknowledges support from NSERC of Canada (McGill). K. H. Bevan and Z. Zhang gratefully acknowledge support from the DOE under Grant No. DE-FG02-05ER46209 and in part by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE (ORNL). Z. Zhang gratefully acknowledges support from NSF under Grant No. DMR-0906025 (UTK). E. D. Williams gratefully acknowledges support from the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471. H. Guo gratefully acknowledges financial support from NSERC of Canada, FRQNT of Quebec, and CIFAR (McGill). NR 47 TC 13 Z9 13 U1 4 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 10 PY 2010 VL 81 IS 23 AR 235416 DI 10.1103/PhysRevB.81.235416 PG 9 WC Physics, Condensed Matter SC Physics GA 608SJ UT WOS:000278606000010 ER PT J AU Chang, YJ Bostwick, A Kim, YS Horn, K Rotenberg, E AF Chang, Young Jun Bostwick, Aaron Kim, Yong Su Horn, Karsten Rotenberg, Eli TI Structure and correlation effects in semiconducting SrTiO3 SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; DOPED SRTIO3; PHASE-TRANSITION; TEMPERATURE; OXIDES; STATE; INTERFACE; SURFACE; BANDS AB We have investigated the effects of structure change and electron correlation on SrTiO3 single crystals using angle-resolved photoemission spectroscopy. We show that the cubic to tetragonal phase transition at 105 K is manifested by a charge transfer from in-plane (d(yz) and d(zx)) bands to out-of-plane (d(xy)) band, which is opposite to the theoretical predictions. Along this second-order phase transition, we find a smooth evolution of the quasiparticle strength and effective masses. The in-plane band exhibits a peak-dip-hump lineshape, indicating a high degree of correlation on a relatively large (170 meV) energy scale, which is attributed to the polaron formation. C1 [Chang, Young Jun; Bostwick, Aaron; Kim, Yong Su; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chang, Young Jun; Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. [Kim, Yong Su] Hanyang Univ, Dept Appl Phys, Ansan 426791, Gyeonggi Do, South Korea. RP Chang, YJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010; Chang, Young Jun/N-3440-2014 OI Rotenberg, Eli/0000-0002-3979-8844; Chang, Young Jun/0000-0001-5538-0643 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Max Planck Society FX The Advanced Light Source is supported by the director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.J.C. and K. H. acknowledge the support by the Max Planck Society. NR 35 TC 44 Z9 44 U1 4 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 10 PY 2010 VL 81 IS 23 AR 235109 DI 10.1103/PhysRevB.81.235109 PG 4 WC Physics, Condensed Matter SC Physics GA 608SJ UT WOS:000278606000003 ER PT J AU Perez, D Dong, YL Martini, A Voter, AF AF Perez, Danny Dong, Yalin Martini, Ashlie Voter, Arthur F. TI Rate theory description of atomic stick-slip friction SO PHYSICAL REVIEW B LA English DT Article ID SCALE; SIMULATIONS; DEPENDENCE AB We assess the validity of assumptions that underpin common low-dimensional rate theory descriptions of nanoscale stick-slip friction by completely specifying harmonic transition state theory kinetic parameters from an atomistic model. The resultant kinetic model is able to reliably reproduce the temperature and velocity dependence of friction as obtained by direct fully atomistic accelerated molecular-dynamics simulations. Analysis of the parameters extracted from the model indicates that, while energetics of the transition pathways can be adequately captured by low-dimensional effective Hamiltonians, rate theory prefactors contain inherently high-dimensional entropic contributions that cannot be accounted for. Despite these limitations, we show that simplified models can still be sufficiently robust to capture the prominent features of stick-slip friction. C1 [Perez, Danny; Voter, Arthur F.] Los Alamos Natl Lab, Theoret Div T1, Los Alamos, NM 87545 USA. [Dong, Yalin; Martini, Ashlie] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Perez, D (reprint author), Los Alamos Natl Lab, Theoret Div T1, POB 1663, Los Alamos, NM 87545 USA. RI Dong, Yalin/C-9525-2011; Martini, Ashlie/F-9320-2012; OI Martini, Ashlie/0000-0003-2017-6081; Voter, Arthur/0000-0001-9788-7194 FU United States Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC52-06NA25396]; Canada's NSERC; National Science Foundation [CMMI-0758604] FX Work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division. D.P. graciously acknowledges support from Canada's NSERC. A.M. and Y.D. are grateful to R.W. Carpick and Q. Li for helpful discussions and to the National Science Foundation for its support via Award No. CMMI-0758604. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396. NR 21 TC 18 Z9 18 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 10 PY 2010 VL 81 IS 24 AR 245415 DI 10.1103/PhysRevB.81.245415 PG 6 WC Physics, Condensed Matter SC Physics GA 608SK UT WOS:000278606100005 ER PT J AU Zdeborova, L Krzakala, F AF Zdeborova, Lenka Krzakala, Florent TI Generalization of the cavity method for adiabatic evolution of Gibbs states SO PHYSICAL REVIEW B LA English DT Article ID CONSTRAINT SATISFACTION PROBLEMS; FIELD SPIN-GLASSES; ERROR-CORRECTING CODES; RANDOM-ENERGY-MODEL; MEAN-FIELD; BETHE LATTICE; SATISFIABILITY PROBLEMS; METASTABLE STATES; TEMPERATURE CHAOS; ISING-MODEL AB Mean-field glassy systems have a complicated energy landscape and an enormous number of different Gibbs states. In this paper, we introduce a generalization of the cavity method in order to describe the adiabatic evolution of these glassy Gibbs states as an external parameter, such as the temperature, is tuned. We give a general derivation of the method and describe in details the solution of the resulting equations for the fully connected p-spin model, the XOR-satisfiability (SAT) problem and the antiferromagnetic Potts glass (coloring problem). As direct results of the states following method we present a study of very slow Monte Carlo annealings, the demonstration of the presence of temperature chaos in these systems and the identification of an easy/hard transition for simulated annealing in constraint optimization problems. We also discuss the relation between our approach and the Franz-Parisi potential, as well as with the reconstruction problem on trees in computer science. A mapping between the states following method and the physics on the Nishimori line is also presented. C1 [Zdeborova, Lenka; Krzakala, Florent] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zdeborova, Lenka; Krzakala, Florent] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krzakala, Florent] ESPCI Paris Tech, CNRS, UMR Gulliver 7083, F-75005 Paris, France. RP Zdeborova, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Krzakala, Florent/D-8846-2012; Zdeborova, Lenka/B-9999-2014 NR 107 TC 22 Z9 22 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 10 PY 2010 VL 81 IS 22 AR 224205 DI 10.1103/PhysRevB.81.224205 PG 28 WC Physics, Condensed Matter SC Physics GA 608SH UT WOS:000278605800003 ER PT J AU Kneur, JL Pinto, MB Ramos, RO AF Kneur, Jean-Loic Pinto, Marcus Benghi Ramos, Rudnei O. TI Thermodynamics and phase structure of the two-flavor Nambu-Jona-Lasinio model beyond large N-c SO PHYSICAL REVIEW C LA English DT Article ID GROSS-NEVEU MODEL; CHIRAL PERTURBATION-THEORY; ENERGY PI-PI; SYMMETRY-BREAKING; CRITICAL EXPONENTS; ANHARMONIC-OSCILLATOR; OPTIMIZED EXPANSION; QUARK CONDENSATE; DELTA-EXPANSION; FIELD-THEORY AB The optimized perturbation theory (OPT) method is applied to the SU(2) version of the Nambu-Jona-Lasinio (NJL) model both at zero and at finite temperature and/or density. At the first nontrivial order, the OPT exhibits a class of 1/N-c corrections which produce nonperturbative results that go beyond the standard large-N-c or mean-field approximation. The consistency of the OPT method with the Goldstone theorem at this order is established, and appropriate OPT values of the basic NJL (vacuum) parameters are obtained by matching the pion mass and decay constant consistently. Deviations from standard large-N-c relations induced by OPT at this order are derived, for example, for the Gell-Mann-Oakes-Renner relation. Next, the results for the critical quantities and the phase diagram of the model, as well as a number of other thermodynamical quantities of interest, are obtained with OPT and then contrasted with the corresponding results at large N-c. C1 [Kneur, Jean-Loic] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, UMR 5207, Montpellier, France. [Pinto, Marcus Benghi] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Pinto, Marcus Benghi] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil. [Ramos, Rudnei O.] Univ Estado Rio de Janeiro, Dept Fis Teor, BR-20550013 Rio De Janeiro, Brazil. [Ramos, Rudnei O.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Kneur, JL (reprint author), Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, UMR 5207, Montpellier, France. EM kneur@lpta.univ-montp2.fr; marcus@fsc.ufsc.br; rudnei@uerj.br RI Pinto, Marcus /D-9598-2013; Ramos, Rudnei/C-4492-2008 OI Ramos, Rudnei/0000-0001-8781-4928 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenadoria de Aperfeicoamente de Pessoal de Ensino Superior (CAPES); SUPA FX We thank M. Buballa and S. Descotes-Genon for useful discussions. This work is partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Coordenadoria de Aperfeicoamente de Pessoal de Ensino Superior (CAPES). M. B. P. thanks the Nuclear Theory Group at LBNL, UFSC, and CAPES for the sabbatical leave. R.O.R. is partially supported by CNPq and by SUPA, during the realization of this work in the United Kingdom. NR 88 TC 27 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 10 PY 2010 VL 81 IS 6 AR 065205 DI 10.1103/PhysRevC.81.065205 PG 19 WC Physics, Nuclear SC Physics GA 608SN UT WOS:000278606400001 ER PT J AU Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Sekula, SJ Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Piredda, G Renga, F Ebert, M Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Ebert, M. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Limits on tau lepton-flavor violating decays into three charged leptons SO PHYSICAL REVIEW D LA English DT Article ID MONTE-CARLO; DETECTOR; SEARCH AB A search for the neutrinoless, lepton-flavor violating decay of the tau lepton into three charged leptons has been performed using an integrated luminosity of 468 fb(-1) collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8-3.3) x 10(-8) at 90% confidence level. C1 [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-6146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Alwyn, K. E.; Anderson, J.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Denis Diderot Paris7, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; de Sangro, Riccardo/J-2901-2012; Oyanguren, Arantza/K-6454-2014; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Frey, Raymond/E-2830-2016; Kravchenko, Evgeniy/F-5457-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015 OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; de Sangro, Riccardo/0000-0002-3808-5455; Oyanguren, Arantza/0000-0002-8240-7300; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A.P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A.P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 26 TC 37 Z9 37 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 10 PY 2010 VL 81 IS 11 AR 111101 DI 10.1103/PhysRevD.81.111101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 608SP UT WOS:000278606600001 ER PT J AU Shumay, E Fowler, JS Volkow, ND AF Shumay, Elena Fowler, Joanna S. Volkow, Nora D. TI Genomic Features of the Human Dopamine Transporter Gene and Its Potential Epigenetic States: Implications for Phenotypic Diversity SO PLOS ONE LA English DT Article ID MESSENGER-RNA EXPRESSION; DEFICIT HYPERACTIVITY DISORDER; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; TANDEM REPEATS; SEGMENTAL DUPLICATIONS; SYNAPTIC PLASTICITY; ALCOHOL DEPENDENCE; DNA METHYLATION; PROMOTER ARCHITECTURE; TRANSCRIPTION FACTORS AB Human dopamine transporter gene (DAT1 or SLC6A3) has been associated with various brain-related diseases and behavioral traits and, as such, has been investigated intensely in experimental- and clinical-settings. However, the abundance of research data has not clarified the biological mechanism of DAT regulation; similarly, studies of DAT genotype-phenotype associations yielded inconsistent results. Hence, our understanding of the control of the DAT protein product is incomplete; having this knowledge is critical, since DAT plays the major role in the brain's dopaminergic circuitry. Accordingly, we reevaluated the genomic attributes of the SLC6A3 gene that might confer sensitivity to regulation, hypothesizing that its unique genomic characteristics might facilitate highly dynamic, region-specific DAT expression, so enabling multiple regulatory modes. Our comprehensive bioinformatic analyzes revealed very distinctive genomic characteristics of the SLC6A3, including high inter-individual variability of its sequence (897 SNPs, about 90 repeats and several CNVs spell out all abbreviations in abstract) and pronounced sensitivity to regulation by epigenetic mechanisms, as evident from the GC-bias composition (0.55) of the SLC6A3, and numerous intragenic CpG islands (27 CGIs). We propose that this unique combination of the genomic features and the regulatory attributes enables the differential expression of the DAT1 gene and fulfills seemingly contradictory demands to its regulation; that is, robustness of region-specific expression and functional dynamics. C1 [Shumay, Elena; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, NIH, Bethesda, MD USA. RP Shumay, E (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM eshumay@bnl.gov; fowler@bnl.gov; nvolkow@nida.nih.gov FU Department of Energy, Office of Biological and Environmental Research; National Institute on Drug Abuse [KO1 DA025280-01A1, K05 DA20001]; NIH FX This work was performed at Brookhaven National Laboratory with infrastructure support from the Department of Energy, Office of Biological and Environmental Research and funded by the National Institute on Drug Abuse, grants KO1 DA025280-01A1 (ES), K05 DA20001 (JSF) and NIH Intramural Research Program, NIDA (NDV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 148 TC 21 Z9 21 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 10 PY 2010 VL 5 IS 6 AR e11067 DI 10.1371/journal.pone.0011067 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 608QA UT WOS:000278599600023 PM 20548783 ER PT J AU Shao, Q Chundawat, SPS Krishnan, C Bals, B Sousa, LD Thelen, KD Dale, BE Balan, V AF Shao, Qianjun Chundawat, Shishir P. S. Krishnan, Chandraraj Bals, Bryan Sousa, Leonardo da Costa Thelen, Kurt D. Dale, Bruce E. Balan, Venkatesh TI Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID PRETREATMENT TECHNOLOGIES; HYDROLYSIS; AMMONIA; BIOMASS; STOVER; BIOREFINERIES; FERMENTATION; CONVERSION AB Background: Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results: AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol at 93% metabolic yield) and WCP (resulting in 30 g/L ethanol at 89% metabolic yield) is reported in this work. Conclusions: The current results indicate the feasibility of co-utilization of whole plants (that is, starchy grains plus cellulosic residues) using an ammonia-based (AFEX) pretreatment to increase bioethanol yield and reduce overall production cost. C1 [Shao, Qianjun; Chundawat, Shishir P. S.; Bals, Bryan; Sousa, Leonardo da Costa; Dale, Bruce E.; Balan, Venkatesh] Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Shao, Qianjun] Zhejiang Forestry Univ, Sch Engn, Linan 311300, Zhejiang, Peoples R China. [Thelen, Kurt D.] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. [Chundawat, Shishir P. S.; Krishnan, Chandraraj; Thelen, Kurt D.; Dale, Bruce E.; Balan, Venkatesh] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Krishnan, Chandraraj] Indian Inst Technol, Dept Biotechnol, Madras 600036, Tamil Nadu, India. RP Balan, V (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, 3900 Collins Rd,Univ Corp Res Complex, Lansing, MI 48910 USA. EM balan@msu.edu RI da Costa Sousa, Leonardo/A-1536-2016; OI Shao, Qianjun/0000-0002-7101-6654 FU DOE Great Lakes Bioenergy Research Center; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02- 07ER64494]; Michigan State Research Foundation FX This work was funded by DOE Great Lakes Bioenergy Research Center http://www.greatlakesbioenergy.org supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement (DEFC02- 07ER64494) between The Board of Regents of the University of Wisconsin System and the US Department of Energy. We appreciate the financial support, in initial stages of the project; from Michigan State Research Foundation (SPG grant). We thank Genencor International (a division of Danisco) for their generous gift of commercial cellulases and amylases. Special thanks to Christa Gunawan (HPLC and compositional analysis) and other BCRL members for critical inputs to the project. We also thank Mr Bill Widdicombe at MSU-Agronomy center for his help in preparing the corn silage samples. We also thank Prof. Nancy Ho, Purdue University for generously providing us S. cerevisiae 424A (LNH-ST) strain. NR 30 TC 19 Z9 20 U1 2 U2 21 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JUN 9 PY 2010 VL 3 AR 12 DI 10.1186/1754-6834-3-12 PG 10 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 622YC UT WOS:000279701900001 PM 20534126 ER PT J AU Granovsky, SA Kreyssig, A Doerr, M Ritter, C Dudzik, E Feyerherm, R Canfield, PC Loewenhaupt, M AF Granovsky, S. A. Kreyssig, A. Doerr, M. Ritter, C. Dudzik, E. Feyerherm, R. Canfield, P. C. Loewenhaupt, M. TI The magnetic order of GdMn2Ge2 studied by neutron diffraction and x-ray resonant magnetic scattering SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PHASE-DIAGRAM; RARE-EARTH; INTERMETALLIC COMPOUNDS; SYSTEM; ATOMS AB The magnetic structure of GdMn2Ge2 (tetragonal I 4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T-C = 96 K and the collinear antiferromagnetic phase in the temperature region T-C < T < T-N = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L-2 absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments. C1 [Granovsky, S. A.] M V Lomonosov Moscow State Univ, 119991 Moscow, Russia. [Granovsky, S. A.; Doerr, M.; Loewenhaupt, M.] Tech Univ Dresden, Inst Festkorperphys, D-01062 Dresden, Germany. [Kreyssig, A.; Canfield, P. C.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Ritter, C.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Dudzik, E.; Feyerherm, R.] BESSY, Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany. RP Granovsky, SA (reprint author), M V Lomonosov Moscow State Univ, GSP-1, 119991 Moscow, Russia. EM ser@plms.ru RI Feyerherm, Ralf/F-5487-2013; Canfield, Paul/H-2698-2014 OI Feyerherm, Ralf/0000-0003-3034-4210; FU RFBR [09-02-01475-a]; European Union [ECW-L04 TUD 08-59]; US DOE, Office of Science [DE-AC02-07CH11358] FX This work was supported by RFBR (09-02-01475-a) and the Erasmus-Mundus Program of the European Union (ECW-L04 TUD 08-59). The work by PCC and AK at the Ames Laboratory was supported by US DOE, Office of Science, under contract DE-AC02-07CH11358. NR 23 TC 1 Z9 1 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 9 PY 2010 VL 22 IS 22 AR 226005 DI 10.1088/0953-8984/22/22/226005 PG 6 WC Physics, Condensed Matter SC Physics GA 595CJ UT WOS:000277588000009 PM 21393756 ER PT J AU Ismail, AE Greathouse, JA Crozier, PS Foiles, SM AF Ismail, Ahmed E. Greathouse, Jeffery A. Crozier, Paul S. Foiles, Stephen M. TI Electron-ion coupling effects on simulations of radiation damage in pyrochlore waste forms SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MOLECULAR-DYNAMICS; INDUCED AMORPHIZATION; OXIDES; TOLERANCE; FLUORITE; IMMOBILIZATION; ACTINIDES; PLUTONIUM; CASCADES AB We have performed molecular dynamics simulations of cascade damage in the gadolinium pyrochlore Gd(2)Zr(2)O(7), comparing results obtained from traditional simulation methodologies that ignore the effect of electron-ion interactions with a 'two-temperature model' in which the electronic subsystem is modeled using a diffusion equation to determine the electronic temperature. We find that the electron-ion interaction friction coefficient gamma(p) is a significant parameter in determining the behavior of the system following the formation of the primary knock-on atom (PKA; here, a U(3+) ion). The mean final PKA displacement and the number of defect atoms formed is shown to decrease uniformly with increasing gamma(p); however, other properties, such as the final equilibrium temperature and the oxygen-oxygen radial distribution function, show a more complicated dependence on gamma(p). C1 [Ismail, Ahmed E.] Sandia Natl Labs, Carlsbad, NM USA. [Greathouse, Jeffery A.; Crozier, Paul S.; Foiles, Stephen M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ismail, AE (reprint author), Rhein Westfal TH Aachen, Fac Mech Engn, Aachener Verfahrenstech, Aachen, Germany. EM jagreat@sandia.gov RI Ismail, Ahmed/B-7790-2009 OI Ismail, Ahmed/0000-0001-9929-5598 FU US Department of Energy [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. NR 33 TC 8 Z9 8 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 9 PY 2010 VL 22 IS 22 AR 225405 DI 10.1088/0953-8984/22/22/225405 PG 8 WC Physics, Condensed Matter SC Physics GA 703TF UT WOS:000286003500007 PM 21393744 ER PT J AU Mukherjee, D Ellern, A Sadow, AD AF Mukherjee, Debabrata Ellern, Arkady Sadow, Aaron D. TI Conversion of a Zinc Disilazide to a Zinc Hydride Mediated by LiCl SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LIVER ALCOHOL-DEHYDROGENASE; HYDROXIDE COMPLEX; REACTIVITY; ZINCATION; RELEVANT; LIGANDS AB An unusual beta-elimination reaction involving zinc(II) and LiCl is reported. LiCl and a coordinatively saturated disilazido zinc compound form an adduct that contains activated SiH moieties. In THF/toluene mixtures, this adduct is transformed into a zinc hydride and 0.5 equiv. cyclodisilazane. The Li(+) and Cl(-) ions apparently affect the reaction pathway of the disilazido zinc in a synergistic fashion. Thus, the zinc hydride and cyclodisilazane products of formal beta-elimination are not observed upon treatment of the zinc disilazide with Cl(-) or Li(+) separately. C1 [Sadow, Aaron D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM sadow@iastate.edu FU U.S. DOE Office of Basic Energy Science [DE-AC02-07CH11358]; ACS Green Chemistry Institute-PRF FX Dr. Bruce Fulton is thanked for valuable NMR assistance. The U.S. DOE Office of Basic Energy Science (DE-AC02-07CH11358) and the ACS Green Chemistry Institute-PRF provided financial support. A.D.S. is an Alfred P. Sloan Fellow. NR 23 TC 28 Z9 28 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 9 PY 2010 VL 132 IS 22 BP 7582 EP + DI 10.1021/ja102323g PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 611RA UT WOS:000278837100009 PM 20469907 ER PT J AU Piliego, C Holcombe, TW Douglas, JD Woo, CH Beaujuge, PM Frechet, JMJ AF Piliego, Claudia Holcombe, Thomas W. Douglas, Jessica D. Woo, Claire H. Beaujuge, Pierre M. Frechet, Jean M. J. TI Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DONOR-ACCEPTOR HETEROJUNCTIONS; POWER CONVERSION EFFICIENCY; BAND-GAP POLYMER; PHOTOVOLTAIC PROPERTIES; CHARGE-TRANSPORT; PERFORMANCE; COPOLYMERS; NETWORK; DESIGN; LEVEL AB The correlation between the nature of alkyl substituents on N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD)-based polymers and solar cell device performance has been investigated. After adjusting device parameters, these TPD-based polymers used with PC61BM provided photovoltaic responses ranging from 4.0% to 6.8%, depending on the size and shape of the alkyl solubilizing groups. Further, we have correlated the effect of the alkyl groups on the structural order and orientation of the polymer backbone using grazing incidence X-ray scattering analysis, and we have demonstrated how fine-tuning of these parameters can improve the power conversion efficiency. C1 [Piliego, Claudia; Woo, Claire H.; Beaujuge, Pierre M.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Holcombe, Thomas W.; Douglas, Jessica D.; Beaujuge, Pierre M.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Woo, Claire H.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation; Natural Sciences and Engineering Research Council of Canada FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No, DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. T.W.H. and C.H.W. thank the National Science Foundation and J.D.D. thanks the Natural Sciences and Engineering Research Council of Canada for graduate research fellowships. The authors thank Dr. Jill Millstone and Dr. Justin Mynar for helpful discussions and Eric Young for the CV measurements. NR 32 TC 701 Z9 708 U1 14 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 9 PY 2010 VL 132 IS 22 BP 7595 EP + DI 10.1021/ja103275u PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 611RA UT WOS:000278837100014 PM 20469863 ER PT J AU Baroni, S Macchiavelli, AO Schwenk, A AF Baroni, Simone Macchiavelli, Augusto O. Schwenk, Achim TI Partial-wave contributions to pairing in nuclei SO PHYSICAL REVIEW C LA English DT Article ID LOW-MOMENTUM INTERACTIONS; MATTER AB We present a detailed study of partial-wave contributions of nuclear forces to pairing in nuclei. For T = 1, J = 0 pairing, partial waves beyond the standard S-1(0) channel play an interesting role for the pair formation in nuclei. The additional contributions are dominated by the repulsive P-3(1) partial wave. Their effects, and generally spin-triplet nuclear forces between paired nucleons, are influenced by the interplay of spin-orbit partners. We explore the impact of including partial waves beyond the S-1(0) channel on neutron-neutron pairing gaps in semimagic isotopic chains. In addition, we show that nuclear forces favor T = 1, J = 0 over T = 0, J = 1 pairing, except in low-j orbitals. This is in contrast to the free-space motivation that suggests the formation of deuteron-like T = 0 pairs in N = Z nuclei. The suppression of T = 0 pairing is because the S-3(1) strength is distributed on spin-orbit partners and because of the effects of the repulsive P-1(1) channel and of D waves. C1 [Baroni, Simone] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Baroni, Simone; Schwenk, Achim] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Macchiavelli, Augusto O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Schwenk, Achim] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Schwenk, Achim] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. RP Baroni, S (reprint author), Univ Washington, Inst Nucl Theory, Box 351550, Seattle, WA 98195 USA. EM baroni@phys.washington.edu; aomacchiavelli@lbl.gov; schwenk@triumf.ca RI Baroni, Simone/N-6123-2016 OI Baroni, Simone/0000-0002-1484-0372 FU UNEDF SciDAC Collaboration under DOE [DE-FC02-07ER41457]; NSF [0835543]; DOE [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada (NSERC); Helmholtz Alliance Program of the Helmholtz Association [HA216/EMMI] FX We are grateful to G. F. Bertsch for discussions on T = 0 pairing and also thank S. Bacca, T. Duguet, K. Hebeler, V. Koch, T. Lesinski, and A. Pastore for useful conversations. This work was supported in part by the UNEDF SciDAC Collaboration under DOE Grant No. DE-FC02-07ER41457, the NSF under Grant No. 0835543, the DOE under Contract No. DE-AC02-05CH11231 (LBNL), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Helmholtz Alliance Program of the Helmholtz Association, contract HA216/EMMI "Extremes of Density and Temperature: Cosmic Matter in the Laboratory". TRIUMF receives funding via a contribution through the National Research Council Canada. NR 44 TC 18 Z9 18 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN 9 PY 2010 VL 81 IS 6 AR 064308 DI 10.1103/PhysRevC.81.064308 PG 9 WC Physics, Nuclear SC Physics GA 608BF UT WOS:000278555700001 ER PT J AU Daniel, SF Linder, EV Smith, TL Caldwell, RR Cooray, A Leauthaud, A Lombriser, L AF Daniel, Scott F. Linder, Eric V. Smith, Tristan L. Caldwell, Robert R. Cooray, Asantha Leauthaud, Alexie Lombriser, Lucas TI Testing general relativity with current cosmological data SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE BACKGROUND ANISOTROPIES; POWER SPECTRA; IA SUPERNOVAE; DARK ENERGY; GRAVITY; GROWTH; PERTURBATIONS; UNIVERSE; PHYSICS AB Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large-scale structure and the deflection of light by that structure. We clarify the relations between several different model-independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. A Markov chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativity at the 95% confidence level. C1 [Daniel, Scott F.; Linder, Eric V.] Ewha Womans Univ, Inst Early Univ, Seoul, South Korea. [Linder, Eric V.; Leauthaud, Alexie] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Linder, Eric V.; Smith, Tristan L.; Leauthaud, Alexie] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Caldwell, Robert R.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Lombriser, Lucas] Univ Zurich, Inst Theoret Phys, CH-8006 Zurich, Switzerland. RP Daniel, SF (reprint author), Ewha Womans Univ, Inst Early Univ, Seoul, South Korea. OI Caldwell, Robert/0000-0001-7490-7463 FU World Class University [R32-2008-000-10130-0]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [AST-0645427, AST-0349213]; Swiss National Science Foundation [2000 124835 1]; NASA Office of Space Science FX We are extremely grateful to the Supernova Cosmology Project for permission to use the Union2 supernova data before publication. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We thank Rachel Bean for helpful discussions on Ref. [38]. This work has been supported by the World Class University Grant No. R32-2008-000-10130-0 (S. D., E. L.). E. L. has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A. C. acknowledges support from NSF CAREER AST-0645427. R. C. acknowledges support from NSF CAREER AST-0349213. L. L. was supported by the Swiss National Science Foundation under Contract No. 2000 124835 1. NR 60 TC 98 Z9 98 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 9 PY 2010 VL 81 IS 12 AR 123508 DI 10.1103/PhysRevD.81.123508 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 608BH UT WOS:000278555900002 ER PT J AU Kribs, GD Martin, A Roy, TS Spannowsky, M AF Kribs, Graham D. Martin, Adam Roy, Tuhin S. Spannowsky, Michael TI Discovering the Higgs boson in new physics events using jet substructure SO PHYSICAL REVIEW D LA English DT Article ID COLLIDERS; QCD AB We demonstrate that the Higgs boson can be discovered at the large hadron collider in new physics events using boosted kinematics, b-tagging and jet substructure. This method superbly identifies the lightest Higgs boson in the minimal supersymmetric standard model. Two case studies are considered where Higgs is produced in association with superpartners that decay to a light gravitino, however generalizations to other spectra and models is anticipated. In some circumstances, discovery of the lightest Higgs is possible before conventional search strategies uncover convincing evidence. C1 [Kribs, Graham D.; Roy, Tuhin S.; Spannowsky, Michael] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Martin, Adam] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Kribs, GD (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. FU U.S. Department of Energy [DE-FG02-96ER40969]; Fermi Research Alliance, LLC [DE-AC02-07CH11359] FX M. S. thanks T. Plehn and G. Salam for helpful discussions. G. D. K. and T. S. R. thank the Galileo Galilei Institute for Theoretical Physics for hospitality where part of this work was completed. This work was supported in part by the U.S. Department of Energy under Contract No. DE-FG02-96ER40969 (G. D. K., T. S. R., M. S.) and Fermilab operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 (A. M.) with the U.S. Department of Energy. NR 35 TC 69 Z9 69 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 9 PY 2010 VL 81 IS 11 AR 111501 DI 10.1103/PhysRevD.81.111501 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 608BG UT WOS:000278555800001 ER PT J AU Wang, P Thomas, AW AF Wang, P. Thomas, A. W. TI First moments of nucleon generalized parton distributions SO PHYSICAL REVIEW D LA English DT Article ID VIRTUAL COMPTON-SCATTERING; CHIRAL PERTURBATION-THEORY; LONGITUDINALLY POLARIZED TARGET; SPIN STRUCTURE; MAGNETIC-MOMENT; PROTON; DVCS; EXTRAPOLATION; MODEL AB We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t = 0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models. C1 [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wang, P.] Chinese Acad Sci, TPCSF, Beijing 100049, Peoples R China. [Wang, P.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Univ Adelaide, Sch Chem & Phys, CSSM, Adelaide, SA 5005, Australia. RP Wang, P (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU DOE [DE-AC06-05OR23177] FX This work was supported by DOE Contract No. DE-AC06-05OR23177. NR 54 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 9 PY 2010 VL 81 IS 11 AR 114015 DI 10.1103/PhysRevD.81.114015 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 608BG UT WOS:000278555800003 ER PT J AU Lane, JMD Grest, GS AF Lane, J. Matthew D. Grest, Gary S. TI Spontaneous Asymmetry of Coated Spherical Nanoparticles in Solution and at Liquid-Vapor Interfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; SELF-ASSEMBLED MONOLAYERS; GOLD NANOPARTICLES; CHAINS; SIZE; SURFACTANTS; WATER AB Spherical nanoparticles (NPs), uniformly coated with a simple polymer used to passivate NPs in solution, are shown to produce highly asymmetric coating arrangements. We show that a class of spherical particles is not symmetrically coated even when extremely uniform grafting arrangements and full coverages are employed. We demonstrate, using explicit-atom molecular dynamics simulations of model NPs, that geometric properties dictate when a coating's spherical symmetry will be unstable and show that the chain end group and the solvent play a secondary role in determining the properties of surface patterns. At the water-vapor interface the coatings are significantly distorted and oriented by the surface. These asymmetric and oriented coatings are expected to have a dramatic effect on the interactions between NPs and will likely influence the structures of aggregated NPs which self-assemble in the bulk and at surfaces. C1 [Lane, J. Matthew D.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lane, JMD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jlane@sandia.gov; gsgrest@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000] FX The authors thank A. E. Ismail for discussions. This work was made possible by generous computer time at the New Mexico Computing Application Center and computations were performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 26 TC 53 Z9 53 U1 1 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2010 VL 104 IS 23 AR 235501 DI 10.1103/PhysRevLett.104.235501 PG 4 WC Physics, Multidisciplinary SC Physics GA 608BI UT WOS:000278556000009 PM 20867251 ER PT J AU Kovalevsky, AY Hanson, L Fisher, SZ Mustyakimov, M Mason, SA Forsyth, VT Blakeley, MP Keen, DA Wagner, T Carrell, HL Katz, AK Glusker, JP Langan, P AF Kovalevsky, Andrey Y. Hanson, Leif Fisher, S. Zoe Mustyakimov, Marat Mason, Sax A. Forsyth, V. Trevor Blakeley, Matthew P. Keen, David. A. Wagner, Trixie Carrell, H. L. Katz, Amy K. Glusker, Jenny P. Langan, Paul TI Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study SO STRUCTURE LA English DT Article ID MEDIATED HYDRIDE SHIFT; GLUCOSE-ISOMERASE; ACTIVE-SITE; PROTEIN CRYSTALLOGRAPHY; ANOMERIC SPECIFICITY; SPALLATION NEUTRONS; MECHANISM; STREPTOMYCES; SUBSTRATE; RESOLUTION AB Conversion of aldo to keto sugars by the metalloenzyme D-xylose isomerase (XI) is a multistep reaction that involves hydrogen transfer. We have determined the structure of this enzyme by neutron diffraction in order to locate H atoms (or their isotope D). Two studies are presented, one of XI containing cadmium and cyclic D-glucose (before sugar ring opening has occurred), and the other containing nickel and linear D-glucose (after ring opening has occurred but before isomerization). Previously we reported the neutron structures of ligand-free enzyme and enzyme with bound product. The data show that His54 is doubly protonated on the ring N in all four structures. Lys289 is neutral before ring opening and gains a proton after this; the catalytic metal-bound water is deprotonated to hydroxyl during isomerization and O5 is deprotonated. These results lead to new suggestions as to how changes might take place over the course of the reaction. C1 [Kovalevsky, Andrey Y.; Fisher, S. Zoe; Mustyakimov, Marat; Wagner, Trixie; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Hanson, Leif; Langan, Paul] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Mason, Sax A.; Forsyth, V. Trevor; Blakeley, Matthew P.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Forsyth, V. Trevor] Univ Keele, EPSAM ISTM, Keele ST5 5BG, Staffs, England. [Keen, David. A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Carrell, H. L.; Katz, Amy K.; Glusker, Jenny P.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. RP Kovalevsky, AY (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888, Los Alamos, NM 87545 USA. EM ayk@lanl.gov; langan_paul@lanl.gov RI Hanson, Bryant Leif/F-8007-2010; Forsyth, V. Trevor/A-9129-2010; mason, sax /E-6738-2011; Langan, Paul/N-5237-2015; Blakeley, Matthew/G-7984-2015 OI Kovalevsky, Andrey/0000-0003-4459-9142; Hanson, Bryant Leif/0000-0003-0345-3702; Forsyth, V. Trevor/0000-0003-0380-3477; Langan, Paul/0000-0002-0247-3122; Blakeley, Matthew/0000-0002-6412-4358 FU Office of Biological and Environmental Research of the Department of Energy; DOE Office of Basic Energy Sciences; NIH-NIGMS [1R01GM071939-01]; LANL; LNBL; LDRD [20080789PRD3, 20070131ER]; JPG [CA10925]; NIH [NSF 446218]; EPSRC [GR/R47950/01, GR/R99393/01, EP/C015452/1] FX The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. The PCS is located at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. M.M. and P.L. were partly supported by an NIH-NIGMS funded consortium (1R01GM071939-01) between LANL and LNBL to develop computational tools for neutron protein crystallography. A.Y.K. was partly supported by LANL, LDRD grant (20080789PRD3). A.Y.K. and P.L. were partly supported by a LANL, LDRD grant (20070131ER), JPG CA10925 and Fox Chase CA06927, both from NIH. B.L.H. is supported by NSF 446218. V.T.F. and S.A.M. acknowledge support from EPSRC under grants GR/R47950/01, GR/R99393/01, EP/C015452/1. The new D19 diffractometer was built as part of a collaboration between Durham University, Keele University, Bath University, and ILL. We gratefully acknowledge the help of John Archer, John Allibon, and the efforts of the ILL detector group. NR 47 TC 84 Z9 85 U1 3 U2 40 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUN 9 PY 2010 VL 18 IS 6 BP 688 EP 699 DI 10.1016/j.str.2010.03.011 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 613CC UT WOS:000278952700007 PM 20541506 ER PT J AU Lu, GP Blakeslee, RJ Li, JB Smith, DM Shao, XM McCaul, EW Buechler, DE Christian, HJ Hall, JM Cummer, SA AF Lu, Gaopeng Blakeslee, Richard J. Li, Jingbo Smith, David M. Shao, Xuan -Min McCaul, Eugene W. Buechler, Dennis E. Christian, Hugh J. Hall, John M. Cummer, Steven A. TI Lightning mapping observation of a terrestrial gamma-ray flash SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THUNDERSTORM; PROPAGATION; RADIATION; ARRAY AB We report the observation with the North Alabama Lightning Mapping Array (LMA) related to a terrestrial gamma-ray flash (TGF) detected by RHESSI on 26 July 2008. The LMA data explicitly show the TGF was produced during the initial development of a compact intracloud (IC) lightning flash between a negative charge region centered at about 8.5 km above sea level (-22 degrees C temperature level) a higher positive region centered at 13 km, both confined to the convective core of an isolated storm in close proximity to the RHESSI footprint. After the occurrence of an LMA source with a high peak power (26 kW), the initial lightning evolution caused an unusually large IC current moment that became detectable 2 ms after the first LMA source and increased for another 2 ms, during which the burst of gamma-rays was produced. This slowly building current moment was most likely associated with the upward leader progression, which produced an uncommonly large IC charge moment change (+90 C.km) in 3 ms while being punctuated by a sequence of fast discharge. These observations suggest that the leader development may be involved in the TGF production. Citation: Lu, G., R. J. Blakeslee, J. Li, D. M. Smith, X. -M. Shao, E. W. McCaul, D. E. Buechler, H. J. Christian, J. M. Hall, and S. A. Cummer (2010), Lightning mapping observation of a terrestrial gamma-ray flash, Geophys. Res. Lett., 37, L11806, doi: 10.1029/2010GL043494. C1 [Lu, Gaopeng; Li, Jingbo; Cummer, Steven A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Blakeslee, Richard J.] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Smith, David M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Shao, Xuan -Min] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. [McCaul, Eugene W.] Univ Space Res Assoc, Huntsville, AL 35806 USA. [Buechler, Dennis E.; Christian, Hugh J.; Hall, John M.] Univ Alabama, Global Hydrol & Climate Ctr, Huntsville, AL 35806 USA. RP Lu, GP (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90921, Durham, NC 27708 USA. EM gl46@duke.edu; cummer@ee.duke.edu RI Lu, Gaopeng/D-9011-2012; Cummer, Steven/A-6118-2008 OI Cummer, Steven/0000-0002-0002-0613 FU NSF [ATM-0221968] FX This work was supported by NSF Physical Meteorology Program grant ATM-0221968. The authors would like to thank Bill Winn, Ken Eack, Ron Thomas, Bill Rison, and David Raymond for valuable discussions. NR 27 TC 59 Z9 59 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 8 PY 2010 VL 37 AR L11806 DI 10.1029/2010GL043494 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 610KQ UT WOS:000278732000005 ER PT J AU Chen, SY Yang, JH Gong, XG Walsh, A Wei, SH AF Chen, Shiyou Yang, Ji-Hui Gong, X. G. Walsh, Aron Wei, Su-Huai TI Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 SO PHYSICAL REVIEW B LA English DT Article ID FILM SOLAR-CELLS; THIN-FILMS; BAND OFFSETS; II-VI; CUINSE2; RECOMBINATION; PHOTOVOLTAICS; NANOCRYSTALS; EVAPORATION; GROWTH AB Current knowledge of the intrinsic defect properties of Cu2ZnSnS4 (CZTS) is limited, which is hindering further improvement of the performance of CZTS-based solar cells. Here, we have performed first-principles calculations for a series of intrinsic defects and defect complexes in CZTS, from which we have the following observations. (i) It is important to control the elemental chemical potentials during crystal growth to avoid the formation of secondary phases such as ZnS, CuS, and Cu2SnS3. (ii) The intrinsic p-type conductivity is attributed to the Cu-Zn antisite which has a lower formation energy and relatively deeper acceptor level compared to the Cu vacancy. (iii) The low formation energy of many of the acceptor defects will lead to the intrinsic p-type character, i.e., n-type doping is very difficult in this system. (iv) The role of electrically neutral defect complexes is predicted to be important, because they have remarkably low formation energies and electronically passivate deep levels in the band gap. For example, [Cu-Zn(-) + Zn-Cu(+)], [V-Cu(-) + Zn-Cu(+)], and [Zn-Sn(2-) + 2Zn(Cu)(+)] may form easily in nonstoichiometric samples. The band alignment between Cu2ZnSnS4, CuInSe2 and the solar-cell window layer CdS has also been calculated, revealing that a type-II band alignment exists for the CdS/Cu2ZnSnS4 heterojunction. The fundamental differences between CZTS and CuInSe2 for use in thin-film photovoltaics are discussed. The results are expected to be relevant to other I-2-II-IV-VI4 semiconductors. C1 [Chen, Shiyou; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. [Chen, Shiyou; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. [Chen, Shiyou] E China Normal Univ, Lab Polar Mat & Devices, Shanghai 200241, Peoples R China. [Walsh, Aron] UCL, Dept Chem, London WC1E 6BT, England. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chen, SY (reprint author), Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. RI Walsh, Aron/A-7843-2008; li, linghua/D-9488-2012; gong, xingao /B-1337-2010; gong, xingao/D-6532-2011; OI Walsh, Aron/0000-0001-5460-7033; Cheng, Shengfeng/0000-0002-6066-2968 FU National Sciences Foundation of China [10934002, 1095011032, 60990312]; NSF of Shanghai [10ZR1408800]; U.S. Department of Energy [DE-AC36-08GO28308] FX The work in Fudan is supported by the National Sciences Foundation of China (Grants No. 10934002 and No. 1095011032), the Research Program of Shanghai municipality and MOE, the Special Funds for Major State Basic Research. S. C. is supported by NSF of Shanghai (Grant No. 10ZR1408800) and NSF of China (Grants No. 60990312). A. W. would like to acknowledge funding from the European Union. The work at NREL is funded by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308. NR 56 TC 348 Z9 352 U1 49 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 8 PY 2010 VL 81 IS 24 AR 245204 DI 10.1103/PhysRevB.81.245204 PG 10 WC Physics, Condensed Matter SC Physics GA 607ID UT WOS:000278492800005 PM 20365427 ER PT J AU Petkov, V Moreels, I Hens, Z Ren, Y AF Petkov, V. Moreels, I. Hens, Z. Ren, Y. TI PbSe quantum dots: Finite, off-stoichiometric, and structurally distorted SO PHYSICAL REVIEW B LA English DT Article ID NANOPARTICLES AB PbSe quantum dots with sizes of 2.8(1), 3.7(1), and 6.2(1) nm, freely suspended in solution, have been studied by high-energy x-ray diffraction coupled to atomic pair-distribution-function analysis and computer simulations. The atomic-scale structure of the quantum dots is best described by 371-, 763-, and 4084-atom configurations, respectively, that are substantially off-stoichiometric and structurally distorted. It is argued that such finite-size, "large-molecule-type" structure models and not quasi-infinite ones based on periodic crystalline lattices are better to be used when the properties of a few nanometer-sized materials, in particular, those of PbSe quantum dots, are to be explained in full detail. C1 [Petkov, V.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Moreels, I.; Hens, Z.] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu RI Moreels, Iwan/E-5230-2011; Hens, Zeger/J-6366-2013 OI Moreels, Iwan/0000-0003-3998-7618; FU DOE [DE-AC02-06CH11357]; FWO-Vlaanderen [G.0.144.08] FX Work at APS is supported by DOE under Contract No. DE-AC02-06CH11357. I.M. is a researcher with the FWO-Vlaanderen. Z.H acknowledges the IWT (SBO-Metacel), Belspo (IAP-6.10 photonics@be) and the FWO-Vlaanderen for funding (Grant No. G.0.144.08). NR 22 TC 39 Z9 39 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 8 PY 2010 VL 81 IS 24 AR 241304 DI 10.1103/PhysRevB.81.241304 PG 4 WC Physics, Condensed Matter SC Physics GA 607ID UT WOS:000278492800001 ER PT J AU Tao, JM Zhu, JX AF Tao, Jianmin Zhu, Jian-Xin TI Theory of the time-resolved spectral function of high-temperature superconductors with bosonic modes SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTORS; BI2SR2CACU2O8+DELTA; PHOTOEMISSION; DISPERSION; WAVE AB We develop a three-temperature model to simulate the time dependence of the electron and phonon temperatures in high-temperature superconductors displaying strong anisotropic electron-phonon coupling. This model not only takes the tight-binding band structure into account but also is valid in the superconducting state. Based on this model, we calculate the time-resolved spectral function via the double-time Green's functions. We find that the dip-hump structure evolves with the time delay. More interestingly, an unusual structure is obtained when the phonons are pumped directly. This finding may serve as a direct evidence for electron-vibration mode coupling. C1 [Tao, Jianmin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Tao, JM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Zhu, Jianxin/0000-0001-7991-3918 FU National Nuclear Security Administration of the U.S. DOE at LANL [AC52-06NA25396]; U.S. DOE Office of Science; LDRD Program at LANL FX We thank A. V. Balatsky, Elbert E. M. Chia, Hari Dahal, J. K. Freericks, M. Graf, A. Piryatinski, A. J. Taylor, S. A. Trugman, and D. Yarotski for valuable discussions. This work was supported by the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, the U.S. DOE Office of Science, and the LDRD Program at LANL. NR 30 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 8 PY 2010 VL 81 IS 22 AR 224506 DI 10.1103/PhysRevB.81.224506 PG 5 WC Physics, Condensed Matter SC Physics GA 607IB UT WOS:000278492600005 ER PT J AU Bodwin, GT Tormo, XGI Lee, J AF Bodwin, Geoffrey T. Garcia i Tormo, Xavier Lee, Jungil TI Factorization in exclusive quarkonium production SO PHYSICAL REVIEW D LA English DT Article ID VACUUM POLARIZATION DIAGRAMS; NONLEPTONIC-B-DECAYS; ANNIHILATION PROCESSES; SPECTATOR SCATTERING; MASS DIVERGENCES; HEAVY QUARKONIUM; QCD; AMPLITUDES; NLO AB We present factorization theorems for two exclusive heavy-quarkonium production processes: production of two quarkonia in e(+)e(-) annihilation and production of a quarkonium and a light meson in B-meson decays. We describe the general proofs of factorization and supplement them with explicit one-loop analyses, which illustrate some of the features of the soft-gluon cancellations. We find that violations of factorization are generally suppressed relative to the factorized contributions by a factor nu(2)m(c)/Q for each S-wave charmonium and a factor m(c)/Q for each L-wave charmonium with L > 0. Here, nu is the velocity of the heavy quark or antiquark in the quarkonium rest frame, Q = root s for e(+)e(-) annihilation, Q = m(B) for B-meson decays, root s is the e(+)e(-) center-of-momentum energy, m(c) is the charm-quark mass, and m(B) is the B-meson mass. There are modifications to the suppression factors if quantum-number restrictions apply for the specific process. C1 [Bodwin, Geoffrey T.; Garcia i Tormo, Xavier] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lee, Jungil] Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; Science and Engineering Research Canada; Korea Ministry of Education, Science, and Technology through the National Research Foundation [2009-0086383] FX We thank M. Beneke for several helpful discussions. We thank I.-c. Kim for his assistance in preparing the figures in this paper. The work of G. T. B. and X. G. T. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The research of X. G. T. was also supported by Science and Engineering Research Canada. The work of J.L. was supported by the Korea Ministry of Education, Science, and Technology through the National Research Foundation under Contract No. 2009-0086383. NR 44 TC 17 Z9 17 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 8 PY 2010 VL 81 IS 11 AR 114014 DI 10.1103/PhysRevD.81.114014 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 607IF UT WOS:000278493000002 ER PT J AU Pasquini, B Yuan, F AF Pasquini, Barbara Yuan, Feng TI Sivers and Boer-Mulders functions in light-cone quark models SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; SINGLE-SPIN ASYMMETRIES; FINAL-STATE INTERACTIONS; DEEP-INELASTIC SCATTERING; DRELL-YAN PROCESSES; TRANSVERSE-MOMENTUM; HARD-SCATTERING; AZIMUTHAL ASYMMETRIES; SEMIINCLUSIVE DIS; WAVE-FUNCTIONS AB Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are presented. The final-state interaction effects are generated via single-gluon exchange mechanism. The formalism of light-cone wave functions is used to derive general expressions in terms of overlap of wave-function amplitudes describing the different orbital angular momentum components of the nucleon. In particular, the model predictions show a dominant contribution from S-and P-wave interference in the Sivers function and a significant contribution also from the interference of P and D waves in the Boer-Mulders function. The favorable comparison with existing phenomenological parametrizations motivates further applications to describe azimuthal asymmetries in hadronic reactions. C1 [Pasquini, Barbara] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Pasquini, Barbara] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Pasquini, B (reprint author), Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. EM pasquini@pv.infn.it; fyuan@lbl.gov RI Yuan, Feng/N-4175-2013; OI Pasquini, Barbara/0000-0001-8433-5649 FU Research Infrastructure Integrating Activity [227431]; European Community; Italian MIUR [2008EKLACK]; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-76SF00515] FX B. P. is grateful to A. Bacchetta, F. Conti, A. Courtoy, and M. Radici for discussions, and to the Nuclear Science Division of Lawrence Berkeley National Laboratory, where this work was initiated, for hospitality. This work was supported in part by the Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter'' (acronym HadronPhysics2, Grant Agreement n. 227431) under the Seventh Framework Programme of the European Community, by the Italian MIUR through the PRIN 2008EKLACK "Structure of the nucleon: transverse momentum, transverse spin, and orbital angular momentum,'' and by the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC02-76SF00515. We are grateful to RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 132 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 8 PY 2010 VL 81 IS 11 AR 114013 DI 10.1103/PhysRevD.81.114013 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 607IF UT WOS:000278493000001 ER PT J AU Mihajlovic, G Pearson, JE Bader, SD Hoffmann, A AF Mihajlovic, G. Pearson, J. E. Bader, S. D. Hoffmann, A. TI Surface Spin Flip Probability of Mesoscopic Ag Wires SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONDUCTION ELECTRONS; RELAXATION; TEMPERATURE; INJECTION; MAGNETORESISTANCE; MAGNETIZATION; SCATTERING; VALVE; METAL AB Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on Permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering. C1 [Mihajlovic, G.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bader, S. D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Mihajlovic, G (reprint author), Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95135 USA. EM goran.mihajlovic@hitachigst.com RI Bader, Samuel/A-2995-2013; Hoffmann, Axel/A-8152-2009 OI Hoffmann, Axel/0000-0002-1808-2767 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX We thank R. Winkler, K. Vyborny, and O. Mosendz for stimulating discussions, and L. Ocola and R. Divan for assistance with nanofabrication. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 31 TC 41 Z9 41 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 8 PY 2010 VL 104 IS 23 AR 237202 DI 10.1103/PhysRevLett.104.237202 PG 4 WC Physics, Multidisciplinary SC Physics GA 607IJ UT WOS:000278493500013 PM 20867264 ER PT J AU Wu, HC Meyer-ter-Vehn, J Fernandez, J Hegelich, BM AF Wu, H. -C. Meyer-ter-Vehn, J. Fernandez, J. Hegelich, B. M. TI Uniform Laser-Driven Relativistic Electron Layer for Coherent Thomson Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article AB A novel scheme is proposed to generate uniform relativistic electron layers for coherent Thomson backscattering. A few-cycle laser pulse is used to produce the electron layer from an ultrathin solid foil. The key element of the new scheme is an additional foil that reflects the drive-laser pulse, but lets the electrons pass almost unperturbed. Making use of two-dimensional particle-in-cell simulations and well-known basic theory, it is shown that the electrons, after interacting with both the drive and reflected laser pulses, form a very uniform flyer freely cruising with a high relativistic gamma factor exactly in the drive-laser direction (no transverse momentum). It backscatters the probe light with a full Doppler shift factor of 4 gamma(2). The reflectivity and its decay due to layer expansion are discussed. C1 [Wu, H. -C.; Fernandez, J.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meyer-ter-Vehn, J.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Hegelich, B. M.] Univ Munich, Dept Phys, D-85748 Garching, Germany. RP Wu, HC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hcwu@lanl.gov RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013 OI Fernandez, Juan/0000-0002-1438-1815; FU Munich Center for Advanced Photonics (MAP); Association EURATOM-Max-Planck-Institute for Plasma Physics FX The authors are grateful to Dr. Lin Yin for useful discussions. We also acknowledge a very helpful discussion with Dr. Chengkun Huang concerning the cancellation of transverse momentum. J. Meyer-ter-Vehn and H.-C. Wu were supported by the Munich Center for Advanced Photonics (MAP) and by the Association EURATOM-Max-Planck-Institute for Plasma Physics. NR 20 TC 54 Z9 54 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 8 PY 2010 VL 104 IS 23 AR 234801 DI 10.1103/PhysRevLett.104.234801 PG 4 WC Physics, Multidisciplinary SC Physics GA 607IJ UT WOS:000278493500010 PM 20867244 ER PT J AU Baskin, JM Dehnert, KW Laughlin, ST Amacher, SL Bertozzi, CR AF Baskin, Jeremy M. Dehnert, Karen W. Laughlin, Scott T. Amacher, Sharon L. Bertozzi, Carolyn R. TI Visualizing enveloping layer glycans during zebrafish early embryogenesis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE azide; cyclooctyne; bioorthogonal; oxime; cytokinesis ID IN-VIVO; EMBRYONIC-DEVELOPMENT; PERIODATE-OXIDATION; SIALIC ACID; GLYCOPROTEINS; GLYCOSYLATION; CYTOKINESIS; MICROSCOPY; CHEMISTRY; LIGATION AB Developmental events can be monitored at the cellular and molecular levels by using noninvasive imaging techniques. Among the biomolecules that might be targeted for imaging analysis, glycans occupy a privileged position by virtue of their primary location on the cell surface. We previously described a chemical method to image glycans during zebrafish larval development; however, we were unable to detect glycans during the first 24 hours of embryogenesis, a very dynamic period in development. Here we report an approach to the imaging of glycans that enables their visualization in the enveloping layer during the early stages of zebrafish embryogenesis. We microinjected embryos with azidosugars at the one-cell stage, allowed the zebrafish to develop, and detected the metabolically labeled glycans with copper-free click chemistry. Mucin-type O-glycans could be imaged as early as 7 hours post-fertilization, during the gastrula stage of development. Additionally, we used a nonmetabolic approach to label sialylated glycans with an independent chemistry, enabling the simultaneous imaging of these two distinct classes of glycans. Imaging analysis of glycan trafficking revealed dramatic reorganization of glycans on the second time scale, including rapid migration to the cleavage furrow of mitotic cells. These studies yield insight into the biosynthesis and dynamics of glycans in the enveloping layer during embryogenesis and provide a platform for imaging other biomolecular targets by microinjection of appropriately functionalized biosynthetic precursors. C1 [Baskin, Jeremy M.; Dehnert, Karen W.; Laughlin, Scott T.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Amacher, Sharon L.; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Bertozzi, CR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM crb@berkeley.edu OI Baskin, Jeremy/0000-0003-2939-3138 FU National Institutes of Health [GM058867, GM061952]; National Science Foundation; National Defense Science and Engineering FX We thank Emilie Delaune for providing memCherry mRNA and much advice; Anjali Ganguli for providing UDP-GalNAz; Holly Aaron (UC Berkeley Molecular Imaging Center), Julian Codelli, Jen St. Hilaire, and Deborah Weinman for technical assistance; and David Halpin and Blake Riggs for helpful discussions. This work was funded by grants to C.R.B. (GM058867) and S.L.A. (GM061952) from the National Institutes of Health. J.M.B. was supported by National Science Foundation and National Defense Science and Engineering predoctoral fellowships, and K.W.D. was supported by a National Science Foundation predoctoral fellowship. NR 37 TC 84 Z9 84 U1 3 U2 48 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 8 PY 2010 VL 107 IS 23 BP 10360 EP 10365 DI 10.1073/pnas.0912081107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 608AH UT WOS:000278549300009 PM 20489181 ER PT J AU Yang, SH Land, ML Klingeman, DM Pelletier, DA Lu, TYS Martin, SL Guo, HB Smith, JC Brown, SD AF Yang, Shihui Land, Miriam L. Klingeman, Dawn M. Pelletier, Dale A. Lu, Tse-Yuan S. Martin, Stanton L. Guo, Hao-Bo Smith, Jeremy C. Brown, Steven D. TI Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ethanol; inhibitor; microarray; sequencing; systems biology ID FUEL ETHANOL-PRODUCTION; NA+/H+-ANTIPORTER; ACETIC-ACID; RECOMBINANT ZYMOMONAS; BIOFUELS PRODUCTION; GENE; INSIGHTS; PATHWAY; FERMENTATION; HYDROLYSATE AB The application of systems biology tools holds promise for rational industrial microbial strain development. Here, we characterize a Zymomonas mobilis mutant (AcR) demonstrating sodium acetate tolerance that has potential importance in biofuel development. The genome changes associated with AcR are determined using microarray comparative genome sequencing (CGS) and 454-pyrosequencing. Sanger sequencing analysis is employed to validate genomic differences and to investigate CGS and 454-pyrosequencing limitations. Transcriptomics, genetic data and growth studies indicate that over-expression of the sodium-proton antiporter gene nhaA confers the elevated AcR sodium acetate tolerance phenotype. nhaA over-expression mostly confers enhanced sodium (Na(+)) tolerance and not acetate (Ac(-)) tolerance, unless both ions are present in sufficient quantities. NaAc is more inhibitory than potassium and ammonium acetate for Z. mobilis and the combination of elevated Na(+) and Ac- ions exerts a synergistic inhibitory effect for strain ZM4. A structural model for the NhaA sodium-proton antiporter is constructed to provide mechanistic insights. We demonstrate that Saccharomyces cerevisiae sodium-proton antiporter genes also contribute to sodium acetate, potassium acetate, and ammonium acetate tolerances. The present combination of classical and systems biology tools is a paradigm for accelerated industrial strain improvement and combines benefits of few a priori assumptions with detailed, rapid, mechanistic studies. C1 [Yang, Shihui; Land, Miriam L.; Klingeman, Dawn M.; Pelletier, Dale A.; Lu, Tse-Yuan S.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Shihui; Land, Miriam L.; Klingeman, Dawn M.; Guo, Hao-Bo; Smith, Jeremy C.; Brown, Steven D.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Martin, Stanton L.] N Carolina State Univ, Raleigh, NC 27606 USA. [Guo, Hao-Bo; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Mol & Biophys, Oak Ridge, TN 37831 USA. RP Brown, SD (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM brownsd@ornl.gov RI YANG, SHIHUI/A-6526-2008; Guo, Hao-Bo/B-7486-2009; Pelletier, Dale/F-4154-2011; smith, jeremy/B-7287-2012; Klingeman, Dawn/B-9415-2012; Land, Miriam/A-6200-2011; Brown, Steven/A-6792-2011 OI YANG, SHIHUI/0000-0002-9394-9148; Guo, Hao-Bo/0000-0003-1321-1758; smith, jeremy/0000-0002-2978-3227; Klingeman, Dawn/0000-0002-4307-2560; Land, Miriam/0000-0001-7102-0031; Brown, Steven/0000-0002-9281-3898 FU Laboratory Directed Research and Development Program of ORNL; Department of Energy [DE-AC05-00OR22725]; Office of Biological and Environmental in the Department Of Energy Office of Science FX The authors thank Peter Rogers for generously providing strain AcR; M.K. Kerley, M. Rodriguez Jr., and L. Dice for technical assistance with Sanger sequencing, HPLC, and qRT-PCR, respectively. We also thank T. Phelps, B. Davison, and X. Cheng (ORNL) and J. Wiegel (University of Georgia, Athens) for insightful discussions and gratefully acknowledge D. Graham (ORNL) for critical review during manuscript preparation. This work is sponsored by the Laboratory Directed Research and Development Program of ORNL. The BioEnergy Science Center is a Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental in the Department Of Energy Office of Science. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the Department of Energy. NR 45 TC 54 Z9 56 U1 4 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 8 PY 2010 VL 107 IS 23 BP 10395 EP 10400 DI 10.1073/pnas.0914506107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 608AH UT WOS:000278549300015 PM 20484677 ER PT J AU Shepard, EM McGlynn, SE Bueling, AL Grady-Smith, CS George, SJ Winslow, MA Cramer, SP Peters, JW Broderick, JB AF Shepard, Eric M. McGlynn, Shawn E. Bueling, Alexandra L. Grady-Smith, Celestine S. George, Simon J. Winslow, Mark A. Cramer, Stephen P. Peters, John W. Broderick, Joan B. TI Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID FE-ONLY HYDROGENASE; IRON-SULFUR CLUSTER; ACTIVE-SITE; ESCHERICHIA-COLI; DESULFOVIBRIO-DESULFURICANS; THERMOTOGA-MARITIMA; CRYSTAL-STRUCTURE; BIOTIN SYNTHASE; 4FE-4S CLUSTER; BACTERIAL APBC AB The organometallic H cluster at the active site of [FeFe]-hydrogenase consists of a 2Fe subcluster coordinated by cyanide, carbon monoxide, and a nonprotein dithiolate bridged to a [4Fe-4S] cluster via a cysteinate ligand. Biosynthesis of this cluster requires three accessory proteins, two of which (HydE and HydG) are radical S-adenosylmethionine enzymes. The third, HydF, is a GTPase. We present here spectroscopic and kinetic studies of HydF that afford fundamental new insights into the mechanism of H-cluster assembly. Electron paramagnetic spectroscopy reveals that HydF binds both [4Fe-4S] and [2Fe-2S] clusters; however, when HydF is expressed in the presence of HydE and HydG (HydF(EG)), only the [4Fe-4S] cluster is observed by EPR. Insight into the fate of the [2Fe-2S] cluster harbored by HydF is provided by FTIR, which shows the presence of carbon monoxide and cyanide ligands in HydF(EG). The thorough kinetic characterization of the GTPase activity of HydF shows that activity can be gated by monovalent cations and further suggests that GTPase activity is associated with synthesis of the 2Fe subcluster precursor on HydF, rather than with transfer of the assembled precursor to hydrogenase. Interestingly, we show that whereas the GTPase activity is independent of the presence of the FeS clusters on HydF, GTP perturbs the EPR spectra of the clusters, suggesting communication between the GTP- and cluster-binding sites. Together, the results indicate that the 2Fe subcluster of the H cluster is synthesized on HydF from a [2Fe-2S] cluster framework in a process requiring HydE, HydG, and GTP. C1 [Shepard, Eric M.; McGlynn, Shawn E.; Bueling, Alexandra L.; Winslow, Mark A.; Peters, John W.; Broderick, Joan B.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Shepard, Eric M.; McGlynn, Shawn E.; Bueling, Alexandra L.; Winslow, Mark A.; Peters, John W.; Broderick, Joan B.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [Grady-Smith, Celestine S.; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [George, Simon J.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Broderick, JB (reprint author), Montana State Univ, Dept Chem & Biochem, 103 CBB, Bozeman, MT 59717 USA. EM jbroderick@chemistry.montana.edu OI Broderick, Joan/0000-0001-7057-9124; Peters, John/0000-0001-9117-9568 FU National Aeronautics and Space Administration Astrobiology Institute [NNA08CN85A]; National Science Foundation [DGE 0654336]; Defense University Research Instrumentation Program (DURIP) [W911NF0510255] FX The authors thank Dr. Robin Gerlach for running ICP-MS samples and Dr. Anatoli Naumov for supplying the Thermotoga HydF constructs. We thank William Broderick for insightful discussions. The authors thank the National Aeronautics and Space Administration Astrobiology Institute for support of the Montana State University Astrobiology Biogeocatalysis Research Center (NNA08CN85A to J.W.P. and J.B.B.). S.E.M. is supported by an National Science Foundation Integrative Graduate Education and Research Traineeship Fellowship ( Montana State University Program in Geobiological Systems, DGE 0654336). The authors acknowledge funding for the establishment of the Environmental and Biofilm Mass Spectrometry Facility through the Defense University Research Instrumentation Program (DURIP, Contract W911NF0510255). NR 41 TC 70 Z9 70 U1 0 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 8 PY 2010 VL 107 IS 23 BP 10448 EP 10453 DI 10.1073/pnas.1001937107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 608AH UT WOS:000278549300024 PM 20498089 ER PT J AU Karim, AM Su, Y Sun, JM Yang, C Strohm, JJ King, DL Wang, Y AF Karim, Ayman M. Su, Yu Sun, Junming Yang, Cheng Strohm, James J. King, David L. Wang, Yong TI A comparative study between Co and Rh for steam reforming of ethanol SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Ethanol reforming; Cobalt catalyst; Rhodium catalyst; Carbon deposition; Reaction pathway ID SUPPORTED COBALT CATALYSTS; FUEL-CELL APPLICATION; OXYGEN STORAGE CAPACITY; WATER-GAS SHIFT; HYDROGEN-PRODUCTION; LOW-TEMPERATURE; BIO-ETHANOL; CO/AL2O3 CATALYSTS; NICKEL-CATALYSTS; FILAMENTOUS CARBON AB Rh and Co-based catalyst performance was compared for steam reforming of ethanol under conditions suitable for industrial hydrogen production. The reaction conditions were varied to elucidate the differences in reaction pathways on both catalysts. On Co/ZnO, CH(4) is a secondary product formed through the methanation reaction, while it is produced directly by ethanol decomposition on Rh. The difference in the reaction pathway is shown to favor Co-based catalysts for selective hydrogen production under elevated system pressures (up to 15 bar) of industrial importance. The carbon deposition rate was also studied, and we show that Co is more prone to coking and catalyst failure. However, the Co/ZnO catalyst can be regenerated, by mild oxidation, despite the high carbon deposition rate. We conclude that Co/ZnO is a more suitable catalyst system for steam reforming of ethanol due to the low methane selectivity, low cost and the possibility of regeneration with mild oxidation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Karim, Ayman M.; Su, Yu; Sun, Junming; Strohm, James J.; King, David L.; Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Yang, Cheng] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Beijing 100864, Peoples R China. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM yongwang@pnl.gov RI ZHANG, He/A-6219-2011; Sun, Junming/B-3019-2011; Wang, Yong/C-2344-2013; Karim, Ayman/G-6176-2012 OI Sun, Junming/0000-0002-0071-9635; Karim, Ayman/0000-0001-7449-542X FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory FX The authors would like to thank the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, for financial support of this work. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 60 TC 45 Z9 45 U1 2 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JUN 7 PY 2010 VL 96 IS 3-4 BP 441 EP 448 DI 10.1016/j.apcatb.2010.02.041 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 598OJ UT WOS:000277847300021 ER PT J AU Liu, JA Kareev, M Gray, B Kim, JW Ryan, P Dabrowski, B Freeland, JW Chakhalian, J AF Liu, Jian Kareev, M. Gray, B. Kim, J. W. Ryan, P. Dabrowski, B. Freeland, J. W. Chakhalian, J. TI Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; NEUTRON-DIFFRACTION; RNIO3 R; PEROVSKITES; OXIDES; ND AB We have synthesized epitaxial NdNiO3 ultrathin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO3 (001) and LaAlO3 (001), respectively. A combination of x-ray diffraction, temperature dependent resistivity, and soft x-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO3, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior. (C) 2010 American Institute of Physics. [doi:10.1063/1.3451462] C1 [Liu, Jian; Kareev, M.; Gray, B.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Kim, J. W.; Ryan, P.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Dabrowski, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Liu, JA (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM jx1026@uark.edu RI Liu, Jian/I-6746-2013; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; FU DOD-ARO [0402-17291]; NSF [DMR-0747808]; U.S. Department of Energy, Office of Science [DEAC02-06CH11357] FX The authors acknowledge fruitful discussions with D. Khomskii, A. Millis, and G. A. Sawatzky. J.C. was supported by DOD-ARO under the Grant No. 0402-17291 and NSF Grant No. DMR-0747808. Work at the Advanced Photon Source, Argonne is supported by the U.S. Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. NR 24 TC 49 Z9 50 U1 3 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 7 PY 2010 VL 96 IS 23 AR 233110 DI 10.1063/1.3451462 PG 3 WC Physics, Applied SC Physics GA 609YX UT WOS:000278695900067 ER PT J AU Seo, H Park, CJ Cho, YJ Kim, YB Choi, DK AF Seo, Hyungtak Park, Chan-Jun Cho, Young-Je Kim, Young-Bae Choi, Duck-Kyun TI Correlation of band edge native defect state evolution to bulk mobility changes in ZnO thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID TEMPERATURE; HYDROGEN; DONOR AB The evolution of native defect states near conduction band present in ZnO thin films is correlated with the bulk electron density and mobility changes driven by the thermal structure modification. The evolution of band edge electronic structures of ZnO thin films was studied via the spectroscopic detection of empty localized defect states in conduction band (CB) edge and occupied defect states in valence band using spectroscopic ellipsometry and x-ray photoemission spectroscopy. The energy depth of native defect states against CB edge revealed the direct correlation to Hall mobility values for ZnO thin films. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3424790] C1 [Seo, Hyungtak] Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seo, Hyungtak] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Chan-Jun; Cho, Young-Je; Choi, Duck-Kyun] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. [Kim, Young-Bae] Samsung Adv Inst Technol, Suwon 440600, South Korea. RP Seo, H (reprint author), Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM duck@hanyang.ac.kr FU Ministry of Education, Science, and Technology [R11-2005-048-00000-0]; Ministry of Knowledge Economy, Korean Government [F0004061-2009-32] FX This work was supported by a Korea Science and Engineering Foundation grant funded by the Ministry of Education, Science, and Technology (No. R11-2005-048-00000-0, SRC/ERC Program, CMPS) and the Information Display R&D Center grant funded by the Ministry of Knowledge Economy (No. F0004061-2009-32, the 21st Century Frontier R&D Program) of the Korean Government. We also acknowledge Professor David Aspnes for the collaboration on SE measurements. NR 14 TC 26 Z9 26 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 7 PY 2010 VL 96 IS 23 AR 232101 DI 10.1063/1.3424790 PG 3 WC Physics, Applied SC Physics GA 609YX UT WOS:000278695900038 ER PT J AU Sheng, G Li, YL Zhang, JX Choudhury, S Jia, QX Gopalan, V Schlom, DG Liu, ZK Chen, LQ AF Sheng, G. Li, Y. L. Zhang, J. X. Choudhury, S. Jia, Q. X. Gopalan, V. Schlom, D. G. Liu, Z. K. Chen, L. Q. TI A modified Landau-Devonshire thermodynamic potential for strontium titanate SO APPLIED PHYSICS LETTERS LA English DT Article ID K PHASE-TRANSITION; SOFT PHONON MODES; INDUCED FERROELECTRICITY; THIN-FILMS; SRTIO3 AB The range of reported values of the Landau energy coefficients of bulk SrTiO3 leads to uncertainty in not only the magnitude but also the direction of the calculated spontaneous polarization in SrTiO3 thin films in a state of biaxial tension. In this study, we use experimental results from strained SrTiO3 films together with phase-field simulations to refine the values of the Landau energy coefficients and report a modified thermodynamic potential for bulk strontium titanate. The transition temperatures and ferroelectric/antiferrodistortive domain stabilities predicted from this modified potential agree well with measurements on biaxially strained SrTiO3 thin films. (C) 2010 American Institute of Physics. [doi:10.1063/1.3442915] C1 [Sheng, G.; Zhang, J. X.; Choudhury, S.; Gopalan, V.; Liu, Z. K.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Li, Y. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Sheng, G (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM shengguang@psu.edu RI Sheng, Guang/C-2043-2012; Choudhury, Samrat/B-4115-2009; Zhang, Jingxian/B-2253-2010; Jia, Q. X./C-5194-2008; Chen, LongQing/I-7536-2012; Schlom, Darrell/J-2412-2013; Liu, Zi-Kui/A-8196-2009 OI Chen, LongQing/0000-0003-3359-3781; Schlom, Darrell/0000-0003-2493-6113; Liu, Zi-Kui/0000-0003-3346-3696 FU DOE [DOE DE-FG02-07ER46417]; NSF [IIP-0737759, DMR-0820404, DMR-0908718, DMR-9983532, DMR-0122638]; Materials Simulation Center; Graduate Education and Research Services at PSU; Center for Integrated Nanotechnologies FX This work was supported by the DOE under the Grant No. DOE DE-FG02-07ER46417 (Sheng and Chen) and NSF under Grant No. IIP-0737759 (Liu). The computer simulations were carried out on the LION clusters at PSU supported in part by the NSF (Grant Nos. DMR-0820404, DMR-0908718, DMR-9983532, and DMR-0122638) and in part by the Materials Simulation Center and the Graduate Education and Research Services at PSU. The work at LANL was supported by DOE through the LANL/LDRD Program and the Center for Integrated Nanotechnologies (Jia). NR 22 TC 10 Z9 10 U1 1 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 7 PY 2010 VL 96 IS 23 AR 232902 DI 10.1063/1.3442915 PG 3 WC Physics, Applied SC Physics GA 609YX UT WOS:000278695900053 ER PT J AU Zehnder, RA Clark, DL Scott, BL Donohoe, RJ Palmer, PD Runde, WH Hobart, DE AF Zehnder, Ralph A. Clark, David L. Scott, Brian L. Donohoe, Robert J. Palmer, Phillip D. Runde, Wolfgang H. Hobart, David E. TI Investigation of the Structural Properties of an Extended Series of Lanthanide Bis-hydroxychlorides Ln(OH)(2)Cl (Ln = Nd-Lu, except Pm and Sm) SO INORGANIC CHEMISTRY LA English DT Article ID RARE-EARTH ELEMENTS; LATTICE PARAMETERS; RAMAN-SPECTRA; SOLVOTHERMAL TREATMENT; CRYSTAL STRUCTURES; TRICHLORIDE; CHLORIDE; DECOMPOSITION; LN(OH)2CL; OXYCHLORIDES AB The trivalent lanthanide bis-hydroxychloride compounds, Ln(OH)(2)Cl, (Ln = Nd through Lu, with the exception of Pm and Sm) have been prepared by hydrothermal synthesis starting with LnCl(3)center dot nH(2)O. These compounds were synthesized at temperatures not exceeding the melting point of the Teflon liners in the Parr autoclaves (similar to 220 degrees C). The compounds obtained were characterized by single crystal X-ray diffraction analysis, diffuse reflectance, FT-IR, and FT-Raman spectroscopies. Most of the lanthanide(III) bis-hydroxychlorides are isostructural and generally crystallize in the monoclinic space group P2(1)/m. The bis-hydroxychlorides of the heavier lanthanide(III) atoms with smaller ionic radii also crystallize in the orthorhombic crystal system. Apparently hydrogen bonds between the OH groups and the Cl atoms connect the layers in the "c" direction. These H-bonds seem to be the driving force for the angle beta of the monoclinic complexes to decrease with decreasing ionic radius of the Ln(III) ion and also for tying the layers together more strongly. As a result of this behavior, the structure of the heavier 4f analogues significantly resembles that of their orthorhombic counterparts. The heavier lanthanide bis-hydroxychlorides preferentially crystallize in the orthorhombic modification. The IR absorbance and Raman frequencies of the hydroxide ligands correlate as a function of the central lanthanide(III) ionic radius. This observation is corroborated by X-ray diffraction (XRD) structural data. These compounds are quite insoluble in near-neutral and basic aqueous solutions, but soluble in acidic solutions. It is expected that the analogue actinide bis-hydroxychlorides exhibit similar behavior and that this may have important implications in the immobilization and safe disposal of nuclear waste. C1 [Zehnder, Ralph A.] Univ Louisiana Monroe, Dept Chem, Monroe, LA 71209 USA. [Scott, Brian L.; Palmer, Phillip D.; Runde, Wolfgang H.; Hobart, David E.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Donohoe, Robert J.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Clark, David L.; Hobart, David E.] Los Alamos Natl Lab, Glenn T Seaborg Inst Transactinium Sci, Los Alamos, NM 87545 USA. RP Zehnder, RA (reprint author), Univ Louisiana Monroe, Dept Chem, Monroe, LA 71209 USA. EM zehnder@ulm.edu; dhobart@lanl.gov RI Clark, David/A-9729-2011; Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE at Los Alamos [DE-AC52-06NA25396]; Glenn T. Seaborg Institute at Los Alamos FX This work was supported at Los Alamos by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE, and the, Glenn T. Seaborg Institute at Los Alamos. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We also thank Dr. Brendan Twamley (Dublin City University, Dublin, Ireland) and Dr. Thomas Fanghanel (Institute for Transuranium Elements, in Karlsruhe, Germany), for helpful comments and discussions. We dedicate this article to the memory of our esteemed co-author Dr. Robert J. Donohoe. NR 42 TC 16 Z9 16 U1 5 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 7 PY 2010 VL 49 IS 11 BP 4781 EP 4790 DI 10.1021/ic901617c PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 602AI UT WOS:000278110100019 PM 20462251 ER PT J AU Thallapally, PK Motkuri, RK Fernandez, CA McGrail, BP Behrooz, GS AF Thallapally, Praveen K. Motkuri, Radha Kishan Fernandez, Carlos A. McGrail, B. Peter Behrooz, Ghorishi S. TI Prussian Blue Analogues for CO2 and SO2 Capture and Separation Applications SO INORGANIC CHEMISTRY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; COORDINATION POLYMERS; RETICULAR CHEMISTRY; NONPOROUS CRYSTAL; HYDROGEN STORAGE; ROOM-TEMPERATURE; HIGH-CAPACITY; DESIGN; SORPTION AB Adsorption isotherms of pure gases present in flue gas including CO2, N-2, SO2, NO, H2S, and water were studied using prussian blues of chemical formula M-3[Co(CN)(6)](2)center dot nH(2)O (M = Co, Zn) using an HPVA-100 volumetric gas analyzer and other spectroscopic methods. All the samples were characterized, and the microporous nature of the samples was studied using the BET isotherm. These materials adsorbed 8-10 wt % of CO2 at room temperature and 1 bar of pressure with heats of adsorption ranging from 200 to 300 Btu/lb of CO2, which is lower than monoethanolamine (750 Btu/lb of CO2) at the same mass loading. At high pressures (30 bar and 298 K), these materials adsorbed approximately 20-30 wt % of CO2, which corresponds to 3 to 5 molecules of CO2 per formula unit. Similar gas adsorption isotherms for SO2, H2S, and NO were collected using a specially constructed volumetric gas analyzer. At close to 1 bar of equilibrium pressure, these materials sorb around 2.5, 2.7, and 1.2 mmol/g of SO2, H2S, and NO. In particular, the uptake of SO2 and H2S in Co-3[Co(CN)(6)](2) is quite significant since it sorbs around 10 and 4.5 wt % at 0.1 bar of pressure. The stability of prussian blues before and after trace gases was studied using a powder X-ray diffraction instrument, which confirms these materials do not decompose after exposure to trace gases. C1 [Thallapally, Praveen K.; Motkuri, Radha Kishan; Fernandez, Carlos A.; McGrail, B. Peter] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Behrooz, Ghorishi S.] Babcock & Wilcox Co, Barberton, OH 44203 USA. RP Thallapally, PK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Praveen.Thallapally@pnl.gov RI Motkuri, Radha/F-1041-2014; thallapally, praveen/I-5026-2014 OI Motkuri, Radha/0000-0002-2079-4798; thallapally, praveen/0000-0001-7814-4467 FU Laboratory Directed Research Development funding; Babcock and Wilcox Company; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was initially started under Laboratory Directed Research Development funding and later supported by The Babcock and Wilcox Company. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 56 TC 62 Z9 62 U1 12 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 7 PY 2010 VL 49 IS 11 BP 4909 EP 4915 DI 10.1021/ic902397w PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 602AI UT WOS:000278110100032 PM 20166714 ER PT J AU Bischoff, FA Valeev, EF Klopper, W Janssen, CL AF Bischoff, Florian A. Valeev, Edward F. Klopper, Wim Janssen, Curtis L. TI Scalar relativistic explicitly correlated R12 methods SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atomic structure; electron correlations; isoelectronic series; perturbation theory; relativistic corrections; wave functions ID 2ND-ORDER PERTURBATION-THEORY; DOUGLAS-KROLL TRANSFORMATION; DIRAC-EQUATION; GENERAL-THEORY; WAVE-FUNCTIONS; BASIS-SETS; PSEUDOPOTENTIALS; CHEMISTRY; EXPANSION; COMPONENT AB Combinations of explicitly correlated R12 wave functions with relativistic Douglas-Kroll-Hess (DKH) Hamiltonians are discussed. We considered several ways to incorporate the relativistic terms into the second-order Moller-Plesset R12 method and applied them to the helium isoelectronic series to investigate their accuracy and numerical stability. Among the approaches are the evaluation of the relativistic terms via double resolution-of-the-identity and the explicit evaluation of all terms up to O(c(-4)) using the Pauli Hamiltonian. Numerical collapse of the latter can be avoided if the R12 amplitudes are determined by Kato's cusp condition. Closed formulas for new two-electron integrals that include the mass-velocity term have been derived and implemented into the LIBINT2 integral library. The proposed approaches are not restricted to DKH and can be combined with other one- and two-component relativistic Hamiltonians. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3417984] C1 [Bischoff, Florian A.; Valeev, Edward F.] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Klopper, Wim] Karlsruhe Inst Technol, CFN, D-76131 Karlsruhe, Germany. [Klopper, Wim] Karlsruhe Inst Technol, Inst Phys Chem, D-76131 Karlsruhe, Germany. [Janssen, Curtis L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Bischoff, FA (reprint author), Virginia Tech, Dept Chem, 107 Davidson Hall, Blacksburg, VA 24061 USA. EM fbischoff@vt.edu; evaleev@vt.edu RI Valeyev, Eduard/A-5313-2009; Klopper, Wim/I-3163-2014 OI Valeyev, Eduard/0000-0001-9923-6256; Klopper, Wim/0000-0002-5219-9328 FU Fonds der Chemischen Industrie; American Chemical Society Petroleum Research Fund [46811-G6]; U.S. National Science Foundation [CHE-0847295]; Deutsche Forschungsgemeinschaft FX F.A.B. acknowledges financial support of the Fonds der Chemischen Industrie. E.F.V. is grateful to the Donors of the American Chemical Society Petroleum Research Fund (Grant No. 46811-G6) and the U.S. National Science Foundation (CAREER Award No. CHE-0847295). E.F.V. is an Alfred P. Sloan Research Fellow and a Camille Dreyfus Teacher-Scholar. W.K. acknowledges the Deutsche Forschungsgemeinschaft for support. NR 30 TC 13 Z9 13 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2010 VL 132 IS 21 AR 214104 DI 10.1063/1.3417984 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 607NX UT WOS:000278511900007 PM 20528015 ER PT J AU Chen, JY Kim, M Yoo, CS Dattelbaum, DM Sheffield, S AF Chen, Jing-Yin Kim, Minseob Yoo, Choong-Shik Dattelbaum, Dana M. Sheffield, Stephen TI Phase transition and chemical decomposition of hydrogen peroxide and its water mixtures under high pressures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE crystal structure; decomposition; densification; high-pressure solid-state phase transformations; hydrogen compounds; liquid mixtures; melting; nucleation; Raman spectra; X-ray diffraction ID X-RAY-DIFFRACTION; EQUATION-OF-STATE; OXYGEN; GPA; DIHYDRATE; CRYSTAL; VII AB We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa-just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3429986] C1 [Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. [Dattelbaum, Dana M.; Sheffield, Stephen] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, JY (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM jychen@wsu.edu FU U.S. DHS [2008-ST-061-ED0001]; NSF-DMR [0854618] FX The x-ray work was done using the HPCAT beamline of the APS. We appreciate Dr. Yue Meng at the HPCAT for her assistance. The present study has been supported by the U.S. DHS under Award No. 2008-ST-061-ED0001 and NSF-DMR (Grant No. 0854618). The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. NR 31 TC 6 Z9 6 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2010 VL 132 IS 21 AR 214501 DI 10.1063/1.3429986 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 607NX UT WOS:000278511900017 PM 20528025 ER PT J AU Qin, W Lu, WC Zang, QJ Zhao, LZ Chen, GJ Wang, CZ Ho, KM AF Qin, Wei Lu, Wen-Cai Zang, Qing-Jun Zhao, Li-Zhen Chen, Guang-Ju Wang, C. Z. Ho, K. M. TI Geometric structures of Ge-n (n=34-39) clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; atomic clusters; density functional theory; germanium; metal clusters; tight-binding calculations ID ION MOBILITY MEASUREMENTS; GERMANIUM CLUSTERS; GROWTH-PATTERNS; SILICON; MODEL; INFORMATION; TRANSITION; SPHERES; SI AB The structures of Ge-n (n=34-39) clusters were searched by a genetic algorithm using a tight-binding interatomic potential. First-principles calculations based on density functional theory were performed to further identify the lowest-energy structures. The calculated results show that Ge-n (n=34-39) clusters favor prolate or Y-shaped three-arm structures consisting of two or three small stable clusters (Ge-6, Ge-7, Ge-9, or Ge-10) linked by a Ge-6 or Ge-9 bulk unit. The calculated results suggest the transition point from prolate to Y-shaped three-arm structures appears at Ge-35 or Ge-36. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3425995] C1 [Qin, Wei; Lu, Wen-Cai] Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai; Zang, Qing-Jun; Zhao, Li-Zhen] Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Coll Phys, Qingdao 266071, Shandong, Peoples R China. [Zang, Qing-Jun; Chen, Guang-Ju] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Qin, W (reprint author), Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 FU National Natural Science Foundation of China [20773047, 60028403]; U.S. Department of Energy [DE-AC02-07CH11358]; Energy Research, Office of Basic Energy; National Energy Research Supercomputing Center (NERSC) in Berkeley FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 20773047 and 60028403). Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was also supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. NR 29 TC 12 Z9 12 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2010 VL 132 IS 21 AR 214509 DI 10.1063/1.3425995 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 607NX UT WOS:000278511900025 PM 20528033 ER PT J AU Hernandez-Garcia, MR Masri, SF Ghanem, R Figueiredo, E Farrar, CR AF Hernandez-Garcia, Miguel R. Masri, Sami F. Ghanem, Roger Figueiredo, Eloi Farrar, Charles R. TI An experimental investigation of change detection in uncertain chain-like systems SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID NONPARAMETRIC IDENTIFICATION; MULTIDEGREE; MODELS AB Promising ongoing research oil "smart" sensing technologies is offering low-cost alternatives and new opportunities for large-scale SHM. Networks of sensors with wireless communication and computational capabilities can be used to increase the spatial resolution of data collection while providing a distributed Computing framework for implementing structural health monitoring algorithms. Robust and practical SHM methodologies being able to rapidly and accurately detect and assess changes in the monitored system are required to be at the core of these "smart" structures. A data-driven non-parametric identification technique is used to implement a robust change detection methodology for uncertain MDOF chain-like systems that can be implemented in densely distributed smart-sensor networks. Experimental data from a test-bed structure tested at Los Alamos National Laboratory are used to evaluate the effectiveness and reliability of the proposed SHM methodology. The results of this Study showed that the proposed approach was able, in a rigorous statistical framework, to confidently detect the presence of structural changes, accurately locate the structural section where the change occurred, and provide an accurate estimate of the actual level of "change". Additionally, a full-order finite element model of the test structure, as well as the results from the experimental modal identification using the ERA algorithm were employed to validate the results obtained in this change-detection Study. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hernandez-Garcia, Miguel R.; Masri, Sami F.; Ghanem, Roger] Univ So Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA. [Figueiredo, Eloi] Univ Porto, Dept Civil Engn, P-4200465 Oporto, Portugal. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Masri, SF (reprint author), Univ So Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA. EM miguelrh@usc.edu; masri@usc.edu; ghanem@usc.edu; eloi.figueiredo@fe.up.pt; farrar@lanl.gov RI Ghanem, Roger/B-8570-2008; OI Ghanem, Roger/0000-0002-1890-920X; Figueiredo, Eloi/0000-0002-9168-6903; Farrar, Charles/0000-0001-6533-6996 FU National Science Foundation FX This study was supported in part by a grant from the National Science Foundation. NR 41 TC 17 Z9 17 U1 0 U2 4 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD JUN 7 PY 2010 VL 329 IS 12 BP 2395 EP 2409 DI 10.1016/j.jsv.2009.12.024 PG 15 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 569FT UT WOS:000275582700008 ER PT J AU Mascarenas, DDL Flynn, EB Todd, MD Overly, TG Farinholt, KM Park, G Farrar, CR AF Mascarenas, David D. L. Flynn, Eric B. Todd, Michael D. Overly, Timothy G. Farinholt, Kevin M. Park, Gyuhae Farrar, Charles R. TI Development of capacitance-based and impedance-based wireless sensors and sensor nodes for structural health monitoring applications SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID DAMAGE IDENTIFICATION AB A field demonstration of a new and hybrid wireless sensing network paradigm for structural health monitoring (SHM) is presented. In this paradigm, both power and data interrogation commands are conveyed via a mobile agent that is sent to each sensor node to perform individual interrogations, which can alleviate several limitations of traditional sensing networks. This paper will discuss such prototype systems, which will be used to interrogate capacitive-based and impedance-based sensors for SHM applications. The capacitive-based wireless sensor node is specifically built to collect peak displacement measurements, In addition, a wireless sensor node for collecting electromechanical impedance data has also been developed. Both sensor nodes are specifically designed to accept various power sources and to be wirelessly triggered on an as-needed basis so that they can be used for the hybrid sensing network approach. The capabilities of these miniaturized and portable devices are demonstrated in the laboratory and the field, which was performed at the Alamosa Canyon Bridge in southern New Mexico. Published by Elsevier Ltd. C1 [Overly, Timothy G.; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Mascarenas, David D. L.; Flynn, Eric B.; Todd, Michael D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Mail Stop T001, Los Alamos, NM 87545 USA. EM gpark@lanl.gov OI Farrar, Charles/0000-0001-6533-6996 NR 20 TC 7 Z9 7 U1 3 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD JUN 7 PY 2010 VL 329 IS 12 BP 2410 EP 2420 DI 10.1016/j.jsv.2009.07.021 PG 11 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 569FT UT WOS:000275582700009 ER PT J AU Mascarenas, DL Flynn, EB Todd, MD Overly, TG Farinholt, KM Park, G Farrar, CR AF Mascarenas, David L. Flynn, Eric B. Todd, Michael D. Overly, Timothy G. Farinholt, Kevin M. Park, Gyuhae Farrar, Charles R. TI Experimental studies of using wireless energy transmission for powering embedded sensor nodes SO JOURNAL OF SOUND AND VIBRATION LA English DT Article AB A major challenge impeding the deployment Of Wireless sensor networks for structural health monitoring (SHM) is developing a means to Supply power to the sensor nodes in an efficient manner. In this paper, we explore possible solutions to this challenge by using a mobile-host based wireless energy transmission system to provide both power and data interrogation commands to sensor nodes. The mobile host features the capability of wirelessly transmitting energy to sensor nodes on an as-needed basis. In addition, it serves as a central data repository and processing center for the data collected from the sensing network. The wirelessly transmitted microwave energy is captured by a receiving antenna, transformed into DC power by a rectifying circuit, and stored in a storage medium to provide the required energy to the sensor node. The application of wireless energy transmission is targeted toward SHM sensor nodes that have been recently developed by the authors, which can be used to collect peak mechanical displacements or piezoelectric impedance measurements. This paper will describe considerations needed to design such energy transmission systems, experimental procedure and results, method of increasing the efficiency, energy conditioning circuits and storage medium, and target applications. Experimental results from a field test on the Alamosa Canyon Bridge in southern New Mexico will also be presented. Published by Elsevier Ltd. C1 [Overly, Timothy G.; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Mascarenas, David L.; Flynn, Eric B.; Todd, Michael D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Mail Stop T001, Los Alamos, NM 87545 USA. EM gpark@lanl.gov OI Farrar, Charles/0000-0001-6533-6996 NR 13 TC 10 Z9 10 U1 2 U2 9 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD JUN 7 PY 2010 VL 329 IS 12 BP 2421 EP 2433 DI 10.1016/j.jsv.2009.10.023 PG 13 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 569FT UT WOS:000275582700010 ER PT J AU Bauer, AL Jackson, TL Jiang, Y Rohlf, T AF Bauer, Amy L. Jackson, Trachette L. Jiang, Yi Rohlf, Thimo TI Receptor cross-talk in angiogenesis: Mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE Signal transduction; Integrin; Cadherin; Cancer; VEGF-RTK ID VASCULAR ENDOTHELIAL CADHERIN; BETA-CATENIN; PROTEIN-KINASE; INTEGRIN; EXPRESSION; VEGF; RHO; ACTIVATION; COMPONENTS; COMPLEXES AB Cancer invasion and metastasis depend on tumor-induced angiogenesis, the means by which cancer cells attract and maintain a blood supply. During angiogenesis, cellular processes are tightly coordinated by signaling molecules and their receptors. Understanding how endothelial cells synthesize multiple biochemical signals can catalyze the development of novel therapeutic strategies to combat cancer. This study is the first to propose a signal transduction model highlighting the cross-talk between key receptors involved in angiogenesis, namely the VEGF, integrin, and cadherin receptors. From experimental data, we construct a network model of receptor cross-talk and analyze its dynamics. We identify relationships between receptor activation combinations and cellular function, and show that cross-talk is crucial to phenotype determination. The network converges to a unique set of output states that correspond to known cell phenotypes: migratory, proliferating, quiescent, apoptotic, and it predicts one phenotype that challenges the "go or grow" hypothesis. Finally, we use the model to study protein inhibition and to suggest molecular targets for anti-angiogenic therapies. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bauer, Amy L.; Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Jackson, Trachette L.] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA. [Bauer, Amy L.; Rohlf, Thimo] Santa Fe Inst, Santa Fe, NM 87501 USA. [Rohlf, Thimo] Max Planck Inst Math Sci, D-04103 Leipzig, Germany. RP Bauer, AL (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop B262, Los Alamos, NM 87544 USA. EM albauer@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; Alfred P. Sloan Foundation; James S. McDonnell Foundation FX This work was performed as part of the PhD dissertation research of ALB. ALB and YJ acknowledge support from the US Department of Energy under Contract no. DE-AC52-06NA25396. TLJ was supported in part by the Alfred P. Sloan Foundation and the James S. McDonnell Foundation. NR 53 TC 29 Z9 29 U1 2 U2 9 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD JUN 7 PY 2010 VL 264 IS 3 BP 838 EP 846 DI 10.1016/j.jtbi.2010.03.025 PG 9 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 645LY UT WOS:000281460900021 PM 20307549 ER PT J AU Wang, X Hilton, DJ Reno, JL Mittleman, DM Kono, J AF Wang, X. Hilton, D. J. Reno, J. L. Mittleman, D. M. Kono, J. TI Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases SO OPTICS EXPRESS LA English DT Article AB We have observed long-lived (similar to 30 ps) coherent oscillations of charge carriers due to cyclotron resonance (CR) in high-mobility two-dimensional electrons in GaAs in perpendicular magnetic fields using time-domain terahertz spectroscopy. The observed coherent oscillations were fitted well by sinusoids with exponentially-decaying amplitudes, through which we were able to provide direct and precise measures for the decay times and oscillation frequencies simultaneously. This method thus overcomes the CR saturation effect, which is known to prevent determination of true CR linewidths in high-mobility electron systems using Fourier-transform infrared spectroscopy. (C) 2010 Optical Society of America C1 [Wang, X.; Mittleman, D. M.; Kono, J.] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Hilton, D. J.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. [Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA. RP Wang, X (reprint author), Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. EM kono@rice.edu RI Hilton, David/E-4929-2010 FU National Science Foundation [DMR-0134058, DMR-0325474, OISE-0530220]; Robert A. Welch Foundation [C-1509]; US Department of Energy, Center for Integrated Nanotechnologies, Sandia National Laboratories [DE-AC04-94AL85000] FX We thank the following agencies for supporting this research: the National Science Foundation (through Award Nos. DMR-0134058, DMR-0325474, and OISE-0530220) and the Robert A. Welch Foundation (through Grant No. C-1509). This work was performed in part at the US Department of Energy, Center for Integrated Nanotechnologies, Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 12 TC 20 Z9 20 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 7 PY 2010 VL 18 IS 12 BP 12354 EP 12361 DI 10.1364/OE.18.012354 PG 8 WC Optics SC Optics GA 607SU UT WOS:000278527700036 PM 20588361 ER PT J AU Tian, Z Azad, AK Lu, XC Gu, JQ Han, JG Xing, QR Taylor, AJ O'Hara, JF Zhang, WL AF Tian, Zhen Azad, Abul K. Lu, Xinchao Gu, Jianqiang Han, Jiaguang Xing, Qirong Taylor, Antoinette J. O'Hara, John F. Zhang, Weili TI Large dynamic resonance transition between surface plasmon and localized surface plasmon modes SO OPTICS EXPRESS LA English DT Article ID SUBWAVELENGTH HOLE ARRAYS; TERAHERTZ TRANSMISSION; OPTICAL-TRANSMISSION; APERTURES; RADIATION; THICKNESS AB We present resonant terahertz transmission in a composite plasmonic film comprised of an array of subwavelength metallic patches and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to pi/2 phase shift achieved in the composite plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics. (C) 2010 Optical Society of America C1 [Tian, Zhen; Lu, Xinchao; Gu, Jianqiang; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Tian, Zhen; Gu, Jianqiang; Han, Jiaguang; Xing, Qirong] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China. [Tian, Zhen; Gu, Jianqiang; Han, Jiaguang; Xing, Qirong] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China. [Tian, Zhen; Gu, Jianqiang; Han, Jiaguang; Xing, Qirong] Minist Educ, Key Lab Optoelect Informat & Tech Sci, Tianjin 300072, Peoples R China. [Azad, Abul K.; Taylor, Antoinette J.; O'Hara, John F.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Han, Jiaguang] Natl Univ Singapore, Dept Phys, Singapore 117548, Singapore. RP Tian, Z (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM weili.zhang@okstate.edu RI Zhang, Weili/C-5416-2011; Tian, Zhen/D-8707-2015; Azad, Abul/B-1163-2011; OI Zhang, Weili/0000-0002-8591-0200; Tian, Zhen/0000-0002-2861-4325; Azad, Abul/0000-0002-7784-7432 FU U.S. National Science Foundation; National Key Basic Research Foundation of China [2007CB310403, 2007CB310408]; National Natural Science Foundation of China [60578037]; Tianjin Sci-Tech Programs [08ZCKFZC28000, 07ZCGHHZ01100]; U.S. DOE FX This work was partly supported by the U.S. National Science Foundation, the National Key Basic Research Foundation of China (Grant Nos. 2007CB310403 and 2007CB310408), the National Natural Science Foundation of China (Grant No. 60578037), and the Tianjin Sci-Tech Programs (Grant Nos. 08ZCKFZC28000 and 07ZCGHHZ01100). The Los Alamos team gratefully acknowledges the support of the U.S. DOE through the LANL/LDRD Program for this work. NR 30 TC 15 Z9 16 U1 3 U2 26 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 7 PY 2010 VL 18 IS 12 BP 12482 EP 12488 DI 10.1364/OE.18.012482 PG 7 WC Optics SC Optics GA 607SU UT WOS:000278527700049 PM 20588374 ER PT J AU Singh, R Al-Naib, IAI Koch, M Zhang, WL AF Singh, Ranjan Al-Naib, Ibraheem A. I. Koch, Martin Zhang, Weili TI Asymmetric planar terahertz metamaterials SO OPTICS EXPRESS LA English DT Article ID SPLIT-RING-RESONATORS; FREQUENCIES AB We report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence by use of terahertz time-domain spectroscopy. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the corner of the ring allows for an 85% modulation of the fundamental inductive-capacitive resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region. (C) 2010 Optical Society of America C1 [Singh, Ranjan; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Singh, Ranjan] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Al-Naib, Ibraheem A. I.; Koch, Martin] Univ Marburg, Dept Phys, D-35032 Marburg, Germany. RP Singh, R (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM ranjan@lanl.gov RI Singh, Ranjan/B-4091-2010; Al-Naib, Ibraheem/A-2344-2009; Zhang, Weili/C-5416-2011; OI Singh, Ranjan/0000-0001-8068-7428; Zhang, Weili/0000-0002-8591-0200; Al-Naib, Ibraheem/0000-0002-7499-0655 FU U.S. National Science Foundation FX The authors thank H. T. Chen, J. F. O'Hara and J. Zhou for their support and discussions. This work was supported by the U.S. National Science Foundation. NR 30 TC 59 Z9 65 U1 4 U2 35 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 7 PY 2010 VL 18 IS 12 BP 13044 EP 13050 DI 10.1364/OE.18.013044 PG 7 WC Optics SC Optics GA 607SU UT WOS:000278527700108 PM 20588433 ER PT J AU Stein, AF Ilavsky, J Kopace, R Bennett, EE Wen, H AF Stein, Ashley F. Ilavsky, Jan Kopace, Rael Bennett, Eric E. Wen, Han TI Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique SO OPTICS EXPRESS LA English DT Article ID SHEARING INTERFEROMETER; GRATING INTERFEROMETER; SCATTERING AB Iron oxide nano-particles have very different x-ray diffraction properties from tissue. They can be clearly visualized against suppressed tissue background in a single-shot x-ray diffraction imaging technique. This technique is able to acquire both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain. We describe the use of two orthogonal transmission gratings to selectively retain diffraction signal from iron oxide particles that are larger than a threshold size, while eliminating the background signal from soft tissue and bone. This approach should help the tracking of functionalized particles in cell labeling and targeted therapy. (C) 2010 Optical Society of America C1 [Stein, Ashley F.; Kopace, Rael; Bennett, Eric E.; Wen, Han] NHLBI, Imaging Phys Sect, Translat Med Branch, NIH, Bethesda, MD 20892 USA. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Stein, AF (reprint author), NHLBI, Imaging Phys Sect, Translat Med Branch, NIH, Bethesda, MD 20892 USA. EM wenh@nhlbi.nih.gov RI Bennett, Eric/A-2551-2013; Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013; Wen, Han/G-3081-2010 OI Ilavsky, Jan/0000-0003-1982-8900; Wen, Han/0000-0001-6844-2997 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 12 TC 13 Z9 13 U1 1 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 7 PY 2010 VL 18 IS 12 BP 13271 EP 13278 DI 10.1364/OE.18.013271 PG 8 WC Optics SC Optics GA 607SU UT WOS:000278527700131 PM 20588456 ER PT J AU Pabst, S Santra, R AF Pabst, Stefan Santra, Robin TI Alignment of asymmetric-top molecules using multiple-pulse trains SO PHYSICAL REVIEW A LA English DT Article ID ORIENTATION DEPENDENCE; IONIZATION; DYNAMICS AB We theoretically analyze the effectiveness of multiple-pulse laser alignment methods for asymmetric-top molecules. As an example, we choose SO(2) and investigate the alignment dynamics induced by two different sequences, each consisting of four identical laser pulses. Each sequence differs only in the time delay between the pulses. Equally spaced pulses matching the alignment revival of the symmetrized SO(2) rotor model are exploited in the first sequence. The pulse separations in the second sequence are short compared to the rotation dynamics of the molecule and monotonically increase the degree of alignment until the maximum alignment is reached. We point out the significant differences between the alignment dynamics of SO(2) treated as an asymmetric-top and a symmetric-top rotor, respectively. We also explain why the fast sequence of laser pulses creates considerably stronger one-dimensional molecular alignment for asymmetric-top molecules. In addition, we show that multiple-pulse trains with elliptically polarized pulses do not enhance one-dimensional alignment or create three-dimensional alignment. C1 [Pabst, Stefan; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Pabst, Stefan] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Santra, R (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Pabst, Stefan/J-6541-2013; Santra, Robin/E-8332-2014 OI Pabst, Stefan/0000-0003-1134-4629; Santra, Robin/0000-0002-1442-9815 FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-06CH11357] FX We thank James P. Cryan, Christian Buth, and Ryan N. Coffee for inspiring discussions and Cassandra Hunt for comments on the manuscript. This work was supported by the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-06CH11357. NR 33 TC 17 Z9 17 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 7 PY 2010 VL 81 IS 6 AR 065401 DI 10.1103/PhysRevA.81.065401 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 607DJ UT WOS:000278478600013 ER PT J AU Diallo, SO Pratt, DK Fernandes, RM Tian, W Zarestky, JL Lumsden, M Perring, TG Broholm, CL Ni, N Bud'ko, SL Canfield, PC Li, HF Vaknin, D Kreyssig, A Goldman, AI McQueeney, RJ AF Diallo, S. O. Pratt, D. K. Fernandes, R. M. Tian, W. Zarestky, J. L. Lumsden, M. Perring, T. G. Broholm, C. L. Ni, N. Bud'ko, S. L. Canfield, P. C. Li, H. -F. Vaknin, D. Kreyssig, A. Goldman, A. I. McQueeney, R. J. TI Paramagnetic spin correlations in CaFe2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article AB Magnetic correlations in the paramagnetic phase of CaFe2As2(T-N=172 K) have been examined by means of inelastic neutron scattering from 180 K (similar to 1.05T(N)) up to 300 K (1.8T(N)). Despite the first-order nature of the magnetic ordering, strong but short-ranged antiferromagnetic (AFM) correlations are clearly observed. These correlations, which consist of quasielastic scattering centered at the wave vector Q(AFM) of the low-temperature AFM structure, are observed up to the highest measured temperature of 300 K and at high energy transfer ((h)omega over bar > 60 meV). The L dependence of the scattering implies rather weak interlayer coupling in the tetragonal c direction corresponding to nearly two-dimensional fluctuations in the (ab) plane. The spin correlation lengths within the Fe layer are found to be anisotropic, consistent with underlying fluctuations of the AFM stripe structure. Similar to the cobalt-doped superconducting BaFe2As2 compounds, these experimental features can be adequately reproduced by a scattering model that describes short-ranged and anisotropic spin correlations with overdamped dynamics. C1 [Diallo, S. O.; Pratt, D. K.; Fernandes, R. M.; Tian, W.; Zarestky, J. L.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Li, H. -F.; Vaknin, D.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Diallo, S. O.; Pratt, D. K.; Fernandes, R. M.; Tian, W.; Zarestky, J. L.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Li, H. -F.; Vaknin, D.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lumsden, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Perring, T. G.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 OQX, Oxon, England. [Broholm, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Diallo, SO (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Broholm, Collin/E-8228-2011; Fernandes, Rafael/E-9273-2010; Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Diallo, Souleymane/B-3111-2016; Vaknin, David/B-3302-2009; Lumsden, Mark/F-5366-2012 OI Broholm, Collin/0000-0002-1569-9892; Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602; Diallo, Souleymane/0000-0002-3369-8391; Vaknin, David/0000-0002-0899-9248; Lumsden, Mark/0000-0002-5472-9660 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We thank V. P. Antropov, D. Johnston, and J. Schmalian for stimulating discussions. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Technical assistance of the staff at ORNL and ISIS is gratefully acknowledged. NR 39 TC 72 Z9 72 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 7 PY 2010 VL 81 IS 21 AR 214407 DI 10.1103/PhysRevB.81.214407 PG 10 WC Physics, Condensed Matter SC Physics GA 607EQ UT WOS:000278482100007 ER PT J AU Lloveras, P Castan, T Porta, M Planes, A Saxena, A AF Lloveras, Pol Castan, Teresa Porta, Marcel Planes, Antoni Saxena, Avadh TI Thermodynamics of stress-induced ferroelastic transitions: Influence of anisotropy and disorder SO PHYSICAL REVIEW B LA English DT Article ID SHAPE-MEMORY ALLOYS; PHASE FIELD MODEL; MARTENSITIC-TRANSFORMATION; STRAIN; HYSTERESIS; BEHAVIOR; ENERGY AB Stress-induced stress-strain constitutive behavior has been studied in detail in ferroelastic martensites. It has been found that the weights of the long-range anisotropic interactions and of the disorder are important to determine the fine structure of the stress-strain curves. As experiments show, a wide variety of behaviors has been observed. A decrease of anisotropy and/or increase in the disorder results in changes in the temperature range where pseudoplastic and superelastic regimes are observed. Also, a smoothing of the stress-induced ferroelastic transition, accompanied with a decrease in the transition stress and the hysteresis area, is found. However, Clausius-Clapeyron slope has been observed not to depend on the specific values of anisotropy and disorder. This is in general agreement with experimental results in different alloy families, although some particular features differ from those in experiments. Elastocaloric effect has been studied as well. Varying the anisotropy slightly modifies the shape of the entropy change-temperature curve but the magnitude of the entropy change remains essentially constant. C1 [Lloveras, Pol; Castan, Teresa; Porta, Marcel; Planes, Antoni] Univ Barcelona, Dept Estruct & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Lloveras, Pol; Castan, Teresa; Porta, Marcel; Planes, Antoni; Saxena, Avadh] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Catalonia, Spain. [Porta, Marcel; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lloveras, P (reprint author), Univ Barcelona, Dept Estruct & Constituents Mat, Diagonal 647, E-08028 Barcelona, Catalonia, Spain. RI Lloveras, Pol/M-3775-2014; Planes, Antoni/O-1904-2015; OI Lloveras, Pol/0000-0003-4133-2223; Planes, Antoni/0000-0001-5213-5714; Porta Tena, Marcel/0000-0001-7582-9671 FU CICyT (Spain) [MAT2007-61200]; U.S. Department of Energy; DGICyT (Spain) FX This work was supported by CICyT (Spain) Project No. MAT2007-61200 and the U.S. Department of Energy. P.Ll. acknowledges support from DGICyT (Spain). We acknowledge fruitful discussions with D. Sherrington. NR 37 TC 5 Z9 5 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 7 PY 2010 VL 81 IS 21 AR 214105 DI 10.1103/PhysRevB.81.214105 PG 8 WC Physics, Condensed Matter SC Physics GA 607EQ UT WOS:000278482100004 ER PT J AU Gutierrez-Guerrero, LX Bashir, A Cloet, IC Roberts, CD AF Gutierrez-Guerrero, L. X. Bashir, A. Cloet, I. C. Roberts, C. D. TI Pion form factor from a contact interaction SO PHYSICAL REVIEW C LA English DT Article ID DYSON-SCHWINGER EQUATIONS; QCD; PHYSICS; THEOREM; MODEL AB In a Poincare-covariant vector-boson-exchange theory, the pion possesses components of pseudovector origin, which materially influence its observable properties. For a range of such quantities, we explore the consequences of a momentum-independent interaction, regularized in a symmetry-preserving manner. The contact interaction, while capable of describing pion static properties, produces a form factor whose evolution for Q(2) > 0.17 GeV(2) disagrees markedly with experiment and whose asymptotic power-law behavior conflicts strongly with perturbative QCD. C1 [Gutierrez-Guerrero, L. X.; Bashir, A.] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico. [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Roberts, C. D.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. RP Gutierrez-Guerrero, LX (reprint author), Univ Michoacana, Inst Fis & Matemat, Apartado Postal 2-82, Morelia 58040, Michoacan, Mexico. OI Roberts, Craig/0000-0002-2937-1361 FU CIC; CONACyT [4.10, 46614-I]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG03-97ER4014]; US National Science Foundation [PHY-0903991] FX We acknowledge constructive input from P. C. Tandy. This work was supported by CIC and CONACyT grants, under Project Nos. 4.10 and 46614-I; the US Department of Energy, Office of Nuclear Physics, Contract Nos. DE-AC02-06CH11357 and DE-FG03-97ER4014; and the US National Science Foundation under Grant No. PHY-0903991 in conjunction with a CONACyT Mexico-USA Collaboration grant. NR 25 TC 37 Z9 37 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 7 PY 2010 VL 81 IS 6 AR 065202 DI 10.1103/PhysRevC.81.065202 PG 5 WC Physics, Nuclear SC Physics GA 607FD UT WOS:000278483500002 ER PT J AU Basar, GE Dunne, GV Kharzeev, DE AF Basar, Goekce E. Dunne, Gerald V. Kharzeev, Dmitri E. TI Chiral Magnetic Spirals SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; PARITY VIOLATION; HOT QCD; FIELD AB We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This "chiral magnetic spiral" is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC. C1 [Basar, Goekce E.; Dunne, Gerald V.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Basar, GE (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RI Basar, Gokce/O-6277-2016 FU US DOE [DE-FG02-92ER40716, DE-AC02-98CH10886] FX This work was supported by US DOE under Grants No. DE-FG02-92ER40716 (G. B. and G. D.) and No. DE-AC02-98CH10886 (D. K.). We thank V. Miransky for discussions. NR 27 TC 57 Z9 57 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 7 PY 2010 VL 104 IS 23 AR 232301 DI 10.1103/PhysRevLett.104.232301 PG 4 WC Physics, Multidisciplinary SC Physics GA 607DB UT WOS:000278477600004 PM 20867229 ER PT J AU Lee, K Kim, YH Sun, YY West, D Zhao, YF Chen, ZF Zhang, SB AF Lee, Kyuho Kim, Yong-Hyun Sun, Y. Y. West, D. Zhao, Yufeng Chen, Zhongfang Zhang, S. B. TI Hole-Mediated Hydrogen Spillover Mechanism in Metal-Organic Frameworks SO PHYSICAL REVIEW LETTERS LA English DT Article ID SADDLE-POINTS; STORAGE; MODEL; DYNAMICS; KINETICS; METHANE; DESIGN; MOFS AB Hydrogen spillover on carbon-based systems has been proposed as a viable alternative for room-temperature storage. Given the strength of the C-H bonds, however, it is unclear if spillover indeed takes place in such materials. We performed a first-principles study of H spillover on IRMOF-1. Spillover becomes thermodynamically stable only at high H coverage with a calculated Gibbs free energy of -14 kJ/mol at ambient condition. In general, however, spillover may not proceed due to high-energy states at lower H coverage. We propose that hole doping can substantially lower the energies as well as barriers to enable spillover at ambient conditions. C1 [Lee, Kyuho; Sun, Y. Y.; West, D.; Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Kim, Yong-Hyun; Zhao, Yufeng] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea. [Chen, Zhongfang] Univ Puerto Rico, Dept Chem, Inst Funct Nanomat, San Juan, PR 00931 USA. RP Lee, K (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM zhangs9@rpi.edu RI West, Damien/F-8616-2012; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; Sun, Yi-Yang/H-4029-2014; Chen, Zhongfang/A-3397-2008; Lee, Kyuho/B-9370-2008; Kim, Yong-Hyun/C-2045-2011 OI West, Damien/0000-0002-4970-3968; Zhang, Shengbai/0000-0003-0833-5860; Lee, Kyuho/0000-0001-9325-3717; Kim, Yong-Hyun/0000-0003-4255-2068 FU DOE/OS/BES; DOE/EERE [DE-AC36-08GO28308, J30546/J90336]; NSF [CHE-0716718]; Institute for Functional Nanomaterials (NSF) [0701525]; NRFK [R31-2008-000-10071-0] FX The authors thank the CCNI at RPI for the use of the supercomputer facilities. This work was supported by DOE/OS/BES and DOE/EERE under Grant No. DE-AC36-08GO28308 (subcontract to RPI No. J30546/J90336), by NSF Grant No. CHE-0716718, and by the Institute for Functional Nanomaterials (NSF Grant No. 0701525). Y.H.K. was supported by WCU program through the NRFK (R31-2008-000-10071-0). NR 29 TC 24 Z9 24 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 7 PY 2010 VL 104 IS 23 AR 236101 DI 10.1103/PhysRevLett.104.236101 PG 4 WC Physics, Multidisciplinary SC Physics GA 607DB UT WOS:000278477600011 PM 20867253 ER PT J AU Shiltsev, V AF Shiltsev, Vladimir TI Observations of Random Walk of the Ground in Space and Time SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDERS; MOTION AB We present results of micron-resolution measurements of the ground motions in large particle accelerators over the range of spatial scales L from several meters to tens of kilometers and time intervals T from minutes to several years and show that in addition to systematic changes due to tides or slow drifts, there is a stochastic component which has a "random-walk'' character both in time and in space. The measured mean square of the relative displacement of ground elements scales as dY(2) approximate to ATL over a broad range of the intervals, and the site dependent constant A is of the order of 10(-5+/-1) (mu m(2)/s)/m. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU United States Department of Energy [DE-AC02-07CH11359] FX The author is very thankful to many people from accelerators worldwide who provided me with raw data records for further ground diffusion analysis [16]. My special thanks to V. Parkhomchuk who brought my attention to the deep physics issues associated with ground motion and was the first who coined the term "ATL law." Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 17 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 7 PY 2010 VL 104 IS 23 AR 238501 DI 10.1103/PhysRevLett.104.238501 PG 4 WC Physics, Multidisciplinary SC Physics GA 607DB UT WOS:000278477600016 PM 20867277 ER PT J AU Blednykh, A Krinsky, S AF Blednykh, A. Krinsky, S. TI Loss factor for short bunches in azimuthally symmetric tapered structures SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We use the program ECHO to study numerically the loss factor of axisymmetric cavities and collimators with and without tapering. We consider a Gaussian driving bunch of length sigma, and structures with inner radius b, outer radius d, cavity gap (or collimator inner length) g, and taper length L. In all cases we consider a short bunch with sigma << b. For the untapered structures (L = 0), in certain regimes, we describe our numerical results using the known expressions for a step transition and for the diffraction model. In addition, we identify new regimes where g < sigma and/or d - b < sigma, for which the data must be described by new phenomenological expressions. For a tapered collimator with d - b > b, we present a phenomenological formula which accurately describes the dependence of the loss factor on the parameters sigma, b, d, and L. This formula also holds for a tapered cavity with g > d(2)/sigma and d - b > b. C1 [Blednykh, A.; Krinsky, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Blednykh, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU Department of Energy [DE-AC02-98CH10886] FX We thank Dr. I. Zagorodnov for making his ECHO code available for our use and B. Kosciuk for providing us with 3D rendering geometries. This work was supported by Department of Energy Contract No. DE-AC02-98CH10886. NR 10 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 7 PY 2010 VL 13 IS 6 AR 064401 DI 10.1103/PhysRevSTAB.13.064401 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 607DH UT WOS:000278478400002 ER PT J AU Jin, S Lu, XY Lin, L Wu, AT Zhao, K AF Jin, Song Lu, Xiangyang Lin, Lin Wu, Andy T. Zhao, Kui TI Buffered electropolishing parameters on niobium sheet SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this paper, studies on applying a new electrolyte to treat the surfaces of Nb sheets, which was called buffered electropolishing (BEP), were reported. Through studies of the BEP I-V characteristic and optimization of main parameters such as acid agitation, temperature, etc., much faster Nb polishing rate and smoother surface finish were achieved in comparison with those obtained from the conventional electropolishing (EP). The average polishing rate could reach around 2.5 mu m/ min. It was over 7 times faster than that of the traditional EP. Meanwhile, the average surface mean square root roughness was around 50 nm over an area of (200 x 200) mu m(2). This study shows BEP has a great potential to replace the traditional EP process and becomes a new generation of technology for treating Nb superconducting radio frequency cavities. C1 [Jin, Song; Lu, Xiangyang; Lin, Lin; Zhao, Kui] Peking Univ, Sch Phys, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Wu, Andy T.] Thomas Jefferson Natl Accelerator Facil, Inst SRF Sci & Technol, Newport News, VA 23606 USA. RP Jin, S (reprint author), Peking Univ, Sch Phys, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM jsong@pku.edu.cn FU National Basic Research Program of China [2002CB713600] FX We would like to acknowledge Dr. Larry Philips from Jefferson Lab for providing some niobium sheets for our experiment. This work was supported by The National Basic Research Program of China (2002CB713600). NR 17 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 7 PY 2010 VL 13 IS 6 AR 061001 DI 10.1103/PhysRevSTAB.13.061001 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 607DH UT WOS:000278478400001 ER PT J AU Hainfeld, JF Dilmanian, FA Zhong, Z Slatkin, DN Kalef-Ezra, JA Smilowitz, HM AF Hainfeld, James F. Dilmanian, F. Avraham Zhong, Zhong Slatkin, Daniel N. Kalef-Ezra, John A. Smilowitz, Henry M. TI Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID METASTATIC BRAIN-TUMORS; DOSE ENHANCEMENT; MONTE-CARLO; LOW-ENERGY; IN-VIVO; CANCER; HYPERTHERMIA; RADIOTHERAPY; MODEL; BRACHYTHERAPY AB The purpose of this study is to test the hypothesis that gold nanoparticle (AuNP, nanogold)-enhanced radiation therapy (nanogold radiation therapy, NRT) is efficacious when treating the radiation resistant and highly aggressive mouse head and neck squamous cell carcinoma model, SCCVII, and to identify parameters influencing the efficacy of NRT. Subcutaneous (sc) SCCVII leg tumors in mice were irradiated with x-rays at the Brookhaven National Laboratory (BNL) National Synchrotron Light Source (NSLS) with and without prior intravenous (iv) administration of AuNPs. Variables studied included radiation dose, beam energy, temporal fractionation and hyperthermia. AuNP-mediated NRT was shown to be effective for the sc SCCVII model. AuNPs were more effective at 42 Gy than at 30 Gy (both at 68 keV median beam energy) compared to controls without gold. Similarly, at 157 keV median beam energy, 50.6 Gy NRT was more effective than 44 Gy NRT. At the same radiation dose (similar to 42 Gy), 68 keV was more effective than 157 keV. Hyperthermia and radiation therapy (RT) were synergistic and AuNPs enhanced this synergy, thereby further reducing TCD50 s (tumor control dose 50%) and increasing long-term survivals. It is concluded that gold nanoparticles enhance the radiation therapy of a radioresistant mouse squamous cell carcinoma. The data show that radiation dose, energy and hyperthermia influence efficacy and better define the potential utility of gold nanoparticles for cancer x-ray therapy. C1 [Smilowitz, Henry M.] Univ Connecticut, Ctr Hlth, Farmington, CT 06030 USA. [Hainfeld, James F.; Slatkin, Daniel N.] Nanoprobes Inc, Yaphank, NY 11980 USA. [Dilmanian, F. Avraham] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dilmanian, F. Avraham] SUNY Stony Brook, Dept Radiat Oncol, Stony Brook, NY 11794 USA. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Kalef-Ezra, John A.] Univ Ioannina, Sch Med, Med Phys Lab, GR-45110 Ioannina, Greece. RP Smilowitz, HM (reprint author), Univ Connecticut, Ctr Hlth, Farmington, CT 06030 USA. EM smilowitz@nso1.uchc.edu NR 56 TC 144 Z9 154 U1 3 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD JUN 7 PY 2010 VL 55 IS 11 BP 3045 EP 3059 DI 10.1088/0031-9155/55/11/004 PG 15 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 597HM UT WOS:000277747500004 PM 20463371 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, R Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermicher, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martin, B Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, R Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Prewitt, M Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yi, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermicher, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yi, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for single top quarks in the tau plus jets channel using 4.8 fb(-1) of p(p)over-bar collision data SO PHYSICS LETTERS B LA English DT Article DE Single top; Top quarks; Tau leptons ID EVENTS AB We present the first direct search for single top quark production using reconstructed tau leptons in the final state. The search is based on 4.8 fb(-1) of integrated luminosity collected in p (p) over bar collisions at root s= 1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We select events with a final state including an isolated tau lepton. missing transverse energy, two or three jets, one or two of them being identified as b quark jet. We use a multivariate technique to discriminate signal from background. The number of events observed in data in this final state is consistent with the signal plus background expectation. We set in the tau + jets channel an upper limit on the single top quark cross section of 7.3 pb at the 95% C.L. This measurement allows a gain of 4% in expected sensitivity for the observation of single top production when combining it with electron + jets and muon + jets channels already published by the DO Collaboration with 2.3 fb(-1) of data. We measure a combined cross section of 3.84(-0.83)(+0.89) pb, which is the most precise measurement to date. (C) 2010 Elsevier B.V. All rights reserved. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2PC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermicher, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Nilsen, H.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.; Parihar, V.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gerbaudo, D.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yi, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Khanov, A.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; West-Grid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 26 TC 13 Z9 13 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 7 PY 2010 VL 690 IS 1 BP 5 EP 14 DI 10.1016/j.physletb.2010.05.003 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 612VT UT WOS:000278933900002 ER PT J AU Clark, RM Gregorich, KE Berryman, JS Ali, MN Allmond, JM Beausang, CW Cromaz, M Deleplanque, MA Dragojevic, I Dvorak, J Ellison, PA Fallon, P Garcia, MA Gates, JM Gros, S Jeppesen, HB Kaji, D Lee, IY Macchiavelli, AO Morimoto, K Nitsche, H Paschalis, S Petri, M Stavsetra, L Stephens, FS Watanabe, H Wiedeking, M AF Clark, R. M. Gregorich, K. E. Berryman, J. S. Ali, M. N. Allmond, J. M. Beausang, C. W. Cromaz, M. Deleplanque, M. A. Dragojevic, I. Dvorak, J. Ellison, P. A. Fallon, P. Garcia, M. A. Gates, J. M. Gros, S. Jeppesen, H. B. Kaji, D. Lee, I. Y. Macchiavelli, A. O. Morimoto, K. Nitsche, H. Paschalis, S. Petri, M. Stavsetra, L. Stephens, F. S. Watanabe, H. Wiedeking, M. TI High-K multi-quasiparticle states in No-254 SO PHYSICS LETTERS B LA English DT Article DE Heavy elements; High-K isomers; Gamma-ray spectroscopy ID HEAVY-ELEMENTS; IN-BEAM; NUCLEI; DECAY; ISOMERS; SPECTROSCOPY; STABILITY; ISOTOPES AB We report results from an experiment on the decay of the high-K isomers in No-254. We have been able to establish the decay from the known high-lying four-quasiparticle isomer, which we assign as a K-pi = 16(+) state at an excitation energy of E-x = 2.928(3) MeV. The decay of this state passes through a rotational band based on a previously unobserved state at E-x = 2.012(2) MeV, which we suggest is based on a two-quasineutron configuration with K-pi =10(+). This state in turn decays to a rotational band based on the known K-pi = 8(-) isomer, which we infer must also have a two quasineutron configuration. We are able to assign many new gamma-rays associated with the decay of the K-pi = 8(-) isomer, including the identification of a highly K-forbidden Delta K = 8 E1 transition to the ground-state band. These results provide valuable new information on the orbitals close to the Fermi surface, pairing correlations, deformation and rotational response, and K-conservation in nuclei of the deformed trans-fermium region. (C) 2010 Elsevier B.V. All rights reserved. C1 [Clark, R. M.; Gregorich, K. E.; Berryman, J. S.; Ali, M. N.; Cromaz, M.; Deleplanque, M. A.; Dragojevic, I.; Dvorak, J.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gates, J. M.; Gros, S.; Jeppesen, H. B.; Lee, I. Y.; Macchiavelli, A. O.; Nitsche, H.; Paschalis, S.; Petri, M.; Stavsetra, L.; Stephens, F. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ali, M. N.; Dragojevic, I.; Ellison, P. A.; Garcia, M. A.; Gates, J. M.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Kaji, D.; Morimoto, K.; Watanabe, H.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Clark, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rmclark@lbl.gov RI Garcia, Mitch/G-2413-2010; Ali, Mazhar/C-6473-2013; Petri, Marina/H-4630-2016; Paschalis, Stefanos/H-8758-2016; OI Ali, Mazhar/0000-0002-1129-6105; Petri, Marina/0000-0002-3740-6106; Paschalis, Stefanos/0000-0002-9113-3778; Allmond, James Mitchell/0000-0001-6533-8721 FU US DoE [DE-AC02-05CH11231, DE-FG52-06NA26206, DE-FG02-05ER41379]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the operations staff of the 88-Inch Cyclotron. We thank T.L. Khoo and D. Seweryniak for technical discussions and participating in an earlier test experiment. One of us (R.M.C.) would like to express gratitude to Anna Hillgruber for her invaluable help during the experiment. This work has been supported in part by the US DoE under Contract No. DE-AC02-05CH11231 (LBNL) and under Grant Nos. DE-FG52-06NA26206 and DE-FG02-05ER41379. P.A.E. was supported by a US DoE NNSA Stewardship Science Graduate Fellowship. Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 35 TC 28 Z9 30 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 7 PY 2010 VL 690 IS 1 BP 19 EP 24 DI 10.1016/j.physletb.2010.04.079 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 612VT UT WOS:000278933900004 ER PT J AU Tang, ZW Wu, H Cort, JR Buchko, GW Zhang, YY Shao, YY Aksay, IA Liu, J Lin, YH AF Tang, Zhiwen Wu, Hong Cort, John R. Buchko, Garry W. Zhang, Youyu Shao, Yuyan Aksay, Ilhan A. Liu, Jun Lin, Yuehe TI Constraint of DNA on Functionalized Graphene Improves its Biostability and Specificity SO SMALL LA English DT Article DE biosensors; biostability; DNA; graphene; specificity ID WALLED CARBON NANOTUBES; GRAPHITE; DELIVERY; SHEETS; PROBES; FILMS; OXIDE; NMR C1 [Tang, Zhiwen; Wu, Hong; Cort, John R.; Buchko, Garry W.; Zhang, Youyu; Shao, Yuyan; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Aksay, Ilhan/B-9281-2008; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Buchko, Garry/G-6173-2015 OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Buchko, Garry/0000-0002-3639-1061 FU DOE [DE-AC05-76RL01830]; ARO MURI [W911NF-09-1-0476] FX The work performed at Pacific Northwest National Laboratory (PNNL) was supported by DOE's LDRD Program. The work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. I.A.A. acknowledges support from an ARO MURI under Grant No. W911NF-09-1-0476. NR 30 TC 186 Z9 191 U1 10 U2 94 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1613-6810 J9 SMALL JI Small PD JUN 6 PY 2010 VL 6 IS 11 BP 1205 EP 1209 DI 10.1002/smll.201000024 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 612YG UT WOS:000278941300008 PM 20461727 ER PT J AU Hendrix, W Schmidt, MC Breimyer, P Samatova, NF AF Hendrix, William Schmidt, Matthew C. Breimyer, Paul Samatova, Nagiza F. TI Theoretical underpinnings for maximal clique enumeration on perturbed graphs SO THEORETICAL COMPUTER SCIENCE LA English DT Article DE Graph perturbation theory; Maximal clique enumeration; Graph algorithms; Uncertain and noisy data ID INDEPENDENT SETS; INTERACTION NETWORKS; ALGORITHM; ALIGNMENT; PROTEINS AB The problem of enumerating the maximal cliques of a graph is a computationally expensive problem with applications in a number of different domains. Sometimes the benefit of knowing the maximal clique enumeration (MCE) of a single graph is worth investing the initial computation time. However, when graphs are abstractions of noisy or uncertain data, the MCE of several closely related graphs may need to be found, and the computational cost of doing so becomes prohibitively expensive. Here, we present a method by which the cost of enumerating the set of maximal cliques for related graphs can be reduced. By using the MCE for some baseline graph, the MCE for a modified, or perturbed, graph may be obtained by enumerating only the maximal cliques that are created or destroyed by the perturbation. When the baseline and perturbed graphs are relatively similar, the difference set between the two MCEs can be overshadowed by the maximal cliques common to both. Thus, by enumerating only the difference set between the baseline and perturbed graphs' MCEs, the computational cost of enumerating the maximal cliques of the perturbed graph can be reduced. We present necessary and sufficient conditions for enumerating difference sets when the perturbed graph is formed by several different types of perturbations. We also present results of an algorithm based on these conditions that demonstrate a speedup over traditional calculations of the MCE of perturbed, real biological networks. (C) 2010 Elsevier B.V. All rights reserved. C1 [Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Samatova, NF (reprint author), N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA. EM samatovan@ornl.gov FU US Department of Energy (Office of Advanced Scientific Computing Research, Office of Science) [DEAC05-00OR22725]; Department of Computer Science at North Carolina State University; Oak Ridge National Laboratory FX This research has been supported by the "Ultrascale Computational Modeling of Phenotype-Specific Metabolic Processes in Microbial Communities" project from US Department of Energy (Office of Advanced Scientific Computing Research, Office of Science). The work of MCS was also sponsored by the Dean of the Department of Computer Science at North Carolina State University. The work of NFS was also sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S. D.O.E. under contract no. DEAC05-00OR22725. NR 26 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3975 J9 THEOR COMPUT SCI JI Theor. Comput. Sci. PD JUN 6 PY 2010 VL 411 IS 26-28 BP 2520 EP 2536 DI 10.1016/j.tcs.2010.03.011 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA 608EE UT WOS:000278564600010 ER PT J AU Knopf, DA Wang, B Laskin, A Moffet, RC Gilles, MK AF Knopf, D. A. Wang, B. Laskin, A. Moffet, R. C. Gilles, M. K. TI Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CIRRUS CLOUD FORMATION; SOLID AMMONIUM-SULFATE; IN-SITU MEASUREMENTS; RELATIVE-HUMIDITY; OXALIC-ACID; AEROSOLS; EVOLUTION; NUCLEUS; WATER AB This study reports on heterogeneous ice nucleation activity of predominantly organic (or coated with organic material) anthropogenic particles sampled within and around the polluted environment of Mexico City. The onset of heterogeneous ice nucleation was observed as a function of particle temperature (T-p), relative humidity (RH), nucleation mode, and particle chemical composition which is influenced by photochemical atmospheric aging. Particle analyses included computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). In contrast to most laboratory studies employing proxies of organic aerosol, we show that anthropogenic organic particles collected in Mexico City can potentially induce ice nucleation at experimental conditions relevant to cirrus formation. The results suggest a new precedent for the potential impact of organic particles on ice cloud formation and climate. Citation: Knopf, D. A., B. Wang, A. Laskin, R. C. Moffet, and M. K. Gilles (2010), Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City, Geophys. Res. Lett., 37, L11803, doi: 10.1029/2010GL043362. C1 [Knopf, D. A.; Wang, B.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Moffet, R. C.; Gilles, M. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Laskin, A.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Knopf, DA (reprint author), SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Sch Marine & Atmospher Sci, 151 Dana Hall, Stony Brook, NY 11794 USA. EM knopf@stonybrook.edu RI Knopf, Daniel/F-2040-2011; Wang, Bingbing/B-6211-2011; Laskin, Alexander/I-2574-2012 OI Knopf, Daniel/0000-0001-7732-3922; Laskin, Alexander/0000-0002-7836-8417 FU NOAA [NA08OAR4310545]; Department of Energy's office of Biological and Environmental Research; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX The SBU research group acknowledges support by the NOAA Climate Program Office, Atmospheric Composition & Climate Program, grant NA08OAR4310545. The PNNL and LBNL groups acknowledge support from the Atmospheric System Research of the Department of Energy's office of Biological and Environmental Research. R. C. Moffet acknowledges partial support from a Lawrence Berkeley National Laboratory Glenn T. Seaborg Fellowship. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy. The Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute. The authors gratefully acknowledge help of Y. Desyaterik and R.J. Hopkins at the sampling sites. NR 37 TC 43 Z9 43 U1 1 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 5 PY 2010 VL 37 AR L11803 DI 10.1029/2010GL043362 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 606UG UT WOS:000278453200004 ER PT J AU Sokolov, AN Roberts, ME Johnson, OB Cao, YD Bao, ZA AF Sokolov, Anatoliy N. Roberts, Mark E. Johnson, Olasupo B. Cao, Yadong Bao, Zhenan TI Induced Sensitivity and Selectivity in Thin-Film Transistor Sensors via Calixarene Layers SO ADVANCED MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; ORGANIC TRANSISTORS; GAS SENSORS; MOLECULAR RECOGNITION; BIOLOGICAL SENSORS; TRANSPORT; DIODES AB Sensors based on organic field-effect transistors (OFETs) must overcome challenges in reproducibility, sensitivity, and selectivity. Here we describe an approach to increase the sensitivity and induce selectivity within an existing (OFET) through the incorporation of an evaporated sensor layer based on a calix[n]arene molecule. The mild method does not influence device properties, and is amendable to incorporation into reproducible, commercial transistors. C1 [Sokolov, Anatoliy N.; Johnson, Olasupo B.; Cao, Yadong; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Roberts, Mark E.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Bao, ZA (reprint author), Stanford Univ, Dept Chem Engn, 381 North South Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Sokolov, Anatoliy/C-1155-2012; Roberts, Mark/H-9865-2016 OI Sokolov, Anatoliy/0000-0003-0476-8052; Roberts, Mark/0000-0001-5971-6650 FU NSF-ECCS-EXP-SA [NSF ECCS-0730710]; Office of Naval Research [N000140810654]; NASA; Sloan Research Fellowship FX The authors would like to acknowledge financial support from the NSF-ECCS-EXP-SA program (NSF ECCS-0730710) and Office of Naval Research (N000140810654). We thank the Center for Polymer Interface Macromolecular Assemblies (CPIMA) for the use of shared facilities. M.R. acknowledges support from the NASA Graduate Student Research Fellowship. Z.B. acknowledges support from the Sloan Research Fellowship. Supporting Information is available online from Wiley InterScience or from the authors. NR 37 TC 35 Z9 36 U1 8 U2 64 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 4 PY 2010 VL 22 IS 21 BP 2349 EP 2353 DI 10.1002/adma.200903305 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 615AC UT WOS:000279100200010 PM 20376848 ER PT J AU Loss, LA Sadanandam, A Durinck, S Nautiyal, S Flaucher, D Carlton, VEH Moorhead, M Lu, YT Gray, JW Faham, M Spellman, P Parvin, B AF Loss, Leandro A. Sadanandam, Anguraj Durinck, Steffen Nautiyal, Shivani Flaucher, Diane Carlton, Victoria E. H. Moorhead, Martin Lu, Yontao Gray, Joe W. Faham, Malek Spellman, Paul Parvin, Bahram TI Prediction of epigenetically regulated genes in breast cancer cell lines SO BMC BIOINFORMATICS LA English DT Article ID DNA METHYLATION; ESTROGEN-RECEPTOR; EXPRESSION; HYPERMETHYLATION; PROTEIN; PROGRESSION; MICROARRAY; SITE AB Background: Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Results: Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Conclusions: Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators. C1 [Loss, Leandro A.; Sadanandam, Anguraj; Durinck, Steffen; Gray, Joe W.; Spellman, Paul; Parvin, Bahram] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E. H.; Moorhead, Martin; Lu, Yontao; Faham, Malek] Affymetrix Inc, Santa Clara, CA USA. RP Loss, LA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM laloss@lbl.gov; B_Parvin@lbl.gov FU Office of Science, Office of Biological & Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health, National Cancer Institute [P50 CA 58207, U54 CA 112970] FX This work was supported by the Director, Office of Science, Office of Biological & Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Institutes of Health, National Cancer Institute grants P50 CA 58207, and the U54 CA 112970. NR 32 TC 22 Z9 22 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JUN 4 PY 2010 VL 11 AR 305 DI 10.1186/1471-2105-11-305 PG 14 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 631FB UT WOS:000280330900001 PM 20525369 ER PT J AU Derbyshire, ER Deng, S Marletta, MA AF Derbyshire, Emily R. Deng, Sarah Marletta, Michael A. TI Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O-2 Binding SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID X-RAY-STRUCTURE; NITRIC-OXIDE; CARBON-MONOXIDE; LIGAND-BINDING; TRUNCATED HEMOGLOBINS; BACILLUS-SUBTILIS; OXYGEN; DOMAIN; ACTIVATION; SENSOR AB Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of alpha 1 beta 1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain beta 1(1-385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (beta 1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat beta 1 distal heme pocket (Ile-145 -> Tyr and Ile-149 -> Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin Fe-II-O-2 complexes and is likely the first observation of a FeII-O-2 complex in the full-length alpha 1 beta 1 protein. Additionally, these data suggest that atypical sGCs stabilize O-2 binding by a hydrogen bonding network involving tyrosine and glutamine. C1 [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. [Deng, Sarah] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Derbyshire, Emily R.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, 570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU National Institutes of Health [GM077365] FX This work was supported, in whole or in part, by National Institutes of Health Grant GM077365 (to M. A. M.). NR 45 TC 16 Z9 16 U1 0 U2 6 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUN 4 PY 2010 VL 285 IS 23 BP 17471 EP 17478 DI 10.1074/jbc.M109.098269 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 602IT UT WOS:000278133400025 PM 20231286 ER PT J AU Lordi, V Erhart, P Aberg, D AF Lordi, Vincenzo Erhart, Paul Aberg, Daniel TI Charge carrier scattering by defects in semiconductors SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BAND-STRUCTURE; IMPURITIES; TRANSPORT; METALS; SI AB A first-principles framework for calculating the rates of charge carrier scattering by defects in semiconductors is presented. First a quantitative formalism is outlined, followed by the development of an approximate relative formalism that allows rapid assessment of the effects of different defects on carrier transport in given materials. Representative results are presented that demonstrate the applicability of the relative formalism, which achieves a three to four orders of magnitude reduction in computational cost compared to the full quantitative calculation. The differences between the two formalisms are discussed in light of average carrier scattering by a defect, differences between electron and hole scattering, and variations of the scattering matrix elements throughout the Brillouin zone. Results and analysis are presented within the Born approximation for carrier scattering, which is applicable in the absence of strong interactions between scattering centers (i.e., the dilute limit). The theory as presented can be extended to interacting defects without modification if they can be represented as a set of unit defect clusters/complexes without long-range correlated interactions between them. C1 [Lordi, Vincenzo; Erhart, Paul; Aberg, Daniel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lordi, V (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lordi2@llnl.gov RI Erhart, Paul/G-6260-2011; OI Erhart, Paul/0000-0002-2516-6061; Aberg, Daniel/0000-0003-4364-9419; Lordi, Vincenzo/0000-0003-2415-4656 FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program; National Nuclear Security Administration Office of Nonproliferation Research and Development [NA-22] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with support from the Laboratory Directed Research and Development Program and from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22) NR 28 TC 16 Z9 16 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 4 PY 2010 VL 81 IS 23 AR 235204 DI 10.1103/PhysRevB.81.235204 PG 7 WC Physics, Condensed Matter SC Physics GA 607EW UT WOS:000278482700001 ER PT J AU Lacey, RA Wei, R Ajitanand, NN Alexander, JM Gong, X Jia, J Taranenko, A Pak, R Stocker, H AF Lacey, Roy A. Wei, Rui Ajitanand, N. N. Alexander, J. M. Gong, X. Jia, J. Taranenko, A. Pak, R. Stoecker, Horst TI Constraints on models for the initial collision geometry in ultrarelativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID ELLIPTIC-FLOW; PREDICTIONS AB Monte Carlo simulations are used to compute the centrality dependence of the collision zone eccentricities (epsilon(2,4)), for both spherical and deformed ground state nuclei, for different model scenarios. Sizable model dependent differences are observed. They indicate that measurements of the second and fourth order Fourier flow coefficients v(2,4), expressed as the ratio v(4)/(v(2))(2), can provide robust constraints for distinguishing between different theoretical models for the initial-state eccentricity. Such constraints could remove one of the largest impediments to a more precise determination of the specific viscosity from precision v(2,4) measurements at the Relativistic Heavy Ion Collider (RHIC). C1 [Lacey, Roy A.; Wei, Rui; Ajitanand, N. N.; Alexander, J. M.; Gong, X.; Jia, J.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Lacey, Roy A.; Jia, J.; Pak, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Stoecker, Horst] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Lacey, RA (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM Roy.Lacey@Stonybrook.edu RI Stoecker, Horst/F-8382-2012; Stoecker, Horst/D-6173-2013 OI Stoecker, Horst/0000-0002-3282-3664; Stoecker, Horst/0000-0002-3282-3664 FU US DOE [DE-FG02-87ER40331]; NSF [PHY-0701487] FX We thank Paul Mantica (MSU/NSCL) for crucial insights on nuclear deformation. This research is supported by the US DOE under Contract No. DE-FG02-87ER40331. A008 and by the NSF under Award No. PHY-0701487. NR 37 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 4 PY 2010 VL 81 IS 6 AR 061901 DI 10.1103/PhysRevC.81.061901 PG 4 WC Physics, Nuclear SC Physics GA 606CV UT WOS:000278399900001 ER PT J AU Sage, C Semkova, V Bouland, O Dessagne, P Fernandez, A Gunsing, F Nastren, C Noguere, G Ottmar, H Plompen, AJM Romain, P Rudolf, G Somers, J Wastin, F AF Sage, C. Semkova, V. Bouland, O. Dessagne, P. Fernandez, A. Gunsing, F. Naestren, C. Noguere, G. Ottmar, H. Plompen, A. J. M. Romain, P. Rudolf, G. Somers, J. Wastin, F. TI High resolution measurements of the Am-241(n,2n) reaction cross section SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; DATA LIBRARY; ISOTOPES AB Measurements of the Am-241(n,2n) reaction cross section have been performed at the Joint Research Centre (JRC) Geel in the frame of a collaboration between the European Commission (EC) JRC and French laboratories from CNRS and the Commissariat a L'Energie Atomique (CEA) Cadarache. Raw material coming from the Atalante facility of CEA Marcoule has been transformed by JRC Karlsruhe into suitable (AmO2)-Am-241 samples embedded in Al2O3 matrices specifically designed for these measurements. The irradiations were carried out at the 7-MV Van de Graaff accelerator. The 241Am(n, 2n) reaction cross section was determined relative to the Al-27(n,alpha)Na-24 standard cross section. The measurements were performed in four sessions, using quasi-monoenergetic neutrons with energies ranging from 8 to 21 MeV produced via the H-2(d,n)He-3 and the H-3(d,n)He-4 reactions. The induced activity was measured by standard gamma-ray spectrometry using a high-purity germanium detector. Below 15 MeV, the present results are in agreement with data obtained earlier. Above 15 MeV, these measurements allowed the experimental investigation of the Am-241(n, 2n) reaction cross section for the first time. The present data are in good agreement with predictions obtained with the TALYS code that uses an optical and fission model developed at CEA. C1 [Sage, C.; Gunsing, F.] CEA Saclay, DSM, IRFU, SPhN, F-91191 Gif Sur Yvette, France. [Sage, C.; Semkova, V.; Plompen, A. J. M.] Commiss European Communities, Joint Res Ctr, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Sage, C.; Bouland, O.; Noguere, G.] Commissariat Energie Atom Cadarache, DEN, CAD, DER,SPRCLEPh, F-13108 St Paul Les Durance, France. [Sage, C.; Dessagne, P.] Inst Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France. [Semkova, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria. [Bouland, O.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fernandez, A.; Naestren, C.; Ottmar, H.; Somers, J.; Wastin, F.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Romain, P.] Commissariat Energie Atom, DAM, DIF, F-91297 Arpajon, France. RP Sage, C (reprint author), CEA Saclay, DSM, IRFU, SPhN, F-91191 Gif Sur Yvette, France. EM sagechristophe@yahoo.fr FU European Commission [FP6-516487] FX We are indebted to the Van de Graaff operating team for the optimum conditions during the measurements. We also thank R. Jaime Tornin from the IRMM technical staff, and C. Brossard and M. Holzhauser from the ITU technical staff for their contribution to the sample preparation and the measurement setup. This experiment was supported by the European Commission within the Sixth Framework Programme of EURATOM through the Transnational Access project NUDAME (Neutron Data Measurements at IRMM, Contract No. FP6-516487). NR 44 TC 19 Z9 19 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 4 PY 2010 VL 81 IS 6 AR 064604 DI 10.1103/PhysRevC.81.064604 PG 9 WC Physics, Nuclear SC Physics GA 606CV UT WOS:000278399900004 ER PT J AU Bodwin, GT Tormo, XGI Lee, J AF Bodwin, Geoffrey T. Garcia i Tormo, Xavier Lee, Jungil TI Factorization of low-energy gluons in exclusive processes SO PHYSICAL REVIEW D LA English DT Article ID VACUUM POLARIZATION DIAGRAMS; DRELL-YAN PROCESS; MASS DIVERGENCES; CROSS-SECTIONS; ANNIHILATION PROCESSES; SCATTERING; QCD; RESUMMATION; AMPLITUDES; THRESHOLD AB We outline a proof of factorization in exclusive processes, taking into account the presence of soft and collinear modes of arbitrarily low energy, which arise when the external lines of the process are taken on shell. Specifically, we examine the process of e(+)e(-) annihilation through a virtual photon into two light mesons. In an intermediate step, we establish a factorized form that contains a soft function that is free of collinear divergences. In contrast, in soft-collinear effective theory, the low-energy collinear modes factor most straightforwardly into the soft function. We point out that the cancellation of the soft function, which relies on the color-singlet nature of the external hadrons, fails when the soft function contains low-energy collinear modes. C1 [Bodwin, Geoffrey T.; Garcia i Tormo, Xavier] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lee, Jungil] Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; Science and Engineering Research Canada; Korea Ministry of Education, Science, and Technology through the National Research Foundation [2010-0000144] FX We thank John Collins and George Sterman for many useful comments and suggestions. We also thank Thomas Becher, Dave Soper, and Iain Stewart for helpful discussions. We thank In-Chol Kim for his assistance in preparing the figures in this paper. The work of G. T. B. and X. G. T. was supported in part by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The research of X. G. T. was also supported by Science and Engineering Research Canada. The work of J.L. was supported by the Korea Ministry of Education, Science, and Technology through the National Research Foundation under Contract No. 2010-0000144. NR 31 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 4 PY 2010 VL 81 IS 11 AR 114005 DI 10.1103/PhysRevD.81.114005 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 606DH UT WOS:000278401300001 ER PT J AU Cheng, HY Chua, CK AF Cheng, Hai-Yang Chua, Chun-Khiang TI B -> V, A, T tensor form factors in the covariant light-front approach: Implications on radiative B decays SO PHYSICAL REVIEW D LA English DT Article ID CONSTITUENT-QUARK-MODEL; AXIAL-VECTOR MESONS; K-ASTERISK-GAMMA; DISTRIBUTION AMPLITUDES; QCD FACTORIZATION; HEAVY QUARKONIUM; LEADING ORDER; CP VIOLATION; ELECTROWEAK; STATES AB We reanalyze the B -> M tensor form factors in a covariant light-front quark model, where M represents a vector meson V, an axial-vector meson A, or a tensor meson T. The treatment of masses and mixing angles in the K(1A, 1B) systems is improved, where K(1A) and K(1B) are the (3)P(1) and (1)P(1) states of the axial-vector meson K(1), respectively. Rates of B -> M gamma decays are then calculated using the QCD factorization approach. The updated B -> K*gamma, B -> K(1)(1270)gamma, K(1)(1400)gamma, and K(2)gamma rates agree with the data. The K(1)(1270)-K(1)(1400) mixing angle is found to be about 51 degrees. The sign of the mixing angle is fixed by the observed relative strength of B -> K(1)(1270)gamma and K(1)(1400)gamma. The formalism is then applied to B(s) -> M tensor form factors. We find that the calculated B(s) -> phi gamma rate is consistent with experiment, though in the lower end of the data. The branching fractions of B(s) -> f(1)(1420)gamma and f(2)'(1525)gamma are predicted to be of order 10(-5) and it will be interesting to search for these modes. Rates on B(s) -> f(1)(1285)gamma, h(1)(1380)gamma, h(1)(1170)gamma, f(2)(1270)gamma decays are also predicted. C1 [Cheng, Hai-Yang] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Cheng, Hai-Yang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Chua, Chun-Khiang] Chung Yuan Christian Univ, Dept Phys, Chungli 320, Taiwan. RP Cheng, HY (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. FU National Science Council of R.O.C. [NSC97-2112-M001-004-MY3, NSC97-2112-M-033-002-MY3] FX H.Y.C. wishes to thank the hospitality of the Physics Department, Brookhaven National Laboratory. This research was supported in part by the National Science Council of R.O.C. under Grants No. NSC97-2112-M001-004-MY3 and No. NSC97-2112-M-033-002-MY3. NR 59 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 4 PY 2010 VL 81 IS 11 AR 114006 DI 10.1103/PhysRevD.81.114006 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 606DH UT WOS:000278401300002 ER PT J AU Deng, HL Dai, ZX Wolfsberg, A Lu, ZM Ye, M Reimus, P AF Deng, Hailin Dai, Zhenxue Wolfsberg, Andrew Lu, Zhiming Ye, Ming Reimus, Paul TI Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies SO WATER RESOURCES RESEARCH LA English DT Article ID MATRIX DIFFUSION-COEFFICIENT; HETEROGENEOUS POROUS-MEDIA; SOLUTE TRANSPORT; HYDRAULIC CONDUCTIVITY; STOCHASTIC-ANALYSIS; CONCEPTUAL-MODEL; SCALE DEPENDENCE; DUAL-POROSITY; FLOW; AQUIFER AB This paper presents a methodology for upscaling matrix-material transport parameters in fractured-flow dominated systems with multimodal reactive mineral facies. The upscaling method provides a theoretical and practical link between controlled experimental results at the laboratory/bench scale and multikilometer field scales at which contaminant remediation and risk assessment are actually conducted. As sorption reactions in matrix are in part determined by mineral properties, a new conceptual model is developed to reflect the hierarchical structure of reactive mineral facies at the microform, mesoform, and macroform scales. The conceptual model of hierarchical reactive matrix mineral facies is integrated with a dual-porosity model for simulating diffusion of solutes out of fractures and sorption onto the matrix minerals. By assuming that sorption reactions primarily occur in the rock matrix, we develop a multimodal spatial random function for characterizing both the tortuosity (physical heterogeneity) and sorption coefficient (chemical heterogeneity) at different scales in the rock matrix. The effective tortuosity at the field scale is derived by volume averaging of mass transfer coefficient for a conservative species. Subsequently, using a sorbing species (e. g., uranium), we derive the equations for upscaling the sorption coefficients in a saturated, fractured-rock system for field-scale simulations. The effective field-scale tortuosity and sorption coefficient are related to their mean, variance, integral scale, and domain size along a pathway through a three-dimensional flow field. The upscaled values increase with the integral scale and are larger than their geometric mean. Simulations conducted with upscaled sorption coefficients and tortuousities are compared very well with high-resolution Monte Carlo simulations capturing the parameter spatial variations. Results of this study can be extended to explore scale dependence of other important transport parameters for fractured-rock solute transport. C1 [Deng, Hailin; Dai, Zhenxue; Wolfsberg, Andrew; Lu, Zhiming; Reimus, Paul] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Deng, Hailin; Ye, Ming] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Deng, Hailin; Ye, Ming] Florida State Univ, Dept Geol Sci, Tallahassee, FL 32306 USA. RP Deng, HL (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, EES 16,T003, Los Alamos, NM 87545 USA. EM daiz@lanl.gov RI Ye, Ming/A-5964-2008; Deng, Hailin/B-4601-2011; OI Dai, Zhenxue/0000-0002-0805-7621; Lu, Zhiming/0000-0001-5800-3368 FU Los Alamos National Laboratory [20070441ER] FX This research is supported by Los Alamos National Laboratory's Directed Research and Development Project (number 20070441ER). We are grateful to Philip Stauffer, Kay Birdsell, and Mei Ding for their constructive comments on this manuscript. The editor Tissa Illangasekare, associate editor Harihar Rajaram, and the two anonymous reviewers are thanked for their insightful review of the manuscript. NR 68 TC 18 Z9 18 U1 1 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 4 PY 2010 VL 46 AR W06501 DI 10.1029/2009WR008363 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 606VJ UT WOS:000278456200001 ER PT J AU Naud, CM Del Genio, AD Haeffelin, M Morille, Y Noel, V Dupont, JC Turner, DD Lo, C Comstock, J AF Naud, C. M. Del Genio, A. D. Haeffelin, M. Morille, Y. Noel, V. Dupont, J. -C. Turner, D. D. Lo, C. Comstock, J. TI Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ACTIVE REMOTE SENSORS; ICE WATER-CONTENT; LIDAR DEPOLARIZATION; AIRCRAFT OBSERVATIONS; PRECIPITATION SCHEME; MULTIPLE-SCATTERING; RAMAN LIDAR; RADAR; CLIMATE; VAPOR AB The relationship between cloud thermodynamic phase and temperature in some aircraft measurements conducted in midlatitude frontal clouds suggests that significant liquid does not exist at temperatures colder than 258 K. This data set is often used to verify parameterizations of cloud phase in general circulation models. However, other aircraft campaigns and different instruments suggest a different relationship. Here we examine the temperature-phase relationship for midlatitude optically thin winter clouds. Cloud phase and temperature profiles derived from 5 years of ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the U. S. Atmospheric Radiation Measurement Program Southern Great Plains site and the Site Instrumental de Recherche par Teledetection Atmospherique in France. Because lidars are attenuated in optically thick clouds, the data set only includes clouds with optical thickness of < 3. Cloud phase is obtained by using the classical method based on a depolarization ratio threshold of 11% for differentiating liquid from ice. The frequency of occurrence of clouds either completely liquid or completely glaciated in the temperature range from 233 to 273 K is similar to previous observations in the midlatitudes but somewhat greater than in the Arctic. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites, liquid is more prevalent at colder temperatures than has been found previously in some thicker frontal clouds, suggesting different processes for glaciation in nonfrontal optically thin clouds. C1 [Naud, C. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Naud, C. M.; Del Genio, A. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, J. -C.] Ecole Polytech, Meteorol Dynam Lab, F-91128 Palaiseau, France. [Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, J. -C.] Ecole Polytech, Inst Pierre Simon Laplace, F-91128 Palaiseau, France. [Turner, D. D.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Lo, C.; Comstock, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Naud, CM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM cnaud@giss.nasa.gov RI Del Genio, Anthony/D-4663-2012; Noel, Vincent/C-3702-2013 OI Del Genio, Anthony/0000-0001-7450-1359; Noel, Vincent/0000-0001-9494-0340 FU U. S. Department of Energy [DE-FG02-06ER64167] FX This work was supported by an Interagency Agreement with the Atmospheric Radiation Measurement program of the U. S. Department of Energy. Support for D. Turner was provided by grant DE-FG02-06ER64167 from DOE BER as part of the ARM program. NR 58 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 3 PY 2010 VL 115 AR D11202 DI 10.1029/2009JD012889 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 606UI UT WOS:000278453400004 ER PT J AU Shao, XM Hamlin, T Smith, DM AF Shao, Xuan-Min Hamlin, Timothy Smith, David M. TI A closer examination of terrestrial gamma-ray flash-related lightning processes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SFERIC ARRAY LASA; RUNAWAY BREAKDOWN; RADIATION; THUNDERSTORM; DISCHARGES AB This paper presents detailed comparisons between terrestrial gamma-ray flashes (TGFs) detected by the RHESSI satellite and the lightning processes observed by the Los Alamos Sferic Array (LASA). It was found that all RHESSI-detected TGFs were related to normal intracloud flashes that transported electrons upward in the cloud. Detailed temporal comparisons suggest that TGFs are more likely related to small, rather than large, lightning pulses, mostly at the level of 10(-1)-10(0) V/m when the pulses are normalized to an observation distance of 100 km. The corresponding peak current was estimated to be 3-19 kA with most of them below 10 kA, if the discharges were assumed to be individual steps in a stepped-leader process. If the discharges were considered to be directly associated with runaway breakdown processes with a current propagation speed of c, the peak current would be 0.4-3.2 kA. Analysis of events that were close to the LASA stations showed that TGFs were most likely to occur during the initial milliseconds of IC flashes while the discharge developed vertically upward from the negative to the positive charge regions in the cloud. The heights of the TGF-related lightning pulses were estimated to be in the range of 10.5-14.1 km along the upward development. An intense NBE with a peak current of 80 kA and a height of 16.1 km was found 2.9 ms after one TGF, and is believed to not be directly associated with the TGF but may be preconditioned by the TGF-related discharge process. C1 [Shao, Xuan-Min; Hamlin, Timothy] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. [Smith, David M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Shao, XM (reprint author), Los Alamos Natl Lab, Space & Remote Sensing Grp, POB 1663, Los Alamos, NM 87545 USA. EM xshao@lanl.gov; dsmith@scipp.ucsc.edu FU U.S. Department of Energy FX The authors would like to thank Theodore McCormack for the initial data reduction and the LASA team for data collection. The authors also want to thank the anonymous reviewers for their helpful and supportive comments. This work was supported by the U.S. Department of Energy. NR 43 TC 61 Z9 61 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 3 PY 2010 VL 115 AR A00E30 DI 10.1029/2009JA014835 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 606VC UT WOS:000278455400002 ER PT J AU Baer, M Mundy, CJ Chang, TM Tao, FM Dang, LX AF Baer, Marcel Mundy, Christopher J. Chang, Tsun-Mei Tao, Fu-Ming Dang, Liem X. TI Interpreting Vibrational Sum-Frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIQUID-VAPOR INTERFACE; AB-INITIO; SO2; WATER; SURFACE; COMPLEX; ICE AB We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were used to understand the properties of SO2:(H2O)(x) complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with vibrational sum-frequency spectroscopy through the identification of surface SO2:(H2O)(x) complexes. Using our simulation results, we were able to develop a much more detailed picture of the surface structure of SO2 consistent with spectroscopic data obtained by Richmond and co-workers (J. Am. Chem. Soc. 2005, 127, 16806). We also found many similarities and differences between the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. C1 [Mundy, Christopher J.; Dang, Liem X.] Pacific NW Natl Lab, Div Mat Sci, Richland, WA 99352 USA. [Baer, Marcel] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. [Chang, Tsun-Mei] Univ Wisconsin Parkside, Dept Chem, Kenosha, WI 53141 USA. [Tao, Fu-Ming] Calif State Univ Fullerton, Dept Chem & Biochem, Fullerton, CA 92603 USA. RP Mundy, CJ (reprint author), Pacific NW Natl Lab, Div Mat Sci, Richland, WA 99352 USA. EM chris.mundy@pnl.gov; liem.dang@pnl.gov RI Baer, Marcel/K-7664-2012 FU Division of Chemical Sciences, Biosciences and Geosciences Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-AC05-00OR22725, DE-AC02-06CH11357]; INCITE; BlueGene/P at Argonne National Laboratory; Deutsche Forschungsgemeinschaft (DFG); Fonds der Chemischen Industrie (FCI) FX This work was performed at Pacific: Northwest National Laboratory (PNNL) and was supported by the Division of Chemical Sciences, Biosciences and Geosciences Office of Basic Energy Sciences, U.S. Department of Energy (DOE). PNNL is operated by Battelle for DOE. C.J.M. thanks I.-F. Will Kuo at Lawrence Livermore National Laboratories for fruitful discussions about the technical details of the DFT simulations. Calculations were enabled by a 2005-2010 INCITE award to C.J.M. on the CRAY XT4 (using resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL), which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC05-00OR22725) and the BlueGene/P at Argonne National Laboratory (resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-06CH11357). C.J.M. also acknowledges the resource NWice located in the Environmental Molecular Sciences Laboratory at PNNL. M. B. gratefully acknowledges partial financial support by Deutsche Forschungsgemeinschaft (DFG) and by Fonds der Chemischen Industrie (FCI) through grants to Dominik Marti (Bochum). NR 21 TC 14 Z9 14 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 3 PY 2010 VL 114 IS 21 BP 7245 EP 7249 DI 10.1021/jp100310s PG 5 WC Chemistry, Physical SC Chemistry GA 600RH UT WOS:000278004300013 PM 20446719 ER PT J AU Kumari, L Li, WZ Huang, JY Provencio, PP AF Kumari, Latha Li, Wenzhi Huang, Jian Yu Provencio, Paula P. TI Nanosize Transition Metal Antimonides, NiSb and FeSb2: Solvothermal Synthesis and Characterization SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IRON-OXIDE NANOPARTICLES; LI-ION BATTERIES; LOW-TEMPERATURE; OPTICAL-ABSORPTION; ANODE MATERIAL; NANOSTRUCTURES; COSB3; SKUTTERUDITE; PARTICLES; GROWTH AB Transition metal antimonide nanoparticles, NiSb and FeSb2, were synthesized by solvothermal method with the inclusion of various kinds of additives. X-ray diffraction (XRD) analysis confirmed the formation of hexagonal NiSb and orthorhombic FeSb2. NiSb nanoparticles of diameter about 10-40 nm and FeSb2 nanorods of 6 nm wide and 15-30 nm long were synthesized with the addition of SDS as surfactant. The structural analysis by transmission electron microscopy (TEM) also revealed the formation of transition metal antimonide nanoparticles with high purity and better crystallinity. The effect of the nanostructure on the UV-vis absorption and luminescence of the antimonide nanoparticles has been studied. The nanosize transition metal antimonides such as NiSb and FeSb2 have applications as inclusion materials in CoSb3 skutterudites in developing thermoelectric devices with better energy conversion efficiency. C1 [Kumari, Latha; Li, Wenzhi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Huang, Jian Yu; Provencio, Paula P.] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Li, WZ (reprint author), Florida Int Univ, Dept Phys, Miami, FL 33199 USA. EM Wenzhi.Li@fiu.edu RI Huang, Jianyu/C-5183-2008; Li, Wenzhi/J-6797-2016; Kumari, Latha/O-8568-2015 OI Li, Wenzhi/0000-0001-8442-2232; Kumari, Latha/0000-0001-8820-6043 FU National Science Foundation [DMR-0548061]; U.S. Department of Energy [DE-AC04-94AL85000] FX We would like to thank Mr. C. H Vannoy and Dr. R. M. Leblanc for the UV-vis and PL measurements and Dr. S. Kulkarni for the XRD measurements. This work is partially supported by the National Science Foundation under grant DMR-0548061. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 36 TC 12 Z9 12 U1 4 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 3 PY 2010 VL 114 IS 21 BP 9573 EP 9579 DI 10.1021/jp9110053 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 600RC UT WOS:000278003700006 ER PT J AU Setthapun, W Williams, WD Kim, SM Feng, H Elam, JW Rabuffetti, FA Poeppelmeier, KR Stair, PC Stach, EA Ribeiro, FH Miller, JT Marshall, CL AF Setthapun, Worajit Williams, W. Damion Kim, Seung Min Feng, Hao Elam, Jeffrey W. Rabuffetti, Federico A. Poeppelmeier, Kenneth R. Stair, Peter C. Stach, Eric A. Ribeiro, Fabio H. Miller, Jeffrey T. Marshall, Christopher L. TI Genesis and Evolution of Surface Species during Pt Atomic Layer Deposition on Oxide Supports Characterized by in Situ XAFS Analysis and Water-Gas Shift Reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; PLATINUM NANOPARTICLES; METAL-CATALYSTS; GROWTH; HYDROGENATION; TEMPERATURE; RUTHENIUM; MECHANISM; NANOCUBES AB Platinum atomic layer deposition (ALD) using MeCpPtMe(3) was employed to prepare high loadings of uniform-sized, 1-2 nm Pt nanoparticles on high surface area Al(2)O(3), TiO(2), and SrTiO(3) supports. X-ray absorption fine structure was utilized to monitor the changes in the Pt species during each step of the synthesis. The temperature, precursor exposure time, treatment gas, and number of ALD cycles were found to affect the Pt particle size and density. Lower-temperature MeCpPtMe(3) adsorption yielded smaller particles due to reduced thermal decomposition. A 300 degrees C air treatment of the adsorbed MeCpPtMe(3) leads to PtO. In subsequent ALD cycles, the MeCpPtMe(3) reduces the PtO to metallic Pt in the ratio of one precursor molecule per PtO. A 200 degrees C H(2) treatment of the adsorbed MeCpPtMe(3) leads to the formation of 1-2 nm, metallic Pt nanoparticles. During subsequent ALD cycles, MeCpPtMe(3) adsorbs on the support, which, upon reduction, yields additional Pt nanoparticles with a minimal increase in size of the previously formed nanoparticles. The catalysts produced by ALD had identical water-gas shift reaction rates and reaction kinetics to those of Pt catalysts prepared by standard solution methods. ALD synthesis of catalytic nanoparticles is an attractive method for preparing novel model and practical catalysts. C1 [Setthapun, Worajit; Feng, Hao; Stair, Peter C.; Miller, Jeffrey T.; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Williams, W. Damion; Kim, Seung Min; Stach, Eric A.; Ribeiro, Fabio H.] Purdue Univ, W Lafayette, IN 47907 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Rabuffetti, Federico A.; Poeppelmeier, Kenneth R.; Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Marshall, CL (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Marshall@anl.gov RI ID, MRCAT/G-7586-2011; Stach, Eric/D-8545-2011; Marshall, Christopher/D-1493-2015; OI Stach, Eric/0000-0002-3366-2153; Marshall, Christopher/0000-0002-1285-7648; Ribeiro, Fabio/0000-0001-7752-461X FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [FWP 57703]; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-FG02-03ER15408]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. FWP 57703. Support from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under Grant No. DE-FG02-03ER15408 is also gratefully acknowledged. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 36 TC 60 Z9 60 U1 5 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 3 PY 2010 VL 114 IS 21 BP 9758 EP 9771 DI 10.1021/jp911178m PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 600RC UT WOS:000278003700031 ER PT J AU Zarzycki, P Rosso, KM AF Zarzycki, Piotr Rosso, Kevin M. TI Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial Capacity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHLORIDE AQUEOUS INTERFACE; TRIPLE-LAYER MODEL; WATER INTERFACE; TITRATION DATA; SILVER IODIDE; POTENTIALS; PREDICTION; HALIDES AB Molecular dynamics simulation of the AgCl(100)/KCl(aq) interfacial electrostatic capacity is presented. The simulations are motivated by the need to reduce ambiguities in electrical double layer model parametrization, which here we attempt by reducing the computed interfacial molecular structure to hypothetical planes of charge separation consistent with a treatment of the interface in terms of parallel plate capacitors. The calculated interfacial capacity (c(int) = 8.43 mu F/cm(2)) is in excellent agreement with measurements for the closely related Agl/electrolyte interface, and the dependence on electrolyte concentration and temperature are qualitatively similar to experimental observations. Molecular dynamics based capacity profiles show a similar overall decay to the classical Helmholtz model, validating its use for approximating the interfacial capacity at relatively high electrolyte concentration. However, fine structure is present and the interfacial electrostatic properties oscillate with distance from the surface. The dielectric constant for first layer water is calculated to equal 5.1, which confirms that water nearest the interface is under dielectric saturation conditions, C1 [Zarzycki, Piotr; Rosso, Kevin M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Zarzycki, P (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM Piotr.Zarzycki@pnl.gov OI Zarzycki, Piotr/0000-0003-3891-7159 FU U.S. Department of Energy, Office of Basic Energy Sciences; Department of Energy's Office of Biological and Environmental Research, Pacific Northwest National Laboratory FX This work was supported by a grant from the U.S. Department of Energy, Office of Basic Energy Sciences, Geosciences Program. The research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 36 TC 12 Z9 12 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 3 PY 2010 VL 114 IS 21 BP 10019 EP 10026 DI 10.1021/jp100074h PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 600RC UT WOS:000278003700065 ER PT J AU Schmidt, AR Hamidian, MH Wahl, P Meier, F Balatsky, AV Garrett, JD Williams, TJ Luke, GM Davis, JC AF Schmidt, A. R. Hamidian, M. H. Wahl, P. Meier, F. Balatsky, A. V. Garrett, J. D. Williams, T. J. Luke, G. M. Davis, J. C. TI Imaging the Fano lattice to 'hidden order' transition in URu2Si2 SO NATURE LA English DT Article ID HEAVY-FERMION COMPOUNDS; ELECTRON SUPERCONDUCTOR URU2SI2; QUASI-PARTICLE INTERFERENCE; POINT-CONTACT SPECTROSCOPY; MAGNETIC EXCITATIONS; SYSTEM URU2SI2; BI2SR2CACU2O8+DELTA; SURFACE; STATE; WAVE AB Within a Kondo lattice, the strong hybridization between electrons localized in real space (r-space) and those delocalized in momentum-space (k-space) generates exotic electronic states called 'heavy fermions'. In URu2Si2 these effects begin at temperatures around 55 K but they are suddenly altered by an unidentified electronic phase transition at T-o=17.5 K. Whether this is conventional ordering of the k-space states, or a change in the hybridization of the r-space states at each U atom, is unknown. Here we use spectroscopic imaging scanning tunnelling microscopy (SI-STM) to image the evolution of URu2Si2 electronic structure simultaneously in r-space and k-space. Above T-o, the 'Fano lattice' electronic structure predicted for Kondo screening of a magnetic lattice is revealed. Below T-o, a partial energy gap without any associated density-wave signatures emerges from this Fano lattice. Heavy-quasiparticle interference imaging within this gap reveals its cause as the rapid splitting below T-o of a light k-space band into two new heavy fermion bands. Thus, the URu2Si2 'hidden order' state emerges directly from the Fano lattice electronic structure and exhibits characteristics, not of a conventional density wave, but of sudden alterations in both the hybridization at each U atom and the associated heavy fermion states. C1 [Schmidt, A. R.; Hamidian, M. H.; Wahl, P.; Meier, F.; Davis, J. C.] Cornell Univ, Atom & Solid State Phys Lab, Dept Phys, Ithaca, NY 14853 USA. [Schmidt, A. R.; Hamidian, M. H.; Davis, J. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wahl, P.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Balatsky, A. V.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Garrett, J. D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L85 4M1, Canada. [Williams, T. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Davis, J. C.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Davis, JC (reprint author), Cornell Univ, Atom & Solid State Phys Lab, Dept Phys, Ithaca, NY 14853 USA. EM jcdavis@ccmr.cornell.edu RI Wahl, Peter/F-9337-2014; Luke, Graeme/A-9094-2010; Williams, Travis/A-5061-2016; OI Wahl, Peter/0000-0002-8635-1519; Williams, Travis/0000-0003-3212-2726; Luke, Graeme/0000-0003-4762-1173 FU US Department of Energy, Office of Basic Energy Sciences [DE-2009-BNL-PM015, DE-AC52-06NA25396]; NSERC; CIFAR; Center for Integrated Nanotechnology; LDRD; UCOP [TR01]; Humboldt Foundation; Physics and Astronomy Department at the University of British Columbia; German Academic Exchange Service; US Army Research Office FX We acknowledge and thank E. Abrahams, M. Aronson, D. Bonn, W. Buyers, A. Chantis, M. Crommie, P. Coleman, D. M. Eigler, M. Graf, A. Greene, K. Haule, C. Hooley, G. Kotliar, D.-H. Lee, A. J. Leggett, B. Maple, F. Steglich, V. Madhavan, A. P. Mackenzie, S. Sachdev, A. Schofield, T. Senthil and D. Pines for discussions and communications. These studies were supported by the US Department of Energy, Office of Basic Energy Sciences, under Award Number DE-2009-BNL-PM015. Research at McMaster University was supported by NSERC and CIFAR. Research at Los Alamos was supported in part by the Center for Integrated Nanotechnology, a US Department of Energy Office of Basic Energy Sciences user facility, under contract DE-AC52-06NA25396, by LDRD funds and by UCOP TR01. P. W. acknowledges support from the Humboldt Foundation, F. M. from the German Academic Exchange Service, and A. R. S. from the US Army Research Office. J. C. D. gratefully acknowledges the hospitality and support of the Physics and Astronomy Department at the University of British Columbia. NR 47 TC 160 Z9 161 U1 4 U2 80 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 3 PY 2010 VL 465 IS 7298 BP 570 EP 576 DI 10.1038/nature09073 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 604AF UT WOS:000278249000032 PM 20520706 ER PT J AU Graser, S Kemper, AF Maier, TA Cheng, HP Hirschfeld, PJ Scalapino, DJ AF Graser, S. Kemper, A. F. Maier, T. A. Cheng, H. -P. Hirschfeld, P. J. Scalapino, D. J. TI Spin fluctuations and superconductivity in a three-dimensional tight-binding model for BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; 2-DIMENSIONAL HUBBARD-MODEL; LAYERED SUPERCONDUCTOR; BA0.6K0.4FE2AS2; GAPS AB Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2 type, K=Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three-dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective five-orbital tight-binding fit of the full density functional theory band structure for BaFe2As2 including the k(z) dispersions. We compare the five-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the random-phase approximation enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two-dimensional model calculation over a single k(z) cut of the BZ and a completely three-dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at k(z)=0, which however are gapped as the system is hole doped. On the other hand, a substantial k(z) dependence of the order parameter remains, with most of the pairing strength deriving from processes near k(z)=pi. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ. C1 [Graser, S.] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. [Kemper, A. F.; Cheng, H. -P.; Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Maier, T. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Graser, S (reprint author), Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. RI Kemper, Alexander/F-8243-2016; Maier, Thomas/F-6759-2012 OI Kemper, Alexander/0000-0002-5426-5181; Maier, Thomas/0000-0002-1424-9996 FU DOE [DE-FG02-05ER46236]; DOE/BES [DE-FG02-02ER45995]; DFG; Division of Scientific User Facilities, U.S. Department of Energy FX This work is supported by DOE under Grant No. DE-FG02-05ER46236 (P.J.H.) and by DOE/BES under Grant No. DE-FG02-02ER45995 (H.P.C.). S. G. acknowledges support by the DFG through SFB 484 and TRR 80 and D.J.S. and T. A. M. acknowledge the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. We acknowledge NERSC and the University of Florida High-Performance Computing Center for providing computational resources that have contributed to the research results reported within this paper. We appreciate stimulating discussions with L. Benfatto, A. Bernevig, J. Deisenhofer, A. Kampf, J. Kunes, C. Martin, D. Singh, R. Thomale, and F. Wang. NR 51 TC 152 Z9 152 U1 2 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 3 PY 2010 VL 81 IS 21 AR 214503 DI 10.1103/PhysRevB.81.214503 PG 12 WC Physics, Condensed Matter SC Physics GA 605YV UT WOS:000278386700006 ER PT J AU Horner, DA Kress, JD Collins, LA AF Horner, D. A. Kress, J. D. Collins, L. A. TI Effects of metal impurities on the optical properties of polyethylene in the warm dense-matter regime SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MOLECULAR-DYNAMICS; PLANETS AB For the warm dense-matter regime, we have examined the effects on the equation of state, conductivity, and optical properties of the introduction of a metal impurity (Al) into a poorly conducting mixture (CH(2)) by means of quantum molecular-dynamics simulations employing temperature-dependent density-functional theory for temperatures between 1 and 4 eV and densities from ambient solid to a few times compressed. The properties such as dc conductivity and Rosseland mean opacity exhibit significant departures from the pure CH(2) results only for metal concentrations above about 50%. The system is representative of a wide range of environments that include planetary interiors, inertial confinement fusion capsules, and laser-produced plasmas. C1 [Horner, D. A.; Kress, J. D.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Horner, DA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX We wish to acknowledge useful conversations with and information regarding ICF conditions from Guy Dimonte at Los Alamos as well as Al parameters from Michael Desjarlais at Sandia. We also thank Thomas Mattson of Sandia for sending us a preprint of Ref. 33. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 32 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 3 PY 2010 VL 81 IS 21 AR 214301 DI 10.1103/PhysRevB.81.214301 PG 5 WC Physics, Condensed Matter SC Physics GA 605YV UT WOS:000278386700003 ER PT J AU Ovchinnikov, YN Kresin, VZ AF Ovchinnikov, Yurii N. Kresin, Vladimir Z. TI Theoretical investigation of Josephson tunneling between nanoclusters SO PHYSICAL REVIEW B LA English DT Article ID SIMPLE METAL-CLUSTERS; ATOMIC CLUSTERS; SUPERCONDUCTIVITY; PHYSICS; COMPOUND AB Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and nonresonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks. C1 [Ovchinnikov, Yurii N.] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117334, Russia. [Ovchinnikov, Yurii N.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Kresin, Vladimir Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ovchinnikov, YN (reprint author), Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117334, Russia. FU USAFOSR; EOARD FX The research of V.Z.K was supported by USAFOSR. The research of Y.N.O. is supported by EOARD. NR 22 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 3 PY 2010 VL 81 IS 21 AR 214505 DI 10.1103/PhysRevB.81.214505 PG 6 WC Physics, Condensed Matter SC Physics GA 605YV UT WOS:000278386700008 ER PT J AU Graeger, R Ackermann, D Chelnokov, M Chepigin, V Duellmann, CE Dvorak, J Even, J Gorshkov, A Hessberger, FP Hild, D Hubner, A Jager, E Khuyagbaatar, J Kindler, B Kratz, JV Krier, J Kuznetsov, A Lommel, B Nishio, K Nitsche, H Omtvedt, JP Petrushkin, O Rudolph, D Runke, J Samadani, F Schadel, M Schausten, B Turler, A Yakushev, A Zhi, Q AF Graeger, R. Ackermann, D. Chelnokov, M. Chepigin, V. Duellmann, Ch. E. Dvorak, J. Even, J. Gorshkov, A. Hessberger, F. P. Hild, D. Huebner, A. Jaeger, E. Khuyagbaatar, J. Kindler, B. Kratz, J. V. Krier, J. Kuznetsov, A. Lommel, B. Nishio, K. Nitsche, H. Omtvedt, J. P. Petrushkin, O. Rudolph, D. Runke, J. Samadani, F. Schaedel, M. Schausten, B. Tuerler, A. Yakushev, A. Zhi, Q. TI Experimental study of the U-238(S-36,3-5n)(269-271)Hs reaction leading to the observation of (270)Hs SO PHYSICAL REVIEW C LA English DT Article ID HEAVIEST NUCLEI; SUPERHEAVY NUCLEI; ELEMENTS; FUSION AB The deformed doubly magic nucleus (270)Hs has so far only been observed as the four-neutron (4n) evaporation residue of the reaction Mg-26+Cm-248, where a maximum cross section of 3 pb was measured. Theoretical studies on the formation of (270)Hs in the 4n evaporation channel of fusion reactions with different entrance channel asymmetry in the framework of a two-parameter Smoluchowski equation predict that the reactions Ca-48+Ra-226 and S-36+U-238 result in higher cross sections due to lower reaction Q values, in contrast to simple arguments based on the reaction asymmetry, which predict opposite trends. Calculations using HIVAP predict cross sections for the reaction S-36+U-238 that are similar to those of the Mg-26+Cm-248 reaction. Here, we report on the first measurement of evaporation residues formed in the complete nuclear fusion reaction S-36+U-238 and the observation of (270)Hs, which is produced in the 4n evaporation channel, with a measured cross section of 0.8(-0.7)(+2.6) pb at 51-MeV excitation energy. The one-event cross-section limits (68% confidence level) for the 3n, 4n, and 5n evaporation channels at 39-MeV excitation energy are 2.9 pb, while the cross-section limits of the 3n and 5n channel at 51 MeV are 1.5 pb. This is significantly lower than the 5n cross section of the Mg-26+Cm-248 reaction at similar excitation energy. C1 [Graeger, R.; Gorshkov, A.; Tuerler, A.; Yakushev, A.] Tech Univ Munich, D-85748 Garching, Germany. [Ackermann, D.; Duellmann, Ch. E.; Hessberger, F. P.; Huebner, A.; Jaeger, E.; Khuyagbaatar, J.; Kindler, B.; Krier, J.; Lommel, B.; Rudolph, D.; Schaedel, M.; Schausten, B.] GSI Helmholtzzentrum Schwerionenforsch, D-642910 Darmstadt, Germany. [Chelnokov, M.; Chepigin, V.; Kuznetsov, A.; Petrushkin, O.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Dvorak, J.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Even, J.; Hild, D.; Kratz, J. V.; Rudolph, D.; Runke, J.] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany. [Nishio, K.] Japan Atom Energy Agcy, Ibaraki 3191195, Japan. [Omtvedt, J. P.; Samadani, F.] Univ Oslo, Dept Chem, N-0315 Oslo, Norway. [Rudolph, D.] Lund Univ, S-22100 Lund, Sweden. [Zhi, Q.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. RP Graeger, R (reprint author), Tech Univ Munich, D-85748 Garching, Germany. RI Rudolph, Dirk/D-4259-2009; Omtvedt, Jon Petter/C-8194-2011; Even, Julia/K-1186-2016; Turler, Andreas/D-3913-2014 OI Rudolph, Dirk/0000-0003-1199-3055; Omtvedt, Jon Petter/0000-0002-1822-7348; Even, Julia/0000-0002-6314-9094; Turler, Andreas/0000-0002-4274-1056 FU German Bundesministerium fur Bildung und Forschung (BMBF) [06MP247I, 06MZ223I]; Office of High Energy and Nuclear Physics, Nuclear Physics Division, of the US Department of Energy [DE-AC03-76SF00098]; Norwegian Research Council [148994/V30] FX We would like to thank the UNILAC crew for providing stable and intense 36S beams. This work was supported by the German Bundesministerium fur Bildung und Forschung (BMBF Projects No. 06MP247I and 06MZ223I). Financial support for J. Dvorak was provided by the Office of High Energy and Nuclear Physics, Nuclear Physics Division, of the US Department of Energy, under contract DE-AC03-76SF00098. F. Samadani and J. P. Omtvedt gratefully acknowledge financial support from the Norwegian Research Council under project number 148994/V30. NR 27 TC 23 Z9 23 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUN 3 PY 2010 VL 81 IS 6 AR 061601 DI 10.1103/PhysRevC.81.061601 PG 5 WC Physics, Nuclear SC Physics GA 606CT UT WOS:000278399700001 ER PT J AU Cao, QH McKeen, D Rosner, JL Shaughnessy, G Wagner, CEM AF Cao, Qing-Hong McKeen, David Rosner, Jonathan L. Shaughnessy, Gabe Wagner, Carlos E. M. TI Forward-backward asymmetry of top quark pair production SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL COLOR; HADRONIC COLLISIONS; HEAVY QUARKS; QCD AB We adopt a Markov chain Monte Carlo method to examine various new physics models which can generate the forward-backward asymmetry in top quark pair production observed at the Tevatron by the CDF Collaboration. We study the following new physics models: (1) exotic gluon G', (2) extra Z' boson with flavor-conserving interaction, (3) extra Z' with flavor-violating u-t-Z' interaction, (4) extra W' with flavor-violating d-t-W' interaction, and (5) extra scalars S and S-+/- with flavor-violating u-t-S and d-t-S-+/- interactions. After combining the forward-backward asymmetry with the measurement of the top pair production cross section and the t (t) over bar invariant mass distribution at the Tevatron, we find that an axial vector exotic gluon G' of mass about 1 TeV or 2 TeV or a W' of mass about 2TeV offer an improvement over the standard model. The other models considered do not fit the data significantly better than the standard model. We also emphasize a few points that have been long ignored in the literature for new physics searches: (1) heavy resonance width effects, (2) renormalization scale dependence, and (3) next-to-leading order corrections to the t (t) over bar invariant mass spectrum. We argue that these three effects are crucial to test or exclude new physics effects in the top quark pair asymmetry. C1 [Cao, Qing-Hong; Shaughnessy, Gabe; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Cao, Qing-Hong; McKeen, David; Rosner, Jonathan L.; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Cao, QH (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM caoq@hep.anl.gov; mckeen@theory.uchicago.edu; rosner@hep.uchicago.edu; g-shaughnessy@northwestern.edu; cwagner@hep.anl.gov FU Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) [03921-07-137]; U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-90ER40560, DE-FG02-91ER40684] FX Q.-H. C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) under Grant No. 03921-07-137, and by the U.S. Department of Energy under Grant Nos. DE-AC02-06CH11357 and DE-FG02-90ER40560. D. M. and J.L.R. are supported by the U.S. Department of Energy under Grant No. DE-FG02-90ER40560. G. S. is supported in part by the U.S. Department of Energy under Grants Nos. DE-AC02-06CH11357 and DE-FG02-91ER40684. C. E. M. W. is supported in part by U.S. Department of Energy under Grant Nos. DE-AC02-06CH11357 and DE-FG02-90ER40560. J.L.R., G. S., and C. E. M. W. thank the Aspen Center for Physics for hospitality. The authors thank M. Neubert for useful discussions. NR 48 TC 125 Z9 125 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 3 PY 2010 VL 81 IS 11 AR 114004 DI 10.1103/PhysRevD.81.114004 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 606DF UT WOS:000278401100001 ER PT J AU Lyczkowski, RW Syamlal, M Sundaresan, S AF Lyczkowski, Robert W. Syamlal, Madhava Sundaresan, Sankaran TI Dimitri Gidaspow: Pioneering Contributor to Computational Gas-Particle Flow and Fluidization SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Biographical-Item C1 [Lyczkowski, Robert W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Syamlal, Madhava] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Sundaresan, Sankaran] Princeton Univ, Princeton, NJ 08544 USA. RP Lyczkowski, RW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 1 TC 0 Z9 0 U1 2 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5027 EP 5028 DI 10.1021/ie100335w PG 2 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200001 ER PT J AU Lyczkowski, RW AF Lyczkowski, Robert W. TI The History of Multiphase Computational Fluid Dynamics SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Editorial Material ID DIMENSIONAL 2-PHASE FLOW; FLUIDIZATION C1 Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Lyczkowski, RW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lyczkowski@sbcgloal.net NR 46 TC 5 Z9 5 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5029 EP 5036 DI 10.1021/ie901439y PG 8 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200002 ER PT J AU Patterson, EE Halow, J Daw, S AF Patterson, Emily E. Halow, Jack Daw, Stuart TI Innovative Method Using Magnetic Particle Tracking to Measure Solids Circulation in a Spouted Fluidized Bed SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB We describe an innovative method for measuring particle motion inside spouted fluidized beds The method uses a magnetic tracer particle, which follows the bulk particle flow and is continuously tracked by multiple magnetic field detectors located outside the bed We analyze signals from the detectors to determine the tracer position at each instant in time From statistical analysis of the tracer trajectory, characteristic measures of the bulk particle flow, such as the average recirculation frequency, can be determined as a function of operating conditions For experiments with a range of particle sizes and densities in a 3 9-cm-diameter spouted bed, we find that average solids recirculation rates correlate with excess velocity (superficial minus minimum spouting velocity), particle density. and bed depth. C1 [Patterson, Emily E.; Halow, Jack] Waynesburg Univ, Wavnesburg, PA 15370 USA. [Daw, Stuart] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Halow, J (reprint author), Waynesburg Univ, 51 W Coll St, Wavnesburg, PA 15370 USA. FU Waynesburg University's Center for Research and Economic Development FX We thank Waynesburg University's Center for Research and Economic Development and it is director, Ms Barbara Kirby, for their encouragement and financial support of this project NR 23 TC 10 Z9 10 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5037 EP 5043 DI 10.1021/ie9008698 PG 7 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200003 ER PT J AU Agarwal, A Biegler, LT Zitney, SE AF Agarwal, Anshul Biegler, Lorenz T. Zitney, Stephen E. TI Superstructure-Based Optimal Synthesis of Pressure Swing Adsorption Cycles for Precombustion CO2 Capture SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB Pressure/vacuum swing adsorption (PSA/VSA) technology has been widely applied for H-2 production from the effluent streams of a shift converter, which predominantly comprises H-2 and CO2 with other trace components. It also offers significant advantages for precombustion CO2 capture in terms of performance, enemy requirements, and operating costs since the shifted synthesis gas (syngas) is available for separation at a high pressure with a high CO2 concentration. Most commercial PSA cycles have been developed to recover H-2 at very high purity and do not focus on enriching the strongly adsorbed CO2 Thus, a major limitation exists with the use of these conventional PSA cycles for high purity CO2 capture Furthermore, complex dynamic behavior of PSA processes together with the numerical difficulties of the model governed by partial differential and algebraic equations (PDAEs) makes the evaluation and assessment of different operating steps and cycle configurations difficult and time-consuming. Therefore, a systematic methodology is essential to design and optimize PSA cycles to recover both H-2 and CO2 at a high purity. Recent advances in large-scale optimization strategies for process synthesis have enabled us to address this issue with the help of a systematic optimization-based formulation. In particular, we present a superstructure-based approach to simultaneously determine optimal cycle configurations and design parameters for PSA units The superstructure is capable to predict a rich set of different PSA operating steps, which are accomplished by manipulating the bed connections with the help of time dependent control variables. An optimal sequence of operating steps is achieved through the formulation of an optimal control problem with the PDAEs of the PSA system Numerical results tor case-studies related to precombustion CO2 capture from a shifted syngas feed mixture having hydrogen and carbon dioxide are presented In particular, optimal PSA cycles are synthesized which maximize CO2 recovery or minimize overall power consumption The results show the potential of the superstructure to predict PSA cycles with purities as high as 99% for H-2 and 96% for CO2 Moreover, these cycles can recover more than 92% of CO2 with a power consumption as low as 46 8 kW h/tonne CO2 captured. The approach presented is therefore quite useful for evaluating the suitability of different operating strategies for PSA processes. C1 [Agarwal, Anshul; Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Zitney, Stephen E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Biegler, LT (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. OI Agarwal, Anshul/0000-0003-3685-8052 FU National Energy Technology Laboratory under the RDS [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Process and Dynamic Systems Research under the RDS contract DE-AC26-04NT41817 NR 51 TC 27 Z9 28 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5066 EP 5079 DI 10.1021/ie900873j PG 14 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200007 ER PT J AU Benyahia, S AF Benyahia, Sofiane TI On the Effect of Subgrid Drag Closures SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GAS-FLUIDIZED BEDS; EQUATION-OF-STATE; REYNOLDS-NUMBER; KINETIC-THEORY; PARTICLE FLOW; 2-FLUID MODEL; GRANULAR FLOW; RANDOM ARRAYS; SIMULATION; SPHERES AB The effect of two subgrid drag closures on the flow of air and Geldart group A particles is presented in this study A subgrid drag model based On fitting simulation data obtained from finely resolved simulations and a drag model based on the energy minimization approach are both used to solve a gas-solids flow in the riser section of a circulating fluidized bed. The numerical results using a coarse computational grid obtained with these subgrid models are compared with those using a standard drag model as well as experimental data obtained in a pilot-scale riser Numerical predictions using both subgrid models showed higher solids hold-up in the riser indicated by the radial solids density and axial pressure drop profiles in the 2D and 3D system geometries considered in this study. These subgrid models ale demonstrated to be both needed and useful as large-scale numerical simulations commonly use coarse computational grids that are unable to resolve the smallest heterogeneous structures observed in the fluidization of small particles. C1 Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Benyahia, S (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. NR 38 TC 33 Z9 40 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5122 EP 5131 DI 10.1021/ie900658k PG 10 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200012 ER PT J AU Lyczkowski, RW Bouillard, JX Gamwo, IK Torpey, MR Montrone, ED AF Lyczkowski, Robert W. Bouillard, Jacques X. Gamwo, Isaac K. Torpey, Mark R. Montrone, Eugene D. TI Experimental and CFD Analyses of Bubble Parameters in a Variable-Thickness Fluidized Bed SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB Bubble characteristics in a variable-thickness fluidized bed containing nine tubes were experimentally investigated by analyzing absolute and differential pressure fluctuations The latter were obtained from vertically aligned probes traversing the bed interior for three bed thicknesses, thin. square, and full The important bubble parameters, namely, frequencies, effective diameters, and velocities, were determined by analyzing autocorrelations and cross-correlations obtained nom these differential pressure signals for the thin and square beds Wall effects were assessed by comparing the pressure fluctuations as the bed thickness was increased from thin to square. It was found that bubbles move faster within and above the tube bank than below it This behavior was also found to be more pronounced in the wall regions of the full bed, which might explain why some commercial fluidized-bed combustors experience unusual metal wastage near their tube supports Although bubble sizes consistently agreed between thin and square beds, bubble velocity reduction was observed for the thin bed The experimental thin-bed differential pressure measurements wet e analyzed using a two-phase computational fluid dynamics (CFD) hydrodynamic model. Excellent agreement was obtained between the experimental results and predictions from our hydrodynamic model for autocorrelations, cross-correlations, power spectral densities, and bubble parameters. C1 [Lyczkowski, Robert W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Bouillard, Jacques X.] Parc Technol ALATA, INERIS, Direct Risques Accidentels, F-60550 Verneuil En Halatte, France. [Gamwo, Isaac K.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Torpey, Mark R.] NYSERDA, Albany, NY 12203 USA. [Montrone, Eugene D.] Foster Wheeler Dev Corp, John Blizard Res Ctr, Livingston, NJ 07039 USA. RP Lyczkowski, RW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U S. Department of Energy [W-31-109-ENG-38]; Cooperative Research and Development Venture "Erosion of FBC Heat Transfer Tubes" FX This work was originally supported by the U S. Department of Energy, Assistant Secretary for Fossil Energy, Morgantown Energy Technology Center (now National Energy Technology Laboratory (NETL)]. under Contract W-31-109-ENG-38, and the Cooperative Research and Development Venture "Erosion of FBC Heat Transfer Tubes". Members of the venture were the U S Department of Energy, National Energy Technology Laboratory. Electric Power Research Institute, State of Illinois Center for Research on Sulfur in Coal (now the Illinois Clean Coal Institute), Foster Wheeler Development Corp ASEA Babcock PFBC, ABB Combustion Engineering, Inc. Tennessee Valley Authority. British Coal Corporation, CISE, and Argonne National Laboratory. NR 27 TC 6 Z9 7 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5166 EP 5173 DI 10.1021/ie901294e PG 8 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200016 ER PT J AU Massoudi, M Mehrabadi, MM AF Massoudi, Mehrdad Mehrabadi, Morteza M. TI Implicit Continuum Mechanics Approach to Heat Conduction in Granular Materials SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB In this paper, we derive a properly frame-invariant implicit constitutive relationship for the heat flux vector for a granular medium (or a density-gradient-type fluid) The heat flux vector is commonly modeled by Fourier's law of heat conduction. and for complex materials such as nonlinear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematic parameters such as temperature, shear rate, porosity, concentration, etc In this paper, we extend the approach of Massoudi [Massoudi, M. Math. Methods Appl. So. 2006, 29, 1585, Massoudi, M Math Methods Appl. Sci. 2006, 29, 15991, who provided explicit constitutive relations for the heat flux vector for flowing granular materials, in order to do so. we use the implicit scheme suggested by Fox [Fox, N. Int. J. Eng. Sct 1969, 7, 437], who obtained implicit relations in thermoelasticity C1 [Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA. [Mehrabadi, Morteza M.] San Diego State Univ, Dept Mech Engn, San Diego, CA 92182 USA. RP Massoudi, M (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. NR 69 TC 2 Z9 2 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5215 EP 5221 DI 10.1021/ie9014155 PG 7 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200021 ER PT J AU Gamwo, IK Liu, Y AF Gamwo, Isaac K. Liu, Yong TI Mathematical Modeling and Numerical Simulation of Methane Production in a Hydrate Reservoir SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB Methane hydrate, a potential future energy resource, is known to occur naturally in vast quantities beneath the ocean floor and in permafrost regions. It is important to evaluate how much methane is recoverable from these hydrate reserves This article introduces the theoretical background of HydrateResSim, the National Energy Technology Laboratory (NETL) methane production simulator for hydrate-containing reservoirs, originally developed for NETL by Lawrence Berkeley National Laboratory (LBNL) It describes the mathematical model that governs the dissociation of methane hydrate by depressurization or thermal stimulation of the system. including the transport of multiple temperature-dependent components in multiple phases through a porous medium The model equations are obtained by incorporating the multiphase Darcy's law for gas and liquid into both the mass component balances and the energy conservation equations Two submodels in HydrateResSim for hydrate dissociation arc also considered a kinetic model and a pure thermodynamic model. Contrary to mole traditional reservoir simulations, the set of model unknowns or primary variables in HydrateResSim changes throughout the simulation as a result of the formation or dissociation of ice and hydrate phases during the simulation. The primary variable switch method (PVSM) is used to effectively track these phase changes. The equations are solved by utilizing the implicit time finite-difference method on the grid system, which can properly describe phase appearance or disappearance as well as the boundary conditions The Newton-Raphson method is used to solve the linear equations after discretization and setup of the Jacobian matrix. We report here the application of HydrateResSim to a three-component, four-phase flow system in order to predict the methane produced from a laboratory-scale reservoir. The first results of HydrateResSim code in a peer-reviewed publication are presented in this article The numerical solution was verified against the state-of-the art simulator TOUGH+Hydrate. The model was then used to compare two dissociation theories, kinetic and pure equilibrium Generally, the kinetic model revealed a lower dissociation rate than the equilibrium model. The hydrate dissociation patterns differed significantly when the thermal boundary condition was shifted from adiabatic to constant-temperature. The surface area factor was found to have an important effect on the late of hydrate dissociation for the kinetic model The deviation between the kinetic and equilibrium models was found to Increase with decreasing surface area factor. C1 [Gamwo, Isaac K.; Liu, Yong] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Liu, Yong] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Gamwo, IK (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 38 TC 23 Z9 23 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5231 EP 5245 DI 10.1021/ie901452v PG 15 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200023 ER PT J AU Solbrig, CW Sherman, JB AF Solbrig, Charles W. Sherman, Jeffrey B. TI Slugging Flow of Water Draining from the Bottom of a Nonvented Container SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article AB Experiments were run to measure the slugging frequency and dram rate of water exiting through an orifice at the bottom of a non vented container into an in atmosphere. Initially, the container is nearly full of water with a small air space on top. Upon initially opening the orifice, water drams out until the air pressure above the water reduces enough that the air pressure drop from inside to outside of the container supports the water column and the water stops flowing. Air then enters the container through the orifice forming a bubble, which grows until it detaches and bubbles up through the water to reach the air space. Once the bubble enters, this added air increases the pressure in the air space enough to allow the water to start flowing out again. This cycle of flow out, flow stoppage. air inflow, and bubble breakoff continues over and over until the hole is closed or the container empties This is referred to as the "slugging cycle." A simple model is presented here which can be used to calculate water flow rate out of and air flow into a nonvented container. This paper presents the description of experiments, data obtained, the model, and comparison of the model to the data The model predicts outflow rates close to experimental values. Measurements showed that flow rates from nonvented containers arc more than 10 to 20 times less than vented containers. For nonvented flow, the bubbles which must enter the container periodically to increase the internal air pressure stop the water flow momentarily so are responsible for this large decrease. in flow rate. Swirl induced in the nonvented container allows flow rates to increase by a factor of 2 The flow rate out of a nonvented container is independent of water height which differs from a vented container where the flow rate is proportional to the square root of the water height The constant rate is due to the container air pressure because the higher the water level is. the lower the air pressure is. This analytical model requires input of the bubble size. The volume recommended is the volume of a cylinder with the base of the orifice area and length of 3.3 cm Slugging frequency vanes only a small amount falling in the range of 2-4 cycles/s. Preliminary work with other containers indicates that larger containers, larger orifices, and nozzle exit shapes produce higher flow rates per unit area but similar slugging rates An interesting observation is the following: The air pressure in the container is always negative and can be observed without a gauge. It equals the negative of the water height. C1 [Solbrig, Charles W.; Sherman, Jeffrey B.] Idaho Natl Lab, Idaho Falls, ID USA. RP Solbrig, CW (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. FU US Department of Energy [DE-AC07-051D14517] FX Appreciation is expressed to V L Gertman, A E Gertman. and C R Solbrig for assistance in experimental measurements. This manuscript has been authored by Battelle Energy Alliance, LLC, under Contract No. DE-AC07-051D14517 with the US Department of Energy NR 10 TC 1 Z9 1 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 2 PY 2010 VL 49 IS 11 BP 5254 EP 5262 DI 10.1021/ie901498d PG 9 WC Engineering, Chemical SC Engineering GA 600HX UT WOS:000277977200025 ER PT J AU Schroder, C Fang, X Furukawa, Y Luban, M Prozorov, R Borsa, F Kumagai, K AF Schroeder, C. Fang, X. Furukawa, Y. Luban, M. Prozorov, R. Borsa, F. Kumagai, K. TI Spin freezing and slow magnetization dynamics in geometrically frustrated magnetic molecules with exchange disorder SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ANTIFERROMAGNET; CLUSTER; STATE AB We show that intramolecular exchange disorder recently found in the geometrically frustrated magnetic molecules {Mo(72)Fe(30)} and {Mo(72)Cr(30)} leads, in a classical Heisenberg model description, to spin freezing and slow magnetization dynamics reminiscent of spin glass behaviour. Also we suggest that our low temperature and low magnetic field nuclear magnetic resonance (NMR) measurements on {Mo(72)Fe(30)}, showing rapid and strong broadening of the proton line width on cooling below 600 mK, are evidence for a crossover from paramagnetic behaviour to a frozen spin configuration. Similar broadening is observed in {Mo(72)Cr(30)}. This observed effect is consistent with our theory of spin freezing and slow magnetization dynamics in these systems due to exchange disorder. C1 [Schroeder, C.] Univ Appl Sci Bielefeld, Dept Engn Sci & Math, D-33602 Bielefeld, Germany. [Schroeder, C.; Fang, X.; Furukawa, Y.; Luban, M.; Prozorov, R.; Borsa, F.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Schroeder, C.; Fang, X.; Furukawa, Y.; Luban, M.; Prozorov, R.; Borsa, F.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Borsa, F.] Univ Pavia, CNISM, Dipartimento Fis Alessandro Volta & Unita, I-27100 Pavia, Italy. [Kumagai, K.] Hokkaido Univ, Fac Sci, Dept Phys, Sapporo, Hokkaido 0600810, Japan. RP Schroder, C (reprint author), Univ Appl Sci Bielefeld, Dept Engn Sci & Math, D-33602 Bielefeld, Germany. EM christian.schroeder@fh-bielefeld.de RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU DFG; Ministry of Education, Culture, Sports, Science and Technology of Japan; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We acknowledge the contribution of D Procissi and A Lascialfari. Research performed by CS is supported by the DFG Research Group 945. The work was in part supported by Grant-in-Aid on Priority Area 'Novel States of Matter Induced by Frustrations' from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under contract No. DE-AC02-07CH11358. NR 17 TC 5 Z9 5 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 2 PY 2010 VL 22 IS 21 AR 216007 DI 10.1088/0953-8984/22/21/216007 PG 6 WC Physics, Condensed Matter SC Physics GA 591ZQ UT WOS:000277344500017 PM 21393733 ER PT J AU Shen, MM Jenks, CJ Evans, JW Thiel, PA AF Shen, Mingmin Jenks, Cynthia J. Evans, J. W. Thiel, P. A. TI Rapid decay of vacancy islands at step edges on Ag(111): step orientation dependence SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID INTERLAYER MASS-TRANSPORT; FROM-EQUILIBRIUM NANOSTRUCTURES; QUANTUM CONFINEMENT; ELECTRONIC STATES; METAL-SURFACES; DIFFUSION; GROWTH; EVOLUTION; CLUSTERS; COMPLEX AB Previous work has established that vacancy islands or pits fill much more quickly when they are in contact with a step edge, such that the common boundary is a double step. The present work focuses on the effect of the orientation of that step, with two possibilities existing for a face centered cubic (111) surface: A- and B-type steps. We find that the following features can depend on the orientation: (1) the shapes of islands while they shrink; (2) whether the island remains attached to the step edge; and (3) the rate of filling. The first two effects can be explained by the different rates of adatom diffusion along the A-and B-steps that define the pit, enhanced by the different filling rates. The third observation-the difference in the filling rate itself-is explained within the context of the concerted exchange mechanism at the double step. This process is facile at all regular sites along B-steps, but only at kink sites along A-steps, which explains the different rates. We also observe that oxygen can greatly accelerate the decay process, although it has no apparent effect on an isolated vacancy island (i.e. an island that is not in contact with a step). C1 [Shen, Mingmin; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Jenks, Cynthia J.; Evans, J. W.; Thiel, P. A.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Shen, MM (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RI Shen, Mingmin/A-9293-2012 FU NSF [CHE-0809472]; USDOE [DE-AC02-07CH11358] FX This work was supported by NSF Grant CHE-0809472. The work was performed at the Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. We thank Professor Karina Morgenstern for her interest and insightful comments. NR 26 TC 1 Z9 1 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 2 PY 2010 VL 22 IS 21 AR 215002 DI 10.1088/0953-8984/22/21/215002 PG 6 WC Physics, Condensed Matter SC Physics GA 591ZQ UT WOS:000277344500002 PM 21393718 ER PT J AU Xiang, HJ Wei, SH Gong, XG AF Xiang, Hongjun Wei, Su-Huai Gong, Xingao TI Structures of [Ag-7(SR)(4)](-) and [Ag-7(DMSA)(4)](-) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GOLD NANOPARTICLES; METAL-CLUSTERS; GEOMETRY OPTIMIZATION; SILVER NANOCLUSTERS; GENETIC ALGORITHMS; WANNIER FUNCTIONS; CRYSTAL-STRUCTURE; PROTECTED AU-25 AB We have developed a new genetic algorithm approach to search for the global lowest-energy structures of ligand-protected metal clusters. In combination with density functional theory, our genetic algorithm simulations show that the ground state of [Ag-7(DMSA)(4)](-) has eight instead of four Ag-S bonds and has a much lower energy than the structure based on the [Ag-7(SR)(4)](-) cluster with a quasi-two-dimensional Ag, core. The simulated X-ray diffraction pattern of the [Ag-7(DMSA)(4)](-) cluster is in good agreement with the experimental result. Our calculations for the [Ag-7(SR)(4)](-) and [Ag-7(DMSA)(4)](-) clusters reveal for the first time that -RS-Ag-RS- can be a stable motif in thiolate-protected Ag clusters. In addition, the lowest-energy structures of [Ag7S4](-), [Ag6S4](-), and [Ag5S4](-) are predicted. C1 [Xiang, Hongjun; Gong, Xingao] Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China. [Xiang, Hongjun; Gong, Xingao] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Fudan Univ, Key Lab Computat Phys Sci, Minist Educ, Shanghai 200433, Peoples R China. EM hxiang@fudan.edu.cn RI gong, xingao /B-1337-2010; Xiang, Hongjun/I-4305-2016; gong, xingao/D-6532-2011 OI Xiang, Hongjun/0000-0002-9396-3214; FU National Science Foundation of China; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; special funds for major state basic research; Shanghai municipality; MOE; U.S. Department of Energy [DE-AC36-08GO28308] FX We thank Professor Rongchao Jin for helpful discussions and sending the unpublished experimental XRD pattern for the [Ag7(DMSA)4]- cluster. This work was partially supported by the National Science Foundation of China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the special funds for major state basic research, and the Shanghai municipality and MOE. Work at NREL was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308. NR 54 TC 41 Z9 41 U1 0 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 2 PY 2010 VL 132 IS 21 BP 7355 EP 7360 DI 10.1021/ja9108374 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 603EF UT WOS:000278190600036 PM 20462214 ER PT J AU Bowers, AA Acker, MG Koglin, A Walsh, CT AF Bowers, Albert A. Acker, Michael G. Koglin, Alexander Walsh, Christopher T. TI Manipulation of Thiocillin Variants by Prepeptide Gene Replacement: Structure, Conformation, and Activity of Heterocycle Substitution Mutants SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BACTERIAL PROTEIN-SYNTHESIS; ANTIBIOTIC MICROCIN B17; ELONGATION-FACTOR TU; MICROCOCCIN P1; THIOPEPTIDE ANTIBIOTICS; STRUCTURE ELUCIDATION; NMR-SPECTROSCOPY; BERNINAMYCIN-A; POSTTRANSLATIONAL MODIFICATIONS; STREPTOMYCES-BERNENSIS AB Bacillus cereus ATCC 14579 converts the C-terminal 14 residues of a 52-mer prepeptide into a related set of eight variants of the thiocillin subclass of thiazolyl peptide antibiotics by a cascade of post-translational modifications that alter 13 of those 14 residues. We have introduced prepeptide gene variants into a knockout strain to conduct an alanine scan of all 14 progenitor residues, as well as a serine scan of the six cysteine residues that are converted to thiazoles in the mature natural product. No mature scaffolds were detected for the S1A and S10A mutants, consistent with their roles as the source of the pyridine core. In both the alanine and serine scans, only one substitution mutant failed to produce a mature scaffold: cysteine 11. Cysteine to serine mutants gave mixture of dehydrations, aromatizations, and unaltered alcohol side chains depending on position. Overall, substitutions that altered the trithiazolylpyridine core or reduced the conformational rigidity of the 26-membered macrocyclic loop led to loss of antibiotic activity. In total, 21 peptide mutants were cultured, from which production of 107 compounds was observed and 94 compounds, representing 17 structural mutants, were assayed for antibiotic activity. High-resolution NMR solution structures were determined for one mutant and one wild-type compound. These structures demonstrate that the tight conformational rigidity of the natural product is severely disrupted by loss of even a single heterocycle, perhaps accounting for the attendant loss of activity in such mutants. C1 [Bowers, Albert A.; Acker, Michael G.; Walsh, Christopher T.] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Koglin, Alexander] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. RP Bowers, AA (reprint author), Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. EM Christopher_walsh@hms.harvard.edu FU NIH NIAID [20011]; NERCE [NIAID U54 AI057 159]; NIH National Cancer Institute [CA136283] FX We thank Jonathan Swoboda and Jenny O'Neill for guidance with MIC assays. This work was supported by NIH NIAID Grant 20011 and NERCE Grant NIAID U54 AI057 159 (C.T.W.) Reagents were prepared with the assistance of the NERCE Biomolecule Production Core (NIAID U54 AI057 159). In particular, we thank Lauren Perry and Robin Ross (both of NERCE) for invaluable aid with batch fermentations of the individual variants. A.K. acknowledges the DOE and LANS for a JR Oppenheimer fellowship at the Los Alamos National Laboratory. A.A.B is supported by an NIH National Cancer Institute Postdoctoral Fellowship (CA136283). NR 68 TC 54 Z9 55 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 2 PY 2010 VL 132 IS 21 BP 7519 EP 7527 DI 10.1021/ja102339q PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 603EF UT WOS:000278190600055 PM 20455532 ER PT J AU Chaudhury, RP Lorenz, B Sun, YY Bezmaternykh, LN Temerov, VL Chu, CW AF Chaudhury, R. P. Lorenz, B. Sun, Y. Y. Bezmaternykh, L. N. Temerov, V. L. Chu, C. W. TI Magnetoelectricity and magnetostriction due to the rare-earth moment in TmAl3(BO3)(4) SO PHYSICAL REVIEW B LA English DT Article ID IRON BORATE GDFE3(BO3)(4); CRYSTAL; MULTIFERROICS AB The magnetic properties, the magnetostriction, and the magnetoelectric effect in the d-electron free rare-earth aluminum borate TmAl3(BO3)(4) are investigated between room temperature and 2 K. The magnetic susceptibility reveals a strong anisotropy with the hexagonal c axis as the hard magnetic axis. Magnetostriction measurements show a large effect of an in-plane field reducing both the a-axis and c-axis lattice parameters. The magnetoelectric polarization change in a and c directions reaches up to 300 mu C/ m(2) at 70 kOe with the field applied along the a axis. The magnetoelectric polarization is proportional to the lattice contraction in magnetic field. The results of this investigation prove the existence of a significant coupling between the rare-earth magnetic moment and the lattice in RAl3(BO3)(4) compounds (R=rare earth). They further show that the rare-earth moment itself will generate a large magnetoelectric effect which makes it easier to study and to understand the origin of the magnetoelectric interaction in this class of materials. C1 [Chaudhury, R. P.; Lorenz, B.; Sun, Y. Y.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Chaudhury, R. P.; Lorenz, B.; Sun, Y. Y.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Bezmaternykh, L. N.; Temerov, V. L.] Russian Acad Sci, Inst Phys, Siberian Div, Krasnoyarsk 660036, Russia. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Chaudhury, RP (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. FU U.S. Air Force Office of Scientific Research; Temple Foundation FX This work is supported in part by the U.S. Air Force Office of Scientific Research, the T. L. L. Temple Foundation, the J.J. and R. Moores Endowment, and the State of Texas through the TCSUH and at LBNL by the DOE. NR 25 TC 22 Z9 22 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 2 PY 2010 VL 81 IS 22 AR 220402 DI 10.1103/PhysRevB.81.220402 PG 4 WC Physics, Condensed Matter SC Physics GA 604TH UT WOS:000278300900002 ER PT J AU Ehlers, G Greedan, JE Stewart, JR Rule, KC Fouquet, P Cornelius, AL Adriano, C Pagliuso, PG Qiu, Y Gardner, JS AF Ehlers, G. Greedan, J. E. Stewart, J. R. Rule, K. C. Fouquet, P. Cornelius, A. L. Adriano, C. Pagliuso, P. G. Qiu, Y. Gardner, J. S. TI High-resolution neutron scattering study of Tb2Mo2O7: A geometrically frustrated spin glass SO PHYSICAL REVIEW B LA English DT Article ID PYROCHLORE Y2MO2O7; DIFFRACTION; DYNAMICS; DISORDER; OXIDES; ECHO AB The low-temperature magnetic properties of Tb2Mo2O7 have been studied with bulk susceptibility measurements and with elastic and high-resolution inelastic neutron scattering. This system is a spin glass with a freezing temperature T-g similar to 25 K. A reverse Monte Carlo simulation of the neutron diffraction data shows weak ferromagnetic near-neighbor spatial correlations that do not extend beyond <= 10 angstrom. Neutron measurements of the spin dynamics reveal a slowing down with decreasing temperature without an anomaly at the glass transition. A low-lying Q-independent mode is seen at h omega(0) similar to 0.28 meV. This dispersionless crystal electric field transition is measurable up to 60 K. C1 [Ehlers, G.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Greedan, J. E.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Greedan, J. E.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Stewart, J. R.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Rule, K. C.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Fouquet, P.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Cornelius, A. L.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Adriano, C.; Pagliuso, P. G.] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Qiu, Y.; Gardner, J. S.] NIST, NCNR, Gaithersburg, MD 20899 USA. [Gardner, J. S.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. RP Ehlers, G (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Bldg 8600, Oak Ridge, TN 37831 USA. EM ehlersg@ornl.gov RI Ehlers, Georg/B-5412-2008; Inst. of Physics, Gleb Wataghin/A-9780-2017; Cornelius, Andrew/A-9837-2008; Pagliuso, Pascoal/C-9169-2012; Fouquet, Peter/B-5212-2008; Stewart, Ross/C-4194-2008; Gardner, Jason/A-1532-2013 OI Ehlers, Georg/0000-0003-3513-508X; Fouquet, Peter/0000-0002-5542-0059; Stewart, Ross/0000-0003-0053-0178; FU U.S. Department of Energy; National Science Foundation [DMR0454672] FX This Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The NCNR is in part funded by the National Science Foundation under Agreement No. DMR0454672. We thank A. D. Lozano-Gorrin and S. Derahkshan for sample preparation. J.E.G. thanks NSERC. The authors are grateful for the local support staff at the ILL and at NIST. NR 42 TC 7 Z9 7 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 2 PY 2010 VL 81 IS 22 AR 224405 DI 10.1103/PhysRevB.81.224405 PG 8 WC Physics, Condensed Matter SC Physics GA 604TH UT WOS:000278300900006 ER PT J AU Solontsov, A Antropov, VP AF Solontsov, A. Antropov, V. P. TI Effects of spin fluctuations and anomalous thermal expansion of delta-Pu SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; PLUTONIUM; MAGNETISM; CERIUM; STATE AB We suggest a model for the magnetic dynamics of delta plutonium and its alloys in order to show that the dynamical fluctuations of the magnetization density, or spin fluctuations, may be responsible for the anomalies of their observed thermal expansion. We show that due to strong magnetoelastic coupling, spin fluctuations may essentially contribute to the volume strain by giving a negative magnetovolume contribution that is proportional to the squared local magnetic moment and the magnetic Gruneisen constant which is negative in delta plutonium. In the presented model, the local magnetic moment increases as the temperature rises, resulting in the interplay between the positive contributions to the volume strain from the lattice and the negative contribution from spin fluctuations, and finally leads to the Invar anomaly or to the negative coefficient of thermal expansion. Our results agree closely with the measured thermal-expansion data for Pu-Ga alloys. C1 [Solontsov, A.; Antropov, V. P.] US DOE, Ames Lab, Ames, IA 50011 USA. [Solontsov, A.] AA Bochvar Inorgan Mat Res Inst, Moscow 123060, Russia. [Solontsov, A.] State Ctr Condensed Matter Phys, Moscow 155569, Russia. RP Solontsov, A (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; ROSATOM; Russian Foundation for Basic Research [06-02-17291] FX A.S. is pleased to thank V. K. Orlov and S. A. Kiselev for fruitful discussions, and A. A. Burmistrov for the technical support. Work at the Ames Laboratory was supported by Department of Energy-Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. A. S. would also acknowledge the support of ROSATOM and Russian Foundation for Basic Research (Grant No. 06-02-17291) NR 27 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 2 PY 2010 VL 81 IS 21 AR 214402 DI 10.1103/PhysRevB.81.214402 PG 5 WC Physics, Condensed Matter SC Physics GA 604TF UT WOS:000278300700003 ER PT J AU Loh, ND Bogan, MJ Elser, V Barty, A Boutet, S Bajt, S Hajdu, J Ekeberg, T Maia, FRNC Schulz, J Seibert, MM Iwan, B Timneanu, N Marchesini, S Schlichting, I Shoeman, RL Lomb, L Frank, M Liang, M Chapman, HN AF Loh, N. D. Bogan, M. J. Elser, V. Barty, A. Boutet, S. Bajt, S. Hajdu, J. Ekeberg, T. Maia, F. R. N. C. Schulz, J. Seibert, M. M. Iwan, B. Timneanu, N. Marchesini, S. Schlichting, I. Shoeman, R. L. Lomb, L. Frank, M. Liang, M. Chapman, H. N. TI Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns SO PHYSICAL REVIEW LETTERS LA English DT Article ID FREE-ELECTRON LASER AB We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the expansion-maximization-compression framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules. C1 [Loh, N. D.; Elser, V.] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. [Bogan, M. J.; Boutet, S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Schlichting, I.; Shoeman, R. L.; Lomb, L.] DESY, Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. [Hajdu, J.; Ekeberg, T.; Maia, F. R. N. C.; Seibert, M. M.; Iwan, B.; Timneanu, N.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Marchesini, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Schlichting, I.; Shoeman, R. L.; Lomb, L.] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Frank, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chapman, H. N.] Univ Hamburg, D-22761 Hamburg, Germany. RP Loh, ND (reprint author), Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. RI Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Marchesini, Stefano/A-6795-2009; Timneanu, Nicusor/C-7691-2012; Schlichting, Ilme/I-1339-2013; Rocha Neves Couto Maia, Filipe/C-3146-2014; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014; Loh, Duane/I-7371-2013; OI Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Barty, Anton/0000-0003-4751-2727; Loh, Duane/0000-0002-8886-510X; Bogan, Michael J./0000-0001-9318-3333 FU Helmholtz Association; U.S. Department of Energy, Office of Basic Energy Sciences; Lawrence Livermore National Laboratory ( LLNL) [W-7405- Eng-48, DE-AC52-07NA27344]; Laboratory of Directed Research and Development Program of LLNL [05-SI-003]; Deutsches Elektronen-Synchrotron; DFG Cluster of Excellence at Munich center for Advanced Photonics; Virtual Institute Program of Helmholtz Society; Joachim Herz Stiftung; Max Planck Society; Swedish Research Council FX Our work was supported by Helmholtz Association; the PULSE Institute at the SLAC National Accelerator Laboratory by the U.S. Department of Energy, Office of Basic Energy Sciences ( M. J. B.); Lawrence Livermore National Laboratory ( LLNL) under Contracts No. W-7405- Eng-48 and DE-AC52-07NA27344; Laboratory of Directed Research and Development Program of LLNL pertaining to Project No. 05-SI-003; Deutsches Elektronen-Synchrotron, DFG Cluster of Excellence at Munich center for Advanced Photonics, Virtual Institute Program of Helmholtz Society, Joachim Herz Stiftung, Max Planck Society and Swedish Research Council. We thank the reviewers for their insightful suggestions and N. D. Loh thanks Yoav Kallus for his invaluable discussions. NR 13 TC 48 Z9 48 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2010 VL 104 IS 22 AR 225501 DI 10.1103/PhysRevLett.104.225501 PG 5 WC Physics, Multidisciplinary SC Physics GA 604UC UT WOS:000278303000009 PM 20867179 ER EF